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Abstract 
 

In the pharmaceutical industry crystallisation is the preferred method used to control 

crystal size and particle growth, and to purify the final product. It can also be used for 

the isolation of any impurities. Using the minimum amount of material is desirable. 

Therefore, the ability to predict solubility and to construct accurate and robust 

models for complex molecules has been of ongoing interest in the pharmaceutical 

industry. There are several methods to predict solubility in silico, including: 

COSMOtherm, NRTL-SAC, UNIFAC, and SAFT-γ Mie. This work will focus on the use 

and appraisal of ab initio method COSMOtherm and the application of a “correction 

factor” using the machine learning algorithm random forest to improve accuracy of 

predictions. 

Chapter Two compares experimental data with COSMOtherm to assess the 

robustness and reliability of the method. The influence of adjustable parameters 

required for predictions: enthalpy of fusion, and melting temperature, were 

assessed. These studies detail the importance of accurate measurements of these 

parameters and how deviations from their true value can affect the accuracy of 

solubility predictions. 

Chapter Three details the building of a linear regression model using a design of 

experiment approach for almost instantaneous predictions using no specialised 

software, for non-experts and modellers. 

Chapter Four details the building of machine learning models using random forest to 

apply a correction factor to the error between COSMOtherm and experimental data. 
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Chapter Five uses predictive methods and a workflow approach to select 

crystallisation and wash solvents. A case study using paracetamol and its impurities 

is considered. 
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1 Introduction 

1.1 CMAC (Continuous Manufacturing and Advanced Crystallisation) 

The EPSRC Future Manufacturing Research Hub in Continuous Manufacturing and 

Advanced Crystallisation (CMAC) is a hub for medicines manufacturing, research and 

training. The CMAC Hub is located at the University of Strathclyde and with a 

multidisciplinary and collaborative academic team at the UK Universities of Bath, 

Cambridge, Imperial, Leeds, Loughborough and Sheffield. Established in 2011, it 

comprises of more than 130 staff and researchers, including more than 45 PhD 

students. CMAC has a close collaboration with industry and has the support of tier 

one partners, which include GlaxoSmithKline (GSK), AstraZeneca, Bayer, Lilly, 

Novartis, Pfizer, Roche and Takeda. 

 
Figure 1-1 CMAC Future Manufacturing Research Hub areas of research and development 

One of CMAC’s research aims is to deliver new predictive tools and design approaches 

for drug products, processes and supply chains (Figure 1-1). This thesis will investigate 

predictive tool development and the use of machine learning (ML) to enhance ab 

initio and related modelling methodologies. The outputs will then be incorporated in 

digital workflows for speed and ease-of-use by non-experts. 
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1.2 Overview 

Within the pharmaceutical industry, crystallisation is the preferred method used to 

control crystal size and particle growth, and to purify the final product. It can also be 

used for the isolation of any impurities encountered in the production process. Using 

the minimum amount of chemical material in the laboratory is desirable; predictive 

methods can help achieve this in many cases. As with any new product development, 

the availability of drug product for laboratory use in solubility studies is often 

restricted due to the high cost of manufacture and the competing demand for drug 

substance from formulation teams and for clinical trials. The thermodynamic driving 

force behind crystallisation is solubility. The solubility of any given substance in a 

solvent depends on the physical and chemical properties of the solute and solvent as 

well as on temperature, pH of the solution and atmospheric pressure. Pharmaceutical 

molecules can be complex with various functional groups exhibiting a range of intra- 

and inter-molecular interactions. The ability to predict solubility and to construct 

accurate and robust models for these complex molecules has been of particular 

ongoing interest throughout the pharmaceutical industry (Benazzouz et al., 2014). To 

overcome the challenges of finding a reliable method for identifying suitable solvent 

systems for crystallisation, filtration and washing, several methods have been used; 

each with their own particular advantages and disadvantages. There are 

sophisticated quantum chemical computational methods such as non-random two-

liquid segment activity co-efficient (NRTL-SAC) (Song, 2004) and universal 

quasichemical functional group activity coefficients (UNIFAC) which have been used 

for many years (Fredenslund,Jones and Prausnitz, 1975). Perturbed chain statistical 
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associating fluid theory (PC-SAFT) (Gross and Sadowski, 2001) has been available 

since the 1970s and conductor like screening model for real solvents (COSMO-RS) (F. 

Eckert and Klamt, 2002) has been used since the 1990s. 

UNIFAC is a group-contribution method and uses parameters obtained from data 

reduction, enabling the activity co-efficient to be predicted with accuracy. Initially, 

the methodological objective was the prediction of vapour-liquid equilibria (VLE) 

which describes the distribution of chemical species between the vapour and liquid 

phase. This was expanded to include liquid-liquid equilibria (LLE), which is the 

distribution of a component in two liquid phases, and solid-liquid equilibria (SLE). SLE 

describe the distribution of a solid in a liquid. Group contribution methods assume 

that the mixture does not consist of molecules but a collection of functional groups 

such as aromatic CH and COOH (see Table 1-1). 

 

Figure 1-2 salicylic acid broken down into functional groups 

Each molecule is divided into main groups and sub-groups (Figure 1-2 and Table 1-1). 

This has the advantage of there being a much smaller group of functional groups than 

there are compounds. 

2 

3 

1 

4 
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Table 1-1 UNIFAC functional groups for salicylic acid 

Functional 
group 

Main group name Sub-
group 

1 Aromatic carbon 4 ACH 

2 Aromatic carbon 2 AC 

3 COOH 1 COOH 

4 Aromatic carbon-alcohol 1 ACOH 

 

In this method the activity co-efficient is calculated by a combinational part and a 

residual part with the combinational part taking into consideration parameters for 

area and volume and the residual part for binary interactions (Gmehling, 1998). This 

method is thought to be more accurate for smaller molecules but has trouble with 

larger molecules with more complex structures (C.C. Chen, 1993). One of the major 

drawbacks of this method is that if there are no data pertaining to a particular 

functional group, the method has insufficient information to be able to parameterise 

the molecule being studied, which then leads to unreliable results. This is of particular 

concern in the pharmaceutical industry as active pharmaceutical ingredients (API) can 

have functional groups that have no UNIFAC parameters and drugs can be, in some 

cases, large and complex molecules. There have been further modifications to 

UNIFAC designed by Gmehling (called modified UNIFAC(Do)) to tackle perceived 

weaknesses in the original method (Xue,Mu and Gmehling, 2012), such as the 

accuracy of the method across a particular concentration range. This method has 

resulted in a change to some of the equations for the combinational part with an 

additional temperature parameter for the group interaction term and the addition of 

two new main groups; cyclic amides and aromatic compounds containing sulphur 

(Gmehling, 1998). Temperature dependent group-interaction parameters were 
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introduced to modified UNIFAC(Do) to allow a better description of real behaviour 

over a wide temperature range; this has the drawback of requiring more parameters 

for each group. Generally, this method is not applicable to electrolytes. 

NRTL-SAC is based on the polymer NRTL model (C.C. Chen, 1993) which itself is a 

derivation of the original NRTL method of Renon and Prausnitz (Renon and Prausnitz, 

1968). NRTL-SAC is used to predict the physical behaviours of non-ideal systems. It is 

similar in many respects to UNIFAC as it uses experimental data to identify molecular 

parameters for solutes and these data are used to extrapolate to other solvent 

systems (C.C. Chen and Song, 2004). 

Similar to UNIFAC, it uses a combinational and residual contribution to predict the 

activity co-efficient. Rather than using parameters for functional groups, this method 

uses a contribution from conceptual segments: those being hydrophobic (X); polar 

(Y+,Y-); and hydrophilic (Z). The hydrophilic segment represents the region of a 

molecule that has the characteristics of a hydrogen-bond donor or acceptor. The 

hydrophobic segment represents the region of a molecule that is unfavourable to 

hydrogen bonding. The polar segment is divided into two parts: polar-attractive is a 

segment, which shows attraction with a hydrophilic molecular surface; and the polar-

repulsive segment, which exhibits repulsion with a hydrophilic molecular surface. 

NRTL-SAC differs from UNIFAC as it maps molecules into a few predefined conceptual 

segments where UNIFAC has a large set of predefined functional groups based on the 

chemical structure. 

PC-SAFT (Gross and Sadowski, 2001) and statistical associating fluid theory-gamma 

Mie (SAFT-γ Mie) (Papaioannou et al., 2014) are molecular based equation of state 
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models, which take into consideration the effect of hard chain (repulsive forces), 

shape dispersion (van der Waal interactions (vdW)) and association forces (hydrogen 

bonds). The theory is based on introducing a defined model fluid as a reference 

system then modelling a real fluid by adding perturbations to the reference system 

(Gross and Sadowski, 2001, Beret and Prausnitz, 1975). SAFT-γ Mie is studied in 

greater detail in section 1.3.7. The major drawback of NRTL-SAC, UNIFAC and PC-SAFT 

is that all three need a great deal of empirical data to establish parameters for their 

predictions. 

1.3 Methods 

Several computational methods have been used in this work to predict solubility and 

these are described in detail in the following sections. These include COSMO-RS 

theory, which was used for most of the solubility predictions in this thesis, and 

UNIFAC and SAFT-γ Mie, which were used for comparison of methods in section 2.6.2. 

Other modelling approaches discussed include random forest (RF), a ML method that 

was used in this thesis to enhance the predictive accuracy of existing solubility 

prediction approaches using descriptors from modelling software, Molecular 

Operating Environment (MOE). Additionally, the Joback and Reid method for the 

prediction of enthalpy of fusion and melting temperature (Joback and Reid, 1987), 

the Jain and Yalkowsky method for predicting enthalpy of fusion (Jain,Yang and 

Yalkowsky, 2004) and the COSMOquick linear regression method are also considered 

(Loschen and Klamt, 2012). 
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1.3.1 Equipment 

For this project, a Dell Precision T7810 was used with two Intel® Xeon® CPU E5-2637 

v3 @ 3.50 GHz and 32 GB RAM. 

1.3.2 COSMO-RS 

COSMO-RS is a quantum chemical method that predicts chemical potential in liquids. 

It brings together statistical thermodynamics methodology with an electrostatic 

theory of locally interacting molecular surface descriptors. 

COSMO-RS is an ab initio method initially developed for the prediction of the 

thermophysical properties of liquids by Andreas Klamt and Frank Eckert in the 1990s 

(Klamt and Eckert, 2000). As it needs little experimental data to perform predictions, 

unlike NRTL-SAC and UNIFAC. It has a greater applicability than other models, 

although some accuracy may be lost as the other methods use fitted data. COSMO-

RS takes a screening charge density (σ) from a molecule, which provides a discrete 

surface around a molecule in a virtual conductor. COSMO-RS has a greater emphasis 

on intermolecular interactions than the group contribution methods with hydrogen 

bonding and vdW interactions accounted for. The method also takes into 

consideration intramolecular hydrogen bonding which UNIFAC does not. 

COSMOtherm is the computer application developed by Klamt and Eckert, which uses 

COSMO-RS theory. NRTL-SAC and UNIFAC do not explicitly consider the effects of 

multiple molecular conformers whereas COSMOtherm does. 
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Figure 1-3 Visualisation of paracetamol (left) and the Sigma surface of paracetamol (right), colour coded by the 

polarization charge density, σ. Red areas denote strongly negative parts of the molecular surface and hence 
strongly positive values of σ. Blue areas denote strongly positive surface regions (strongly negative σ) and green 

denotes nonpolar surface. 

COSMO-RS is a variant of dielectric continuum solvation models (CSMs) (Frank Eckert, 

2015). A dielectric is a material which is an electrical insulator that can be polarized 

by an applied electric field. CSMs are models in which the solute is placed in a 

dielectric medium or cavity and which defines the interface between a solute 

molecule and the surrounding solvent molecules as a continuum. The calculations in 

COSMOtherm are implemented in a virtual conductor environment. In such an 

environment, the solute molecule induces a polarization charge density, σ, on the 

interface between the molecule and the conductor, i.e. on the molecular surface. 

Figure 1-3 shows the sigma surface of paracetamol: the blue regions show 

electrostatically positive regions such as hydrogen; green are neutral areas and red 

are negative areas, which are located around the location of the oxygen lone pairs. 

The solute is treated as if inserted into a dielectric medium or cavity that is 

constructed around the molecule. The total energy of each screened molecule is 

calculated. In COSMO-RS theory, the solute and solvent molecules are considered to 

be a liquid of closely-packed, ideally screened molecules. To achieve this close 

packing, the system has to be compressed and the cavities of the molecules are 
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deformed slightly; although the volumes of the cavities do not change significantly. 

Every segment of the molecular surface is in close contact with another segment. 

It is assumed that there is a conducting surface between molecules and that each 

molecule has net surface charge densities σ and σ’ representing hydrogen bond 

acceptors and donors respectively. Where σ is positive surface charge density and σ’ 

is negative surface charge density. It should be noted that, in reality, there is not a 

conducting surface between the surface contact areas (see Figure 1-4). The figure 

shows carbon dioxide and water with a hydrogen bond acceptor σ and donor σ’ 

respectively. 

 
Figure 1-4 Electrostatic interactions arising from misfit screening charge densities σ acceptor and σ’ donor for 

carbon dioxide and water 

An electrostatic interaction arises from the contact of the two different surface 

charge densities (Figure 1-4). This specific interaction energy per unit area or “misfit” 

energy of surface charge densities is given by Equation 1: 

Equation 1 

𝐸𝑚𝑖𝑠𝑓𝑖𝑡(𝜎, 𝜎′) = 𝑎𝑒𝑓𝑓

𝛼′

2
(𝜎 + 𝜎′)2 
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(Equation 1) Where aeff is the effective contact area between the two surface 

segments and α’ is an adjustable parameter. If σ and σ’ equal each other, they cancel 

out. Hydrogen bonding can also be described by the adjacent screening charge 

densities. Hydrogen bond donors have a strong negative screening charge density 

and hydrogen bond acceptors have a strong positive screening charge density. A 

hydrogen bond interaction can be expected if two pieces of segment are in contact 

and surfaces are sufficiently polar and of opposite polarity. This behaviour can be 

described by the following equation (Equation 2): 

Equation 2 

𝐸𝐻𝐵 = 𝑎𝑒𝑓𝑓𝑐𝐻𝐵𝑚𝑖𝑛(0; 𝑚𝑖𝑛(0;𝜎𝑑𝑜𝑛𝑜𝑟 + 𝜎𝐻𝐵)𝑚𝑎𝑥(0; 𝜎𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟 − 𝜎𝐻𝐵)) 

Where CHB and σHB are adjustable parameters. The threshold for hydrogen bonding is 

σHB. COSMO-RS, in addition to misfit and hydrogen bonding interactions, also 

considers vdW interactions between surface segments (Equation 3): 

Equation 3 

𝐸𝑣𝑑𝑊 = 𝑎𝑒𝑓𝑓(𝜏𝑣𝑑𝑊 + 𝜏′
𝑣𝑑𝑊) 

Where τvdW and τ’vdW are element specific adjustable parameters. VdW energy is only 

dependent on the type of atoms of the elements involved in the surface contact. 

Statistical thermodynamics provides the link between the surface of microscopic 

surface interaction energies and the macroscopic thermodynamic properties of a 

liquid. All molecular interactions within COSMO-RS consist of local pair wise 

interactions of the surface segments of molecules, therefore statistical averaging can 
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be applied to the interactions of surfaces. This is relatively computationally efficient. 

To describe the composition of the surface segment ensemble with respect to the 

interactions (which depend on σ only), only the probability distribution of σ has to be 

known for all compounds. 

 
Figure 1-5 σ-profile showing probability distributions pi(σ) and surface charge density σ for water 

 
Figure 1-6 σ-profile showing probability distributions pi(σ) and surface charge density σ for hexane 
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These probability distributions pi(σ) are called σ-profiles (Figure 1-5 and Figure 1-6). 

The σ-profile of water shows a broad peak around –0.015 e/Å2 arises from the two 

very polar hydrogen atoms whereas the peak around +0.015 e/Å2 results from the 

lone pairs of the oxygen. The σ-profile for hexane reflects a non-polar compound with 

charge densities around zero. The peak in Figure 1-6 can be attributed to the carbon 

atoms for the positive σ and the hydrogen atoms for the negative σ. This is because 

negative charges of atoms cause a positive screening charge and vice versa. The σ-

profile of the whole system ps(σ) is the sum of all the σ-profiles of all the components 

weighted with their mole fraction in the mixture xi: 

Equation 4 

𝑝𝑠(𝜎) = ∑ 𝑥𝑖𝑝𝑖(𝜎)

𝑖𝜖𝑆

 

Using the chemical potential of a surface segment the screening charge density can 

be calculated by the normalised distribution function ps(σ) (Equation 4). 

Equation 5 

µ𝑠(𝜎) = −
𝑅𝑇

𝑎𝑒𝑓𝑓
𝑙𝑛 [∫ 𝑝𝑠 (𝜎′)𝑒𝑥𝑝 (

𝑎𝑒𝑓𝑓

𝑅𝑇
(µ𝑠(𝜎′) − 𝑒(𝜎, 𝜎))) 𝑑𝜎′] 

Where µs(σ) is the affinity of system S to a surface of polarity σ. This function is also 

called the σ-potential (Equation 5). 

COSMO-RS represents molecular interactions in the form of a σ-profile and σ-

potential of compounds and mixtures. 
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The chemical potential of compound i in system S can be calculated by integrating 

the σ-potential over the surface of i (Equation 6): 

Equation 6 

µ𝑖
𝑆 = µ𝑖

𝐶,𝑆 + ∫ 𝑝𝑖(𝜎)µ𝑠(𝜎)𝑑𝜎 

COSMOtherm is, in the first instance, operated by a graphical user interface (GUI) 

called COSMOthermX. For this project COSMOtherm has been automated using 

Python scripts to enable the calculations that are required for this project to be 

completed faster and on a larger scale than can be manually achieved by using 

COSMOthermX on a job-by-job basis. Only single conformers have been considered 

so far and conformers will be discussed more fully in the COSMOconf section 1.3.5. 

1.3.3 Density Functional Theory 

Density functional theory (DFT) (Kohn,Meir and Makarov, 1998) is an approach for 

modelling the electronic structure of atoms based upon a theory which states that all 

the ground-state properties of a system are a function of charge density. This theory 

uses electron density as a fundamental description of a molecular system. In this 

theory, the properties of a many-electron system can be studied using functionals i.e. 

a function of another function. 

1.3.4 Basis sets 

The basis set is a mathematical representation of the molecular orbitals within a 

molecule and are used for DFT calculations. The use of the set of m basis functions 

(Ф1…Фm) can be interpreted as restricting each electron to a particular region of space. 

Basis functions are composed of a radial and an angular part. The radial part gives the 
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variation of probability amplitude (Χ(r)) as the distance, r, from the nucleus is varied. 

The angular part gives the factor by which the radial part is scaled as the direction 

changes. 

Types of basis functions include Slater-type orbitals (STO) and Gaussian type orbitals 

(GTO). GTOs are commonly used ab initio. The shapes of STOs and GTOs are different; 

STOs give a better representation of an atomic orbital but are more demanding 

computationally (Stewart,Hylton and Ravi, 2013). One of the advantages of Gaussian 

functions is that the product of two functions can be expressed as a single Gaussian 

(Magalhães, 2014). One of the disadvantages of Gaussian functions however is that 

they do not exhibit a cusp at the origin and they decay faster towards zero, whereas 

STOs have a cusp (Figure 1-7). This disadvantage is overcome by using a linear 

combination of Gaussian functions to represent each STO. It is common to use three 

times as many GTOs as STOs to achieve the same level of accuracy. Despite the need 

for more Gaussian functions, they are still more efficient computationally than STOs. 

 
Figure 1-7 Plots of STO and GTO basis functions (Moradabadi, 2017) 
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Notation schemes have been devised to denote the basis set used in ab initio 

calculations (Leach, 1996). These notations, depend on the number and type of 

function used and are shown in Table 1-2. Other nomenclature is also used, notably 

Karlsruhe basis sets for COSMOtherm (Zheng,Xu and Truhlar, 2011). 

There are several major deficiencies in using a minimal basis set. Firstly, within a 

period, atoms on the right of the periodic table are described by the same number of 

functions as those from the left despite having more electrons. Secondly, the 

functions are unable to expand or contract in size in relation to the molecular 

environment. Thirdly, the minimal basis set cannot describe non-spherical 

characteristics of electronic distribution, occurring during polarisation. The solution 

to these three problems is to add more functions to the minimal basis set. 
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Table 1-2 Examples of some common basis sets, their notation and associated description 

Class Notation Effect 

Split basis set 3-21G 
4-31G 
6-31G 
SVP 

More functions are added to describe 
valance electrons. Triple zeta basis set: 
triples functions from minimal basis set. 
Increases size of orbitals but does not 
allow modification of shapes under 
bond polarisation 

Polarised 6-31G* or 6-31G(d) 
6-31G** or G-31G(d,p) 
TZVP 

Adds p orbitals on H-atoms and d 
orbitals on C. Takes into account 
changes in orbital shapes due to bond 
polarisation. 6-31G(d) only adds d 
functions to heavy atoms. 6-31G(d,p) 
adds d functions to heavy atoms and p 
functions to light atoms. This is 
important for polarised bonds. 

Diffusion 6-31+G 
6-31++G 
TZVPD-fine 

Allows orbitals to occupy a larger region 
of space, which is important when 
orbital electrons are far away from the 
nucleus e.g. lone pairs or anions. 6-31+G 
only adds functions to heavy atoms. 
631++G adds functions to heavy atoms 
and lighter ones. 

 

The number of functions can be increased to better reflect the system being studied. 

As more functions are added, the more accurate the model calculation will become, 

however, this will increase the required computational time. 

The three basis sets that COSMOtherm uses are split valence polarisation (SVP), 

triple-zeta valence polarisation (TZVP) and triple-zeta valance polarisation with 

diffuse functions (TZVPD-fine). 

1.3.5 COSMOconf 

All the COSMOtherm calculations used in this project were calculated using COSMO 

files obtained from the COSMOlogic database, which were supplied with 

COSMOtherm, or were parameterised using the software package COSMOconf. All 
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the molecules were parameterised at a TZVPD-fine basis set level. This basis set, 

when used for COSMOtherm solubility predictions, was found to be the most 

accurate when compared with experimental solubility data points, as the study in 

section 2.8 details. COSMOconf is a software application for conformer generation. It 

uses pre-defined procedures that are optimised for the generation of the most 

relevant conformers for COSMO-RS. COSMOconf reduces the conformational space 

to a small set of relevant conformations by removing identical conformers, higher 

energy conformers and molecules with alternate stereochemistry. The conformers 

will be weighted internally by COSMOtherm using their COSMO-energy and chemical 

potential. Lower energy conformations are assigned more weight in line with a 

Boltzmann form. 

A conformer is a stereoisomer that can be converted by rotations around single 

bonds. Each conformer has a different energy, polarity and hydrogen bonding 

capacity. These properties are essential for the predictions that COSMO-RS performs.  

The correct conformational mixture should be used to achieve the most accurate 

solubility predictions as using only a single conformer can produce significant errors. 

The key features of COSMOconf include an automatic conformer selection by 

relevance to the chemical potential (μ-clustering) in diverse solvents. Increased 

accuracy and robustness are achieved through the use of well-established density 

functional theory calculations. Finally, the ability to handle large molecules 

containing more than 100 atoms is feasible. A command line version, used for 

scripting and automation, makes it more amenable to integration within digital 

workflows as discussed in section 2.6 (Klamt, 2015). 
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1.3.6 UNIFAC 

UNIFAC is a group contribution model that requires empirical data to parameterise 

the functional groups used to model the activity co-efficient in non-ideal mixtures. By 

utilising interactions of each functional group on both the solute and solvent 

molecules and also some binary interaction co-efficients, the activity co-efficient can 

be predicted. UNIFAC was developed for the prediction of VLE but has been expanded 

to predict other physical properties including SLE. UNIFAC separates the activity co-

efficient (γ) into two parts: firstly, a combinational contribution (γC) to the activity co-

efficient, which is due to the volume and surface area characteristics of a molecule; 

and secondly, a residual contribution (γR) reflecting energetic interactions (Equations 

7 and 8). 

Equation 7 

𝑙𝑛𝛾𝑖 = ln 𝛾𝑖
𝐶 + 𝑙𝑛𝛾𝑖

𝑅 

Equation 8 

𝑙𝑛𝛾𝑖
𝐶 = 𝑙𝑛

𝜑𝑖

𝑥𝑖
+

𝑧

2
𝑞𝑖𝑙𝑛

𝜃𝑖

𝜑𝑖
+ 𝑙𝑖 −

𝜑𝑖

𝑥𝑖
∑ 𝑥𝑗

𝑗

𝑙𝑗 

In Equations 8 to 13: x is the mole fraction; z is the co-ordination number and is 

usually 10; ϴi is the area segment fraction; ϕi is the segment fraction for volume; ri  is 

the volume contribution for each molecule; k is the subgroup identification number; 

Rk is the vdW volume of group k (Equation 12); qi is the area contribution for each 

molecule; Qk is the vdW surface area of group k;  vk
(i) is the number of groups of k in 

molecule i (Equation 13); and Rk and Qk are taken from a list of fitted parameters. 
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Equation 9 

𝑙𝑖 =
𝑧

2
(𝑟𝑖 − 𝑞𝑖) − (𝑟𝑖 − 1) 

Equation 10 

𝜃𝑖 =
𝑞𝑖𝑥𝑖

∑ 𝑞𝑗𝑥𝑗𝑗
 

Equation 11 

𝜑𝑖 =
𝑟𝑖𝑥𝑖

∑ 𝑟𝑗𝑥𝑗𝑗
 

Equation 12 

𝑟𝑖 = ∑ 𝜈𝑘
(𝑖)

𝑘

𝑅𝑘 

Equation 13 

𝑞𝑖 = ∑ 𝜈𝑘
(𝑖)𝑄𝑘

𝑘

 

The residual activity co-efficient is calculated by Equation 14. Гk is the group residual 

activity coefficient (Equation 15) and Гk 
(i) is the group residual activity coefficient in a 

reference solution of pure i. ψ is the group interaction parameter. 

Equation 14 

𝑙𝑛𝛾𝑖
𝑅 = ∑ 𝜈𝑘

(𝑖)[𝑙𝑛Γ𝑘 − 𝑙𝑛Γ𝑘
(𝑖)]

𝑘

 

Equation 15 

𝑙𝑛Γ𝑘 = 𝑄𝑘 [1 − 𝑙𝑛 ∑ 𝜃𝑚𝜓𝑚𝑘 − ∑(𝜃𝑚

𝑚𝑚

𝜓𝑘𝑚/ ∑ 𝜃𝑛

𝑛

𝜓𝑛𝑚)] 

ϴm is the area group fraction of group m. Xm is the mole fraction of group m in the 

solution and n is the molecular group (Equation 16). 
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Equation 16 

𝜃𝑚 =
𝑄𝑚𝑋𝑚

∑ 𝑄𝑛𝑋𝑛𝑛
 

The group interaction parameter (ψ) is calculated by Equation 17 where amn and anm 

are taken from experimental data. 

Equation 17 

𝜓𝑚𝑛 = 𝑒−(
𝑎𝑚𝑛

𝑇
) 

There are a significant number of parameterised values for functional groups 

available from the literature (Figure 1-8). The matrix below shows the binary 

interactions between functional groups which have been parameterised. However, 

as can be seen there are large gaps in the matrix. 
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Figure 1-8 Available functional groups available for Modified UNIFAC (Do) (Gmehling, 2018) 

1.3.7 SAFT-γ Mie 

Similar to other group contribution methods such as UNIFAC, SAFT-γ Mie 

(Papaioannou et al., 2014) determines molecular properties by sub-dividing 

molecules into functional groups. A value attributed to each group represents its 

contribution. 
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Figure 1-9 Representation of a fused heteronuclear molecular model employed within the SAFT-γ Mie. The 

example depicted is for n-hexane, comprising two instances of the methyl CH3 group (highlighted in grey), and 
four instances of the methylene CH2 group (highlighted in red) (Papaioannou et al., 2014) 

A fused heteronuclear model (Figure 1-9) is employed where the molecules are 

constructed from distinct segments and potentials are calculated using various 

attractive and repulsive forces. One advantage of SAFT-γ Mie over other methods is 

that it can account for pressure effects that UNIFAC and COSMO-RS do not. 

 
Figure 1-10 functional groups for SAFT-γ Mie with parameterised  groups in green (Dufal et al., 2014) 

The above figure (Figure 1-10) shows the functional groups for SAFT-γ Mie that are 

already parameterised. In comparison with UNIFAC groups there are some gaps 

which limit the predictive ability of this method. 
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1.3.8 The solubility equation 

Solubility is the solute concentration in a solution that is in thermodynamic 

equilibrium with the solute in its solid state, denoted by Equation 18 (S. Gracin,Brinck 

and Rasmuson, 2002). 

Equation 18 

𝜇𝑠 = 𝜇𝑠𝑎𝑡 

The chemical potential is µ. The superscript s is the solid phase and is assumed to be 

pure and the superscript sat is the saturated solution. The chemical potential can be 

written thus: 

Equation 19 

𝜇𝑠𝑎𝑡 = 𝜇𝑜 + 𝑅𝑇𝑙𝑛(𝛾𝑠𝑎𝑡𝑥𝑠𝑎𝑡) 

Where µo is the reference state (Equation 19). If an equal standard state is used for 

the solid and for the dissolved state then Equation 20 can be derived. 

Equation 20 

ln 𝑎 = 𝑙𝑛𝑥𝑠𝑎𝑡 + 𝑙𝑛𝛾𝑠𝑎𝑡 =
Δ𝑓𝑢𝑠𝐻(𝑇𝑚)

𝑅
(

1

𝑇𝑚
−

1

𝑇
) +

1

𝑅
∫

∆𝐶𝑝

𝑇

𝑇

𝑇𝑚

𝑑𝑇 −
1

𝑅𝑇
∫ ∆𝐶𝑝

𝑇

𝑇𝑚

𝑑𝑇 

Where a is the activity of the pure solid, γsat is the activity co-efficient of the solute in 

the solution at point of saturation, xsat is the mole fraction of the solute at saturation 

point.  T is the temperature, Tm is the melting point temperature, ΔfusH is the enthalpy 

of fusion and ΔCp is the heat capacity and is the difference of heat capacity between 

the solid at temperature and the super-cooled melt. Since the heat capacity is difficult 

to measure and must be extrapolated from data, very little information regarding ΔCp 

is available from the literature and it is often assumed ΔCp=0. This results in Equation 
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21. This does not mean however that the effects of heat capacity are not negligible 

(see section 2.9). 

Equation 21 

ln 𝑎 = 𝑙𝑛𝑥𝑠𝑎𝑡 + 𝑙𝑛𝛾𝑠𝑎𝑡 =
Δ𝑓𝑢𝑠𝐻(𝑇𝑚)

𝑅
(

1

𝑇𝑚
−

1

𝑇
) 

Equation 21 is most commonly used in solubility modelling and is the default 

equation used in COSMOtherm, although there are two command line functions for 

heat capacity available within the software; one using a heat capacity estimate; and 

the other using a value from the literature. 

1.3.9 Joback and Reid method 

The Joback and Reid method, more commonly known as the Joback method, is a 

group contribution method that predicts eleven important and commonly used 

thermodynamic properties from a molecule’s structure.  In this project, only two of 

these properties have been used: enthalpy of fusion and melting temperature; as 

shown above in Equation 21. This method assumes that there is no interaction 

between functional groups and the contributions from each group are additive 

(Joback and Reid, 1987). The equation for enthalpy of fusion (Equation 22): 

Equation 22 

∆𝐻𝑓𝑢𝑠[𝑘𝐽/𝑚𝑜𝑙] = −0.88 +  ∑ 𝐻𝑓𝑢𝑠,𝑖 

Where ΔHfus is the enthalpy of fusion and Hfus,i is the contribution for functional group 

i. 

The equation for the melting temperature (Equation 23): 
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Equation 23 

𝑇𝑚[𝐾] = 122.5 + ∑ 𝑇𝑚,𝑖 

Where Tm is the melting temperature and Tm,i is the contribution from segment i. 

This method was used when there was a lack of literature or experimental data 

pertaining to the enthalpy of fusion or melting temperature of a compound. A major 

drawback of this method is that it is cumulative and therefore larger molecules will 

be predicted to have a large enthalpy of fusion and melting temperature often 

resulting in unrealistically high values for each. In reality, most organic compounds 

do not have a melting temperature greater than 300°C. However, the Joback and Reid 

method can predict a melting temperature of 800°C and above. It also cannot 

distinguish between isomers or crystal polymorphs, which can have an effect on both 

values.  A greater evaluation of the Joback method was carried out in Chapter Two 

(section 2.7). 

1.3.10 Jain and Yalkowsky method 

The Jain and Yalkowsky method (Jain and Yalkowsky, 2006) is another method for 

predicting enthalpy of fusion. It is similar to the Joback method in that it is a group 

contribution method. However, in this method proximity factors are taken into 

consideration for the enthalpy contribution values assigned to each functional group. 

In Equation 24, ni is the number of times group i appears in a compound, nj is the 

number of times proximity factor j appears in a compound, mi is the contribution of 

group i  to the enthalpy of fusion, and mj is the contribution of proximity factor j to 

the enthalpy of fusion. 
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Equation 24 

∆𝐻𝑓𝑢𝑠[𝑘𝐽/𝑚𝑜𝑙] =  ∑ 𝑛𝑖𝑚𝑖 + ∑ 𝑛𝑗𝑚𝑗 

A maximum of eight values can be attributed to each functional group, only one value 

being applied, depending on the proximity of another function group e.g. if a group 

is only attached to sp3 atoms or it is an atom bridging two aromatic rings.  A correction 

factor is also applied for intermolecular hydrogen bonding. Two hundred and nine 

enthalpic contribution values were obtained for the groups’ environment and 

proximity values. This method, like the Joback and Reid method, does not take into 

consideration isomers or polymorphs.  This method also predicts melting 

temperature but in this study, this prediction was not used due to the average error 

of 30°C reported in Jain and Yalkowsky’s paper. An analysis of this method is included 

in Chapter Two (section 2.7). 

1.3.11 COSMOquick linear regression model for enthalpy of fusion and melting 
temperature 

COSMOlogic provides a software package COSMOquick (Version 1.3 revision:996) in 

addition to COSMOtherm and COSMOconf. This package has an inbuilt tool to predict 

both the enthalpy of fusion and the melting temperature using linear regression. A 

comparison with the Joback and Reid method and the Jain and Yalkowsky method is 

included in section 2.7. 

1.3.12 Molecular Operating Environment 

MOE is a drug discovery software and molecular simulation package developed by 

Chemical Computing Group. For this project, the software was used to generate 
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molecular descriptors for both solvents and solutes for use with the ML package RF, 

in R. 

MOE uses its own “Quality” structure-activity relationship descriptors (QuaSAR-

Descriptors). The purpose of QuaSAR-Descriptors is to calculate the properties of 

molecules that can then serve as their fingerprints or a digital representation. 

QuaSAR has a GUI that allows the user to select which descriptors to calculate. In 

principle, any molecular property can be used as a molecular descriptor and as such, 

there is no single calculation procedure for descriptors. Every descriptor is given a 

unique name, or code, which identifies it and is then used as database field names in 

the output. 

Descriptors can be subdivided into two broad classes: 2D and 3D descriptors. 2D 

descriptors use only information from the atoms and how they are connected for the 

calculation (e.g. elements, charges and types of bonds). 3D descriptors use atomic 

coordinate information to perform the calculation (e.g. dipole moment) (MOE, 2018). 

There are several other software packages available, both open source and 

proprietary, such as PaDEL-Descriptor, BlueDesc, ChemoPy, Rcpi, Cinfony, Modred 

and Dragon (Moriwaki et al., 2018) and the Chemistry Development Kit (CDK) 

(Steinbeck et al., 2003). Some of these packages have a large number of descriptors 

available and can be accessed using Python script or R. 

1.3.13 Machine learning 

ML is a field of computer science, which is concerned with making predictions or 

decisions based on supplied data. ML methods are defined by a particular algorithm 
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performed on a given dataset. Several ML algorithms have been developed such as 

artificial neural networks (Krogh, 2008), support vector machines (SVM) (Luts et al., 

2010) , fuzzy logic (Ross, 2010) and decision tree methods. 

RF, a decision tree variant, was chosen as the ML algorithm for this project although, 

in practice, many other ML methods could have been applied to the model building 

process. 

1.3.13.1 Random forest 

RF is a ML method developed by Breiman and Cutler (Breiman, 2001). It is used for 

both classification and regression. Classification is used to predict which class or 

group a data point belongs to. Regression is used to predict continuous values and is 

the method used for this work. Within the CMAC research group, success has been 

achieved from the application of RF for predicting the outcomes of crystallisation 

experiments and for some image analyses (Johnston A, 2008, Bhardwaj et al., 2015). 

1.3.13.2 Example of random forest 

For the purposes of demonstration, the simplified ML example below was 

constructed for demonstrating classification. The example regards classifying a 

person, based on their physical characteristics, with two outcomes being modelled: 

male or female. There are only a few descriptors for this example, Hair Length, Head 

Length, Weight, Build, Number of Arms, Number of Legs, Facial Hair, Height and Shoe 

Size. Using data for each person, a training set can be constructed with the response 

as Sex, allowing a RF model to be built.  A separate test set can be used once the 

model has been built and this will establish the effectiveness of the model. The RF 
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algorithm takes a subset of these descriptors at random and tries to “guess” the 

response using only these descriptors. To do this, RF takes this subset and creates a 

number of decision trees. For example, if only two descriptors were used such as 

Height and Hair Length, a decision tree would be created with splits or nodes (Figure 

1-11). 

 
Figure 1-11 a simple RF decision tree 

Descriptors such as Number of Legs and Number of Arms are very poor descriptors 

for this classification as they would be unlikely to split the data. At each of these 

nodes, a subset of the training set would be split according to some value in the 

descriptors. In this example, the model finds that the best split of the training set is 

below and above a threshold of 173 cm. The model does this by comparing the split 

with the response in the training set and moves the threshold up and down until the 

best split is achieved. A perfect descriptor would split the data exactly to match the 
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values of the response. In this example the split below 173 cm was 70 Females and 

30 Males and above 90 Males and 10 Females. A further split with the descriptors 

Hair Length and Head Length then occurs at the next node. A real decision tree could 

have many more nodes and descriptors to achieve a split. More decision trees would 

be run with different subsets of descriptors and training set. Once all the trees were 

built, the model would vote on the classification for each point in the training set. 

Then the model could be applied to data that the model has not been exposed to, so 

long as the data contained the same descriptors used to build the model. 

RF generates a collection, or ensemble, of independent decision trees (or a forest) 

each with an element of randomness. Through each tree, a query is run and the 

results are fed back as a prediction. In classification, the vote of each tree is taken 

and the majority result is given as the prediction. In regression, the mean of the 

prediction from each tree is taken as the result. 

1.3.13.3 RF algorithm 

One of the advantages of RF is its ability to perform internal validation. Since each 

tree is created using a sub-section of the dataset, data points that are excluded from 

the tree can be used for validation, this is called out-of-bag (OOB) data. The OOB error 

rate is calculated for each tree and aggregated. This provides an overall estimation of 

the model performance. Another benefit of RF is the ability to deal with less 

important descriptors as RF will select the best performing descriptor in a tree and 

use that one. With RF, it is also possible to retrospectively assess how well the model 

has performed as it is less of a “black-box” than other ML methods such as neural 

networks.  
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There are four main steps in the RF algorithm. A complete n x p data set is required 

where n is the number of individual cases and p is the number of descriptors. A 

response variable y is also required for each case. 

1. A bootstrapped sample of the training set is drawn with replacement 

Bootstrapping is the process of drawing a random subset of data from the training 

set. During construction of a bootstrap a single data point is sampled and returned to 

the original data pool. This process is repeated until the required sample size is 

reached. It is probable that the bootstrapped sample contains duplicated data points 

and some that have been left out. It is a random permutation of the original data. 

2. The sample is split into two subsets by the best of mtry randomly selected 

descriptors, where mtry << p 

For classification mtry has a default value of √𝑝 and for regression it is a third of p. 

The data are then split by applying a threshold value. The quality of each split is 

assessed before repeating the split with every possible threshold. The best split for 

each descriptor is then determined with the overall best split for all descriptors 

retained. The quality of the split is determined by the split with the least sum of 

squared errors (SSE) calculated at each node for regression. 

3. The splitting procedure is repeated with the subsets of cases at each node 

until full-length trees are formed. 
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4. New decision trees are generated each with a new bootstrapped sample until 

ntree, the specified number of decision trees to be generated has been 

reached. 

When these decision trees have been generated a test case can be passed through 

the model with each tree funnelling it through decisions to a terminal node with the 

outcome a numerical prediction in the case of regression. 

1.3.13.4 Internal validation 

An advantage of RF is the ability to perform internal validation. Since any one tree is 

constructed from the bootstrap of the training set, the cases excluded from the 

bootstrap, called out-of-bag (OOB) data, are used to conduct internal validation and 

storing the number of misclassified cases for classification. The OOB error rate is 

conducted for every tree and this provides a good estimate of the model’s 

performance. 

The OOB error can be used to monitor the growth of a RF model. As the number of 

decision trees is increased, the OOB error sharply decreases initially and levels off as 

sufficient trees have been added. 

Validation by this method also mitigates the need for validation from a separate 

dataset. Normally, a model must be validated with a suitably sized set of external 

data, typically 20% the size of the training set. Having such a dataset requires a 

portion of the training set to be set aside and not used to build and train the model.  

Utilizing OOB error in RF, the model uses the whole training set. 
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Another advantage of RF is the ability to handle noise in the training data. Instead of 

handling all the predictors at the same time, each decision tree in RF looks at a small 

subset of predictors at each node and ignores the remainder. For each predictor, the 

one that produces the lowest SSE is taken forward. The process is then repeated. The 

predictors can be thought of as competing for selection at each node. Noisy 

predictors, less able to reduce the SSE, are selected-out as the tree is constructed. 

Including noisy predictors in the training set does not reduce the ability of the model 

to isolate the most useful ones, unless there are too many noisy predictors and useful 

predictors are very rarely selected. 

This project uses two methods to validate the RF model; k-Fold cross-validation and 

solute-Fold cross-validation, which are discussed in detail in sections 4.2.3 and 4.2.4. 

1.4 Literature review 

1.4.1 Methods for solubility predictions 

A 2018 study by Qiu and Albrecht investigated the correlation between the solubility 

of 905 distinct compounds (Qiu and Albrecht, 2018). Using 63240 pieces of data, 

analysis revealed correlation of solubilities between solvent pairs and allowed for 

clustering of most solvents. By using linear regression to calculate correlated 

solvents, it was possible to reduce the number of solvents required in solvent 

screening, resulting in a saving in both material and throughput. 

Large-scale regression analysis of solvent pairs of interest was carried out to 

quantitate their correlations. It was shown that three solvents; water, dimethyl 

sulfoxide and acetonitrile do not correlate with any other solvents. Therefore, these 
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solvents should always be included in a solvent screen. Apart from alcohols, which 

require two disparate alcohols in a solvent screen, most other clustered solvents 

required only one solvent in the screening to be correlated. Twenty-four solvents 

were correlated and these could be excised from solvent screens. 

Kan and Tomson’s (Kan, 1996) study compared UNIFAC’s predictions with the 

solubility of several compounds and solvents. The compounds had a range of 

solubilities spanning 11 orders of magnitude. The compounds were classed into 

several groups including short-chain alkanes, alkenes, alcohols, chlorinated alkanes 

and phenols. Good agreement was obtained between literature values of solubilities 

and UNIFAC predictions. The comparison of experimental data and predictions for 

the aqueous solubility of aliphatic and substituted aliphatic compounds had an 

absolute error of 0.43 of a log unit (log S). The solubility of 10 different compounds 

in 13 organic solvents gave an average error of log 0.18. The study, however, did use 

a limited dataset of 33 solubility data pointsand it is unknown whether this low error 

figure would have been maintained with a larger dataset. 

A study comparing the predictions of the solubility of APIs by COSMO-RS with 

experimental data was completed by Ikeda et al. (Hirotaka Ikeda, 2005) 15 different 

APIs in four different solvents were compared at 25°C. Water, ethanol, acetone and 

chloroform were the solvents selected. The predictive method used for this study was 

COSMOtherm with the TZVP basis set. The RMSEs were log 0.50, 0.61, 0.84 and 0.56 

for water, ethanol, acetone and chloroform respectively with possibly a slightly larger 

error for acetone due to limited data points. The results that were obtained in this 
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study were satisfactory by the standards of the time. However, the study maybe 

could have improved the results by using an improved basis set such as TZVPD-fine 

(see study in section 2.8). The study emphasises the fact that COSMOtherm does not 

rely on experimental data for the predictions, unlike UNIFAC. 

Ruether et al’s study (Ruether and Sadowski, 2009) compared experimental data and 

the prediction from two methods: PC-SAFT; and NRTL-SAC. The study compared five 

drug substances: paracetamol; ibuprofen; sulfaziazine, p-hydroxyphenylacetic acid 

and p-aminophenylacetic acid in pure solvents and in solvent mixtures. The PC-SAFT 

parameters for paracetamol were fitted with solubility data for paracetamol in water. 

 
Figure 1-12 Comparison of PC-SAFT and NRTL-SAC solubility for the solubility of paracetamol in different solvent 

(Ruether and Sadowski, 2009) 

The results in Figure 1-12 show the predicted solubilities of PC-SAFT and NRTL-SAC 

and give qualitative predictions that are similar. However, this is harder to quantify, 
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as exact figures were not quoted in the study.  In the study, the enthalpy of fusion 

used for both methods was different with PC-SAFT using 27 kJ/mol and NRTL-SAC 

using 26 kJ/mol. Therefore, each model was not using the same input parameters and 

the comparison was not like-for-like. It is uncertain if NRTL-SAC’s accuracy would be 

improved if both methods were using the same parameters. 

A recent study by Bouilett et al (B. Bouillot et al., 2017) compared the experimental 

solubility of seven pharmaceutical compounds in pure and mixed solvents with 

SciPharma (which implements a variation of PC-SAFT) and NRTL-SAC. In all, 386 pure 

solvent data points were used at one, or more, temperatures per solvent. 

 
Figure 1-13 Predicted versus experimental (mole fraction)  of the seven pharmaceutical compounds SciPharma 

(top) and NRTL-SAC (bottom) ref (B. Bouillot et al., 2017) 
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Figure 1-13 shows the results of the pure solvents: SciPharma had an RMSE (mole 

fraction) of 0.196 and NRTL-SAC had an RMSE of 0.227 with only benzoic acid and 

ibuprofen performing better using NRTL-SAC. In the mixed solvents, again SciPharma 

performed better than NRTL-SAC. In all SciPharma had an overall better accuracy in 

terms of RMSE. 

There have been many studies conducted comparing the relative benefits and 

drawbacks of each method and there are several derivations of UNIFAC such as 

Original UNIFAC, Modified UNIFAC(Do) and Modified UNIFAC(Do) Consortium 

(Xue,Mu and Gmehling, 2012), and with NRTL-SAC such as original and temperature-

dependant NRTL-SAC (Valavi,Svärd and Rasmuson, 2016) . There are also several 

derivations of COSMO-RS: COSMOtherm which was developed by Klamt (F. Eckert 

and Klamt, 2002); COSMO-SAC which was developed by Lin (S. T. Lin and Sandler, 

2002); and COSMO-RS(Ol) developed by Mu (Mu,Rarey and Gmehling, 2007). 

In the study by Xue et al (Xue,Mu and Gmehling, 2012) the UNIFAC models were 

compared to two COSMO-RS models, COSMO-SAC and COSMO-RS(Ol), and 

experimental data. The paper concluded that the UNIFAC models were superior to 

the COSMO-RS models when comparing several thousand activity co-efficients at 

infinite dilution (see Table 1-3). 

Table 1-3 RMSE's of COSMO-SAC, COSMO-RS(Ol), original UNIFAC, modified UNIFAC(Do) and modified 
UNIFAC(Do) Consortium  for solubility 

Method RMSE 

COSMO-SAC 0.835 

COSMO-RS(Ol) 0.841 

original UNIFAC 0.528 

modified UNIFAC(Do) 0.340 

modified UNIFAC(Do) Consortium 0.329 
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Klamt commented on this study with several points of criticism (Klamt, 2012). Firstly, 

that the study was biased in favour of the UNIFAC model as it did not use the most 

advanced version of COSMO-RS, namely COSMOtherm, and since the most up-to-

date version of UNIFAC was used that the study was unbalanced. Secondly, the 

comparisons were taken from the UNIFAC databank. As such the comparisons were 

made on the training set for UNIFAC models and that the database is biased towards 

mixtures of simple compounds such as alkanes/alcohols or alkane/ketones whereas 

more complicated compounds such as pharmaceuticals were greatly 

underrepresented. Klamt states that as UNIFAC is stronger on simple compounds this 

favours the results towards UNIFAC. Thirdly, that the graphs used in the study were 

not representative of the overall performance of COSMOtherm. Klamt concluded that 

UNIFAC is a useful tool for simple structurally-related compounds and that 

COSMOtherm provides more robust predictions for more complicated systems. 

In Valavi et al’s study (Valavi,Svärd and Rasmuson, 2016) UNIFAC and the two NTRL-

SAC models were compared with experimental data. Original NRTL-SAC was 

extended to include temperature-dependant binary interaction parameters. The 

performance of each method depended on the solvent systems that were studied: 

48 solute/solvent systems for the NRTL-SAC models; and 33 solute/solvent systems 

for the UNIFAC model. In evaluating these models, Valavi only compared systems 

where there were values for all three models with an observed RMSE error in mole 

fractions of 1.42, 1.06 and 0.87 for UNIFAC, NRTL-SAC original and the NRTL-SAC 

temperature-dependant model respectively. The study stated that there was an 

improvement in the model due to the temperature-dependant parameters and that 
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both NRTL-SAC models were better than UNIFAC.  However, this was an extremely 

small dataset and it would be premature to draw that conclusion; a larger dataset 

would be required to make that assertion conclusively. 

All these studies, except Xue’s, used small datasets, therefore it is difficult to compare 

them. Xue’s study, although having a larger dataset, was criticised for its lack of 

diversity. 

1.4.2 Machine learning methods 

There have been several attempts to use ML methods along with experimental data 

to predict the solubility of compounds in water. 

Jorgensen and Duffy had some success predicting the aqueous solubility of drugs 

using a group contribution method with linear regression and neural networks 

(Jorgensen and Duffy, 2002). The training set consisted of 317 organic molecules, 

including some complex drugs, and the resultant model had an RMSE of log 0.63. This 

is better than some errors from predictive methods where between log 0.7 and log 

1.0 RMSE for complex molecules is usually acceptable (Palmer and Mitchell, 2014). 

Schroeter et al investigated four different ML approaches for predicting aqueous 

solubility in their 2007 study (Schroeter et al., 2007) using approximately 4000 

different compounds. The methods consisted of Gaussian Process, RF, SVM and Ridge 

Regression models. 1664 descriptors were generated using Dragon. Three different 

datasets were used giving different results for each ML method. Dataset 1 has 5,625 

measurements from 3,307 compounds. Dataset 2 has 688 measurements from 632 

compounds and Dataset 3 has 536 measurements. 
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Table 1-4 Results for Schroeter study using different machine learning approaches and datasets (Schroeter et al., 
2007) 

Schroeter’s 
Dataset 

Method RMSE (logS) 

1 Gaussian Process 0.747 

Ridge Regression 0.862 

SVM 0.803 

RF 0.840 

2 Gaussian Process 0.846 

Ridge Regression 0.847 

SVM 0.848 

RF 0.855 

3 Gaussian Process 0.579 

Ridge Regression 0.996 

SVM 0.600 

RF 0.660 

As can be seen in (Table 1-4) the different datasets produce a variety of results with 

the Gaussian Process model being found more accurate in all three datasets. Without 

access to specific details and characteristics of each dataset, it would be difficult to 

make a detailed assessment of the advantages and disadvantages of each method. 

Palmer et al (Palmer et al., 2007) created four different ML models to predict aqueous 

solubility. Firstly, a RF model was created, next a partial least squares model, then a 

SVM model and finally a neural networks model. The RF model to predict aqueous 

solubility had a training set of 658 compounds and a test set of 330 molecules. MOE 

calculated over 200 2D and 3D descriptors. The RF was trained initially on all the 2D 

descriptors giving a RMSE of log 0.69 and then reduced to the 40 most important 

descriptors which gave a fit almost identical to the model using the full descriptors 

with an RMSE of log 0.695. The partial least squares (PLS) model was then 

constructed using twelve descriptors including SlogP and a_acc (number of hydrogen 

bond acceptors) and a_don (number of hydrogen bond donors). This model was not 

as successful as the RF model with an RMSE of log 0.787. Reducing the number of 
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descriptors can have the effect of destroying the inter-connectivity between 

descriptors. Eliminating descriptors that have a co-dependence on one another can 

reduce the ability for the model to find the complexities of the relationships between 

descriptor and response. The SVM model and the neural networks model performed 

a little better with an RMSE of log 0.726 and log 0.742 respectively. The last three 

models used different subsets of descriptors from the RF model but eight of the 

twelve descriptors were in the top 25 of ranked descriptors in the RF model. 

Boobier et al (Boobier,Osbourn and Mitchell, 2017) compared 10 ML algorithms to 

predict aqueous solubility. From a dataset of 100 drug-like molecules the dataset was 

split using a training set of 75 molecules and a test set of 25 molecules. 123 

descriptors were used from chemistry development kit (CDK), a software package 

developed by the CDK project. 

Table 1-5 RMSE of 10 machine learning algorithms (Boobier,Osbourn and Mitchell, 2017) 

Method RMSE (log S) 

Multi-layer perceptron 0.985 

RF 1.165 

Bagging 1.165 

K nearest neighbours 1.204 

ExtraTrees 1.227 

AdaBoost 1.235 

PLS 1.265 

Stochastic gradient descent 1.280 

SVM 1.429 

Decision tree 1.813 
 

Table 1-5 shows the results from the study; multi-layer perceptron performed the 

best with RF and related method bagging (mtry is equal to all the descriptors used) 

performing second best with the decision tree method performing worst. 
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There have been many attempts to predict solubility using the various methods 

stated previously. The methods that use some experimental data such as NTRL-SAC 

seem to be superior to the COSMO-RS derived methods. This might not be the case 

for all types of molecule however and more work needs to be done to compare and 

analyse the methods. A larger solubility database with a wide range of differing 

molecules with different properties, mass and functional groups would enable a more 

comprehensive analysis of the strengths and weakness of each method. 

The attempts at using ML techniques to predict solubility have had some success but 

there is some difficulty in comparing studies with one another as each method is 

different due to the datasets that each use for training the algorithm. Without access 

to the dataset in each study, confirming the strengths and weaknesses of each is 

difficult. 

1.5 Thesis structure 

This thesis focusses on the automation of COSMOtherm and assessing the predictive 

capabilities of the method. Tools were developed using COSMOtherm predictions, 

exploiting design of experiment (DoE) approaches and linear regression to predict 

solubility at speed whilst maintaining the ease-of-use for the non-expert. ML 

algorithms were used to build a model to improve the accuracy of COSMOtherm 

predictions by applying a “correction factor”. Predictive tools for the selection of 

crystallisation and wash solvents were developed using COSMOtherm predictions 

and with the ML algorithm “correction factor” applied. 
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Firstly, COSMOtherm, UNIFAC and SAFT-γ Mie were compared to experimental data 

to assess the reliability and robustness of the methods. Secondly, the adjustable 

parameters required for COSMOtherm predictions i.e. melting temperature and 

enthalpy of fusion, and the influence that inaccuracies in these parameters have on 

solubility predictions were assessed. 

A model of COSMOtherm was developed using DoE and linear regression for the 

almost-instant prediction of solubility for non-experts or modellers. 

The selection of crystallisation and wash solvents for pharmaceutical manufacturing 

processes using predictive methods and a workflow approach was developed. This 

hybrid approach was implemented by comparison with experimental data from a 

study of the solubility of paracetamol and its impurities, with predictions from 

COSMOtherm. 
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2 An assessment of errors and inconsistencies that arise when 
measuring and predicting solubility 

2.1 Overview 

This chapter considers the difficulties of comparing solubility predictions to 

experimental data with significant variance. Additionally, the problem of variance in 

literature values for enthalpy of fusion and melting temperature and the effect that 

can have on solubility predictions is studied. This chapter also describes building a 

database of molecules and associated data, the automation of COSMOtherm 

workflows for a manufacturing environment and the validation of COSMOtherm 

predictions by comparing those predictions with other predictive methods and with 

experimental data. 

2.2 Solubility measurements 

Before comparing solubility predictions from COSMOtherm with experimentally 

determined data, there is a need to consider factors that give rise to significant 

variance on measured or computed values. 

The empirical measurement of solubility can differ by a non-trivial quantity. An 

analysis of the aqueous solubility of 411 compounds by Katritzky et al reported an 

average standard deviation of log 0.58 (Katritzky et al., 1998) attributing the variation 

to experimental error. The data collected by Kishi and Hashimoto (Kishi and 

Hashimoto, 1989) from 17 different laboratories for the compounds anthracene and 

fluoranthene, using the same experimental protocol (Jorgensen and Duffy, 2002) 

showed a wide range of aqueous solubility measurements. Solubility for each 

compound ranged over log 0.86 and with a standard deviation of log 0.19, which was 
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attributed to experimental uncertainty caused by crystal shape, polymorphism, pH 

and temperature control for the solution. Another study by Myrdal et al 

(Myrdal,Manka and Yalkowsky, 1995) used additional data for the two compounds 

and a range of approximately log 1.5 was observed from data compiled. 

630 pure solvent solubility points were measured by GSK researchers using an 

automated protocol for a high performance liquid chromatography (HPLC) and taken 

from the GSK solubility database. Access to this database was obtained from a three-

month industrial placement at GSK Stevenage in 2018. The dataset contained 

combinations of 13 compounds in 47 solvents. Most measurements were recorded 

in triplicate. Solubility was measured between 20-25°C with an accurate temperature 

being recorded. The average of each solute/solvent combination was taken and the 

standard deviation was calculated. Most combinations had deviations. Apart from an 

outlier the maximum deviation was approximately 2g/100g of solvent (Figure 2-1). 

 
Figure 2-1 standard deviation in the mean solubility of HPLC solubility measurements 
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Figure 2-2 shows the percentage variance in the mean solubility for the GSK data 

points which were in triplicate. The greatest percentage variance is seen below 10g 

/100g which is generally considered to be low for solubility. This indicates that in 

terms of percentage variance it is much more difficult to obtain a consistent solubility 

measurement at low solubilities. This may explain some of, but not all, the error in 

predicting low solubility solute/solvent combinations as it is difficult to obtain a 

consistent experimental value. 

 
Figure 2-2 Percentage variance in experimental solubility points 
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Figure 2-3 shows the difference in literature values of enthalpy of fusion for several 

API polymorphs. The variations in the results are most likely attributed to the reasons 

discussed below. 

 
Figure 2-3 Mean enthalpy of fusion for polymorphs of indomethacin, 2-methylphenylbenzoic acid, paracetamol 

and theophylline 

Figure 2-4 shows the mean enthalpy of fusion found in literature and Figure 2-5 

shows the mean melting temperatures found in this study. The compounds in Figure 

2-3 have also been included as there were some papers without polymorph details. 

As can be seen, there is a great deal of variation between literature values. This could 

be down to the simple fact that the compound does have different polymorphs and 

that the polymorph has not been specified in the paper. Although the number of 

polymorphs are not necessarily stated in the papers that present values for enthalpy 

of fusion, these polymorphs can be well known. Indomethacin, for example, has at 

least five polymorphs (Surwase et al., 2013). D-mannitol has three known 
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polymorphs, with the beta form being the most stable (Cares-Pacheco et al., 2014) 

and fenofibrate has at least three forms (Ying et al., 2017). 

A main reason for the variation in values is compounds having different polymorphs. 

However, in many literature papers, it is not stated which polymorph was studied; 

this creates a problem selecting the “correct” value for the COSMOtherm model. 

Aside from polymorphism, sample purity, the equipment used for analysis, heating 

rate, and mass of sample can affect the value obtained for both the enthalpy of fusion 

and the melting temperature. Araujo et al (Adriano Antunes Souza et al., 2010) 

compared different samples of zidovudine. The differing heating rates of the sample 

(1, 2, 5, 10 and 15°C per minute) gave a variation in enthalpy of fusion of 0.73 kJ/mol 

and a melting temperature variation of 0.51°C. Mass of sample also affected results 

with variations of 1.95 kJ/mol and 0.37°C. The degree of sample purity also affected 

results with purity ranging from 97.59-99.83% giving rise to a difference of 2.79 

kJ/mol and 4.17°C. Man’s study (Man and Tan, 2002) into the effects of differential 

scanning calorimetry (DSC) heating rate of 11 vegetable oils had a similar variation in 

results with one oil having a 7.8% variation in the enthalpy of fusion between heating 

rates. 

The literature review was not exhaustive and it is possible that some of the values 

reported approximately match values for known polymorphs that are identified in 

other papers. It does show that caution must be taken accepting enthalpy of fusion 

and melting temperatures values from the literature as even a small deviation of a 

kJ/mol and a few degrees Celsius can have an effect on COSMOtherm model 
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predictions, which are sensitive to these key input parameters. For model generation, 

it would be ideal if in-house DSC data were obtainable for the compound that 

solubility predictions were to be made. However, the raw material may not be 

available and as has been already highlighted, DSC results can vary even within the 

same batch of compound. 



50 
 

 
Figure 2-4 Mean enthalpy of fusion from literature with the bars showing the range of values 
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Figure 2-5 Mean melting temperature from literature with bars showing the range of values 
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2.4 Building a COSMOtherm database 

Before large-scale solubility predictions were carried out, a database of compounds 

commonly used by CMAC for crystallisation research was constructed. COSMOtherm 

had a large database of compounds supplied with the software, however many of the 

compounds of interest to CMAC were not available and had to be parameterised 

using COSMOconf. The CMAC list had 41 solutes and 122 solvents that were either 

commonly used in industry or were thought to be of interest when this work began. 

This list grew in size as the project progressed to 115 solutes and 152 solvents due to 

an interest in solubility predictions for additional solutes, such as drug impurities, and 

the solubility of APIs in “green” solvents. Green solvents are environmentally friendly 

solvents derived from processing agricultural crops and are an alternative to 

petrochemical solvents. 

The database in the first instance had COSMO files in three different basis sets for 

each compound. COSMO files in SVP, TZVP and TZVPD-fine basis sets were included.  

Later additions to the database only used the TZVPD-fine basis set as this was 

discovered to be the most accurate basis set for predictions when compared with 

experimental and literature data and any additional computational time was 

negligible. This analysis is reported later in this chapter (section 2.8). Each compound 

requires an additional file called a vapour pressure/property file or .vap file. This file 

contains compound-specific experimental information, some of which is essential 

input required for COSMOtherm predictions. As solubility predictions require two 

specific pieces of experimental data: the enthalpy of fusion and the melting 

temperature, both of these must be added to the .vap file. Some of the .vap files 
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already have this information included. However, most did not and a literature search 

was required to obtain the missing information. 

Some of the compounds in the database had neither literature data available or the 

compound was not available for experimental data to be obtained from DSC. 

Therefore, other methods were required to obtain this information such as the 

Joback and Reid method (Joback and Reid, 1987), the Jain and Yalkowsky method 

(Jain,Yang and Yalkowsky, 2004) or the COSMOquick regression model (Loschen and 

Klamt, 2012); the benefits and drawbacks of these methods are discussed in section 

2.7. Predictive methods for obtaining enthalpy of fusion are far from ideal and any 

prediction made should be regarded with caution; however, in the absence of any 

experimental or literature data it is the only option to achieve a solubility prediction 

from COSMOtherm. 

2.5 COSMOconf 

COSMOconf was used to parameterise any molecules not available in the database 

supplied by COSMOlogic. Approximately one third of solutes of interest to CMAC 

were not available and had to be parameterised. COSMOconf can generate fully-

parameterised COSMO files from a given compound structure. In all cases, simplified 

molecular-input line-entry system (SMILES) codes were used instead of inputting the 

structure manually; however, all structures were manually checked for accuracy 

following SMILES to structure conversion. All molecules were parameterised to use 

the TZVPD-fine basis set. The COSMO files were transferred to the database and a 

.vap file was created for each compound. 



54 
 

2.6 Automation of COSMOtherm 

COSMOtherm is supplied with a graphical user interface (GUI), COSMOthermX, which 

was less practical for the volume of modelling predictions that were required for this 

project. Therefore, automation and connection of several steps in the COSMOtherm 

workflow was required. These steps included: the LLE calculation, which predicts 

liquid-liquid equilibria (LLE) and the miscibility of solvents; multiple solvents, which 

predicts solid-liquid equilibria (SLE); and solid-liquid, which predicts the phases in 

solid-liquid extractions and can predict solubility in more complex systems with two, 

or more, solvents. 

COSMOtherm calculations can be fully automated via the command line. Python 

scripts needed to be written for each type of prediction. The scripts had to be simple 

to use and easy to connect into a computational workflow. The type of predictions 

described in the remainder of this section were all executed using automated scripts. 

An input file must be created for each job instructing COSMOtherm which type of 

prediction to run, with which solutes and solvents and at what temperatures and/or 

mole fraction in the case of using binary solvents. A Python script had to be written 

for each different type of prediction e.g. solubility in pure solvents, solubility of salts 

or solubility in binary solvents as a result of implementation differences in the input 

file. The input file can be broken into three sections; file directories, number of 

COSMO files required and job description. The purpose of the Python scripts was to 

produce these files and to start the predictions. 
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2.6.1 Miscibility 

Miscibility information is needed for several processes in the pharmaceutical industry 

such as wash-solvent selection and anti-solvent crystallisations. Miscibility is the 

extent to which two liquids mix together. COSMO-RS theory was designed for liquid-

liquid interactions instead of solid-liquid interactions therefore predicting miscibility 

is one of COSMOtherm’s primary functions. 

A study was completed by CMAC researcher Václav Svoboda using laboratory data 

from the DETHERM database (Detherm, 2016) for LLE to show the miscibility of 

solvents. 109 LLE phase separation data points were found.  This study was compared 

with COSMOtherm predictions. COSMOtherm predicted all 109 combinations at 25°C. 

Of the data points taken from DETHERM, 80 of the 109 predictions had phase 

separations. When COSMOtherm predictions were compared with the DETHERM 

data, 36 of the 109 had an error of less than 5% of a mole and 34 out of 109 had an 

error of more than 5% and less than 20% of a mole Table 2-1. These results from 

DETHERM did not always specify the starting mole fractions for each combination 

and some of the data points were from elevated temperatures therefore the 

comparisons were not always like for like. 

Table 2-1 % error when phase separation predictions are compared with experimental data 

No. of phase 
separations 

% error (mole 
fraction) 

36 <5 

34 >=5 and <20 

39 >=20 
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This study shows that COSMOtherm is a useful tool for the prediction of miscibility 

and although COSMOtherm does not eliminate the need for laboratory testing, it can 

give an indication of which solvents to test for miscibility. 

2.6.2 Solubility of neutral compounds 

COSMOtherm was automated using Python script to predict the solubility of neutral 

compounds. To validate this the experimental solubility of lovastatin in three 

solvents, n-butyl acetate, 1-butanol, 1-pentanol, was compared with the predictions 

from COSMOtherm, UNIFAC and SAFT-γ Mie. The experimental solubility was 

obtained by CMAC researcher Humera Siddique. UNIFAC predictions were obtained 

from CMAC researcher Václav Svoboda and the SAFT-γ Mie predictions were 

obtained from Alfonso Gonzalez Perez at Imperial College London. 

  
Figure 2-6 Solubility predictions for COSMOtherm, SAFT-γ Mie, UNIFAC and experimental solubility points for 

lovastatin and n-butyl acetate 

In Figure 2-6 and Table 2-2, SAFT-γ Mie performs with the highest degree of accuracy 

with COSMOtherm slightly over-predicting and UNIFAC over-predicting more than 
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the other methods. The extent of over-prediction increases with temperature, for 

this example, when compared with the experimental data. 

Table 2-2 percentage error in predictive models when compared with experimental data for lovastatin in n-
butylacetate  

% error lovastatin in n-butylacetate 

Temperature °C 59.8 60.0 74.1 77.2 92.2 95.3 

COSMOtherm 7.3 9.6 12.4 28.3 23.5 32.6 

SAFT-γ Mie 7.5 4.5 4.5 14.5 6.1 1.7 

UNIFAC 25.4 22.4 55.9 80.2 91.3 111.1 

 

 A value of 43.14 kJ/mol for enthalpy of fusion and a melting temperature of 172.35°C 

were used for these predictions (Nti-Gyabaah et al., 2008). 

 
Figure 2-7 Solubility predictions for COSMOtherm, SAFT-γ Mie, UNIFAC and experimental solubility points for 

lovastatin and 1-butanol 

Figure 2-7 shows the solubility predictions and experimental solubility values for 

lovastatin in 1-butanol. Table 2-3 shows the percentage error between experimental 

data and the predictive methods. In this example, all predictive methods have under-

predicted when compared to the experimental values. SAFT-γ Mie has the least 
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percentage error for all temperatures in this example and UNIFAC has the largest 

percentage error. 

Table 2-3 percentage error in predictive models when compared with experimental data for lovastatin in 1-
butanol  

% error lovastatin in 1-butanol 

Temperature °C 48.4 49.0 58.6 63.0 74.0 74.6 

COSMOtherm 22.6 20.7 31.3 21.0 21.5 19.4 

SAFT-γ Mie 1.0 0.9 20.0 11.0 16.8 14.8 

UNIFAC 57.5 56.2 59.7 51.9 46.6 44.8 

 

Figure 2-8 shows lovastatin in 1-pentanol. In this example all three predictive 

methods have under-predicted and all have similar values. 

 
Figure 2-8 Solubility predictions for COSMOtherm, SAFT-γ Mie, UNIFAC and experimental solubility points for 

lovastatin and 1-pentanol 

In the table below (Table 2-4) the percentage error between experimental and the 

predictive methods show that at lower temperatures SAFT-γ Mie has smaller errors 

than COSMOtherm but as the temperature increases, SAFT-γ Mie’s error increases. 

UNIFAC, again, gave the largest errors. 
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Table 2-4 percentage error in predictive models when compared with experimental data for lovastatin in 1-
pentanol  

% error lovastatin in 1-pentanol 

Temperature °C 52.9 53.2 67.3 71.0 79.2 79.7 

COSMOtherm 37.7 36.5 35.4 23.0 29.0 25.8 

SAFT-γ Mie 30.2 29.2 36.8 26.7 35.9 33.2 

UNIFAC 58.7 57.9 53.0 42.1 42.3 39.4 

 

In these three examples, all methods performed reasonably well when they were 

compared to experimental data. However, SAFT-γ Mie and UNIFAC are limited by the 

fact that they both rely on experimental data to parameterise functional groups or 

atoms; when these data are sparse, or not available, no prediction can be generated, 

limiting the utility of these methods. In contrast, with COSMOtherm, an ab initio 

method, each molecule can be parameterised directly from the chemical structure; 

it is therefore simpler to apply COSMOtherm “off the shelf” for any molecule. 

The comparisons in this section show that COSMOtherm can give accurate solubility 

predictions that are comparable with experimental and other predictive methods. 

Further analysis with a wide range of solutes and solvents would be needed to 

confirm this. 
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2.6.3 Solubility solvent/anti-solvent 

Predicting the solubility of a compound in two solvents is essential for solvent/anti-

solvent crystallisations. COSMOtherm can predict the solubility of a compound in 

binary solvents and a Python script was written to automate this process. 

COSMOtherm results were compared with literature results from Granberg and 

Rasmuson (Roger A. Granberg and Rasmuson, 2000); these results showed a good 

correlation between experimental and theoretical results. In the graphs, zero and one 

are the mole fractions of pure solvents. 

 
Figure 2-9 COSMOtherm solubility curve prediction and experimental solubility points for paracetamol in water 

and propanone at 5°C 

The predictions in Figure 2-9 show the experimental maximum and the solubility in 

water. The experimental maximum is a third bigger at 32g/100g whereas the 

prediction gave 24g/100g. It would be expected that the maximum would occur at 

the full mole fraction of solvent with no anti-solvent. The occurrence of the 

maximum, with a mole fraction of both solvent and anti-solvent, has a complex 
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thermodynamic basis. It is a consequence of the influence of both enthalpy and 

entropy effects, and no definitive explanation has been achieved (Grant, 1990). 

However, COSMOtherm has managed to predict the maximum’s existence. A value 

of 28.12 kJ/mol for enthalpy of fusion and a melting temperature of 168.6°C was used 

for these predictions (Sacchetti, 2001). 

 
Figure 2-10 COSMOtherm solubility curve prediction and experimental solubility points for paracetamol in water 

and propanone at 30°C 

Figure 2-10 shows the predicted and experimental solubility of paracetamol in water 

and propanone at 30°C. The position and the magnitude of the curve in the 

experimental is slightly to the right and higher.  The experimental maximum at 0.58 

mole fraction of water has an experimental value of 49g/100g compared with a 

predicted value of 37g/100g. 
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Figure 2-11 COSMOtherm solubility curve prediction and experimental solubility points for paracetamol in 

propanone and toluene at 5°C 

 
Figure 2-12 COSMOtherm solubility curve prediction and experimental solubility points for paracetamol in 

propanone and toluene at 30°C 

Figure 2-11 and Figure 2-12 show a comparison for the predicted and experimental 

solubility of paracetamol in propanone and toluene (Roger A. Granberg and 

Rasmuson, 2000). The curves both have a similar shape as the literature value. The 
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initial gap between prediction and literature is 3g/100g at 5°C. However, as the 

temperature increases so does the error with 10g/100g error initially at 30°C 

although at higher mole fractions of water the data points start to converge. If the 

solubility predictions at zero and one mole fraction are not accurate then predicted 

solubilities in mixed solvents are likely to be inaccurate too. 

 
Figure 2-13 COSMOtherm solubility curve prediction and experimental solubility points  for lovastatin in 

propanone and water at 25°C 

Figure 2-13 shows the results of COSMOtherm predictions and Dr John McGinty’s 

experimental work done within CMAC with lovastatin. The largest error in this 

prediction is at low concentrations of water with an error of 6.5g/100g at 0.1 mole 

fraction of water. The predicted and experimental solubility points converge at 

approximately 0.6 mole fraction of water with an error of 0.3g/100g. The shape of 

the curve is, however, correct whilst the magnitude is not. 
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COSMOtherm predictions for binary solvents can be a useful tool for anti-solvent 

crystallisations although they are not usually as accurate as a single solvent prediction 

due to the added dimension of a second solvent. These predictions do not remove 

the need for laboratory testing but can give a good starting point for solvent selection 

as the curves tend to be the correct “shape” and indicate the mole fraction for 

maximum solubility if not the solubility value itself. 

2.6.4 Solvent screening 

Finding a suitable solvent for cooling crystallisation follows a certain selection 

workflow based on the magnitude and the dependence on temperature of the 

solubility of the solute. For a cooling crystallisation, these criteria are critical in the 

pharmaceutical sector. To be selected, a compound requires, at low temperature 

(20°C), a solubility threshold of <5g/100ml and at high temperature (10°C below 

solvent boiling point)  a threshold of >5g/100ml (Brown et al., 2018).  If the solubility 

at the higher temperature is in the range of 5-15g/100ml the system will be 

considered dilute for practical purposes. If the concentration is too high, the final 

slurry may be too dense or immobile (Muller,Fielding and Black, 2009). 

COSMOtherm has the potential to predict solubilities quickly for a compound in a 

large number of solvents.  A comparison was made with the solubility classification 

scheme adopted in the above paper (Brown et al., 2018). Using COSMOtherm and a 

Python script to automate the process, predictions were obtained using the iterative 

job-type to decrease the time to about 15 minutes. The predictions for paracetamol 

were obtained for 43 solvents and the results were converted from mass to g/100 ml. 
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The graph below, Figure 2-14 is a subset of the 43 solvents that were screened for 

comparison with the solvents included in the paper.  One solvent in the paper, o,m,p-

xylene was not included as it is a solvent mixture and so does not have a discrete 

molecular structure to parameterise.
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Figure 2-14 Sub-set of the solvent screen of paracetamol in multiple solvents with incorrect classifications with red boxes
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The solvents in the paper were divided into three classes: low solubility at elevated 

and room temperatures; low solubility at room temperature and high solubility at 

elevated temperature; and finally high solubility at both temperatures and these 

have been assigned a class number for ease of discussion (Table 2-5). 

Table 2-5 Classification of solvents at low and high solubility and low and high temperature 

 Low solubility at room 
temperature 

High solubility at room 
temperature 

Low solubility at elevated 
temperature 

Class 1 NA 

High solubility at 
elevated temperature 

Class 2 Class 3 

 

Of the 43 solvents and predicted solubilities, 37 of the solvents agreed with the 

paper’s classification and six disagreed. Of the six incorrectly classified solvents 

(anisole, 1-butanol, ethyl acetate, 2-propanol, methyl acetate, chlorobenzene) two 

solvents were misclassified as class two instead of class one (anisole and 

chlorobenzene). Anisole had an extremely high solubility prediction at elevated 

temperature. Two solvents were assigned class two instead of class three (1-butanol 

and 2-propanol) and one was put into class three instead of class two (methyl 

acetate).  Ethyl acetate was wrongly classified as class three instead of class one as 

both predictions at elevated and room temperature were above the solubility 

criteria. This comparison with experimental data shows that COSMOtherm has the 

ability to screen solvents with speed and accuracy. An accuracy of classification of  

86% (37 out of 43) was obtained in this example. 
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2.6.5 Co-crystal solubility 

Figure 2-15 shows the comparison of experimental work completed by Alex Cousen 

of CMAC using a Crystal 16, which detects turbidity, and with solubility predictions in 

COSMOtherm using the co-crystal function. 

 
Figure 2-15 COSMOtherm solubility curve prediction and experimental data for naproxen and 2-aminopyridone 

1:1 in 2-propanol 

A value of 36.33 kJ/mol for enthalpy of fusion and a melting temperature of 102°C 

was used for these predictions (also provided by Alex Cousin). The results start with 

an over-prediction of around 20g/100g of solvent between experimental and 

predicted rising to 60g/100g of solvent. The general gradient of the curve is also 

wrong. 
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Figure 2-16 COSMOtherm solubility curve prediction and experimental data for naproxen and 2-aminopyridine  

1:1 in ethanol 

Figure 2-16 also shows the same problem of over-prediction and gradient mismatch.  

No further in-house examples of co-crystal laboratory solubility were available to 

make any further comparison with COSMOtherm predictions. Co-crystal solubility 

predictions maybe more complicated than neutral compound solubility predictions 

as there are three components (two solute and one solvent) instead of two in neutral 

compound predictions. 

Scripts for working with solid-liquid extractions, solvent screening for salts and 

computing ternary plots were also created but were more specialised for 

crystallisations and were not validated with laboratory data. These scripts are 

available for download (see section 9). 

2.7 Enthalpy of fusion and melting temperature 

For COSMOtherm to work, the enthalpy of fusion and melting temperature must be 

provided for both the solute and the solvent. Ideally, the enthalpy of fusion and 
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melting temperature would be obtained directly from DSC data or another suitable 

method for each sample. If there is a lack of material, the data from literature is 

usually sufficient with some scrutiny. Lack of either data presents a significant 

challenge to predict solubility reliably. Even a small inaccuracy in the enthalpy of 

fusion will affect the accuracy of a prediction. There are several methods, which have 

already been discussed in Chapter One (section 1.3.9-1.3.11), that can be used for 

the prediction of both enthalpy of fusion and melting temperature. For this project a 

comparison between the three predictive methods was completed. The comparison 

between the methods and literature data showed the difference between each 

method. The predictions of enthalpy of fusion and the melting temperature for 60 

compounds in the literature were compared using the Joback and Reid method and 

the COSMOquick method. The enthalpy of fusion predictions for the Jain and 

Yalkowsky method were compared for 56 compounds with literature data. 

 
Figure 2-17 Prediction of Enthalpy of fusion with COSMOquick, Joback method and Jain and Yalkowsky method 
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Figure 2-17 shows the correlation between experimental results and the three 

modelling approaches. The nearer the data point is to the central line the more 

accurate the prediction. COSMOquick is the least accurate with Jain and Yalkowsky 

the most accurate. Summary statistics highlight this more clearly in Table 2-6. The 

Jain and Yalkowsky performed better but only had 56 molecules as a prediction could 

not be made for every compound due to not all functional groups having a value.  

Even a small change of 1 or 2 kJ/mol in the enthalpy of fusion can have a large impact 

on the accuracy of predictions (see co-efficients in section 3.2.2). 

Table 2-6 Mean, SD deviation and Maximum deviation error of COSMOquick, Joback and Reid method and Jain 
and Yalkowsky for enthalpy of fusion 

Method Error enthalpy of fusion kJ/mol Range of 
predictions 

kJ/mol 
Mean Standard 

deviation 
Maximum 
deviation 

COSMOquick 11.82 11.85 55.43 9.07 – 55.71 

Joback and Reid 8.74 6.93 33.17 3.52 – 69.15 

Jain and Yalkowsky 7.11 6.45 29.22 12.90 – 39.43 
 

The COSMOquick regression model is clearly the inferior method for enthalpy of 

fusion prediction. The Jain and Yalkowsky method is more accurate than the Joback 

and Reid method.  However, the latter method is quicker and easier to use. All that 

is required is the summation of the number of functional groups in the molecule, 

whereas the first method requires more parameters as the adjacent functional group 

or groups are accounted for. The main weakness of the Joback method, which has 

been previously stated in Chapter One (section 1.3.9), is that as the method is 

cumulative; a very large molecule will have a large enthalpy of fusion and melting 

temperature prediction and this is not always reflected in practice. 
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Figure 2-18 Correlation of literature and predictive methods for melting temperature 

Figure 2-18 shows the correlation between experimental melting temperatures and 

predictions using COSMOquick and the Joback and Reid method. Here, the Joback 

method over-predicts melting temperature with the COSMOquick method under-

predicting. 

Table 2-7 Mean, SD deviation and Maximum deviation error of COSMOquick, Joback and Reid method for 
melting temperature 

Method +/- Error in melting temperature (°C) 

Mean Standard deviation Maximum 
deviation  

COSMOquick 59.08 53.95 230.54 

Joback and Reid 73.41 67.42 271.57 
 

When predicting melting temperatures, both methods (Table 2-7) have large 

standard deviations of 53.95°C and 67.42°C for COSMOquick and the Joback and Reid 

method respectively. 

The COSMOquick method is more accurate than the Joback and Reid method. This is 

due to the Joback and Reid method being a contribution method: the larger the 
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molecule, the higher the melting temperature prediction leading to huge deviations 

in larger molecules. 

The modelling approaches do not give a reliable figure for either enthalpy of fusion 

or melting temperature. Joback and Reid’s study (Joback and Reid, 1987) had an 

average error of 8.4 kJ/mol for enthalpy of fusion with a standard deviation of 18 

kJ/mol when predicting for 378 compounds and melting temperature error of 4.8°C 

with a standard deviation of 6.9°C when predicting for 409 compounds. Jain and 

Yalkowsky’s study had an error of 2.91 kJ/mol when predicting enthalpy of fusion for 

2230 compounds (Jain and Yalkowsky, 2006). Unfortunately, if for some compounds 

an enthalpy of fusion prediction is all that is available this can possibly make some 

solubility predictions inaccurate. However, most compounds have a melting 

temperature available in literature. 

The experiment below (Figure 2-19) shows how sensitive the predictions from 

COSMOtherm are to changes in the value of both enthalpy of fusion and melting 

temperature highlighting the need for accurate measurements of both values for 

solubility predictions. 
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Figure 2-19 Plot showing the difference in solubility predictions when parameters are changed for lovastatin in 1-pentanol 
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The value of both enthalpy of fusion and melting temperature for lovastatin was varied 

by +/- 10 kJ/mol and +/- 10°C or +/- 30°C from literature values. A change of 10 kJ/mol 

in the enthalpy of fusion tripled the solubility prediction in this example. Therefore, even 

if the measured or predicted value of enthalpy of fusion, and to a lesser extent melting 

temperature, is slightly inaccurate this can have a large effect on the value of the 

prediction. If the melting temperature is also incorrect this will also make the predictions 

inaccurate although there is a lesser effect than for enthalpy of fusion. This experiment 

shows the need for accurate measurement of enthalpy of fusion and melting 

temperature. 

2.8 Assessment of COSMOtherm 

A basis set in computational chemistry is a set of functions that is used to represent 

atomic (and subsequently molecular) wave functions and to turn them into algebraic 

equations suitable for use in computational calculations. The basis functions represent 

atomic orbitals, which combined to form molecular orbitals and are, by extension, how 

COSMOtherm “views” the interacting surfaces of each compound in prediction 

calculations; these are described in Chapter One section 1.3.2. 

COSMOconf can generate COSMO files with three different basis sets: SVP, TZVP and 

TZVPD-fine. There are “higher” basis sets available parameterised using other 

applications, such as quadruple-zeta valence polarisation (QZVP) but none were used in 

this project and COSMOconf does not parameterise or handle them readily. 

COSMOtherm has three different options for job-types for solubility calculations: solid-

liquid equilibrium solubility (SLESOL); non-iterative; and iterative. SLESOL solves the SLE 
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and is the most expensive computationally. “Non-iterative” and “iterative” solubility 

predictions are approximations of the SLE. In non-iterative the chemical potential 

reference at infinite dilution is taken as an approximation of the chemical potential. For 

iterative the chemical potential at infinite dilution is taken as a starting point and the 

chemical potential is calculated by an iterative process; which is a repeated cycle of 

operations each new iteration using the answer from the previous iteration in the 

calculation. To establish the merits of both the different basis sets and the different job-

types a comparative study was conducted using a dataset of 369 solubility points 

obtained from laboratory and literature data for seven solutes and 31 solvents at various 

temperatures. 

Table 2-8 log RMSE error in solubility predictions for job-types and Basis Set 

Job-type Basis set (RMSE log scale) 

SVP TZVP TZVPD-fine 

Non iterative 0.91 1.01 0.71 

Iterative 0.77 0.78 0.69 

SLESOL 0.77 0.78 0.69 
 

The jobs were run for each job-type and each basis set and were compared with the 

solubility data from literature (Table 2-8).  TZVPD-fine was the best for all job-types with 

a large error decrease of 0.3 log units compared with TZVP for the non-iterative job-

type. The other two job-types had an improvement for TZVPD-fine with an improvement 

in RMSE error of log 0.02. TZVP was the least accurate with the greatest log error for 

each job-type and the second most accurate was SVP. This was surprising as TZVP is 

supposed to perform better than SVP  (Frank Eckert, 2015) although iterative and SLESOL 

jobs have identical results. This may be a result of the dataset used being too small. This 
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improvement in performance does have a computational cost with all TZVPD-fine 

calculations taking considerably longer than the same job-type using SVP and TZVP basis 

sets (Table 2-9). 

Table 2-9 Total Time taken for Job-types and Basis sets for 269 solubility predictions 

Job-type Basis set (time taken in hours, minutes and seconds) 

SVP  TZVP TZVPD-fine 

Non iterative 00:03:21  00:03:42  00:06:58 

Iterative 00:06:31  00:08:45  00:21:32 

SLESOL 01:25:38 01:08:12 05:43:27 
 

For the rest of this project all predictions used TZVPD-fine basis set and, unless 

otherwise stated, used SLESOL job-type. 

2.9 Heat capacity 

The solubility equation has a heat capacity term ∆Cp (Equation 25) which has been 

discussed in section 1.3.8. 

Equation 25 

ln 𝑎 = 𝑙𝑛𝑥𝑠𝑎𝑡 + 𝑙𝑛𝛾𝑠𝑎𝑡 =
Δ𝑓𝑢𝑠𝐻(𝑇𝑚)

𝑅
(

1

𝑇𝑚
−

1

𝑇
) +

1

𝑅
∫

∆𝐶𝑝

𝑇

𝑇

𝑇𝑚

𝑑𝑇 −
1

𝑅𝑇
∫ ∆𝐶𝑝

𝑇

𝑇𝑚

𝑑𝑇 

COSMOtherm has a function to input the heat-capacity in the .vap file with the intention 

to increase the accuracy of predictions. The availability of heat capacity in the literature 

is very sporadic and for many compounds the figure was unavailable. 

There are several options for handling heat capacity: firstly, a temperature dependant 

heat capacity for each temperature; secondly, a fixed heat capacity over a range of 

temperatures; another option is for a heat capacity estimate to be input into 

COSMOtherm (Equation 26); and lastly to not include heat capacity in the predictions. 
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The estimate of heat capacity is thus: 

Equation 26 

∆𝐶𝑝𝑓𝑢𝑠 =
∆𝐻𝑓𝑢𝑠

𝑇𝑚𝑒𝑙𝑡𝐾
 

Several fixed heat capacities for seven solutes were obtained from Schroder (Schroder 

et al., 2010) and the values input into the appropriate .vap file for each solute and 

COSMOtherm jobs were run for 364 solubility points (27 solvents at various 

temperatures); the jobs were rerun without the heat capacity in the .vap file for 

comparison (Table 2-10). These predictions were compared with laboratory and 

literature data. 

Table 2-10 RMSE for COSMOtherm predictions with and without literature heat capacity 

 Without heat capacity 
literature value 

With heat capacity 
literature value  

No. of solubility points 264 264 

RMSE (log) 0.97 0.77 

Standard Deviation 0.86 0.77 

Max. Deviation 3.50 3.10 
 

The log RMSE for the predictions decreased when the heat capacity was applied and the 

prediction was improved in around 60% of cases.  This shows that the heat capacity 

should not be ignored, however due to the value for heat capacity not being readily 

available for most compounds heat capacity was not used for further predictions. 

To establish whether the estimate for heat capacity improved the COSMOtherm 

predictions, experimental data were compared with predictions for 1717 solubility 

points with and without the estimate (57 solutes and 48 solvents at various 

temperatures). 
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Table 2-11 RMSE for COSMOtherm predictions with and without heat capacity estimate 

 Without heat capacity 
estimate 

With heat capacity 
estimate 

No. of solubility points 1717 1717 

RMSE (log) 0.90 0.98 

Standard Deviation 0.89 0.89 

Max. Deviation 3.17 3.26 
 

As can be seen from the table above (Table 2-11) using the estimate increased the RMSE 

of the COSMOtherm solubility predictions from log 0.90 to 0.98 and increased the 

maximum deviation from log 3.17 to 3.26, therefore using the estimate has failed to 

improve the predictions and the estimate was not used for further predictions. 

2.10 Conclusion 

The aim of this chapter was to assess the suitability of COSMOtherm for use in medicine 

manufacture and to compare this method with other methods available (UNIFAC and 

SAFT-γ Mie). To do this it was essential to automate COSMOtherm and to assess 

uncertainty in experimental measurements of solubility and parameter sensitivity. 

When comparing COSMOtherm with experimental solubility predictions there are some 

errors introduced into the system and it is important that these errors are minimised. 

The error associated when measuring solubility in the laboratory is likely a contributing 

factor to the error between experimental and predicted error. For each compound that 

requires solubility predictions, enthalpy of fusion and melting temperature data are 

needed. Ideally, for each batch of solute DSC data would be obtained. High quality DSC 

data for each compound is preferable to literature data, which may not be for the 

polymorph considered, or the method of measurement has not been specified. Error in 

measuring enthalpy of fusion and melting temperature could also introduce error 
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directly into the predictions, as they are two of the main adjustable parameters for 

COSMOtherm. Even slight changes in the value of enthalpy of fusion and melting 

temperature could affect the prediction (see co-efficients in section 3.2.2) The error that 

accumulates and propagates throughout can, to some extent, be corrected by using a 

ML approach similar to the models discussed in Chapter Four. 

From the comparisons of different modelling approaches all three predictive methods 

tested (UNIFAC, SAFT-γ Mie and COSMOtherm) performed well in the examples in this 

chapter. However, performance would be dependent on the solute/solvent system and 

as this study only included lovastatin, the comparative performance of each method in 

other systems is unknown. COSMOtherm does not rely on functional groups or atoms 

being parameterised using empirical data and therefore can be used for most molecules. 

COSMOtherm has been fully automated for predicting the solubility of neutral 

compounds, binary solvent systems, solvent screening and salts/co-crystal systems. It is 

also an efficient and versatile tool that compares favourably with both UNIFAC and SAFT-

γ Mie. COSMOtherm can currently perform predictions on more molecules than the 

other two methods, as it does not rely on functional groups being parameterised, which 

for large pharmaceutical molecules with varied functional groups makes it a favourable 

choice for use in medicine development. This however might change in time as more 

functional groups are parametrised for the other methods. 
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3 Using a design of experiment approach to develop a model 

of COSMOtherm using linear regression 

3.1 Aims 

The aim in this chapter was to use DoE and linear regression modelling to apply to 

COSMOtherm predictions by changing the temperature, melting temperature and 

enthalpy of fusion. Using the simple equations obtained from linear regression, the 

solubility of any solute/solvent system in the set could be predicted for any value of 

temperature, melting temperature and enthalpy of fusion within range.  

This method was intended for use by non-expert and modellers alike to reproduce 

predictions of COSMOtherm without the use of the specialist. The adjustable 

parameters allowed for predictions highly specific to the individual use case: for 

example, when a new polymorph of a solute has been obtained with a different melting 

temperature and/or enthalpy of fusion. 

3.2 Design of experiment 

DoE is an approach for conducting experiments, which is used in numerous industries in 

the development of new products (Montgomery, 2008). This approach, when applied 

correctly, can decrease development and production costs and shorten time to market. 

DoE is used when a number of independent variables or factors need to be manipulated 

by changing the levels or settings of each factor to optimise one or more dependant 

variables. DoE addresses the factors to be tested, the levels of these factors and the 

structure and layout of experimental runs. DoE differs from the One Factor at a Time 

(OFAT) method in that it includes, in this case, all eight two-level factor combinations. 

With OFAT it is assumed that all factors are independent of one another. In reality, 
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factors do not always act independently and this is reflected in DoE. For example, an 

OFAT experiment with three factors would only have four experiments instead of at 

least eight (nine if the centre experiment is counted). The DoE approach would assess 

any binary interactions between factors. 

DoE was used to change the experimental parameters in COSMOtherm to build the 

linear regression models for a solubility interface and database. Three experimental 

factors were varied to model each system’s solubility: temperature, enthalpy of fusion 

and melting temperature. A two-level factorial design approach was used: each factor 

was assigned low level (-1), high level (+1) and centre level (0) values and the solubility 

predicted via COSMOtherm for specific combinations (Figure 3-1 and Table 3-1). The 

centre level was set to the value for enthalpy of fusion and melting temperature held in 

the .vap file (i.e. the real values found by experiment). Generally, the centre level is 

provided with an additional two replicates in order to factor in experimental variance, 

but as this experiment was a COSMOtherm calculation with no variance, this was not 

applicable. 

Table 3-1 Design matrix for COSMOtherm experiments 

Experiment 
no. 

Temperature 
 

Enthalpy of 
fusion 

Melting 
temperature 

1 -1 -1 -1 

2 +1 -1 -1 

3 -1 +1 -1 

4 +1 +1 -1 

5 -1 -1 +1 

6 +1 -1 +1 

7 -1 +1 +1 

8 +1 +1 +1 

9 0 0 0 
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Figure 3-1 Design space for design of experiments 

For some experiments COSMOtherm returned a value of “NA”, which means 

COSMOtherm has been unable to give a solubility prediction, therefore one or more 

experimental results would be useless and regression models could not be fit. The 

experiments were then rerun with a reduction in the extremes for the DoEs with a 

maximum of three reruns for each combination. 

Table 3-2 Change of extremes for design of experiment 

Run number Melting temperature (°C) 

difference from centre 

point 

Change in enthalpy 

of fusion (kJ/mol) 

from centre point 

1 30 20 

2 30 15 

3 20 10 

4 10 10 

 

These extremes changes (Table 3-2), where COSMOtherm returned an “NA” value, were 

applied in most cases. There were exceptions if the enthalpy of fusion was below a 

certain number i.e. 20 kJ/mol. In those cases, the initial run was completed using the 

values for run two to four depending on the values of enthalpy of fusion and melting 

temperature. Temperature had “-1” at the laboratory temperature of 20°C and a “+1” 
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at 90°C if the boiling temperature of the solvent was above 100°C or 10°C below boiling 

point if it was below 100°C.  The centre point for temperature would be the midpoint 

between low and high temperature in most cases 55°C. 

The COSMOtherm database discussed in Chapter Two (section 2.4), which was created 

initially using solutes and solvents commonly used by CMAC, and added to periodically 

with compounds of interest, contained 109 solutes and 136 solvents when the linear 

regression model was built, amounting to 14,824 different solute/solvent combinations.  

With nine experiments per combination there were therefore 133,416 COSMOtherm 

solubility points required if solute/solvents regression models were to be completed for 

all permutations. While every point was attempted, due to COSMOtherm returning an 

“NA” value for some solubility points even after reducing the extremes of the factors in 

the design of experiment,  the final number of models generated was lower (Table 3-3). 

Table 3-3 No of linear regression models completed 

Solubility points completed 115,991 

Solubility points “NA” 17,425 

Models with all “NA” results 580 

Models with some “NA” results 3,155 

Successfully completed models 11,089 

Total models 14,824 

 

Table 3-4 shows the percentage of linear regression model with their R2 categories. In 

total 98% of the models were above R2 0.95 and performed similarly to the 

COSMOtherm predictions. The 2% below R2 0.95 had a significant number of outliers in 

the COSMOtherm predictions that consequently lowered the quality of the models. 
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Table 3-4 percentages for categories of R2 values for linear regression models 

R2 value  % of models 

1 18 

Between 1 and 0.95 80 

Between 0.90 and 0.95 1 

Between 0 and 0.90 1 

Three of the generated models are presented in the following sections and analysed in 

detail.  The first two show good agreement with the predictions generated by 

COSMOtherm, while the third demonstrates the significant impact of a “bad” input value 

on the resulting model. 

 

3.2.1 Indomethacin in 1,3-dioxolan-2-one regression model 

Figure 3-2 shows the results file for indomethacin and 1,3-dioxalan-2-one with the 9 

experiments each with the changes in value for all factors with the results. These results 

are used to calculate the linear regression model equations. 

 

Figure 3-2 indomethacin with 1,3-dioxolan-2-one model results file (Exp_no is experiment number, Temp is 
temperature, Dhfus is enthalpy of fusion, t_melt is melting temperature, log_solub is log solubility g/100g of solvent 

and solub is solubility in g/100g solvent) 
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Figure 3-3 Coefficients for indomethacin and 1,3-dioxolan-2-one (Temp is Temperature, dHf is enthalpy of fusion, 

Mel is melting temperature) 

Figure 3-3 shows the coefficient plot for indomethacin and 1,3-dioxolan-2-one. Each bar 

shows the influence of each factor coefficient on the solubility prediction. Temperature 

has the biggest influence on the solubility with an increase of temperature increasing 

the solubility. The size of the coefficient represents the change in the response when a 

factor varies from zero to one while the other factors are kept at their averages e.g. in 

the above example an increase in temperature of 1°C will increase the solubility by 1.8 

g/100g. Melting temperature and enthalpy of fusion have an inverse influence with an 

increase of both factors leading to a decrease of solubility. The interaction terms for this 

solute/solvent combination have a varied influence with temperature*enthalpy of 

fusion increasing solubility with increased value. As enthalpy of fusion*melting 

temperature decreases solubility increases and for this combination 

temperature*melting temperature has little or no effect. 
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Figure 3-4 Summary of fit graph for indomethacin in 1,3-dioxolan-2-one 

The summary of fit graph Figure 3-4 shows the R2 and Q2 values for indomethacin and 

1,3-dioxolan-2-one. R2 shows how well the model fits real data points and Q2 estimates 

how well the model predicts new solubilty values: it is 1 minus the variation of the 

response predicated by the model according to cross-validation. A useful model will 

therefore have a large Q2. Here, a R2 value of 1 shows an excellent fit and a Q2 value of 

0.997 shows near-perfect prediction in cross-validation. 
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Figure 3-5 Plot of the observed v's predicted log solubilities for indomethacin in 1,3-dioxolan-2-one 

The above figure (Figure 3-5) shows how well the solubility values obtained from 

COSMOtherm fit with the regression model generated by MODDE. All of the 

experiments were on the regression line except for number nine which has a minor 

deviation. 

 
Figure 3-6 4D contour surface plot showing the impact of varying temperature, enthalpy of fusion and melting 

temperature on the solubility of indomethacin and 1,3-dioxolan-2-one. All temperatures are in °C 
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The 4D surface plot (Figure 3-6) helps visualise the effect of varying the input parameters 

on the solubility of indomethacin and 1,3-dioxolan-2-one. The first plot at 129.1°C 

clearly shows that as temperature increases so too does solubility but with the other 

two plots the solubility is very low due to the high melting temperatures. In the second 

plot which is at a higher temperature (159.1°C), a decrease in the value of enthalpy of 

fusion increases solubility. 

 
Figure 3-7 Comparison of COSMOtherm solubility curve with the regression model for indomethacin in 1,3-dioxolan-

2-one 

Figure 3-7 shows the results of a comparison of COSMOtherm with the regression model 

for indomethacin in 1,3-dioxolan-2-one using the same input parameters of 

temperature, enthalpy of fusion and melting temperature. The model shows good 

comparison with COSMOtherm at low temperature but starts to diverge around 50°C. 
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3.2.2 Saccharin in anisole regression model 

Figure 3-8 shows the coefficients for the saccharin in anisole model with nine 

experiments. 

 
Figure 3-8 saccharin in anisole model results file (Exp_no is experiment number, Temp is temperature, Dhfus is 

enthalpy of fusion, t_melt is melting temperature, log_solub is log solubility g/100g of solvent and solub is solubility 
in g/100g solvent) 

Figure 3-9 shows the coefficients for saccharin in toluene.  The biggest influence for this 

solute/solvent combination is the enthalpy of fusion with solubility increasing with a 

reduction in this value. 
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Figure 3-9 Coefficients for saccharin in toluene (Temp is Temperature, dHf is enthalpy of fusion, Mel is melting 

temperature) 

Secondly, temperature is next largest coefficient with solubility increasing with an 

increase of temperature. The next biggest influence was temperature*enthalpy of 

fusion with a positive correlation and the melting temperature with a negative 

correlation. Enthalpy of fusion*melting temperature has a small negative correlation 

while temperature*melting temperature has little effect on solubility. 

 
Figure 3-10 Summary of fit graph for saccharin in toluene 
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The summary of fit graph (Figure 3-10) shows an excellent R2 value with a value of one 

and a good value for Q2 with a value of 0.999 so this is a good model when compared 

with the results from COSMOtherm. 

 
Figure 3-11 Plot of the observed v's predicted log values for saccharin in anisole 

Figure 3-11 shows the observed versus predicted for saccharin in toluene. The model 

fits COSMOtherm predictions well (R2=1.000). 

 
Figure 3-12 4D contour plot showing the impact of varying temperature, enthalpy of fusion and melting temperature 

on the solubility of saccharin in toluene. All temperatures are in °C 
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Figure 3-12 shows the visualisation of the effects of the input parameters on the 

solubility of saccharin in toluene. As the melting temperature and enthalpy of fusion 

increases the solubility decreases. With an increase of temperature, the solubility 

increases. This plot is comparable with the results in Figure 3-9. 

 
Figure 3-13 Comparison of COSMOtherm solubility curve with the regression model for saccharin in anisole 

The above graph (Figure 3-13) shows the solubility curve of COSMOtherm for saccharin 

in anisole and compares it to the solubility curve of the regression model. The model 

shows an excellent correlation with COSMOtherm at all temperatures.  The same input 

parameters of temperature, enthalpy of fusion and melting temperature were used. 

3.2.3 4-pyridinecarbonitrile in water regression model 

Figure 3-14 shows the results file for 4-pyridinecarbonitrile in water. Experiment two 

with a low enthalpy of fusion shows an outlier of over 43483g/100g of solvent. 
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Figure 3-14 4-pyridinecarbonitrile with water linear regression model results (Exp_no is experiment number, Temp is 
temperature, Dhfus is enthalpy of fusion, t_melt is melting temperature, log_solub is log solubility g/100g of solvent 

and solub is solubility in g/100g solvent) 

It is likely that COSMOtherm was unable to give a realistic value for solubility due to the 

low values of melting temperature and enthalpy of fusion and a slightly elevated 

temperature. 

 
Figure 3-15 Coefficients for 4-pyridinecarbonnitrile and h2o (Temp is Temperature, dHf is enthalpy of fusion, Mel is 

melting temperature) 
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The plot showing the coefficients for this model (Figure 3-15) show negative correlation 

for temperature with large error bars. Usually solubility increases with temperature. All 

the other coefficients apart from enthalpy of fusion*melting temperature show a 

negative correlation for solubility with large error bars.  These results are due to the 

outlier of 43483g/100g of solvent as shown in Figure 3-14 4-pyridinecarbonitrile with 

water linear regression model results (Figure 3-14). 

 
Figure 3-16 Summary of fit graph for 4-pyridine-carbonitrile in water 

The summary of fit graph (Figure 3-16) shows a R2 value of 0.9 and an extremely poor 

Q2 of -3.5. Again this is due to the outlier. 
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Figure 3-17 Plot of the observed v's predicted log solubilities for 4-pyridinecarbonnitrile in water 

Figure 3-17 shows how well the model performs. As is shown this model has none of the 

experiments on the line. 

 
Figure 3-18 4D contour surface plot showing the impact of varying temperature, enthalpy of fusion and melting 

temperature on the solubility of 4-pyridinecarbonitrile in water. All the temperatures are in °C 

The surface plot (Figure 3-18) shows that when temperature is low the solubility is 

higher. Usually when temperature increases the solubility increases. In this case the 

model was clearly invalid and was removed from the database. 
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Figure 3-19 Comparison of COSMOtherm solubility curve with the regression model for 4-pyridinecarbonitrile in 

water 

Figure 3-19 shows the solubility curve of the predictions from COSMOtherm and 

compares them with the regression model for 4-pyridinecarbonitrile in water. As already 

stated the model had poor predictive ability because of the outlier and as can be seen 

at higher temperatures it diverts greatly from the predictions from COSMOtherm. The 

same inputs of temperature, enthalpy of fusion and melting temperature were used for 

both methods. 

3.2.4 Regression equations 

Equation 27 shows the general form of the linear regression equation, c1 through c6 are 

factor coefficients. Temp is temperature, 𝛥𝐻𝑓𝑢𝑠 is enthalpy of fusion, Tmelt is melting 

temperature and C is a constant. 

Equation 27  

𝐿𝑜𝑔 𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 =  (𝑐1)𝑇𝑒𝑚𝑝 +  (𝑐2)𝛥𝐻𝑓𝑢𝑠  + (𝑐3)𝑇𝑚𝑒𝑙𝑡 +  (𝑐4)𝑇𝑒𝑚𝑝 ∗ 𝑇𝑚𝑒𝑙𝑡 

+  (𝑐5)𝑇𝑒𝑚𝑝 ∗ 𝛥𝐻𝑓𝑢𝑠   + (𝑐6)𝛥𝐻𝑓𝑢𝑠 ∗ 𝑇𝑚𝑒𝑙𝑡 +  𝐶 
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The equation not only comprises experimental input values such as melting 

temperature, temperature and enthalpy of fusion but also three interaction terms i.e. 

Temp*Tmelt, Temp*ΔHfus and ΔHfus *Tmelt. 

Table 3-5 Coefficients of log solubility for (a) indomethacin in 1,3-dioxolan-2-one (b)saccharin in anisole (c) 4-
pyridine carbonitrile in water 

 Temp ΔHfus Tmelt Temp * 
Tmelt 

Temp * 
ΔHfus 

ΔHfus * 
Tmelt 

C 

(a) 0.0232 -0.0321 -0.0019 -0.0000582 0.000342 -0.00022 1.988 

(b) 0.00731 -0.0442 -0.0009 -0.000012 0.00043 -0.00018 1.726 

(c)  0.2121 -0.0293 0.0142 -0.0015 -0.00229 -0.0015 0.0005 

 

The three examples shown above (Table 3-5) show the diversity of the regression 

models obtained from the design of experiment. 98% of all the linear regression models 

had an R2 value of greater than 0.95. 

3.3 Conclusion 

This project developed a database of linear regression equations by applying DoE 

approach to COSMOtherm predictions. These simple equations require no sophisticated 

software and can be used by non-experts and modellers for almost instant solubility 

predictions. The input parameters of temperature, melting temperature and enthalpy 

of fusion can be changed if required. 

Of the 10272 models that were produced in this project 98% had an R2 value of 0.95 or 

above. For 3467 solute/solvent combinations a model could not be obtained due to the 

limitations of COSMOtherm. This indicates that, for the majority of solute/solvent 

systems, a standardised set of initial COSMOtherm predictions can be used to build a 

simple, linear regression model that can accurately reproduce any subsequent 

predictions desired.  This is an important finding, particularly for large organisations, 
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because the initial COSMOtherm predictions required for the DoE method could 

potentially be calculated automatically as soon as data is made available.  When 

solubility predictions are required for a use case, a linear regression model could already 

be available to produce instant answers. 
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4 Applying machine learning to obtain a correction factor for 
solubility predictions 

4.1 Introduction 

Firstly, this chapter investigates the prediction of solubility by applying RF and using 

molecular descriptors. The study continues by studying the ability to predict the error 

between COSMOtherm and experimental data using RF and COSMOtherm data. The use 

of both 2D and 3D molecular descriptors combined and separated in both studies was 

compared to establish the best descriptors to use in the model. ML models had 

previously predicted solubility in log units. This chapter will also analyse the difference 

in predictions using logged and unlogged units. 

4.1.1 Machine learning in the pharmaceutical industry 

With the development of medicines costing several billions of pounds and around 12 

years in getting the product to market (Van Norman, 2016), there is an increasing 

appreciation of the value of predictive modelling and its application. The application of 

any model is to reduce costs and time to market. ML relies on previous knowledge 

structures in a machine-readable format to be effective. There are currently a number 

of examples of ML being used in medicine development and manufacture such as 

disease identification/diagnosis (Keerrthega and Thenmozhi, 2016), drug discovery 

(Hongming Chen et al., 2018) through to manufacturing (Tulsyan,Garvin and Ündey, 

2018), analytical techniques, (Martinez et al., 2018) clinical studies (de la Iglesia et al., 

2014) and drug safety (Ben Abacha et al., 2015). With ML more data usually yields better 

results and the pharmaceutical industry (Domingos, 2012) has data that reaches back 
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decades. However much of this data is not structured in a standard format and thus not 

easily machine-readable. In addition, this data is rarely openly available. 

ML is a method of data analysis that makes predictions or decisions based on the 

available data. ML is increasingly being used by many sectors of business and 

government, from financial services and the pharmaceutical industry to the oil and gas 

industry.  ML applies an algorithm which is shaped by the dataset that is provided to 

build a model that can be compared with reality. There are many such algorithms that 

are available such as SVM (Schaathun, 2012), neural networks (Hammer, 2014) and RF 

(Breiman, 2001). 

 

4.1.2 Descriptor calculation 

For this work, molecular descriptors were calculated using MOE (MOE, 2018). The 3D 

structures were energy minimised using Pipeline Pilot (BIOVIA, 2017). MOE can calculate 

over 400 2D and 3D molecular descriptors such as LogP, pKa and pKb. 

4.1.3 Aims 

The aim of this chapter is to investigate the use of RF to predict both solubility and the 

error between COSMOtherm predictions and experimental data. The ML response from 

the latter model can be used as a correction factor that is subtracted from the 

COSMOtherm prediction to produce a new corrected solubility. 
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4.2 Methods 

4.2.1 Dataset construction 

The solubility database was compiled from a variety of sources, CMAC researchers, GSK 

solubility database (see section 2.4) and DETHERM database from the Royal Society of 

Chemistry (RSC) (http://detherm.cds.rsc.org/)(Detherm, 2016). The laboratory 

techniques used to obtain the solubility data were varied. However, for this work, it has 

been assumed that that these techniques were accurate, and these measurements are 

taken as “real” solubility values. The enthalpy of fusion and melting temperatures for 

many of the compounds were also obtained from the DETHERM website. In cases where 

duplicate data points were recorded, CMAC data points were retained over literature 

data points. If there were triplicates of a data point and two of the data points were 

similar, the dissimilar and one of the similar points was removed. 

As this research progressed, three datasets were compiled and used. The datasets 

started at 25°C for use with the RF models to show that the model would work and to 

validate the hypothesis. The first dataset was used with 281 data points from CMAC 

researchers and literature sources via the DETHERM website. The second dataset added 

an additional 139 data points from GSK. A third dataset added another 150 data points 

from the DETHERM website compiled in collaboration with MSc student Mithushan 

Soundaranathan (Table 4-1). In producing this dataset, a tolerance of ±1°C was 

introduced, taking in solubility values between 24 and 26°C. This increased the dataset 

considerably as many temperatures from the website were converted from Kelvin, e.g. 

298 K = 24.85°C. It was also assumed that a ±1°C variation in temperature was not 

sufficient to skew the data.  
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Table 4-1 Datasets used for machine learning 

Dataset Number 
of data 
points 

Number of 
solutes 

Number of 
solvents 

Dataset 1 CMAC 281 52 34 

Dataset 2 CMAC + GSK 420 60 65 

Dataset 3 CMAC + GSK + DETHERM 529 97 65 
 

4.2.2 Descriptor calculation 

The COSMOtherm predictions were calculated using COSMOtherm Version C3.0 16.01 

using the SLESOL job type and TZVPD-fine basis set. 

The descriptors were calculated for both solutes and solvents using MOE version 

2016.0802. Any descriptors produced by MOE that had zero variance were removed 

prior to running any of the RF algorithms. Solute and solvent descriptors were combined 

for each solute/solvent combination. 

A maximum of 435 descriptors for each compound were calculated. The descriptors 

included both 2D and 3D descriptors. Some compounds returned a Null value for certain 

descriptors due to technical implementation. These descriptors were removed to ensure 

there were no gaps in the data. The descriptors were checked for cross-correlation and 

removed as required (see section 4.3.4). However, RF works in such a way that removal 

of correlated descriptors tends not to have any significant effect on the model as it is 

capable of disregarding descriptors with no useful information (Breiman, 2001). 

4.2.3 k-Fold cross-validation 

Cross-validation is a resampling technique used to evaluate ML models on a limited data 

sample. The dataset is shuffled randomly, then split into a number of groups, k. Each 
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group is taken as a test set while the remaining groups are entered into the training set. 

This cycle is repeated until all groups have been in the test set. 

For the RF model, the default settings were accepted for this work except for ntree which 

was set at n=1000. k-Fold cross-validation RF algorithms (Figure 4-1) were run as a 

comparison to the solute-Fold model which is described in section 4.2.4. 

 
Figure 4-1 Graphical representation of the k-Fold RF model 

The dataset in the k-Fold cross-validation model splits the data into k sections (k being 

10 in this case) and uses one of the sections as a test set and k-1 sections as the training 

set, repeating this process until all sections have been used as a test set. This is to ensure 
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that there is consistency in the dataset regardless of which data are sampled for testing. 

While this is a standard, widely-accepted method for validating a model, an issue occurs 

for this dataset when assessing the effectiveness of a model for an unknown solute, 

which is a likely use case for any solubility prediction model.  Since the sections are 

chosen entirely randomly, each split of a k-Fold cross-validation model will likely contain 

some solute and solvents included, in different combinations, in both training set and 

test set. This gives the model an advantage as it has “seen” the solute in the training set, 

whereas in reality for an unknown compound the model will not have “seen” the solute 

before. 

4.2.4 Solute-Fold cross-validation 

To fairly judge the performance of the RF models for unknown solutes it was decided to 

also build models excluding all data from the training set for the solute being tested. This 

was named the “solute-Fold” cross-validation model (Figure 4-2) and, unlike the k-Fold 

cross-validation model, selected all data points containing a given solute to be the test 

set. The procedure was repeated for each solute in turn. The reasons for developing this 

model is that if a new molecular entity is presented, the dataset that the RF model is 

built from would have no knowledge of the new compound.  While the same procedure 

could also be performed for each solvent, it was determined that a new, unknown 

solvent represented a much less likely use case and was therefore not necessary. 
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Figure 4-2 Graphical representation of the solute-Fold RF model 

 

4.2.5 Drip-feed model 

The solute-Fold cross-validation model used no data points of a solute in the training set 

that was in the test set. To investigate the significance of the model having limited prior 

knowledge of the solute (rather than none) a “drip-feed” model was developed. This 

would determine the average number of points required to have an optimum predictive 

model and to investigate potential points of diminishing return with respect to model 

performance. The drip-feed model (Figure 4-3) determines how many solubility data 

points of a solute are required to improve the model. Initially no data points for the 
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target solute were used in the training set of the model and then a data point was “drip-

fed” into the training set. 

  
Figure 4-3 Graphical representation of the drip-feed RF model 
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Figure 4-4 drip-feed model with combinations of different solvents for solute data points into the training set 
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Firstly, a RF was carried out with no examples of the solute being “drip-fed” into the 

training set, which is the same as the solute-Fold model. Then a RF model where only 

one data point for the target solute was drip-fed into the training set with all other 

points for that solute kept in the test set. This was repeated for each unique data point 

for that solute (Figure 4-4), before increasing the number of data points drip-fed by one. 

Next, each combination of two data points for the target solute were inserted into the 

training set. Then each combination of three data points per solute was inserted into 

the data set and the same with four data points. This increased the number of RF models 

generated exponentially. 

 If four data points were drip-fed into the training set, then only solutes with at least five 

data points were used so that there would be at least one data point left for use in the 

test set. There were 36 solutes that satisfied that criterion. 

The predicted result is then averaged for each data point when that data point is in the 

test set. With solutes with a large number of data points the possible combinations 

would increase exponentially and for some solutes the combinations numbered over 

10,000. In total, 131,596 RF models were generated – a task that took several weeks 

over several CPUs (see Table 4-2).  For each addition of a solvent the number of RF 

models increased exponentially.  
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Table 4-2 number of RF models required per number of solvents for each solute in training set 

No. of solvents 
for each solute in 
training set 

No. of RF models 
required 

0 36 

1 370 

2 2,645 

3 17,911 

4 110,634 
 

For this body of work, a script was written such that the job could be shared over all 

cores of a CPU and split over several computers to decrease the time taken. 

4.3 Results and Discussion 

4.3.1 Dataset analysis 

4.3.1.1 Lipinski’s rule of five 

The chemical diversity and space of dataset 3 was compared, using Lipinski’s rules as a 

guideline, with molecules from the DrugBank database (DrugBank, 2018).  Lipinski’s rule 

of five  (Lipinski et al., 2001) is a rule of thumb to determine whether a molecule has 

drug-like properties. In general, the rules state that a drug should have: 

 No more than 5 hydrogen bond donors 

 No more than 10 hydrogen bond acceptors  

 A molecular weight of less than 500 daltons 

 A cLogP not greater than 5 

The chemical variation of the 97 solutes in dataset 3 was compared with a further 865 

solutes taken as a subset from the approved drugs dataset from the DrugBank database. 
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Figure 4-5 Percentage and number of hydrogen bond acceptors of dataset 3 and molecules from Drugbank 

The above figure (Figure 4-5) shows the percentage of hydrogen bond acceptors for the 

molecules from both dataset 3 and the Drugbank database. The percentages are very 

similar with a slightly higher percentage in dataset 3 at two hydrogen bond acceptors. 

According to Lipinski’s rule of five there should be, in general, no more than five 

hydrogen bond acceptors for a drug-like molecule and there is a small percentage in 

both of the databases with more than five. The 97 compounds have a very similar 

distribution of hydrogen bond acceptors as the much larger Drugbank dataset except 

for two acceptors which are overrepresented and at five acceptors which are 

underrepresented. This is unusual as 10% of Drugbank molecules have five acceptors. 
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Figure 4-6 Percentage and number of hydrogen bond donors of dataset 3 and molecules from Drugbank 

Figure 4-6 shows the percentage of hydrogen bond donors from both databases and 

shows a good overlapping representation for dataset 3. There are no molecules with 

more than 10 hydrogen bond donors in dataset 3, conforming to Lipinski’s rule of no 

more than 10 donors. 
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Figure 4-7 Percentage of molecules and molecular weight of molecules and from Drugbank 

Figure 4-7 shows molecular weight of both datasets. Dataset 3 has an 

overrepresentation of molecular weights in the lower weights. All but one molecule has 

a molecular weight of under 500g mostly conforming to Lipinski’s rules. This could be 

because there is more data available for the lower molecular weight range. 

Pharmaceutical companies, with the trend for heavier molecules (Bryant et al., 2019), 

have a tendency not to have their newest data in the public domain. It can be assumed 

that available academic solubility studies use smaller, cheaper molecules. 
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Figure 4-8 Percentage of molecules and cLogP of dataset 3 and molecules from Drugbank 

Figure 4-8 shows dataset 3 having a broad range of clogP which is comparable with the 

Drugbank database but with dataset 3 having a larger percentage of molecules at clogP 

2. Dataset 3 has a small percentage (~4%) of molecules above clogP 5 which is outwith 

Lipinski’s rules. As a general rule small molecules are more water soluble than larger 

ones and dataset 3 has smaller molecules than the Drugbank dataset so has more of a 

concentration of molecules with a smaller clogP. 

Table 4-3 Mean and standard deviation of Lipinski categories Number of Hydrogen Bond Acceptors, Donors, LogP 
and Molecular Weight for Dataset 3 and Drugbank dataset  
Number of 
Hydrogen Bond 
acceptors 

Number of 
Hydrogen Bond 
donors 

clogP Molecular weight 
(g) 

Dataset 3 Mean 2.9 2.0 1.4 212.5 

SD 2.2 1.9 2.1 93.6 

Drugbank Mean 3.6 1.9 2.1 313.7 

SD 2.3 1.8 2.6 133.0 

 

0

5

10

15

20

25

30

35

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

%
 o

f 
m

o
le

cu
le

s

cLog P

Drugbank

Dataset 3



115 
 

The above table (Table 4-3) shows the mean and standard deviation in dataset 3 and the 

Drugbank dataset for the four Lipinski’s rules.  cLogP values were calculated using MOE. 

The results show that dataset 3 is within the limits of Lipinski’s rules. 

The analysis shows that dataset 3 is comparable to the Drugbank dataset and that 

dataset 3 is a reasonable representation of the distribution of properties that drugs have 

especially for hydrogen bond acceptors and donors. For the most part the dataset agrees 

with Lipinski’s rule of five. This analysis justifies the use of this dataset in the machine 

learning model as it is representative of drug-like molecules. 

4.3.1.2 COSMOtherm predictions 

The COSMOtherm prediction results were compared with the solubility data obtained 

from experiment and DETHERM (dataset 3) (Figure 4-9). The COSMOtherm jobs were 

completed with SLESOL jobtype and TZVPD-fine basis set. The tramlines in the graph are 

set at zero. If the data point is on the zero line the prediction and experimental are the 

same value. If the data point is on one of the outer tramlines the prediction has either 

log -1 or log 1 error. 
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Figure 4-9 Correlation between COSMOtherm and experimental data 

The above figure (Figure 4-9) shows the results of 529 solute and solvent combinations 

from dataset 3 with duplicates removed and at a temperature range of 24-26°C. If there 

was a duplicate data point the closest to 25°C was retained.  The RMSE value for this 

data set was log 1.01. 

High solubility predictions with an error of log 1 and low solubility predictions with the 

same logged error are not equivalent in real terms.  For example, a high solubility 

prediction of 10g/100g with an error of log 1 could either be 1g/100g or 100g/100g 

whereas a low solubility prediction e.g. 0.01g/100g would either be 0.1g/100g or 

0.001g/100g.  The low solubility predictions can be deemed accurate as they still have 

low solubility with solubilities of below 1g/100g but the highly soluble predictions could 

not.   In addition, log errors greater than one are more significant than less than one due 
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to the magnitude of the error in g/100g. For example an error of 0.1g/100g is less 

significant than 100g/100g. 

 
Figure 4-10 Density plot of COSMOtherm prediction error 

The above figure (Figure 4-10) shows the distribution of the error from the COSMOtherm 

with zero being accurate predictions. 261 (49%) of the predictions are within a log point 

of the experimental data (Table 4-4). Of the predictions 182 points (34%) are near 

experimental values between RMSE. The plot shows a tendency for COSMOtherm to 

overpredict solubility. 73% of the data to the right of zero are over predictions with 27% 

to the left of zero under predicted. Reasons for the extent of error between 

experimental and predicted solubility have already been discussed in section 2.2. 
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Table 4-4 The number of residuals calculated for the range of log points 

Residual range 
log(g/100g) 

No. of points % percentage 
of total points 

-5 to -1 59 12 

-1 to 0 79 15 

0 to 1 182 34 

1 to 3 209 39 

529 data points from dataset 3 were analysed and the predictions were compared with 

experimental data. If the solubility was out by a margin of 5g per 100g of solvent this 

was deemed to be a “misclassified” prediction and within that limit was deemed to be 

a “correctly classified” prediction. The reason for this choice of limits was a result of 

what is considered useful information for cooling crystallisation (Brown et al., 2018) .  

The graph below (Figure 4-11) shows the data points compared with increasing solubility 

from left to right. 
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Figure 4-11 No. of COSMOtherm predictions and no. of "misclassified points" 
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The data has been split into two regions as the predictions of COSMOtherm have a 

distinct change in accuracy at around 5.5g/100g as shown in the graph by the change of 

gradient. For cooling crystallisation purposes anything below around 5g/100g is 

“effectively insoluble” and above that can be termed “soluble” (Brown et al., 2018). For 

the soluble predictions above 5.5g per 100g only 17% are classified accurately with 46 

out of 265 points being classified correctly.  This can be compared with the effectively 

insoluble (less than 5.5g per 100g solubility) where 83% of the compounds (264 data 

points) were classified correctly. The two regions on the graph are quite distinct with 

the rate of misclassified points visibly increasing after 5.5g per 100g. This analysis shows 

that COSMOtherm can be relied on in over four fifths of examples to predict effective 

insolubility. 

4.3.1.3 Tanimoto Coefficients and similar compounds 

Similar chemical structures are expected in the majority of cases to have similar 

properties. The Tanimoto coefficient is one of the most popular similarity coefficients 

used to measure the similarity between molecules (Tanimoto, 1958). 2D molecular 

fingerprints are used to establish similarity. Fingerprints are fragmented substructures 

of molecules (Nikolova and Jaworska, 2003) and may have similar properties such as 

number of atoms or number of rotatable bonds. There are several methods of 

fingerprinting. The method used for this project was FCFP_4.  The Tanimoto coefficient 

has a score between 0 and 1. If a molecule is very similar to the reference molecule then 

it will have a Tanimoto coefficient close to one.  If the molecule is dissimilar the 

coefficient will be closer to zero. 
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Figure 4-12 Tanimoto Coefficients for comparison with the structure of paracetamol 

The purpose of this study was to establish if the RMSE between experimental and the 

RF model corrected solubility could be reduced if a compound was not in the dataset   

but had a compound of sufficient similarity in the training set. This would be useful to 

correct the solubility of impurities of compounds with similar structures to the 

compound where no solubility data was available.   

 

Figure 4-13 Structures of benzoic acid, phthalic acid and succinic acid 

In this study, five compounds were used as a reference compound (paracetamol, 

metacetamol, benzoic acid, phthalic acid and succinic acid) (Figure 4-12 and Figure 4-13). 

These compounds were chosen as metacetamol and paracetamol are very similar and 

the others were chosen for being dissimilar to the aforementioned compounds.  Each 

compound was compared with similar compounds that were in dataset 3 and the 

Tanimoto coefficient was calculated for the similar compounds. For each reference 

compound the similar compounds were removed from the training set and the RF model 

0.90 0.24 
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was built. The reference compound was then removed from the training set and the 

model built again for comparison. 

Paracetamol was the first compound and had 35 data points in the dataset. As can be 

seen from Figure 4-14 and Table 4-5 metacetamol was the most related compound with 

a Tanimoto score of 0.9. For this compound when paracetamol was in the training set it 

reduced the mean log RMSE from 0.93 to 0.52.  

 
Figure 4-14 RMSE’s for similar molecules with paracetamol both in and removed from the RF model training set 

The Tanimoto coefficient in the x-axis is for a different compound and each compound 

has the corresponding coefficient in each table. 

Table 4-5 paracetamol as the reference compound and related compounds with Tanimoto score 

Compound name Tanimoto 
coefficient 

Change in mean 
log RMSE with 
API in training 
set 

metacetamol 0.90 -0.41 

o-hydroxyacetanilide 0.77 -0.04 

acetanilide 0.70 0.01 
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4-acetamidobenzoic acid 0.60 0.06 

p-chloroacetanilide 0.58 -0.08 

acetaminophenacetate 0.54 0.01 

4-amino-phenol 0.48 0.02 

1-(4-hydroxyphenyl)ethanone 0.46 -0.11 

4-nitrophenol 0.29 -0.23 

4-hydroxymethylbenzoate 0.24 0.00 

  

For most of the other compounds no significant decrease in RMSE was observed except 

for 4-amino-phenol and 4-nitrophenol. This initial finding aligns with the hypothesis that 

highly similar compounds can aid RF predictions. 

 
Figure 4-15 RMSE’s for similar molecules with metacetamol both in and removed from the RF model training set 

The above graph (Figure 4-15) and table (Table 4-6) above show the results for the RF 

model with metacetamol as the reference compound. Metacetamol had nine data 

points. 
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Table 4-6 metacetamol as the reference compound and related compounds with Tanimoto score 

Compound name Tanimoto 
coefficient 

Change in mean 
log RMSE with 
API in training 
set 

PCM 0.90 -0.06 

o-hydroxyacetanilide 0.78 0.16 

acetanilide 0.71 0.14 

4-acetamidobenzoicacid 0.56 -0.08 

p-chloroacetanilide 0.54 -0.14 

acetaminophenacetate 0.50 0.02 
 

As can be seen from the table paracetamol had a Tanimoto score of 0.90 and RMSE 

decreased slightly from log 1.32 to log 1.26 with metacetamol included in the training 

set. When metacetamol is in the training set compared to when paracetamol is in the 

training set the jump in RMSE significantly less. This may be due to the fact that 

paracetamol has 35 points and metacetamol only has nine points and the results above 

being mean RMSE. Any outlier in the metacetamol solubility data would have a larger 

effect than an outlier in the paracetamol solubility data in reducing the mean RMSE. 
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Figure 4-16 RMSE’s for similar molecules with benzoic acid both in and removed from the RF model training set 

Figure 4-16 and Table 4-7 show the results for benzoic acid as the reference compound 

with eight data points. Phthalic acid was the most similar compound with a Tanimoto 

score of 0.86. 
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Table 4-7 benzoic acid as the reference compound and related compounds with Tanimoto score 

Compound name Tanimoto 
coefficient 

Change in mean 
log RMSE with 
API in training 
set 

phthalic acid 0.86 0.00 

4-aminobenzoic acid 0.67 0.02 

orthoaminobenzoic acid 0.63 -0.01 

aspirin 0.55 0.01 

3-pyridinecarboxylic acid 0.52 0.02 

 

The RMSE for phthalic acid did not decrease when benzoic acid was added into the 

training set and seemed to have little effect with other similar compounds. This may be 

due to the fact that the Tanimoto scores are lower for compounds with benzoic acid as 

a reference compound. 

Figure 4-17 RMSE’s for similar molecules with phthalic acid both in and removed from the RF model training set 

Figure 4-17 and Table 4-8 show the results for phthalic acid as the reference compound 

and with one data point. This compound has two similar compounds 4-oh-benzoic acid 

and benzoic acid with a Tanimoto score of 0.86. 
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Table 4-8 phthalic acid as the reference compound wand related compounds with Tanimoto score 

Compound name Tanimoto 
coefficient 

Change in mean 
log RMSE with 
API in training 
set 

4-oh-benzoic acid 0.86 -0.05 

benzoic acid 0.86 -0.01 

orthoaminobenzoic acid 0.63 0.00 

4-aminobenzoic acid 0.58 0.00 

aspirin 0.55 -0.12 

3-pyridinecarboxylic acid 0.52 0.00 

 

Benzoic acid showed no significant reduction in RMSE however 4-oh-benzoic acid 

reduced the log RMSE from log 0.35 to log 0.30. 

 
Figure 4-18 RMSE’s for similar molecules with succinic acid both in and removed from the RF model training set 

The above figure (Figure 4-18) and table (Table 4-9) show the results for succinic acid as 

the reference compound and with one data point. 
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Table 4-9 succinic acid as the reference compound and related compounds with Tanimoto score 

Compound name Tanimoto 
coefficient 

Change in log 
RMSE with API 
in training set 

hexanedioic acid 0.90 0.01 

octadecanoic acid 0.75 0.02 

2-hydroxy-1,2,3-
propanetricarboxylic acid 

0.53 0.00 

fumaric acid 0.50 -0.02 

 

Hexanedioic acid is the most similar compound with a Tanimoto score of 0.90. The RMSE 

for the RF models did not improve significantly for all points with the inclusion of succinic 

acid. This is probably due to their only being one data point for succinic acid. 

It seems that for this dataset that when there is a high Tanimoto score > 0.86 and with 

at least some data points for the reference compound the RMSE for the RF model 

decreases although this is not validated due to the limited number of data points 

available in dataset 3. 

4.3.2 COSMOtherm predictions as a descriptor 

Using COSMOtherm predictions as a descriptor in the solute-Fold model shows a 

significant reduction in error as can be seen by the error density plot (Figure 4-19). The 

error is reduced from an RMSE of log 0.99 to log 0.91 this could possibly be due to some 

molecular information being available in the COSMOtherm prediction that is not 

available in the molecular descriptors from MOE. The inclusion of the predictions as a 

descriptor gives the model an “anchor” from which to begin as there has been some 

minor improvements having a positive effect on the model. 
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Figure 4-19 Density plot for errors from  COSMOtherm predictions and RF corrected solubilities using 2D descriptors 

with and without COSMOtherm predictions as a descriptors 

Both the COSMOtherm predictions and the descriptors work in tandem to produce the 

correction factor for solubility. 

4.3.3 Descriptor analysis 

The results from the COSMOtherm predictions were combined with descriptors from 

MOE and the descriptors were split into three groups: all descriptors (both 2D and 3D) 

and two subsets 2D and 3D descriptors and RF algorithms completed. The plots show 

the difference in error when experimental solubility data is compared with predicted 

solubility data. 
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Figure 4-20 Correlation between COSMOtherm, experimental data and RF corrected solubility using both 2D and 3D 

descriptors 

 
Figure 4-21 Correlation between COSMOtherm, experimental data and RF corrected solubility using 2D descriptors 

only 
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Figure 4-22 Correlation between COSMOtherm, experimental data and RF corrected solubility using 3D descriptors 

only 

 
Figure 4-23 Density plot showing error for both 2D and 3D, 2D only and 3D only descriptors 

Figure 4-23 and the other plots (Figure 4-20, Figure 4-21, Figure 4-22) shows the log 

RMSE for the three groups with not a significant difference between results.  These 
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models have improved on the over-predictions from COSMOtherm. The algorithm using 

all descriptors had an RMSE of log 0.94, 3D descriptors log 0.93 and 2D descriptors log 

0.91. 

 
Figure 4-24 Variable importance plots from RF showing the most important descriptor used in the solute-Fold model 

for both 2D and 3D descriptors  
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Figure 4-25 Variable importance plots from RF showing the most important descriptor used in the solute-Fold model 
for 2D descriptors 
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Figure 4-26 Variable importance plots from RF showing the most important descriptor used in the solute-Fold model 

for 3D descriptors 

The above figures show the variable importance plots taken from each RF algorithm 

Figure 4-24 shows both 2D and 3D descriptors, Figure 4-25 shows 2D descriptors only 

and Figure 4-26 shows 3D descriptors only. Variable importance plots provide a list of 

the most significant variables in descending order. %IncMSE is the mean decrease in 

accuracy. All three algorithms show “log_predicted” as the most important descriptor; 

this descriptor being the log of the COSMOtherm prediction included in the training set. 

Nearly all the descriptors in the above plots are descriptors for solutes; this could be 

because there are more solutes than solvents in the dataset and therefore more 

variance in the solutes. In Figure 4-24 the first five most important descriptors are 2D 

descriptors which match some of the top descriptors in Figure 4-25. The 3D descriptors 

in Figure 4-24 are further down the plot than the 2D descriptors. One of the most 
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important descriptors for the 2D model and the model that uses both 2D and 3D 

descriptors are partial equalisation of orbital electronegativity descriptors (PEOE). These 

descriptors are an abstract description of atomic charges through the partial 

equalisation of atom electronegativities of a molecule. 

Partial dependence plots show the marginal effect that a descriptor can have on the 

response from the ML algorithm. It can show the complexity of the relationship between 

descriptor and outcome i.e. linear or a more complex outcome. Each descriptor although 

important is more important as a sum of parts when all descriptors are taken into 

consideration. 

 
Figure 4-27 Partial dependence plot for 2D molecular descriptor PEOE_VSA 2 for solutes. Each tick mark represents 

10% of the dataset 

The above plot (Figure 4-27) shows the partial dependence plot for the descriptor 

PEOE_VSA 2 which is a 2D descriptor. It is one of the most important descriptors for both 

models. This descriptor describes the total vdWs surface area with units of square 

Angstroms (Å2) of a molecule with a partial charge in the range between 0.10-0.15. The 
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atoms that have a partial charge of between 0.1-0.15 are carbon atoms which are 

hydrophobic.  For dataset 3 this descriptor has a value of between 0-60 Å2 and shows 

on the y-axis the range of the response for the RF algorithm of between just below an 

RMSE value of log 0.15 to around log 0.45. When the value of the descriptor is low the 

response is lower than at higher values. 

 
Figure 4-28 Partial dependence plot for 3D molecular descriptor vsurf_Wp3.1  for solutes. Each tick mark represents 

10% of the dataset 

Vsurf_Wp3 (Figure 4-28) is a 3D descriptor which describes the polar volume of a 

molecule with energies of -3 kcal/mol. It is one of the most influential descriptors in the 

3D descriptor only model. It is also an influential descriptor in the 2D and 3D descriptor 

combined model. The y-axis variance correlates to an average response value of 

between zero to log 0.26. The low values up to approximately 125 Å3 have an average 

response of log 0.20 which then increases to log 0.26 after 125 Å3. 
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Figure 4-29 Partial dependence plot for 2D molecular descriptor BCUT_SLOGP_1 for solutes. Each tick mark 

represents 10% of the dataset 

BCUT_SLOG_1 (Figure 4-29) is one of three BCUT descriptors using atomic contribution 

to logP instead of partial charge (Wildman and Crippen, 1999). An analysis of the 

difference in values of this descriptor identified three compounds caffeine, urea and a 

GSK compound were responsible for the change in value of the response. Although urea 

and caffeine share the N(C=O)N functional group the GSK compound does not and there 

are no distinct characteristics for the three compounds. These compounds were 

removed from the training set and a RF algorithm was rerun and the variable was re-

examined. 
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Figure 4-30 Partial dependence plot for 2D molecular descriptor BCUT_SLOGP_1 for solutes without caffeine, urea 

and a GSK compound in the training set. Each tick mark represents 10% of the dataset 

Figure 4-30 shows a partial dependence plot for the RF model without the three 

compounds. The variance in response is insignificant when compared to Figure 4-29. 

This is because this descriptor has decreased in importance. 

 
Figure 4-31 Partial dependence plot for 2D molecular descriptor BCUT_SLOGP_1 for solutes showing plot with and 

without caffeine, urea and a GSK compound in the training set 
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This can be seen more clearly on the above plot (Figure 4-31) as the plot without the 

three compounds displays little variance in value. 

 
Figure 4-32 Partial dependence plot for 3D molecular descriptor vsurf_HB8  for solvents. Each check mark represents 

10% of the dataset 

Vsurf_HB8 (Figure 4-32) is a 3D descriptor and is the least influential descriptor for the 

2D and 3D descriptors combined model and describes surface volume hydrogen bond 

donor capacity. The y-axis shows how little influence the values of this descriptor have 

on the response with a range of response from log 0.1882-0.1888.  This is an insignificant 

descriptor for this model. 

One of the major problems with 3D descriptors is that they are inconsistent as a 

molecule can have many conformers. Different values for 3D molecular descriptors can 

be obtained for each conformer whereas the 2D descriptors values are consistent for all 

conformers. Another advantage of 2D descriptors is that they take less computational 

time to generate than 3D descriptors (BIOVIA, 2017). 
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It is possible that you could remove the descriptors that have limited effect on the model 

and only include “more important” descriptors, however the removed descriptors could 

have a co-dependency with the more important ones i.e. the relationship between the 

descriptors called Shoe Size and Height in the example given in section 1.3.13.2. These 

descriptors could be co-dependant as Height increases so does, in many cases, Shoe Size. 

Although these descriptors might be correlated in most examples there will be examples 

where Height and Shoe Size are not correlated and therefore removing one of these 

descriptors would have a detrimental effect on the model. If too many descriptors were 

removed it could affect the accuracy of the model as collectively there could be some 

effect. In addition, if some descriptors were removed those descriptors might have to 

be re-introduced when new data points were added to the model as those descriptors 

might rise in importance. 

4.3.4 Correlation of descriptors 

A correlation script was used to remove descriptors if the descriptor correlated with 

another descriptor from the 2D descriptors e.g. if a descriptor had 90% (0.9) correlation 

or above that descriptor was removed. This was to establish if the model improved with 

less descriptors. As Table 4-10 shows the improvement of the solute-Fold model was not 

significant as descriptors were removed. As the model did not improve substantially 

with the removal of descriptors, except for descriptors with zero variance, descriptors 

were not removed for the models in this project. The reason for this is that RF deals with 

correlated descriptors well and will always choose the best descriptors to build the 

model (see section 1.3.13.3). 
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Table 4-10 2D Descriptor correlation level and RMSE values 

Correlation 
level  

No. of 
descriptors 

solute-Fold 
model log RMSE 

1 348 0.91 

0.9 199 0.91 

0.8 130 0.90 

0.7 95 0.88 

0.6 69 0.87 

0.5 50 0.89 
 

4.3.5 Unit analysis 

Most of the research into solubility prediction uses the solubility value converted into 

log units. The analysis of units was obtained by comparing the results of COSMOtherm 

error predictions by carrying out RFs using log units of g per 100g of solvent and in 

absolute units of g per 100g of solvent for the response. The RMSE of the error 

prediction in log units was converted back to g/100g to compare with the absolute value 

of g/100g RMSE. The model used 2D descriptors only. 

Table 4-11 RMSEs from solute-Fold algorithms in g/100g and converted from log units of g/100g using 2D 
descriptors 

 g/100g corrected 
solubility error 

log g/100g converted to 
g/100g 

RMSE 39.95 39.55 
 

The above table (Table 4-11) shows the results for both models with the converted units 

model having an error of 39.55g/100g showing a very slight improvement, which can be 

considered insignificant, over the absolute units model at 39.95g/100g. This 

demonstrates that there is not much difference in the quality of the model when the 

units are changed. It was decided to use log units for the response in all models for ease 

of comparison. 
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4.3.6 Error prediction or solubility prediction 

Most studies into solubility using ML algorithms have concentrated on the prediction of 

solubility (Kan, 1996, Ruether and Sadowski, 2009). The study in this section focuses on 

the prediction of the error between COSMOtherm and experimental values. An analysis 

into the comparison of direct solubility predictions by RF only and COSMOtherm 

predictions was carried out. For the solubility predictions by RF only, COSMOtherm 

predictions were not required. 

 
Figure 4-33 correlation between COSMOtherm predictions, RF solubility predictions and experimental data using 2D 

descriptors. 

Figure 4-33 shows the distribution of COSMOtherm predictions versus experimental 

solubility in blue and RF solubility predictions versus experimental solubility in red using 

only the RF model with 2D descriptors from dataset 3. COSMOtherm is more accurate 

with an RMSE of log 1.01 when compared with an RMSE of log 1.25 for the solubility 

predictions. It is possible that the RMSE will improve with an increased dataset. 
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Figure 4-34 Density plot for errors from COSMOtherm predictions, RF solubility predictions and RF corrected 

solubility using 2D descriptors 

Analysing the error distribution between the two methods Figure 4-34 shows the density 

plot for COSMOtherm predictions and RF solubility predictions. It shows an over-

prediction for COSMOtherm and an under-prediction for the RF method. The 

distribution for the RF solubility prediction shows a broader spread of error than the 

other two methods with an emphasis on under prediction. The model is not consistent 

and in Figure 4-33 nearly all the points for the RF solubility model are between log 1 and 

-1 rather than having the more evenly distributed error for COSMOtherm predictions. 

Clearly from the results the RF model is inferior to COSMOtherm predictions. It is 

probable that the RF model will improve with an increase of data points as the trend is 

usually an improvement of the models when more data points are added. 
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4.3.7 Dataset comparison 

Three datasets have been used in this project: the first two datasets are a subset of the 

third as experimental solubility data points were added over time. ML algorithms using 

the solute-Fold model to obtain a predicted error were calculated using each of the 

datasets with both 2D and 3D descriptors, 2D descriptors only and 3D descriptors only. 

Although it has been established in section 4.3.3 that 2D descriptors only produce the 

best model the results here, and in further sections, were obtained concurrently. 

 
Figure 4-35 log RMSE for different datasets and their descriptor type 

Table 4-12 and Figure 4-35 show the results from all data sets. As the number of data 

points increases there does seem to be, for most descriptors, a small reduction in log 

RMSE but it is difficult to say if this is a result of an increase in data points; a larger 

dataset maybe required to assert this definitively.  
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Table 4-12 Comparison of RMSE's for solute- Fold models from different datasets  
Data 
points 

COSMOtherm All 
descriptors 

2D 
descriptors 
only 

3D 
descriptors 
only 

Dataset 1 281 1.03 1.02 1.04 0.94 

Dataset 2  420 1.01 0.98 0.95 0.90 

Dataset 3 529 1.01 0.94 0.91 0.93 

 

The hypothesis for using only 2D descriptors is reinforced by these results. For all further 

models dataset 3 was used. 

4.3.8 solute-Fold cross-validation 

The solute-Fold model shows a minor improvement over the predictions of 

COSMOtherm (Figure 4-36) with the 2D descriptors reducing the RMSE by 0.02-0.03 

(Table 4-13) when compared with the models from 2D and 3D descriptors. 

 
Figure 4-36 Correlation between experimental data, COSMOtherm predictions and solute-Fold RF corrected 

predictions 
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This is the type of model that would be used when obtaining a correction factor for 

solubility for a new compound that had no data points in the dataset. This is a more 

realistic model for a new compound as the model has no prior knowledge of the solute. 

Table 4-13 RMSE for the solute-Fold model 

Descriptor Type  Log RMSE solute-Fold 

Both 2D and 3D 0.94 

2D only 0.91 

3D only 0.93 
 

4.3.9 k-Fold cross-validation 

Table 4-14 shows the results for the k-Fold cross-validation model for all descriptor 

types. All three k-Fold models show a significant improvement over the solute-Fold 

model with around log 0.3 of improvement for each descriptor type used. 
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Table 4-14 Comparison of the RMSE for k-Fold RF model 

Descriptor type  Log RMSE k-Fold 

Both 2D and 3D 0.65 

2D only 0.64 

3D only 0.64 

 

The improvement over the solute-Fold model shows that for a solute that is in both the 

training set and test set there is an improvement in the model predictive ability. 

 
Figure 4-37 Correlation between experimental data, COSMOtherm predictions and K-Fold model RF corrected 

predictions for 2D descriptors 

Figure 4-37 shows the RMSE error for the k-Fold model. The orange points show a clear 

improvement over the COSMOtherm errors in blue. 

4.3.10 Drip-feed model 

Figure 4-38 shows the density plot for the drip-feed model. As shown when zero data 

points are included the RMSE is log 0.93 which matches the results in the solute-Fold 

model. 
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Figure 4-38 Density plot showing error for drip feed model 

As another data point is inserted into the model there is a reduction in error. The biggest 

reduction of log 0.17 occurring with the addition of the one data point. 

Table 4-15 mean RMSE for drip-feed model 

Drip-feed Mean log RMSE 

COSMOtherm 1.01 

0 points 0.93 

1 point 0.76 

2 points 0.68 

3 points 0.64 

4 points 0.62 
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Figure 4-39 Comparison of errors COSMOtherm, drip-feed models and experimental data for 0 solvents in the 

training set 

 
Figure 4-40 Comparison of errors COSMOtherm, drip-feed models and experimental data for 1 solvent in the training 

set 
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Figure 4-41 Comparison of errors COSMOtherm, drip-feed models and experimental data for 2 solvents in the 

training set 

 
Figure 4-42 Comparison of errors COSMOtherm, drip-feed models and experimental data for 3 solvents in the 

training set 
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Figure 4-43 Comparison of errors COSMOtherm, drip-feed models and experimental data for 4 solvents in the 

training set 

Figure 4-39 to Figure 4-43 and Table 4-15 show the average RMSE for the drip-feed 

model. It can be seen that with each addition of a data point for each solute that the 

RMSE error on average is reduced. This shows that for each additional point the model 

is improving but it seems to level off at around four points as the incremental 

improvements are getting smaller. Due to the limitations of the dataset only four data 

points for each solute were used so it is difficult to validate a greater improvement with 

additional data points. Four solubility points can be measured in the laboratory and fed 

back into the model for improved predictions. Also the computational time required for 

more than four points would be very expensive as the number of solvent combinations 

increases exponentially. 

4.3.10.1 Drip-feed model results for solvent combinations 

The RMSE has been calculated for each appearance in the training set of a solvent or a 

combination of solvents and the mean is given in the tables. Table 4-16 shows the results 
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with the lowest mean RMSE between the RF corrected solubility and experimental 

solubility for one solvent per target solute in the model training set. This has been 

described in detail in section 4.2.5. Methanol is the most accurate with a log RMSE of 

0.764. 

Table 4-16 mean RMSE for one solvent for the target solute in the drip-feed model training set 

Solvents in training set Mean log 
RMSE 

methanol 0.764 

ethanol 0.768 

propanol 0.778 

1-butanol 0.782 

2-propanol 0.798 

propanone 0.806 

 

The top five solvents for accuracy are alcohols with propanone being sixth. Only solvents 

that appear over 100 times in the training set were included. 

Table 4-17 mean RMSE for combinations of two solvents for the target solute in the drip-feed model training set 

Solvents in training set Mean log 
RMSE 

ethanol propanone 0.649 

2-propanol propanone 0.663 

methanol propanone 0.673 

1-butanol propanone 0.702 

ethanol methanol 0.704 

acetonitrile propanone 0.718 

 

The above table (Table 4-17) show the results with the lowest mean RMSE for the drip-

feed model with two solvents in the training set, ethanol and propanone are the 

combination with the lowest RMSE. Propanone is featured in all but one of the top six 

combinations. 
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Table 4-18 mean RMSE for combinations of three solvents for the target solute in the drip-feed model training set 

Solvents in training set Mean log 
RMSE 

ethanol methanol propanone 0.635 

2-propanol methanol propanone 0.640 

2-propanol ethanol propanone 0.641 

1-butanol ethanol propanone 0.650 

1-butanol methanol propanone 0.652 

acetonitrile ethanol propanone 0.655 

 

Table 4-18 shows the results with the lowest RMSE for three solvents in the training set.  

Propanone is featured in all six combinations with either ethanol or methanol as at least 

one of the components in each combination. 

Table 4-19 mean RMSE for combinations of four solvents for the target solute in the drip-feed model training set 

Solvents in training set Mean log 
RMSE 

ethanol methanol n-heptane propanone 0.638 

1-butanol ethanol methanol propanone 0.642 

acetonitrile methanol n-heptane propanone 0.644 

acetonitrile ethanol n-heptane propanone 0.644 

2-propanol ethylacetate methanol propanone 0.649 

2-propanol acetonitrile methanol propanone 0.649 
 

The above table (Table 4-19) show the results with the lowest mean RMSE for four 

solvents in the training set of the drip-feed model. Propanone, ethanol and methanol 

feature with n-heptane in half the combinations. However, the RMSE’s for these six have 

not changed significantly when compared to Table 4-18. This could mean that only three 

solvents are required instead of four in the RF model to achieve a significant 

improvement in RMSE. 
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4.3.10.2 Drip-feed model results for individual solvents in solvent combinations 

Table 4-20 shows the mean RMSE for individual solvents with one solvent in the training 

set. When a particular solvent is drip-fed into the training set either singularly or part of 

a combination of solvents the RMSE is calculated. The mean is then calculated from the 

number of appearances in the training set of that solvent. 

Table 4-20 mean RMSE for individual solvents with one data point for that solvent in the training set for drip-feed 
model 

Solvent  Mean log 
RMSE 

methanol 0.764 

ethanol 0.768 

propanol 0.778 

1-butanol 0.782 

2-propanol 0.798 

propanone 0.806 

acetonitrile 0.872 

ethyl acetate 0.877 

tetrahydrofuran 0.931 

toluene 0.938 

n-heptane 0.946 

isopropyl acetate 0.954 

methyl-t-butyl ether 0.955 

butanone 0.966 

Acetic acid 0.967 

water 0.987 

2-methyltetrahydrofuran 1.021 

4-methyl-2-pentanone 1.025 

cyclopentylmethylether 1.040 

anisole 1.114 
 

The five solvents with the lowest RMSE are all alcohols and do not have a significant 

difference in RMSE. 
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Table 4-21 mean RMSE for individual solvents with a two solvent combination in the training set for drip-feed model 

Solvent Mean log 
RMSE 

propanone 0.762 

methanol 0.784 

ethanol 0.801 

1-butanol 0.808 

acetic acid 0.818 

propanol 0.820 

ethyl acetate 0.825 

2-propanol 0.829 

acetonitrile 0.854 

butanone 0.888 

tetrahydrofuran 0.889 

methyl-t-butyl ether 0.891 

isopropyl acetate 0.906 

cyclopentylmethyl ether 0.909 

2-methyltetrahydrofuran 0.915 

n-heptane 0.916 

toluene 0.918 

water 0.933 

4-methyl-2-pentanone 0.981 

anisole 1.037 
 

Table 4-21 shows the mean average RMSE for individual solvents with two solvents in 

the training set. Propanone has the lowest RMSE. This result is different from the 

previous table which has alcohols with the lowest RMSE. Propanone is better in 

combination with other solvents in the training set rather than alone. 
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Table 4-22 mean RMSE for individual solvents with a three solvent combination in the training set for drip-feed 
model 

Solvent Log 
RMSE  

propanone 0.729 

methanol 0.789 

ethanol 0.799 

ethyl acetate 0.803 

1-butanol 0.804 

propanol 0.822 

2-propanol 0.822 

acetonitrile 0.828 

butanone 0.831 

methyl-t-butyl ether 0.841 

cyclopentylmethyl ether 0.844 

n-heptane 0.848 

tetrahydrofuran 0.849 

isopropyl acetate 0.852 

2-methyltetrahydrofuran 0.852 

toluene 0.867 

water 0.870 

4-methyl-2-pentanone 0.939 

anisole 0.964 
 

The above table (Table 4-22) for the lowest mean RMSE for an individual solvent in a 

three solvent combination in the training set.  As with the previous table propanone has 

the lowest RMSE with methanol and ethanol the second and third lowest. This shows 

agreement with the lowest RMSE in (Table 4-18) which is propanone, methanol and 

ethanol in combination. 
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Table 4-23 mean RMSE for individual solvents with a four solvent combination in the training set for drip-feed model 

Solvent Log 
RMSE  

propanone 0.690 

methanol 0.744 

1-butanol 0.745 

ethyl acetate 0.751 

tetrahydrofuran 0.761 

ethanol 0.773 

2-methyltetrahydrofuran 0.786 

acetonitrile 0.790 

2-propanol 0.792 

propanol 0.792 

water 0.803 

butanone 0.804 

n-heptane 0.819 

toluene 0.833 

isopropyl acetate 0.845 

methyl-t-butylether 0.847 

 

Table 4-23 shows the RMSE for individual solvents with a four solvent combination in 

the training set.  Again propanone has the lowest RMSE with methanol second. 
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Figure 4-44 Correlation between experimental data, COSMOtherm predictions and drip-feed model RF corrected 

predictions for three solvents in the training set ethanol, methanol and propanone 

To improve the predictions of the ML models at least three solvents are recommended 

to have the solubility measured experimentally for each solute.  Propanone, methanol 

and ethanol as shown above (Figure 4-44) have the lowest RMSE for the model with all 

three solvents in the training set.  The model has provided a solubility correction factor 

for both over predictions and under predictions and has improved the accuracy from an 

RMSE of log 1.12 to log 0.64. Using these three solvents to obtain solubility data for a 

new compound in the laboratory will inform the RF model efficiently, maximising the 

return on time and resources. 

4.4 Workflow for a new molecular entity 

When modelled solubility data for a new molecular entity are required a workflow 

(Figure 4-45) should be used. Firstly, the COSMOtherm database would be checked to 

establish whether the cosmo file for the molecule was already available. 
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Figure 4-45 Workflow for correction factor for new molecular entity 
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If the molecule is not in the COSMO database, then COSMOconf must be used to obtain 

a COSMO file. The enthalpy of fusion and melting temperature of the compound must 

be obtained for use in COSMOtherm. If the compound is in the solubility database a 

correction factor would be obtained and the solubility would be corrected. The selected 

solvents would be tested in the laboratory if the data wasn’t already available in the 

database. This information would then be added to the database. If the compound is 

not in the solubility database, the COSMOtherm predictions would be used to select 

which solvents would be used in the laboratory to get solubility data for the new 

compound. As shown in the drip-feed model these solvents should be propanone, 

methanol and ethanol.  This data would be input into the database and MOE molecular 

descriptors generated if not already available. A correction factor would then be 

obtained for the COSMOtherm predictions for all solvents. The required solvent would 

then be chosen. This would be an iterative process. 

4.5 Conclusion 

Using COSMOtherm predictions and RF to obtain a correction factor has improved the 

RMSE of solubility predictions when compared with experimental data.  For the dataset 

used within this work it was found that using an RF model with COSMOtherm predictions 

included in the descriptors reduced the overall RMSE to a greater extent than not 

including predictions as a descriptor.  Using 2D descriptors only with the COSMOtherm 

is more accurate than using 3D only descriptors or both. This is due to 2D descriptors 

being consistent for all conformers whereas different values can be given for 3D 

descriptors for each conformer. For a new chemical entity solubility predictions are 

required. It is recommended that for any API that requires solubility predictions that 
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experimental data for at least three solvents with that API are preferred. The selection 

of these solvents has been shortlisted in an effort to maximise model performance. 

These measurements will be used train the RF model and improve the accuracy of the 

predictions. Ethanol, methanol and propanone are preferred but 2-propanol or 1-

butanol could be used to replace either of the alcohols without much increase of RMSE. 

The application of ML algorithms is a powerful tool to improve the accuracy of solubility 

predictions. Ideally it is hoped that solvent specific models would be built, these 

however would require more solubility data than was available for this project. 
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5 Workflow procedure for crystallisation and wash solvent 
selection using predictive methods and machine learning 

5.1 Background 

A key step in pharmaceutical production is purification as it facilitates the isolation of 

impurities which are generated during synthesis and other manufacturing stages. 

According to the International Conference on Harmonisation (ICH) Guidelines (ICH, 

2015) impurities are defined as any component present in the drug substance that are 

not defined as the chemical entity. Possible impurities can be unreacted material, 

degradants and by products. (Lakshmana Prabu and Timmakondu, 2010). After 

synthesis, purification is required to remove as far as possible all impurities formed in 

the synthesis process. It is important to remove impurities due to possible hazardous 

nature or due to the effect on solubility, crystal habit (Schmidt and Ulrich, 2012, 

Lakshmana Prabu and Timmakondu, 2010, Fiebig,Jones and Ulrich, 2007) and 

dissolution (Prasad et al., 2001, Saleemi,Onyemelukwe and Nagy, 2013, Hendriksen et 

al., 1998, Thompson et al., 2004, Hendriksen and Grant, 1995, Hulse,Grimsey and De 

Matas, 2008, Lahav and Leiserowitz, 2001, Witschi and Doelker, 1997). A key aspect of 

removing impurities is to maintain the physical properties of the API along the 

manufacturing process (particle size, particle size distribution (PSD) and crystal habit). 

Selecting the best solvent is required for removal of impurities during purification. 

Purification, the post process of synthesis and workup, typically consists of two steps; 

crystallisation and isolation.  Crystallisation, is the first purification step, which can 

define crystal properties such as shape and PSD, crystal habit and polymorph. The basic 

principle of purification by crystallisation is to crystallise your desired molecule only and 
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leave the impurities in the mother liquor.  However, this is difficult as many impurities 

are structurally related to the target compound and have similar crystallisation 

properties. As such, it is often the case that some impurities are crystallised while trying 

to crystallise the API. Therefore, a second filtration step is required after crystallisation, 

to remove the mother liquor and to wash the crystals before drying.  Drying is used to 

remove residual solvent molecules trapped between particles to get a dry product 

(Ottoboni, 2018). 

Crystallisation solvent selection is usually done experimentally by testing solvents to get 

desirable crystal attributes, a solubility curve (metastable zone, solubility slope) for the 

crystallisation process selected and to get impurity rejection by leaving the impurity in 

the mother liquor. The wash solvent was usually selected experimentally by operator 

experience or previous knowledge of similar molecules. Firstly, solubility data was 

required for the API and of the impurities then secondly, an investigation was required 

to establish whether physical properties such as crystal habit or dissolution was affected. 

Another factor that needed investigation was whether the impurity precipitated into the 

crystallisation or wash solvent. Miscibility between crystallisation and wash solvent is 

also important to enhance the diffusion and dilution washing (Ruslim et al., 2007, Ruslim 

et al., 2009). All of this experimental work takes time and consumes materials and 

solvent.  To reduce the amount of time and materials several methods have been 

developed to generate a selection approach where solubility and other solute/solvent 

properties were simulated. Cheng applied a workflow approach but without using a 

method for predicting solubility (Cheng et al., 2010). This workflow approach consisted 



164 
 

of using experimental data and the modelling of the washing process. A different 

approach was taken by Abramov (Abramov, 2018) who used COSMOtherm predictions 

to select wash solvents to purge impurities. Abramov’s publication took place at the 

same time as the development of this work. However, this method was not combined 

with the workflow approach taken in this chapter. The method developed in this chapter 

combines both a workflow approach and the predictive capabilities of COSMOtherm. 

5.2 Aims 

To facilitate R & D and to save time, material and solvent consumption, a workflow was 

developed.  The aim of the workflow was to obtain all the information required for 

cooling crystallisation and wash solvent selection.  This workflow was then embedded 

within a tool that had the ability to rank solvents based on their suitability for 

crystallisation and the washing process. This tool will rank the solvents for cooling 

crystallisation with the objective to maximise yield and to minimise the amount of 

solvent used to crystallise the material.  It will also to rank wash solvents in accordance 

with impurity rejection capability with minimisation of the amount of solvent used. 

5.3 Materials 

Paracetamol (4-actamidophenol, Bioxtra, ≥99% SLBR2060V), 4-nitrophenol (≥99% 

1395915V), methyl-4- hydroxybenzoate (97% BCBL6776V), 4-acetamidobenzoic acid 

(≥98% 1395915V), 4’chloroacetanilide (97% MKBP5552V), acetanilide (99% 

STBB0193V), 4-hydroxy acetophenone (99% BCBH8862V), orthocetamol (97%), 4-

aminophenol (98% BCBU5190V), metacetamol (≥99% MKCB2268V). Acetaminophen 

acetate (99% GLLHF-MQ) was supplied by Tokyo Chemical Industries, 4-
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hydroxyacetaphenone oxime (Carbosynth FH675681550), 3-chloro-4-

hydroxyacetanilide (>98% Acros Organics A0340054), 4-hydroxyphenyl-propanide 

(>95% Enamine R1989798). 

Ethanol (purity ≥ 99.8% (GC), from Sigma Aldrich), 2-propanol (IPA) (purity ≥ 99.5 % (GC), 

from Sigma Aldrich), n-heptane (purity 99%, from Alfa Aesar), isopropyl acetate (purity 

99+ %, from Alfa Aesar), toluene (purity 99%, from Alfa Aesar), anisole (purity 99%, from 

Alfa Aesar), n-dodecane (purity 99%, from Alfa Aesar), methyl-tert-butyl ether (TBME) 

(purity 98%, from Sigma Aldrich), cyclohexane (purity 99+ %, from Alfa Aesar), 4-

methylpentan-2-one (purity ≥ 99.5% (GC), from Sigma Aldrich), 3-methyl-1-butanol (98% 

Sigma Aldrich) and acetonitrile (ACN) (purity 99.5%+, from Alfa Aesar). 

5.4 Work flow aims and description 

For this project a workflow approach was used with ab initio predictive models and ML 

model using predictive and experimental data. Predictive methods were validated using 

experimental solubility and filtration data was collated by Sara Ottoboni, a CMAC 

researcher (Ottoboni, 2018). The workflow shows the input parameters required from 

synthesis and workup. These parameters are the physical properties of API and 

impurities, such as impurity concentration, ideally the enthalpy of fusion and the melting 

temperature of all substances. As reported in the workflow stages one to four (sections 

5.6.1 - 5.6.4), these properties can be obtained by the analytical characterisation of the 

material during synthesis and workup, either from literature or by predictive methods 

(Joback and Reid method (Joback and Reid, 1987)). In stage 5 (section 5.6.5), if solubility 

and miscibility data are not available, the data will be obtained by predictions using 
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COSMOtherm. Stage 6 (section 5.6.6) verifies the data obtained by predicting the 

solubility of the compound and impurities can be verified experimentally. Once solubility 

is obtained from COSMOtherm and from experimentation, this can be utilised by the RF 

model to obtain a correction factor to improve solubility predictions. Stage 7 (section 

5.6.7) used the solubility predictions to rank the solvents for crystallisation and wash 

solvent selection. Stage 8 (section 5.6.8), screens both the crystallisation and wash 

solvent for suitability by using solubility predictions. Finally, in stage 9 (section 5.6.9), 

the workflow proposes the use of a laboratory scale batch filtration unit to verify the 

selection of solvents from predictions. To verify if the workflow was robust paracetamol 

was selected as the test compound as it is well researched and the impurities are 

commercially available. 

Firstly, in the workflow process, information is required from synthesis and workup, in 

particular DSC for enthalpy of fusion and melting temperature of the compound and 

impurities. X-ray powder diffraction (XRPD) is required for the polymorph of the API. If 

DSC data are unavailable, the information could then be found in literature only if the 

polymorph of the compound is known (see Chapter Two section 2.3). Nuclear magnetic 

resonance (NMR) and high-performance liquid chromatography mass spectrometry 

(HPLC-MS) establish the identity of impurities and their concentration in the material. If 

the enthalpy of fusion and melting temperature are not available and if there is a solid 

sample available of the pure compound and/or impurities, the information can be 

obtained by DSC. If the sample of pure compound and/or impurities is not available a 

predictive method can be used such as Joback and Reid. A detailed description of this 
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method is reported in section 1.3.9. If sufficient quantity of sample is available, it can be 

used to establish the concentration of impurity in the material by liquid chromatography 

with mass spectrometer (LCMS). Once all this data has been obtained solubility 

predictions can commence, at a range of temperatures, by prediction using 

COSMOtherm if solubility data of API and impurities are not available. 

Once these predictions are available the solubility of the API is compared with the 

solubility of the impurities to choose a wash solvent.  Ideally the solubility of the impurity 

in the wash solvent should be higher than the API. A crystallisation solvent is also 

selected from the COSMOtherm predictions. Initially the solubility of the API at three 

temperatures; a target temperature of 10°C below the boiling point of the solvent, a low 

temperature of 25°C and the mid-point temperature between the two. 10°C below the 

solvent boiling point is used as a maximum operating range as any higher and the solvent 

begins to boil and this temperature will have higher solubility than lower temperatures.  

The midpoint temperature is required to obtain the shape of the solubility curve and the 

low temperature is used as no cooling or heating equipment is required at room 

temperature. Solubilities for all impurities at these temperatures are predicted. The 

target temperature will maximise the amount of material that will be soluble in the 

solvent. 

The wash and crystallisation solvents also need to be miscible. Without miscibility you 

only have washing by displacement, miscibility maximises the washing efficiency. A 

miscibility screening procedure using COSMOtherm is explained in section 2.6.1. 
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 If no samples are available at this point the workflow cannot proceed as laboratory data 

are required to verify the prediction of COSMOtherm. Solubility can be obtained from 

different methods e.g. iso-thermal cloud method (Meenan, 2001) or the polythermal 

method (Zimmerman, 1952, Brown et al., 2018). In the workflow proposed here 

solubility was measured by iso-thermal cloud method (equilibration method). The 

correction factor for solubility using RF models has already been explained in Chapter 

Four. Once laboratory data is obtained solvents for cooling crystallisation and wash 

solvent selection can be classified and ranked according to the criterion in section 5.5. 

In the case of miscible solvents, binary plots of the API in crystallisation and wash solvent 

from COSMOtherm predictions are used to evaluate the amount of solvent used in 

washing and to evaluate the dissolution of API. Ideally the API would be less soluble in 

the wash solvent. 

The results obtained by solvent selection inform the next stage in which the selection is 

verified using a laboratory scale isolation device. This verifies the extent of impurity 

removal and API dissolution with respect to the predictions. 

5.5 Wash and crystallisation solvent classification 

There are several criteria for choosing a wash solvent, a high yield, the process volume 

and the difference in solubility between the API and the impurities. 

Three predictions for each solute/solvent combination are required; a low temperature, 

a target temperature and a midpoint temperature prediction (section 5.4). 
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The low temperature of 25°C is around room temperature is easy to achieve in the 

laboratory. The percentage of starting material theoretically recovered at the end of the 

cooling crystallisation can also be calculated (See Equation 28) by using the solubility 

predictions at the target temperature and low temperature. 

Equation 28 

𝑌𝑖𝑒𝑙𝑑 = 100 − (100 ∗ (
𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑡 𝑙𝑜𝑤 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑡 𝑡𝑎𝑟𝑔𝑒𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
)) 

The process solvent volume at the beginning and end of the crystallisation can be 

calculated if the density of the solvent is known. The process solvent volume is the 

amount of solvent used to obtain a gram of material (Equation 29). 

Equation 29 

𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑣𝑜𝑙𝑢𝑚𝑒 =
100

𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑠𝑜𝑙𝑣𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 

The process volume was split into nine categories as shown in the table below (Table 

5-1). These categories are used to rank the crystallisation solvents. The best category is 

the one with the highest yield of greater than 90% and a process volume of less than 

10g/ml of solvent as this will give the maximum yield of product using the least amount 

of solvent. 
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Table 5-1 Process volume and yield categories 
Category Process volume 

of solvent (g/ml 
of solvent) 

Yield (%) 

1 <10 >90 

2 <20 >90 

3 <30 >90 

4 <10 >85 

5 <20 >85 

6 <30 >85 

7 <10 >80 

8 <20 >80 

9 <30 >80 

If the same solvent used for crystallisation is used also as a wash solvent, then two 

different scenarios are presented. The first scenario is that if the end temperature of the 

crystallisation is the same as room temperature then the yield will be the lowest of the 

two scenarios because the API will be highly soluble in the crystallisation solvent. 

However, if the solvent is cooled down further less impurity can be removed but the 

yield is improved. Another scenario is where the wash solvent is different from the 

crystallisation solvent, this is favourable to maximise yield and to remove impurity. The 

wash solvent that is selected would give a higher solubility to the impurity than the API. 

This would ensure that the impurity is rejected with minimal dissolution of API with 

consequential minimisation of particle size reduction. 

Table 5-2 Categories assigned to differences in solubility between API and impurity, x is solubility 

Category Δ Solubility range 

1 0g <= x < 1g/100g 

2 1g/100g <= x < 10g/100g 

3 10g/100g <= x < 20g/100g 

4 20g/100g >= x 
 

The above table (Table 5-2) shows the four categories assigned to the difference in 

solubility between API and each impurity in a solvent if the solubility of the impurity is 
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greater than the API. For crystallisation solvent selection category one would be 

preferable because the difference in solubility increases, dissolution of the impurity 

could become a problem.   If the solubility of the impurity is less than the API in a 

particular solvent, then the concentration of the impurity is considered. 

 Between 0% and 1% mole fraction ratio of the solubility of pure compound with 

respect to the solubility of the impurity. 

 Between 1% and 2% mole fraction ratio of the solubility of pure compound with 

respect to the solubility of the impurity. 

 Above 2% mole fraction ratio of the solubility of pure compound with respect to the 

solubility of the impurity. 

If the concentration of impurities is in the first two categories, then it is possible that the 

impurity will be washed away in the wash solvent. If the impurity is in the third category 

than there is a risk of precipitation into the product. 

If the binary system has a maximum (Figure 5-1) as in Jozwiakowski’s experiment with 

lamivudine in ethanol and water (Jozwiakowski et al., 1996). This would result in more 

solvent being used and more API being dissolved. As more water is added before the 

maxim this results in a a loss of yield as the API is more soluble. As such the starting 

position for the crystalisation would be at the maxima. A solubility curve without 

maxima is preferred as less material will be dissolved reducing costs.   
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Figure 5-1 Impact of API solubility in solvent mixture, Lamivudine solubility in ethanol-water mixture at 25°C example 

(Jozwiakowski et al., 1996) 

The aim of developing the workflow was to obtain all the information that is required 

for the selection of crystallisation solvent and wash solvent for a cooling crystallisation. 

This tool ranks solvents based on their suitability with the objective to maximise yield 

and minimise the amount of solvent used. 
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Figure 5-2 Workflow for cooling crystallisation and wash solvent selection 
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Continuation of Figure 5-2 Workflow for cooling crystallisation and wash solvent selection 
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Table 5-3 Stages for cooling crystallisation and wash solvent selection 

Stage Supplementary Information 

1 Assessing extant information regarding 
API compound purity and physical 
properties.  Addressing the purity of API 
information regarding synthesis route to 
estimate possible impurities. 

2 Obtaining essential supplementary 
information of the pure compound i.e. 
enthalpy of fusion and melting 
temperature 

3 Predicting thermal properties of the pure 
compound available i.e. enthalpy of 
fusion and melting temperature using 
group contribution methods.  

4 Qualification and quantification of any 
impurity/degradation molecule present. 

5 Using ab initio, in silico software package 
COSMOtherm to predict the solubility of 
the API and the impurities in pure 
solvents to inform stage 7. 

6 Using gravimetric methods to 
experimentally obtain the solubility of 
API/Impurities in pure solvents by 
verifying solubility predictions from 
COSMOtherm data obtained from the 
correction model. 

7 Assessing if a solvent is a good fit for a 
filtration and washing solvent using the 
equation to aid API recovery and yield 
using solubility differences in 
API/impurities in solvent, confirming 
impurity presence in solution and 
absence in cake (using Δsolubility of 
API/impurities). 

8 Using COSMOtherm with binary solvents 
to select wash solvent/crystallisation 
solvent. 

9 Verification using an isolation device to 
confirm the high purity of the product 
and high yield using the selected binary 
combination. 
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5.6 Case Study: paracetamol and impurities 

For this project paracetamol and impurities were chosen as a case study for validating 

the workflow (Figure 5-2 and Table 5-3). All the compounds were supplied from 

suppliers as detailed in section 5.3. 

5.6.1 Stage 1 – Collate prior knowledge of compound and impurities 

The idea of the workflow is to obtain all the synthesis and work up information for a 

new compound (DSC, XRPD, NMR and workup procedure) during this stage. The 

information that is required is API compound purity and physical properties; enthalpy 

of fusion, melting temperature and workup procedure. All the compounds for this 

chapter were commercially sourced and therefore no synthesis information or 

workup was available. 

5.6.2 Stage 2 – API/Impurities characterisation 

A literature review to find the enthalpy of fusion and melting temperatures for 

paracetamol and the impurities was carried out and the results are shown in Table 

5-4. All the compounds had literature values except for orthocetamol.  Some of the 

compounds had only one reference for literature values and many did not state the 

polymorphic form. However, if the polymorphic form was stated the value for the 

most stable form was used. 
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Table 5-4 Paracetamol and impurities enthalpy of fusion and melting temperatures 

Compound  Enthalpy 
of fusion 
(kJ/mol) 

Melting 
temperature 
(°C) 

Reference 

p-chloroacetanilide 41.00 178.40 (Gmehling, 2018) 

orthocetamol 15.67 209.10 *DSC results 

metacetamol 28.80 146.85 (Barrio et al., 2017) 

acetanilide 21.65 114.30 (Gmehling, 2018) 

4-nitrophenol 18.88 112.00 (Gmehling, 2018) 

4-hydroxymethylbenzoate 24.31 131.00 (Gmehling, 2018) 

4-amino-phenol 31.20 186.30 (Gmehling, 2018) 

4-acetamidobenzoicacid 20.93 186.00 (Monte et al., 2010) 

1-(4-
hydroxyphenyl)ethanone 

17.03 108.15 (Y. P. Chen,Tang and 
Kuo, 2005) 

1-(2-
hydroxyphenyl)ethanone 

32.80 197.00 (Shiu Shiang Yang and 
Guillory, 1972) 

paracetamol 26.49 168.74 (Xu et al., 2006) 
 

A sample of orthocetamol was obtained from Sigma Aldrich and a DSC experiment 

was carried out using a Netzsch DSC 214 POLYMA. The apparatus was used to obtain 

enthalpy of fusion and melting temperature for orthocetamol. An orthocetamol 

sample was heated from 20°C to 10°C above the melting point at a rate of 10°C per 

minute and then held for two minutes and then the temperature was dropped to 

150°C.  This was repeated cyclically three times. The graph (Figure 5-3) shows the 

results with a melting temperature of 209.1°C and an enthalpy of fusion of 15.67 

kJ/mol. All the figures shown above were used in the COSMOtherm predictions of 

stage 5 (section 5.6.5). Fortunately for this case study all the relevant data was 

gathered. However, for other cases when this data is not available predictive 

methods for enthalpy of fusion and melting temperature must be used. 
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Figure 5-3 Plot of the enthalpy of fusion and melting temperature for orthocetamol using a NETZSCH DSC 214 

 

5.6.3 Stage 3 – Predictive methods for enthalpy of fusion and melting 
temperature 

None of the compounds used enthalpy of fusion or melting temperature predictions 

from the Joback and Reid method (see section 1.3.9) or the Jain and Yalkowsky (see 

section 1.3.10). These estimations come with a rather large degree of error. As such, 

this should be factored into solubility predictions using these methods. COSMOtherm 

used enthalpy of fusion and melting temperature data from DSC measurements or 

literature for this case study. 

5.6.4 Stage 4 – Impurities study 

The aim of this stage is to use LCMS to establish the quantity and composition of 

impurities in the sample. No LCMS data was obtained for this chapter. The API and 

impurities used for this project were not from a real synthesis so no such data was 

available. 
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5.6.5 Stage 5 – Solubility predictions of API and impurities in numerous solvents 

Using the information obtained from the previous stages the solubility of the API 

compound and impurities was predicted using COSMOtherm. COSMOtherm was used 

to predict the solubility of paracetamol and three structurally related impurities of 

synthesis i.e.  p-chloroacetanilide, acetanilide and metacetamol (Figure 5-4) in 136 

solvents to indicate wash solvent suitability for paracetamol. The 136 solvents used 

were from the database discussed in section 2.4. 

 

 

Figure 5-4 structures for paracetamol and related impurities 

COSMOtherm was used to predict the solubility of paracetamol and impurities at an 

initial target temperature (10°C below the boiling point of the solvent) and a final 

crystallisation low temperature (laboratory temperature is normally 25°C) over a 

range of solvents. Some of the solubility predictions returned a value of “NA” which 

means that the solute is very soluble or very insoluble. For this project if 

COSMOtherm returned a value of “NA” it was assumed that the solute is soluble and 

was given the artificial value for solubility of 500g per 100g of solvent. This was just 

for visualisation and solvent ranking purposes only. The reason for COSMOtherm 

returning a value of “NA” is because initially the software was designed for LLE with 
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SLE added on later.  COSMOtherm assumes that the solute/solvent combination are 

“miscible” and can’t reconcile the equations and therefore returns “NA” as a 

prediction value. 

  



181 
 

Table 5-5 wash solvent selected by COSMOtherm for paracetamol and three impurities acetanilide, metacetamol 
p-chloroacetanilide 

Wash solvent  ICH 
class 

Viscosity (mPas) Boiling 
point 
°C 

Enthalpy of 
vaporisation (kJ/mol) 

1,1,1-trichloroethane 1 0.8582 (20°C) 
(Prakash et al., 
1996) 

74.00 33.342 (13.38°C) 
(Rubin,Levedahl and 
Yost, 1944) 

1,1-diethoxypropane NA NA 102.00 NA 

1-chlorobutane NA 0.45 (20°C) 
(Mumford and 
Phillips, 1950) 

78.50 33.51 (24.85°C) 
(Majer and Svoboda, 
1985) 

1-
methylnaphthalene 

NA 3.44 (20°C) 
(Luther and 
Waechter, 1949) 

243.00 54.1 (25°C) (Hopfe, 
1990) 

2,2,4-
trimethylpentane 

NA 0.503 (20°C) 
(Smyth and 
Stoops, 1928) 

99.00 35.15 (25°C) (Svoboda 
et al., 1982) 

3-fluorotoluene NA 0.608 (20°C) 
(Swarts, 1931) 

239.00 NA 

4-fluorotoluene NA 0.6215 (20°C) 
(Swarts, 1931) 

241.90 NA 

bromobenzene NA 1.0597 (25°C) 
(Rodríguez et al., 
1997) 

156.00 44.4 (25°C) (Hopfe, 
1990) 

chloroform 1 0.965m(25°C) 
(Titani, 1927) 

76.72 32.4 (25°C) (Hopfe, 
1990) 

cyclohexane 2 0.89 (20°C) 
(Vorländer and 
Walter, 1925) 

81.00 33.1 (25°C) 
(Pedley,Naylor and 
Kirby, 1986) 

cyclopentane 2 0.423 
(25.05°C)(Fischer 
and Weiss, 1986) 

49.00 28.5 (25°C) (Hopfe, 
1990) 

diisopropylether NA 0.329 
(20°C)(Gartenmei
ster, 1890) 

69.00 32.6 (25°C) (Hopfe, 
1990) 

di-n-butylether NA 0.644 (25°C) 
(Lutskii,Obukhova 
and Sidorov, 
1958) 

140.80 43.9 (25°C) (Hopfe, 
1990) 

dipentene NA 0.9 (20°C) 
(Bardyshev, 1948) 

176.00 NA 

dodecane NA 1.3877 (25°C) 
(Awwad,Jabara 

216.20 61.3 (25°C)(Hopfe, 
1990) 
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and Salman, 
1988) 

hexane 2 0.294 (25°C) 
(Bardavid et al., 
1996) 

68.00 31.4 (25°C)(Hopfe, 
1990) 

iodobenzene NA 1.64 (20°C) 
(Toropov and 
Kim, 1961) 

188.00 49.6kJ/mol (25°C) 
(Hopfe, 1990) 

isopropylbenzene 2 0.786 (20°C)  
(Schmack,Rother 
and Bittrich, 
1973) 

152.40 45.1 (25°C) (Hopfe, 
1990) 

methylcyclohexane 2 0.72 (20°C) 
(Vorländer and 
Walter, 1925) 

101.00 35.4 (25°C) (Hopfe, 
1990) 

n-heptane 3 0.409 (20°C) 
(Smyth and 
Stoops, 1928) 

98.42 36.58 (25°C) (Hala et 
al., 1979) 

pentane 3 0.214 (25°C) 
(Acevedo,Pedrosa 
and Katz, 1993) 

36.10 26.4 (25°C) (Hopfe, 
1990) 

tetralin 2 2.01 (20°C) 
(Vorländer and 
Walter, 1925) 

406.00 54.3 (25°C) (Hopfe, 
1990) 

triethylamine NA 0.369 (20°C) 
(Kokkonen and 
Nissema, 1979) 

89.00 36.8 (25°C) (Hopfe, 
1990) 

 

The above table (Table 5-5) shows the wash solvents selected by COSMOtherm. 

Crystallisation solvent selection is discussed in section 5.6.7. There are also some 

additional important criteria such as cost, viscosity, boiling point, toxicity and 

enthalpy of vaporisation that have to be considered. The boiling point and enthalpy 

of vaporisation of the wash solvent affect the ease of solvent removal during drying. 

Solvents with higher boiling points (>100°C) were discarded due to the longer drying 

time required. Higher viscosities may be associated with increased solvent retention 

in the filtration cake. During filtration, particles of solid are deposited on the filter 
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medium forming a filter cake. As time passes the cake thickness increases and the 

cake becomes more compacted increasing the resistance to fluid flow through it. 

Ideally a solvent with an ICH class of three would be selected however a class two 

solvent might be considered. When these criteria were applied cyclohexane, 

cyclopentane, n-heptane and pentane were shortlisted as possible wash solvents. 

5.6.6 Stage 6 – Laboratory solubility verification using predictions 

Once the predictions using COSMOtherm were completed experimental data was 

then obtained by CMAC researchers for the solubility of paracetamol and the 

impurities in the shortlisted solvents. The results (Table 5-6) are a subset of over 100 

solvents predicted for and show the difference in solubility between paracetamol and 

the impurities with the solvents ranked in order of suitability for wash solvent 

selection. Out of 21 laboratory results only five (24%) were wrongly classified, using 

the classification system in section 5.5 above, by COSMOtherm. All misclassified were 

for acetanilide as an impurity in toluene, isopropyl acetate, 4-methyl-2-pentanone, 

2-propanol and ethanol respectively which are shown in red. Each misclassified 

solvent was only one classification different from the correct classification. The 

results are of a qualitative nature but that is all that is required for wash solvent 

selection. If the results from experimental and COSMOtherm are compared, n-

heptane and dodecane are ranked as the best solvents in both sets of data as the 

solubility differences between paracetamol and each impurity are low which is one 

of the main criterion for wash solvent selection. The wash solvents selected were also 

checked for miscibility with the crystallisation solvent selected (see section 5.6.6). For 

the remaining solvents in the table there is no change in the ranking using 
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COSMOtherm. Although these results are only a subset of a larger number of 

COSMOtherm predictions it gives confidence that the predictions are mostly accurate 

and can be relied on. The model predicted 23 possible wash solvents for this API and 

impurities. Both n-heptane and dodecane were the top ranked wash solvents. The 

other candidates are out of the scope of this project and would require further 

laboratory results. 
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Table 5-6 Ranking of wash solvents with difference in solubility between paracetamol and acetanilde, 
metacetamol and p-chloroacetanilde from laboratory testing and COSMOtherm predictions (incorrect 

classification in red) classifications are taken from Table 5-2 

Impurity Solvent Δ laboratory 
solubility 
(g/100g) 

Δ predicted 
solubility 
(g/100g) 

Measured 
class 
(predicted 
class) 

acetanilide n-heptane 0.050 0.066 1(1) 

metacetamol n-heptane 0.020 0.000 1(1) 

acetanilide dodecane 0.125 0.042 1(1) 

metacetamol dodecane 0.050 0.000 1(1) 

acetanilide toluene 0.775 3.692 1(2) 

metacetamol toluene 0.040 0.003 1(1) 

acetanilide anisole 2.950 4.798 2(2) 

metacetamol anisole 0.190 0.021 1(1) 

acetanilide methyl-t-
butylether 

2.748 3.113 2(2) 

metacetamol methyl-t-
butylether 

0.573 0.122 1(1) 

acetanilide isopentanol 11.069 16.285 3(3) 

acetanilide isopropylacetate 8.205 14.798 2(3) 

metacetamol isopropylacetate 1.705 1.832 2(2) 

acetanilide acetonitrile 18.470 16.161 3(3) 

metacetamol acetonitrile 5.085 2.828 2(2) 

acetanilide 4-methyl-2-
pentanone 

11.440 2.828 3(2) 

metacetamol 4-methyl-2-
pentanone 

5.280 3.302 2(2) 

acetanilide 2-propanol 4.776 16.967 2(3) 

metacetamol 2-propanol 7.050 1.120 2(2) 

acetanilide ethanol 13.576 24.820 3(4) 

p-chloroacetanilide  ethanol 18.665 11.216 3(3) 

 

5.6.6.1 Applying RF model to API and impurities solubility 

The RF solute-Fold model with 2D descriptors to obtain a solubility correction factor, 

as described in section 4.2.4, was applied to the data in the above section. 

Using dataset 3 and the ML algorithm with 2D descriptors a correction factor was 

calculated for paracetamol and impurities by using all paracetamol and impurities 
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solubility data as the test set and the remaining solubility data from dataset 3 as the 

training set. 

Table 5-7 Ranking of wash solvents with difference in solubility  between paracetamol and acetanilde, 
metacetamol and p-chloroacetanilde from laboratory testing  and RF corrected predictions without paracetamol 

in training set (incorrect classification in red) classifications for ranking are taken from Table 5 2 

Impurity Solvent Δ 
laboratory 
solubility 
(g/100g) 

Δ 
predicted 
solubility 
(g/100g) 

Δ 
corrected 
solubility 
(g/100g) 

Measured 
class 
(corrected 
class) 

acetanilide n-heptane 0.050 0.066 0.297 1(1) 

metacetamol n-heptane 0.020 0.000 0.001 1(1) 

acetanilide dodecane 0.125 0.042 0.167 1(1) 

metacetamol dodecane 0.050 0.000 0.000 1(1) 

acetanilide toluene 0.775 3.692 3.915 1(2) 

metacetamol toluene 0.040 0.003 0.013 1(1) 

acetanilide anisole 2.950 4.798 4.579 2(2) 

metacetamol anisole 0.190 0.021 0.031 1(1) 

acetanilide methyl-t-
butylether 

2.748 3.113 2.448 2(2) 

metacetamol methyl-t-
butylether 

0.573 0.122 0.088 1(1) 

acetanilide isopentanol 11.069 16.285 14.027 3(3) 

acetanilide isopropylacetate 8.205 14.798 10.497 2(3) 

metacetamol isopropylacetate 1.705 1.832 1.330 2(2) 

acetanilide acetonitrile 18.470 16.161 12.251 3(3) 

metacetamol acetonitrile 5.085 2.828 2.376 2(2) 

acetanilide 4-methyl-2-
pentanone 

11.440 2.828 10.536 3(2) 

metacetamol 4-methyl-2-
pentanone 

5.280 3.302 2.423 2(2) 

acetanilide 2-propanol 4.776 16.967 13.685 2(3) 

metacetamol 2-propanol 7.050 1.120 0.483 2(2) 

acetanilide ethanol 13.576 24.820 21.409 3(4) 

p-
chloroacetanilide  

ethanol 18.665 11.216 18.279 3(3) 

 

The above table (Table 5-7) shows the difference in solubility between API and 

impurities predictions with a correction factor applied. Although in the example the 
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correction factor did not result in any solvents being ranked differently due to the 

application of the solubility correction factor, the absolute values of predicted 

solubility were improved upon when compared with COSMOtherm predictions. 

Table 5-8 Ranking of wash solvents with difference in solubility  between paracetamol and acetanilde, 
metacetamol and p-chloroacetanilde from laboratory testing  and RF corrected predictions with paracetamol in 

training set and using experimental solubility values for paracetamol. (incorrect classification in red) 
classifications are taken from Table 5-2 

Impurity Solvent Δ laboratory 
solubility 
(g/100g) 

Δ 
predicted 
solubility 
(g/100g) 

Δ 
experimental 
API and 
corrected 
Impurity 
solubility 
(g/100g) 

Measured 
class 
(corrected 
class) 

acetanilide n-heptane 0.050 0.066 0.298 1(1) 

metacetamol n-heptane 0.020 0.000 0.007 1(1) 

acetanilide dodecane 0.125 0.042 0.208 1(1) 

metacetamol dodecane 0.050 0.000 0.053 1(1) 

acetanilide toluene 0.775 3.692 3.967 1(2) 

metacetamol toluene 0.040 0.003 0.018 1(1) 

acetanilide anisole 2.950 4.798 4.279 2(2) 

metacetamol anisole 0.190 0.021 0.025 1(1) 

acetanilide methyl-t-
butylether 

2.748 3.113 1.809 2(2) 

metacetamol methyl-t-
butylether 

0.573 0.122 0.027 1(1) 

acetanilide isopentanol 11.069 16.285 11.899 3(3) 

acetanilide isopropylacetate 8.205 14.798 7.316 2(3) 

metacetamol isopropylacetate 1.705 1.832 0.734 2(2) 

acetanilide acetonitrile 18.470 16.161 9.330 3(3) 

metacetamol acetonitrile 5.085 2.828 0.289 2(1) 

acetanilide 4-methyl-2-
pentanone 

11.440 2.828 7.552 3(2) 

metacetamol 4-methyl-2-
pentanone 

5.280 3.302 0.971 2(2) 

acetanilide 2-propanol 4.776 16.967 11.480 2(3) 

metacetamol 2-propanol 7.050 1.120 3.277 2(2) 

acetanilide ethanol 13.576 24.820 21.349 3(4) 

p-
chloroacetanilide  

ethanol 18.665 11.216 19.964 3(3) 
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The above table (Table 5-8) shows the difference in solubility with experimental 

solubility values of paracetamol and RF corrected solubility predictions for impurities. 

There is no change in the ranking of solvents when the corrected solubility is applied. 

 
Figure 5-5 Density plot showing RMSE for COSMOtherm predictions (blue), RF-corrected solubility with 

paracetamol in the training set (red), RF-corrected without paracetamol in the training set (orange) 

The error density plot (Figure 5-5) above shows the results of the RF algorithms. The 

RMSE for COSMOtherm predictions was log 1.01. The RF corrected solubility without 

paracetamol in the training set improved the error to log 0.88, and the RF corrected 

solubility with paracetamol in the training set reduced the error to log 0.80. This is 

also consistent with the model in the previous chapter where a molecule of similar 

structure to the target molecule in the training set improved the RF model. 

The results show that COSMOtherm even without the RF corrected solubility is a 

powerful tool for crystallisation and wash solvent selection.  The methods here chose 

n-heptane and dodecane as the best wash solvents. 
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5.6.7 Stage 7 – Filtering solvent list 

This stage is required to assess if the solvent is a good fit for a crystallisation solvent. 

The crystallisation solvent can be selected either on process volume or product yield. 

Table 5-9 Crystallisation solvents selected by yield 

Crystallisation 
solvent 

Process 
volume at ml 
of solvent for 
g of solute 
and % 
recovery 
classification
  

ICH 
class 

Viscosity 
(mPas) 

Yield 
(%) 

Reference 

2-amino-1-
butanol 

<10ml/g and 
>90% 

NA NA 93.4 NA 

trifluoroacetic 
acid 

<10ml/g and 
>90% 

NA 1.8 
(20°C) 

93.0 ('www.solvay.us', 
2019) 

glycerol <20ml/g and 
>90% 

NA 1490 
(20°C) 

90.9 (Lux and 
Stockhausen, 
1993) 

propanoic acid <20ml/g and 
>90% 

NA 1.101 
(20°C) 

90.3 (Lutskii,Obukhova 
and Sidorov, 
1958) 

4-methyl-2-
pentanone 

<30ml/g and 
>90% 

3 0.575 
(20°C) 

90.3 (Riggio et al., 
2011) 

acetonitrile <30ml/g and 
>90% 

2 0.3568 
(25°C) 

92.7 (Walden, 1906) 

butyric acid <30ml/g and 
>90% 

NA 1.78 
(20°C) 

90.4 (Irany, 1943) 

 

These solvents were selected by COSMOtherm by using the two criteria; percentage 

recovery of solute (Table 5-9) and process volume (Table 5-10). Some of the solvents 

in these lists cannot be used due to the ICH class (RSC, 2019), these substances being 

toxic. If the viscosity of the crystallisation solvent and the wash solvent are 

significantly different then these solvents must also be ruled out as the crystallisation 

solvent cannot be removed (Ottoboni, 2018). Therefore, glycerol and propylene 
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glycol were rejected for high viscosity. Additionally, for the selection of a 

crystallisation solvent a crystallisation screening must be carried out to select a 

solvent that obtains the polymorph or crystal habit desired. This is out with the scope 

of this chapter. 
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Table 5-10 Crystallisation solvent selected by process volume 

Crystallisation solvent Process 
volume at ml 
of solvent for 
g of solute 
and % 
recovery 
classification 

ICH 
class 

Viscosity 
(mPas) 

Reference 

2-amino-1-butanol <10ml/g and 
>90% 

NA NA NA 

trifluoroacetic acid <10ml/g and 
>90% 

NA 1.8 
 (20°C) 

('www.solvay
.us', 2019) 

1,3-dioxane <10ml/g and 
>85% 

2 1.0567 
(20°C) 

(Parks,LeBaro
n and 
Molloy, 
1941) 

formamide <10ml/g and 
>85% 

2 6.92  
(20°C) 

(Walden, 
1906) 

formicacid <10ml/g and 
>85% 

3 1.78  
(20°C) 

(Tsakalotos, 
1908) 

propyleneglycol <10ml/g and 
>85% 

2 54.62 
(20°C) 

(Detherm, 
2016) 

2-
hydroxypropanoicacidethylest
er 

<10ml/g and 
>80% 

NA 2.61 
 (20°C) 

(Rehberg and 
Dixon, 1950) 

2-methoxyethanol <10ml/g and 
>80% 

2 1.708 
(20°C) 

(Detherm, 
2016) 

dioxane <10ml/g and 
>80% 

2 1.439 
(15°C)   

(Timmerman
s and 
Hennaut-
Roland, 
1937) 

furfural <10ml/g and 
>80% 

NA 0.38  
(20°C)   

(Detherm, 
2016) 

piperidine <10ml/g and 
>80% 

NA 1.06 
 (20°C) 

(Detherm, 
2016) 

tetrahydrothiophene-1,1-
dioxide 

<10ml/g and 
>80% 

2 10.3 
(29.85°C) 

(Ponomarenk
o et al., 
1995) 

 

For both yield and process volume 2-amino-1-butanol and trifluoroacetic acid were 

the best solvents. However as class three solvents are preferred, 4-methyl-2-

pentanone and formic acid were selected as potential crystallisation solvents. 
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5.6.8 Stage 8 – Binary solvent screening 

Solubility predictions at 25°C for mole fractions of the selected crystallisation and 

wash solvents were calculated using COSMOtherm. For the final selection of 

crystallisation and wash solvents the solubility curve should not have a maxima 

(Figure 5-6) which can lead to dissolution and a reduction of yield. However, if the 

maximum was small or close to zero, the system could be considered. 

 
Figure 5-6 predicted solubility curve for paracetamol in formic acid and pentane at 25°C using COSMOtherm 
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Figure 5-7 predicted solubility curve for paracetamol in 4-methyl-2-pentanone and n-heptane at 25°C using 

COSMOtherm 

The above plot (Figure 5-7)  shows the binary plot for paracetamol in 4-methyl-2-

pentanone and n-heptane and this has a slope that decreases from 0 to 1 mole 

fraction of n-heptane which is what is required for wash solvent selection. The best 

solvents that the workflow has chosen are 4-methyl-2-pentanone for crystallisation 

and n-heptane for the wash solvent this was confirmed by solubility experimental 

data. However, this selection will not be used in the following section as no 

crystallisation screening was available for paracetamol and 4-methyl-2-pentanone. 

5.6.9 Stage 9 – Laboratory verification 

As the first choice for crystallisation solvent did not have the required crystallisation 

screening data the yield requirements were lowered and two crystallisation solvents 

with an ICH class of three were chosen; ethanol and 2-propanol (Table 5-11) 

(Thompson et al., 2004). 
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Table 5-11 Crystallisation solvent selection data for ethanol and 2-propanol 

Crystallisation 
solvent 

Process Volume at 
ml of solvent for g 
of solute and % 
recovery 
classification  

ICH class Viscosity 
(mPas) 

Ref. 

Ethanol <30ml/g and >70% 3 1.1 (Detherm, 
2016) 

2-propanol <30ml/g and >80% 3 2 (Detherm, 
2016) 

 

The binary solvent solubility curve showed no maxima which is suitable for selection 

of wash and crystallisation solvent (Figure 5-8). 

 
Figure 5-8 solubility curve for paracetamol in ethanol and n-heptane at 25°C 

Laboratory verification was carried by Sara Ottoboni and all the results are shown in 

Table 5-12 (Ottoboni, 2018). 

  

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1

So
lu

b
ili

ty
 (

g/
1

0
0

g 
o

f 
so

lv
en

t)

Mole fraction of n-heptane



195 
 

Table 5-12 residual wash and crystallisation (ethanol) solvent remaining in cake, drying time, extent of 
agglomeration 

Wash 
solvent 

Residual 
wash 
solvent (%) 

Residual 
crystallization 
solvent (%) 

Drying 
time (min) 

Extent of 
agglomeration 
(%) 

n-heptane 99.1 0.09 25 91.42 

dodecane 99.8 0.20 3500 94.59 

 

The important factors for selecting a suitable wash solvent are residual impurities 

present due to residual crystallisation solvent in the cake, drying time and 

agglomeration. The better solvent was n-heptane on all three criteria. This suggests 

the ability of the workflow to choose a suitable wash solvent and crystallisation 

solvent for paracetamol. More experimentation is needed on other wash solvents to 

confirm this. 

5.7 Conclusion 

A workflow approach using predictive methods for the selection of both 

crystallisation and wash solvents has been shown to be a powerful tool. Choosing a 

suitable wash solvent can improve impurity rejection, risk of API dissolution 

(maintaining or increasing yield) and reduce the cost of manufacturing. The 

combining of predictive methods of COSMOtherm, an ML algorithm to apply a 

“correction factor” to predicted solubility and experimental methods into a workflow 

has been shown to be effective for selecting crystallisation and wash solvent for 

paracetamol and the impurities. Although more experimental work will be required 

to confirm this. Accurate concentration and composition data of both API and 

impurities are essential. Enthalpy of fusion and melting temperature data would 

ideally be obtained from DSC experiments but literature data could be used if that 
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was unavailable. Predictive methods to obtain enthalpy of fusion and melting 

temperature can be unreliable and their use should be avoided and experimental or 

literature values used if possible. The predictions from COSMOtherm were favourably 

compared with the laboratory data that confirmed the crystallisation and wash 

solvent selection. 

The workflow was designed to give useful information and guidance to the user for 

the selection of crystallisation and wash solvent. 

In the example for paracetamol and impurities in this project it was shown that 

COSMOtherm can help with the selection of wash solvents. Applying the correction 

factor did not improve the overall accuracy of the wash solvent selection but did 

improve the absolute value of the solubility predictions. The application of the 

correction factor could improve the selection of other wash solvents for other API 

and impurities.  
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6 Conclusions and Future Work 

Obtaining predictions of molecular solubility accurately and quickly is a major focus 

of this thesis. Applying ML algorithms to improve on existing theoretical techniques 

has been shown to improve the accuracy of those predictions.  Building a linear 

regression model for solute/solvent systems using design of experiments approaches 

can increase accessibility and the speed of prediction for non-experts. There are 

several predictive methods that could be used in conjunction with ML such as 

COSMOtherm, UNIFAC, NRTL-SAC and SAFT-γ Mie. Each method has its strengths and 

weaknesses: COSMOtherm does not always give an accurate prediction and 

sometimes is unable to give a prediction at all; UNIFAC and SAFT-γ Mie relies on 

experimental data being available to parametrise functional groups and atoms; and 

NRTL-SAC needs experimental data for the conceptual segments to inform the model. 

COSMOtherm needs minimal experimental data parameterisation and usually needs 

only the molecular structure, enthalpy of fusion and melting temperature. These 

methods could complement each other and fill in gaps in the linear regression model 

described in Chapter Three as there were many solute/solvent combinations that 

COSMOtherm was unable to give a prediction for. If one of the methods was better 

at predicting the solubility of compounds with particular physical properties this 

method would be used primarily.  

Obtaining heat capacity by experimental methods for every solute has also the 

possibility of improving the predictions of COSMOtherm. The study in section 2.9 

showed its importance to improving predictions. However, values for most solutes 

were unavailable in literature. 
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Accurate measurement of enthalpy of fusion and melting temperature is essential to 

maximise the possibility of an accurate solubility prediction. Obtaining laboratory 

measurements for each compound would be ideal. As has been shown in Chapter 

Two, the predictive methods for enthalpy of fusion and melting temperature (Joback 

and Reid method, Jain and Yalkowsky method) can be inaccurate but if laboratory or 

literature data are not available for solubility predictions using a predictive method 

is the only option; although this is the weaker option for solubility predictions. Using 

a ML approach to improve the accuracy of the enthalpy of fusion and melting 

temperature predictions, similar to the approach taken to improve solubility 

predictions, is a possibility. The predictive methods would be used initially and then 

a correction factor would be applied to those predictions. The major drawback of this 

approach can be that for some solutes, there can be more than one answer for the 

response. This is because different polymorphs will have different values for enthalpy 

of fusion and melting temperature. The predictive methods do not take polymorphs 

into consideration and is a weakness of each method. However, any improvement in 

the accuracy of predictions of enthalpy of fusion and melting temperature cannot be 

dismissed and would improve solubility predictions where laboratory or literature 

data for enthalpy of fusion and melting temperature were unavailable. 

One of the most pressing problems for any ML model is the amount of data required 

to build it. Industry has a large quantity of solubility data (Qiu and Albrecht, 2018), 

enthalpy of fusion data and even some heat capacities and it would be of great 

benefit to obtain access to it as more data would potentially inform better models 

and to enable the construction of solvent cluster or solvent specific models.  Solvent 
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cluster models would include solvents with similar physical properties. Solvent 

specific models would focus exclusively on the API rather than solvent and would 

reduce the number of molecular descriptors by around a half. It is hoped these 

solvent specific models would improve on the type of models already shown in 

Chapter Four. 

There is much work that can be done in improving the ML models described in 

Chapter Four. This work concentrated on obtaining a correction factor at 25°C. 

Developing a correction factor at higher temperatures would be of tremendous value 

in obtaining more accurate solubility curves. This would require more solubility data 

at higher temperatures to build the model. Building models using descriptors from 

other applications such as Dragon instead of MOE can be compared with the models 

already constructed in this work. Molecular fingerprints could also be used instead of 

descriptors. The ML algorithm used for building the model in this project was RF but 

other algorithms such as SVM and neural networks could be used instead and 

compared with RF. It is possible that all or some of these changes could result in 

improvements in the model. 

The DoE method used in Chapter Three showed that COSMOtherm predictions can 

be accurately reproduced using linear regression models in most cases. The initial 

predictions required for building these models is fairly standardised, and so could be 

prepared as soon as enthalpy of fusion and melting temperature data becomes 

available. This is particularly important when predictions are required quickly. The 

procedure could then be implemented with a user interface connected to a database, 
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providing users with effectively instant COSMOtherm predictions where data are 

available. 

Since the outputs of the linear regression models closely mirror COSMOtherm 

predictions, the principle of applying a correction factor to COSMOtherm predictions, 

as described in Chapter Four, applies equally to these. 

As has already been stated, COSMOtherm does not always give a prediction. 

Therefore, building ML models with UNIFAC, NRTL-SAC and SAFT-γ Mie to obtain a 

correction factor instead of or in conjunction with COSMOtherm would have some 

benefit. 

Solubility data are inconsistent in their availability across a range of temperatures. 

One of the major reasons for having the ML models at 25°C was that there were more 

data points at that temperature than others. It is possible that the correction factor 

at 25°C could be scaled and applied for higher temperatures. More data points would 

be required to test this hypothesis. 

Further work would also include the construction of a correction factor for binary 

solvents. The amount of laboratory solubility data required for building this model 

would be considerably larger than the amount of data required for single solvent 

models. Each temperature has a number of data points as the binary solvents have a 

range of mole fraction ratios. The ML model will have another level of complexity 

when compared to the models already described as more descriptors will be needed 

for the extra solvent. 
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The case study for the selection of wash solvents using paracetamol as the API used 

COSMOtherm and ML to obtain a correction factor. Each solvent was classified using 

solubility predictions and according to its suitability. In this study, because 

COSMOtherm was able to classify the wash solvents with a high degree of accuracy, 

the use of ML did not improve the accuracy of the classifications but did improve the 

absolute value of solubility predictions. To further demonstrate the use of ML using 

another case study with a different API such as ibuprofen and its impurities could be 

completed. COSMOtherm has not been as accurate at predicting the solubility for 

ibuprofen as with paracetamol. This could give the ML approach an opportunity to 

apply the correction factor to the predictions and reclassify any solvents misclassified 

by COSMOtherm. 

Manufacturing is increasingly using data analytics and data driven models to inform 

future manufacturing. The methodology developed in this thesis, including the 

workflow approach to solvent selection, can optimise manufacturing protocols. This 

can reduce costs, carbon footprint and time to market. 
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7 Appendix One 

Table 7-1 Enthalpy of fusion and melting points taken from literature with references 

COSMOtherm model 

compound name 

melting point 

range °C 

Δfus range 

kJ/mol 

melting point 

°C 

Δfus kJ/mol Reference 

1-(2-

hydroxyphenyl)ethanone 

  

196-197 31.59-32.80 196 31.589 (Shiu Shiang Yang and Guillory, 

1972)  

197 32.802 (Shiu Shiang Yang and Guillory, 

1972) 

1,3-dimethylurea 

  

  

  

  

97.85-106.72 12.64-13.62 106.3 13.62 (Gmehling, 2018) 

106.72 12.64 (Zordan et al., 1972)  

97.85 12.76 (Kabo et al., 1990) 

106.25 13.6 (Ferro et al., 1987) 

106.35 13.62 (Della Gatta and Ferro, 1987) 

2-aminopyridine 

  

58.35-58.38 15.3 58.35 15.31 (Gmehling, 2018) 

58.38 15.3 (R. Sabbah and Gouali, 1996)  

2-hydroxy-1,2,3-

propanetricarboxylic acid 

153.85-156 40.32-43.48 156 43.484 (Gmehling, 2018) 

153.85 43.455 (Booth et al., 2010) 
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155.4 41.84482 (Klímová and Leitner, 2012) 

154.65 40.32 (Meltzer and Pincu, 2012) 

2-

hydroxyphenylesterbenzoic 

acid 

  

  

  

  

  

  

  

  

30-43 16.5-19.5 41.6 19.5 (Gmehling, 2018)  

43 19.28 (Dongwei Wei et al., 2009) 

30 16.5 (Moura Ramos,Correia and Diogo, 

2004) 

41 18.6 (Moura Ramos,Correia and Diogo, 

2004) 

41.9 19.2 (Lazerges et al., 2010) 

30.8 17.7 (Lazerges et al., 2010) 

39.55 18.4 (Perisanu et al., 2006) 

41.05 18.98 (Murthy,Paikaray and Arya, 1995) 

41.82 19.16 (Hanaya et al., 2002) 

3-aminobenzoic acid  

  

171.95-179.75 21.81-36.04 174.4 21.836 (Gmehling, 2018) 

  21.84048 (Andrews,Lynn and Johnston, 

1926) 
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172.55 33.7 (Rotich,Glass and Brown, 2001) 

179.75 21.84 (Acree, 1991) 

178.23 27.24 (Fredrik Nordström, 2008) 

171.95 36.04 (Fredrik Nordström, 2008) 

  21.81 (Nielsen et al., 2001) 

3-nitrobenzoic acid  

  

  

  

  

  

  

  

136.5-142.1 15.9-21.4 142.1 19.305 (Gmehling, 2018) 

  19.33 (Andrews,Lynn and Johnston, 

1926) 

141.4 19.246 (Lebedeva,Ryadnenko and 

Kuznetsova, 1971) 

139.85 21.4 (U.S. Rai and Mandal, 1990) 

141.15 19.33 (Domalski and Hearing, 1996) 

136.5 15.9 (R.K. Gupta and Singh, 2004) 

  19.28 (Nielsen et al., 2001) 

  19.3 (Dean, 1992) 

3-pyridinecarboxylic acid 

  

233.85-236.85 13.01-30 236.01 13.01 (R Sabbah and Ider, 1999) 

235.95 27.57 (S. X. Wang et al., 2004) 
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233.85 27.7 (Goncalves and Da Piedade, 2012) 

236.85 30 (Allan et al., 1989) 

236.85 26.7 (El Moussaoui,Chauvet and Masse, 

1993) 

236.76 28.2 (Joseph,Bernardes and Minas Da 

Piedade, 2012) 

234.51 27.56 (Gonçalves,Rego and Minas da 

Piedade, 2011) 

  26.7 (Nielsen et al., 2001) 

236.1 97.097 (Liu-Cheng Wang and Wang, 2004) 

4-acetamidobenzoic acid 

  

240.55-262.15 34.2-42.4 262.15 34.2 (Manin,Voronin and Perlovich, 

2014) 

240.55 42.4 (Monte et al., 2010) 

4-aminobenzoic acid 

  

  

  

186-188.5 20.9-25 186 20.934 (Gmehling, 2018)  

188.25 20.92 (Andrews,Lynn and Johnston, 

1926) 

187.3 24.016 (Ho‐Meei Lin and Nash, 1993) 

188.5 24.03 (B. Bouillot, 2011) 
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185.55 22.62 (Sandra Gracin and Rasmuson, 

2002) 

185.55 25 (Blokhina et al., 2015) 

  24.03 (Nielsen et al., 2001) 

  20.9 (Dean, 1992) 

188.25 20.92 (Jia et al., 2007) 

4-amino-phenol 

  

  

  

182.05-189.35 23.8-31.2 186.3 31.2 (Bret-Dibat and Lichanot, 1989) 

182.05 23.8 (Rotich,Glass and Brown, 2001) 

189.35 26 (R. Sabbah and Gouali, 1996) 

186.3 31.2 (Gmehling, 2018) 

4-hydroxy-3-

methoxybenzaldehyde 

  

  

  

  

79.85-82.35 16.13-24.8 81.75 21.364 (Gmehling, 2018) 

  20.9 (Lebedeva et al., 1976) 

  16.13 (Sharma,Sharma and Rambal, 

1992) 

79.85 21.35 (Grady et al., 1973) 

82.35 23.964 (Sumarokova and Nurmakova, 

1960) 
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81.12 22.62466 (Thakur et al., 2012, Sandra Gracin 

and Rasmuson, 2002) 

81.45 22.35 (Preeti Gupta et al., 2012) 

82.25 22.4 (Temprado,Roux and Chickos, 

2008) 

81.4 23.522 (Draucker et al.) 

81.6 24.8 (Jayram Singh and Singh, 2015) 

4-hydroxymethylbenzoate 

  

125.35-126.05 24.31-25.3 126.05 25.3 (Giordano et al., 1999) 

125.35 24.31 (Manzo and Ahumada, 1990) 

4-nitrophenol 

  

  

  

  

  

  

  

112.99-115.05 11-30.12   18.25 (Nielsen et al., 2001) 

  15.9 (Dean, 1992) 

112.99 18.882 (Gmehling, 2018) 

113.6 19.3 (Booss and Hauschildt, 1972) 

113.25 11 (Musuc,Razus and Oancea, 2002) 

115.05 18.25 (Domalski and Hearing, 1996) 

113.85 24.271 (Campbell and Campbell, 1941) 

113.85 18.254 (Poeti,Fanelli and Braghetti, 1982) 
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112.99 18.87 (Donnelly et al., 1990) 

112 30.118 (N. B. Singh and Kumar, 1986) 

113.9 24.309 (Nigam and Dhillon, 1970) 

114 19.22 (Kant,Rai and Rai, 2012) 

115 18.97 (Manjeet Singh et al., 2013) 

4-oh-benzoic acid 

  

  

  

  

  

  

  

  

214-216.25 29.3-32.5 216 30.9 (Gmehling, 2018) 

214.9 30.9 (Armstrong,James and Wong, 

1979) 

214 31.4 (Sandra Gracin and Rasmuson, 

2002) 

214.85 32 (Heath,Singh and Ebisuzaki, 1992) 

215.55 29.3 (German L. Perlovich,Volkova and 

Bauer‐Brandl, 2006) 

214.45 30.85 (Fredrik Nordström, 2008) 

215.8 30.85 (Fredrik L. Nordström and 

Rasmuson, 2006) 
 

30.86 (Nielsen et al., 2001) 

216.25 32.5 (Monte et al., 2010) 
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acetanilide 

  

  

  

  

  

  

  

113.75-115.8 20.11-22.1 114.3 21.653 (Gmehling, 2018) 

113.75 21.44 (Y. P. Chen,Tang and Kuo, 2005) 

114.38 21.65 (Connett, 1979) 

115.8 20.301 (Bustamante et al., 1998) 

114.17 20.112 (Mantheni et al., 2012) 

113.75 22.1 (Umnahanant and Chickos, 2012) 

115.8 20.29 (Peña et al., 2006) 

  21.65 (Nielsen et al., 2001) 

ascorbic acid 

  

190-192 19.72-37.00 192 19.723 (Gmehling, 2018) 

190 37.004 (Klímová and Leitner, 2012) 

aspirin 

  

  

  

  

  

130.85-143.12 19.10-34.34 131 34.343 (Gmehling, 2018) 

135.6 19.096 (Campanella et al., 2010) 

132.8 34.32048 ('Thermal Analysis T127: 

Application to Medical and 

Pharmaceutical Products (Melting 

Point and Fusion Heat)', 2018) 

143.12 31.874 (Kleineberg, 2009) 
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136.05 29.17 (Xu et al., 2004a) 

139.55 31.01 (German Perlovich and Bauer-

Brandl, 2001) 

135.8 32.555 (Hahnenkamp, 2008) 

141.9 25.9 (Gorniak et al., 2011) 
 

25.6 (Nielsen et al., 2001) 

135.5 33.509 (Matsuda et al., 2015) 

134.23 33.85 (Almeida et al., 2015) 

130.85 29.8 (Kirklin, 2000) 

b-d-fructofuranosyl-a-d-

glucopyranoside 

  

  

  

  

  

151.25-190.5 40.39-46.19 186 46.1867 (Gmehling, 2018) 

190 40.39141 (Roos, 1993) 

190.05 43.30096 (Diedrichs, 2005) 

186.05 42.88 (Paduszynski,Okuniewski and 

Domanska, 2013) 

151.25 43 (Magoń et al., 2014) 

184.07 45.21 (Magoń et al., 2014) 

benzoic acid 121.8-122.55 15.53-18.06 122.4 17.452 (Gmehling, 2018)  
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  17.5 (Grigor'ev et al., 1994) 

  17.3 (Sharma,Sharma and Rambal, 

1992) 

  17.317 (U.S. Rai and Mandal, 2011) 

121.25 16.99 (Brittain, 2009) 

122.25 17.1 (Roy,Riga and Alexander, 2002) 

122.55 17.1 (Kennedy and Carr, 1973) 

  17.321 (Andrews,Lynn and Johnston, 

1926) 

122.5 18.7 (Murray,Cavell and Hill, 1980) 

122.4 17.44 (David, 1964) 

122.44 18.06 (R. Sabbah and Antipine, 1987) 

121.8 15.53 (Hrynakowski and 

Smoczkiewiczowa, 1937) 

butylparaben 

  

  

67.34-68.65 15.64-26.6 67.57 24.567 (Gmehling, 2018)  

68.65 26.6 (Giordano et al., 1999) 

67.34 25.535 (Huaiyu Yang,Thati and Rasmuson, 

2012) 
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    15.64 (Nielsen et al., 2001) 

caffeine 

  

  

  

  

  

  

  

  

  

  

  

232.25-239 17.9-23.43 236 21.6 (Gmehling, 2018) 

238.85 23.4304 (Cesàro, 1980) 

238 21.12 (Shufen Li,Varadarajan and 

Hartland, 1991) 

234.85 20.98 (Grady et al., 1973) 

234.55 24.8 (Guo et al., 2010) 

237.05 21.9 (Pinto and Diogo, 2006) 

237.05 19.38 (Klous et al., 2005) 

235.15 20.95 (Weinstein,Leffler and Currie, 

1984) 

239 21.1041 (Adjei, 1980) 

235.85 19.86 (Dong et al., 2007) 

236 21.6 (Bothe and Cammenga, 1980) 

235 21.963 ('Thermal Analysis T127: 

Application to Medical and 

Pharmaceutical Products (Melting 

Point and Fusion Heat)', 2018) 
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232.25 17.9 (Manic et al., 2012) 

235.6 20.37 (Klímová and Leitner, 2012) 

carbamazepine 

  

  

  

190.71-192.59 24.55-27.41 190.71 26.33 (Liu et al., 2013) 

192.15 25.06 (Good and Naír, 2009) 

192 24.551 (Subrahmanyam and Sarasija, 

1997) 

192.59 27.41 (Kikic et al., 2010) 

chinone 

  

  

  

  

111.92-114.85 18.35-19.6 114 18.542 (Gmehling, 2018)  

  18.451 (Andrews,Lynn and Johnston, 

1926)  

111.92 18.4 (Rojas-Aguilar et al., 2004) 

112.5 18.35 (Rojas-Aguilar et al., 2004)  

114.85 18.45 (Acree, 1991) 

d-(-)fructose 

  

  

104-127 24.11-36.03 104 36.03 (Gmehling, 2018) 

127 30.446 (Roos, 1993) 

106.75 24.11 (Paduszynski,Okuniewski and 

Domanska, 2013) 
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dextrose 

  

  

150-158 32.25-34.19 150 32.422 (Gmehling, 2018)  

158 32.24828 (Roos, 1993) 

157.65 34.19 (Paduszynski,Okuniewski and 

Domanska, 2013) 

diclofenac 

  

179.85-181 39.39-40.4 181 39.388 (Pasquali,Bettini and Giordano, 

2007) 

179.45 40.4 (Surov et al., 2009)  

fenofibrate 

  

  

  

  

74-81.4 27.3-33.55 78.9 33.553 (Gmehling, 2018) 

81.4 27.3 (Gorniak et al., 2011) 

74 0.9 (Gorniak et al., 2011) 

80.55 32.4 (Zhou et al., 2002) 

78.9 33.53 (Watterson et al., 2014)  

hexanedioic acid 

  

  

  

145.85-153.4 33.7-39.7 153.4 34.851 (Gmehling, 2018) 

  39.7 (Babinkov et al., 1979, Donnelly et 

al., 1990) 

151.49 36.74 (Donnelly et al., 1990) 

152.35 34.88 (Cingolani and Berchiesi, 1974) 
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145.85 33.7 (Roux,Temprado and Chickos, 

2005) 

149.85 35.891 (Booth et al., 2010) 

153.16 35.2 (Tzu-Chi Wang,Lai and Chen, 2010) 

153.15 35.2 (T. C. Wang,Li and Chen, 2012) 

152 35.15 (Y. Li et al., 2014) 

152.35 34.852 (Mao et al., 2009) 

hydroquinone 

  

  

  

  

  

  

  

171.8-191.35 21.09-30.8 172 27.108 (Gmehling, 2018) 

172.6 27.108 (D.W. Wei,Li and Zhang, 2004) 

172.83 21.09 (R. Sabbah and Buluku, 1991) 
 

27.112 (Andrews,Lynn and Johnston, 

1926) 

171.8 26.5 (Bret-Dibat and Lichanot, 1989) 

173.55 30.8 (Naoki et al., 1999) 

191.35 24.3 (Naoki et al., 1999) 

170.55 27.2 (S. P. Verevkin, 1999) 
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171.95 27.23 (Sergey P. Verevkin and Kozlova, 

2008) 

172.3 24.618 (Fall and Luks, 1965) 

ibuprofen 

  

  

  

  

  

  

  

  

  

  

  

  

73.2-80.8 17.62-39.5 75.29 26.085 (Gmehling, 2018) 

80.8 23.681 (Lerdkanchanaporn,Dollimore and 

Evans, 2001) 

74 25.5 (S. Gracin,Brinck and Rasmuson, 

2002) 

75.2 25.04 (Xu et al., 2004b) 

77.25 39.5 (Cilurzo et al., 2010) 

73.25 26.6 (Wassvik et al., 2006) 

77.75 25.7 (Z. Jane Li et al., 1999) 

74.45 27.94 (Hong et al., 2010) 

75.21 17.623 (Graubner, 2008) 

76.65 25.119 (Kleineberg, 2009) 

74.55 27.7 (Domańska et al., 2009) 

76.44 25.07 (Baoguo Wang et al., 2012) 
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74.35 25.692 (Baptiste Bouillot,Teychené and 

Biscans, 2013) 

indomethacin 

  

  

  

  

  

  

  

  

  

  

  

153-162.05 32.91-75.4 159.85 37.656 (Grady et al., 1973) 

161.35 43.5 (Aceves‐Hernandez et al., 2009) 

162.05 36.5 (Murdande et al., 2010) 

160.85 39.99 (Basavoju,Bostrom and Velaga, 

2008, Paus et al., 2015) 

160.45 75.4 (Paus et al., 2015) 

159 36.852 (Hamdi et al., 2004) 

153 32.934 (Hamdi et al., 2004) 

156 36.137 (Hancock and Parks, 2000) 

162 36.494 (Hancock and Parks, 2000) 

159.8 37.9 (Wassvik et al., 2006) 

160.1 36.852 (Legendre and Feutelais, 2004) 

153 32.91668 (Legendre and Feutelais, 2004) 

ketoprofen 94.5-94.8 28.23-37.3 94.5 28.245 (Gmehling, 2018) 
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94.5 28.226 (Espitalier,Biscans and Laguérie, 

1995) 

94.8 37.3 (Wassvik et al., 2006) 

l-(+)tartaric acid 

  

162-171.89 34.32-36.31 171.89 36.31 (Meltzer and Pincu, 2009) 

162 34.325 (J. Li,Zhou and Huang, 1991) 

mannitol 

  

  

  

  

  

  

  

  

  

164.1-176.9 33.52-61.57 169.05 54.7265 (Gmehling, 2018)  

  59.3 (Siniti et al., 1993) 

166 53.58 (Spaght,Thomas and Parks, 1932) 

176.9 33.51983 (Arias,Moyano and Ginés, 1998) 

165.95 56.1 (Barone et al., 1990) 

169 59.3884 (Siniti,Jabrane and Létoffé, 1999) 

165 61.574 (Gombás et al., 2003) 

164.1 54.69 (Bo Tong et al., 2010) 

166.9 33.52 (Campanella et al., 2010) 

165.95 56.1 (Barone et al., 1990) 

mefenamic acid 

  

229.95-230.45 71.2-38.7 229.95 71.2 (Domańska et al., 2010) 

230.45 38.25 (Romero et al., 2004) 
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230.35 38.7 (Surov et al., 2009) 

  38.7 (Nielsen et al., 2001) 

naproxen 

  

  

  

  

  

  

155-156.32 29-32.2 155.85 31.751 (Gmehling, 2018) 

154.55 31.4 (Türk and Kraska, 2009) 

155.35 31.5 (Neau,Bhandarkar and Hellmuth, 

1997)  

155 30.11 (Kikic et al., 2010) 

153.55 29 (Saini and Murthy, 2014) 

155.6 32.2 (Wassvik et al., 2006) 

156.32 31.5 (Paus et al., 2015) 

niacinamide 

  

  

  

  

  

122.19-130.65 20.49-26.94 128.85 22.84464 (Grady et al., 1973) 

130.65 23.8 (Good and Naír, 2009)  

128.45 25.5 (Nicoli et al., 2008) 

128.85 26.94 (Negoro et al., 1960) 

129.2 26.08 (Lvova,Garber and Kozlov, 1988) 

122.19 23.4304 (Wyrzykowska-Stankiewicz and 

Szafranski, 1975) 
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 128.45 20.49 (Wu,Dang and Wei, 2014) 

128.05 23.7 (Almeida,Oliveira and Monte, 

2015) 

128.02 25.2 (Almeida,Oliveira and Monte, 

2015) 

octadecanoic acid 

  

  

  

  

  

  

  

  

  

  

  

52.95-70.95 45.23-68.44 69.35 56.5854 (Gmehling, 2018) 

  45.22904 (Lebedeva, 1964) 

69.34 61.209 (Schaake,van Miltenburg and De 

Kruif, 1982) 

67.11 57.67 (Donnelly et al., 1990) 

69.6 56.4 (Danilin et al., 2001) 

69.68 68.44 (Singleton,Ward and Dollear, 1950) 

65 58.6 (Vold, 1949) 

69.6 61.3 (Sato et al., 1990) 

65.15 60.4 (Moore et al., 2007) 

69.65 63.2 (Moreno et al., 2007) 

70.95 57.8 (Teixeira,Gonçalves Da Silva and 

Fernandes, 2006) 
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67.05 50.93 (Yu et al., 2000) 

69.35 61.21 (Domalski and Hearing, 1996) 

52.95 64.643 (Eykman, 1889) 

64 56.7 (Bruner, 1894) 

68.85 57.78 (Berchiesi,Cingolani and Leonesi, 

1974) 

orthoaminobenzoic acid 

  

  

144.1-144.65 20.38-20.66 144.6 20.659 (Gmehling, 2018) 

144.65 20.37608 (Andrews,Lynn and Johnston, 

1926)  

144.1 20.38 (Jia et al., 2007)  

paracetamol 

  

  

  

  

  

156.4-172.45 26.25-28.15 168.05 27.619 (Gmehling, 2018) 

170.45 27.1 (R. A. Granberg and Rasmuson, 

1999) 

168.6 28.1 (Sacchetti, 2001) 

156.4 27.6 (Sacchetti, 2001) 

170.05 27.6 (Mota et al., 2009) 

167.15 27 (S. Vecchio and Tomassetti, 2009) 
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168.75 26.49 (Xu et al., 2006) 

169.13 26.25 (Bustamante,Romero and Reillo, 

1995) 

169.7 27.708 (Bustamante,Romero and Reillo, 

1995) 

172.45 27 (Kleineberg, 2009) 

168.55 27 (Neau,Bhandarkar and Hellmuth, 

1997) 

168.05 26.024 (Manzo and Ahumada, 1990) 

168.72 28.151 (Graubner, 2008) 

169.03 27.852 (Kleineberg, 2009) 

phenacetin 

  

  

  

  

  

133.5-137.05 21.4-32.45 135 31.275 (Gmehling, 2018) 

133.85 32.45 (E.E. Marti, 1972) 

133.5 24.51 (Hrynakowski and 

Smoczkiewiczowa, 1937) 

136.45 30 (S. Vecchio and Tomassetti, 2009) 

135.15 28.75 (Peña et al., 2009) 

134.25 34.1 (Wassvik et al., 2008) 
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137.05 21.4 (Stefano Vecchio et al., 2004) 

134.05 31.254 (Manzo and Ahumada, 1990) 

134.7 31.4529 (Thakur et al., 2012) 

phthalic acid 

  

  

  

190.3-210 36.5-52.3 210 52.2994 (Gmehling, 2018) 

190.3 36.5 (R Sabbah and Perez, 1999) 
 

52.3 (Dean, 1992) 

193.85 52.3 ('Thermophysical data', 1936) 

piroxicam 

  

  

  

  

  

199.8-202.1 34.13-36.3 202.1 35.52 (Bustamante,Peña and Barra, 

1998) 

199.8 35.52 (Bustamante,Peña and Barra, 

1998) 

200 34.129 (Grandelli et al., 2012) 

200.55 35.85 (Sotomayor et al., 2012) 

200.75 35 (Drebushchak et al., 2006) 

  34.54 (Nielsen et al., 2001) 

200.3 36.3 (Wassvik et al., 2006)  

propylparaben 96.05-96.15 16.85-28.01 96.05 28.01 (Gmehling, 2018) 
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96.15 27.2 (Giordano et al., 1999) 

96.05 27.99 (Manzo and Ahumada, 1990) 

  16.85 (Nielsen et al., 2001) 

saccharin 

  

  

  

225.85-229.75 26.77-32.1 225.85 27.41 (Grady et al., 1973) 

229.75 32.1 (Good and Naír, 2009) 

229.55 26.77 (Basavoju,Bostrom and Velaga, 

2008) 

227.59 29.89 (Matos et al., 2005) 

salicylic acid 

  

  

  

  

  

  

  

158.15-160.95 12.84-28.8 158.85 23.205 (Gmehling, 2018) 

  18.2 (Raphaël Sabbah and Le, 1993, 

Baptiste Bouillot,Teychené and 

Biscans, 2013) 

158.95 26.1 (Pinto,Diogo and Minas Da 

Piedade, 2003) 

158.05 28.8 (German L. Perlovich,Volkova and 

Bauer‐Brandl, 2006) 

160.95 27.1 (Good and Naír, 2009) 

159.35 23.05 (Peña et al., 2009) 
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158.15 24.448 (Mota et al., 2008) 

158.65 24.6 (Lim et al., 2013) 

160.3 12.845 (Campanella et al., 2010) 

158.25 25.269 (Baptiste Bouillot,Teychené and 

Biscans, 2013) 

  23.52 (Meltzer and Pincu, 2009) 

159.3 23.05 (Peña et al., 2006) 

sorbitol 

  

  

  

  

  

  

  

  

93.35-106 28.05-39.53   31.6 (Siniti,Jabrane and Létoffé, 1999) 

99 28.054 (Roos, 1993) 

95 35 (Talja and Roos, 2001) 

100.7 35.705 (Nakada et al., 2006) 

93.35 30.2 (Barone et al., 1990) 

96.8 39.531 (Gombás et al., 2003) 

106 32.4269 (Nakada et al., 2006) 

96.05 30.35 (B. Tong et al., 2008) 

97.05 30.5 (Paduszyński,Okuniewski and 

Domańska, 2015) 



226 
 

  101.65 31.6 (Siniti et al., 1993) 

succinic acid 

  

  

  

  

  

  

181.85-188 31.26-53.1 188 32.946 (Gmehling, 2018) 

183.85 32.97 (Cingolani and Berchiesi, 1974) 

181.85 34 (Roux,Temprado and Chickos, 

2005) 

184.85 31.259 (Booth et al., 2010) 

185.5 32.72 (Y. Li et al., 2014) 
 

53.1 (Nielsen et al., 2001) 

184.85 34.46 (Khetarpal,Lal and Bhatnagar, 

1980) 

sulfacetamide 

  

  

  

182-183 22.38-29.8 182 29.76 (Fleming Martínez and Gómez, 

2002) 

182 29.8 (F. Martínez,Ávila and Gómez, 

2003) 

182 29.76 (F. Martínez and Gómez, 2001) 

183 22.384 (Shiu Shiang Yang and Guillory, 

1972) 
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sulfaguanidine 

  

  

  

  

191-192 21.12-25.94 191 24.83 (Shiu Shiang Yang and Guillory, 

1972) 

191 22.384 (Shiu Shiang Yang and Guillory, 

1972) 

191 25.94 (Shiu Shiang Yang and Guillory, 

1972) 

191 21.13 (Shiu Shiang Yang and Guillory, 

1972) 

192 23.597 (Shiu Shiang Yang and Guillory, 

1972, Basavoju,Bostrom and 

Velaga, 2008) 

sulfathiazole 

  

  

  

  

  

  

171.8-201.5 0.163-33.31 200.95 28.909 (Gmehling, 2018) 

200.15 28.89 (E. Marti, 1988) 

172.65 33.31 (E. Marti, 1988) 

195.15 23.92 (E. Marti, 1988) 

199.8 30.25 (Fleming Martínez and Gómez, 

2002) 

199.8 30.3 (F. Martínez,Ávila and Gómez, 

2003) 
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201.5 26.13745 (Sunwoo and Eisen, 1971) 

198.7 25.543 (Martin,Wu and Velasquez, 1985) 

171.8 0.1629 (Khattab, 1983) 

197.2 24.1 (Khattab, 1983) 

theophylline 

  

  

  

  

  

  

  

  

  

269.7-277.4 28.72-36.24 277.4 36.2494 (Franceschi et al., 2008) 

276.37 30.664 (Franceschi et al., 2008) 

274.5 29.69385 (Adjei, 1980) 

270.8 30.4481 (Szterner,Legendre and Sghaier, 

2010) 

269.7 28.71851 (Szterner,Legendre and Sghaier, 

2010) 

270.7 30.1058 (Szterner,Legendre and Sghaier, 

2010) 

274.7 28.01586 (Szterner,Legendre and Sghaier, 

2010) 

271.31 29.034 (Hahnenkamp, 2008) 

271.51 31.824 (Liu et al., 2013) 

274.5 29.5235 (Ho‐Meei Lin and Nash, 1993) 
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urea 

  

  

  

  

  

  

  

  

  

  

  

  

132.7-134.85 12.93-15.03 132.7 14.79 (Gmehling, 2018) 

134.75 15.03 (Ferloni and Gatta, 1995) 

  13.9 (Kozyro,Dalidovich and Krasulin, 

1986) 

133.1 13.61 (Zordan et al., 1972) 

134.05 14.6 (U.S. Rai and Rai, 1999) 

132.05 13.6 (Jamróz et al., 1998) 

133.55 14.6 (U. Rai and Rai, 1998) 

134.85 12.93 (Kabo et al., 1990) 

132.65 13.61 (Vogel and Schuberth, 1980) 

133.35 14.79 (Della Gatta and Ferro, 1987)  

132.7 14.518 (Miller and Dittmar, 1934)  

132.65 13.9 (Qin et al., 2010) 

134.5 14.8 (Reddi et al., 2011) 

 

 

  



230 
 

8 Appendix Two 

 
Figure 8-1 predicted solubility curve for paracetamol in 1,3-dioxane and cyclohexane at 25°C using COSMOtherm 

 
Figure 8-2 predicted solubility curve for paracetamol in 1,3-dioxane and cyclopentane at 25°C using COSMOtherm 
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Figure 8-3 predicted solubility curve for paracetamol in 1,3-dioxane and n-heptane at 25°C using COSMOtherm 

 
Figure 8-4 predicted solubility curve for paracetamol in 1,3-dioxane and pentane at 25°C using COSMOtherm 
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Figure 8-5 predicted solubility curve for paracetamol in 2-methoxyethanol and cyclohexane at 25°C using COSMOtherm 

 
Figure 8-6 predicted solubility curve for paracetamol in 2-methoxyethanol and cyclopentane at 25°C using COSMOtherm 
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Figure 8-7 predicted solubility curve for paracetamol in 2-methoxyethanol and n-heptane at 25°C using COSMOtherm 

 
Figure 8-8 predicted solubility curve for paracetamol in 2-methoxyethanol and pentane at 25°C using COSMOtherm 
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Figure 8-9 predicted solubility curve for paracetamol in 2-propanol and cyclohexane at 25°C using COSMOtherm 

 
Figure 8-10 predicted solubility curve for paracetamol in 2-propanol and cyclopentane at 25°C using COSMOtherm 
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Figure 8-11 predicted solubility curve for paracetamol in 2-propanol and n-heptane at 25°C using COSMOtherm 

 
Figure 8-12 predicted solubility curve for paracetamol in 2-propanol and pentane at 25°C using COSMOtherm 

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1

So
lu

b
ili

ty
 (

g/
1

0
0

g 
o

f 
so

lv
en

t)

Mole fraction of n-heptane

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1

So
lu

b
ili

ty
 (

g/
1

0
0

g 
o

f 
so

lv
e

n
t)

Mole fraction of pentane



236 
 

 
Figure 8-13 predicted solubility curve for paracetamol in 4-methyl-2-pentanone and cyclohexane at 25°C using 

COSMOtherm 

 
Figure 8-14 predicted solubility curve for paracetamol in 4-methyl-2-pentanone and cyclopentane at 25°C using 

COSMOtherm 
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Figure 8-15 predicted solubility curve for paracetamol in 4-methyl-2-pentanone and pentane at 25°C using COSMOtherm 

 
Figure 8-16 predicted solubility curve for paracetamol in acetonitrile and cyclohexane at 25°C using COSMOtherm 
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Figure 8-17 predicted solubility curve for paracetamol in acetonitrile and cyclopentane at 25°C using COSMOtherm 

 
Figure 8-18 predicted solubility curve for paracetamol in acetonitrile and n-heptane at 25°C using COSMOtherm 
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Figure 8-19 predicted solubility curve for paracetamol in acetonitrile and pentane at 25°C using COSMOtherm 

 
Figure 8-20 predicted solubility curve for paracetamol in dioxane and cyclohexane at 25°C using COSMOtherm 
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Figure 8-21 predicted solubility curve for paracetamol dioxane and cyclopentane at 25°C using COSMOtherm 

 
Figure 8-22 predicted solubility curve for paracetamol dioxane and n-heptane at 25°C using COSMOtherm 
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Figure 8-23 predicted solubility curve for paracetamol dioxane and pentane at 25°C using COSMOtherm 

 
Figure 8-24 predicted solubility curve for paracetamol ethanol and cyclohexane at 25°C using COSMOtherm 
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Figure 8-25 predicted solubility curve for paracetamol ethanol and cyclopentane at 25°C using COSMOtherm 

 
Figure 8-26 predicted solubility curve for paracetamol ethanol and n-heptane at 25°C using COSMOtherm 
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Figure 8-27 predicted solubility curve for paracetamol ethanol and pentane at 25°C using COSMOtherm 

 
Figure 8-28 predicted solubility curve for paracetamol formic acid and cyclohexane at 25°C using COSMOtherm 
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Figure 8-29 predicted solubility curve for paracetamol formic acid and cyclopentane at 25°C using COSMOtherm 

 
Figure 8-30 predicted solubility curve for paracetamol formic acid and n-heptane at 25°C using COSMOtherm 
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9 Appendix Three 

Table 9-1 Scripts available for download 

Name of Script Description of Script 

input_file_only start COSMOtherm in command line 
using only input file  

1_solubility_curve Produces data points for a solubility 
curve  

2_linear_regression_model_doe Produces nine points for 
solute/solvent combinations 
changing the enthalpy of fusion, 
temperature and melting 
temperature for linear regression 

3_solvent_screen Solvent screen for solutes  

4_solute_binary_solvent Produces data points for binary 
solvent system  

5_ternary_phase_diagram Produces data points for ternary 
phase diagram: one solute and two 
solvents 

6_solid_liquid_extraction produces data points two solutes one 
solvents 

7_miscibility_solvent_anti_solvents Miscibility calculated using number 
of moles 

8_salt_solubility_curve Produces data points for salt 
solubility curve 

9_salt_solvent_screen Solvent screens for salts 

10_DHfus_Melttemp_change_solubility_automati
on 

Produces data points by changing 
enthalpy of fusion and melting 
temperature across a range 

11_liquid-liquid_equilibrium_ternary Produces data points for a ternary 
solvent system 

12_DHfus_Melttemp_extremes Produces data points by changing 
enthalpy of fusion and melting 
temperature across a range 

13_Job_queuer Multiple jobs can be queued at one 
time for solubility curves 

13_solubility_list Produces COSMOtherm data points 
specified in the job-queuer 

14_new_entity_model_generator Produces data points for one 
solute/solvent for linear regression 

15_two_solute_two_solvents Produces data points for two solutes 
and two solvents 

16_miscibility_mole_fraction Automated miscibility using mole 
fraction instead of number of moles 

17_ternary_solvents_miscibility Produces data points for ternary 
solvents at specific mole fraction 
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18_project_pure_solvents Produces single solubility points for a 
specific temperature and 
solute/solvent combination 

19_project_pure_solvents_cp_heat Produces solubility points using heat 
capacity estimate 

__init__ Informs the main scripts where to 
find functions and variables 

functions Script containing functions called by 
main scripts 

lists Contains lists of data required by 
main scripts 

paths Contains file addresses  required by 
main scripts 

3_wash solvent_selector Produces solubility data for API and 
Impurities showing differences in 
solubility for crystallisation and wash 
solvent selection 

3_wash solvent_summary Produces tables for the selection of 
wash solvent 

1_Table_Grapher Produces solubility curve graphs 

1_VantHoff_Grapher Produces Van't Hoff solubility graphs 

2_linear_regression_model_doe_tabulator Produces an excel file for results of 
linear regression modelling of 
COSMOtherm 

2_linear_regression_model_doe_txt_file_creator Produces a text file for results of 
linear regression modelling of 
COSMOtherm 

3_solvent_screen_ranker Produces a graph for the solvent 
screen of a solute 

4_solute_binary_solvent_writer Produces a table for a solvent binary 
system with solute 

5_ternary_reader_for_origin Produces an excel sheet for use in 
ORIGIN 

6_solid_liquid_extraction_tabler_grapher Produces table and a graph for 
solute/solvent solid/liquid extraction  

7_miscibility_reader Produces a table of solvent miscibility 

8_Salt_Solubility_Table_Grapher Produces table and a graph of salt 
solubility curves 

9_salt_solvent_screen_ranker Produces a table and graph for salt 
solvent screens 

10_Table_Grapher_for_DHfus_changer Produces a table and a graph for 
solubility points that have different 
enthalpy of fusion and melting 
temperatures 

11_LLE-equilibrium_ternary_reader_for_origin Produces an excel sheet for use in 
ORIGIN 
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12_Table_Grapher_for_DHfus_range Produces a table and a graph for 
solubility points that have different 
enthalpy of fusion and melting 
temperatures 

13_grapher_and_error_assessment Produces a table and graph for 
solubility points and compare with 
experimental solubility points 

17_miscibility_ternary_reader Produces miscibility table for three 
solvents 

18_reader_pure_solvents Produces a table and graph for 
solubility points and compare with 
experimental solubility points 

dripfeed_analysis Analysis of the drip-feed model 

remove_by_solute_g_100g_error solute-Fold model machine learning 
for error prediction using g/100g as 
units 

remove_by_solute_g_100g_solubility_prediction_
only 

solute-Fold model machine learning 
for solubility prediction using g/100g 
as units 

remove_by_solute_log_error solute-Fold model machine learning 
for error prediction using log g/100g 
as units 

remove_by_solute_log_solubility_prediction_only solute-Fold model machine learning 
for solubility prediction using log  
g/100g as units 

RF_kfoldcv_g_100g_error k-Fold model machine learning for 
error prediction using g/100g as units 

RF_kfoldcv_g_100g_solubility_prediction k-Fold model machine learning for 
solubility prediction using g/100g as 
units 

RF_kfoldcv_log_error k-Fold model machine learning for 
error prediction using log g/100g as 
units 

RF_kfoldcv_log_solubility_prediction k-Fold model machine learning for 
solubility prediction using log g/100g 
as units 

dripfeed_RF_loop drip-feed model script 
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