
Solving Crew Scheduling Problem in

Offshore Supply Vessels:

Heuristics and Decomposition Methods

Thesis for the degree of Doctor of Philosophy

Seda Sucu

Department of Management Science, University of Strathclyde

January 4, 2018

This thesis is the result of the author’s original research. It has been composed by

the author and has not been previously submitted for examination which has led to

the award of a degree.

This dissertation is submitted to The University of Strathclyde, in accordance with

the requirements for the degree of Doctor of Philosophy in the Strathclyde Business

School. Parts of this dissertation are the results of collaboration with Dr Alexander

Leggate, Dr Kerem Akartunali and Dr Robert Van Der Meer. I declare that I have

made a substantial contribution to this work and this dissertation is composed by

myself. This dissertation has not been submitted to any other university or higher

education institution, or for any other academic award in this university. Where use

has been made of other people’s work, it has been fully acknowledged and referenced.

The papers contained in this dissertation, or upon which this dissertation is based,

have either been published in, or been submitted for publication to, as indicated,

at reviewed journals or conferences. The papers have not been edited except to fix

typographical or spelling errors and to update references. They have, however, been

reformatted for this dissertation and thus floating objects, such as figures and tables,

may have moved about with respect to their surrounding text.

• Paper I A. Leggate, Sucu, S., Akartunalı, K., Van Der Meer, R., Modelling

Crew Scheduling in Off-Shore Supply Vessels, Journal of the Operational Re-

search Society, doi:10.1080/01605682.2017.1390531.

• Paper II S. Sucu, Leggate, A., Akartunalı, K., Van Der Meer, R., Model-

ing Uncertainty in Vessel Crew Scheduling, Proceedings of the 7th Multidis-

ciplinary International Conference on Scheduling: Theory and Applications,

MISTA 2015, pages 805-808, Prague, Czech Republic, 2015.

I will provide more details concerning joint work. In Section 4.1 (Paper I), Dr

Leggate proposed the original idea of modelling, I extended the computational study

and analysis. In Section 4.2.2, the motivation comes from Dr Leggate, who first

suggested to consider the Time Windows model. We revised together the math-

ematical model and heuristics in Section 4.3. I implemented the related software

and computational study for the heuristic on my own. I have written the extended

abstract (Paper II). The Chapter 5 and 6 is based on solely my effort. In particular

modification of the problem structure was suggested by me. I also identified the

motivation problems and I implemented the software for running the experiments.

Signed: Seda Sucu

Date: October, 2017

Abstract

For the efficient utilisation of resources in various transportation settings, scheduling

is a significant area of research. Having crew as the main resource for operation

maintenance, scheduling crew have been a powerful decision making tool for optimi-

sation studies. This research provides a detailed real case study analysis regarding

the difficulties in planning crew in maritime industry. As a special case study, this

thesis researches crew scheduling in offshore supply vessels which are used for specific

operations of a global scaled company in oil and gas industry deeply with modified

formulations, heuristics and decomposition methods.

An extended version of computational study for a simple formulation approach

(Task Based Model) is applied as deeper analysis to Leggate (2016). Afterwards,

more realistic approach to the same problem is revised. Following the revision, a

customized and thorough computational study on the heuristic method with various

settings is designed and implemented in C++.

After elaborated analysis completed on the suggested models firstly, a modifica-

tion on Time Windows model is presented to increase the efficacy. This modification

provides a sharp decrease in upper bounds within a short time compared to the pre-

viously suggested models. Through this suggestion, more economic schedules within

a short period of time are generated.

Achieving high performances from the modified model, an application of a de-

composition algorithm is provided. We implemented a hybrid solution of Benders

Decomposition with a customized heuristic for the modified model. Although this

hybrid solution does not provide high quality solutions, it evaluates the performance

of possible decomposed models with potential improvements for future research.

An introduction to robust crew scheduling in maritime context is also given with a

description of resources of uncertainty in this concept and initial robust formulations

are suggested.

To my family...

1

Acknowledgements

I would first of all like to acknowledge and thank my supervisors Kerem Akartunali

and Robert Van Der Meer whose comments helped to improve the content and

presentation of my thesis. I am grateful to Kerem for his support and motivation

throughout my Ph.D. study and for his guidance in this study and academic life.

I would like to express my gratitude to my reviewers Roberto Rossi and Ashwin

Arulselwan for kindly accepting to be examiners of the examining committee, and

for providing valuable feedback.

I would like to thank Ioannis Fragkos for fruitful discussion. I would also like

to acknowledge my friends for making my experience in PhD joyful. I would like to

thank to my family, who were there throughout it all.

This PhD was possible only through a PhD scholarship offered by the Univer-

sity of Strathclyde, which is also generously part-funded by the Air Force Office

of Scientific Research, Air Force Material Command, USAF, under grant number

FA9550-14-1-0203. The U.S. Government is authorized to reproduce and distribute

reprints for Governmental purpose notwithstanding any copyright notation thereon.

2

Contents

1 Introduction 6

1.1 Offshore Supply Vessels . 9

1.2 Impact of Crew Scheduling on Offshore Supply Vessels 10

1.3 Research Motivation and Main Contributions 11

1.4 Thesis Plan . 13

2 Literature Review 15

2.1 Crew Scheduling . 15

2.1.1 Airline Crew Scheduling . 17

2.1.2 Crew Scheduling In Other Transportation Settings 20

2.1.3 Crew Scheduling Problem with Recovery 21

2.1.4 Crew Scheduling in Maritime Industry 23

2.2 Robust Optimisation . 25

2.2.1 Robust Optimisation in General Frame 26

2.2.2 Robust Optimisation in Offshore Context 27

2.2.3 Robust Optimisation in Crew Scheduling 28

2.3 Existing Solution Methods . 32

2.3.1 Mixed Integer Linear Programming 33

2.3.2 Bender’s Decomposition . 35

2.3.3 Heuristics . 38

2.4 Research Methods and Philosophy . 41

2.5 Summary for Literature . 45

3 Problem Description 46

3.1 Vessel Crew Scheduling in Offshore Supply Vessels 46

3.2 Decision Making Process in the Company 48

3

4 Formulations and Heuristics 51

4.1 A Task Based Approximation . 51

4.1.1 Extending Task Based Model to a Recovery-type Formulation 55

4.1.2 Design of Computational Study of Task Based Method 56

4.1.3 Summary of Findings from Task Based Model 63

4.2 A Basic Scheduling Formulation: Time Windows Model 64

4.2.1 Recovery Formulation of Time Windows Model 71

4.2.2 Computational Analysis of Time Windows Model 75

4.2.3 Summary of Findings from Time Windows Model 79

4.3 Heuristic Solution Method . 79

4.3.1 Different Settings of Heuristic Algorithm Test 83

4.3.2 Computational Results . 85

4.3.3 Summary of Findings from Heuristic Method 90

5 Benders Decomposition for VCS in OSVs 92

5.1 Application of BD on Recovery Formulation 92

5.2 Simplification of the Recovery Form 99

5.3 Combinatorial Cuts . 104

5.4 Modern Benders Application with Lazy Constraint Callbacks 106

5.5 Pareto Optimality Cuts . 109

5.6 Using Heuristics in Benders Decomposition Algorithm 111

5.7 Implementation of Benders Decomposition 112

5.8 Computational Study for Benders Decomposition with Mixed Tech-

niques . 113

5.8.1 Computational Results of Classical BD 115

5.8.2 Computational Results of Modern BD 117

5.9 Summary of Findings from Benders Decompositions 118

6 Robust Counterpart for VCS in OSVs 120

6.1 Formulation of Robustness . 122

7 Conclusions and Future Research 127

7.1 Research Findings . 127

7.2 Research Limitations . 131

7.3 Future Research . 132

4

A Heuristic Analysis 142

B Code 145

B.1 Benders Decomposition Algorithm . 145

B.1.1 First Trial Benders Decomposition 145

B.1.2 Modified Recovery Model . 198

B.1.3 Classical Benders Decomposition Algorithm 209

B.1.4 Modern Benders Decomposition Algorithm 266

B.2 Robust Formulations . 412

B.2.1 Robust Formulation Against Uncertainty of Crew Availability 412

B.2.2 Robust Formulation Against Uncertainty of Crew Availability

and Demand . 420

B.2.3 Robust Formulation with Cost Uncertainty 429

5

Chapter 1

Introduction

Scheduling is a field that concerns the careful assignment of limited resources to the

most deserving jobs and activities in order to reach the highest efficiency in terms of

these limited resources. These resources can be time, money, labours etc.The basic

areas that use scheduling methods to increase the efficiency and assign limited re-

sources to get optimal productivity are manufacturing systems, services, information

technologies, hospitals, and transportation systems. The application of scheduling

problems show differences in terms of our objectives and resource limitations. Apart

from the different sources of limitations, the main target of scheduling may show

variations. The objective functions for scheduling problems change according to

what we schedule and for which system we need schedules. They can vary in terms

of the resources, constraints and the field of scheduling. It can be maximising the

throughput in a manufacturing system, minimising the completion times of pro-

duction, minimising the delay times of the vehicle in a transportation system or

minimising production and staff costs. Even in some studies, the problem does not

hold any objective function at all, the objective becomes finding a feasible schedule

that meets the constraints of the system.

To increase productivity, efficient utilisation of manpower is one of the main

concerns of organizations. Solution methods for these problems often need large

solution times to reach optimality, especially in large sized real life problems. Due

to the importance of staff (crew) scheduling and complexity of these problems, staff

scheduling has a remarkable place in the literature of scheduling problems (Cai and

Li, 2000).

This thesis aims to find solution methods for cost minimisation problem based on

6

the changes in scheduling of vessel crews and quantify the effect of various problem

parameters with a computational study. To improve the existing solution methods

which are addressed in Leggate (2016), following the thorough literature review in

the area, various optimisation tools are employed. The centre of this research is

grounded in staff scheduling which is an important field of optimisation.

In this study, the main concern is minimising cost in a special type of vessels

based on the changes and drawbacks of schedules depending on the crew in these

vessels. This objective directs this research to the crew scheduling problems. In crew

scheduling, it is aimed to obtain work timetables (schedules) for an organization to

meet the demands of the required number of staff with eligibility the same time

considering the regulations and rules in this organization, (Ernst et al., 2004b).

Crew scheduling problems have been studied in a variety of contexts within the field

of transportation and logistics. Numerous formulations have been proposed to solve

the problem under various sets of rules and with a number of differing objectives.

Many various solution methods have been proposed, ranging from numerous exact

solution methods to approximation algorithms and heuristics, (Ernst et al., 2004a,b).

However, all these cases display a number of similarities common to crew scheduling

problems in any given setting.

The basic input of the most crew scheduling problems is set of crew and the set of

tasks that should be carried out according to the definition of tasks and skill level of

employees. The common features of these problems can be stated like that the tasks

should be completed in a defined time window, in an actual task station by taking into

consideration the legal and contractual requirements, as well as physical constraints

imposed by the geographical and temporal aspects of the tasks through the actual

objective function. According to these characteristics, the solution methods search

for the best allocation of staffs in general.

The discussion why the crew scheduling problems are important for this study

begins with the huge effect of crew costs on the transportation industry. As the

nature of enhancing the capability of current systems in a company, lowering the

costs as much as possible is the proper action to take. In this sense, even small

savings in the crew schedules can have an important effect on the actual cost.

Apart from the important effect of the crew costs, crew scheduling problems are

inherently intractable problems and they have gained importance because of this

feature. To obtain an optimal solution with a solver in a reasonable time is not

generally possible for the actual size of these problems. This characteristic increases

7

the complexity level of this kind of problems. The studies on employee assignment

with deciding the work and rest period with various settings are known as NP-Hard

and NP-complete problem (Di Gaspero et al., 2007; Kyngäs et al., 2012). Reaching

the optimal solution takes a long time since most of the decision variables are binary

in these problems. This situation can be challenging for the companies, especially

which need to obtain schedules in a definite time interval. If the company can not

reach the optimal solution in a required time, then the quality of the solution may

decrease. It means there is a trade off between time and the quality of solutions

for the NP-Hard problems which can not be solved optimally in polynomial time

(Garey and Johnson, 2002). Due to this trade off, these problems are extensively

studied in the optimisation community. There are so many studies for developing

new solution methods apart from classical mixed integer programming which can

find better solutions in shorter time.

Even though the crew scheduling problems in the transportation industry have a

significant place in literature, the most popular type among all other transportation

settings is the airline crew scheduling. However, there have also been spectacular

publications in the context of train and bus crew scheduling (reviews by (Ernst

et al., 2004a), (Ernst et al., 2004b) and more recently (Van den Bergh et al., 2013)

discuss a variety of application areas). This case is not valid for vessel crew scheduling

problems. There are several reasons to explain the lack of studies for crew scheduling

problems in vessels. These reasons can be listed as long planning time horizons in

the maritime context, lower visibility of shipping industry compared to the rail, road

and air, and the higher level of uncertainty and the requirements of more recovery

schedules (Christiansen et al., 2007).

Another key point about this research is to consider the vessel crew scheduling

problem with robustness. Robust optimisation seeks a solution under uncertainty.

Data in our problem is also subject to uncertainty in a certain extent such as crew

availability, demand changes and cost fluctuations.

In this study, since the crew is the main subject, the uncertainty is inevitable. In-

tuitively, people (crew) are the most important factor that affects the cost. This fact

prevents having deterministic parameters. Due to the fact that human behaviour

cannot be known exactly all the time, some non-deterministic perceptions are needed

for drawing results as near to the reality as possible.Moreover, there may be envi-

ronmental factors, primarily the weather conditions, that can lead to distortion. In

addition to such factors on the supply side, uncertainties in demand may also cause

8

disruption in crew planning. For example, financial environment of vessel companies

and related industries such as oil and gas or offshore energy might lead to variation

in the cost of the crew.

Accordingly, rescheduling the crew is mostly necessary to decrease the harm of

disruptions. Known as the crew recovery problem, this is a natural extension of the

crew scheduling problem and is also subject to a great amount of discussion in the

literature. It is often critical that solutions are produced in real-time, and so there

is an interest in innovations that will make the problem easier to solve, for example,

techniques to reduce the size of the rescheduling problem as used by Rezanova and

Ryan (2010).

In Section 1.1, the introduction of Offshore Supply Vessel concept will be dis-

cussed to provide a deeper understanding of the possible sources regarding the issues

related to the current concept. After explaining the reasons related to the crew

scheduling in this context, the outline of thesis follows.

1.1 Offshore Supply Vessels

There are several modes of operations in sea transportation, which can be grouped

into three categories of Liner, Tramp and Industrial shipping (Christiansen et al.,

2013). We note another category not suitable for this classification is the Offshore

Supply (or Service) Vessel (OSV). The operations carried on offshore supply vessels

are mostly in the interest of oil companies (Barret, 2005). In other words, while

providing equipment to the construction teams located in the oceans, offshore vessels

also help companies in oil exploration and drilling. In addition, offshore vessels

can provide the transportation and relocation of crewing personnel to and from the

operational locations in the high seas when it is necessary.

In addition to the oil and gas industry, an important area which requires the

OSVs for operation maintenance is Offshore wind farms that recently broaden their

sites offshore in deeper water especially in Europe, (Barlow et al., 2017).

Offshore vessels can be mainly classified into four main categories: Offshore sup-

port vessels, offshore production vessels, construction vessels and oil exploration,

drilling vessels (Chopra, 2017). Among these four, offshore support vessels are the

ones we focus on in our study. Offshore support vessels are the ones which supply

the necessary manpower and technical support in order to let companies have unin-

9

terrupted operational processes in the high seas. Offshore supply vessels’ main duty

is to transport the necessary structural elements to the specific sectors in high seas

as well as giving assistance to supply freight. These vessels can be built to supply

the operational demands of the companies. In terms of their capabilities, these ships

generally carry different types of common and speciality tools on their decks and

most of them have a mixture of bulk and deck cargo under their deck.

As a result of the significant growth of the offshore oil and gas industries, a

huge demand for offshore support vessels (OSV) exists to carry out the various

operations. Oil companies usually charter offshore supply vessels rather than buying

them. Hence, there is a need for logistics planning for the use of these vessels (Aas

et al., 2009). In Section 1.2, we elaborate the importance of crew scheduling in the

OSVs.

1.2 Impact of Crew Scheduling on Offshore Sup-

ply Vessels

Logistic planning of Offshore Supply Vessels has a highly complex structure due to

the complexity of offshore operations, long planning horizons and high uncertainty

in related sectors which require offshore maintenance operations. The problems

related to this kind of logistic planning are known as vehicle routing problem in the

literature. Despite the necessity and importance of planning OSVs, there are not

enough number of studies dealing with this kind of problems in maritime settings by

using optimisation and simulation methods as it is used in general.

Most of the studies in OSV planning are related to the optimisation of fleet

assignment, fleet design and ship routing. To the best of our knowledge, there is no

study on crew scheduling as a part of logistic planning in OSVs.

The crew cost for this transportation cost problem depends on different variables.

When we investigate the crew cost in the maritime industry particularly, it can be

seen that there are so many variables that affect crew costs such as salary of the crew,

house and feed expenses as well as transportation cost of them. Transportation cost

includes the travel expenses from a gateway city near crew members’ home to the

departure port of the ship, airfare, visa expenses, hotel, meals, and crew return

expenses after their duty. Accordingly, the crew cost has a comparatively significant

effect on the shipping companies and leading even 2− 3% decrease with better crew

10

planning saves hundreds of thousands of dollars for global companies (Giachetti et al.,

2013).

Apart from the importance of the crew costs, completing the required operation

on time by the workers with the sufficient skill level has high importance for the

maintenance as well. Hence, the companies carry on offshore operations, have large

scale business and require more complex planning, to implement feasible schedules

is not a simple job.

Crew scheduling problems are inherently intractable and this feature makes them

attractive as optimisation problems. To obtain an optimal solution with a solver in

a reasonable time is not generally possible for problems of a realistic size. Most

of the crew scheduling problems are known to be NP-Hard problems; as the size

of the problem becomes larger, the complexity level of this kind of problems also

increases. Even though crew scheduling problems in the transportation industry have

a significant place in the scheduling literature, maritime crew scheduling problems

are not as popular as airline settings. There are several reasons to explain the lack

of studies for crew scheduling problems in vessels. These reasons can be explained

by the long planning time horizons in the maritime context, low visibility of the

shipping industry compared to rail, road and airline setting.

1.3 Research Motivation and Main Contributions

As the significant impact of crew scheduling within the transformation and logis-

tics context is aforementioned, there is a considerable amount of studies published

in transportation settings such as airline (Kasirzadeh et al., 2017), railway (Chen

and Niu, 2012) and urban buses (Öztop et al., 2017). However, there is a limited

number of studies on maritime context. The main motivation behind our research

can be explained with the importance of crew planning in the maintenance of the

offshore operations, the huge effect of crew costs in operation costs for the means of

transportation and the lack of operational research application for crew scheduling

in maritime settings.

In this thesis, our primary objective is to provide an elaborate crew scheduling

which is cost and time efficient by satisfying the rules and regulations for a large

maritime company conducting an Offshore Service Vessel type operation on a global

scale. To carry out our main objective, we underlined smaller research aims that

11

are grounded in the analysis of proposed methods, and construction of practically

efficient solution approaches for the crew scheduling problem described by industry

partners. In accordance with our goals, we aimed to contribute a more realistic

mathematical model, diagnose the reasons for low efficiency regarding the solution

time of proposed methods and formulations by Leggate (2016). Leggate (2016)

modelled the VCS problem in OSVs with two formulations named as Task Based

(TB) and Time Windows (TW). This dissertation aims to improve solution methods

in the light of the information obtained through computational analysis of previous

methods for recovery schedules and finally suggest a robust counterpart for schedules

from scratch.

In other words, in this research it is expected to find an answer to this question:

• How can the proposed models for VCS in OSVs be improved to generate feasible

schedules against unexpected situations in a more time efficient way by using

optimisation tools?

Additionally, these are the sub questions which support main research question:

• What are the weaknesses of proposed TB and TW models?

• How can one deal with the drawbacks of TW model?

• Are heuristics and exact methods that are suggested in this thesis effective

ways to solve TW model?

• What are the strength and weaknesses of the suggested methods?

• How can one obtain schedules immune to uncertainty?

Based on these research questions and our objectives, the contributions of this

thesis can be stated as follows. First of all, an extensive computational study is

performed and analysed to have a deeper understanding of TB model which is pre-

sented in Section 4.1. This contribution consolidates the our joint paper (Leggate

et al., 2017) which has been accepted in JORS. Second, revision of realistic model

is also applied. The design and development of a customized heuristic for the case

study which was started by Leggate (2016) are provided as a joint contribution to

this research. The first attempt of the heuristic by Leggate (2016) was not elab-

orate enough, had limited options for enlarging the local search in case of getting

12

stuck at local optima, and abrupt termination settings. Therefore, a more thorough,

exhaustive and correct customized heuristic algorithm is designed and developed in

this thesis. Moreover, the implementation of this customized heuristic in C++ with

Microsoft Visual Studio 2010 is solely accomplished in this dissertation (see Section

4.3).

In Chapter 5, as a more distinctive contribution, the existing model is analysed

thoroughly and amended accordingly to increase the solution quality and state the

problem faced by industrial partner more accurately. After reviewing the literature

on optimisation techniques to solve VCS in OSV, we determined to use Benders De-

composition which solves multiple smaller partitioned problems rather than solving

the whole problem with all decision variables and constraints simultaneously, (Taşkın

et al., 2012).This technique is compatible with our problem and the problem can be

decomposed into smaller problems. Accordingly, Benders Decomposition is applied

not only with naive implementation but also with some improvement techniques

suggested in the literature. Besides, a hybrid method Benders Decomposition Al-

gorithm and the customized heuristic is proposed as an integrated solution method.

Although we could not manage to obtain optimality in reasonable time frame with

this method, the application of this decomposition technique provided profound anal-

ysis to understand crew recovery scheduling problem in OSVs from a wider horizon.

In addition to this, for some problem sets the hybrid method gives higher quality

results than the direct implementation of the modified model.

Lastly, an initial study is given for seeking the robustness in the phase of creating

crew schedules for OSVs, in Chapter 6. This study initiates the robust planning

for the crew in offshore settings. After the potential uncertainties are defined, a

model that provides robustness against crew availability and demand uncertainty is

suggested.

1.4 Thesis Plan

This thesis consists of 7 main chapters. In Chapter 1, offshore supply vessels, crew

scheduling in this context, and research motivation are briefly explained. The fol-

lowing chapter deeply investigates, in an in-depth manner the areas such as crew

scheduling, recovery scheduling problem, crew scheduling in the maritime industry,

and robust optimisation. Additionally, Chapter 2 highlights the research methods

13

used and the research philosophy adopted in this study.

The problem that was brought forward by our industry partner and investigated

through the case study method is presented in Chapter 3 with a business model of

the managerial process.

The proposed formulations, solution methods and collaborative work with Leg-

gate et al. (2017) in order to solve this problem is deeply analysed for further devel-

opment of new solution methods in Chapter 4.

In Chapter 5, advantages of benders decomposition and suitability of this tech-

nique to our problem are explained. Following this, an analysis concerning this

decomposition method is also suggested. Depending on the results of this analysis,

a better functioning model that clearly reflected the intricacies of the problem that

were pertinent to our case was provided by modifying the model that was investigated

in Chapter 4.

Instead of responding to the uncertainties through recovery schedules, the in-

vestigation of robust optimisation techniques to generate more robust plans against

to uncertainty is conducted in Chapter 6. The sources of uncertainties are further

defined, and a robust counterpart is suggested to overcome these changes.

In Chapter 7 a detailed discussion regarding this study is provided. In addition

to the thorough conclusion, research limitations, and scope for future research are

also elaborated upon.

14

Chapter 2

Literature Review

Scheduling is used mostly in manufacturing systems, services sector, information

technology, hospitals, educational institutions and transportation systems to increase

the efficiency in each system with regards to the optimum utilization of limited

resources. Scheduling problems have received significant research attention and these

problems are wide-ranging, just like the ones we mentioned previously. The main

interest of this study is crew scheduling, particularly in the maritime context as well

as under other uncertainties. In this section, relevant literature to our problem will be

provided in course of two main sections, Crew Scheduling, and Robust Optimisation

in Scheduling, respectively.

2.1 Crew Scheduling

Crew scheduling has been studied for more than 50 years. The complexity of these

problems and increasing demands in today’s global world have kept this research

area alive. Some survey papers that highlight comprehensive understanding for crew

scheduling and rostering problems are presented in Ernst et al. (2004b), Brucker

et al. (2011), Van den Bergh et al. (2013).

Personnel scheduling problems were first classified into three main groups such

as shift scheduling, days off scheduling and tour scheduling by Baker (1976). In shift

scheduling, the staff requirements on each shift can be treated independently in order

to decide the feasible allocation of employees.This problem is generally encountered

by industrial companies. In the days off scheduling, the length of the operating

week in the facility and the length of an employee’s working week are not equal to

15

each other. 5-day work weeks for employees and a 7-day operating week can be an

example for this case. The tour scheduling is defined as a combination of the shift

scheduling and the days off scheduling problem. Tour scheduling creates rosters for

each staff member over the planning horizon. In this kind of personnel scheduling

problems, organizations have the 7-day operating week, with more than one shift a

day (e.g., airlines, hotels, hospitals, etc.). As there are certain regulations for giving

breaks and the maximum amount of work, the particular tour (i.e., hours of the day

and days of the week) in which the employee is expected to be allocated has to be

specified.

For crew rostering problems Ernst et al. (2004b) distinguished six modules which

are demand modelling, days off scheduling, shift scheduling, line-of-work construc-

tion (tour scheduling), task assignment and staff assignment. Demand modelling

is divided into subgroups such as task-based demand, flexible demand, and shift-

based demand. These groups show variety with respect to the level of uncertainty

in demand. Mostly task and shift based demands are known in advance. In flexible

demand, the required staff is predicted by using forecasting techniques.

In Brucker et al. (2011), they classify the studies according to four main cat-

egories, elaborately: i)characteristics of personnel, decision delineation and shifts

definition; ii)constraints, performance measures and flexibility; iii)solution method

and uncertainty incorporation; iv)application area and applicability of research. This

study shows the substantial variation of studies and different problem structure in

this area with the help of this four main categories. Transportation is stated as

one of the main application areas for personnel scheduling and crew scheduling is

represented as a special case for personnel scheduling problems. The significance of

temporal and spatial characteristics of tasks is mentioned in Ernst et al. (2004b) and

the limited studies in the maritime transportation is observed through the survey

paper in Brucker et al. (2011). The complexity of our problem distinguishes from the

literature regarding temporal and spatial characteristic such as carrying operations

offshore and duties with a more extended time length.

Crew scheduling problems can also be categorized as assignment problems. A

detailed survey of the assignment problems was presented by Pentico (2007).

Multiperiod staff assignment problems deal with assigning staff members to

change tasks during a planning horizon with considering the operational require-

ments and eligibility of staff members (Franz and Miller, 1993). Franz and Miller

(1993) aimed to maximise resident’s schedule preferences while holding the goals of

16

hospital and staffs’ contractual necessities for the 12-months period. They proposed

a heuristic solution and compare their results with maximum possible and continu-

ous objective function values for testing the performance of heuristic solutions. In

our problem, we are also interested in assigning our crew to operations by thinking

the required number of crew members to each vessel, each week and eligibility of

them for certain tasks. By this characteristic, we can also call our problem as 0-

1 assignment problem with side constraints.Mazzola and Neebe (1986) have drawn

conclusions about the NP-completeness about 0-1 assignment problem with side

constraints, known as (APSC) in literature. They emphasized that 0-1 assignment

problems even they only have no more than one side constraint is NP-complete.

As the applications of personnel scheduling are substantial and have a large va-

riety, relevant literature to our problem can be narrowed down to crew scheduling in

transportation settings. Under Section 2.1, Section 2.1.1 particularly provides com-

prehensive literature about the airline crew scheduling which is the most popular

area amongst all transportation settings for crew scheduling problem. Following the

airline crew scheduling, Section 2.1.2 provides relevant literature on crew schedul-

ing in other transportation settings. In Section 2.1.3, we presented the studies on

recovery crew schedules in various transportation settings and investigated the crew

scheduling problems in maritime settings by pointing out the characteristics that

distinguish from our study.

2.1.1 Airline Crew Scheduling

The closest approach to crew scheduling in vessels can be stated as the airline context

in terms of the complexity, size and uncertainty of the inputs. Airline crew scheduling

has extensive literature over the decades.

Airline companies generally combine flights as a bundle including specific patterns

such as pairings or crew rotations. These crew pairings start and end at a crew base

Andersson et al. (1998). The pre-defined pairings are integrated into the crew rosters.

Appropriately, the crew scheduling problem is decomposed into two problems as crew

pairing and crew assignment. Then, these problems are solved respectively. Crew

pairing problem is generally formulated as a set partitioning problem, (Zeghal and

Minoux, 2006). This formulation tries to find the optimal pairing to minimise cost

while covering all the flight segments. It brings explicit enumeration for all pairings

and it is not possible to enumerate them especially for the big problems. After solving

17

the crew pairing problem, the next step is crew assignment problem. In this study,

crew assignment problems are solved separately for each crew type. Since we try to

solve recovery problem separately for captains, riggers etc., solution methods that

we presented in (Leggate et al., 2017) show the similarity in terms of the rostering

method in this study. However, the constraints used for crew assignment differs.

The reason of that situation is based on the variation between vessels and airline

settings regarding the rules and regulations.

Anbil (1993) conducted a joint study with IBM and American Airlines Decision

Technologies to minimise cost by enumerating feasible pairings with an LP solver. To

solve very large problems, Bixby et al. (1992) suggested a solution as a combination

of interior point and simplex methods. On the other hand, Hoffman and Padberg

(1993) are more interested in having solutions in reasonable time frame rather than

having optimal one. They proposed a set partition formulation and solved it by a

branch-and-cut approach. Klabjan et al. (2001) improve this solution method on by

enumerating millions of random pairings. LP relaxation is followed by a heuristic

method which is based on the information gained by the duality of LP relaxation

formulation to obtain integer solutions.

Gamache et al. (1999) used set partitioning and column generation method to

decide the pairing assignment and schedule the other activities of the crew. To ob-

tain the best rosters between the set of possibilities, an IP formulation is applied

to the master-problem. Sub-problem generates schedules for each employee by us-

ing the network formulation. In this formulation, nodes represent time points and

arcs represent the tasks or rest periods. The definition arc costs are based on the

reduced costs taken from the master-problem. Accordingly the shortest path gives

the schedules for staff.

Barnhart et al. (2003) give a thorough analysis of airline crew scheduling by

expressing the common elements and importance of crew scheduling in transportation

context with respect to maintenance and cost. The constraints about the pairings

and duty period time length, minimum and maximum amount of resting periods

between duties, maximum elapsed time of a pairing show similarity with our problem

as well. The rostering problem constraints, are to ensure the crew pairings have the

appropriate number of selected schedules and all of the crew members are assigned

one work. Due to the fact that both crew pairing and assignment problems have an

enormous number of decision variables and these decision variables are all integer, it is

really hard to solve these problems. Barnhart et al. (2003) provide information about

18

the solution approaches to these problems from the existing literature. They gave

some basic ideas about network structures, partial generation of pairings, solving LP

relaxations and branching methods for pairing problems.

Benders Decomposition method is another way to solve large scaled problems

that are applied to crew scheduling in airline settings (Cordeau et al., 2001; Mercier

et al., 2005). Cordeau et al. (2001) have proposed a solution method for the aircraft

routing and crew scheduling, simultaneously. This study shows the importance of

integrated decision making on aircraft routing and crew scheduling decisions.Benders

decomposition is suggested to decompose the problem master and slave problems and

column generation method is applied to be able to solve decomposed problems.

Cappanera and Gallo (2004) define a multicommodity network flow problem for

crew scheduling problem. In this representation, a network shows the tasks and

crew are symbolized as commodities. They defined some valid inequalities and used

CPLEX to analyse their LP formulation. With the help of this LP model, they figure

out finding the crew pairings, rest and training periods with respect to the rules and

regulations.

There are many solution methods suggested for the assignment of airline crew

to minimise crew pairing cost in terms of daily, weekly and monthly time horizon.

Since monthly time horizons have the more practically applicable solution approach

comparing daily and weekly time periods, the direction of airline crew studies is

mostly based on the monthly planning. These problems are generally formalized as

the set covering and set partitioning problem. Gopalakrishnan and Johnson (2005)

and Klabjan (2005) provided comprehensive survey paper for staff scheduling in

airline concept.

Nissen and Haase (2006) have an interesting study which analyses the variation

between the US and European airlines. Their formulation is the duty-period-based

and basic reason of the difference between these two regions is payment method of

the crew. European airlines have crew fixed salaries and North American crew’s

salary depends on the time that they have worked. The predominance of fixed price

gives advantage in terms of having shorter rescheduling horizons. Accordingly having

smaller problems and, thus, faster solution times are possible.

In another study, Gamache et al. (2007) proposed a graph coloring model and

a tabu search algorithm for solving a feasibility problem in monthly airline crew

scheduling by giving more importance for the crew satisfaction more than minimis-

ing the crew cost. The proposed solution method gives feasible monthly airline

19

schedule for each employee. Since their method offers the possibility to handle each

requirement either as a hard or a soft constraint, it can be said that it is a flexible

approach. To check the feasibility of the schedule, graph colouring is used. In this

method, nodes show the assigned tasks, and two nodes are connected if their associ-

ated tasks could not be performed by the same worker. If the number of staff that

has to be allocated is less than minimum number of colours, then the schedule does

not give feasible solution for the rest of crew.

One of the recent and efficient methods used in crew scheduling is constraint

programming. Suraweera et al. (2013) improved an algorithm to produce constraint

tree. They particularly focused on airline crew scheduling problem. The aim of the

airline crew scheduling is assigning crew to operate flight legs on the airline. Their

goal is exploring the flight requirements, government regulations, assignment of the

crew, and contractual obligations. Getting information about these obligations, reg-

ulations take long process. Changes in airline rules, and the difficulties to understand

incomprehensible rules are the main motivation of this study. They used an algo-

rithm called as ComCon to infer constraints from the schedules that are based on

constraint templates.

Tam et al. (2014) introduced an operational multi-crew scheduling problem in

airline settings. Two models with objectives, which are minimising the total number

of un-covered tasks or the total number of uncovered rights, are solved. Integer non-

linear multi-commodity network flow formulation is suggested to solve the problem.

Column generation method in a branch-and-bound scheme is proposed as an optimal

solution method for this study.

Section 2.1.2 focuses the crew scheduling concept in other transportation settings

rather than the airline industry.

2.1.2 Crew Scheduling In Other Transportation Settings

Obviously, the airline is not the only transportation setting that required crew sched-

ules, even it is a limited amount, there have been some studies about bus and railway

rostering problems as well.

In railway settings, one of the studies that focused on cost minimisation is con-

ducted by Vaidyanathan et al. (2007). They used network flow model to assign the

crew to the trains. In this network, crew districts are defined by railroad, and each

crew district has crew pools. The rules for this problem are designated according

20

to these crew pools. To solve this network based approach, mathematical modelling

is used but increase the efficiency they also used some relaxation techniques. They

showed their results by analysing them with real data obtained from North Ameri-

can rail road. These studies (Vaidyanathan et al., 2007; De Leone et al., 2011) have

similarities with our work in terms of assigning crew to the particular tasks, however,

the planning horizon and regulation show significant differences.

De Leone et al. (2011) studied on one of these problems about bus crew schedul-

ing. In their study, they formulated a mathematical model for this NP-Hard problem

considering labour rules and safety regulations in Italian transportation. Mathemati-

cal model is not practical enough for the large problem instances. Due to this reason,

De Leone et al. (2011) improved a Greedy Randomized Adaptive Search Procedure

and analysed the performance of this heuristic by using real-world instances.

A railway crew scheduling problem is studied by Hanafi and Kozan (2014). This

problem concerned the allocation of train services to the crew according to the spe-

cific train timetable. There are some operational and contractual requirements that

need to be considered for having the feasible schedules. Based on the complex-

ity of constraints and a large number of decision variables, the problem is defined

as mathematically intractable. In order to deal with this difficulty, a hybrid con-

structive heuristic with the simulated annealing search algorithm is suggested as a

solution method. According to the computational study, they concluded that the hy-

bridization of a simulated annealing-based algorithm for solving a highly constrained

combinatorial optimisation problem is an effective method.

Ma et al. (2016) focused on bus crew scheduling problem in Beijing. In this

case study, a meta-heuristics approach is employed for solving real-world bus-driver

scheduling problems. Time windows approach is used to define the duties of bus

drivers. The problem is solved by a variable neighbourhood search algorithm and

a case study of two depots of the Beijing Public Transport Group is used for eval-

uating the heuristics’ performance. The results underlined that up to 18.1 % cost

minimisation is obtained.

2.1.3 Crew Scheduling Problem with Recovery

In our study, we have also interest in the recovery of the current schedule. Since

crew schedules in vessels tend to be affected by environmental factors, the schedules

are required to be adjusted or updated. This feature changes the origin of the study

21

to the recovery scheduling problems.

However there are not too many studies for the recovery problem, some heuristic

search algorithms, dynamic programming algorithm, and column generation methods

exist in the literature. Wei et al. (1997) developed a multi commodity network flow

for the crew management problem during airline irregular operations. Their objective

is to minimise cost for returning to the original schedule. They gave a depth-first

branch-and-bound search algorithm to solve their set covering formulation for this

problem. Their algorithm provides flexibility in terms of the constraints defined by

the business.

Yu et al. (2003) improved a decision-support system which is called as CrewSolver

for Continental Airlines to generate crew-recovery solutions. Crew recovery model

has two constraints which are covering the flight and enforcing the crew assignment

to be assigned. Related penalty cost is applied to the uncovered flights, deadheading

crew, and in the case of no assignment of a crew. They proved the complexity of

the problem as NP-hard. As a result of the implementation of this CrewSolver, the

savings from the major disruptions are declared as approximately US $ 40 million.

Lettovskỳ et al. (2000) presented a crew recovery model in airline context. In

this model, the cost of adjusted pairings, reserve crew, dead-headed crews and can-

cellation are aimed to minimise. They propose a recovery plan for reassigning crews

to deal with the disrupted crew schedule. The built a fast crew-pairing generator

which enumerates feasible continuations of partially flown crew trips.

Guo (2005) has a different approach the recovery problem. This study is aimed

to minimise the changes in the current schedule. The problem is formulated as set

partitioning and he had both column generation approach and hybrid of a genetic

algorithm with a local search. And he tested the performances both of the solution

methods with a case study including 188 crew members and 85 daily flights for 5 days

recovery period. After this test, it is noted that heuristic approach has a reasonable

solution obtained within 3 minutes.

A thorough survey paper is provided by Clausen et al. (2010) including recent

disruption management (recovery) methods in airline industry. They give compre-

hensive information about the recovery problem in the airline setting with respect to

different objective functions for the different resources of the disruptions. In recov-

ery problems, they conclude that finding solutions quickly is an important element.

They aim to reduce the problem size by using the only time windows which are

required re-planning, and only the affected crew with a certain number of candidate

22

crew.

Zhang et al. (2015) suggested a two stage heuristic algorithm in order to solve

the integrated aircraft and crew recovery scheduling problem.The first stage, the

integrated aircraft schedule and the flight-rescheduling problem with partial crew

consideration are solved. A disruption cost of the original crew connection is added to

the objective function, as well. They proposed solving the integrated crew recovery

and flight re-scheduling with partial aircraft consideration, in the second step of

solution method. Modelling the problem as multi commodity network flow rather

than set covering method provided higher efficiency in solving MIP with CPLEX

Solver for the 2nd stage of the problem. Additionally, an iterative algorithm approach

is employed to solve the integrated problem until there is no improvement found.

Rezanova and Ryan (2010) focused on a crew recovery problem in railway context.

They formulated the train driver recover problem as a set partitioning problem and

they dealt with the infeasibility by adding further drivers or increasing the recovery

time period. The solution method is based on solving the LP relaxation of the set

partitioning problem with a dynamic column generation approach. They prefer using

depth-first search as constraint branching strategy. Depending on the real-life data

from the Danish passenger railway operator, their computational study underlines

that applying optimisation techniques to crew recovery problems provide efficiency

for decision-making process against disruptions.

2.1.4 Crew Scheduling in Maritime Industry

Among these crew scheduling problems, maritime crew scheduling problems are the

main focus of our study. In Section 2.1.4, we give the motivation and novelty of our

study while providing information about the up-to-date literature on this subject.

When the literature is compared in terms of crew scheduling problems in maritime

industry and airline setting, it is easily observed that the quantity of paper for vessel

crew is significantly less than airline settings. Wermus and Pope (1994) worked

on a special type of navy crew scheduling. They tried to obtain a schedule that

concerns about the equal workload for employees rather than minimising cost for a

small-sized crew with 8 employees. Another study by Horn et al. (2007) considers

an integrated vehicle and crew scheduling problem. The problem complexity shows

similarity in terms of the crew scheduling. They tried to assign crew members as a

team instead of individual assignment. In the formulation of this problem, integer

23

linear programming is used but since it is not sufficient, simulated annealing is also

suggested.

Legato and Monaco (2004) addressed the cost minimisation problem, in the port

of Gioia Tauro, raised from the change of crew. Two phased planing is suggested to

deal with this problem. Similar to our case study, depending on the crew availability

and sudden changes in weather conditions, long term planning for crew may not be

easily maintained. Their solution method includes simple rotation for 5-days working

and a 1-day resting period for each crew member for 30-day ahead planning in the

first phase. The second phase is about ensuring the long term planning with linear

programming methods for a day ahead preparation. Our study varies from Legato

and Monaco (2004) with carrying more complicated health and safety requirements

depending on the crew types.

Another study underlines the staff scheduling in maritime is conducted by Ammar

et al. (2013). The objective of this study is finding a feasible solution by taking regu-

lations, coverage rate and covering all journeys and increasing the worker satisfaction

level rather than minimising the cost. To generate feasible solutions, the assignment

of tasks to the staff are organized by teams. A mathematical formulation and two

heuristics are suggested as solution methods and tested in a real case study.Koubaa

et al. (2014) applied Artificial Bee Colony solution method on the Same seafaring

staff scheduling problem which is studied by Ammar et al. (2013). Greedy Random-

ized Adaptive Search Procedure heuristic results of Ammar et al. (2013) are used as

benchmarks to evaluate the performance of Artificial Bee Colony solution approach.

Although the constraints and industrial settings of this staff scheduling problem in

maritime context show similarity to our research, our study distinguishes with the

objective function, planning time horizon and assignment of crew members within

teams from the problem presented in Ammar et al. (2013).

Most recent study about vessel crew scheduling is conducted by Giachetti et al.

(2013). In this study, they mainly focused on cruise ships and improved a solution

for minimising the adjustments of crew. Minimising these adjustments helps to

minimise cost due to crew schedule. In our study we set our objective as minimising

cost depends on these adjustments. They used decision support system to decide

the number of required crew. They tried to determine a feasible assignment to cover

all tasks like in our problem. After deciding this number by stochastic overbooking

model, integer programming is used for finding the cost of schedule. In our problem,

there are two different kinds of employees called as contracted and agency. To prevent

24

infeasibility due to the lack of crew, it is assumed that agency can support employees

to the required position. This study can be stated as the closest study to our study.

The company is a global one like in our study. Also when the characteristic of crew

is considered, transportation costs and international workers have common features

with our study. On the other hand, we pay attention to the different skill levels of

the employee. This reflects some consequences to the employee cost. Another point

is, they worked with a cruise line and sudden changes are not valid for this type

of vessels; although, the sudden changes are one of the important problems in our

study.

Another aspect of our research is having robust schedules against sudden changes

rather than searching for recovery planning. In order to increase the strength of

our research regarding robust schedule aspect, we looked for robust optimisation

techniques and their application, particularly in crew scheduling.

2.2 Robust Optimisation

Optimisation is about obtaining the best possible results by considering given con-

ditions. It helps to take a decision in many areas like manufacturing, design, con-

struction, planning, scheduling etc. to increase efficiency of aforementioned system.

Given that optimisation techniques help to formulate the objectives as function and

formulate the conditions and reach the best choices for efficient results, it is hard to

have a completely deterministic data and construct a model without making strong

assumptions . Since it is hard to have an information about the probabilistic distri-

bution of unexpected events, researchers work on improving different techniques to

treat the uncertainty in optimisation.

A post-optimisation tool sensitivity analysis suggests solving problems by fixing

the values of parameters and trying to find out the effects of adjustments of these

values on the optimal solution and feasibility. Clarifying that sensitivity analysis has

an advantage regarding its ease to apply, it is limited for carrying out the robustness

of mathematical models by allowing small perturbations during the analysis.

The related literature about robust optimisation is presented under two sub sec-

tions which are Robust Optimisation in General Frame and Robust Optimisation in

Crew Scheduling, respectively.

25

2.2.1 Robust Optimisation in General Frame

A notable method coping with uncertainty is stochastic programming which works

under a probability distribution assumption for uncertain parameter values, Birge

and Louveaux (2011). In this method, the objective function is determined according

to the random variables and the appropriate suitable function of it. Stochastic

programming is a pro-active method that assumes uncertainties have probability

distributions Eggenberg et al. (2010). The benefit of this tool is easy to model

recourse; however, it is important to note that this solution method encounters

with some optimisation issues for large-scale problems together with the heavy data

requirements to apply this method Pinar (2012).

Robust optimisation can be stated as a complementary method to sensitivity

analysis and stochastic programming. It is a modelling methodology dealing with

optimisation problems in which the data are not certain and generally it is hard to

make assumptions about the uncertain parameters Pinar (2012).

The very first study to improve immune models to uncertainty was conducted

by Soyster (1973). This paper proposed a linear optimisation model which gives a

feasible solution for every point of convex set under the assumption of parameters

coming from a bounded, convex uncertainty set. While this method guarantees the

feasibility for the entire set of uncertainty, this method is too conservative due to

the fact that it highly relies on uncertainty set. This method considers the solutions

of extreme cases without giving attention to the low probability of realization these

extreme scenarios.

Ben-Tal and Nemirovski (1998), suggested ellipsoid uncertainty sets to deal with

over conservatism issue and they ended up having a model with more tractable ro-

bust counterparts. Following these major studies, Ben-Tal and Nemirovski (2000)

provided a comprehensive information on the methodology and application of robust

optimisation, as well. They mentioned the characterization of a real-world optimi-

sation problem such as inexact data, difficulties to implement accurate solutions

into real-life problems, feasibility changes depending on the meaningful realizations,

large-scale problems and inefficient optimal solutions that become infeasible with

small adjustments. To cope with these real-life facts, they gave solid theoretical

background on robust counterparts with different mathematical programming meth-

ods. Apart from the theoretical part, they also conducted a case study with 90 LP

problems to show the big effects of small perturbations in the data and the achieve-

26

ments of robust optimisation methods on the inexact data.

Bertsimas and Sim (2004) extended the model of Soyster (1973) by controlling

the degree of conservatism on every constraint. Their model maintains the feasibil-

ity when data changes and it is applied to discrete optimisation problems. Their

core assumption of uncertain data is based on a symmetrical deviation between the

bounds. They controlled the level of conservativeness with a parameter (Γ) and this

parameter removes the necessity for non-linear programming applications. While

(Γ = 0) implies no uncertainty, it would become Soyster’s method under the case

that (Γ) is equal to the set of the parameter subject to uncertainty.

Three seminal papers provided the fundamentals of the area of robust optimi-

sation Soyster (1973), Ben-Tal and Nemirovski (1998), Bertsimas and Sim (2004).

After robust optimisation gained popularity, different models have been developed

on specific subjects with various methodologies and some survey papers organized

such as Herroelen and Leus (2004) and Gabrel et al. (2014).

2.2.2 Robust Optimisation in Offshore Context

Halvorsen-Weare and Fagerholt (2011) study a supply vessel planning problem. This

problem is a real life problem that Statoil energy company tries to deal with it. The

objective is to minimise installation costs. There are some constraints are based

on the maximum minimum duration of the voyage, the number of installations and

the time between consecutive voyages. They gave the mathematical model for this

problem. After explaining the deterministic model, they mentioned the weather im-

pact on the installations. Due to the weather impact, deterministic schedules are

not always so profitable. Accordingly, in this study, Halvorsen-Weare and Fager-

holt (2011) suggested some robust approaches by adding slack to the voyages and

schedules. These approaches can be listed as;

• for each day a supply vessel idle

• for each supply vessel at least one idle day in a week

• for each supply vessel no more than 2 voyages in a week

Considering these robustness approaches, they suggested an algorithm which is

a combination of optimisation and simulation methods and they gave detailed com-

putational study to present the test results. According to these results, predicted

27

cost decreases after adding the criteria of robustness. For the actual sized prob-

lems at least %3 savings are possible with different robust approaches based on the

information of their simulation results. Their problem have some similarities with

our problem in terms of the final schedule. They obtain schedules for vessels while

we construct schedules for crew. Also their method of adding robustness can be

expanded for our problem. Due to these reasons, this paper can be a good guide for

our study.

In a liner shipping network, Brouer et al. (2013) is the first literature on sug-

gesting a mathematical model for vessel disruption management. They proved the

NP-completeness of recovery scheduling problems in vessels and they provided the

computational study of the suggested model on a case study. They concluded that

as the number of vessels are increasing, solution time increases with an exponential

pattern. Qi (2015) emphasized the importance of real time recovery scheduling in

the maritime industry. This paper focused on liner shipping with disruption both

on a single vessel and multiple vessels on the same system and they analysed the

benefits of port skipping and port swapping options under the case of longer delay

from managerial aspect by developing a dynamic programming. Both studies pro-

vide reactive solutions rather than proactive robust planning from the beginning of

the scheduling.

Since our problem is in the class of crew scheduling problems, in this literature

review we preferred studying papers mostly on robust optimisation in crew schedul-

ing. Since crew scheduling in airline transportation setting has significant economic

effect, most of the robust crew scheduling studies focused on airline crew pairing

problems. After giving a brief introduction to the description and methodology of

robust optimisation in this section, more detailed summaries of robust optimisation

in crew scheduling papers take place in the following Section 2.2.3.

2.2.3 Robust Optimisation in Crew Scheduling

Schaefer et al. (2005) consider airline crew scheduling under uncertainty. They em-

phasized that the difficulty raises in crew scheduling in airline industry due to the

rules and regulations. This situation is valid for our study too. They grouped dis-

ruptions in severe and fractional disruptions. Airline crew scheduling problems are

modelled like set partitioning problem with deterministic data, but in this kind of

modelling assumes that every leg is operated perfectly as planned. It is ignored that

28

it is not possible in real life. In this study, they tried to compute the probabilities of

disruptions. They improved an algorithm to calculate the expected total cost based

on crew by taking into considerations of disruptions. They concluded that signifi-

cant reduction in operational crew cost is obtained by using their algorithm rather

than using deterministic method. In addition to this, even there is no computational

proof, they think that considering each pairing in isolation instead of using expected

cost as objective function may result a decrease in cost as well.

Yen and Birge (2006) proposed a model for airline crew scheduling with disrup-

tions as an extension of Schaefer et al. (2005) study. They aimed to describe disrup-

tion costs raised from the delays of each crew and interactions among the pairings.

They improved 2 stage stochastic integer programme. They describe disruption in

terms of flight operation times. These times were defined as random vector and the

elements of these vector represent disruption scenarios and these disruption scenarios

occur with a probability. In the objective function, they try to minimise the summa-

tion of total cost and expected delay cost. There is no change in terms of constraints

from the deterministic model. To solve minimising crew changes they used the delay

of crews that are assigned to switch planes and improved a flight-pair branching

algorithm. By this algorithm, they obtained pairings relatively easy when compared

with crew-pairing branching. Furthermore, they analysed the performances of their

algorithm and the advantages of the stochastic formulation over deterministic one.

They showed that significant amount of savings is possible if delays are considered

at the planning phase.

Shebalov and Klabjan (2006) discuss the minimisation of the crew cost. However,

they have a different approach to model crew pairing called the crew pairing model

with move-up crew count. Move-up crew means having the opportunity of swapping

crews for a delayed flight by fulfilling the requirements of rules and regulations. Since

maximising move-up crews provides to have more swappable crews, the crew pairing

model with move-up crew counts, it is more likely to have more robust schedules.

Their method has 2 stages. The 1st stage minimises the crew pairing cost with

traditional methods and in the 2nd stage, they try to maximise the number of move-

up crew. In our problem we are interested in assigning crews instead of crew pairing.

It is hard to apply this method to our problem. However, it still can be a good

approach to maximise the number of swappable crews to minimise the cost of crew

changes. Shebalov and Klabjan (2006) tested the performance of their methods

with an extensive analysis. They concluded that few move-up crews for many legs

29

are better than having too many move-up crews for few legs.

Lan et al. (2006) study on a robust aircraft routing model to minimise the ex-

pected propagated delay along aircraft routes. Firstly they improve an algorithm to

generate delays and then they determine the distribution of the delay propagation.

The objective of their formulation is minimising the expected total propagated delay

of selected strings. Related constraints for this problem are covering constraints,

flow balance constraints and counting constraint for the total number of aircraft in

use at the count time and the number of aircraft in the fleet. They use a branch

and bound technique to solve their mixed integer program and calculate propagated

delay along individual strings when determining costs for the restricted master prob-

lem, but ignore delay when solving the sub-problem. They also consider minimising

the expected total number of disrupted passengers.

Eggenberg et al. (2010) consider recovery airline scheduling with uncertain events.

They gave detailed information about algorithms used under the uncertainty con-

ditions. The first step for dealing with uncertainty is based on understanding the

nature of uncertain set. To deal with uncertainties in scheduling, there are differ-

ent approaches like proactive, reactive and predictive-reactive scheduling, (Lütjen

et al., 2012). In proactive scheduling robust schedules are obtained to handle dis-

ruption. For this approach, uncertainties should be required to have distributions.

On the other hand, reactive scheduling does not need initial information. Predictive-

reactive is combination of both these approaches and after initial schedule is created

and revised when necessary. Between the uncertain sets which carry probabilistic

information are solved with stochastic optimisation algorithms.

Eggenberg et al. (2010) improved a worst case pro-active method based on reac-

tive algorithm. The reason for this preference is based on the difficulties of obtaining

a wide set of observations and determining the nature of this observations. They

defined different robust formulation based on objective functions to deal with robust-

ness, minimise cost of the worst possible case, minimise arithmetical mean worst best

case over the whole uncertainty set including same reaction costs, minimise maxi-

mum regret (the goal of robustness is more important than the cost minimisation).

They gave a comparison between existing methods and their shortest path method

application on interval data. They also aimed to extend the worst case pro-active

method based on reactive algorithm for airline scheduling problem; but, they faced

three important difficulties regards to deciding infeasible solutions in a given scenario

and defining partial cost depends on infeasibility; solving the underlying recovery;

30

identifying the worst scenario for a given schedule. Since computing the recovery

cost for every scenario is in the classification of NP-hard problem, they constructed

uncertainty set rather than using a given one, having more schedule-based com-

putations to estimate the performance of recovery algorithm and working more on

multi-objective approaches.

Dunbar et al. (2012) consider the effect of aircraft routing and crew pairing sched-

ules together on the propagation of the delays through the flight network. They sug-

gest that determining aircraft routing and crew pairing together is really important

due to the common transfer of delays between these two elements. They improve

a robust solution for both aircraft and crew to deal with this problem. They give

the mathematical formulation of these two problems (aircraft routing and crew pair-

ing). They firstly consider how crew delays affect the aircraft connection. Their

assumption is having a feasible set of crew strings and propagated delays because

of the crews. Their approach aims to minimise cost based on unplanned delays and

they showed that this method gives cost effective results due to their computational

study.

Muter et al. (2013) discuss on airline crew pairing problem. They suggested a

column generation method to obtain robust crew pairings. They give the robustness

concept in terms of the extra flights requirements during operations. They noticed

that in the smaller airlines in Turkey, there is a need of adding extra flights with

short notice very often. Accordingly, they explain the robustness of their solution

being able to allocate extra flights at the time of operation by disrupting the original

plans as minimum as possible. The application of this approach is possible in two

ways:

• Inserting extra flight into an existing pair

• Partially swapping the flights in two existing pairings to cover an extra flight

Crew pairing problem is solved in two phase. In the first phase, the total cost is

minimised with respect to general constraints that are assigning each crew member

to a sequence of flight legs and being sure about covering all flights with the solution.

After getting the minimum cost, crew assignments should be done. In the robust

formulation, the objective function is to minimise the summation of the the total

cost of crew pairing and cost of deadhead flight. Constraints of this model are classic

set covering rules and covering flights according to the robust method. Also, there

31

are some constraints providing connections between different decision variables and

preventing assigning crew pairings without assigning them to the flight legs. Since

there are lots of binary decision variables and constraints, there are lots of possibilities

to reach feasible solutions. This fact makes these problems more challenging. Muter

et al. (2013) solved the problem with column generation. It is harder to solve the

robust version than classic crew pairing problem based on the column generation

procedure. They concluded that their method works well for the small sized problem

with minor changes but it is better to improve this method to have good results for

the real-sized problems depending on the computational study.

However, in most of the studies discussed above suggest that robust schedules

provide benefit in terms of cost, one paper Atkinson et al. (2016) concludes that

it is not valid every time. This study examines different robust schedule practices.

These practices are based on the flexibility to swap aircraft, flexibility to swap gates

and scheduled down time. They construct a model to estimate the cost of robust

scheduling inputs and the value of their operational outcomes. They suggest that

this model can be used by managers, industry regulators and policy makers to decide

the efficiency of robust schedules. Although their suggestions, it is not practical in

our settings, it is important to conduct studies regarding the efficiency of robustness

beforehand.

2.3 Existing Solution Methods

Optimisation techniques help to formulate the objectives as function and formulate

the conditions and reach the best choices for efficient results. Mathematical pro-

gramming methods are the way of optimising systems under given set of constraints

and predefined parameter sets. Linear programming is one of the well-known areas

of optimisation methods. To be able to use linear programming methods, all of the

functions lying down the formulation should be linear. The simplex method which

solves linear programming (LP) problems optimally is developed by Dantzig Wolf.

This method uses the edges of the polytope constructed by constraints. Using edges

gives the opportunity to try the consecutive extreme points for each iteration. In

simplex method, it is assumed that decision variables are continuous; however, in

real life problems, there might be a need for integer decision variables. Since the

values of decision variable in optimal solution do not have to carry integer solution

32

by simplex method, this method may not work necessarily for every integer program-

ming problems. Due to the requirement of integer solutions for a significant range of

problems, several integer programming methods are developed, and these methods

take considerable place among optimisation techniques.

Depending on the comprehensive literature review on crew scheduling problems

in various transportation settings including the robust applications in planning and

scheduling, VCS problem in OSVs is perceived as a combinatorial optimisation prob-

lem. Combinatorial optimisation searches for maximum (or minimum) of an objec-

tive function in the domain is a discrete but large configuration space. Combinatorial

optimisation problems can be solved by mathematical programming which includes

Linear Programming, Integer Programming, Mixed Integer Programming, Column

Generation, Benders Decomposition, Branch-and-price, Dynamic Programming, La-

grange Relaxation, Goal programming methods. On the other hand, meta-heuristics

for the application to combinatorial optimisation problems is another significant field

of research to obtain feasible solutions with high efficacy. Besides the extensive us-

age of exact and heuristics solution methods, the hybridisation of techniques can be

applied to combinatorial optimisation problems.

2.3.1 Mixed Integer Linear Programming

Mixed Integer Linear Programming (MILP) is an essential tool for solving combinato-

rial optimisation problems especially with the advanced technologies in optimisation

solvers and computing. MILP is often applied to crew scheduling problems, as well.

In this section, there will be a brief description together with the summary of es-

sential definitions and theorems of MILP recalled throughout the thesis. A general

MILP problem Pmilp can be described as in equation 2.1. In this equation, x repre-

sents the continous variables with n dimension while y shows the integer variables

with p dimension. c ∈ Rn and h ∈ Zp are the vectors of the objective function

coefficients. Parameters A and B are the matrices of constraints, while b ∈ Rn is the

vector of right hand side coefficients.

Pmilp = minx,y{cTx+ hTy|Ax+Dy ≤ b, x ∈ Rn, y ∈ Zp} (2.1)

Definition 2.3.1 Let x1, .., xk ∈ Rn be any set of points. Convex combination of

points x1, .., xk is linear combination of x =
∑k

i=1 λi ∗ xi under the condition of

33

∑
i=1 λi = 1 and λi ≥ 0.

Definition 2.3.2 Let the feasible set of Pmilp is set S ⊆ Rn. S is convex set if

convex combination of any two points x1, x2 ∈ S in the set S.

Definition 2.3.3 The set of all convex combinations of points in S gives the convex

hull of the set S which is denoted as conv(S).

Definition 2.3.4 The convex hull of finitely many vectors is a bounded polyhedron

which is called a polytope.

As above definitions provide general characteristics of the feasible region of MILP

problem, it can be concluded that solving the problem Pmilp can be satisfied through

finding the solution over the convex hull S. One of the ways of describing convex

hull is using extreme points and rays. A formal definition is provided below.

Definition 2.3.5 Let x ∈ S be an extreme point of polyhedron S then it can not be

represented as a convex combination of any two distinct points in S.

Definition 2.3.6 A ray r of S is called as an extreme ray if there do not exist rays

r1, r2 ∈ S0 and a scalar µ such that r = µr1 = (1− µ)r2 for r1 6= µr2 for any λ ≥ 0

and 0 < µ < 1.

The representation of a polyhedron through extreme points and rays is provided

by Minkowski Resolution theorem:

Theorem 2.3.1 Let S 6= ∅ be a polyhedron, {xk}k∈K be the set of extreme points of

S and {rj}j∈J be the set of extreme rays of S.

This theorem can be used as basis for decomposition techniques.

In this section, we provide some general definitions regarding MIP context. As

the optimisation solvers employ Branch-and-Bound and Branch-and-Cut techniques,

we provide brief information about these methods.

34

2.3.1.1 Branch and Bound Algorithm

Branch and Bound (B&B) is an exact optimisation algorithm which has been used

in order to solve discrete optimisation problem for more than 50 years.

The procedure of B&B algorithm starts with an incumbent solution and depend-

ing on the minimisation or maximisation of the problem this incumbent solution

represents the lower or upper bound for the optimal solution. If there is no in-

cumbent solution, then infinity becomes the upper bound value for minimisation

problem. This algorithm branches the whole problem into subproblems, and LP

relaxation of each tree node is evaluated. If infeasibility is detected or the solution

is worse than the best-known solution then, this node is pruned. Another possibility

is to reach an integer solution that the incumbent can be updated. In the case of LP

has a fractional solution with a better incumbent, the subproblem is divided, and

new nodes are investigated. This procedure is repeated until all subproblems are

examined, and the incumbent is determined to be the optimal solution.

2.3.1.2 Branch and Cut Algorithm

This algorithm combines branch and bound technique with cutting planes. It aims

to improve the B&B by tightening the search space with the help of cuts. Depending

on the solution of LP relaxation, the valid inequalities are generated. These valid

inequalities are implemented to the original problem in order to cut off the infeasi-

bility. In every step, LP is solved with the newly added constraints. The procedure

continues till no new valid inequalities are explored.

In this dissertation, B&B and B&C methods are used by solvers as black box

although any manipulation of the tree search concerning these techniques has not

been applied.

2.3.2 Bender’s Decomposition

Benders’ Decomposition (BD) is another well-known optimisation technique to solve

mixed integer programming, nonlinear programming and stochastic programming

problems (Rahmaniani et al., 2017). It is an efficient method to deal with large-scale

optimisation problems. It was first proposed by Benders (1962). In order to solve

mixed integer programming problems, BD suggests decomposing the problem into

two problems and solving them iteratively until the optimal solution found. The

35

decomposed problems are called as the restricted master problem (RMP) and sub-

problem (SP). The connection between each decomposed problem is held by using

the value of decision variables that are obtained by solving the dual of sub-problem

(DSP). Assuming that we are interested in minimising the system, the DSP provides

a valid upper bound for the original problem while RMP generates a lower bound

for the system. The fundamental idea behind BD is generating some valid cuts for

RMP through DSP.

Original BD can be explained for MILP as stated in Costa (2005). Consider the

problem P :

min cTx+ fTy (2.2)

Ax+By ≥ b (2.3)

Dy ≥ e (2.4)

y ∈ Zn (2.5)

x ≥ 0 (2.6)

where x and y are vectors of the continous and integer variables, vectors c and f

are the cost function coefficients, matrices A, B and D are the constraint coefficients,

vector b and e represents the right hand side value. For a fixed value ŷ of the variable

y, problem P reduces to the subproblem SP:

min cTx+ fŷ (2.7)

Ax+Bŷ ≥ b (2.8)

x ≥ 0 (2.9)

where ŷ ∈ Y and Y = {y|Dy ≥ e, y ∈ Zn} Then we can state the dual of SP (DSP)

by defining a dual variable u as given below:

max(b−Bŷ)Tu (2.10)

ATu ≤ c (2.11)

u ≥ 0 (2.12)

36

The variable y is fixed to value ŷ without consideration of the feasibility of SP and

DSP. As the maximisation problem DSP is a LP, the solution space of DSP is a non

empty space that can be bounded, unbounded or infeasible. If DSP is infeasible then

it corresponds to infeasibility or unboundedness in SP. In the case of unboundedness

in DSP, SP is infeasible and it can be said that the ŷ does not provide a feasible

solution for the original problem P . As the feasible region of DSP is assumed to

be not an empty space, this region can be represented with extreme points up and

extreme rays uf while p : {1, .., P} are the extreme points and f : {1, .., F} are

the extreme rays. For bounded DSP, the solution is one of the extreme points and

for unbounded DSP, there is a direction uf such that (b − By)ûf ≥ 0. Under the

case of unbounded DSP, the infeasibility of primal SP is investigated and prevented

by eliminating the fixed ŷ values by the cut (0 ≥ (b − By)ûf) in restricted master

problem (RMP). DSP provides an upper bound and it can be formulated by using

extreme points and extreme rays in restricted master problem (RMP) through the

constraints (2.14) and (2.15). These are called as optimality and feasibility cuts,

respectively.

The rest of original P gives the RMP with the help of auxiliary variable z:

min z (2.13)

z ≥ fTy + (b−By)ûo ∀o ∈ {1, .., O} (2.14)

0 ≥ (b−By)ûf ∀f ∈ {1, .., F} (2.15)

y ∈ Y (2.16)

Based on the equations (2.7) to (2.16) for P , The Benders Decomposition (BD)

algorithm is given in Algorithm 2.1:

Algorithm 2.1 Benders Decomposition Algorithm

Require: y := initial feasible integer solution, UB:= +∞ , LB:= −∞
While UB-LB≤ ε Do
Solve sub-problem: maxu

{
fT ŷ + (b−Bŷ)u|ATu ≤ c, u ≥ 0

}
If Unbounded then: get extreme ray f ; add cut (b−By)T ûf ≤ 0 to RMP
Else Get extreme point o ; add cut z ≥ fTy + (b−By)T ûo to RMP
UB:=min

{
UB, fTy + (b−By)T

}
End If
Solve RMP: miny {z|cuts, y ∈ Y } , LB:= z
End while

37

Benders’ Decomposition method has wide variety of application areas and there

are various techniques that might improve the efficiency of this algorithm. Appli-

cations of some of these methods for VCS in OSV’s will be discussed in details

in Section 5. In the following section, detailed knowledge on heuristic methods is

provided.

2.3.3 Heuristics

The Combinatorial Optimisation problems, which are NP-Hard, might require expo-

nential computation time to reach the optimality in the worst-case. As the require-

ment of long computational time might not fit for practical purposes, approximation

algorithms that provide time-efficient solutions have been investigated for more than

40 years.

The approximation methods can be categorised as constructive methods and lo-

cal search methods. Constructive methods build a solution from scratch. They are

mostly based on the best choice in each iteration and typically the fastest approxi-

mate methods. On the other hand, local search methods start with a feasible solution

and try to improve it progressively. Depending on the defined solution criteria, in

every iteration, current solution has been replaced with better or at least the same

quality results that are obtained from the neighbourhood of the current solution.

The local optimality can be demonstrated as following. Let’s assume PCO is a

combinatorial optimisation problem with objective function f to be minimised and

variables X : {x1, ..., xn}. The domain of variables can be shown as D : {D1, ..., Dn}.
Then the feasible region of PCO, S expresses the search space which includes all

feasible assignment that satisfies all the constraints in the given domain D. The

optimal solution s∗ ∈ S has the minimum objective function value and s∗ is a global

optimal solution of (S, f) under the condition of satisfying f(s∗) ≤ f(s)∀s ∈ S.

Accordingly, ∀s ∈ S there is a set of neighbours N(s) ⊂ S while N(s) is neighbour

of s. Based on the neighbourhood structure N , ŝ is a solution that ∀s ∈ N(ŝ) :

f(ŝ) ≤ f(s). If f(ŝ) < f(s)∀s ∈ N(s).

In addition to the local search algorithms, meta-heuristics are another type of ap-

proximation method in order to solve Combinatorial Optimisation problems. Meta-

heuristics simply combine the basic heuristic methods in higher level frameworks.

Metaheuristic methods do not require specialized knowledge of the optimisation

problem. Meta-heuristic algorithms have two main components that are the lo-

38

cal intensification and global diversification.The concept of diversification means the

exploration of the search space, while intensification is the exploitation of the com-

bined search experience. Tabu Search, Iterated Local Search, Variable Neighborhood

Search and Simulated Annealing are the meta-heuristics that work on one or several

neighbourhood structures. We will briefly explain these trajectory methods in this

section.

Algorithm 2.2 Iterated Local Search Algorithm

Require: Initial feasible solution s, neighbourhood structure N
1: Until stopping criteria met do
2: Find the best solution in N(s) : ŝ
3: Apply perturbation on ŝ;
4: Complete local search in the new neighbourhood and obtain s

′
.

5: Apply acceptance criteria
6: if s

′
satisfies the criteria s

′
:= ŝ

7: end-if
8: end-do

• Tabu Search (TS):This search method is first introduced by Glover (1986).

TS simply aims to create a search which prevents endless cycling by avoiding

to return to the recently visited solutions. To be able to escape from the cycles,

TS uses short-term memory which keeps the information on the most recently

visited solutions and not allows the search in that direction. This search chooses

the best solution from the non-tabu list and assigns this solution as the new

current solution. After the elicitation of a new current solution, the previous

solution is added to the tabu list while one of the solutions is removed from

the list dynamically. This method provides efficient results especially when it

is integrated with other heuristics.

• Iterated Local Search (ILS): In this heuristic method the search starts

with an initial solution and conducts a local search until it reaches a local

optimum. As the aim is to avoid local optima, the solution is perturbed and

the search on the new local optimum starts. The key point in this search is to

determine the degree of the perturbation as it might cause either to start with

a diverged solution or not diversify enough from the current solution. Apart

from the perturbation, the performance of ILS depends on the quality of the

initial solution, and the solution acceptance criteria during the search.

39

Algorithm 2.3 Tabu Search Algorithm

Require: Initial feasible solution s, neighbourhood structure N
1: Until stopping criteria met do
2: Tabu List:= Ø
3: Choose best solution from N(s) which is not in Tabu List
4: Update the Tabu List
5: end-do

• Variable Neighbourhood Search (VNS): This method is based on the idea

of systematic neighbourhood change during the search. It was first suggested

by Mladenović and Hansen (1997). The change in the neighbourhood occurs

under the condition of local search trapped in a local optimum. This method

employs three main phases to change the search neighbourhood which are

shaking, local search and move. The shaking phase is about perturbing the

solution with the aim of providing an efficient starting point for the local search.

Algorithm 2.4 Simulated Annealing Algorithm

Require: Generate Initial feasible solution:= s, neighbourhood structure:= N ,
probability parameter:= p

1: Until stopping criteria met do
2: Choose solution s

′
from a random N(s)

3: If (f(s
′
) < f(s)) then s

′
:= s

4: Else s
′
:= s with probability p

5: end-if
6: Decrease p
7: end-do

• Simulated Annealing (SA): This is yet another technique, which is first

suggested in Kirkpatrick et al. (1983), to prevent the search from getting stuck

in the local minima. It allows the solutions which are worse than the current

solution during the search and the probability of this move decreases through-

out the search. This algorithm begins with generating an initial solution and

define a parameter which determines the probability of choosing the lower qual-

ity solution. The decrease in the probability is based on the idea that there is

a higher probability of having a direction for the uphill moves in the beginning

of the search and this probability needs to decrease as the search is converging

a basic iterative improvement algorithm.

40

Blum and Roli (2003) provides more comprehensive information about meta-

heuristics in Combinatorial Optimisation, in this section we want to explain the

heuristic search methods employed in this dissertation.

Algorithm 2.5 Variable Neighbourhood Search

Require: Set of neighbourhood structures Nk ∀ k = 1, ..kmax, find a solution s
1: Until stopping criteria met do
2: for k = 1; k ∈ kmax; k + + do
3: Choose solution s

′
from a random Nk(s) ⇒ shaking phase

4: Find local optimum starting from solution s
′
:= s” ⇒ local search phase

5: If f(s”) < f(s
′
) then s := s”, k := 1

6: else k := k + 1
7: end-if
8: end for
9: end-do

Section 2.3 provided general information about the optimisation techniques which

are relevant to the solution methods in this dissertation. Section 2.4 underlines the

preferred methods and philosophy for this research. In order to understand why the

specific methods have been used and why specific models have been adopted to solve

problems in this dissertation, Section 2.4 plays a significant role in this study.

2.4 Research Methods and Philosophy

Every research subject has different patterns and unique point of view to the re-

search questions. Even though they differ from this side, the methods that are used

to answer the questions and the philosophical background can show similarities.

The philosophical basement of this research in terms of ontology, epistemology and

methodology helped me to choose the appropriate research methods. As stating the

aim of our research is to minimise the cost arising from the drawbacks of crew assign-

ment, we worked on finding some solution methods for obtaining optimal schedule

with minimum cost. Scheduling has a significant place in operations research as well

as in management science and staff scheduling is one of the important sub areas of

scheduling as mentioned in Sections 1 and 2. Optimizing the assignment of staff

gives advantage not only for lowering the costs but also maintaining convenience of

schedules. Based on the lack in literature in vessel crew scheduling, a significant gap

towards uncertainty drew our attention. Intuitively, people (crew) are one of the

41

most important factors that affects the cost. This fact prevents having deterministic

parameters and moves this research to the more stochastic side. Due to the fact that

human behaviour cannot be known exactly all the time, some non-deterministic per-

ceptions are needed for drawing near results to the reality. Apart from the human

factor, there can be some environmental effects that lead distortion in crew. In this

research we started with literature search investigating the state of the art methods

to solve similar problems.

The literature related to crew scheduling covers different types of methodology.

These methods are generally based on the optimisation methods. Inevitably, for

this research area, mathematical modelling has big impact to deal with these type

of problems. To understand and be able to apply these different methods to our

problem, our main research methodology is modelling which means the interpretation

of the objectives with the resource limitation into mathematical models.

From another point of view, obtaining data for this research has remarkable

place to evaluate the performance of the study. Accordingly, case study can be the

other helpful methods to understand the quality of the study and maintains realistic

solutions to this problem. Since we have already had a contact with a company,

we preferred using modelling and case study methods as a research methodology

throughout our study.

When the literature is searched in details in a specific area of scheduling, it can

be seen that most of the studies are inspired from the past works. There is such a

development path that every new study tries to increase the efficiency. This situation

is valid in the crew scheduling as well. For staff scheduling there are some artificial

intelligence approaches, some constraint programming approaches, some heuristics

and mathematical programming approaches available, (Morgado and Martins, 1993;

Azaiez and Al Sharif, 2005; Burke et al., 2004). Giving attention to these kinds of

connections is beneficial for observing similarities and differences between the past

works and our problem. So in this area it is so important to review the past models.

In our case, it is better to be inspired by the airline crew scheduling literature.

Scanning literature with details gives more idea about the models that are applied

to the crew scheduling.

Modelling gives some insights to understand the other perceptions, helps explor-

ing new methods. Besides it is very helpful tool to improve organizations and enhance

their capability. Accordingly, we organized system inputs and outputs, and then we

improved our solution methods based on mathematical modelling or heuristic ap-

42

proaches. The other important challenge of this study was producing reasonable

solutions to real life conditions and performance analysis of the suggested methods.

To be able to obtain effective solutions and test the performance analysis of solu-

tion methods, the well-designed data was required. Therefore, the importance of

reaching or obtaining data cannot be disregarded. We simulated our own data using

modelling methods based on the information provided by companies.

As mathematical modelling was required for solving this problem, It was really

important to explore the problem with all dimensions. Observing the effects of dif-

ferent parameters on the performance of modelling approaches enriches the research

and makes it more complete. With the help of some statistical tools, better in-

sight can be obtained. Accordingly, statistical methods took place in the research

methodology, as well.

The other method that I preferred to use in my research is the case study. This

method is used in so many different disciplines. Case study is explained as a detailed

intensive study of a unit, such as a corporation or a corporate division that stresses

factors contributing to its success or failure. Case study research can be used for

providing a connection between the research and the real life example of this re-

search. Generally, there are some basic steps that should be used when conducting

a case study. The first step is defining the research subject and explaining the aim

of subject. The second step is choosing the cases which you want to work on and

deciding the methods of collecting data. The other steps are related to data prepa-

ration, collection, analysis and reporting. As data gathering is really important for

finding reasonable solution methods and evaluating these methods properly. It is

better to see the company at their own place to understand the reasons of schedul-

ing drawbacks. If the company is visited on-site, it would be easier to observe the

operations. Furthermore, case study in a shipping company would give advantage

to understand the possible problems of the crew, and to observe the deterministic

and non-deterministic parameters for our mathematical model. Another advantage

of case study with a company is the possibility of a joint work with this company

and reaching realistic results. This provides a plus for organizing a cost analysis.

Accordingly, we can have a chance to evaluate how our suggestions work in the cost

side; cost can be minimised with this study after operating a joint work with the

company.

When talking about the philosophical paradigms of this research subject it is

important to give information about the ontology of this study. In general speaking

43

it can be said that ontology is keen on the nature of the reality. This research subject

is looking for a single reality. Accordingly we can state the main ontology of this

research is based on objectivism.

Objectivist approach looks for reality through the scientific facts, laws and rules.

In this research, we aimed to suggest different solution methods to optimize the

schedule via robust optimisation methods which is subsection of mathematical pro-

gramming. We will evaluate the results and performance of our study from this

concept. In the light of these targets, this research is based on the scientifically

proved facts. In addition to these, objectivism requires researchers to take external

place. The researcher must take a positive stance and become an independent ob-

server throughout the research process. Accordingly, we did not put our biased ideas

into the study. Even, our research is based on the non-deterministic parameters,

this does not affect the nature of reality. Nature of reality of this research was based

on the single reality because we planned to approach this problem working with the

simulated data which is based on the facts obtained from literature.

Another important philosophical foundation of the research is to understand the

knowledge of this study and express the basic belief of the researcher. This knowl-

edge defines the epistemological position of the research. The main epistemological

positions in management science are positivism, critical realism and interpretivism.

It can be roughly said that the ontological position of these paradigms change from

objectivism to subjectivism and from positivism to interpretivism. Positivist philos-

ophy accepts ideas that are capable of being proven scientifically. From this point of

view, in this research the main paradigm is positivism. Within the light of this ex-

planation, it can be stated that there is a consistent relation between the ontological

and epistemological background of this study. At the same time, we defined crew

related problems on costs in a realistic way. This gives us another research paradigm

as realism. Actually, realism and positivism have similarity settings in terms of data

gathering. Realism is not as deterministic as positivism but at the same time it does

not have totally subjective view to the knowledge.

When looking for the truth has again external stance but researcher gives the idea

of theoretical reasoning and experimentation. The reasoning of quantitative research

can be stated as deductive. Deductive approach starts with a theory or hypothesis

and then used observation for confirmation of the study. In this research we also start

with literature review for existing theories rather than data. After that the model

has to be computationally tested for confirmation. Last but not least it is believed

44

that the problem can be solved by using modelling, particularly to mathematical

programming. Mathematical programming is a way to model the relation between

different variables at the same time holding the importance of known parameters.

In this research we attempt to develop a model using programming with the aim of

minimising the total costs of vessel crew scheduling problem.

Additionally, we concentrated on some heuristic methods. By heuristics, opti-

mality is not guaranteed for the nature of our problem but it is useful for preventing

the lodging in a definite point. Accordingly, the methods and techniques of this

research can be summarized as modelling with data generation methods based on

the scientifically verified facts, simultaneously seeing the practicality of the research.

2.5 Summary for Literature

We have presented the variety of studies that are linked to vessel crew scheduling

(VCS) by splitting them into four main groups. Based on the research in literature,

various optimisation techniques have been employed to solve the related problems

to VCS such as; branching techniques, column generation and decomposition meth-

ods, and heuristics. There are a significant amount of problems required for the

combination of these methods.

However, there are some studies that have a similar concept to our problem.

Vessel Crew Scheduling Problem with Offshore Supply Vessel setting has not been

introduced in the literature. We believe that with the help of case study method,

our problem can be distinguished from the studies in literature by having scheduling

horizon spanning several months, the frequent need of rescheduling as conditions

change over time and with the complexity of rules and regulations to be held by the

company.

45

Chapter 3

Problem Description

Crew scheduling problems have variations in different contexts. In vessel crew

scheduling, problems mostly arise from the planning time horizon of interest, the

complexity of carrying out offshore operations, specific rules and regulations in the

maritime context, and unexpected weather conditions. In addition to these, our

problem gets explicitly harder in the sense of having a global scale of vessels, mixed

nationality group of crew and having a different set of skills for offshore operations

and more extended duty time periods. In Section 3.2, the current method using by

the company for decision-making process to deal with the changes is provided and

in Section 3.1, the problem which is obtained through the case study, is described

with details.

3.1 Vessel Crew Scheduling in Offshore Supply

Vessels

A case study is an essential element of our research. The problem description is

based on the insights gained through interviews with a company, which is operating

many OSVs to provide engineering, construction and services to the offshore energy

industry worldwide, made by former PhD student Leggate (2016).

To state our problem clearly, we start by giving detailed information about crew

set. There are three groups of the crew which are named as regular crew, contracted

crew and agency crew. The set of all crew members are represented as (E).

The regular crew are shown as (R) in the mixed integer programming (MIP)

model, and they have fixed contract with the company. They also have the limita-

46

tion concerning the maximum number of consecutive weeks they can carry without

penalty cost and are also obliged to rest to fulfil the minimum amount of rest period

after departing from any vessels. The second group of crew who are also the subset

of the regular crew are contracted crew (G). Hiring these contracted crew costs less

than hiring the other type of crew. Both regular crew and contracted crew are the

subsets of crew set (E).

Apart from the regulations related to maximum consecutive weeks of working

and minimum rest they need to take, they have guaranteed days to be assigned;

they need to work at sea per year. Otherwise, it leads additional payment for the

company with overtime cost or wastage of salary in the case that they work less than

usual days.

We also have agency crew which is again the subset of (E) and has the index

(m+1) who are found by external agencies. Although they are almost twice more

expensive than regular crew, they become advantageous in some instances such as

shortage of people and more demand for workers. Since they are available at short

notice, always meet the demand of required skill level and there is no rest constraint

for them, they are more flexible than the other categories. Due to this flexibility

of the agency crews, infeasibility of the problem can be avoided with paying more

considerable costs. Apart from the contract type of crew, there are some other

points need to be stated regarding crew features. Crew availability has importance

for being able to carry out the task at the given time for the necessary role. It is

based on different conditions of the crew like physical availability (e.g. fatigue level,

health condition, motion sickness), the nationality of the crew member (e.g. legal

and contractual requirements), eligibility (e.g. experience level, training and skills).

As we mentioned briefly maximum consecutive work and minimum rest period to

explain legal and contractual requirements, there are also restrictions with regards

to working permit for some nationals of the crew to work in ships registered under

specific flags. This situation might lead to inefficient combinations concerning cost

and mandatory paperwork. Each task is designed to be operated by a crew member

at a time, and each crew member can be assigned only one job at a time.

The most common assignment pattern for the crew is to have four weeks on board

ship followed by a four week rest period, termed four weeks on, four weeks off or

4-on-4-off, or sometimes 5-on-5-off in the case of a vessel operating in a more remote

region. However, depending on a vessel’s location, the main crew nationalities, and

the crew role in question patterns can also include 2-on-4-off, 10-on-4-off, and others,

47

(European Union, 2003). In addition to the nationality mix constraints, the crew has

different skill levels depends on their experience and training history. Accordingly,

their eligibility for each task needs to be ensured to be able to carry out the roles

that they are assigned.

Offshore supply vessels have a different kind of operations compared to other

maritime settings. The operations mostly have been designated to occur in ma-

rine support operations; therefore it requires more complex organisations and longer

planning horizon with extended duty period. Our industrial partner uses in practice

a background of 13 weeks for their crew scheduling, and hence we apply the same

length of the horizon in the remainder of the thesis. There is a need to arrange travel

in advance for the crew, and also the logistics should be arranged for the crew up to

four weeks before operations start offshore. Since the aimed planning horizon is long,

to be able to ensure the robustness of schedules, planners encounter with problems

related to practicality and maintenance of current plans which means 13-weeks in

advance in our problem. Those characteristics of our problem lead to uncertainty in

planning and make the conditions harder for crew availability. Accordingly, rolling

horizon approach has been used, and changes have been applied when there is a need

for it by using the current schedule as a starting point.

The current method applied by the company is back to back scheduling which

can be stated as assigning a crew always on the same vessel and sharing their role

with another crew in turn. In Section 3.2, the current method of the company is

given with detail.

3.2 Decision Making Process in the Company

In the current system of our industrial partner, there is no decision support tool

which can assist to find the schedules with the minimum cost for the crew or to

recover the unexpected changes in crew planning with the minimum cost.

The usual business in our industrial partner relates to providing services to the

clients for the maintenance of offshore operations. These clients are mostly offshore

oil industry companies. The agreements between the industrial partner and their

clients are based on the projects. The demand of the clients, the length of plans and

operations are determined by the clients and the company together in advance.

Operations are controlled by both onshore and offshore staff to manage the plan-

48

ning process, more precisely. In the onshore group of staff Project Managers, Vessel

Managers, Planners, and Crewing group take place. Offshore Managers work on the

vessels similar to the crew members. Apart from our industrial partner, external

travel agency and client companies are also involved in the decision-making process.

After the client and the company has agreed to the project, Project Manager

contact with the clients and determine the requirements of the project to meet the

clients’ demand. Following this process, Project manager communicates with the

Vessel Manager to arrange the assignment of the vessels to the related projects.

Vessel Managers schedule the ships and provide the information on updated ship

schedules.

The schedules are sent to the Planners, and they assign the crew members to

the vessels by considering the rules and regulations explained in 3.1. It is essential

to keep the crew schedule up-to-date for 13 weeks which is the general time horizon

for projects in the company. Vessel managers are required to inform the Planners to

deal with the change in the earliest convenience.

Crew assignments are always done on the same vessel, and the roles are operated

by sharing with another crew. This method is not robust enough towards unexpected

situations and requires some amendments to the default schedule. The Planners

need to find a new feasible plan when the change is necessary and to be confirmed

by the entitled crew, Crewing group and the Offshore Managers. As the Crewing

team organise the required travel arrangements for crew members when they are

transferred to the assigned vessel or port, they involve this decision-making process

in this step.

Furthermore, to be able to provide the transfer of crew members, the bookings

should be arranged with the Travel Agent. Four-week ahead planning is made re-

garding the crew change date. Although the reservations are completed with external

Travel Agent, Crewing employees provide the specific changes regarding the time of

crew change, vessel and location to the OffShore Managers.

Offshore Managers have administrative tasks. Together with the crew schedule

proposal, the vessel information also needs to be checked. Therefore, there should

be an information exchange between the Planners and the Vessel Managers. After

the confirmation of the suggested schedules, Planners contact the Travel Agent to

amend the bookings. There is a possibility of the refusal of the new plan; it means

that the planners need to identify a new one again.

Following the whole communication process between the onshore and offshore

49

staff and confirmation of the changed schedules, the last step of planning is completed

by the external travel agent. They obtained the information of required arrival times,

routes for transferring the crew members, new bookings or cancellations. Depending

on the collected data they organised the essential bookings and provided feedback

to the Crewing group.

Crew members are an essential part of the team that operations cannot be com-

pleted without their workforces. In the planning process, they also have a substantial

impact on the new schedules which needs to fit their needs and work standards.

The detailed business map regarding the current decision-making process of the

company is provided in Leggate (2016) at pg 314.

The drawback of the current method is that it requires many manual operations.

Accordingly, the process becomes more complicated, and planners’ main objective

becomes generating feasible schedules rather than minimising cost, increasing effi-

ciency or measuring the performance of new plans. The manual processes cause

inefficiency with regards to time, as well.

In this research we are looking for solution methods that can improve the cur-

rent system and proposed solution methods while meeting the demand by operating

the tasks for the desired time, taking rules and regulations into account, manag-

ing changes with low costs and generating recovery schedules in short time (i.e. 10

minutes). We first represent the model which organises schedules from scratch. In

Chapter 4, two mixed integer linear programming (MILP) formulation are presented

to be able to obtain feasible crew schedules with minimum cost. These MILP models

are named as Task Based (TB) and Time Windows (TW) model, in order. TB and

TW was originally proposed in Leggate (2016). The performance analysis of TB was

extended in Section 4.1 while TW was substantially revised as collaborative work in

Section 4.2.

50

Chapter 4

Formulations and Heuristics

This section includes two MILP models for the problem described in Section 3 with

the exact and heuristic solution methods. In addition to the model and solution

method representation, a thorough analysis of these solution methods are provided.

Vessel crew scheduling problem in OSV’s is computationally intractable real-life

problems with a significant amount of binary and integer decision variables. As the

nature of integer programming problems, an increase in the problem size effects the

complete enumeration in an exponential pattern. Therefore to deal with VSC in

OSVs efficiently, we suggest both MILP and Heuristics solution methods.

In this section, MILP models of Task Based (TB) and Time Windows (TW)

formulations mentioned above and the recovery form of these formulations which are

introduced in Leggate (2016), are presented in Section 4.1 and 4.2.2, respectively.

Section 4.3 gives the detailed information about the customised Heuristic algo-

rithm and an elaborate performance analysis of the Heuristic, and MILP solutions

for TB and TW formulations will follow in 4.3.2.

4.1 A Task Based Approximation

This section includes part of joint paper Leggate et al. (2017) which is the first

paper to introduce the VSC in OSV’s and emphasize the importance of recovery crew

scheduling in this concept. The first author have investigated the given formulation,

whereas I carried out the extended computational study and analysis held in the

paper.

We have a wide set of roles which must be covered by crew members, and which

51

can be broadly divided into two categories: 1) “Marine crew” include roles such as

captain, bridge and engineering crew, and must be covered at all times, even when a

vessel is unassigned or undergoing maintenance; 2) “Project crew” vary depending on

a vessel’s assignment, e.g. diving crew when a vessel is engaged in a diving project,

and also include crew working on deck such as riggers and deck foremen, who will not

be required when a vessel is unassigned or undergoing maintenance. Vessels require

only one of certain role types, such as a captain, but may require multiple diving or

engineering roles to be covered.

We consider two types of crew: regular crew, denoted by the set F = {1, ...,m},
and agency crew, represented with the index {m+1}. We also define the set of all

employees, denoted by E = {1, ...,m + 1}. Regular crew are permanent employees

of the company, and include a subset of fixed contract crew, denoted by G. Fixed

contract crew are paid a salary to work a certain number of days at sea per year,

and using this contracted number of days (as well as the number of days worked so

far in the year), the company estimates for each employee i ∈ G the number of days

this employee is expected to work in a given planning period, which is denoted by

Gi. This quantity is used in order to estimate the costs associated with overtime and

undertime, as follows: if employee i ∈ G works more than Gi days in the planning

period, each additional day will be charged by the overtime rate of Φi; on the other

hand, if this employee works less than Gi days in the planning period, then this

wastage of salary will be charged by the effective rate per day denoted by Υi. The

remaining regular crew are the so-called day rate crew, who are paid per day at sea

with a rate up to 50% higher than the rate of the fixed contract crew. Agency crew

{m+1} are outsourced by external agencies and are available at short notice, albeit

more expensive as up to twice of day rate crew. In general, the company relies on

regular employees, and uses agency crew only when absolutely necessary.

Crew availability for a specific role at a given time depends on a number of fac-

tors, including other commitments (e.g., training), unexpected unavailability (e.g.,

illness), their training and experience level, their nationality, and legal and contrac-

tual requirements. For example, ships registered under certain flags can employ only

crew from certain nationalities, costly visas may be required in certain regions, and

there might be undesirable combinations of certain nationalities. On the other hand,

each employee i ∈ E has a maximum duration they can be assigned to work, denoted

by Ωi, and a minimum duration of rest, denoted by Pi. Notwithstanding individual

differences stemming from nationalities or contractual specifics, regular working pat-

52

terns for the vast majority of crew is 4-on-4-off (4 weeks at sea followed by a 4 week

rest), and the rest 5-on-5-off (often in remote regions) (European Union, 2003). We

assume that the regular assignment pattern on each vessel is pre-determined, thus

dividing each role into four- or five-week duty periods, or tasks. We assume there

are n tasks in total, which is composed of the set of tasks which are to be carried

out, denoted by J , and the set of rest tasks, denoted by N . It is possible that a

task j ∈ J
⋃
N can cover a number of consecutive roles, and each task is designed

for a single employee, with a starting time Sj and duration Dj. Without loss of gen-

erality, we assume that the indices of all tasks in the set J
⋃
N are ordered in the

nondecreasing order of starting times, i.e., Sj−1 ≤ Sj. Crew changes take place each

week on each vessel, affecting only a subset of the crew, and the cost of assigning

employee i ∈ E to task j ∈ J , denoted by Cij, considers all penalties and financial

costs (including day rates of day rate and agency crew).

Some of the projects run by our industrial partner require specialist knowledge,

training or experience. We denote by K the set of these projects, and for any such

project k ∈ K, the company determines the minimum total experience required

across the tasks in the project, denoted by Hk. In order to be able to calculate how

much actual total experience is available in a project k ∈ K for a given allocation of

crew, the company identifies the so-called experience score Eij of employee i ∈ E for

each task j ∈ Pk.
Before formally stating the mathematical formulation of the problem, we define

next our decision variables. For each employee i ∈ E and task j ∈ J
⋃
N , the binary

variable xij takes a value of 1 if employee i is allocated to task j, and 0 otherwise.

For each fixed contract employee i ∈ G, we define the continuous variables ui and oi

to indicate the number of days under and over the guaranteed days expected in the

planning period, respectively. Finally, for each employee i ∈ E and task j ∈ J
⋃
N ,

we define the variables wij and rij to represent the accumulated work (and rest,

respectively) resource value for employee i once all tasks up to and including the

task j have been considered, where wij is a continuous variable counting the number

of consecutive working days whereas rij is a binary variable indicating whether the

employee needs a rest at this point or not. In line with these variables and the ordered

set of J
⋃
N , we also define the parameters wi0 and ri0, where the former indicates

the number of consecutive working days employee i has accumulated immediately

prior to the start of the planning period, and the latter indicates whether employee i

requires rest at the start of the planning period or not. Finally, in order to facilitate

53

the calculations of the accumulated work and rest resource value variables, we define

the parameters Wj and Rj for each task j ∈ J
⋃
N , where the work resource value

Wj is either set to the duration of the task j, i.e., Wj = Dj, if j ∈ J , or to a

sufficiently large negative number if j is a rest task, while the rest resource value Rj

is either set to 1 if j ∈ J , or to -1 otherwise.

We can now state the Task Based formulation (denoted as TB) as follows:

min
∑
i∈E

∑
j∈J∪N

Cijxij +
∑
i∈G

(Υiui + Φioi) (4.1)

subject to:
∑
i∈E

xij = 1 ∀j ∈ J (4.2)∑
j∈J∪N

xij ≤ 1 ∀i ∈ F (4.3)∑
i∈E

∑
j∈Pk

Eijxij ≥ Hk ∀k ∈ K (4.4)

wi,j−1 +Wjxij ≤ wij ∀j ∈ J ∪N , i ∈ F (4.5)

wij ≤ Ωi ∀j ∈ J ∪N , i ∈ F (4.6)

ri,j−1 +Rjxij ≤ rij ∀j ∈ J ∪N , i ∈ F (4.7)

ui ≥ Gi −
∑
j∈J

Djxij ∀i ∈ G (4.8)

oi ≥
∑
j∈J

Djxij −Gi ∀i ∈ G (4.9)

xij ∈ {0, 1} ∀i, j s.t. xij is defined (4.10)

rij ∈ {0, 1} , wij ≥ 0 ∀j ∈ J ∪N , i ∈ F (4.11)

ui, oi ≥ 0 ∀i ∈ G (4.12)

The objective function (4.1) minimises the sum of the direct costs of assigning

employees to tasks and the costs incurred due to guaranteed days of fixed contract

crew. Constraints (4.2) ensure each task is covered, and constraints (4.3) prevent an

employee to be assigned two overlapping tasks, where the agency crew (indexedm+1)

is not included since as many agency crew as needed are assumed to be available. The

minimum experience required for certain projects is ensured by constraints (4.4), and

employee’s consecutive working period lengths are calculated using constraints (4.5),

with constraints (4.6) enabling maximum permitted working durations. Similarly,

54

constraints (4.7) cover the minimum between-task rest period duration for employees,

and finally, constraints (4.8) and (4.9) enable the calculation of under- and over-time

for each fixed contract employee. We also note that in particular the constraints

(4.4), (4.8) and (4.9) are specific to this maritime setting, whereas the remaining

constraints can be found in various other transportation crew scheduling problems,

expressed either implicitly or explicitly.

Although this model provides feasible schedules by meeting the regulations re-

quirement fully, a penetrating cost function as explained in Section 4.2 with equation

(4.15) is needed for a better planning. Apart from the cost defined in objective func-

tion, there is a fundamental difference in the selection of decision variables (xij)

which shows allocation of employee i depending only on the role whereas in Time

Windows approach, same decision variable is represented as (xijt) which is deter-

mined based on both week and role for each employee. This approach brings more

possible combinations for alternative schedules.

4.1.1 Extending Task Based Model to a Recovery-type For-

mulation

The nature of our particular maritime problem requires frequent changes on the

existing schedule in light of new information about crew availabilities or vessel re-

quirements. To accommodate this, we first define a binary (m + 1) × |J | matrix

X∗ indicating assignments of the current schedule. Then, we define new binary de-

cision variables yij to keep track of changes from the current schedule, which is 1 if

there is a change to employee i’s schedule with respect to task j, and 0 otherwise.

For notational simplicity and preserving our previously defined formulation, we note

that xij is now a dependent variable and can be written in terms yij and x∗ij, where

xij = x∗ij − yij if x∗ij = 1 or xij = x∗ij + yij if x∗ij = 0. This is equivalent to:

xij = x∗ij + (1− 2x∗ij)yij;∀i ∈ E , ∀j ∈ J ∪N (4.13)

As we focus now on changes made to an existing schedule, the cost of changing an

employee’s assignment to a task (including e.g. costs/savings with respect to wage

and transportation) becomes relevant. Hence, we define two additional parameters,

C ′ij, the cost (or saving if C ′ij < 0) of changing the assignment of employee i with

respect to task j, and Ξi, the additional overtime/undertime costs for employee i ∈ G

55

with respect to X∗. Then, the objective function is as follows:

min
∑
i∈E

∑
j∈J∪N

C ′ijyij +
∑
i∈G

(Υiui + Φioi − Ξi) (4.14)

Finally, we formally state our formulation for recovery form of TB model denoted

as (RF-TB), as follows: miny,r,w,u,o ((4.14)|(y, r, w, u, o) ∈ XRF) and XRF−TB =

{(y, r, w, u, o)| (4.2)− (4.9), (4.11)− (4.13), y ∈ {0, 1}|F|×|J |}.
In the following section, the data is described in detail and extended compu-

tational study takes place for RF-TB following the section articulating the data

generation process.

4.1.2 Design of Computational Study of Task Based Method

Although access to real problem instances was not possible due to data confiden-

tiality, our industrial partner was able to provide us several specially identified key

parameters and possible values or value ranges for these parameters. The com-

pany was also interested to investigate the effect of such parameters on solving these

problems, and this process enabled us to generate randomized but realistic data sets

covering all possible combinations. We used a full-factorial design with different

number of levels involving the following four experimental factors identified by the

company, which were varied across all instances: i) The probability that an employee

is available on a given day, which is dependent on their availability the previous day

(for which we define the parameters p (and q), i.e., the probability of an employee

being unavailable on a certain day given they were unavailable (available) on the

previous day); ii) Use of a probability reduction factor, r (d), that increases uncer-

tainty about the availability of an employee; iii) A disruption penalty K (which is

split into KN for Near-term (i.e. 4 weeks), and KL for Long-term); iv) An agency

penalty factor KAG. The levels for each of these factors is listed in Table 4.1, and

the interested reader can refer to VCS-data (2015) for the data of the resulting 240

instances. We note that these instances concern problems with ship captains only in

consistency with the approach used by the company solving separate problems for

each employee category, where the number of employees was set to 48 in line with

the biggest problems of the company with 40 vessels and 13 weeks planning horizon.

Moreover, in order to provide extensive computational results in Section 4.1.2.1, we

generated 240 very large scale instances with the number of captains doubled to 96

56

by replicating the data of the original 240 instances.

Table 4.1: Levels used for the full factorial design

Factor Set of levels

p {0.2, 0.5, 0.8}
r (d) {Use, Not Use}
(KN , KL) {(1,1), (2,1) ,(2,2), (5,1), (5,2), (5,5), (10,1), (10,2), (10,5), (10,10)}
KAG {1,2,5,10}

As discussed in Section 3 , the primary concern of the company is to find feasible

solutions quickly. Hence, rather than investigating how long the optimal solution

would take to find, the aim of the computational tests is to discover the number

and quality of solutions found within a practically acceptable time limit. Since the

planners may run a model multiple times altering settings, it was agreed with the

company to test two time limit settings, namely 2 and 10 minutes. In order to provide

comprehensive computational results, we also solve the test instances that could not

be solved in 10 minutes with a time limit of 1 hour. All test runs were carried out

on a Dell Optiplex 790 PC (Windows 7 32-bit, Intel Core i5 3.10 Ghz, 4GB RAM),

and the formulations were implemented and tested using FICOr Xpress-MP (Mosel

v3.6.0, Xpress-MP v7.7).

For the cost-minimisation approach, our preliminary tests suggested changing the

default settings to a maximum of 30 rounds of cover and 10 rounds of Gomory cuts,

with an acceptable gap of 5% set as a cutoff.

4.1.2.1 Cost-minimisation results

In order to test the cost minimisation model, we solved 240 problem instances of

the data set VCS-data (2015) with 48 captains as well as the extended 240 instances

with 96 captains using 2-min, 10-min and 1 hour time limits. We note that a typical

instance contains around 23 thousand rows and 17 thousand columns for problems

with 48 captains, and 89 thousand rows and 67 thousand columns for problems

with 96 captains. We present overall results in Table 4.2, where the number of test

instances that were completed in 2-min/10-min/1-hour runs are noted in columns

“Opt.” (for optimal solutions) and columns “< 5%” (for instances that were stopped

due to gap in a run being less than the acceptable gap of 5%). In addition, the

columns “Ave.” indicate the average gaps and the columns “Med.” indicate the

57

median gaps for all 240 instances in each set, where we calculated the gaps using the

overall best bound for each instance, i.e., the bound obtained from the 1-hour run,

rather than the bound obtained in each run with different time limits, in order to

provide a clear comparison of solution qualities between different lengths of runs.

As Table 4.2 clearly indicates, the biggest instances the company deals with in

practice, i.e., those with 48 captains, can be in general solved very effectively. Even

using the 2-min time limit, only 13 out of 240 instances cannot be solved within

5% of optimality, and 2 of these instances can be brought within 5% of optimality

using the 10-min time limit. This is certainly encouraging for the practical use of the

approach, as only 11 out of 240 instances (≈ 4.6% of the total) do not achieve the

desired optimality gap of 5%. On the other hand, extending the time limit to 1-hour

does not provide any benefit for these instances, only with marginal improvement

of gaps for the remaining 11 instances (and no further instance brought within 5%

of optimality). Next, we discuss the instances with 96 captains that provide further

insights with regards to the computational capability of the models proposed for

large-scale problems. Although these significantly bigger problems are naturally

more challenging, resulting in average percentage gaps of 33.04%, 9.81% and 9.70%

for 2-min, 10-min and 1-hour runs, respectively, the proposed models still remain

practically effective, indicating further possibility for use even in case of significant

growth of the company, such as in case of a merger. As results indicate, 149 out of 240

instances (≈ 60.1% of the total) can achieve the desired optimality gap of 5% in a 10-

min run. Although extending the time limit to 1-hour helps to achieve the desired

optimality gap for 5 more instances, the improvement of gaps remain marginal,

similar to our previous experience with the 48 captain instances. In addition, the

histograms in Figure 4.1 provide a breakdown of solutions with respect to gaps for

all these tests. These figures present a better understanding of the improvement of

gaps with longer computational times, though the improvements remain marginal,

in particular for the case of 48 captains.

The results obtained so far also motivated us to further investigate challenging

test instances with extensive computational runs. Therefore, we have applied a 6

hour time limit and executed the approach on the 5 instances with 48 captains that

could not be solved to optimality in 1 hour and had a gap of 6% or higher, in order to

ensure not to be too close to the 5% gap cutoff. As the results in Table 4.3 indicate,

these most challenging 5 instances improved only marginally between 1-hour to 6-

hour runs, the best performing instance (R205) having still a gap of 6.1%. Our

58

Figure 4.1: Gaps found in 2-min, 10-min and 1-hour cost-min runs for 48 captains
(top) and 96 captains (bottom), based on best known bounds. x-axis indicates the
integrality gaps, and y-axis indicates number of instances in each bracket.

59

Table 4.2: Cost minimisation results for instances with 48 and 96 captains.

48 captains 96 captains

Time Opt. < 5% Ave. Med. Opt. < 5% Ave. Med.

2-min 106 121 2.47% 0.27% 20 107 33.04% 4.76%
10-min 106 123 2.42% 0.27% 21 128 9.81% 4.22%
1-hr 106 123 2.41% 0.27% 21 133 9.70% 4.22%

preliminary tests with some of the unsolved 96 captain instances indicated a similar

pattern of very limited improvement over extended runs, though it is also worth to

note that some of these large scale instances experienced memory issues.

Table 4.3: 6-hour extensive runs for challenging instances with 48 captains.

Instance Opt.(1-hour) Opt.(6-hour) Best Bound (6-hour)

R001 1827 1801 1029.25
R005 20.5 20.5 -50.515
R056 22620.8 22618.8 18822.11767
R081 -409 -409 -507.333
R205 -394 -396 -424.008

Finally, we note that we will discuss in Section 4.1.2.2 the effect of parameter

values, using statistical analysis tools such as Kruskal-Wallis test.

4.1.2.2 Effect of parameter values on results

As discussed before, several parameters were varied for the generation of data in-

stances. In this part, we investigate the effect of changing these parameter values

using “Analysis of Variance”. We used the ANOVA and F-test where possible; how-

ever, we note that for some of the parameters investigated, the required assumption

of normal distribution did not necessarily hold and hence, the non-parametric equiv-

alent “Kruskal-Wallis test” was carried out instead. Table 4.4 shows the p-values for

these tests, with respect to the varied parameters and the key output measures. We

grouped the outputs in 3 main groups depending on the main objective functions

that we run for experimental results. In Table 4.4 these 3- main groups and the

depending performance measurements are given on the y-axis and the parameters

are given on the x- axis. The type of applied tests is also stated in the x-axis of

Table 4.4.

60

The null hypothesis that we use for testing the parameter values effect is that

there is no difference between different levels of a given parameter. Accordingly

an asterisk next to a p-value indicates that, at the 5% significance level, there is a

significant difference between the values of the given key output measure for instances

generated using different values of the given parameter. For example, where the ‘#

changes - 2mins (only)’ row intersects with the ‘p and q’ column the value of 0.004∗
indicates that there is a significant difference between the number of changes in the

min-cost solution between instances which were generated using different values of

availability probabilities p and q. Those parameters which returned a significant

result as shown in Table 4.4 required further investigation to determine in what way

the change in parameter values was significant. We note that the quantity K̄ is an

average of the Near and Long disruption factors KN and KL, weighted according to

the number of weeks to which each apply (i.e. 4 and 9 weeks in a 13-week planning

period).

Further investigation allows us to make some observations about how the values of

these parameters may influence the running of the models in practice. For example,

it can be seen from the table that the factors relating to crew availability have a

significant influence on specific outputs pertaining to change. As might be expected,

we can conclude that if in reality, crew absences tend to be longer but less frequent,

then we would wait to see fewer changes being found in the 2-min cost-minimisation.

A similar pattern might be observed if the time reduction of the absence proba-

bility proved to be a reasonable assumption in reality.

Meanwhile, the factors which relate to costs have a considerably broader influ-

ence. If the company wishes to apply disruption factors (i.e. penalties for mak-

ing changes to the schedule), then, in general, we expect the effects to be: i)

shorter run times in both approaches, ii) fewer iterations for change-minimisation,

iii) fewer changes in 2-min cost-minimisation, iv) smaller cost gaps both for the

cost-minimisation approach.

The additional penalty for using agency crew has a similar influence concerning

running time, iterations and gaps in cost, but has no significant effects on the number

of changes. It should be noted that when the agency penalty is not applied, especially

extended run times and large percentage gaps in cost are observed.

61

T
ab

le
4.

4:
R

es
u
lt

s
of

A
N

O
V

A
an

d
K

ru
sk

al
-W

al
li
s

te
st

s
fo

r
in

fl
u
en

ce
of

p
ar

am
et

er
s

u
se

d
in

in
st

an
ce

ge
n
er

at
io

n

K
-W

or
P

ar
am

et
er

O
u

tp
u

ts
of

in
te

re
st

A
N

O
V

A
p

an
d
q

u
se
r(
d
)?

K
N

K
L

K̄
K
A
G

10
m

in
s

K
-W

0.
28

3
0.

13
7

0.
00

6*
0.

00
0*

0.
00

0*
0.

20
1

R
u

n
ti

m
e

2m
in

s
K

-W
0.

21
7

0.
35

1
0.

00
3*

0.
00

0*
0.

00
0*

0.
00

8*

#
ch

an
ge

s
2m

in
s

(o
n

ly
)

A
N

O
V

A
0.

00
4*

0.
00

0*
0.

00
0*

0.
00

0*
0.

00
0*

0.
96

0

A
ct

u
al

;
10

m
in

s
K

-W
0.

11
5

0.
38

3
0.

16
8

0.
00

0*
0.

01
0*

0.
56

0
C

os
t-

G
ap

fo
u

n
d

in
A

ct
u

al
;

2m
in

s
K

-W
0.

70
1

0.
43

0
0.

02
4*

0.
00

0*
0.

00
0*

0.
01

5*
m

in
ea

ch
ru

n
A

d
ju

st
ed

;
10

m
in

s
K

-W
0.

45
8

0.
57

6
0.

06
3

0.
07

4
0.

21
3

0.
20

8
se

tt
in

gs
A

d
ju

st
ed

;
2m

in
s

K
-W

0.
53

8
0.

82
5

0.
43

2
0.

01
1*

0.
10

4
0.

05
6

A
ct

u
al

;
10

m
in

s
K

-W
0.

15
8

0.
15

2
0.

22
7

0.
00

1*
0.

03
3*

0.
76

7
G

ap
to

b
es

t
A

ct
u

al
;

2m
in

s
K

-W
0.

34
1

0.
23

1
0.

16
9

0.
00

0*
0.

00
1*

0.
10

6
k
n

ow
n

A
d

ju
st

ed
;

10
m

in
s

K
-W

0.
43

4
0.

63
6

0.
04

9*
0.

05
4

0.
15

1
0.

03
2*

b
ou

n
d

A
d

ju
st

ed
;

2m
in

s
K

-W
0.

59
2

0.
97

5
0.

15
8

0.
02

7*
0.

27
7

0.
10

1

R
u

n
n

in
g

ti
m

e
K

-W
0.

10
1

0.
52

8
0.

04
5*

0.
00

1*
0.

02
3*

0.
00

0*
R

u
n

d
et

ai
ls

It
er

at
io

n
s

A
N

O
V

A
0.

00
1*

0.
00

0*
0.

00
3*

0.
12

5
0.

03
7*

0.
00

0*

#
of

F
ir

st
so

l
fo

u
n

d
A

N
O

V
A

0.
00

0*
0.

00
2*

0.
51

5
0.

80
8

0.
94

1
0.

78
0

C
h

an
ge

-
ch

an
ge

s
L

as
t

so
l

fo
u

n
d

A
N

O
V

A
0.

00
2*

0.
00

2*
0.

00
3*

0.
00

7*
0.

01
0*

0.
56

1

m
in

F
ir

st
m

in
-c

h
n

g
so

l
A

N
O

V
A

0.
28

0
0.

39
3

0.
00

1*
0.

01
2*

0.
00

5*
0.

00
0*

se
tt

in
gs

C
os

t
of

so
ln

.
C

h
p

st
m

in
-c

h
n

g
so

l.
A

N
O

V
A

0.
21

2
0.

19
8

0.
00

2*
0.

02
9*

0.
01

1*
0.

00
0*

%
ga

p
to

b
es

t
C

h
p

st
ov

rl
l

K
-W

0.
18

7
0.

48
1

0.
01

0*
0.

00
0*

0.
00

0*
0.

00
0*

k
n

ow
n

b
ou

n
d

A
d

ju
st

ed
ch

p
st

ov
rl

l
K

-W
0.

44
6

0.
84

6
0.

30
8

0.
00

1*
0.

01
8*

0.
00

0*

%
d

iff
in

#
F

ir
st

so
l

fo
u

n
d

A
N

O
V

A
0.

00
0*

0.
00

2*
0.

00
8*

0.
00

0*
0.

00
0*

0.
86

8
C

om
p

ar
is

on
of

ch
an

ge
s

L
as

t
so

l
fo

u
n

d
K

-W
0.

57
6

0.
83

0
0.

00
0*

0.
00

0*
0.

00
0*

0.
41

3

w
it

h
2-

m
in

F
ir

st
m

in
-c

h
n

g
so

l
K

-W
0.

43
9

0.
07

4
0.

00
2*

0.
09

3
0.

02
4*

0.
00

0*
m

in
-c

os
t

%
d

iff
in

co
st

C
h

p
st

m
in

-c
h

n
g

so
l

K
-W

0.
01

3*
0.

12
2

0.
00

8*
0.

06
4

0.
03

2*
0.

00
0*

C
h

p
st

ov
rl

l
K

-W
0.

41
3

0.
67

6
0.

18
1

0.
01

4*
0.

16
8

0.
00

0*

62

4.1.3 Summary of Findings from Task Based Model

By presenting the TB model as a solution method, a vessel crew scheduling problem

about a large global company operating Offshore Supply Vessels (OSVs) providing

services particularly to the oil and gas industry has been introduced in the literature

with providing the first computational results in this area, (Leggate et al., 2017).

Discussions with our industrial partner have also allowed us to present formulations

that could serve as part of a decision support tool, allowing the planners to find

better quality solutions in real time. The current practice for crew scheduling at our

industrial partner involves manual processes carried out on various spreadsheets.

Because of the difficulties involved in the process, and the lack of an automated tool

to aid decision making, the primary concern is to obtain feasible solutions. Even

this can be difficult, in particular when there is time pressure. Hence, TB approach

effectively provides feasible, low-cost crew schedules when necessary.

A critical aspect of the TB model is the implicit assumption that the time over

which a role requires to be covered can be divided into four- or five-week blocks.

Although in the practical setting, employees could potentially be asked to work more

irregular patterns even if not desirable. Accordingly, the TW model which is shown

in Section 4.2 and 4.2.1 meet the need of a more sophisticated model for this problem.

Even the TB model can be solved quickly, TW model, which is explained in Section

4.2 and 4.2.1 for generating schedules from scratch and finding recovery schedules

respectively, increases the flexibility for the planners as well as the potential quality

of schedules created, albeit with a need for more customized solution methodologies

in order to obtain solutions in real time.

After this analysis, we explain the other solution methods and analyse their

performances in the following sections. Section 4.2 shows another MILP model,

which is called Time Windows (TW), to solve VCS in OSV’s and provides further

insights regarding the performance of TW model and compares the efficiency of these

two models.

63

4.2 A Basic Scheduling Formulation: Time Win-

dows Model

Since the problem faced by the company has been described, we now present the

mixed integer linear programming formulation of the problem. This formulation

was revised collaboratively and presented in Leggate (2016), initially. The models

presented Leggate (2016) in is the first study for the vessel crew scheduling in OSV.

We also put down this problem description and mathematical model as a basis for

this thesis. Throughout the study, we develop new solution methods, revisit the

formulation in Section 5.2 and compare our findings by considering Leggate’s study

as a reference point.

This model holds the assumption that scheduling is designed for the entire plan-

ning period from scratch, and there is no partial schedule in existence prior to the

start of the scheduling process.

Sets and indices, parameters and decision variables used primarily during the

thesis are stated below.

Sets and indices

t - time index in weeks; t ∈ {1, . . . , T}.

m+ 1 - index of the agency crew(s).

m - number of regular crews.

E - set of crew combination of regular and agency crew; E = {1, . . . ,m+ 1}.

ER - set of regular crew; ER = {1, . . . ,m}.

G - set of fixed contract crew; G ⊆ ER.

K - set of vessels which are being planned for during the planning horizon.

J - set of all roles being planned for over the planning period; J = {1, . . . , n}.

Vk - set of roles to be planned for on board vessel k ∈ K; Vk ⊆ J ;
⋃
∀k
Vk = J ;

Vk ∩ Vk′ = ∅ ∀k, k′ 6= k.

λ - index to indicate an employee’s number of consecutive working weeks.

Parameters

64

Ωi is the estimated number of weeks that employee i ∈ G will work this financial

year outwit the current planning horizon ∀i ∈ G.

gi is the number of guaranteed weeks specified by employee i’s contract, ∀i ∈ G.

cOi - over-time paid per week that employee i ∈ G works in excess of gi, ∀i ∈ G.

cUi - effective under-time rate for employee i ∈ G, i.e. the weekly amount paid

to employee i which is wasted if the employee works less than gi in the year,

∀i ∈ G.

cBikt - cost of employee i boarding vessel k prior to performing a task on board in

period t, ∀i ∈ E, k ∈ Vk, t ∈ {1, . . . , T}.

cDikt - cost of employee i departing vessel k prior to period t (i.e. having completed

a task on board in period t− 1), ∀i ∈ E, k ∈ Vk, t ∈ {1, . . . , T}.

cWijt - cost directly associated with employee i carrying out role j in period t ,

∀i ∈ E, j ∈ J, t ∈ {1, . . . , T}.

cLλijt - additional cost of employee i carrying out same role j for a λth consecutive

week in period t, ∀i ∈ E, j ∈ J, t ∈ {1, . . . , T}.

ajt - indicates if role j requires an employee assigned to it in period t, ∀i ∈ E, t ∈
{1, . . . , T};

ajt =

{
1 if role j requires to be covered in period t

0 otherwise

eijt - indicates whether an employee is eligible and available to carry out role j in

period t,∀i ∈ E, j ∈ J, t ∈ {1, . . . , T};

eijt =

{
1 if crew i can be assigned to role j in period t

0 otherwise

wmaxi - legal / contractual upper limit on the number of consecutive weeks at sea to

which employee i ∈ ER can be assigned.

αmaxj - legal / contractual upper limit on the number of consecutive weeks at sea

that an individual agency employee can be assigned to role j, ∀j ∈ J .

65

ρi - minimum length (in weeks) of the rest period to which crew i ∈ ER is entitled

following a spell offshore.

sik - indicates assignment of employee i at the start of the planning period, ∀i ∈
ER, k ∈ Vk;

sik =

{
1 if crew i is onboard vessel k immediately prior to period 1

0 otherwise

sm+1,k - number of agency employees who are on board vessel k immediately prior to

period 1, ∀i ∈ ER.

σj - indicates assignment of an agency employee at the start of the planning

period;

σj =

{
1 if an agency employee is assigned to role j immediately prior to period 1

0 otherwise

wi0 - number of consecutive weeks work offshore that employee i has been assigned

prior to period 1 ∀i ∈ ER.

αj0 - number of consecutive weeks an agency employee has been assigned to role j

prior to period t, ∀j ∈ J .

ri0 - number of consecutive weeks without offshore work to which employee i ∈ ER
is entitled prior to period 1.

Decision Variables

xijt - the main decision variable, indicating each employee’s assignment,∀i ∈ E, j ∈
J, t ∈ {1, . . . , T} ;

xijt =

{
1 if employee i is allocated to role j during time period t

0 otherwise

oi - estimated amount of over-time (in weeks) that crew i ∈ G is expected to

work in the financial year.

ui - estimated amount of under-time (in weeks) that crew i ∈ G is expected to

work in the financial year.

66

bikt - indicates crew i boarding vessel k at week t, ∀i ∈ ER, k ∈ Vk, t ∈ {1, . . . , T};

bikt =

 1
if employee i must board vessel k prior to

performing an assignment in period t

0 otherwise

bm+1,kt - number of agency employees which must board vessel k prior to performing

an assignment in period t, ∀k ∈ Vk, t ∈ {1, . . . , T}. .

βjt - indicates agency crew boarding to carry out a specific role j, ∀j ∈ J, t ∈
{1, . . . , T} ;

βjt =

{
1 if an agency employee begins to carry out role j in period t

0 otherwise

dikt - indicates crew i departing from vessel k at week t, ∀i ∈ ER, k ∈ Vk, t ∈
{1, . . . , T};

dikt =

 1
if employee i may depart vessel k prior to period t

(i.e. having completed duties there in period t− 1)

0 otherwise

dm+1,kt - number of agency employees which should depart vessel k prior to period t,

i.e. having completed duties on board in period t− 1.

δjt - indicates agency crew departing after carrying out a specific role j;

δjt =

 1
if an agency employee has finished carring out role j prior to period t

(i.e finishes carrying out the role in period t− 1)

0 otherwise

wit - number of consecutive weeks work offshore that employee i ∈ ER has been

assigned up to and including week t, ∀i ∈ ER, t ∈ {1, . . . , T}.

αjt - number of consecutive weeks that an agency employee has been assigned to

role j up to an including week t, ∀j ∈ J, t ∈ {1, . . . , T}.

67

rit - number of consecutive weeks without offshore work to which employee i ∈ ER
is entitled after week t; for example, if rit = 2 this means that employee i is

entitled to weeks t+ 1 and t+ 2 without any offshore work.

lλijt - indicates if employee i is working at least a λth consecutive week same role j,

∀i ∈ E, j ∈ J, t ∈ {1, . . . , T};

lλijt =

 1
if the carrying out of role j in period t is at least

the λth consecutive working week for employee i

0 otherwise

Using this notation, it is now possible to express the full formulation for VSC for

OSV’s using time windows approach:

min:

m+1∑
i=1

∑
k∈Vk

T∑
t=1

(
cBiktbikt + cDiktdikt

)
+
∑
i∈G

(
cUi ui + cOi oi

)
+
m+1∑
i=1

∑
j∈J

T∑
t=1

(
cWijtxijt +

∑
∀λ

cLλijtlλijt

)
(4.15)

subject to:

m+1∑
i=1

eijtxijt = ajt ∀j, t (4.16)∑
j∈J

xijt ≤ 1 ∀t, i ∈ ER (4.17)

bik1 ≥
∑
j∈Vk

xij1 − sik ∀k, i ∈ ER (4.18)

bikt ≥
∑
j∈Vk

xijt −
∑
j∈Vk

xij,t−1 ∀k, i ∈ ER, t ∈ {2, .., T} (4.19)

dik1 ≥ sik −
∑
j∈Vk

xij1 ∀k, i ∈ ER (4.20)

dikt ≥
∑
j∈Vk

xij,t−1 −
∑
j∈Vk

xijt ∀k, i ∈ ER, t ∈ {2, .., T} (4.21)

βj1 − δj1 = xm+1,j1 − σj ∀j (4.22)

βjt − δjt = xm+1,jt − xm+1,j,t−1 ∀j, t (4.23)

bm+1,kt ≥
∑
j∈Vk

βjt ∀k, t (4.24)

68

dm+1,kt ≥
∑
j∈Vk

δjt ∀k, t (4.25)

ui ≥ gi −

Ωi +
∑
j∈J

T∑
t=1

xijt

 ∀i ∈ G (4.26)

oi ≥

Ωi +
∑
j∈J

T∑
t=1

xijt

− gi ∀i ∈ G (4.27)

wit ≥ wi,t−1 +
∑
j∈J

xijt − wmaxi

1−
∑
j∈J

xijt

 ∀t, i ∈ ER (4.28)

wmaxi lλij1 ≥ wi,0 − wmaxi (1− xij1) + xij1 − (λ− 1) ∀j, i ∈ ER, λ (4.29)

wmaxi lλijt ≥ wi,t−1 − wmaxi (1− xijt) + xijt − (λ− 1) ∀j, t ∈ {2, .., T}, i ∈ ER, λ (4.30)

αjt ≥ αj,t−1 + xm+1,jt − αmaxj δjt ∀j, t (4.31)

αjt ≥ xm+1,jt ∀j, t (4.32)

αmaxj lλ,m+1,jt ≥ αjt − (λ− 1) ∀j, t, λ (4.33)

rit ≥ ri,t−1 −

1−
∑
j∈J

xijt

 ∀t, i ∈ ER (4.34)

rit ≥ (ρi − 1)
∑
k∈K

dikt ∀t, i ∈ ER (4.35)

ρi

1−
∑
j∈J

xijt

 ≥ ri,t−1 ∀t, i ∈ ER (4.36)

xijt ∈ {0, 1} ∀i, j, t (4.37)

lλijt ∈ {0, 1} ∀i, j, t, λ (4.38)

bikt, dikt ∈ {0, 1} ∀k, t, i ∈ ER (4.39)

βjt, δjt ∈ {0, 1} ∀j, t (4.40)

bm+1,kt, dm+1,kt ≥ 0 and integer ∀k, t (4.41)

ui, oi ≥ 0 ∀i ∈ G (4.42)

wit, rit ≥ 0 ∀i, t (4.43)

αjt ≥ 0 ∀j ∈ J, t (4.44)

The objective function aims to minimise the cost of the crew. The sources of cost

are boarding and departing of crews on vessels, working cost when they are assigned

to the tasks and penalty costs raised from consecutive work on the same vessel

without resting and also working more or less than the guaranteed time. Constraint

69

(4.16) ensures that the required number of crews are assigned to the vessels for

the specified time windows while checking the eligibility of employees. Accordingly,

constraint (4.17) prevents the overlapping assignments for crew for regular crew.

Constraint (4.17) is not valid for agency crew since they can be assigned as needed.

Boarding and departing of regular crews are determined by their allocations for

consecutive weeks. While constraints (4.18) - (4.19) decide whether employees board

or not, constraints (4.20) - (4.21) carry the same idea for departing. For agency crew

boarding and departing need to be defined differently than the regular employees

since agency crew appears at the time of need and leave after carrying out the

role. Constraints (4.22) and (4.23), which allow us to ensure that if agency crew are

assigned to a role in two consecutive weeks but should be carried out by two different

people (e.g. because of working period length restrictions), then the appropriate

boarding and departing costs are incurred for this crew change. Constraints (4.24)

and (4.25) calculate the number of agency crew boarded and departed for each

vessel and each week, in order to evaluate the boarding and departing cost of agency

crew, respectively. The legal and contractual obligations are stated starting with

inequalities (4.26) and (4.27) that calculates the respective estimated number of

weeks under- or over-utilised each fixed contract employee will be in the year. By

defining λ ∈ {1, .., wmaxi } through the model, the amount of consecutive work done by

each employee from one period to the next needs to be calculated by constraint (4.28)

and the time length spent at sea by an employee is determined by constraint (4.30)

in order to figure out potential penalty cost from long work. The parameter wmaxi

on the left-hand side of this inequality acts as a big-M to ensure that cumulative

working length wit never exceeds its legal limit for any employee. Constraint set

(4.31) carries the similar calculations with constraint (4.30) for the agency employees

from one period to the next but on a task-by-task basis, rather than employee-by-

employee. To link the penalty, cost constraints (4.33) are employed. As keeping

track of the continuous work has importance with regards to cost and regulations,

the rest periods needs to be observed, too. The constraint (4.34) gives the decrease in

weeks for necessary rest time when they are not assigned to any roles in that period.

Constraint set (4.35) resets the required number of rest weeks and calculates the

required rest period between departing from offshore work and before boarding for

any other one. With the help of these constraints, the constraint set (4.36) prevents

the assignment of employees to any roles if they are due to rest. Finally, constraints

(4.37)-(4.44) states the characteristic of each decision variable (i.e. non-negative,

70

integer, binary).

4.2.1 Recovery Formulation of Time Windows Model

The formulation which is given in Section 4.2 is designed for generating schedules

from scratch with minimum cost for the desired planning period. Although it is

essential to have a plan in advance, in OSV’s, there is a high demand for modifications

in the schedules. According to the industrial partners, it is expressed as the most

prominent issue to have a new schedule which covers the updated demand and/or

crew availability in a short time with minimum cost.

In order to meet this demand, a model is created on a rolling basis, making sure

the requirements for the coming 13 weeks as it is expressed by the company are kept

up to date at all times. The fundamental steps of the process can be considered as

follows:

1. At the end of the week t− 1, the planners will have created a feasible schedule

covering the next thirteen weeks, from week t to week t + 12. Meanwhile,

the crewing team will have confirmed the logistics for the crew changes in the

coming four weeks, i.e. from week t to week t+ 3.

2. At the start of the new week (note that a week in planning terms need not

necessarily start on Monday), the planners will receive updated information

about vessel requirements, and may also have new details on crew availability.

The schedules at this point cover the next 12 weeks (from t + 1 to t + 12),

with logistics having been arranged for the next three weeks (from t + 1 to

t+ 3); however, some of these assignments may have been rendered redundant

or infeasible by the new information received.

3. The planners work for the coming week can be broken down into three parts:

(a) To make any essential changes to the schedule for weeks t + 1 to t +

4 (note that during this week, the crewing team will be making travel

arrangements for the week t+4). As travel plans have already been made,

any changes to the schedule for this period must involve consultation with

the crewing team. It follows that it is usually more expensive, and hence

less desirable, to make changes to the schedule during this period - it

should therefore only be done if essential.

71

(b) To make any changes which may be necessary to the existing schedule for

weeks t+ 5 to t+ 12 due to modifications to vessel requirements or crew

availabilities or to account for knock-on effects of other changes.

(c) To schedule the crew for the currently unscheduled period t+ 13.

In order to model this problem, we firstly consider the partial schedule which is

known at the start of the planning step, having been decided in the previous week.

This can be described by the final values decision variables discussed in Section 4.2:

x∗ijt, o
∗
i , u

∗
i , b
∗
ikt, β

∗
jt, d

∗
ikt, δ

∗
jt, w

∗
it, α

∗
jt, r

∗
it and l∗λijt. These are now input data for the

current week, and will be used to help evaluate the changes which are required to

be made to the schedule. We will then define a corresponding new set of decision

variables which will represent the new schedule which is to be created in the current

week:

x̂ijt, ôi, ûi, b̂ikt, β̂jt, d̂ikt, δ̂jt, ŵit, α̂jt, r̂it, l̂λijt

Clearly, the new schedule must be feasible according to these new variables.

While a new feasible schedule is the main goal for this problem, what is of interest

to the planners is the changes which must be made in order to make the transition

to this new schedule. We must therefore define additional decision variables to

represent these changes. Taking for example the main assignment variable for the

new schedule, x̂ijt, we can define a new variable x±ijt such that

x±ijt =

{
1 if there is a change to employee i’s schedule in week t with respect to role j

0 otherwise

We can use this to link the previous week’s schedule, represented by x∗ijt, and the

new schedule, represented by x̂ijt, as follows:

x±ijt =

{
x̂ijt if x∗ijt = 0

xijt − x̂ijt if x∗ijt = 1

A more compact (but mathematically equivalent) way of expressing this is as

x̂ijt = x∗ijt + (1− 2x∗ijt)x
±
ijt ∀i ∈ E, j ∈ J, t ∈ t ∈ {1, . . . , T} (4.45)

Similarly, we can also define the rest of the decision variables have related cost

coefficients in objective function by using the same formulation in (4.45) apart from

72

ôi, ûi. Since under-time and over-time are not binary variables, the changes to these

can be calculated differently, and in particularly it should be noted that the change

variables u±i and o±i could take negative values. They are defined as follows:

u±i = ûi − u∗i i ∈ G (4.46)

o±i = ôi − o∗i i ∈ G (4.47)

Note that as there is no cost directly associated with the consecutive working

periods (for regular and agency crew) or resting periods (for regular crew only), and

no arrangements to be made directly concerning these, we do not track the changes.

Therefore there is no need to define or to use the corresponding variables w±it , α
±
jt,

r±it .

As the focus of our problem is now on making changes to an existing schedule, the

cost of making an assignment is now less important; instead, we must be concerned

with the effect of changing an assignment. The objective may be defined as to

minimise the number of changes (and therefore minimise disruption) required to

achieve the new schedule; alternatively, the company may prefer to minimise the

cost of the changes, where cost can incorporate a number of factors. These would

include financial costs such as changes in wage payments and transportation costs,

and may also include penalty costs in order to reflect the undesirable nature of some

options (e.g. changing an assignment at very short notice). Note that the nature

of the transportation arrangements means that some costs may not be recoverable

if, for example, an employee has been booked on a flight but it then transpires that

they are not required for that assignment. It is also important to highlight that cost

of change can be negative for some case in this context.

In general, we can say that the following cost elements (whether real or incorpo-

rating an intangible element) will be required in the cost calculation of our recovery-

type model:

φWijt - cost of changing whether or not employee i ∈ E works in role j in period t.

φBikt - cost of changing whether or not employee i ∈ ER boards vessel k in advance

of period t.

φDikt - cost of changing whether or not employee i ∈ ER leaves vessel k in advance

of period t.

73

φBA
jt - cost of changing whether or not an agency employee must board in order to

carry out role j in period t.

φDA
jt - cost of changing whether or not an agency employee will depart a vessel

having carried out role j in period t− 1.

φLλijt - cost of changing whether or not employee i ∈ E works for at least a λth

consecutive week by carrying out role j in period t.

Using the quantities defined above, and with other quantities remaining as defined

in Section 4.2 earlier, we can next formulate the recovery-type problem. The new

cost contains change cost for related cost source and the appointed decision variables

depending on existence of change as different than the formulation in 4.2.

min:∑
i∈ER

∑
∀k,t

(
φBiktb

±
ikt + φDiktd

±
ikt

)
+
∑
∀j,t

(
φBA
jt β

±
jt + φDA

jt δ
±
jt

)
+

∑
∀i,j,t

(
φWijtx

±
ijt +

∑
∀λ

φLλijtl
±
λijt

)
+
∑
i∈G

(
cUi u

±
i + cOi o

±
i

)
(4.48)

The objective (equation 4.48) states that the total cost of all changes should be

minimised. Notice that the agency boarding and departing variables for individual

tasks (β±jt and δ±jt) are used rather than those counting the total number of agency

crew boarding and departing as in (4.15) previously. This is to account for the

possibility that an agency employee is added to one role on a vessel, but an agency

assignment is cancelled for another role on the vessel. This would give a net change

for the vessel of zero, and hence this step must be taken to ensure that the costs

associated with each change are still included in the solution.

The same constraints used in 4.2 has been applied for the recovery form with the

renewed version of decision variables such as x̂ijt instead xijt. Since xijt became a

parameter as current solution for recovery schedule, this rule is valid for x̂ijt, ôi, ûi,

b̂ikt, β̂jt, d̂ikt, δ̂jt, and l̂λijt. The linking equation are used for defining these decision

variables for recovery schedules similar to 4.45. Finally, there are binary variable

and sign constraints as given below.

x̂ijt, x
±
ijt ∈ {0, 1} ∀i ∈ E, j ∈ J, t ∈ {1, . . . , T} (4.49)

l̂λijt, l
±
λijt ∈ {0, 1} ∀i ∈ E, j ∈ J, t ∈ {1, . . . , T} , λ ∈ {1, . . . , wmaxi } (4.50)

74

b̂ikt, b
±
ikt, d̂ikt, d

±
ikt ∈ {0, 1} ∀kinK, t ∈ {1, . . . , T} , i ∈ ER (4.51)

β̂jt, β
±
jt, δ̂jt, δ

±
jt ∈ {0, 1} ∀j ∈ J, t ∈ {1, . . . , T} (4.52)

ûi, ôi ≥ 0 ∀i ∈ G (4.53)

ŵit, r̂it ≥ 0 ∀i ∈ ER, t ∈ {1, . . . , T} (4.54)

α̂jt ≥ 0 ∀j ∈ J, t ∈ {1, . . . , T} (4.55)

u±i , o
±
i are unrestricted ∀i ∈ G (4.56)

4.2.2 Computational Analysis of Time Windows Model

The recovery form of TW model given in Section 4.2.1 fundamentally differs from

the TB approach with the complexity of decision variables used for determining the

assignment of employees. In TB model, one tries to figure out whether an employee

should be assigned to a pre-determined task block or not. On the other hand in TW,

the primary decision variable becomes whether assigning an employee to a specific

role at a particular week or not. The constraints described in TB and TW model

differ from each other accordingly. In addition to the decision variables, some of the

cost components distinguish from the TB model as well. TW model is more elaborate

than the TB model, and have more integer decision variables. The complexity of

constraints of TW is higher than TB model, similarly. It is important to note that

reaching the optimal solution by TB formulation does not necessarily mean that this

solution would be an optimal for the TW model.

The recovery version of TW model has been implemented in Dell Optiplex 790

PC (Windows 7 32-bit, Intel Core i5 3.10 Ghz, 4GB RAM), and tested using FICO
r Xpress-MP (Mosel v3.6.0, Xpress-MP v7.7) for these 240 instances which are first

designed by Leggate (2016), similar to the TB method. The study of Leggate (2016)

initiates the VSC in OSV’s. We note that Leggate (2016) implemented the first model

as well as generated the first set of instances with 48 captains only. In this thesis,

we improve this implementation further, not only by revising the implementation for

correctness but also for optimal computational performance. Moreover, the initial set

of data is extended in this thesis with newly generated and larger instances.Detailed

material about the data sets are given in Section 4.1.2.

Since the recovery schedules are designed to respond to unexpected situations

during operations, they are supposed to generate feasible and low-cost schedules

in short time. Accordingly, we worked with various time limit settings as 2, 5,

75

Figure 4.2: Gaps found in 2-min, 5-min, 10- min and 1-hour TW runs for 48 captains,
to the best bound. x-axis indicates the integrality gaps, and y-axis indicates number
of instances in each bracket.

10 minutes and 1 hour, to observe the direct approach performance. Apart from

changing the time settings, the default settings were applied to run the computational

study for 240 generated instances. We obtained the percentage gaps by evaluating

the distance to the best lower bound amongst the 2-min, 5-min, 10-min and 1-hour

run for each instance. According to the results we have obtained from runs with

different time limits, we have observed that the number of optimal solutions is 5,

9, 15 and 17 at the end of 2, 5, 10 minutes and 1 hour runs, respectively for 240

problem sets. Considering the low number of optimality achieved by MILP, we used

percentage gap to measure the performance of this solution method. The formula

defined gap can be stated as:

Percentage Gap = (ABS(Solution found- Best Bound)/ABS(Solution found)) *

100

The Figure 4.2 shows the distribution of percentage gaps found with recovery TW

model with time limits of 2-min, 5-min, 10-min and 1-hour by FICOr Xpress-MP

(Mosel v3.6.0, Xpress-MP v7.7).

This graph shows that most of the instances have 90-95 percentage gap from

the best lower bound with 2-min solution time. As the time limit increases, we can

76

Figure 4.3: Summary of descriptive statistics on gaps found in 2-min, 5-min, 10- min
and 1-hour TW runs for 48 captains, to the best bound.

see the change in trend between the lines. The lines for 5-min, 10-min and 1-hour

have more dispersed gaps comparing to the 2-min results. Table 4.3 provides the

basic statistics related to the gaps in the run within each time settings. It can be

seen that from 2-min to 10-min the average gap decrease from 88.57 % to 67.87

%. The mean difference between 2-min and 10-min run are substantial. Although

the time increases 10-min to 1-hour, this difference becomes just 3 %. Supporting

the statement related to the distribution of gap, variance increases as the time limit

increases. Skewness and kurtosis represent the symmetry and heavy-tailed or light-

tailed relative to a standard distribution, respectively. Kurtosis changes from 8.58 to

-0.56; while, skewness approaches to 0 from 2-min to 1-hour. In other words, instead

of having heavy-tailed and asymmetric distribution, the gaps for 1-hour run disperse

more equally comparing to 2-min, and 5-min run.

The number of rows, columns and non-zero elements of the recovery model for

real sized problems is shown in Table 4.5. We can state that when we have the more

realistic approach for modelling, we have the more complex problem for the same

size problem by looking at the Table 4.5 for the large-sized problem in Section 4.1.

Problem Size Task Based Model Time Windows Model
Number of Constraints 22722 402075
Number of Columns 16804 415678
Number of Non-zero Elements 61092 1095295

Table 4.5: Number of constraints and decision variables for Task Based and Time
Windows Models

Similarly to the idea of comparing the number of constraints and decision vari-

ables for both models (TB and TW), we can compare these two models concerning

the distribution of gaps. Unless TW model, TB model has much better performance

77

Figure 4.4: Gaps found in 2-min by Time Windows and Task Based model.

reaching optimality and having less gap. However, when we reflected the results of

the cost comparison between these two models, we pointed the importance of realistic

approach for cost minimisation.

After 2 minutes run of both models for same problem sets, we analysed that cost

realised from TW model have more significant gaps. On the other hand, TB model is

advantageous on TW model for the 2-min run; although, TB formulation is not able

to find the optimum value for TW model. This difference between the performance

of TB and TW is the outcome of TB model does not allow the same flexibility for

the assignment as much as TW model does. As a result of the massive differences

between the lower bound and best solution found through the direct application

of these runs, we concluded that direct optimisation of TW and TB are not the

economical methods in practice. Especially with the case of the Planners are often

operating under time pressure and consequently waiting even ten minutes let alone

an hour is not feasible.

The need for generation low-cost feasible schedules with reasonable time frame by

our industrial partner, we decided to develop a heuristic algorithm that is capable

of reaching better results within the short period. In Section 4.3, we propose a

comprehensively customised heuristic algorithm for our problem as an approximation

to TW recovery model which was explained in Section 4.2.1. In addition to the

heuristics, we searched for decomposition methods, and the hybrid of decomposition

and heuristic methods to be able to obtain optimality in a reasonable time frame

78

under Chapter 5.

4.2.3 Summary of Findings from Time Windows Model

The problems concerned by our industrial partner are formulated in two steps. While

the TW model is presented in Section 4.2 describing the problem in detail and

defining notation, the first model constructing all schedules from scratch is built

considering the cost of the crew as objective, allowing us to set out the basics of the

model. The second model explained in Section 4.2.1 is the extended version of the

basic model with the consideration of the recovery-type nature of the real problem

to minimise the cost of possible crew changes.

As there is a high demand for recovery schedules and a need for alternative

schedules for the crew in a reasonable computational time, in Section 4.3, a heuristic

method is proposed and analysed with details.

4.3 Heuristic Solution Method

Heuristic solution methods are preferred over direct solutions in staff scheduling

literature widely as discussed in detail in Chapter 2. It is mostly the outcome

of aiming feasibility for this kind of problems where especially it is hard to get

optimality in short period of planning time, and unexpected situations occur, and

planned schedules become no longer available. Based on the low efficiency and large

gaps for most of the problem sets tested with direct solution approach on time

windows model, we decided to solve the problem with heuristics. We have designed

and implemented a heuristic approach which provides local neighbourhood search for

decreasing the cost of change from an initial feasible solution for recovery scheduling

problem. This part of the thesis is a collaborative work with Leggate (2016). The first

attempt at the need of heuristic for this problem was discussed by Leggate (2016).

After this research has started, the more customised and complicated procedures of

the heuristic are designed, collaboratively. Furthermore, in addition to the design

and development process, the implementation of the developed algorithm in C++

by using Microsoft Visual Studio 2010 is solely accomplished by my effort. The

code which is used for computational study is also provided in Leggate (2016) under

Appendix C between pages 750 and 1004.

The algorithm that is given in Algorithm 4.1 is the pseudo code of our case

79

specific algorithm to solve recovery problem and find alternative schedules on the

spot. The essential part of the algorithm can be stated as the neighbourhood search.

The primary functions that support the neighbourhood search are the extensions

and swaps of the work blocks of employees. In order to start searching other feasible

solutions, an initial feasible solution is required. To be able to explain the heuristic

method comprehensively, the terminology regarding this method is provided below.

Initial Feasible Solution: The proposed heuristic search for a schedule which has

a lower cost of change starts with an initial feasible schedule. This feasible schedule

provides information on assignment for all regular employees (R) and agency crew

member (E R) for each week by stating the vessel information if the crew member

assigned for the week ”t” or just stating that the employee is resting on time ”t”.

Accordingly, we have the assignment information of all employees for whole planning

horizon. This information assists us to be able to find new candidate solutions and

compare them with the initial one by using the functions which are described next.

Work Block: If employee ”e” is assigned to a job during the planning horizon

under certain conditions, this assignment can be defined as a work block. The

employees who already have been appointed to a role at the start of the planning

period (i.e sik = 1) carry assignment that can be defined as a work block. Apart

from the beginning of planning period, when an employee is assigned to the same

role for at least one week, this assignment points out to a work block, similarly. The

starting and finishing time, the length and the task which is subject to a possible

extension and swap are explored by a function. The evaluation of the work blocks

are done based on these features of the work block.

Block Extension: One of the methods to conduct the neighbourhood search is

extending the work blocks in the initial feasible solution. After the usable work blocks

are identified, the search can be done by extending it to either forward or backward.

Forward extension implies earlier start of the block while backward extension means

finishing this work block in a later week than the current week. In block extension,

we first check the possible length of extension depending on the starting and finishing

time (week) of the usable work block.

We cannot apply forward extension for a work block which has a work zero value

bigger than 0 (i.e. sik = 1 or wi0 > 0). Also, the maximum extension length cannot

be larger than the defined planning horizon. As an example, if work block starts in

week 3 and ends in week 6, the possible forward extension length cannot be more

than two weeks. In other words, this task block cannot start earlier than week 1.

80

Similarly, the length of backward extension cannot be more than seven weeks.

If an extension realises on a work block, then the rest of the schedule is affected by

this change, and required amendments should be applied. The reason for this change

is based on the constraint which prevents assigning more than one employee to the

same role. Extension is not applied on the agency employees as they are generally

paid higher than the regular crew. Additionally, the extensions do not guarantee the

feasibility, during the search after every possible extension is applied, the viability

of working conditions for each employee including agency employees are controlled

with a feasibility check function.

Swap: Similar to the extensions, swap is another way of finding alternative sched-

ules through the starting schedule. A swap is about exchanging a work block of an

employee with another one. The work blocks of both employees should be almost in

the same length and in the similar period. In this case, we describe one swapping

block and one selected block. The swapping block cannot start more than one week

earlier and end more than one week later the selected one. The blocks which start

earlier than the first week of planning horizon are not preferred for swapping action.

Swapping can be applied to the agency crew as well under the same conditions with

the regular employees. Even the timescale of swapping and selected blocks suits

technically, feasibility check is required to accept the swap.

The main idea behind the heuristic can be explained as follows. We start algo-

rithm with an initial feasible solution and define the cost of initial solution as best

cost. These actions are displayed as Require and Ensure in the pseudo code. Then,

in Step 1 a randomised employee list to go through the iteration is made. We look for

a usable block for the first employee e of the randomised list and looking for possible

extensions in Step 2. If it is feasible to extend backwards the current task block of

employee e, then we determine the new schedules and calculate the new cost. In

the condition of cost improvement with the suggested schedule, the initial solution

becomes tabu as the new one becomes the new current solution. We apply the same

procedure for forward extension in the absence of the possible backward extension.If

we cannot find any available block to extend forward or backward for employee e, we

try to find a feasible employee to swap their current schedules with each other and

check whether the new solution brings improvement on cost, it is feasible, or it is a

tabu solution as it is stated in Step 3 to Step 9. For all employees in the randomised

list, we go through the same procedures as the first employee in the list until the

given time limit reached. We record all the tabu and infeasible schedules during the

81

search, accordingly do not allow them as new candidates.

Algorithm 4.1 Heuristic for Recovery Scheduling for Vessel Crew

Require: Initial feasible solution; randomize employees
Ensure: best cost:= initial cost

1: for employee = e; employee ∈ Randomlist; employee+ + do
2: Find an usable block to search for extension or swap from current schedule of

employee e
3: Extend the usable block with backward extension if possible ;
4: If not forward extension if possible;
5: If not swap the block with another employee
6: Calculate cost and check feasibility after every extension or swap
7: Accept if new cost < best cost then best cost:= new cost
8: Assign as tabu solution if infeasible or no improvement on cost
9: Check there is a new candidate or not

10: If no candidate solution exists go to next employee in the randomized list
11: end for{employee}
12: End Repeat until the time limit is reached

The essential part of the algorithm can be stated as the local neighbourhood

search. We organise the search with the idea of extensions as long as possible (max-

imum for both forward and backward extension) by checking the feasibility in every

attempt to extend the time block for the concerned employee. If any later or ear-

lier blocks (respectively for backward or forward extensions) had to be disrupted to

maintain feasibility, then try to allocate the task to a more suitable employee, i.e.

one who was assigned to an adjacent block in the current solution working periods

where possible (with any tasks being removed as a knock-on effect being allocated

to agency crew). As we mentioned above, another way of sustaining the search

is swapping. The blocks can be swapped with another block which includes same

time period with the one subject to change or can be one week longer at most. We

proposed to make the swaps possible for unoccupied employees.

In addition to defining the search space, another fundamental information to

be constructed is how to accept the suggested solutions after every new solution

is obtained. We put feasibility check function at the end of every iteration, and

we tagged them either as a tabu solution under the case of infeasibility detected

or as candidate solutions in the case of feasibility. We preferred using the tabu

solution concept especially to prevent having infeasible results repetitively as this

would potentially save the significant amount of computational time.

82

Besides the core parts of the algorithm, we enrich the computational study and

expand the selection of feasible schedules; we suggested extra settings that are de-

scribed with details in Section 4.3.1 for the formal testing of customised heuristic.

The heuristic is coded in C++ and tested on 240 problem sets with 2−minute
time limit. Although the main idea behind the heuristic is explained in Algorithm

4.1, we used 48 different settings, which are discussed in detail under Section 4.3.1,

to test the effect of decision points on cost improvement. Since our problem is too

case-specific, it is important to see the results of different settings. Depending on

the construction of this heuristic, it can stated that in addition to the local iterative

search, the search is improved by applying some meta-heuristic methods. Keeping

track of the list of infeasible schedules shows similarity to the tabu search. Defining

different acceptance criteria is a different way of simulated annealing method and

random kicks aim to change the neighbourhood like variable neighbourhood search.

The extended computational study of the given solution method is presented in

Section 4.3.2.

4.3.1 Different Settings of Heuristic Algorithm Test

The implementation process of the heuristics is made exhaustively with the consider-

ation of the increment in the potential search area. The first application of heuristics

heavily depends on the greedy search which has tendency of encountering with the

problems such as getting stuck at local minimum points and plateaus, maintaining

search without having the chance of revoking in the case of need for a change (Crama

et al., 1995). In the light of this information, with the goal of having a more elab-

orate and flexible heuristic search we extended our algorithm by adding acceptance

criteria, list ordering rules and some kick points for changing the area of search.

Although the algorithm 4.1 gives main idea behind heuristic simply, we used

different settings for some decision points. We tested the heuristic and did compu-

tational analysis with the extended versions by using 5 main different parameter,

listed below:

• Kick : No kick, 4+ iterations, 8+ iterations

• Initial Solution: Task Based Solution, Heuristic Initial Solution

• Employee Order List: Smart, Random

83

• Acceptance Rule: Best, Current

• Number of Employees Examined: 1/3rd, All

Based on these parameters and the settings applied for each parameter 3 ∗ 2 ∗ 2 ∗
2 ∗ 2 = 48 different versions of heuristic is obtained. For a clear understanding of

the customized heuristic, it is essential to explain the reasoning behind each setting

and their functions.

Kick: The idea of kick is based on the need of working on new search space to

avoid as much as possible from the local optima and plateaus during the heuristic

search. A kick is called during the search when we cannot observe any improvement

in the results after certain number of repetitive iterations. When a kick is called,

it provides a new space for search and amend the neighbourhood. The various

settings has been suggested for starting the kick that are listed below during the

computational study;

• Kick is not applied.

• If there is no change for best solution during at least four iterations, and a)

kick has not been applied; or b) kick has not been activated for the last twenty

iterations; or c) the current cost and the best cost achieved has the same

value; or d) without taking into account the values of best solution, if there is

no decrease on the current solution during at least four iterations

• If there is no change for best solution during at least eight iterations, and

a) kick has not been applied; or b) kick has not been activated for the last

forty iterations; or c) the current cost and the best cost achieved has the same

value; or d) without taking into account the values of best solution, if there is

no decrease on the current solution during at least eight iterations

.

Initial Solution: To be able to start the heuristic search, the initial feasible

solution has quite a lot importance for the rest of the search. In order to initiate

our customised heuristic, we used the TB method which was explained in details

in Section 4.1 and a randomised heuristic algorithm which is proposed by Leggate

(2016).

Employee Order List: While examining the employees for possible extensions

(forward/backward) or swaps used for finding the alternative solutions, a list is

84

provided either random or organized with a rule. We called the ordering based on a

rule as smart ordering. The logic behind the smart ordering can be stated as; when

a kick has been activated or it is the first iteration, then the employees are sorted

randomly; otherwise, if decrease in the cost is observed at the current iteration then

employees are sorted by putting the employee with a recent change as first in the list.

If any of the cases above has not been realized then the sort is organized accordingly

putting the least changed one the top of the list.

Acceptance Rule:This rule is about deciding the solution to be continued with

during the search. We have two options here to determine our current solution either

assigning the best solution as current or without looking at the cost when we have a

change in the cost by neglecting the increase or decrease, we continue with the most

recent feasible solution. We applied both of these rules to test their impact on the

performance of heuristic.

Number of Employees Examined: The reason of to be thought the num-

ber of employees as a heuristic criterion is about the low performance of the initial

heuristic in FICOr Xpress-MP (Mosel v3.6.0, Xpress-MP v7.7) and requiring long

computational time on examining all of the employees. Although the speed of C++

is indisputably higher than the speed of FICOr Xpress-MP and there is no time con-

cern in C++, we would like to see whether this setting makes a significant difference

or not. Therefore, the number of examined employees are tested as All employees

and One-third of all employee.

Based on these settings, 48 different version of heuristic is implementation of

heuristics solution method. We applied all the methods to 240 problem sets that has

been generated in FICOr Xpress-MP (Mosel v3.6.0, Xpress-MP v7.7), accordingly

we obtained 48x240 = 11520 data points to discuss the performance of heuristic

method. To identify the effects of these 5 parameters on heuristic performance, full

factorial design analysis is applied. The discussion of this analysis is presented at

Section 4.3.2.

4.3.2 Computational Results

The rough numbers, which indicate the performance of direct solution method, were

discussed in Section 4.2.2. In Section 4.3.2 we analysed those numbers with more

detail.

Figure 4.5 underlines the performance of three different solution approaches. The

85

Figure 4.5: Percentage gap dispersion cross solution methods

methods which are compared are TB approximation, TW model and the customised

heuristic. The results are obtained with the 2-minute time limit. As 48 different

settings are applied for testing the heuristic, the average gap collected from these

48 configurations is presented in the figure 4.5. This figure shows that heuristic

solution has higher efficiency than the other direct methods regarding less number of

instances which have percentage gap higher than 60%.The average percentage gap

of heuristics is 18 % lower than the direct solution method, and we observe more

dispersed distribution for gap values of the heuristic rather than cumulated around

90% as in the direct approach. The number of sets, which have gaps up to 50% is

much higher for the heuristics approach compared to the TB and TW model. On

the other hand, it is observed that direct solution approach reaches optimality for 5

sets in 2-minutes while TB approximation or any heuristic methods cannot achieve

the optimality in the same solution time.

Although heuristics do not perform well for reaching the optimality, they have

higher performance regarding having the lower cost of a shorter solution time amongst

the overall results. The figure 4.6 shows the difference between percentage gap of 1-

hour TW model and 2-min heuristic method. To measure the performance of heuris-

tics, we first highlight the minimum objective function values among 48 versions

of heuristics for each problem set. The mean and median percentage gap of these

minimum costs is shown in the second line in Table 4.6. In addition to the minimum

costs, the costs found by the average of 48 version for each instance are calculated.

86

Figure 4.6: Percentage gap dispersion for TW and the heuristic method

The mean and median values of percentage gap depending on these average costs are

highlighted in the third line of the Table 4.6. The last two lines of this table, mean

and median percentage gaps obtained by direct solution approach (MIP of recovery

formulation) are presented.

Afterwards, we compare these highlighted values with the objective function val-

ues reached after solving the direct formulation with 1-hour time limit. In the sequel

of this comparison, we conclude that performance of heuristics with 2-minutes time

limit overcomes even the 1-hour direct solution’s performance concerning the median

and mean values with almost 8% and 6%, respectively. The mean difference increases

30% when we check the results under the same time limits for optimisation solver

and heuristics (see Table 4.6).

Solution Method Mean Median
Heuristic Solution (Min)- 2 min 58.83% 59.72%
Heuristic Solution (Average)- 2 min 70.89% 72.27%
Direct Solution - 2 min 88.57% 95.64%
Direct Solution - 1 hour 64.33% 79.46%

Table 4.6: Summary of Percentage Gaps

Besides achieving the lower gaps in, the shorter period through suggested method,

it is essential to explore the cost improvement through the neighbourhood search.

According to the computational test, there is a 34% decrease on average from the

87

initial solution to the best solution obtained after 2-minutes of search. As the initial

feasible solution is an important parameter that can affect the heuristic search, the

improvement of the different initial solution methods is also analysed.

Initial Solution Average Improvement
Task Based Approximation 30.50%
Heuristic Initial Solution 38.86%

Table 4.7: Cost improvement through different initial solutions

When the percentage improvement is calculated based on the variation between

the initial solution and the result after search completed for 11520 data points, the

observed maximum is found as 88%. Additionally, the test results indicated that a

decrease in the cost for all instances is detected. However, depending on the settings

of heuristic that is applied, there are some data points no change has been examined

from the initial cost.

Since we do not want to misread the results and figure out the best combina-

tion for heuristic amongst 48 versions, we conduct a statistical analysis considering

the potential impacts caused by the characteristics of problem sets and variety of

heuristic methods. Therefore, we investigate the effects of 4 parameters listed in

Section 4.1.2 and 5 different settings for heuristics mentioned above through a full

factorial design analysis. Depending on the fact that all independent variables (ef-

fects) are categorical while the explanatory variable (GAP) is continuous, we apply

linear regression for categorical data analysis by using SPSS 24.0 with emphasizing

the characteristics of all variables. We define the parameters related to problem

set attributes as ordinal and the parameters associated to heuristic variations as

nominal.

As a result of this statistical analysis, we conclude that apart from order and

accept criterion; all parameters have a statistically significant effect on percentage

gap with 99% confidence interval with a 56% adjusted R-square value. Based on the

SPSS output of this analysis, we can state that rather than the heuristic settings,

problem characteristic is more effective on the mean values of GAP. It is also a

result of the elaboration of instances explained by these given parameters. Agency

penalty factor and the probability of crew availability have the highest impact with

the most elevated coefficient values, and the initial solution seems more important

than the other solution criterion relying on the same indicator. Detailed output of

SPSS results can be found in Figure A.1.

88

Figure 4.7: Average Percentage Gaps for Each Option

Since our primary aim is to show the existence of the relationship with the gap

and these effects instead of the accuracy of the regression model, we annotate the

results with the help of the pivot tables referencing the average gap values. The

referenced gap values are shown in Figure 4.7. As a result of this simple analysis, we

conclude that choosing one option over another affects the gap approximately with

1% almost for all settings. However, the selection of initial feasible solution can be

considered as a stronger element for the structure of heuristic.

With the conclusion of there is no direct effect of settings apart from the initial

solution decision, we looked for interactive effects of parameters. Figure 4.8 represent

the mean gaps for 48 versions by grouping them depending on their initial feasible

solution options. The numbers show that for both graphs, version 1, 7, and 8 have

the minimum values for the mean gap, while version 4 has the highest gap. Although

the difference between the highest and lowest mean gap scores is not more than 5%, it

can be stated that some versions have better quality results based on the parameter

settings.

The preferred versions, which have the lowest and highest mean gaps, are shown

explicitly in Table 4.9 and the display for table of all 48 versions is provided in

Appendix A.2.

Unfortunately, this information cannot give obvious conclusions, but we can see

the common feature that kick is not activated for the three versions which provide

the smaller gaps. The elements other than the initial solution and kick activation,

do not show significant difference depending on one option to another.

89

Figure 4.8: Average percentage gaps for heuristic combinations based on initial
solution criterion

Figure 4.9: Explanation of Heuristic Combinations for Version 1, 7, 8 and 4

4.3.3 Summary of Findings from Heuristic Method

Heuristic method, which is fundamentally based on neighbourhood search and im-

proved with tabu solutions, is implemented in C++ and tested on 240 problems with

five different settings which provided 48 various selection of heuristic applications.

As a result of exhaustive computational tests, high-quality improvement and the

higher decrease in percentage gap have been succeeded with 2 minutes run of each

heuristic.

Furthermore, it is concluded that the other dominant aspect of heuristic is the

ability to generate the significant number of alternative recovery schedules in 2-

minutes. Based on the 11520 data points, the number of candidate solutions found

during the heuristic search is 273 on average. This aspect of the heuristic solution

method provides the wide selection of recovery schedules to the planners.

90

In addition to the performance analysis of overall results, a statistical analysis is

applied to understand the effect of heuristic settings and data characteristics. As a

result of this analysis, we concluded that:

• Not Using Kicks

• Starting the search with Heuristic Initial Solution

• Using the Randomized Order List

• Accepting the first non-tabu solution which improves on the Current Solution

• Examining the one-third of all employees at each iteration

gives the less gap comparing the other settings. Furthermore,

• Low probability of crew availability

• Highest agency penalty factor

• Lack disruption factor

increase the GAP due to the hardness of the problem. Using heuristics to generate

feasible schedules within the short time is an important decision tool for minimising

the cost of crew changes and having a better planning for the efficiency.

To add more value to the research besides the practical impact and with the aim

of gaining more insights for the problem structure, we continue our investigation

with exact methods that can be applied to our problem and provide the potential

improvement to the existing solution methods.

91

Chapter 5

Benders Decomposition for VCS in

OSVs

In the VCS problem in OSVs, there are too many integer and binary variables

due to the characteristics of the problem. By using the BD algorithm, our goal

is to reduce the number of integer variables with the help of fixing specific binary

variables. As a result of this, the rest of the problem (sub-problem) can be solved

as an LP. Primarily, we aim to find the solution to our problem by decomposing it

into two problems which are expected to be less complicated and have more efficient

solution method. The principles of BD and the algorithm for MILP problem are

provided in Section 2.3.2. Through this chapter, the BD algorithm is implemented

on our problem with the acceleration techniques such as Combinatorial cuts, Pareto

optimality cuts and with the heuristic.A thorough computational analysis of these

applications is also designed and a discussion around this computational study is

provided.

In Section 5.1, the preliminary study for the application of BD in our problem is

represented.

5.1 Application of BD on Recovery Formulation

In order to show the compatibility of the BD for our problem structure, Theorem

5.1.1 is proposed. We use vector notation b whose component corresponds to bikt ∈
R,∀i, k, t and likewise we use notations {x, l,o,u,b,d, α, β, δ,w, r}.

92

Theorem 5.1.1 Define Q := {(x, l) : (4.16), (4.17), (4.29), (4.37), (4.38)}. Let A be

the solution space for the linear programming relaxation of problem {(4.15− 4.44)}.
Now denote the vector y = {o,u,b,d, α, β, δ,w, r}. For any x̂, l̂ ∈ Q , ProjyA is

integral where ProjyA = {y : ∃x, l, (x, l, y) ∈ A} is the projection of A in the space

of y.

Proof : For any fixed values x̂, l̂ ∈ Q, the problem becomes separable and matrices

that correspond to each sub-problem is either network or identity matrices and totally

uni-modular.�
By Theorem 5.1.1 we can ensure the suitability of Benders Decomposition Method

for our problem. Additionally, the SP of our model can be stated as below (equations

(5.1)-(5.23)) while xijt and lλijt are fixed.

min:
m+1∑
i=1

∑
k∈Vk

T∑
t=1

(
cBiktbikt + cDiktdikt

)
+
∑
i∈G

(
cUi ui + cOi oi

)
(5.1)

subject to:

bik1 ≥
∑
j∈Vk

x̂ij1 − sik ∀k, i ∈ ER (5.2)

bikt ≥
∑
j∈Vk

x̂ijt −
∑
j∈Vk

x̂ij,t−1 ∀k, i ∈ ER, t ∈ {2, .., T} (5.3)

βj1 − δj1 = x̂m+1,j1 − σj ∀j (5.4)

βjt − δjt = x̂m+1,jt − x̂m+1,j,t−1 ∀j, t (5.5)

bm+1,kt ≥
∑
j∈Vk

βjt ∀k, t (5.6)

dm+1,kt ≥
∑
j∈Vk

δjt ∀k, t (5.7)

ui ≥ gi −

Ωi +
∑
j∈J

T∑
t=1

x̂ijt

 ∀i ∈ G (5.8)

oi ≥

Ωi +
∑
j∈J

T∑
t=1

x̂ijt

− gi ∀i ∈ G (5.9)

wit ≥ wi,t−1 +
∑
j∈J

x̂ijt − wmaxi

1−
∑
j∈J

x̂ijt

 ∀t, i ∈ ER (5.10)

wmaxi l̂λijt ≥ wi,t−1 − wmaxi (1− x̂ijt) + x̂ijt − (λ− 1) ∀j, λ, t ∈ {2, .., T} , i ∈ ER (5.11)

αjt ≥ αj,t−1 + x̂m+1,jt − αmaxj δjt ∀j, t ∈ {2, .., T} (5.12)

93

αjt ≥ x̂m+1,jt ∀j, t ∈ {2, .., T} (5.13)

αmaxj l̂λ,m+1,jt ≥ αjt − (λ− 1) ∀j, t, λ (5.14)

rit ≥ ri,t−1 −

1−
∑
j∈J

x̂ijt

 ∀t, i ∈ ER (5.15)

rit ≥ (ρi − 1)
∑
k∈K

dikt ∀t, i ∈ ER (5.16)

ρi

1−
∑
j∈J

x̂ijt

 ≥ ri,t−1 ∀t ∈ {2, .., T} , i ∈ ER (5.17)

bikt, dikt ∈ {0, 1} ∀k, t, i ∈ ER (5.18)

βjt, δjt ∈ {0, 1} ∀j, t (5.19)

bm+1,kt, dm+1,kt ≥ 0 and integer ∀k, t (5.20)

ui, oi ≥ 0 ∀i ∈ G (5.21)

wit, rit ≥ 0 ∀i, t (5.22)

αjt ≥ 0 ∀j, t (5.23)

and RMP of this problem is expressed as:

min
m+1∑
i=1

∑
j∈J

T∑
t=1

(
cWijtxijt +

∑
∀λ

cLλijtlλijt

)
+ S (5.24)

m+1∑
i=1

eijtxijt = ajt ∀j, t (5.25)∑
j∈J

xijt ≤ 1 ∀t, i ∈ ER (5.26)

wmaxi lλij1 ≥ wi,0 − wmaxi (1− xij1) + xij1 − (λ− 1) ∀j, i ∈ ER, λ (5.27)

ρi

1−
∑
j∈J

xij1

 ≥ ri,0 ∀i ∈ ER (5.28)

S ≥ (b−Bx)Tπp ∀p ∈ {extrem− points} (5.29)

0 ≥ (b−Bx)Tπp ∀p ∈ {extreme− rays} (5.30)

xijt ∈ {0, 1} ∀i, j, t (5.31)

lλijt ∈ {0, 1} ∀i, j, t, λ (5.32)

S ∈ {−∞,+∞} (5.33)

The auxiliary variable S is introduced for RMP to represent the objective function

value obtained from DSP. With the help of constraint 5.29, S provides the connection

94

between SP and RMP. Meanwhile, π is obtained from the cost coefficients of DSP

which calculates the boarding, departing, under and over time costs of employees.

Sub-problem carries the constraints (4.18) − (4.36) excluding the ones in RMP, i.e.

(5.25− 5.28).

The described sub-problem and restricted master problems are the decomposed

form of TW formulation for basic scheduling problem given in Section 4.2. Since, we

are more interested in the recovery process for our case, we implemented BD algo-

rithm mainly for recovery version of the problem which is provided in Section 4.2.1.

We employed equations (4.45-4.46) and redefined them into (5.34) and converted the

cost coefficient to utilize recovery feature.

x±ijt = (x̂ijt − x∗ijt)/(1− 2x∗ijt) ∀i ∈ E, j ∈ J, t ∈ t ∈ {1, . . . , T} (5.34)

Note that the change in the decision variables for recovery schedules can be

rephrased as in equation 5.34 and put it in the formulation by replacing the xijt with

x±ijt. We applied the same rule on the decision variable for long work, board and

depart. As we rephrase the decision variables, we can utilize the cost coefficient with

cost of changes (φWijt, φ
B
ikt,φ

D
ikt, φ

BA
jt , φDA

jt , φLλijt).

We conducted a preliminary study with a small sized problem (5 weeks, 13 em-

ployees, 3 vessels) that can be solved easily with direct solution approach in very

short time (2 seconds). After we implemented the BD algorithm in FICOr Xpress-

MP (Mosel v3.6.0, Xpress-MP v7.7) (see appendix section B.1.1), we tested the

performance with this small sized problem. The initial observations based on this

experiment are:

• Can not generate any optimality cuts until the 23rd iteration

• No feasible solution obtained until the 140 seconds

• After 1 hour, the result obtained was not feasible

This preliminary study shows that the implementation of BD as we initially

proposed is not an efficient way to solve our problem. Even though we do not

aim to reach the optimality, it is not easy to obtain feasible solutions by applying

this method. Accordingly, we sought after logical explanations for the weak cuts

95

and questioned the quality of our decomposition method with regards to the fixed

decision variables and the size of master and slave problems.

We focused on searching the possible reasons of unboundedness in dual sub-

problem (DSP). When we fixed decision variables l and x, the value of wt−1,i became

a parameter under the condition of t = 1, and constraint (4.30) wmaxi lλij1 ≥ wi,0 −
wmaxi (1 − xij1) + xij1 − (λ − 1) become redundant constraint. This situation led

us to divide the constraint set (4.30) between sub-problem and restricted master

problem for t = 1 and t ∈ 2..T . We wanted to prevent possible infeasible subsystems

due to this division and generated results through RMP that are feasible regarding

the maximum consecutive work constraints. Accordingly, we decided to include w

as fixed decision variables. Hence, the constraints contained only l, x and w were

included in the RMP. In relation to this, the SP of second version of BD application

had to reformulated by the following:

min:
m+1∑
i=1

∑
k∈Vk

T∑
t=1

(
cBiktbikt + cDiktdikt

)
+
∑
i∈G

(
cUi ui + cOi oi

)
(5.35)

subject to:

bik1 ≥
∑
j∈Vk

x̂ij1 − sik ∀k, i ∈ ER (5.36)

bikt ≥
∑
j∈Vk

x̂ijt −
∑
j∈Vk

x̂ij,t−1 ∀k, i ∈ ER, t ∈ {2, .., T} (5.37)

βj1 − δj1 = x̂m+1,j1 − σj ∀j (5.38)

βjt − δjt = x̂m+1,jt − x̂m+1,j,t−1 ∀j, t (5.39)

bm+1,kt ≥
∑
j∈Vk

βjt ∀k, t (5.40)

dm+1,kt ≥
∑
j∈Vk

δjt ∀k, t (5.41)

ui ≥ gi −

(
Ωi +

∑
j∈J

T∑
t=1

x̂ijt

)
∀i ∈ G (5.42)

oi ≥

(
Ωi +

∑
j∈J

T∑
t=1

x̂ijt

)
− gi ∀i ∈ G (5.43)

αjt ≥ αj,t−1 + x̂m+1,jt − αmaxj δjt ∀j, t ∈ {2, .., T} (5.44)

αjt ≥ x̂m+1,jt ∀j, t ∈ {2, .., T} (5.45)

96

αmaxj l̂λ,m+1,jt ≥ αjt − (λ− 1) ∀j, t, λ (5.46)

rit ≥ ri,t−1 −

(
1−

∑
j∈J

x̂ijt

)
∀t, i ∈ ER (5.47)

rit ≥ (ρi − 1)
∑
k∈K

dikt ∀t, i ∈ ER (5.48)

ρi

(
1−

∑
j∈J

x̂ijt

)
≥ ri,t−1 ∀t ∈ {2, .., T} , i ∈ ER (5.49)

bikt, dikt ∈ {0, 1} ∀k, t, i ∈ ER (5.50)

βjt, δjt ∈ {0, 1} ∀j, t (5.51)

bm+1,kt, dm+1,kt ≥ 0 and integer ∀k, t (5.52)

ui, oi ≥ 0 ∀i ∈ G (5.53)

rit ≥ 0 ∀i, t (5.54)

αjt ≥ 0 ∀j, t (5.55)

and RMP of this problem:

min
m+1∑
i=1

∑
j∈J

T∑
t=1

(
cWijtxijt +

∑
∀λ

cLλijtlλijt

)
+ S (5.56)

m+1∑
i=1

eijtxijt = ajt ∀j, t (5.57)∑
j∈J

xijt ≤ 1 ∀t, i ∈ ER (5.58)

ρi

1−
∑
j∈J

xij1

 ≥ ri,0 ∀i ∈ ER (5.59)

wit ≥ wi,t−1 +
∑
j∈J

x̂ijt − wmaxi

1−
∑
j∈J

x̂ijt

 ∀t, i ∈ ER (5.60)

wmaxi l̂λijt ≥ wi,t−1 − wmaxi (1− x̂ijt) + x̂ijt − (λ− 1) ∀j, t, i ∈ ER, λ (5.61)

S ≥ (b−Bx)Tπp ∀p ∈ {extreme− points} (5.62)

0 ≥ (b−Bx)Tπp ∀p ∈ {extreme− rays} (5.63)

xijt ∈ {0, 1} ∀i, j, t (5.64)

lλijt ∈ {0, 1} ∀i, j, t, λ (5.65)

wit ≥ 0 ∀i, t (5.66)

97

S ∈ {−∞,+∞} (5.67)

The summary of the test run on the same small instance can be listed as follow:

• The total solution time to find optimal solution is 3922 second while it can reach

optimality in 14 seconds with Direct solution approach of recovery scheduling

given in Section 4.2.1.

• The total number of iterations is 151 and first 27 of them are feasibility cuts.

• It has reached 10 % gap after the 53rd iteration and it struggled to reach

optimality after that point,

Preliminary experiments indicated that model modification helped us to gain

optimal results in a shorter time. Moreover, it provides smaller gaps between the

iterations during the BD algorithm compared to the first attempt(i.e. 5.2- 5.32). We

are now able to obtain optimality cuts and optimal solution after 1-hour run. On

the other hand, it was still not comparable with direct solution approach, and for

real sized problem it ended up giving memory errors. The insights obtained from

the small instance is also not promising.

Although we managed to prevent the potential infeasibility originated from the

maximum consecutive work constraint by fixing more decision variables and adding

related constraints to the RMP, DSP mostly resulted in unboundedness.Additionally,

the time spent on feasibility cuts was not efficient enough with respect to the quality

of bounds. According to Saharidis and Ierapetritou (2010) generating optimality cut

rather than feasibility cut can result in faster convergence and increase the quality

of cuts during BD algorithm.

In the light of this information, we considered diagnosing the inefficiency. Codato

and Fischetti (2006) suggested a method for fast minimum infeasible subsystem

(MIS) search of an infeasible linear system. This approach advocates that given

an infeasible system of inequalities, similar to the constraints (5.36)-(5.49), find an

inclusion-minimal set of its rows yielding an infeasible system. It suggests that em-

ploying a dummy constraint which forces the objective function of dual sub-problem

to 1 and converts sub-problem’s right-hand side values to 0 by assuming the co-

efficient for the objective function of primal problem is to 1 to eliminate the dual

unboundedness, (Gleeson and Ryan, 1990).

98

When we adopt this information to our problem, we can find the source of infeasi-

bility by using the sub-problem Punb that has resulted with unboundedness. Solving

Punb with modification for fast MIS search, the decision variables have non-zero so-

lution values represents dual decision variables (primal constraints) as the source of

infeasibility of primal sub.

After the application of fast MIS search, we have noticed that constraints (4.34-

4.36) related to minimum rest regulations in Section 4.2 also cause dual unbound-

edness (primal infeasibility) in sub-problem. By the help of this change, the model

became more suitable to work with combinatorial Benders’ cuts (CB) of Codato and

Fischetti (2006) in the case of the unboundedness in DSP. The detailed information

for CB and how they designed in our problem take place in Section 5.3. As a re-

sult of this situation, we added the decision variable d, which states departure of

regular employees, to the set of fixed decision variables aiming to satisfy the mini-

mum rest constraints before sending the fixed decision variables’ information to the

sub-problem.

On the other hand, to apply BD algorithm on VSC in OSVs, we preferred to

have a simplified and more flexible model to work with BD as a consequence of

low performance in the preliminary result of the original model (4.2.1). We aimed

to increase the efficiency of the algorithm, and generalise the solution method with

high efficiency for original recovery model.

Section 5.2 explains under which assumptions the modified model is designed.

Also the modified mathematical model is represented. Afterwards, in Section 5.3 we

illustrate how we adopt the Combinatorial Benders’ Cuts to our problem in detail

and how we implement in the BD algorithm.

5.2 Simplification of the Recovery Form

The model given in Section 4.2 reflects the real case in the company. Although it

is important to model reality, obtaining practical results out of it makes significant

impact for the development of this study. To be able to take a further step and

improve the current solutions, working with less realistic but more flexible models is

required for our problem. Due to huge amount of binary variables and complicated

constraints that the long work cost carries, it becomes harder to find the source

of low performance of MIP and Benders Decomposition algorithm in our problem.

99

Therefore, we simplify the model by extracting the long work cost and keeping

all other constraints the same. The original model which includes the long work

variable is capable of finding lower costs than the modified model. The reason behind

this situation is about realizing an optimisation through the long work decision

variable, as well. As the modified model does not take long work variable into

account, it does not optimise the cost depending on this variable. On the other hand,

with the simplified characteristic of modified model, it is more likely to find better

solutions with the modified model for hard instances in a limited computational time.

Therefore, it can be stated that the cost of the modified model is realistic enough to

compensate the extraction of the long work cost from our model.

The decision variables measuring the existence of long work is denoted by lλijt

and becomes 1 if the carrying out of role j in period t is at least the λth consecutive

working week for employee i.

At the same time, the associated constraints with lλijt are (4.30) in Section 4.2

to utilize this constraint we need decision variable which records the number of

consecutive work up to the specified week, formulated as:

wit - number of consecutive weeks work offshore that employee i ∈ ER has been

assigned up to and including week t, ∀i ∈ ER, t ∈ {1, . . . , T}.

wit aligns with constraint (4.28) in Section 4.2. When we excluded lλijt to simplify

the model, we did not need to identify wit, and linked constraints 4.30, 4.28. In

correspondence with this, it is not necessary to keep track of consecutive working

week information for agency type crews.

αjt - number of consecutive weeks that an agency employee has been assigned to

role j up to an including week t, ∀j ∈ J, t ∈ {1, . . . , T}.

Similarly, we can express the related constraint sets (4.31 - 4.33) without the help of

αjt.

Thus, modified model excludes λmJT+mT+JT number of integer decision vari-

ables. Also, we replace the constraint sets (4.28 - 4.33) with the following constraints

to control maximum consecutive working weeks.

wmaxi ≥ wi,0 +
∑
j∈J

wmax
i −wi,0∑
t=0

xijt+1 ∀i ∈ ER (5.68)

100

wmaxi ≥
∑
j∈J

wmax
i∑
k=0

xijt+k ∀i ∈ ER, t ∈ 1..T − wmaxi (5.69)

αmaxj ≥ αr,0 +

αmax
r −αr,0∑
t=0

xm+1,j,t+1 ∀j ∈ J (5.70)

αmaxj ≥
αmax
r∑
k=0

xm+1,j,t+k ∀j ∈ J, t ∈ 1..T − αmaxj (5.71)

Another point that varies from the original model is assuming that after departing

from a vessel, it is not allowed to work without having(ρi) weeks rest for regular

employees. The regulations suggest that after departure happens from a vessel,

regular employees should not be assigned for another duty without completing the

minimum rest constraint. In the original model, it is possible to assign an employee to

a role in another vessel just after departing from a vessel. Constraint (5.72) is added

to prevent assignment of a new job and departing at the same week. Constraints

(5.73) and (5.74) are added with the expectation of obtaining tighter cuts and make it

suitable for being able to use combinatorial Benders’ cuts. The explained constraints

take place in the modified model as below, while c = min {ρi − 1, T − t}.

∑
k∈V

dikt +
∑
j∈J

xijt ≤ 1 ∀t, i ∈ ER (5.72)

xi,j,t+y = 0 ∀i ∈ ER, j ∈ J, t ∈ {1, .., ri,0} (5.73)∑
j∈J

xi,j,t+y +
∑
k∈V

dikt ≤ 1 ∀i ∈ ER, t ∈ {1, .., T − 1} , y ∈ {0, .., c} (5.74)

The objective function of the modified model becomes (5.75) after extracting the

long work cost from the model.

m+1∑
i=1

∑
k∈Vk

T∑
t=1

(
cBiktbikt + cDiktdikt

)
+
∑
i∈G

(
cUi ui + cOi oi

)
+

m+1∑
i=1

∑
j∈J

T∑
t=1

(
cWijtxijt

)
(5.75)

In accordance with the formulations and explanations above, we can state that modi-

fied model aims to minimise equation (5.75) subject to the equations given in Section

4.2 equation (4.16− 4.27) , (4.34− 4.36) and modified constraints (5.68− 5.74).

Therefore the modified model becomes:

101

min {(5.75) |(4.16− 4.27); (4.34− 4.36); (5.68− 5.74)}
As a summary, the modified model does not carry the lλ,i,j,t, wit, αj,t decision vari-

ables and the constraints (4.28− 4.33) which are related to these decision variables,

any more. The number of integer/binary decision variables in the model are signifi-

cantly less than the original model. Also, these constraints are expressed differently

in modified version by just using the decision variable xijt, accordingly we can claim

that modified model has a simpler design. It is easier to work with these constraints

for advance programming and optimisation techniques; especially, to point out the

reasons of longer solution times and diagnose errors while being suitable to possible

adjustments.

Computational studies for the instances solved both by model in Section 4.2.1

and modified model are good indicators of the validity and practicality of this new

model. Initially, we solved 240 instances, which we have tested before with direct

solution and heuristics, by using LP relaxation of three models that were original

formulation (Original) described in Section (4.2.1), modified model with (i.e. MOD-

CB) and without (i.e. MOD) the constraints ((5.72)-(5.74)),respectively.

The full code implemented in FICOr Xpress-MP (Mosel v3.6.0, Xpress-MP v7.7)

for the computational study is presented in the appendix section B.1.2.

MIP differs from linear programming (LP) with having the feasible set of all

integer-valued points within the polytope rather than the whole polytope. Accord-

ingly, the optimal solution is searched in an extreme point of the convex hull of all

feasible integral points. To relate LP solutions to the solution of MIP, we can express

that LP has larger feasible region comparing the IP. This suggests that the optimal

value to the LP gives a lower bound for the ILP. However the MIPs are computation-

ally expensive, the relation between the optimal LP value and the optimal integral

solution can be used as an indicator for the performance of different models on a

specific problem.

Following this relation between ILP and LP, we applied the relaxed LP version

of all these 3 models. We observed that Mod-CB had the highest objective function

value for all 240 instances. We calculated the percentage gap between the objective

function values obtained from the modified models and original model after lp relax-

ation. Depending on these results, the average gap between models MOD-CB and

Original model is 29.58% while it is 0.22% for MOD and Original.

All instances are solved by all these three models which have the same settings

with 10 minutes limit in FICOr Xpress-MP (Mosel v3.6.0, Xpress-MP v7.7). The

102

Figure 5.1: Comparison of GAPS to BB for MOD-CB 10-min run and Original 1-hr
run

average gaps within best bound for MOD-CB, MOD and Original model are 51.75,

57.97 and 67.96 %, whereas the number of optimum solutions out of 240 sets are 18,

15 and 14, respectively. Additionally, MOD-CB has higher lower bound in compari-

son with MOD on the 169 instances out of 240.

Following the higher performance of MOD-CB, we carry the analysis based on

the results of MOD-CB. In order to carry the computational study more concretely,

the costs of recovery schedules obtained from MOD-CB and Original model have to

be comparable under the same objective function. In other words, the results of xijt

coming from the both models are applied to the original model which holds long

work cost for each instance. Through this study, two models became suitable to be

compared on the same plaque.Related results showed that the significant difference

with respect to percentage gap between the MOD-CB and Original model is still

being held with, 54.18 % and 64.40 % respectively. Since we would like to see the

effectiveness of the modified model in a short time, we run the models with 10 minute

time limit. At the same time, we paid attention to carry the comparison of 1 hour

run with original model versus the 10 minute run with modified model. Even with

this variation in time limit, the renewed model reached smaller costs compared to

the original model on 178 instances out of 240. Additionally, on average, modified

model has less gap to the best bound with 10% in average.

Besides, the constraints (5.72)-(5.74) are sufficient to express constraints related

103

to the rest. There is no need to keep track of weeks that shows the resting period

of employees by using decision variables ri,t. However, using them as combinatorial

cuts (see Section 5.3) is preferred to strengthen dual sub-problem cuts and have less

constraints in RMP. We added these combinatorial Benders cuts as it is needed in

the sequel of DSP rather than adding all of them simultaneously.

Number of Constraints 84921
Number of Columns 95854
Number of Non-zero Elements 406060

Table 5.1: Summary of Simplified Recovery Model

In addition to the computational study for comparing the modified model and

original model, we have tested this new economic model on both medium and large

instances to observe the performance with and without constraints (5.72− 5.74).

Our objective by this revision is to be able to obtain better bounds with reasonable

solution times. Accordingly, the first assumption is that modified model finds more

alternative schedules with lower cost than the original model in the shortage of time

to solve the problem. The second assumption is about the constraints added for

having stronger cuts related to minimum rest (e.g. 5.72- 5.74) improves the quality

of bounds in comparison to the bounds of modified model without adding these cuts.

5.3 Combinatorial Cuts

Preliminary studies of BD algorithm application to our problem show that feasibility

cuts are generally very weak to obtain good lower bounds. As suggested in Yang

and Lee (2012), weak feasibility cuts lead to slow convergence of BD algorithm. We

experienced that the problem had difficulty to find feasible results to get efficient cuts

from sub-problem. To solve the problems raised from DSP unboundedness issues,

Codato and Fischetti (2006) suggested Combinatorial Benders Cuts for minimal

infeasible subsystems. We want to leave out the infeasible region with the help of

combinatorial cuts. As a result of this situation, we add the constraint set (5.74)

to the RMP in the case of obtaining extreme rays from sub-problem and to prevent

finding the same infeasible solutions in the next iterations.

104

min
m+1∑
i=1

∑
j∈J

T∑
t=1

(
cWijtxijt +

∑
∀λ

cLλijtlλijt

)
+ S (5.76)

m+1∑
i=1

eijtxijt = ajt ∀j, t (5.77)∑
j∈J

xijt ≤ 1 ∀t, i ∈ ER (5.78)

wmaxi ≥ wi,0 +
∑
j∈J

wmax
i −wi,0∑
t=0

xijt+1 ∀i ∈ ER (5.79)

wmaxi ≥
∑
j∈J

wmax
i∑
k=0

xijt+k ∀t, i ∈ ER (5.80)

αmaxj ≥ αr,0 +

αmax
r −αr,0∑
t=0

xm+1,j,t+1 ∀j (5.81)

αmaxj ≥
αmax
r∑
k=0

xm+1,j,t+k ∀j, t ∈ 1..T − αmaxj (5.82)∑
k∈V

dikt +
∑
j∈J

xijt ≤ 2 ∀t, i ∈ ER (5.83)

xi,j,t+y = 0 ∀i ∈ ER, j, t ∈ {1, .., ri,0} (5.84)∑
j∈J

xi,j,t+y +
∑
k∈V

dikt ≤ 1 ∀i ∈ ER, t, y ∈ {0, .., c} (5.85)

(5.86)

dik1 ≥ sik −
∑
j∈Vk

xij1 ∀k, i ∈ ER (5.87)

dikt ≥
∑
j∈Vk

xij,t−1 −
∑
j∈Vk

xijt ∀k, i ∈ ER, t ∈ {2, .., T} (5.88)

S ≥ (b−Bx)Tπp ∀p ∈ {extreme− points} (5.89)

0 ≥ (b−Bx)Tπp ∀p ∈ {extreme− rays} (5.90)

xijt ∈ {0, 1} ∀i, j, t (5.91)

S ∈ {−∞,+∞} (5.92)

dikt ∈ {0, 1} ∀k, t, i ∈ ER (5.93)

rit ≥ 0 ∀t, i ∈ ER (5.94)

105

Since there is a high possibility to encounter with infeasibility from sub-problem

and solving RMP with weak cuts, we decided to apply these cuts to enhance the

efficacy of Benders’ method. From now on we are working with the model in Section

(5.3) It is way more efficient than the initial attempts for the small problem but

still not working well for real sized problems. This model starts solving the RMP

without constraint set (5.74) which means (i ∗ t) number of constraints do not need

to be activated from the beginning of algorithm. They are added to the problem

when infeasibility detected in the SP. This method might be beneficial for excluding

infeasibility and spend less time arbitrary / irrelevant solutions.

5.4 Modern Benders Application with Lazy Con-

straint Callbacks

More than 50 years past from the BD invention, the technology in solvers have

been improved a lot. In classical BD model, we can add cuts only when we solve

the RMP and determine which type of cut we are planning to add, accordingly.

Although the modern solvers provide the opportunity of checking every incumbent

while RMP are being solved, it is not possible to maintain the search to pause in

every incumbent without callbacks. In the case of working with a solver supporting

callback, it is possible to get the information of incumbent and test what type of cut

would be added and what would be the UB can be obtained through the questioned

incumbent solution. With the advanced programming knowledge, it is an option

to carry the search through one tree in BD algorithm, rather than waiting for the

optimal results of the RMP which is an IP for our problem.

Thorsteinsson (2001) defends the benefits of not constructing a new master search

tree. Since there are limitations in terms of memory and time, validating the con-

vergence of the BD technique may not be attainable. On the other hand, it is suffi-

cient for a decision-maker to have a feasible solution in many practical applications.

Therefore, there is no need for decision makers to have an optimal solution. Be-

sides, good feasible solutions are usually obtained earlier during the solution process

(Rahmaniani et al., 2017) .

By observing the performance of our problem during solution of master problem,

we concluded that for large sized and medium sized problem it spends very long

time to reach optimality starting from the first iteration. Therefore, working through

106

one tree (modern approach) can be beneficial to improve our solution quality. The

primary aim of using integer callbacks is to prevent rework and not solving the

problem from scratch. This new method can be advantageous since it avoids from

revisiting a node, does not construct a new search three and spend time on an

arbitrary solution. On the other hand, it can be disadvantageous to prefer modern

approach over classical one due to the fact that solving sub-problem every incumbent

can be costly. Especially, if the cuts that would be avoided by classical approach is

added as a result of the preference of modern approach.

Pseudo code of one-tree search is shown in Algorithm 5.1.

Algorithm 5.1 Modern Benders Decomposition Algorithm

Require: y := initial feasible integer solution, UB:= +∞ , LB:= −∞
While UB-LB≤ ε Do
Solve sub-problem: maxu

{
fT ŷ + (b−Bŷ)u|ATu ≤ c, u ≥ 0

}
If Unbounded then: get ray u ; add cut (b−By)T û ≤ 0 to RMP
Else Get extreme point u ; add cut z ≥ fTy + (b−By)T û to RMP
UB:=min

{
UB, fTy + (b−By)T

}
End If
Solve RMP: miny {z|cuts, y ∈ Y } , LB:= z
Pause when an incumbent found
End while

In our formulation to solve VCS in OSV’s, we are facing the difficulty to find

a new incumbent solution, and it is like a black box to foresee the reaction to the

solver. To solve our problem we implemented classical approach in the beginning and

as a result of low performance we have tried to apply callback concept in FICOr

Xpress-MP by using Mosel language (Mosel v3.6.0, Xpress-MP v7.7). The procedure

of how callbacks work in FICOr Xpress-MP solver is visualised in Figure 5.2.

Callbacks are to help users for defining their own routines and they can be called

during the optimisation and interrupt the solver while maintaining the search with

the new requests. It is possible with Mosel to obtain the values of decision variables

by using one of the callback functions to obtain the values of current integer solution,

and send these solutions to the sub-problem to generate new dual variables. Although

the new cuts can not directly change the structure of the problem in Mosel, it is

possible to collect data from every incumbent. Only way of prompting solver for new

cuts is using cut manager callbacks through branch and bound callbacks (FICOr

Xpress-MP Optimization (2007)).

107

Figure 5.2: Callback Procedure (Optimization, 2007)

Similar to the innovation of callbacks, lazy constraints have been helpful in solving

some problems that have been formulated with many constraints. For some of these

problems with many constraints, it can be the case that some of these constraints

might not be activated during the solution process. The main method to develop a

problem using lazy constraints is to eliminate a complex and confusing part of the

problem. If a solver can manage to find an incumbent, that solution is tested against

the eliminated constraints. In situations when the solution is not feasible, a new

constraints is included to the problem in order to interrupt any possible solutions

as well as the specific one. Lazy constraints are employed as subtour elimination

constraints in travelling salesman problems (Aguayo et al., 2017), and, Pearce and

Forbes (2017) used them in a logic puzzle problem to show the application of lazy

constraints and composite variables.

Regards to this information, another attempt in the implementation of BD related

to callbacks is using lazy constraint logic for Recovery VCS problem. We have tested

the efficacy of lazy constraints by eliminating the integer solutions that violate the

rest constraints in RMP by reintroducing the constraints 5.86 as lazy cuts. We

applied the lazy cuts with the help of preintsol callback in FICOr Xpress-MP (Mosel

v3.6.0, Xpress-MP v7.7), which rejects integer solution if it violates the minimum rest

constraints in our problem. Besides, in the case of rejection the solver does not allow

to send the values of fixed variables to the sub-problem. Reminding the information

108

of not being able to add cuts apart from branch and bound callbacks, we had to call

an extra callback function to add cuts without resolving the problem. Alternatively,

we could exploit time limit to add all violated cuts and start solving the next iteration

for BD. Although using preintsol callback and add lazy cuts when it is required was

advantageous for small sized problems in medium and large instances it resulted

with spending most of the time find a feasible integer satisfying all constraints and

kept generating feasibility cuts for hours. As an example, for Set-1 it run purely

with preintsol callback for 6 hours and not able to find one feasible integer solution.

Based on the experience we encountered with different implementation for callbacks,

we decided to carry the computational analysis and improve the algorithm by using

all constraints as user cuts.

5.5 Pareto Optimality Cuts

Depending on the preliminary observations, we can state that classical BD algorithm

shows very poor performance compared to the direct solution for our problem. There-

fore, we conducted comprehensive research in BD literature for some enhancement

in MIP problems. In the pursuit of finding better cuts to increase time efficiency

for reaching optimal solutions, pareto-optimal cuts are suggested widely in the area

of operations research. These type of cuts are important because pareto-optimal

cuts cannot be dominated by any other cuts. Pareto-optimal cuts to reinforce the

BD are first defined by Magnanti and Wong (1981). They called their technique

as acceleration technique, which is the selection by alternate optima of the Benders

sub-problem. In their study, Magnanti and Wong (1981) showed that accelerating

cut generation technique provides efficient results for network location problems.

Following Magnanti and Wong’s study, Papadakos (2008) suggested some en-

hancement for pareto optimal cuts for finding alternative core point with indepen-

dent version of Magnanti and Wong (1981). Based on the paper of Papadakos (2008),

domination between two points can be defined in BD algorithm with the comparison

of two points in equation 2.14. If: (b − Bŷ)Tu1 ≥ (b − Bŷ)Tu2∀y ∈ Y where u1

and u2 ∈ u then u1 dominates u2. Under the light of this information, Magnanti

and Wong employed core points to define pareto optimality. Core point y0 provides

pareto-optimal cuts for optimal solution u for problem:

max(b−By0)Tu (5.95)

109

subject to

(b−By0)Tu = z(û) (5.96)

ATu ≤ c (5.97)

u ≥ 0 (5.98)

Papadakos described independent version of Magnanti-Wong’s (MW) problem

under the condition of feasible sub-problem. In order not to deal with unbounded-

ness, one can get pareto-optimality through the solution of the system max{(b −
By0)Tu|ATu ≤ c, u ≥ 0}.

Apart from the difficulty based on the solution of sub-problem, discovery of core

points is challenging for our problem. Papadakos suggested using the convex combi-

nation of current points obtained by restricted master problem as an alternative way

of obtaining Magnanti-Wong points to generate pareto-optimal cuts. Based upon

our research in literature (Magnanti and Wong, 1981) and (Papadakos, 2008), as

an enhancement method for our BD implementation, we suggest to define dynamic

core points that can be generated after every iteration following the master problem.

Reminding that the fixed decision variables for our problem is xijt and dikt where

i, j, t represents employee, task and week respectively:

x0ijt := (0.3) ∗ xinitialijt + (0.7) ∗ x̂ijt (5.99)

d0ikt := (0.3) ∗ dinitialikt + (0.7) ∗ d̂ikt (5.100)

With the help of these equations (5.99) - (5.100), we can find core points to use in

MW through initial feasible solutions and the solution of the most recent iteration

from RMP. Through this method, we give more weight on the result of current

iteration and less weight on the result of first iteration. Accordingly, we implement

pareto-optimal cuts within BD algorithm. The pseudo code of algorithm with MW

method is given in Algorithm 5.2 and the implementation of this algorithm can be

found in appendix section B.1.3. We start algorithm with an initial feasible solution

for RMP. This initial solution is employed to solve DSP. Based upon the solution

of DSP, we either solve MW problem or we pass the results of unboundedness with

a feasibility cut to the RMP. In the case of optimality in DSP, before sending the

110

results with an optimality cut to the RMP, we solve MW with core points find from

equations (5.99 - 5.100). If we have an optimal solution through MW problem, new

dual variables are sent to the RMP with optimality cut instead of the ones found

in DSP. We continue to apply the algorithm to the problem until we reached the

optimality.

Algorithm 5.2 Benders Decomposition with MW Problem

Require: y := initial feasible integer solution, UB:= +∞ , LB:= −∞
While UB-LB<= ε Do
Solve sub-problem: maxu

{
fT ŷ + (b−Bŷ)u|ATu <= c, u >= 0

}
If Unbounded then: get ray u ; add cut (b−By)Tu <= 0 to RMP
Else Get extreme point u ;
Solve MW-problem: maxu

{
fT ŷ + (b−By0)u|ATu <= c, (b−By0)Tu = z(û), u >= 0

}
If Unbounded then: use result of SP ; add the cut accordingly
Else Get extreme point u ; and add cut z >= fTy + (b−By)T û to RMP coming
from MWP
UB:=min

{
UB, fTy + (b−By)T

}
End If
Solve RMP: miny {z|cuts, y ∈ Y } , LB:= z
End while

However, between the iterations for large sized problems it is not common to

reach optimal result from RMP. Therefore, we stated the theoretical approach behind

application of our problem to BD with MW Pareto optimal cuts. We gave the

detailed description of our tune settings and results of various implementation of BD

algorithm for recovery vessel crew scheduling in Section 5.7.

5.6 Using Heuristics in Benders Decomposition

Algorithm

Looking from a heuristic perspective, the BD method can be considered as an ap-

pealing technique, since it can benefit from distinctive structures and provides a

well-structured framework for the architecture of effective search processes (Raidl

et al., 2015; Cote and Laughton, 1984).

The need for solving a sequence of problematic integer master problems is an

essential challenge in large-scale problems. Some researchers have discovered the

employment of meta-heuristics for the master problems. For example, in their paper,

111

Poojari and Beasley (2009) adopted a genetic algorithm together with a feasibility

pump. This method helped Poojari and Beasley (2009) to include multiple cuts for

each iteration, which generated a more significant increase in the lower bounds. In

the end, good results were acquired even though the RMP was not solved to desired

optimality.

Similarly, we combined heuristics within BD to improve the performance of the

algorithm. By this application, we aimed to have stronger optimality cuts from

the slave problem, help the reduction of upper bound and generate more alternative

solutions. Besides, we would like to get some help of heuristics when IP is stuck in an

integer solution and could not progress from the incumbent found by the optimizer

and hence having memory error.

The heuristic has been implemented in the BD algorithm and arranged to be

called every time when the solver reaches the specified time limit. The limit has

been set to avoid spending long times to find a new integer solution, while solving

the RMP. If an improvement on the upper or lower bounds can not be observed within

the time limit, we stopped solving the RMP and extracting the most recent integer

solution from solver. We used these integer solutions to initiate the heuristics with a

feasible solution and conduct a neighbourhood search by the help of these values. As

heuristic search completed, we solved dual problem regards to the heuristic results

and added the new cuts to the integer problem.

The final implementation of BD algorithm with heuristic method is presented in

Section 5.7.

5.7 Implementation of Benders Decomposition

The final algorithm that we preferred as the most efficient way of using BD algorithm

and our customized heuristic is the hybrid of these two methods strengthened with

pareto optimal cuts. The pseudo code of this hybrid method can be demonstrated

as in Algorithm 5.3 and the actual codes for implementation of Algorithm 5.3 is

provided in appendix section B.1.4. Additionally, during the computational study

we refer the results that are obtained through Algorithm 5.3 by calling it as Hybrid

Method.

In Section 5.8, computational efficiency of the hybrid method is also analysed

with other BD algorithms (i.e. Algorithm 5.2, and 5.1).

112

Algorithm 5.3 Benders Decomposition and Heuristic for Recovery VSC

Require: y := initial feasible integer solution, UB:= +∞ , LB:= −∞, iteration:=1
While UB-LB<= ε or Running Time ≤ TIME LIMIT Do
Solve sub-problem: maxu

{
fT ŷ + (b−Bŷ)u|ATu <= c, u >= 0

}
If Unbounded then: get ray u ; add cut (b−By)Tu <= 0 to RMP
Else Get extreme point u ;
Solve MW-problem: maxu

{
fT ŷ + (b−By0)u|ATu <= c, (b−By0)Tu = z(û), u >= 0

}
If Unbounded then: use result of SP ; add the cut accordingly
Else If Feasible then: Get extreme point u ; and add cut z >= fTy+ (b−By)T û
to RMP coming from MWP
UB:=min

{
UB, fTy + (b−By)T

}
End If
Solve RMP : miny {z|cuts, y ∈ Y } , LB:= z
If Number of incumbent found = iteration then:
iteration++
Else Continue till time limit is reached
End If
Go to Step 1 and solve sub-problem with the most recent ŷ, store new cuts
If Feasible then: Apply customized heuristic and obtain new ŷ
End If
End while

5.8 Computational Study for Benders Decompo-

sition with Mixed Techniques

Development of BD algorithm and mixing it with accelerating techniques requires

a detailed study to have accurate results. Especially with models including many

different constraints and various (0-1) integer decision variables, having faulty results

is highly probable. For BD it is really important to check accuracy based on dual

problem and ensure that the decomposed models complete each other with linking

constraints. Hence, we put significant amount of effort to debug our solution meth-

ods with various settings. We improved our updated solution method through the

insights we gained from the preliminary results.

Here, we start to present computational study with the performance of selection

of BD algorithm on MOD-CB by using one set as an example. We test this example

instance with these three versions of the classical BD Algorithm:

• Classical BD,

• Classical BD with Magnanti and Wong Pareto Optimality Cuts,

113

Figure 5.3: Preliminary Result for Classical BD on Medium Sized Sample Set R001

• Classical BD with independent Pareto Optimality (Papadakos, 2008).

We applied 1-hour time limit and keep the time under control within each itera-

tion while running the solver. The results are written after every iteration and they

are shown in Figure 5.3.

This instance is generated with the intention of testing medium sized problem.

Therefore it has 24 employees, 10 weeks and 14 vessels as main characteristics of data.

Although it is medium sized, it was still hard to solve this instance in reasonable

solution time. At the end of 1 hour run with MIP, the objective function reached

is −430.5 and the lower bound is −1065.24. When we compare this result with BD

application, we saw that the solution found by MOD-CB overcomes the classical

BD performance for all three versions. In the end of 1-hour run with classical BD

method, the best result obtained is −363. This result is obtained by the version

supported by MW cuts.

Similar to the application of classical BD approach, we tested three versions of

Modern BD performance on the same instance:

• Modern BD,

• Modern BD with MW Pareto Optimality Cuts creating the search tree with

the same fixed binaries,

• Modern BD with MW Pareto Optimality Cuts creating the search tree with

the updated fixed binaries.

For the modern approach, the independent MW is not applied on the sample set.

Instead of testing the independent MW, the selection of values for fixed variables

which feeds the sub-problem is tested.

114

Figure 5.4: Preliminary Results for Modern BD on Medium Sized Sample Set R001

Figure 5.4 underlines the performance of Modern BD for different settings and it

can be seen that MW cuts do not perform well with this approach.

Even the performances between Modern and classical approaches are quite similar

to the each other, MIP found the lowest cost compared to the various implementa-

tions of BD algorithm.

Further analysis with classical and modern approach on the generated medium

and large scale instances are conducted and presented in Section 5.8.1, and 5.8.2.

5.8.1 Computational Results of Classical BD

To gain further insights, we carry out the computational study first with generated

medium-sized instances. Thirty-five medium-sized instances are randomly gener-

ated, and these instances are solved by using MIP and BD algorithm. The solution

approaches which are applied to these randomly generated instances are MOD-CB

model, classical BD with original MW (BD-MW) and independent MW (BD-AC)

cuts. As a result of this computation study, it is observed that BD algorithm per-

forms less efficient than the MIP (see Figure 5.5) under the same computational time

limit and using the default settings of optimisation solver. The results also indicate

that BD-MW (i.e. classical MW cuts, Magnanti and Wong (1981)) provides better

quality results than BD-AC (i.e.independent version of MW, Papadakos (2008)) on

24 instances over 35. In addition to this, the average percentage gap for BD-AC

has the highest gap with 152.87% while this value for BD-MW and MOD-CB are

116.16%, and 113.87%, respectively.

Another observation has a minimal improvement for MOD-CB from 10-minute

solution to the 1-hour. In other words, even MOD-CB finds fewer costs, to be able to

115

Figure 5.5: Dispersion of Percentage Gaps between the Lower Bound and Objective
Function Value for MOD-CB and BD on 35 Instances

reach optimality; different exact methods are still needed. As a result of this result,

some techniques to enhance the BD method are employed.

This initial study was helpful for determining the direction of further compu-

tational tests. The methods BD with MW and MIP are applied for additional 35

instances for medium sized. The percentage gaps are calculated for 70 medium in-

stances with ((UB-LB)/LB). The mean values for this gap which is obtained through

BD with MW and MIP within 1-hour time limit are 76.82% and 72.91%, respectively.

When each data points are observed, some extraordinary gap values can be seen. Due

to the existence of extremely high percentages such as 1493% and 693%, the mean

may not be the best representative, and median values can be analysed. The median

value of parentage gap for solution BD with MW is 7.15%, while it is 0 for MIP.

Based on the mean and median values, MIP solution outperforms the classical BD

with MW for the medium-sized problems. In 45 of the 70 instances, MIP method has

better results, and the percentage difference between these two solution methods is

measured by ((BD-MIP)/MIP). MIP achieved to reach smaller costs than BD with

MW reached, and the difference on average is 10.2% based on these calculations.

There is no distinct pattern that BD performs better or worse on the particular type

of instances, but it can be stated for medium-sized problem BD-MW has quite a

similar efficiency with MIP. In comparison to the first attempt of BD on our prob-

lem, model modification and additional techniques developed the quality of solutions

significantly.

116

5.8.2 Computational Results of Modern BD

Through this dissertation, the instances which reflect the situation in our industrial

partner are mainly tested to find the best practice. Based on this perspective, pre-

liminary computational study is conducted for large sized instances, which have 48

employees, 25 vessels, 13 weeks as main parameters, to examine the BD performance.

Since the classical BD has already been applied to 70 medium scale instances, the

modern (one-tree) approach (i.e. Algorithm 5.1) is tested for large scale instances

with a small adaptation.

Various versions of BD Algorithm are implemented on optimisation solver FICOr

Xpress-MP (Mosel v3.6.0, Xpress-MP v7.7). Since cut adding during the optimizing

is not possible apart from the MIP branch-and-bound callbacks, we preferred using

integer solution callback which is able to pause the MIP and solve DSP with storing

the cuts. After certain time limit, all the cuts that are stored in previous iteration

are added in the beginning of new iteration to solve RMP. In order to apply this

method, we chose to keep the initial values for fixed variables to initiate the RMP

for every new iteration.

Accordingly, 80-large scaled instances are solved by hybrid method that is ex-

plained in Section 5.7 with Algorithm 5.3 and classical approach. Both versions of

BD are designed with MW cuts. The results, which are obtained through these two

versions of BD, are compared with the MIP.

Sol-Method Mod-CB BD-MW Hybrid Method
Mean 42.71 % 101.85 % 70.88 %
Median 9.24 % 56.98 % 38.26 %

Table 5.2: Results of Modern BD on Large Sized

The numbers in Table 5.2 indicate that for large sized instances the efficiency

of BD method is quite low relatively to the MIP. Although, the hybrid method

performed better than the classical BD, there is a significant difference between the

MIP and BD performances regarding the mean and median values of percentage

gaps. In addition to Table 5.2, Figure 5.6 shows the performances of each method

visually based on the percentage gaps. The distances of the BD algorithms’ results

from the MIP solutions are 52.71% and 26.25%, respectively. The performance of BD

decreased against MIP when the problem size increased. However, one tree approach

is superior than the classical for 60 instances out of 80 with 7.25% on average.

117

Figure 5.6: Dispersion of Percentage Gaps between the Lower Bound and Objective
Function Value for MOD-CB and BD on 80 Instances

Similar to the results in Section 5.8.2, any special pattern cannot be found neither

for low nor high efficiency for the hybrid method. However, while there are some

instances that MIP has high percentage gap such as 137% from the best bound,

hybrid method has low gap around 29.78%. The fundamental source of this situation

cannot be identified since this case is not valid for the majority of the instances.

As the detailed analysis of computational study was presented in Section 5.8, the

concluding remarks for the study about Benders Decomposition in Chapter 5.

5.9 Summary of Findings from Benders Decom-

positions

Here, in Chapter 5, we provided a comprehensive study on Benders Decomposition

Method and its application to VCS in OSV’s. In the beginning, the recovery model

is used to apply BD, but it could not provide good quality results. Afterwards, a

modified model is suggested, and BD is also tried on this modified model. It is ex-

plored that modified model outperformed the recovery model which is first proposed

in Leggate (2016). Accordingly, the study on BD method is developed on the mod-

ified model (MOD-CB). The main advantage of MOD-CB can provide optimality

cuts for RMP in BD applications and be more capable of potential developments.

Following this modification, a more reasonable solution is achieved for small sized

118

instance, and various improvement techniques for BD are tested on medium and

large sized instances. The improvement techniques are mainly working with Pareto

optimality cuts suggested by Magnanti and Wong (1981) and Papadakos (2008) and,

employing the one-tree approach in an integrated method with the heuristic.

Based on mean and median values of percentage gaps, MOD-CB outperformed

the performance of various BD methods on the sample instances. On the other

hand, BD method seems promising and open to acceleration techniques to have

better quality results. Another important point is for our problem; it is better

to have an integrated heuristic method and work with a time limitation for every

iteration instead of waiting to obtain optimal results from RMP. It is a critical remark

since we encountered with either memory failure while searching optimal results for

terminating just one iteration of RMP.

The potential development for future study about increasing the performance of

BD for VCS in OSV are discussed in Section 7.3. The following chapter provides

an initial study of the sources of uncertainties and a practical model suggestion to

increase the robustness against uncertainty for this problem.

The potential development for future study about increasing the performance of

BD for VCS in OSV are discussed in Section 7.3. The following chapter provides

an initial study for the sources of uncertainties and a practical model suggestion to

increase the robustness against uncertainty for this problem.

119

Chapter 6

Robust Counterpart for VCS in

OSVs

Creating recovery schedules is practical regarding sudden changes, and decreases the

cost due to unexpected situations. Another potential option can be to construct more

robust schedules from scratch and minimise the cost for these unexpected situations.

Accordingly, it is intended to suggest alternative solution methods to this problem

by using robust optimisation methods.

Organizing schedules without the assumption of uncertainty are not the best

practice. Despite the fact that we search the efficient methods for generating recovery

schedules towards the unexpected changes during the planning horizon, it is also

essential to measure the impact of having robust schedules from the start of the

planning period.

The need for robust structures in maritime context was implied by a number of

studies (e.g. Halvorsen-Weare and Fagerholt (2011); Scholz-Reiter et al. (2010)) and

there are some applications in the literature to encourage the research in offshore.

Scholz-Reiter et al. (2010) presented a study on the robust design of planning and

control methods for offshore installations (i.e. an area of utilising offshore supply

vessels). In their paper Scholz-Reiter et al. (2010) also focused on finding optimal

schedules for installation under various weather conditions. Finally, they drew atten-

tion to the potential research area of vessel crew scheduling in the context of offshore

industries.

As a result of volatile weather conditions at sea, crew availability and performance

are subject to certain limitations (Stevens and Parsons, 2002). Based on the insights

120

we obtained through our case study, we focus on generating robust schedules against

the uncertainty in the concept of crew availability. In order to reach this objective,

the robust optimisation techniques are explored. According to the study of Gorissen

et al. (2015), robust optimisation procedure of practical application can be further

investigated under six main steps. These steps include the determination of the

sources of uncertainty, measurement of the robustness level of nominal solution,

application of required adjustment for variables, robust counterpart formulation and

implementation, and finally the analysis of the robust solution based on conservatism

level. While the first two steps of the procedure are already discussed in Chapter

3 by explaining the need of higher robustness, the remaining steps can be used as

guidance.

Motions of vessel depend on the weather conditions a lot; it can cause an increase

in energy expenditure and drowsiness level for crew members(Stevens and Parsons,

2002). In this dissertation, we also cover weather conditions and its adverse effect

on crew availability by employing the eligibility parameter that belongs to an uncer-

tainty set. In the model which is presented in Section 4.2, eligibility is represented

with eijt and indicates whether the employee is available and skilled enough to be

able to carry out the task. This parameter takes binary values depending on the

availability of the crew which merely is shown as:

eijt =

{
1 if crew i can be assigned to role j in period t

0 otherwise

In the seminal papers of robust optimisation literature, such as (Soyster, 1973;

Ben-Tal and Nemirovski, 2000; Bertsimas and Sim, 2004) the uncertainty is defined

over a convex set of the parameters, which allows changes on the nominal values of

parameters within certain deviation. As an example, in Bertsimas and Sim (2004)

study, if it is assumed, coefficient of uncertain parameter is shown with a, then the

uncertainty set can be stated as [a− â, a+ â] and this value can take any value from

this set.

In our problem, it is not possible to define the eligibility with this kind of convex

set as it is given above. Under the case of the values of the parameter eijt can only

either be 0 or 1, it is not suitable to use set such as [0, 1] since the non-integer values

in this range do not reflect the problem compatible with real life. Accordingly, to

the best of our knowledge, the proposed methods in the literature are not applicable

121

to our problem under this assumption. Therefore, it is suggested that having a base

value for parameter e shown as ē = 1 can be adjusted by ê value that can only be

equal to 1. This proposition suggests that an eligible crew for a specific time window

and role can be unavailable due to the volatile weather condition. In order to suggest

a robust practice for our problem, as following another step suggested in Gorissen

et al. (2015), in Section 6.1 the complete formulation of the robust counterpart is

presented.

6.1 Formulation of Robustness

As the desire of robustness against crew availability is aforementioned, equation 4.16

in the MOD-CB (modified model) provided in Section 5.2 is subject to uncertainty.

This equation ensures that the required number of crews are assigned to the roles

based on their eligibility (availability).

m+1∑
i=1

eijtxijt = ajt ∀j, t (6.1)

To express the uncertainty for this constraint, the equation 6.2 can be proposed as;

m+1∑
i=1

(ēijt − êijtzijt)xijt = ajt ∀j, t (6.2)

where zijt is the decision variable that determines the existence of change in avail-

ability as given below:

zijt =

{
1 if crew i becomes unavailable to carry out role j in period t

0 otherwise

Under the assumption of uncertainty set is given in the range of [0,1] and to

maintain the feasibility this parameter can only take values {0, 1}. This situation

shows a similarity to the work of Soyster (1973) regarding having the feasibility

for an entire convex set of uncertainty and relying highly on uncertainty set. Our

suggestion is working with the extreme values of the set which can be perceived

as high degree conservatism on robustness is covered by the method suggested in

122

Soyster (1973). Although when the practical application is observed, the chances of

all crew become unavailable is quite low. Accordingly, a robust counterpart (RC) as

proposed in Bertsimas and Sim (2004) to control the level of uncertainty study can

be suggested.

In order to control the level of uncertainty, an additional parameter Γt ∈ R+

is employed. This parameter specifies the maximum number of crews who become

unavailable for each week during the planning horizon however they are available at

the beginning of planning (i.e. eijt changes from 1 to 0) on different vessels for each

period. As the existence of the agency crew, the maximum value Γt can take for

each period is the multiplication of the total number of crews with the roles defined

on that period. In the case of (Γt = |J | ∗ |E| ∀t) shows the worst case scenario for

our problem. At the same time, if
T∑
t=1

Γt = 0, in this case, the problem is solved with

nominal values.

By holding the information about parameter Γt, which defines the level of con-

servatism, new decision variable zijt for robustness and constraint expressed with

equation 6.2, further investigation can be done to construct the whole idea for pro-

viding more robust schedules to our industrial partner.

The equation 6.2 is non-linear, due to the multiplication of two binary decision

variables. To linearise this equation an additional decision variable Ki,j,t = zijt ∗xi,j,t
is defined and supported by constraints:

m+1∑
i=1

ēijt.xijt −
m+1∑
i=1

Kijt = ajt ∀j, t (6.3)

J∑
j=1

m∑
i=1

zijt ≥ Γt ∀t (6.4)

Kijt ≤ zijt ∀j, t, i ∈ ER (6.5)

Kijt ≤ xijt ∀j, t, i ∈ ER (6.6)

Kijt ≥ zijt + xijt − 1 ∀j, t, i ∈ ER (6.7)

zijt, Kijt ∈ {0, 1} ∀j, t, i ∈ ER (6.8)

Therefore the robust problem becomes:

min {(5.75) |(4.17− 4.27); (4.34− 4.36); (5.68− 5.74), (6.3− 6.8)} (6.9)

123

This problem aims to minimise the crew cost depending on work, boarding, de-

parting and under-over time in the defined planning horizon by the objective function

provided with equation (5.75). The constraints (4.17)-(4.27) have been explained in

Section 3 with details and they ensure that the rules and regulations are followed.

Additionally, constraints (4.34)-(4.36) and (5.68)-(5.74) are added to complete the

whole problem with other requirements in their modified form as described in Sec-

tion 5.2. Constraint (6.3) is the new form of covering the tasks to provide the robust

counterpart. Constraint (6.4) ensures that the minimum number of changes in the

availability of crew on different task are occurred for each week by the help of deci-

sion variable zijt. The constraints (6.5-6.7) are employed to linearise the non-linear

equation (6.2). Finally, constraint (6.8) indicates the binary variables.

This model provides the control of uncertainty level by changing the values of Γt

for each week. Based on the value of Γt , the cost of crew can change. From another

point of view, one can see the flexibility of the current system under a defined cost.

In this case, it is possible to generate the alternative schedules with maximum change

under the pre-defined cost (Ξ) by using the robust model. To be able to find these

schedules, a constraint (i.e. equation (6.10)) which guarantees an objective function

value to be smaller or equal than the pre-defined cost is required. In addition to this

constraint, Γt can be defined as integer decision variable instead of parameter.

m+1∑
i=1

∑
k∈Vk

T∑
t=1

(
cBiktbikt + cDiktdikt

)
+
∑
i∈G

(
cUi ui + cOi oi

)
+
m+1∑
i=1

∑
j∈J

T∑
t=1

(
cWijtxijt

)
≤ Ξ (6.10)

Another parameter that can be potentially subjected to uncertainty is the num-

ber of required crews for each task and period which is represented by ajt. The

uncertainty based on this parameter can be rephrased as demand uncertainty in

OSVs. If an unexpected change occurs in the policy that the company is no longer

able to maintain offshore operations in a certain location, it can result in no need for

the crew to operate in the related vessels in that location. On the other hand, based

on the oil price fluctuations it is also possible to observe an uncertainty in demand

for OSVs (Gaspar et al., 2015). In this case, there is a potential for both trends (i.e.

increase and decrease).

Parameter ajt is similar to the parameter eijt, in terms of convex uncertainty

set. It cannot take the non-integer values, and it is limited to be either 0 or 1. In

124

the case of a decrease in demand, the current planning would be still feasible, but

this feasible solution cannot guarantee the optimality for minimum cost. On the

other hand, in case of an increase in the demand, the current schedule can guarantee

neither feasibility nor optimality. Therefore, a more comprehensive RC can still be

considered as a significant decision support tool for better planning in the context

of VCS in OSVs.

As a suggestion to deal with the uncertainty in the required number of crew

(ajt), another binary decision variables (yjt) can be defined to allow the change in

this parameter with an additional parameter to decide the level of conservatism (Θ).

yjt =

{
1 if change in ajt occurs for role j in period t

0 otherwise

The more robust formulation for the equation which is affected by this uncertainty

is the same one that is previously discussed for availability in equation 4.16. In order

to formulate robustness for this case, two different groups of equation are proposed

depending on the nominal value of ajt.

RC for equation 4.16 =


m+1∑
i=1

eijtxijt = ajt.yijt if aijt = 1

m+1∑
i=1

eijtxijt = ajt + yijt if aijt = 0
(6.11)

Furthermore, for the determination of uncertainty level equation 6.12 is proposed:

RC for ajt =


J∑
j=1

T∑
t=1

yijt ≤ Θu if aijt = 1

J∑
j=1

T∑
t=1

yijt ≥ Θl if aijt = 0

(6.12)

By equation 6.12 the number cases result in demand increase are bounded below,

and potential decrease in demand is bounded above with parameter Θl and Θu,

respectively. The right hand side of the equation 6.11 can be combined with the

equation 6.3 which is provided for robustness against uncertainty in crew availability.

Finally, the constraint 6.11 can be added simultaneously to the problem stated in

equation 6.9. The implementation of proposed methods for robust models on FICOr

Xpress-MP (Mosel v3.6.0, Xpress-MP v7.7) are provided in Appendix B.2.1 and

125

B.2.2, respectively.

The combined formulation of uncertainty in crew availability and demand un-

certainty is applied to a sample problem set. This problem includes 48 employee,

13 weeks long planning horizon, and 25 vessels as it is proposed by our industrial

partner. The number of possible disrupted availability is determined as at least 32

in total for each time windows (week). This number represents at least 5% pertur-

bation from the original schedule for each week. The schedules are generated by the

original formula and also with the addition of RC. After 1-hour run of both mod-

els, the original formula found a schedule which has cost 15149 and 66% gap; while

the formula with RC reaches 50.26% optimality gap with cost 10263. Although it

requires much more elaborate computational study, depending on the example, the

robust formulation seems promising.

In addition to the crew availability and demand uncertainty, transportation costs

for crew can be hardly assumed to be entirely deterministic based on the timing

of sudden changes. This situation leads to uncertainty in the cost coefficients for

the objective function. Thus, defining the parameter of transportation cost with

intervals instead of exact values and then to minimise the crew cost may provide

more robust solutions. To model this uncertainty, defining a convex uncertainty set

for additional transportation cost is sufficient. Although, in this dissertation, there is

no study provided to decide the range of this cost element, a simple implementation

of this suggestion in FICOr Xpress-MP (Mosel v3.6.0, Xpress-MP v7.7) is presented

in Appendix B.2.3.

126

Chapter 7

Conclusions and Future Research

In this chapter, we mainly conclude our findings and contributions which is discussed

in this dissertation. The conclusions are also supported by the research limitations

and direction of potential work for future study.

7.1 Research Findings

In this dissertation, we searched for efficient solution methods to provide feasible

schedules to the problem faced by our industrial partner and draw conclusions about

the characteristic of our problem by making a deeper analysis based on the results

obtained through suggested methods.

After searching the existing literature for the related subjects, we figured out the

lack of crew scheduling studies in maritime context with the similar complexity of our

problem settings. By reviewing the crew scheduling studies in various transportation

settings, and the study of Leggate (2016) which is the only study represents the same

case as our problem, potential optimisation techniques and their compatibility to our

structure have been investigated.

Further computational study for understanding the TB method for larger in-

stances also with longer computational time has been conducted, and it is observed

that the TB method is not useful for mega instances (96-captains) as it is for large

instances (48-instances). It is also concluded that increase in the computational time

from 2-min to 10-min results in substantial improvement for mega instances. How-

ever, longer computational time (1-hour) does not effect the quality of the solution

for both large and mega instances. The improvement of the percentage gap was

127

negligible with 0.01% and 0.09%, respectively.

When the more realistic model (Time Windows) is applied, the number of con-

straints and decision variables increase substantially comparing the Task Based

model. As a result of our findings and the necessity of alternative crew schedules

against sudden changes, a customised heuristic algorithm is implemented in C++.

The primary purpose of the heuristic method is to generate economic and feasible

schedules. Due to the high performance of this implementation, a good number of

recovery schedules can be obtained even in less than a minute. After 2-minutes run,

the number of schedules obtained for each instance is found 273 on average. It is

important to underline that in addition to the design of this algorithm, solving this

method in C++ instead of an optimisation software also provides a significant differ-

ence in efficacy. This method provides 18% decrease in percentage gaps in average

compared to the direct application of MIP formulation given in Section 4.2.1. Also,

it shows 34% improvement from the provided initial solutions to the best solution

found at the end of the algorithm.

In addition to the heuristic method, with the goal of reaching optimality, Benders

Decomposition algorithm is applied to the proposed model.This study initiated fur-

ther adjustments and practical developments in the model which is earlier suggested

in Leggate (2016). A complete application for Benders Decomposition algorithm

is suggested with acceleration techniques. Moreover, a preliminary computational

study on eighty large sized and seventy medium-sized instances is conducted. The

classical approach shows similar performance to the MIP application of MOD-CB

for medium sized instances. However, this situation cannot be maintained for the

real (large) sized problems. BD displays lower performance than the MIP for the

large instances. On the other hand, the modern BD approach outperforms the clas-

sical one for the large-scale instances. The study on this technique shows that this

algorithm is open to further improvement for the development of hybrid method we

suggested in Section 5.7.

Another critical point we initiated in this research is the modelling uncertainty

for our problem. The primary sources of uncertainty are discussed as the potential

change in the availability of crew and uncertainty in demand. We concluded that

these uncertainties could only deviate from 0 to 1 or the other way around in the

existing models. Accordingly, the uncertainties can be modelled by using simple

MIP techniques in order to start planning with more robust schedules compared

to current planning methods that are applied by our industrial partners. There is

128

only one computational study provided for the robust formulation in which the crew

availability and demand uncertainty combined. Through this sample instance, 10%

improvement is observed with a more robust schedule which allows 5% uncertainty in

crew availability. The implementation of this model on FICOr Xpress-MP (Mosel

v3.6.0, Xpress-MP v7.7) is presented in Section B.2.

We have previously stated the research questions in Section 1.3. In order to

provide precise information regarding our study, we bring these questions back and

address our findings by replying these questions.

• How can the proposed models for VCS in OSVs be improved to generate feasible

schedules against unexpected situations in a more time efficient way by using

optimisation tools?

As this is our main research question, we first provided answers for the sub

questions.

• What are the weaknesses of proposed TB and TW models?

Although TB model is good at reaching optimality in short computational time,

it was not effective enough providing the minimum cost schedules due to the

not holding all the requirements and work with pre-defined task blocks. When

the solutions obtained through TB model approximated to the TW model, it

has been observed that there is 81.25% gap between the TB and lower bound

found from 1-hour run of TW model on average for 240 instances. The TB

model in itself has 2.47% gap for the same instances. Accordingly finding

optimality through TB model does not explain reaching optimality on more

realistic model. On the other hand, TW model for the same settings have

88.57% gap after 2-min run. The weakness of TW model is that having low

efficiency in terms of time like having 64% gap even after 1-hour run. Another

disadvantage of TB is that modelling some of the regulations in overly com-

plicated way and not being flexible enough for applying different optimisation

techniques.

• How can one deal with the drawbacks of TW model?

As the drawbacks of TW model is that having high gaps, complicated con-

straints and not flexible model, we worked on simplifying the model while keep-

ing the model realistic enough for the business application. The TW model

129

is modified and applied on 240 instances similarly. The generated recovery

schedules from modified model and TW model are compared on the same cost

function. The results showed that the modified model is 13% closer to the

optimality bound comparing the original TW model after 10-min run.

• Are heuristics and exact methods that are suggested in this thesis effective

ways to solve TW model?

We concluded that heuristics provide the most efficient solution against time

limitation. This method generates 273 different schedules and improve the

initial solution with 34 % in average. Additionaly, it has the advantage of

suitability for various implementation and it is open for adjustments and im-

provements. While the mean percentage gap which is found through the imple-

mentation of TW model in Fico-Xpress optimisation solver is 64.33% in 1-hour,

this value is 58.53% from the heuristic in 2-min which are based on the best

result amongst 48 different heuristic. The classical Bender’s Decomposition

method performed low efficiency against the direct solution methods. Depend-

ing on the high efficiency of customised heuristic method, it is suggested that

using hybrid methods of heuristics with Benders’ Decomposition Algorithm

might also provide cost efficiency. The hybrid method was compared with the

modified model and the computational experiment suggested that the hybrid

method could not over perform the modified model. While hybrid method has

70% gap, the modified model has 42% gap after 1 hour run. Although Ben-

ders’ Decomposition method does not provide high efficiency, it helps to find

the research direction and identify the weakness of TW model.

• What are the strength and weaknesses of the suggested methods?

The strength of suggested heuristic method is the time efficiency and the weak-

ness of this method is not being able to reach optimality. On the other hand,

Bender’s Decomposition method is not timely efficient for VCS problem in

OSV’s, it gives space for improvement with some acceleration techniques. This

characteristic of this method is promising in terms of providing a future research

scope. The combination of acceleration techniques like Pareto optimality cuts,

one-tree search, combinatorial cuts and getting help from heuristic provided

substantial convergence to MIP, as the first trial of classical Benders’ Decom-

position method was not able to provide efficient optimality cuts even for small

130

sized problems.

• How can one obtain schedules immune to uncertainty?

In order to deal with the uncertainty, the dissertation suggests solutions mostly

regarding recovery solutions. Apart from the recovery schedules, a simple ro-

bust counterpart with the assumption of unexpected change in crew availability

and demand is proposed. It is understood that with a preliminary study, cre-

ating schedules with the consideration of possible change from the beginning

might help cost savings and measuring the costs with different scenarios.

Based on the summary of our findings, our study contributes to the existing liter-

ature with new solution methods and benchmarks for the crew scheduling problem in

transportation settings, particularly in maritime context. An extended analysis with

valuable insights that explain the strength and weaknesses of our formulations and

applications of suggested techniques are provided for future implications of similar

problems with complicated settings and long planning horizon.

Following these, we give further analysis for limitations through this research in

Section 7.2 and the potential for future studies in Section 7.3.

7.2 Research Limitations

Like many other studies, it is inevitable not to have any limitation during the research

period. Providing research limitations is as important as highlighting the research

findings since they also include some critical concluding remarks.

The major limitation we face in this dissertation is working with bug-free imple-

mentation of different solution methods. Initially, during the progress of implement-

ing heuristics in C++, it is difficult to ensure that our code works correctly. The

reasons behind this situation can be summarised as the complexity of constraints

and structure of the problem which is hardly based on binary variables. Addition-

ally, while there are many functions which are integrated to each other, the heuristic

is also highly customised, and using C++ for the implementation is too compli-

cated for this structure as well. An elaborate design and careful coding with lengthy

debugging processes are needed in the trade of fast calculations obtained by using

C++.

131

Similarly, we encounter a similar problem with the application of Benders De-

composition method. Even BD algorithm is not complicated; it requires working

with duality for the evaluation of sub-problem which can be tricky to model for

the complexity of our problem. It is vital to managing duality successfully in the

BD algorithm implementation. A comprehensive debugging is also required for this

method. In addition to the results checking process, to figure out the low efficiency

of BD algorithm for our problem took long process time. As a result of the unexpect-

edly low efficiency, a various number of applications are tried for both acceleration

techniques and way to decompose the model into two models.

Another limitation is about the power of the processing system in our computer

during the computational runs and facing with memory failures in the process of

master problems. Although the memory failures were helpful for us to change our

direction to some other applications for BD, they were obstacles to measure the

efficiency, properly.

Last but not least, the fact that this topic has not been widely discussed in the

literature can be underlined as another limitation which negatively influenced our

research.

7.3 Future Research

Finally, here in this section, we are going to discuss the potential future work which

may use this research as guidance. Most of the suggestions are related to the improve-

ments of Benders Decomposition Method which is widely discussed in Section 5 for

our problem. Besides, the robust formulations also lead other research opportunities

in this area.

In order to increase the efficiency of BD algorithm, the implementation can be

made on an optimisation solver by using a language which provides more flexibil-

ity such as concert technology supported by C++. This implementation may help

researchers to apply more complicated techniques simpler than having implementa-

tions in Mosel language. Also, the customised heuristic, which is explained in Section

4.3 and written in C++, can be modified for model MOD-CB (see Section 5.2) and

applied in C++ for the Hybrid method. In addition to the different implementation

approach, a more comprehensive computational study can be organised.

In the majority of this dissertation, we approached the problem by defining it as a

132

recovery crew scheduling problem rather than scheduling from scratch. As in Chap-

ter 6, robust scheduling techniques are discussed with some suggestions for robust

modelling. This study can be extended with a more elaborate model by exploring all

possible sources which create uncertainties and gaining some more information from

the industrial partner about the coefficient range and frequency of the uncertain

parameters.

133

Bibliography

Aas, B., Halskau Sr, Ø. and Wallace, S. W. (2009). The role of supply vessels in offshore

logistics, Maritime Economics & Logistics 11(3): 302–325.

Aguayo, M. M., Sarin, S. C. and Sherali, H. D. (2017). Solving the single and multi-

ple asymmetric traveling salesmen problems by generating subtour elimination con-

straints from integer solutions.

Ammar, M. H., Benaissa, M. and Chabchoub, H. (2013). Grasp for seafaring staff schedul-

ing: Real case, Advanced Logistics and Transport (ICALT), 2013 International Con-

ference on, IEEE, pp. 427–433.

Anbil, R. (1993). Crew-pairing optimization at american airlines decision technologies,

Optimization in industry pp. 32–36.

Andersson, E., Housos, E., Kohl, N. and Wedelin, D. (1998). Crew pairing optimization,

Operations Research in the Airline Industry pp. 228–258.

Atkinson, S. E., Ramdas, K. and Williams, J. W. (2016). Robust scheduling practices

in the us airline industry: Costs, returns, and inefficiencies, Management Science

62(11): 3372–3391.

Azaiez, M. N. and Al Sharif, S. S. (2005). A 0-1 goal programming model for nurse

scheduling, Computers & Operations Research 32(3): 491–507.

Baker, K. R. (1976). Workforce allocation in cyclical scheduling problems: A survey,

Journal of the Operational Research Society 27(1): 155–167.

Barlow, E., Öztürk, D. T., Revie, M., Akartunalı, K., Day, A. H. and Boulougouris,

E. (2017). A mixed-method optimisation and simulation framework for supporting

logistical decisions during offshore wind farm installations, European Journal of Op-

erational Research .

Barnhart, C., Cohn, A. M., Johnson, E. L., Klabjan, D., Nemhauser, G. L. and Vance,

P. H. (2003). Airline crew scheduling, Handbook of transportation science, Springer,

pp. 517–560.

134

Barret, D. (2005). The offshore supply boat sector, Sector Note, New York, USA: Fortis

Bank .

Ben-Tal, A. and Nemirovski, A. (1998). Robust convex optimization, Mathematics of

operations research 23(4): 769–805.

Ben-Tal, A. and Nemirovski, A. (2000). Robust solutions of linear programming problems

contaminated with uncertain data, Mathematical programming 88(3): 411–424.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming

problems, Numerische mathematik 4(1): 238–252.

Bertsimas, D. and Sim, M. (2004). The price of robustness, Operations research 52(1): 35–

53.

Birge, J. R. and Louveaux, F. (2011). Introduction to stochastic programming, Springer

Science & Business Media.

Bixby, R. E., Gregory, J. W., Lustig, I. J., Marsten, R. E. and Shanno, D. F. (1992). Very

large-scale linear programming: A case study in combining interior point and simplex

methods, Operations Research 40(5): 885–897.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview

and conceptual comparison, ACM Computing Surveys (CSUR) 35(3): 268–308.

Brouer, B. D., Dirksen, J., Pisinger, D., Plum, C. E. and Vaaben, B. (2013). The ves-

sel schedule recovery problem (vsrp)–a mip model for handling disruptions in liner

shipping, European Journal of Operational Research 224(2): 362–374.

Brucker, P., Qu, R. and Burke, E. (2011). Personnel scheduling: Models and complexity,

European Journal of Operational Research 210(3): 467–473.

Burke, E. K., De Causmaecker, P., Berghe, G. V. and Van Landeghem, H. (2004). The

state of the art of nurse rostering, Journal of scheduling 7(6): 441–499.

Cai, X. and Li, K. (2000). A genetic algorithm for scheduling staff of mixed skills under

multi-criteria, European Journal of Operational Research 125(2): 359–369.

Cappanera, P. and Gallo, G. (2004). A multicommodity flow approach to the crew rostering

problem, Operations Research 52(4): 583–596.

Chen, M. and Niu, H. (2012). A model for bus crew scheduling problem with multiple

duty types, Discrete Dynamics in Nature and Society 2012.

Chopra, K. (2017). What are offshore vessels. http://www.marineinsight.com/types-of-

ships/what-are-offshore-vessels/.

Christiansen, M., Fagerholt, K., Nygreen, B. and Ronen, D. (2007). Maritime transporta-

tion, Handbooks in operations research and management science 14: 189–284.

135

Christiansen, M., Fagerholt, K., Nygreen, B. and Ronen, D. (2013). Ship routing

and scheduling in the new millennium, European Journal of Operational Research

228(3): 467–483.

Clausen, J., Larsen, A., Larsen, J. and Rezanova, N. J. (2010). Disruption management in

the airline industry concepts, models and methods, Computers & Operations Research

37(5): 809–821.

Codato, G. and Fischetti, M. (2006). Combinatorial benders’ cuts for mixed-integer linear

programming, Operations Research 54(4): 756–766.

Cordeau, J.-F., Stojković, G., Soumis, F. and Desrosiers, J. (2001). Benders decompo-

sition for simultaneous aircraft routing and crew scheduling, Transportation science

35(4): 375–388.

Costa, A. M. (2005). A survey on benders decomposition applied to fixed-charge network

design problems, Computers & operations research 32(6): 1429–1450.

Cote, G. and Laughton, M. A. (1984). Large-scale mixed integer programming: Benders-

type heuristics, European Journal of Operational Research 16(3): 327–333.

Crama, Y., Kolen, A. W. and Pesch, E. (1995). Local search in combinatorial optimization,

Artificial Neural Networks, Springer, pp. 157–174.

De Leone, R., Festa, P. and Marchitto, E. (2011). A bus driver scheduling problem: a

new mathematical model and a grasp approximate solution, Journal of Heuristics

17(4): 441–466.

Di Gaspero, L., Gärtner, J., Kortsarz, G., Musliu, N., Schaerf, A. and Slany, W. (2007).

The minimum shift design problem, Annals of operations research 155(1): 79–105.

Dunbar, M., Froyland, G. and Wu, C.-L. (2012). Robust airline schedule planning: Mini-

mizing propagated delay in an integrated routing and crewing framework, Transporta-

tion Science 46(2): 204–216.

Eggenberg, N., Salani, M. and Bierlaire, M. (2010). Constraint-specific recovery network

for solving airline recovery problems, Computers & operations research 37(6): 1014–

1026.

Ernst, A., Jiang, H., Krishnamoorthy, M. and Sier, D. (2004a). An annotated bibliography

of personnel scheduling and rostering., Annals of Operations Research 127(1-4): 21–

144.

Ernst, A., Jiang, H., Krishnamoorthy, M. and Sier, D. (2004b). Staff scheduling and roster-

ing: A review of applications, methods and models., European Journal of Operational

Research 153: 3–27.

European Union (2003). Directive 2003/88/EC of the European Parliament and of the

136

Council of 4 November 2003 concerning certain aspects of the organisation of working

time, Official Journal of the European Union L299(46): 9–19.

Franz, L. S. and Miller, J. L. (1993). Scheduling medical residents to rotations: solving the

large-scale multiperiod staff assignment problem, Operations Research 41(2): 269–279.

Gabrel, V., Murat, C. and Thiele, A. (2014). Recent advances in robust optimization: An

overview, European journal of operational research 235(3): 471–483.

Gamache, M., Hertz, A. and Ouellet, J. O. (2007). A graph coloring model for a feasi-

bility problem in monthly crew scheduling with preferential bidding, Computers &

operations research 34(8): 2384–2395.

Gamache, M., Soumis, F., Marquis, G. and Desrosiers, J. (1999). A column generation

approach for large-scale aircrew rostering problems, Operations research 47(2): 247–

263.

Garey, M. R. and Johnson, D. S. (2002). Computers and intractability, Vol. 29, wh freeman

New York.

Gaspar, H. M., Brett, P., Erikstad, S. O. and Ross, A. M. (2015). Quantifying value

robustness of osv designs taking into consideration medium to long term stakeholdersâ

expectations, 12th International Marine Design Conference (IMDC), Vol. 2, pp. 247–

259.

Giachetti, R. E., Damodaran, P., Mestry, S. and Prada, C. (2013). Optimization-based

decision support system for crew scheduling in the cruise industry, Computers &

Industrial Engineering 64(1): 500–510.

Gleeson, J. and Ryan, J. (1990). Identifying minimally infeasible subsystems of inequalities,

ORSA Journal on Computing 2(1): 61–63.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence,

Computers & operations research 13(5): 533–549.

Gopalakrishnan, B. and Johnson, E. L. (2005). Airline crew scheduling: state-of-the-art,

Annals of Operations Research 140(1): 305–337.

Gorissen, B. L., Yanıkoğlu, İ. and den Hertog, D. (2015). A practical guide to robust

optimization, Omega 53: 124–137.

Guo, Y. (2005). A decision support framework for the airline crew schedule disruption

management with strategy mapping, Operations Research Proceedings 2004, Springer,

pp. 158–165.

Halvorsen-Weare, E. and Fagerholt, K. (2011). Robust supply vessel planning, Network

optimization pp. 559–573.

137

Hanafi, R. and Kozan, E. (2014). A hybrid constructive heuristic and simulated annealing

for railway crew scheduling, Computers & Industrial Engineering 70: 11–19.

Herroelen, W. and Leus, R. (2004). Robust and reactive project scheduling: a re-

view and classification of procedures, International Journal of Production Research

42(8): 1599–1620.

Hoffman, K. L. and Padberg, M. (1993). Solving airline crew scheduling problems by

branch-and-cut, Management Science 39(6): 657–682.

Horn, M. E., Jiang, H. and Kilby, P. (2007). Scheduling patrol boats and crews for the

royal australian navy, Journal of the Operational Research Society 58(10): 1284–1293.

Kasirzadeh, A., Saddoune, M. and Soumis, F. (2017). Airline crew scheduling: models,

algorithms, and data sets, EURO Journal on Transportation and Logistics 6(2): 111–

137.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P. et al. (1983). Optimization by simulated

annealing, science 220(4598): 671–680.

Klabjan, D. (2005). Large-scale models in the airline industry, Column generation pp. 163–

195.

Klabjan, D., Johnson, E. L., Nemhauser, G. L., Gelman, E. and Ramaswamy, S. (2001).

Solving large airline crew scheduling problems: Random pairing generation and strong

branching, Computational Optimization and Applications 20(1): 73–91.

Koubaa, M., Elloumi, S. and Dhouib, S. (2014). Artificial bee colony to solve seafaring

staff scheduling problem: A real case, Advanced Logistics and Transport (ICALT),

2014 International Conference on, IEEE, pp. 314–318.

Kyngäs, N., Nurmi, K. and Kyngäs, J. (2012). Optimizing large-scale staff rostering in-

stances, Lecture Notes in Engineering and Computer Science: Proceedings of The

International MultiConference of Engineers and Computer Scientists, Hong Kong.

Lan, S., Clarke, J.-P. and Barnhart, C. (2006). Planning for robust airline operations:

Optimizing aircraft routings and flight departure times to minimize passenger disrup-

tions, Transportation science 40(1): 15–28.

Legato, P. and Monaco, M. F. (2004). Human resources management at a marine container

terminal, European Journal of Operational Research 156(3): 769–781.

Leggate, A. (2016). A vessel crew scheduling problem: formulations and solution methods,

PhD thesis, Dept. of Management Science, University of Strathclyde. Available online

via http://ethos.bl.uk/.

Leggate, A., Sucu, S., Akartunalı, K. and Van Der Meer, R. (2017). Modelling crew

scheduling in off-shore supply vessels. Journal of the Operational Research Society.

138

Lettovskỳ, L., Johnson, E. L. and Nemhauser, G. L. (2000). Airline crew recovery, Trans-

portation Science 34(4): 337–348.

Lütjen, M., Karimi, H. R. et al. (2012). Approach of a port inventory control system for the

offshore installation of wind turbines, The Twenty-second International Offshore and

Polar Engineering Conference, International Society of Offshore and Polar Engineers.

Ma, J., Ceder, A. A., Yang, Y., Liu, T. and Guan, W. (2016). A case study of beijing

bus crew scheduling: a variable neighborhood-based approach, Journal of Advanced

Transportation 50(4): 434–445.

Magnanti, T. L. and Wong, R. T. (1981). Accelerating benders decomposition: Algorithmic

enhancement and model selection criteria, Operations research 29(3): 464–484.

Mazzola, J. B. and Neebe, A. W. (1986). Resource-constrained assignment scheduling,

Operations Research 34(4): 560–572.

Mercier, A., Cordeau, J.-F. and Soumis, F. (2005). A computational study of benders

decomposition for the integrated aircraft routing and crew scheduling problem, Com-

puters & Operations Research 32(6): 1451–1476.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search, Computers & oper-

ations research 24(11): 1097–1100.

Morgado, E. M. and Martins, J. P. (1993). An ai-based approach to crew scheduling, Ar-

tificial Intelligence for Applications, 1993. Proceedings., Ninth Conference on, IEEE,

pp. 71–77.

Muter, İ., Birbil, Ş. İ., Bülbül, K., Şahin, G., Yenigün, H., Taş, D. and Tüzün, D. (2013).

Solving a robust airline crew pairing problem with column generation, Computers &

Operations Research 40(3): 815–830.

Nissen, R. and Haase, K. (2006). Duty-period-based network model for crew rescheduling

in european airlines, Journal of Scheduling 9(3): 255–278.

Optimization, D. (2007). Xpress-optimizer reference manual, Dash Optimization Ltd.,

Englewood Cliffs, NJ .

Öztop, H., Eliiyi, U., Eliiyi, D. T. and Kandiller, L. (2017). A bus crew scheduling problem

with eligibility constraints and time limitations, Transportation Research Procedia

22: 222–231.

Papadakos, N. (2008). Practical enhancements to the magnanti–wong method, Operations

Research Letters 36(4): 444–449.

Pearce, R. H. and Forbes, M. A. (2017). Puzzleâthe fillomino puzzle, INFORMS Transac-

tions on Education 17(2): 85–89.

139

Pentico, D. W. (2007). Assignment problems: A golden anniversary survey, European

Journal of Operational Research 176(2): 774–793.

Pinar, C. M. (2012). Robust optimization. https://www.ie.bilkent.edu.tr/ mustafap/cours-

es/rt4.pdf.

Poojari, C. A. and Beasley, J. E. (2009). Improving benders decomposition using a genetic

algorithm, European Journal of Operational Research 199(1): 89–97.

Qi, X. (2015). Disruption management for liner shipping, Handbook of Ocean Container

Transport Logistics, Springer, pp. 231–249.

Rahmaniani, R., Crainic, T. G., Gendreau, M. and Rei, W. (2017). The benders decom-

position algorithm: A literature review, European Journal of Operational Research

259(3): 801–817.

Raidl, G. R., Baumhauer, T. and Hu, B. (2015). Boosting an exact logic-based benders

decomposition approach by variable neighborhood search, Electronic Notes in Discrete

Mathematics 47: 149–156.

Rezanova, N. J. and Ryan, D. M. (2010). The train driver recovery problem a set partition-

ing based model and solution method, Computers & Operations Research 37(5): 845–

856.

Saharidis, G. K. and Ierapetritou, M. G. (2010). Improving benders decomposition using

maximum feasible subsystem (mfs) cut generation strategy, Computers & chemical

engineering 34(8): 1237–1245.

Schaefer, A. J., Johnson, E. L., Kleywegt, A. J. and Nemhauser, G. L. (2005). Airline crew

scheduling under uncertainty, Transportation science 39(3): 340–348.

Scholz-Reiter, B., Heger, J., Lütjen, M. and Schweizer, A. (2010). A milp for installation

scheduling of offshore wind farms, International Journal Of Mathematical Models And

Methods In Applied Sciences 5(2): 371–378.

Shebalov, S. and Klabjan, D. (2006). Robust airline crew pairing: Move-up crews, Trans-

portation science 40(3): 300–312.

Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications

to inexact linear programming, Operations research 21(5): 1154–1157.

Stevens, S. C. and Parsons, M. G. (2002). Effects of motion at sea on crew performance:

A survey, Marine Technology 39(1): 29–47.

Suraweera, P., Webb, G. I., Evans, I. and Wallace, M. (2013). Learning crew schedul-

ing constraints from historical schedules, Transportation research part C: emerging

technologies 26: 214–232.

140

Tam, B., Ryan, D. and Ehrgott, M. (2014). Multi-objective approaches to the unit crewing

problem in airline crew scheduling, Journal of Multi-Criteria Decision Analysis 21(5-

6): 257–277.

Taşkın, Z. C., Smith, J. C. and Romeijn, H. E. (2012). Mixed-integer programming tech-

niques for decomposing imrt fluence maps using rectangular apertures, Annals of

Operations Research 196(1): 799–818.

Thorsteinsson, E. (2001). Branch-and-check: A hybrid framework integrating mixed integer

programming and constraint logic programming, Principles and Practice of Constraint

ProgrammingâCP 2001, Springer, pp. 16–30.

Vaidyanathan, B., Jha, K. C. and Ahuja, R. K. (2007). Multicommodity network flow

approach to the railroad crew-scheduling problem, IBM Journal of Research and De-

velopment 51(3.4): 325–344.

Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E. and De Boeck, L.

(2013). Personnel scheduling: A literature review, European Journal of Operational

Research 226(3): 367–385.

VCS-data (2015). Vessel crew scheduling for off-shore supply vessels: A library of test

instances. http://dx.doi.org/10.15129/5dddf224-deaa-4b4b-aeb2-ef60c0d910c9.

Wei, G., Yu, G. and Song, M. (1997). Optimization model and algorithm for crew man-

agement during airline irregular operations, Journal of Combinatorial Optimization

1(3): 305–321.

Wermus, M. and Pope, J. A. (1994). Scheduling harbor pilots, Interfaces 24(2): 44–52.

Yang, Y. and Lee, J. M. (2012). A tighter cut generation strategy for acceleration of

benders decomposition, Computers & Chemical Engineering 44: 84–93.

Yen, J. W. and Birge, J. R. (2006). A stochastic programming approach to the airline crew

scheduling problem, Transportation Science 40(1): 3–14.

Yu, G., Argüello, M., Song, G., McCowan, S. M. and White, A. (2003). A new era for

crew recovery at continental airlines, Interfaces 33(1): 5–22.

Zeghal, F. and Minoux, M. (2006). Modeling and solving a crew assignment problem in

air transportation, European Journal of Operational Research 175(1): 187–209.

Zhang, D., Lau, H. H. and Yu, C. (2015). A two stage heuristic algorithm for the integrated

aircraft and crew schedule recovery problems, Computers & Industrial Engineering

87: 436–453.

141

Appendix A

Heuristic Analysis

Categorical regression is applied on Percentage GAP obtained after to see the effect

of data characteristics and heuristic application settings.

142

Figure A.1: SPSS Output for Categorical Regression on GAP

143

Figure A.2: Explanation of Heuristic Versions

144

Appendix B

Code

B.1 Benders Decomposition Algorithm

The Benders Decomposition Algorithms are coded in FICOr Xpress-MP (Mosel

v3.6.0, Xpress-MP v7.7) and presented under this section.

B.1.1 First Trial Benders Decomposition

The implementation of the first version of BD is provided below.

model "Benders (master model)"

uses "mmxprs", "mmjobs", "mmsystem"

parameters

ALG = 1

DATAFILE = "small_data.txt"

end-parameters

forward procedure start_solution

forward procedure solve_primal_int(ct: integer)

forward procedure solve_cont

forward procedure solve_mwp

forward function eval_solution: boolean

forward procedure print_solution

declarations

145

STEP_0=2 ! Event codes sent to submodels

STEP_1=3

STEP_2=4

STEP_3=5

EVENT_SOLVED=6 ! Event codes sent by submodels

EVENT_INFEAS=7

EVENT_READY=8

REG_EMP: set of string ! Regular employee names / numbers (ie not

Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which

will require cover, divided by vessels

ALL_ROLES: set of string ! List of all roles

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real !

Data relating to over/undertime payments for employees

sol_obj: real ! Objective function value (primal)

MC: array(range) of linctr ! Constraints generated by alg.

RM: range ! Model indices

cut_type: real

stepmod: array(RM) of Model ! Submodels

end-declarations

!DECLARATION OF PARAMETERS AND DECISION VARIABLES

initializations from DATAFILE

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

under_rate over_rate g_weeks exp_worktime

end-initializations

ALL_EMP := REG_EMP + {"AGENCY"}

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

146

declarations

TIME = 1..WEEKS_TO_PLAN

allocate: dynamic array(ALL_EMP, ALL_ROLES, TIME) of real ! Variable for

allocating employee to role during given time period

work_total: array(REG_EMP, TIME) of real

allocate_dual: dynamic array(ALL_EMP, ALL_ROLES, TIME) of real ! Variable

for allocating employee to role during given time period

work_total_dual: array(REG_EMP, TIME) of real

board_chng_cost, depart_chng_cost: array(REG_EMP, VESSELS, TIME) of real !

Costs of CHANGES TO employees boarding / leaving vessel

ag_board_chng_cost, ag_depart_chng_cost: array(ALL_ROLES, TIME) of real !

Costs of CHANGES TO agency employees boarding / leaving for a given

role

work_chng_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given

role at a given time

required: array(ALL_ROLES, TIME) of integer ! =1 if

role r is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can

carry out role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is

on board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

ag_starting: array(ALL_ROLES) of integer ! =1 if

agency employee is in role r at time 0, =0 otherwise

work_zero, rest_zero: array(REG_EMP) of integer ! initial values

of work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial

value of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum

on working time, minimum on resting time

ag_max_work: array(ALL_ROLES) of integer ! maximum

on working time for agency crew, possibly different for each role

147

overall_regular_max_work: integer

overall_agency_max_work: integer

overall_max_work: integer

! Added for the recovery problem:

! - the details of the current roster...

cur_allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer

cur_board, cur_depart: array(REG_EMP, VESSELS, TIME) of integer

cur_ag_rboard, cur_ag_rdepart: array(ALL_ROLES, TIME) of integer

cur_undertime, cur_overtime: array(GUARANTEED) of real

end-declarations

!Reading from txt file

initializations from DATAFILE

board_chng_cost depart_chng_cost work_chng_cost

ag_board_chng_cost ag_depart_chng_cost

required eligable starting ag_starting

work_zero rest_zero

max_work min_rest ag_max_work

cur_allocate cur_board cur_depart cur_ag_rboard cur_ag_rdepart

cur_undertime cur_overtime

end-initializations

overall_regular_max_work := max(e in REG_EMP) max_work(e)

overall_agency_max_work := max(r in ALL_ROLES) ag_max_work(r)

if(overall_regular_max_work > overall_agency_max_work) then

overall_max_work := overall_regular_max_work

else

overall_max_work := overall_agency_max_work

end-if

!Continue to define parameters and decision variables

148

declarations

lambda = 1..overall_max_work

! Index used for number of consecutive

weeks

long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real ! Used to

indicate if a special bonus / penalty payment relating to consecutive

time at sea is required

long_work_dual: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real ! Used to

indicate if a special bonus / penalty payment relating to consecutive

time at sea is required

extension_chng_cost: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real !

Cost of CHANGES TO an employee working on board a vessel for longer

than usual

!Added for recovery problem - detail of current roster, and change

variable

cur_long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of integer

!solution of dual sub problem

sol_dual_3, sol_dual_5: array(REG_EMP, VESSELS) of real

sol_dual_4, sol_dual_6: array(REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of real

! or takes a non-negative integer

value for agency crew

sol_dual_7: array(ALL_ROLES) of real

sol_dual_8: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of real

sol_dual_9: array(GUARANTEED) of real

sol_dual_10: array(GUARANTEED) of real

sol_dual_14: array(lambda, REG_EMP, ALL_ROLES, 2..WEEKS_TO_PLAN) of real

sol_dual_15: array(ALL_ROLES) of real

sol_dual_16: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of real !

Used to track the consecutive working time of the agency employees

sol_dual_17: array(ALL_ROLES, TIME) of real

sol_dual_18: array(lambda, ALL_ROLES, TIME) of real

sol_dual_19:array(REG_EMP) of real

149

sol_dual_21:array(REG_EMP, TIME) of real

sol_dual_20:array(REG_EMP, 2..WEEKS_TO_PLAN) of real

sol_dual_23:array(REG_EMP,2..WEEKS_TO_PLAN) of real

sol_dual_24:array(REG_EMP,2..WEEKS_TO_PLAN) of real

sol_dual_25: array(lambda,REG_EMP, ALL_ROLES, 2..WEEKS_TO_PLAN) of real

! Objective Value of dual problem

Dual_cost:real

UB:real

end-declarations

! reading the parameters

initializations from DATAFILE

extension_chng_cost cur_long_work long_work allocate work_total

end-initializations

declarations

!constraints for dual problem

dual_cons_board: array(REG_EMP, VESSELS, TIME) of linctr

dual_cons_depart: array(REG_EMP, VESSELS, TIME) of linctr ! =1 if

employee boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer value for agency crew

dual_cons_ag_rboard: array(ALL_ROLES, TIME) of linctr

dual_cons_ag_rdepart: array(ALL_ROLES, TIME) of linctr ! =1 if agency

crew starts / ends working on a role in given time period, 0 otherwise

dual_cons_undertime: array(GUARANTEED) of linctr

dual_cons_overtime: array(GUARANTEED) of linctr !

Variables to calculate the amount of under/overtime carried out by

employee

dual_cons_rest_total: array(REG_EMP, TIME) of linctr ! Used to track the

consecutive working time / rest period requirements of each employee

dual_cons_work_total: array(REG_EMP, TIME) of linctr ! Used to track the

consecutive working time / rest period requirements of each employee

dual_cons_ag_work_total: array(ALL_ROLES, TIME) of linctr

! Used to track the consecutive working time of the agency

employees

!constraints for integer problem

All_covered: dynamic array(ALL_ROLES, TIME) of linctr

150

No_overlap: array(REG_EMP, TIME) of linctr

Long_work_count: dynamic array(lambda, REG_EMP, ALL_ROLES, TIME) of linctr

Rest_vs_work: array(REG_EMP,1..1) of linctr

Work_count: array(REG_EMP, TIME) of linctr

end-declarations

!sharing data info with submodels

initializations to "bin:shmem:probdata" ! Save data for submodels

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

under_rate over_rate g_weeks exp_worktime

board_chng_cost depart_chng_cost work_chng_cost

ag_board_chng_cost ag_depart_chng_cost

required eligable starting ag_starting

work_zero rest_zero

max_work min_rest ag_max_work

cur_allocate cur_board cur_depart cur_ag_rboard cur_ag_rdepart

cur_undertime cur_overtime

extension_chng_cost cur_long_work long_work allocate work_total

end-initializations

! **** Submodels ****

! Compile + load all submodels

if compile("benders_int_recovery3.mos")<>0 then exit(1); end-if

create(stepmod(1)); load(stepmod(1), "benders_int_recovery3.bim")

if compile("benders_mwp_recovery3.mos")<>0 then exit(3); end-if

create(stepmod(0)); load(stepmod(0), "benders_mwp_recovery3.bim")

if compile("benders_dual_recovery3.mos")<>0 then exit(2); end-if

if ALG=1 then

create(stepmod(2)); load(stepmod(2), "benders_dual_recovery3.bim")

else

create(stepmod(0)); load(stepmod(0), "benders_dual_recovery3.bim")

if compile("benders_cont_recovery3.mos")<>0 then exit(3); end-if

create(stepmod(2)); load(stepmod(2), "benders_cont_recovery3.bim")

run(stepmod(0))

151

end-if

! Start the execution of the submodels

run(stepmod(1))

run(stepmod(2))

run(stepmod(0))

forall(m in RM) do

wait ! Wait for "Ready" messages

ev:= getnextevent

writeln("m: ", m)

writeln("RM: ",RM)

writeln("ev: ", getclass(ev))

if getclass(ev) <> EVENT_READY then

writeln("Error occurred in a subproblem")

exit(4)

end-if

end-do

! **** Solution algorithm ****

(! start_solution ! 0. Initial solution for getting dual

variables

ct:= 1

repeat

writeln("\n**** Iteration: ", ct)

solve_primal_int(ct) ! 1. Solve master problem with dual

variables values and.

solve_cont

if(cut_type=0)then

solve_mwp ! 2. Solve problem with fixed int.

end-if

ct+=1

until eval_solution ! Test for optimality

print_solution ! 3. Retrieve and display the solution

!)

152

prog_starttime_big:= gettime

start_solution ! 0. Initial solution for getting dual

variables

ct:= 1

repeat

writeln("\n**** Iteration: ", ct)

prog_starttime := gettime

solve_primal_int(ct) ! 1. Solve master problem with dual

variables values and.

prog_endtime := gettime

writeln("Iteration: ", ct)

writeln("Running time:\t",prog_endtime-prog_starttime)

solve_cont

!if(cut_type=0)then

!solve_mwp

! end-if ! 2. Solve problem with fixed int.

ct+=1

until eval_solution! Test for optimality

prog_endtime_big:= gettime

print_solution ! 3. Retrieve and display the solution

writeln("Running time:\t",prog_endtime_big-prog_starttime_big)

! **** Cleaning up temporary files ****

fdelete("benders_int_recovery3.bim")

fdelete("benders_dual_recovery3.bim")

fdelete("benders_mwp_recovery3.bim")

if ALG<>1 then fdelete("benders_cont_recovery3.bim"); end-if

fdelete("shmem:probdata")

fdelete("shmem:sol")

!---

! Produce an initial solution for the dual problem

procedure start_solution

if ALG=1 then ! Start the problem solving

send(stepmod(2), STEP_0, 0)

else

153

send(stepmod(0), STEP_0, 0)

end-if

wait ! Wait for the solution

ev:=getnextevent

if getclass(ev)=EVENT_INFEAS then

writeln("Problem is infeasible")

exit(6)

end-if

end-procedure

!---

! Solve a modified version of the primal problem, replacing continuous

! variables by the solution of the dual

procedure solve_primal_int(ct: integer)

send(stepmod(1), STEP_1, ct) ! Start the problem solving

wait ! Wait for the solution

ev:=getnextevent

sol_obj:= getvalue(ev) ! Store objective function value

initializations from "bin:shmem:sol" ! Retrieve the solution

allocate_dual long_work_dual

end-initializations

end-procedure

!---

! Solve the Step 2 problem (dual)

! for given solution values of allocate, work_total, long_work

procedure solve_cont

send(stepmod(2), STEP_2, 0) ! Start the problem solving

wait ! Wait for the solution

dropnextevent

initializations from "bin:shmem:sol" ! Retrieve the solution

sol_dual_3 sol_dual_5 sol_dual_4 sol_dual_6 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_15

sol_dual_16 sol_dual_17 sol_dual_18 sol_dual_19 sol_dual_21

154

sol_dual_20 sol_dual_23 sol_dual_24 sol_dual_25 Dual_cost cut_type

allocate_dual long_work_dual UB

end-initializations

end-procedure

!---

! Solve the Step 3 problem (dual)

! for given solution values of allocate, work_total, long_work

procedure solve_mwp

send(stepmod(0), STEP_3, 0) ! Start the problem solving

wait ! Wait for the solution

dropnextevent

initializations from "bin:shmem:sol" ! Retrieve the solution

sol_dual_3 sol_dual_5 sol_dual_4 sol_dual_6 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_15

sol_dual_16 sol_dual_17 sol_dual_18 sol_dual_19 sol_dual_21

sol_dual_20 sol_dual_23 sol_dual_24 sol_dual_25 Dual_cost cut_type

end-initializations

end-procedure

!---

!The obj function value from dual and master problem are compared here

function eval_solution: boolean

write("Test optimality: ",UB - sol_obj , " = ",0.5)

returned:= UB- sol_obj<=0.5

! write("Test optimality: ",sol_obj - sum(e in ALL_EMP, r in ALL_ROLES, t

in TIME)((work_cost(e,r,t)*allocate_dual(e,r,t)) + sum(l in lambda)(

extension_cost(l,e,r,t)*long_work_dual(l,e,r,t))), " = ", (sum(e in

REG_EMP, v in VESSELS)(sol_dual_3(e,v)*(sum(r in ROLES(v))(

allocate_dual(e,r,1)) - starting(e,v)))+

!sum(r in ALL_ROLES)(sol_dual_7(r)*(allocate_dual("AGENCY",r,1) -

ag_starting(r)))+

155

!sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(sol_dual_8(r,t)*(allocate_dual

("AGENCY",r,t) - allocate_dual("AGENCY",r,(t-1))))+

!sum(e in GUARANTEED)(sol_dual_9(e)*(g_weeks(e) - (exp_worktime(e) + sum(r

in ALL_ROLES, t in TIME)(allocate_dual(e,r,t)))))+

!sum(e in GUARANTEED)(sol_dual_10(e)*((exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate_dual(e,r,t)))- g_weeks(e)))+

!sum(r in ALL_ROLES)(sol_dual_15(r)*(ag_work_zero(r) + allocate_dual("

AGENCY",r,1)))+

!sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) (sol_dual_16(r,t)*

allocate_dual("AGENCY",r,t))+

!sum(r in ALL_ROLES, t in TIME)(sol_dual_17(r,t)*allocate_dual("AGENCY",r,

t))+

!sum(l in lambda, r in ALL_ROLES, t in TIME)(sol_dual_18(l,r,t)*(-

ag_max_work(r)*long_work_dual(l,"AGENCY",r,t) - (l-1)))+

!sum(e in REG_EMP)(sol_dual_19(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)

(allocate_dual(e,r,1))))))+

!sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(sol_dual_20(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate_dual(e,r,t))))))+

!sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(sol_dual_23(e,t)*(- min_rest(e)

*(1-(sum(r in ALL_ROLES)(allocate_dual(e,r,t))))))+

!sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(sol_dual_4(e,v,t)

*(sum(r in ROLES(v))(allocate_dual(e,r,t)) - sum(r in ROLES(v))(

allocate_dual(e,r,(t-1)))))+

!sum(e in REG_EMP, v in VESSELS)(sol_dual_5(e,v)*(starting(e,v) - sum(r in

ROLES(v))(allocate_dual(e,r,1))))+

!sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(sol_dual_6(e,v,t)

*(sum(r in ROLES(v))(allocate_dual(e,r,(t-1))) - sum(r in ROLES(v))(

allocate_dual(e,r,t))))))

! returned:= ((sol_obj - sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)((

work_cost(e,r,t)*allocate_dual(e,r,t)) + sum(l in lambda)((

extension_cost(l,e,r,t)*long_work_dual(l,e,r,t)))))= (sum(e in REG_EMP,

v in VESSELS)(sol_dual_3(e,v)*(sum(r in ROLES(v))(allocate_dual(e,r,1)

) - starting(e,v)))+

!sum(r in ALL_ROLES)(sol_dual_7(r)*(allocate_dual("AGENCY",r,1) -

ag_starting(r)))+

156

!sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(sol_dual_8(r,t)*(allocate_dual

("AGENCY",r,t) - allocate_dual("AGENCY",r,(t-1))))+

!sum(e in GUARANTEED)(sol_dual_9(e)*(g_weeks(e) - (exp_worktime(e) + sum(r

in ALL_ROLES, t in TIME)(allocate_dual(e,r,t)))))+

!sum(e in GUARANTEED)(sol_dual_10(e)*((exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate_dual(e,r,t)))- g_weeks(e)))+

!sum(r in ALL_ROLES)(sol_dual_15(r)*(ag_work_zero(r) + allocate_dual("

AGENCY",r,1)))+

!sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) (sol_dual_16(r,t)*

allocate_dual("AGENCY",r,t))+

!sum(r in ALL_ROLES, t in TIME)(sol_dual_17(r,t)*allocate_dual("AGENCY",r,

t))+

!sum(l in lambda, r in ALL_ROLES, t in TIME)(sol_dual_18(l,r,t)*(-

ag_max_work(r)*long_work_dual(l,"AGENCY",r,t) - (l-1)))+

!sum(e in REG_EMP)(sol_dual_19(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)

(allocate_dual(e,r,1))))))+

!sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(sol_dual_20(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate_dual(e,r,t))))))+

!sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(sol_dual_23(e,t)*(- min_rest(e)

*(1-(sum(r in ALL_ROLES)(allocate_dual(e,r,t))))))+

!sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(sol_dual_4(e,v,t)

*(sum(r in ROLES(v))(allocate_dual(e,r,t)) - sum(r in ROLES(v))(

allocate_dual(e,r,(t-1)))))+

!sum(e in REG_EMP, v in VESSELS)(sol_dual_5(e,v)*(starting(e,v) - sum(r in

ROLES(v))(allocate_dual(e,r,1))))+

!sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(sol_dual_6(e,v,t)

*(sum(r in ROLES(v))(allocate_dual(e,r,(t-1))) - sum(r in ROLES(v))(

allocate_dual(e,r,t))))))

writeln(if(returned, " : true", " : false"))

end-function

!---

procedure print_solution

! Retrieve results

initializations from "bin:shmem:sol"

allocate_dual work_total_dual long_work_dual

end-initializations

157

forall(m in RM) stop(stepmod(m)) ! Stop all submodels

write("\n**** Solution (Benders): ", sol_obj)

writeln("long_work: [")

forall(l in lambda) do

forall(e in ALL_EMP) do

forall(r in ALL_ROLES) do

forall(t in TIME) write((long_work_dual(l,e,r,t)),"\t")

end-do

write("\n")

end-do

write("\n")

end-do

write("]\n")

writeln("allocate: [")

forall(e in ALL_EMP) do

forall(r in ALL_ROLES) do

forall(t in TIME) write((allocate_dual(e,r,t)),"\t")

end-do

write("\n")

end-do

write("]\n")

end-procedure

end-model

!------------------------------DSP----------------------------------

model "Benders (dual problem)"

uses "mmxprs", "mmjobs"

parameters

BIGM = 100000

end-parameters

158

forward procedure save_solution

declarations

STEP_0=2 ! Event codes sent to submodels

STEP_2=4

STEP_3=5

EVENT_SOLVED=6 ! Event codes sent by submodels

EVENT_INFEAS=7

EVENT_READY=8

REG_EMP: set of string ! Regular employee names / numbers (ie not

Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which

will require cover, divided by vessels

ALL_ROLES: set of string ! List of all roles

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real !

Data relating to over/undertime payments for employees

end-declarations

initializations from "bin:shmem:probdata"

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

under_rate over_rate g_weeks exp_worktime

end-initializations

ALL_EMP := REG_EMP + {"AGENCY"}

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

declarations

TIME = 1..WEEKS_TO_PLAN

allocate_master: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar

work_total_master: array(REG_EMP, TIME) of mpvar

159

allocate: dynamic array(ALL_EMP, ALL_ROLES, TIME) of real

work_total: array(REG_EMP, TIME) of real

allocate_dual: dynamic array(ALL_EMP, ALL_ROLES, TIME) of real

work_total_dual: array(REG_EMP, TIME) of real

board_chng_cost, depart_chng_cost: array(REG_EMP, VESSELS, TIME) of real !

Costs of CHANGES TO employees boarding / leaving vessel

ag_board_chng_cost, ag_depart_chng_cost: array(ALL_ROLES, TIME) of real !

Costs of CHANGES TO agency employees boarding / leaving for a given

role

work_chng_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given

role at a given time

required: array(ALL_ROLES, TIME) of integer ! =1 if

role r is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can

carry out role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is

on board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

ag_starting: array(ALL_ROLES) of integer ! =1 if

agency employee is in role r at time 0, =0 otherwise

work_zero, rest_zero: array(REG_EMP) of integer ! initial values

of work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial

value of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum

on working time, minimum on resting time

ag_max_work: array(ALL_ROLES) of integer ! maximum

on working time for agency crew, possibly different for each role

overall_regular_max_work: integer

overall_agency_max_work: integer

overall_max_work: integer

! Added for the recovery problem:

! - the details of the current roster...

cur_allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer

160

cur_board, cur_depart: array(REG_EMP, VESSELS, TIME) of integer

cur_ag_rboard, cur_ag_rdepart: array(ALL_ROLES, TIME) of integer

cur_undertime, cur_overtime: array(GUARANTEED) of real

cut_type: real

end-declarations

initializations from "bin:shmem:probdata" ! Save data for submodels

board_chng_cost depart_chng_cost work_chng_cost

ag_board_chng_cost ag_depart_chng_cost

required eligable starting ag_starting

work_zero rest_zero

max_work min_rest ag_max_work

cur_allocate cur_board cur_depart cur_ag_rboard cur_ag_rdepart

cur_undertime cur_overtime

end-initializations

overall_regular_max_work := max(e in REG_EMP) max_work(e)

overall_agency_max_work := max(r in ALL_ROLES) ag_max_work(r)

if(overall_regular_max_work > overall_agency_max_work) then

overall_max_work := overall_regular_max_work

else

overall_max_work := overall_agency_max_work

end-if

declarations

lambda = 1..overall_max_work

long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real

long_work_master: array(lambda, ALL_EMP, ALL_ROLES, TIME) of mpvar

long_work_dual: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real

!parameters

extension_chng_cost: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real !

Cost of CHANGES TO an employee working on board a vessel for longer

than usual

161

!Added for recovery problem - detail of current roster, and change

variable

cur_long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of integer

! Discrete variables

dual_3, dual_5: array(REG_EMP, VESSELS) of mpvar

dual_4, dual_6: array(REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of mpvar

! or takes a non-negative integer

value for agency crew

dual_7: array(ALL_ROLES) of mpvar

dual_8: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of mpvar

dual_9: array(GUARANTEED) of mpvar

dual_10: array(GUARANTEED) of mpvar

dual_14: array(lambda, REG_EMP, ALL_ROLES, 2..WEEKS_TO_PLAN) of mpvar

dual_15: array(ALL_ROLES) of mpvar

dual_16: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of mpvar !

Used to track the consecutive working time of the agency employees

dual_17: array(ALL_ROLES, TIME) of mpvar

dual_18: array(lambda, ALL_ROLES, TIME) of mpvar

dual_19:array(REG_EMP) of mpvar

dual_21:array(REG_EMP, TIME) of mpvar

dual_20:array(REG_EMP, 2..WEEKS_TO_PLAN) of mpvar

dual_23:array(REG_EMP,2..WEEKS_TO_PLAN) of mpvar

dual_24:array(REG_EMP,2..WEEKS_TO_PLAN) of mpvar

dual_25: array(lambda,REG_EMP, ALL_ROLES, 2..WEEKS_TO_PLAN) of mpvar

sol_dual_3, sol_dual_5: array(REG_EMP, VESSELS) of real

sol_dual_4, sol_dual_6: array(REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of real

! or takes a non-negative integer

value for agency crew

sol_dual_7: array(ALL_ROLES) of real

sol_dual_8: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of real

sol_dual_9: array(GUARANTEED) of real

162

sol_dual_10: array(GUARANTEED) of real

sol_dual_14: array(lambda, REG_EMP, ALL_ROLES, 2..WEEKS_TO_PLAN) of real

sol_dual_15: array(ALL_ROLES) of real

sol_dual_16: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of real !

Used to track the consecutive working time of the agency employees

sol_dual_17: array(ALL_ROLES, TIME) of real

sol_dual_18: array(lambda, ALL_ROLES, TIME) of real

sol_dual_19:array(REG_EMP) of real

sol_dual_21:array(REG_EMP, TIME) of real

sol_dual_20:array(REG_EMP, 2..WEEKS_TO_PLAN) of real

sol_dual_23:array(REG_EMP,2..WEEKS_TO_PLAN) of real

sol_dual_24:array(REG_EMP,2..WEEKS_TO_PLAN) of real

sol_dual_25: array(lambda,REG_EMP, ALL_ROLES, 2..WEEKS_TO_PLAN) of real

UB:real

Dual_cost:real

end-declarations

initializations from "bin:shmem:probdata"

extension_chng_cost cur_long_work long_work allocate work_total

end-initializations

declarations

dual_cons_board: array(REG_EMP, VESSELS, TIME) of linctr

dual_cons_depart: array(REG_EMP, VESSELS, TIME) of linctr ! =1 if

employee boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer value for agency crew

dual_cons_ag_rboard: array(ALL_ROLES, TIME) of linctr

dual_cons_ag_rdepart: array(ALL_ROLES, TIME) of linctr ! =1 if agency

crew starts / ends working on a role in given time period, 0 otherwise

dual_cons_undertime: array(GUARANTEED) of linctr

dual_cons_overtime: array(GUARANTEED) of linctr !

Variables to calculate the amount of under/overtime carried out by

employee

163

dual_cons_rest_total: array(REG_EMP, TIME) of linctr ! Used to track the

consecutive working time / rest period requirements of each employee

dual_cons_work_total: array(REG_EMP, TIME) of linctr ! Used to track the

consecutive working time / rest period requirements of each employee

dual_cons_ag_work_total: array(ALL_ROLES, TIME) of linctr

! Used to track the consecutive working time of the agency

employees

Dual_first:linctr

end-declarations

Dual_first:=(sum(e in REG_EMP, v in VESSELS)(dual_3(e,v)*(sum(r in ROLES(v

))(allocate(e,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4(e,v,t)*(sum(

r in ROLES(v))(allocate(e,r,t)) - sum(r in ROLES(v))(allocate(e,r,(t-1)

))))+

sum(r in ALL_ROLES)(dual_7(r)*(allocate("AGENCY",r,1) - ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8(r,t)*(allocate("AGENCY",

r,t) - allocate("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(dual_9(e)*(g_weeks(e) - (exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate(e,r,t)))))+

sum(e in GUARANTEED)(dual_10(e)*((exp_worktime(e) + sum(r in ALL_ROLES, t

in TIME)(allocate(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES)(dual_15(r)*(ag_work_zero(r) + allocate("AGENCY",r,1))

)+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) (dual_16(r,t)*allocate("AGENCY

",r,t))+

sum(r in ALL_ROLES, t in TIME)(dual_17(r,t)*allocate("AGENCY",r,t))+

sum(l in lambda, r in ALL_ROLES, t in TIME)(dual_18(l,r,t)*(- ag_max_work(

r)*long_work(l,"AGENCY",r,t) - (l-1)))+

sum(e in REG_EMP)(dual_19(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate(e,r,t))))))+

164

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23(e,t)*(- min_rest(e)*(1-(

sum(r in ALL_ROLES)(allocate(e,r,t))))))+

sum(e in REG_EMP, v in VESSELS)(dual_5(e,v)*(starting(e,v) - sum(r in

ROLES(v))(allocate(e,r,1))))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_6(e,v,t)*(sum

(r in ROLES(v))(allocate(e,r,(t-1))) - sum(r in ROLES(v))(allocate(e,r,

t))))+

sum(l in lambda, e in REG_EMP, r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(

dual_25(l,e,r,t)* ((max_work(e)*long_work(l,e,r,t)) + (max_work(e)*(1-

allocate(e,r,t))) - allocate(e,r,t) + (l-1)))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_24(e,t)*(sum(r in ALL_ROLES)

(allocate(e,r,t)) - max_work(e)*(1-(sum(r in ALL_ROLES)(allocate(e,r,t)

))))))

!board

forall(e in REG_EMP, v in VESSELS) dual_cons_board(e,v,1):=dual_3(e,v)<=(

board_chng_cost(e,v,1))/(1-(2*cur_board(e,v,1)))

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_cons_board(

e,v,t):=dual_4(e,v,t)<=(board_chng_cost(e,v,t))/(1-(2*cur_board(e,v,t))

)

!depart

forall(e in REG_EMP, v in VESSELS) dual_cons_depart(e,v,1):=dual_5(e,v)-

((min_rest(e)-1)*dual_21(e,1))<=(depart_chng_cost(e,v,1))/(1-(2*

cur_depart(e,v,1)))

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_cons_depart

(e,v,t):=dual_6(e,v,t)-(min_rest(e)-1)*dual_21(e,t)<=(depart_chng_cost(

e,v,t))/(1-(2*cur_depart(e,v,t)))

!ag_rboard

forall(r in ALL_ROLES) dual_cons_ag_rboard(r,1):= dual_7(r)<=(

ag_board_chng_cost(r,1)/(1-(2*cur_ag_rboard(r,1))))

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rboard(r,t) :=

dual_8(r,t)<=(ag_board_chng_cost(r,t)/(1-(2*cur_ag_rboard(r,t))))

!ag_rdepart

165

forall(r in ALL_ROLES) dual_cons_ag_rdepart(r,1):= -dual_7(r)+(ag_max_work

(r)*dual_15(r))<=(ag_depart_chng_cost(r,1)/(1-(2*cur_ag_rdepart(r,1))))

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rdepart(r,t) :=

-dual_8(r,t)+(ag_max_work(r)*dual_16(r,t))<=(ag_depart_chng_cost(r,t)

/(1-(2*cur_ag_rdepart(r,t))))

!undertime

forall(e in GUARANTEED) dual_cons_undertime(e):= dual_9(e)<=under_rate(e)

!overtime

forall(e in GUARANTEED) dual_cons_overtime(e):= dual_10(e)<=over_rate(e)

!ag_work_total

forall(r in ALL_ROLES) dual_cons_ag_work_total(r,1):= dual_15(r)-dual_16(r

,2)+dual_17(r,1)-sum(l in lambda)dual_18(l,r,1)<=0

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN-1) dual_cons_ag_work_total(r,t

):= dual_16(r,t)-dual_16(r,t+1)+dual_17(r,t)-sum(l in lambda)dual_18(l,

r,t)<=0

forall(r in ALL_ROLES,t in WEEKS_TO_PLAN..WEEKS_TO_PLAN)

dual_cons_ag_work_total(r,t):= dual_16(r,t)+dual_17(r,t)- sum(l in

lambda)dual_18(l,r,t)<=0

!rest_total

forall(e in REG_EMP) dual_cons_rest_total(e,1):= dual_19(e)-dual_20(e,2)+

dual_21(e,1)-dual_23(e,2)<=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN-1) dual_cons_rest_total(e,t):=

dual_20(e,t)-dual_20(e,t+1)+dual_21(e,t)-dual_23(e,t+1)<=0

forall(e in REG_EMP,t in WEEKS_TO_PLAN..WEEKS_TO_PLAN)

dual_cons_rest_total(e,t):= dual_20(e,t)+dual_21(e,t)<=0

166

!work_total

forall(e in REG_EMP) dual_cons_work_total(e,1):= - dual_24(e,2)+ sum(l in

lambda,r in ALL_ROLES)dual_25(l,e,r,2)<=0

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN-1) dual_cons_work_total(e,t):=

dual_24(e,t) - dual_24(e,(t+1)) + sum(l in lambda,r in ALL_ROLES)

dual_25(l,e,r,t+1)<=0

forall(e in REG_EMP,t in WEEKS_TO_PLAN..WEEKS_TO_PLAN)

dual_cons_work_total(e,t):= dual_24(e,t)<=0

forall(e in REG_EMP, v in VESSELS) dual_3(e,v)>=0

forall(e in REG_EMP, v in VESSELS) dual_5(e,v)>=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_4(e,v,t)>=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_6(e,v,t)>=0

forall(r in ALL_ROLES) dual_7(r) is_free

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) dual_8(r,t) is_free

forall(e in GUARANTEED) dual_9(e)>=0

forall(e in GUARANTEED) dual_10(e)>=0

forall(r in ALL_ROLES) dual_15(r)>=0

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) dual_16(r,t)>=0

forall(r in ALL_ROLES, t in TIME) dual_17(r,t)>=0

forall(l in lambda, r in ALL_ROLES,t in TIME) dual_18(l,r,t)>=0

forall(e in REG_EMP) dual_19(e)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_20(e,t)>=0

forall(e in REG_EMP,t in TIME) dual_21(e,t)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_23(e,t)>=0

forall(l in lambda,e in REG_EMP, r in ALL_ROLES,t in 2..WEEKS_TO_PLAN)

dual_25(l,e,r,t)<=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_24(e,t)>=0

send(EVENT_READY,0) ! Model is ready (= running)

167

! (Re)solve this model until it is stopped by event "STEP_3"

repeat

wait

ev:= getnextevent

Alg:= getclass(ev)

if Alg=STEP_0 then ! Produce an initial solution for the

! dual problem using a dummy objective

maximize(XPRS_BAR,Dual_first)

if(getprobstat = XPRS_INF) then

writeln("Problem is infeasible")

send(EVENT_INFEAS,0) ! Problem is infeasible

else

write("**** Start solution: ")

write("**** Problem is not infeasible: ")

if(getprobstat = XPRS_UNB) then

writeln("Problem is unbounded")

cut_type:=0

writeln("Cut_type",cut_type)

BigM:= (sum(e in REG_EMP, v in VESSELS)(dual_3(e,v)*(sum(r in ROLES(v))(

allocate(e,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4(e,v,t)*(sum(

r in ROLES(v))(allocate(e,r,t)) - sum(r in ROLES(v))(allocate(e,r,(t-1)

))))+

sum(r in ALL_ROLES)(dual_7(r)*(allocate("AGENCY",r,1) - ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8(r,t)*(allocate("AGENCY",

r,t) - allocate("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(dual_9(e)*(g_weeks(e) - (exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate(e,r,t)))))+

sum(e in GUARANTEED)(dual_10(e)*((exp_worktime(e) + sum(r in ALL_ROLES, t

in TIME)(allocate(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES)(dual_15(r)*(ag_work_zero(r) + allocate("AGENCY",r,1))

)+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) (dual_16(r,t)*allocate("AGENCY

",r,t))+

sum(r in ALL_ROLES, t in TIME)(dual_17(r,t)*allocate("AGENCY",r,t))+

168

sum(l in lambda, r in ALL_ROLES, t in TIME)(dual_18(l,r,t)*(- ag_max_work(

r)*long_work(l,"AGENCY",r,t) - (l-1)))+

sum(e in REG_EMP)(dual_19(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23(e,t)*(- min_rest(e)*(1-(

sum(r in ALL_ROLES)(allocate(e,r,t))))))+

sum(e in REG_EMP, v in VESSELS)(dual_5(e,v)*(starting(e,v) - sum(r in

ROLES(v))(allocate(e,r,1))))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_6(e,v,t)*(sum

(r in ROLES(v))(allocate(e,r,(t-1))) - sum(r in ROLES(v))(allocate(e,r,

t))))+

sum(l in lambda, e in REG_EMP, r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(

dual_25(l,e,r,t)* ((max_work(e)*long_work(l,e,r,t)) + (max_work(e)*(1-

allocate(e,r,t))) - allocate(e,r,t) + (l-1)))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_24(e,t)*(sum(r in ALL_ROLES)

(allocate(e,r,t)) - max_work(e)*(1-(sum(r in ALL_ROLES)(allocate(e,r,t)

))))))<=BIGM

maximize(XPRS_BAR,Dual_first)

else

writeln("Problem is feasible")

cut_type:=1

writeln("Cut_type:",cut_type)

end-if

save_solution

BigM:= 0

end-if

else ! STEP 2: Solve the dual problem for

! given solution values of y

initializations from "bin:shmem:sol"

allocate_dual long_work_dual

end-initializations

169

Obj:= (sum(e in REG_EMP, v in VESSELS)(dual_3(e,v)*(sum(r in ROLES(v))(

allocate_dual(e,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4(e,v,t)*(sum(

r in ROLES(v))(allocate_dual(e,r,t)) - sum(r in ROLES(v))(allocate_dual

(e,r,(t-1)))))+

sum(r in ALL_ROLES)(dual_7(r)*(allocate_dual("AGENCY",r,1) - ag_starting(

r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8(r,t)*(allocate_dual("

AGENCY",r,t) - allocate_dual("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(dual_9(e)*(g_weeks(e) - (exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate_dual(e,r,t)))))+

sum(e in GUARANTEED)(dual_10(e)*((exp_worktime(e) + sum(r in ALL_ROLES, t

in TIME)(allocate_dual(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES)(dual_15(r)*(ag_work_zero(r) + allocate_dual("AGENCY",

r,1)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) (dual_16(r,t)*allocate_dual("

AGENCY",r,t))+

sum(r in ALL_ROLES, t in TIME)(dual_17(r,t)*allocate_dual("AGENCY",r,t))+

sum(l in lambda, r in ALL_ROLES, t in TIME)(dual_18(l,r,t)*(- ag_max_work(

r)*long_work_dual(l,"AGENCY",r,t) - (l-1)))+

sum(e in REG_EMP)(dual_19(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate_dual(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23(e,t)*(- min_rest(e)*(1-(

sum(r in ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, v in VESSELS)(dual_5(e,v)*(starting(e,v) - sum(r in

ROLES(v))(allocate_dual(e,r,1))))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_6(e,v,t)*(sum

(r in ROLES(v))(allocate_dual(e,r,(t-1))) - sum(r in ROLES(v))(

allocate_dual(e,r,t))))+

sum(l in lambda, e in REG_EMP, r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(

dual_25(l,e,r,t)* ((max_work(e)*long_work_dual(l,e,r,t)) + (max_work(e

)*(1-allocate_dual(e,r,t))) - allocate_dual(e,r,t) + (l-1)))+

170

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_24(e,t)*(sum(r in ALL_ROLES)

(allocate_dual(e,r,t)) - max_work(e)*(1-(sum(r in ALL_ROLES)(

allocate_dual(e,r,t)))))))

maximize(XPRS_BAR, Obj)

cut_type:=1

if(getprobstat=XPRS_UNB) then

write("Dual Unbounded ")

cut_type:=0

writeln("Cut_type",cut_type)

BigM:= (sum(e in REG_EMP, v in VESSELS)(dual_3(e,v)*(sum(r in ROLES(v))(

allocate_dual(e,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4(e,v,t)*(sum(

r in ROLES(v))(allocate_dual(e,r,t)) - sum(r in ROLES(v))(allocate_dual

(e,r,(t-1)))))+

sum(r in ALL_ROLES)(dual_7(r)*(allocate_dual("AGENCY",r,1) - ag_starting(

r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8(r,t)*(allocate_dual("

AGENCY",r,t) - allocate_dual("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(dual_9(e)*(g_weeks(e) - (exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate_dual(e,r,t)))))+

sum(e in GUARANTEED)(dual_10(e)*((exp_worktime(e) + sum(r in ALL_ROLES, t

in TIME)(allocate_dual(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES)(dual_15(r)*(ag_work_zero(r) + allocate_dual("AGENCY",

r,1)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) (dual_16(r,t)*allocate_dual("

AGENCY",r,t))+

sum(r in ALL_ROLES, t in TIME)(dual_17(r,t)*allocate_dual("AGENCY",r,t))+

sum(l in lambda, r in ALL_ROLES, t in TIME)(dual_18(l,r,t)*(- ag_max_work(

r)*long_work_dual(l,"AGENCY",r,t) - (l-1)))+

sum(e in REG_EMP)(dual_19(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate_dual(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate_dual(e,r,t))))))+

171

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23(e,t)*(- min_rest(e)*(1-(

sum(r in ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, v in VESSELS)(dual_5(e,v)*(starting(e,v) - sum(r in

ROLES(v))(allocate_dual(e,r,1))))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_6(e,v,t)*(sum

(r in ROLES(v))(allocate_dual(e,r,(t-1))) - sum(r in ROLES(v))(

allocate_dual(e,r,t))))+

sum(l in lambda, e in REG_EMP, r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(

dual_25(l,e,r,t)* (- max_work(e)*long_work_dual(l,e,r,t) - max_work(e)

*(1-allocate_dual(e,r,t)) + allocate_dual(e,r,t) - (l-1)))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_24(e,t)*(sum(r in ALL_ROLES)

(allocate_dual(e,r,t)) - max_work(e)*(1-(sum(r in ALL_ROLES)(

allocate_dual(e,r,t))))))+

sum(l in lambda, e in REG_EMP, r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(

dual_25(l,e,r,t)* ((max_work(e)*long_work_dual(l,e,r,t)) + (max_work(e

)*(1-allocate_dual(e,r,t))) - allocate_dual(e,r,t) + (l-1)))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_24(e,t)*(sum(r in ALL_ROLES)

(allocate_dual(e,r,t)) - max_work(e)*(1-(sum(r in ALL_ROLES)(

allocate_dual(e,r,t)))))))<=BIGM

maximize(XPRS_BAR, Obj)

end-if

write("Step 2: ")

writeln("Cut_type",cut_type)

save_solution ! Write solution to memory

BigM:= 0

! Reset the ’BigM’ constraint

end-if

until false

!---

! Process solution data

procedure save_solution

! Store values of u and x

forall(e in REG_EMP, v in VESSELS)do

172

sol_dual_3(e,v):=getsol(dual_3(e,v))

end-do

forall(e in REG_EMP, v in VESSELS)do

sol_dual_5(e,v):=getsol(dual_5(e,v))

end-do

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)do

sol_dual_4(e,v,t):=getsol(dual_4(e,v,t))

end-do

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)do

sol_dual_6(e,v,t):=getsol(dual_6(e,v,t))

end-do

forall(r in ALL_ROLES)do

sol_dual_7(r):=getsol(dual_7(r))

end-do

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)do

sol_dual_8(r,t):= getsol(dual_8(r,t))

end-do

forall(e in GUARANTEED)do

sol_dual_9(e):=getsol(dual_9(e))

end-do

forall(e in GUARANTEED) do

sol_dual_10(e):=getsol(dual_10(e))

end-do

forall(r in ALL_ROLES) do

sol_dual_15(r):=getsol(dual_15(r))

end-do

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)do

sol_dual_16(r,t):=getsol(dual_16(r,t))

173

end-do

forall(r in ALL_ROLES, t in TIME)do

sol_dual_17(r,t):= getsol(dual_17(r,t))

end-do

forall(l in lambda, r in ALL_ROLES, t in TIME)do

sol_dual_18(l,r,t):= getsol(dual_18(l,r,t))

end-do

forall(e in REG_EMP)do

sol_dual_19(e):=getsol(dual_19(e))

end-do

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_20(e,t):=getsol(dual_20(e,t))

end-do

forall(e in REG_EMP, t in TIME) do

sol_dual_21(e,t):=getsol(dual_21(e,t))

end-do

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_23(e,t):=getsol(dual_23(e,t))

end-do

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_24(e,t):=getsol(dual_24(e,t))

end-do

forall(l in lambda, e in REG_EMP, r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)do

sol_dual_25(l,e,r,t):= getsol(dual_25(l,e,r,t))

end-do

if Alg=STEP_0 then

Dual_cost:=(getobjval+sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)((

work_chng_cost(e,r,t)*((allocate(e,r,t)-cur_allocate(e,r,t))/(1-2*(

174

cur_allocate(e,r,t)))))+ sum(l in lambda)(extension_chng_cost(l,e,r,t)

((long_work(l,e,r,t) -cur_long_work(l,e,r,t))/(1-2(cur_long_work(l,e,

r,t)))))))

UB:=100000000000

else

Dual_cost:=(getobjval+sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)((

work_chng_cost(e,r,t)*((allocate_dual(e,r,t)-cur_allocate(e,r,t))

/(1-2*(cur_allocate(e,r,t)))))+ sum(l in lambda)(extension_chng_cost(l,

e,r,t)*((long_work_dual(l,e,r,t) -cur_long_work(l,e,r,t))/(1-2*(

cur_long_work(l,e,r,t)))))))

end-if

if(cut_type=0)then

UB:=UB

else

if(UB>=(Dual_cost+

sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost(e,v,t)*(

cur_board(e,v,t)/((2*cur_board(e,v,t))-1)))+ (depart_chng_cost(e,v,t)*(

cur_depart(e,v,t)/((2*cur_depart(e,v,t)-1))))) +

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r,t)*(cur_ag_rboard(r,t

)/((2*cur_ag_rboard(r,t))-1))) + (ag_depart_chng_cost(r,t)*(

cur_ag_rdepart(r,t)/((2*cur_ag_rdepart(r,t))-1)))) +

sum(e in GUARANTEED)((-under_rate(e)*cur_undertime(e))+ (-over_rate(e)*

cur_overtime(e)))))then

UB:=(Dual_cost+

sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost(e,v,t)*(

cur_board(e,v,t)/((2*cur_board(e,v,t))-1)))+ (depart_chng_cost(e,v,t)*(

cur_depart(e,v,t)/((2*cur_depart(e,v,t)-1))))) +

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r,t)*(cur_ag_rboard(r,t

)/((2*cur_ag_rboard(r,t))-1))) + (ag_depart_chng_cost(r,t)*(

cur_ag_rdepart(r,t)/((2*cur_ag_rdepart(r,t))-1)))) +

sum(e in GUARANTEED)((-under_rate(e)*cur_undertime(e))+ (-over_rate(e)*

cur_overtime(e))))

else

UB:=UB

175

end-if

end-if

initializations to "bin:shmem:sol"

sol_dual_3 sol_dual_5 sol_dual_4 sol_dual_6 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_15

sol_dual_16 sol_dual_17 sol_dual_18 sol_dual_19 sol_dual_21

sol_dual_20 sol_dual_23 sol_dual_24 sol_dual_25 Dual_cost cut_type

allocate_dual long_work_dual UB

end-initializations

send(EVENT_SOLVED, getobjval)

write("Dual_cost: ",Dual_cost)

writeln("UB: ", UB)

! forall(j in Ctrs) write(sol_u(j), " ")

!write("\n x: ")

!forall(i in CtVars) write(getdual(CtrD(i)), " ")

writeln

fflush

end-procedure

end-model

!-------------------------------model MWP-------------------------------

"Benders (mwp problem)"

uses "mmxprs", "mmjobs"

parameters

BIGM = 10000

end-parameters

forward procedure save_solution

declarations

STEP_0=2 ! Event codes sent to submodels

STEP_2=4

STEP_3=5

176

EVENT_SOLVED=6 ! Event codes sent by submodels

EVENT_INFEAS=7

EVENT_READY=8

REG_EMP: set of string ! Regular employee names / numbers (ie not

Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which

will require cover, divided by vessels

ALL_ROLES: set of string ! List of all roles

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real !

Data relating to over/undertime payments for employees

end-declarations

initializations from "bin:shmem:probdata"

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

under_rate over_rate g_weeks exp_worktime

end-initializations

ALL_EMP := REG_EMP + {"AGENCY"}

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

declarations

TIME = 1..WEEKS_TO_PLAN

allocate_master: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar

!allocate_mwp: dynamic array(ALL_EMP, ALL_ROLES, TIME) of real

work_total_master: array(REG_EMP, TIME) of mpvar

allocate: dynamic array(ALL_EMP, ALL_ROLES, TIME) of real

work_total: array(REG_EMP, TIME) of real

allocate_dual: dynamic array(ALL_EMP, ALL_ROLES, TIME) of real

work_total_dual: array(REG_EMP, TIME) of real

177

board_chng_cost, depart_chng_cost: array(REG_EMP, VESSELS, TIME) of real !

Costs of CHANGES TO employees boarding / leaving vessel

ag_board_chng_cost, ag_depart_chng_cost: array(ALL_ROLES, TIME) of real !

Costs of CHANGES TO agency employees boarding / leaving for a given

role

work_chng_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given

role at a given time

required: array(ALL_ROLES, TIME) of integer ! =1 if

role r is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can

carry out role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is

on board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

ag_starting: array(ALL_ROLES) of integer ! =1 if

agency employee is in role r at time 0, =0 otherwise

work_zero, rest_zero: array(REG_EMP) of integer ! initial values

of work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial

value of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum

on working time, minimum on resting time

ag_max_work: array(ALL_ROLES) of integer ! maximum

on working time for agency crew, possibly different for each role

overall_regular_max_work: integer

overall_agency_max_work: integer

overall_max_work: integer

! Added for the recovery problem:

! - the details of the current roster...

cur_allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer

cur_board, cur_depart: array(REG_EMP, VESSELS, TIME) of integer

cur_ag_rboard, cur_ag_rdepart: array(ALL_ROLES, TIME) of integer

cur_undertime, cur_overtime: array(GUARANTEED) of real

cut_type: real

178

end-declarations

initializations from "bin:shmem:probdata" ! Save data for submodels

board_chng_cost depart_chng_cost work_chng_cost

ag_board_chng_cost ag_depart_chng_cost

required eligable starting ag_starting

work_zero rest_zero

max_work min_rest ag_max_work

cur_allocate cur_board cur_depart cur_ag_rboard cur_ag_rdepart

cur_undertime cur_overtime

end-initializations

overall_regular_max_work := max(e in REG_EMP) max_work(e)

overall_agency_max_work := max(r in ALL_ROLES) ag_max_work(r)

if(overall_regular_max_work > overall_agency_max_work) then

overall_max_work := overall_regular_max_work

else

overall_max_work := overall_agency_max_work

end-if

declarations

lambda = 1..overall_max_work

long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real

long_work_master: array(lambda, ALL_EMP, ALL_ROLES, TIME) of mpvar

long_work_mwp: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real

long_work_dual: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real

!parameters

extension_chng_cost: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real !

Cost of CHANGES TO an employee working on board a vessel for longer

than usual

!Added for recovery problem - detail of current roster, and change

variable

cur_long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of integer

179

! Discrete variables

dual_3, dual_5: array(REG_EMP, VESSELS) of mpvar

dual_4, dual_6: array(REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of mpvar

! or takes a non-negative integer

value for agency crew

dual_7: array(ALL_ROLES) of mpvar

dual_8: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of mpvar

dual_9: array(GUARANTEED) of mpvar

dual_10: array(GUARANTEED) of mpvar

dual_14: array(lambda, REG_EMP, ALL_ROLES, 2..WEEKS_TO_PLAN) of mpvar

dual_15: array(ALL_ROLES) of mpvar

dual_16: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of mpvar !

Used to track the consecutive working time of the agency employees

dual_17: array(ALL_ROLES, TIME) of mpvar

dual_18: array(lambda, ALL_ROLES, TIME) of mpvar

dual_19:array(REG_EMP) of mpvar

dual_21:array(REG_EMP, TIME) of mpvar

dual_20:array(REG_EMP, 2..WEEKS_TO_PLAN) of mpvar

dual_23:array(REG_EMP,2..WEEKS_TO_PLAN) of mpvar

sol_dual_3, sol_dual_5: array(REG_EMP, VESSELS) of real

sol_dual_4, sol_dual_6: array(REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of real

! or takes a non-negative integer

value for agency crew

sol_dual_7: array(ALL_ROLES) of real

sol_dual_8: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of real

sol_dual_9: array(GUARANTEED) of real

sol_dual_10: array(GUARANTEED) of real

sol_dual_14: array(lambda, REG_EMP, ALL_ROLES, 2..WEEKS_TO_PLAN) of real

sol_dual_15: array(ALL_ROLES) of real

sol_dual_16: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of real !

Used to track the consecutive working time of the agency employees

180

sol_dual_17: array(ALL_ROLES, TIME) of real

sol_dual_18: array(lambda, ALL_ROLES, TIME) of real

sol_dual_19:array(REG_EMP) of real

sol_dual_21:array(REG_EMP, TIME) of real

sol_dual_20:array(REG_EMP, 2..WEEKS_TO_PLAN) of real

sol_dual_23:array(REG_EMP,2..WEEKS_TO_PLAN) of real

allocate_mwp:array(ALL_EMP,ALL_ROLES,TIME) of real

Dual_cost:real

end-declarations

initializations from "bin:shmem:probdata"

extension_chng_cost cur_long_work long_work allocate work_total

end-initializations

declarations

dual_cons_board: array(REG_EMP, VESSELS, TIME) of linctr

dual_cons_depart: array(REG_EMP, VESSELS, TIME) of linctr ! =1 if

employee boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer value for agency crew

dual_cons_ag_rboard: array(ALL_ROLES, TIME) of linctr

dual_cons_ag_rdepart: array(ALL_ROLES, TIME) of linctr ! =1 if agency

crew starts / ends working on a role in given time period, 0 otherwise

dual_cons_undertime: array(GUARANTEED) of linctr

dual_cons_overtime: array(GUARANTEED) of linctr !

Variables to calculate the amount of under/overtime carried out by

employee

dual_cons_rest_total: array(REG_EMP, TIME) of linctr ! Used to track the

consecutive working time / rest period requirements of each employee

dual_cons_work_total: array(REG_EMP, TIME) of linctr ! Used to track the

consecutive working time / rest period requirements of each employee

dual_cons_ag_work_total: array(ALL_ROLES, TIME) of linctr

! Used to track the consecutive working time of the agency

181

employees

Dual_cost_mwp:linctr

Obj_mwp:linctr

Obj_mwp_value:mpvar

end-declarations

send(EVENT_READY,0) ! Model is ready (= running)

! (Re)solve this model until it is stopped by event "STEP_3"

repeat

wait

ev:= getnextevent

! Alg:= getclass(ev)

initializations from "bin:shmem:sol"

allocate_dual long_work_dual work_total_dual Dual_cost cut_type

end-initializations

writeln("Dual_cost: ",Dual_cost)

Obj_mwp:=Obj_mwp_value=0

Dual_cost_mwp:=(sum(e in REG_EMP, v in VESSELS)(dual_3(e,v)*(sum(r in

ROLES(v))(allocate_dual(e,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4(e,v,t)*(sum(

r in ROLES(v))(allocate_dual(e,r,t)) - sum(r in ROLES(v))(allocate_dual

(e,r,(t-1)))))+

sum(r in ALL_ROLES)(dual_7(r)*(allocate_dual("AGENCY",r,1) - ag_starting(

r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8(r,t)*(allocate_dual("

AGENCY",r,t) - allocate_dual("AGENCY",r,(t-1))))+

182

sum(e in GUARANTEED)(dual_9(e)*(g_weeks(e) - (exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate_dual(e,r,t)))))+

sum(e in GUARANTEED)(dual_10(e)*((exp_worktime(e) + sum(r in ALL_ROLES, t

in TIME)(allocate_dual(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES)(dual_15(r)*(ag_work_zero(r) + allocate_dual("AGENCY",

r,1)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) (dual_16(r,t)*allocate_dual("

AGENCY",r,t))+

sum(r in ALL_ROLES, t in TIME)(dual_17(r,t)*allocate_dual("AGENCY",r,t))+

sum(l in lambda, r in ALL_ROLES, t in TIME)(dual_18(l,r,t)*(- ag_max_work(

r)*long_work_dual(l,"AGENCY",r,t) - (l-1)))+

sum(e in REG_EMP)(dual_19(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate_dual(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23(e,t)*(- min_rest(e)*(1-(

sum(r in ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, v in VESSELS)(dual_5(e,v)*(starting(e,v) - sum(r in

ROLES(v))(allocate_dual(e,r,1))))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_6(e,v,t)*(sum

(r in ROLES(v))(allocate_dual(e,r,(t-1))) - sum(r in ROLES(v))(

allocate_dual(e,r,t)))))=1

!board

forall(e in REG_EMP, v in VESSELS) dual_cons_board(e,v,1):=dual_3(e,v)<=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_cons_board(

e,v,t):=dual_4(e,v,t)<=0

!depart

forall(e in REG_EMP, v in VESSELS) dual_cons_depart(e,v,1):=dual_5(e,v)-

((min_rest(e)-1)*dual_21(e,1))<=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_cons_depart

(e,v,t):=dual_6(e,v,t)-(min_rest(e)-1)*dual_21(e,t)<=0

!ag_rboard

forall(r in ALL_ROLES) dual_cons_ag_rboard(r,1):= dual_7(r)<=0

183

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rboard(r,t) :=

dual_8(r,t)<=0

!ag_rdepart

forall(r in ALL_ROLES) dual_cons_ag_rdepart(r,1):= -dual_7(r)+(ag_max_work

(r)*dual_15(r))<=0

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rdepart(r,t) :=

-dual_8(r,t)+(ag_max_work(r)*dual_16(r,t))<=0

!undertime

forall(e in GUARANTEED) dual_cons_undertime(e):= dual_9(e)<=0

!overtime

forall(e in GUARANTEED) dual_cons_overtime(e):= dual_10(e)<=0

!ag_work_total

forall(r in ALL_ROLES) dual_cons_ag_work_total(r,1):= dual_15(r)-dual_16(r

,2)+dual_17(r,1)-sum(l in lambda)dual_18(l,r,1)<=0

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN-1) dual_cons_ag_work_total(r,t

):= dual_16(r,t)-dual_16(r,t+1)+dual_17(r,t)-sum(l in lambda)dual_18(l,

r,t)<=0

forall(r in ALL_ROLES,t in WEEKS_TO_PLAN..WEEKS_TO_PLAN)

dual_cons_ag_work_total(r,t):= dual_16(r,t)+dual_17(r,t)- sum(l in

lambda)dual_18(l,r,t)<=0

!rest_total

forall(e in REG_EMP) dual_cons_rest_total(e,1):= dual_19(e)-dual_20(e,2)+

dual_21(e,1)-dual_23(e,2)<=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN-1) dual_cons_rest_total(e,t):=

dual_20(e,t)-dual_20(e,t+1)+dual_21(e,t)-dual_23(e,t+1)<=0

184

forall(e in REG_EMP,t in WEEKS_TO_PLAN..WEEKS_TO_PLAN)

dual_cons_rest_total(e,t):= dual_20(e,t)+dual_21(e,t)<=0

forall(e in REG_EMP, v in VESSELS) dual_3(e,v)>=0

forall(e in REG_EMP, v in VESSELS) dual_5(e,v)>=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_4(e,v,t)>=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_6(e,v,t)>=0

forall(r in ALL_ROLES) dual_7(r) is_free

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) dual_8(r,t) is_free

forall(e in GUARANTEED) dual_9(e)>=0

forall(e in GUARANTEED) dual_10(e)>=0

forall(r in ALL_ROLES) dual_15(r)>=0

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) dual_16(r,t)>=0

forall(r in ALL_ROLES, t in TIME) dual_17(r,t)>=0

forall(l in lambda, r in ALL_ROLES,t in TIME) dual_18(l,r,t)>=0

forall(e in REG_EMP) dual_19(e)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_20(e,t)>=0

forall(e in REG_EMP,t in TIME) dual_21(e,t)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_23(e,t)>=0

maximize(XPRS_BAR, Obj_mwp_value)

writeln("Step 3_mwp: ")

writeln("Cut_type",cut_type)

save_solution ! Write solution to memory

! BigM:= 0 ! Reset the ’BigM’ constraint

until false

!---

! Process solution data

procedure save_solution

! Store values of u and x

forall(e in REG_EMP, v in VESSELS)do

sol_dual_3(e,v):=getsol(dual_3(e,v))

185

end-do

forall(e in REG_EMP, v in VESSELS)do

sol_dual_5(e,v):=getsol(dual_5(e,v))

end-do

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)do

sol_dual_4(e,v,t):=getsol(dual_4(e,v,t))

end-do

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)do

sol_dual_6(e,v,t):=getsol(dual_6(e,v,t))

end-do

forall(r in ALL_ROLES)do

sol_dual_7(r):=getsol(dual_7(r))

end-do

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)do

sol_dual_8(r,t):= getsol(dual_8(r,t))

end-do

forall(e in GUARANTEED)do

sol_dual_9(e):=getsol(dual_9(e))

end-do

forall(e in GUARANTEED) do

sol_dual_10(e):=getsol(dual_10(e))

end-do

forall(r in ALL_ROLES) do

sol_dual_15(r):=getsol(dual_15(r))

end-do

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)do

sol_dual_16(r,t):=getsol(dual_16(r,t))

end-do

186

forall(r in ALL_ROLES, t in TIME)do

sol_dual_17(r,t):= getsol(dual_17(r,t))

end-do

forall(l in lambda, r in ALL_ROLES, t in TIME)do

sol_dual_18(l,r,t):= getsol(dual_18(l,r,t))

end-do

forall(e in REG_EMP)do

sol_dual_19(e):=getsol(dual_19(e))

end-do

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_20(e,t):=getsol(dual_20(e,t))

end-do

forall(e in REG_EMP, t in TIME) do

sol_dual_21(e,t):=getsol(dual_21(e,t))

end-do

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_23(e,t):=getsol(dual_23(e,t))

end-do

!Obj_mwp_value:=getobjval

initializations to "bin:shmem:sol"

sol_dual_3 sol_dual_5 sol_dual_4 sol_dual_6 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_15

sol_dual_16 sol_dual_17 sol_dual_18 sol_dual_19 sol_dual_21

sol_dual_20 sol_dual_23 cut_type Dual_cost

end-initializations

send(EVENT_SOLVED, getobjval)

writeln("Dual_obj_func_mwp: ",getobjval)

187

writeln("Dual_cost: ",Dual_cost)

! forall(j in Ctrs) write(sol_u(j), " ")

!write("\n x: ")

!forall(i in CtVars) write(getdual(CtrD(i)), " ")

!writeln

fflush

end-procedure

end-model

!--------------------------------RMP-------------------------------

model "Benders (integer problem)"

uses "mmxprs", "mmjobs"

parameters

STEP_0=2 ! Event codes sent to submodels

STEP_1=3

EVENT_SOLVED=6 ! Event codes sent by submodels

EVENT_READY=8

BIGM = 100000

OUTPUTFILE = "Logfile -bigdata.txt"

end-parameters

!setparam("XPRS_miprelstop",0.2)

!setparam("XPRS_maxtime",-300)

declarations

REG_EMP: set of string ! Regular employee names / numbers (ie not

Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which

will require cover, divided by vessels

ALL_ROLES: set of string ! List of all roles

188

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real !

Data relating to over/undertime payments for employees

sol_obj: real ! Objective function value (primal)

MC: array(range) of linctr ! Constraints generated by alg.

RM: range ! Model indices

stepmod: array(RM) of Model ! Submodels

cut_type: real

end-declarations

initializations from "bin:shmem:probdata"

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

under_rate over_rate g_weeks exp_worktime

end-initializations

ALL_EMP := REG_EMP + {"AGENCY"}

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

declarations

TIME = 1..WEEKS_TO_PLAN

!the values of dv from master problem transferred to dual

allocate_dual: dynamic array(ALL_EMP, ALL_ROLES, TIME) of real

work_total_dual: array(REG_EMP, TIME) of real

!decision variables for master

allocate_master: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar

work_total_master: array(REG_EMP, TIME) of mpvar

!cost parameters

board_chng_cost, depart_chng_cost: array(REG_EMP, VESSELS, TIME) of real !

Costs of CHANGES TO employees boarding / leaving vessel

ag_board_chng_cost, ag_depart_chng_cost: array(ALL_ROLES, TIME) of real !

Costs of CHANGES TO agency employees boarding / leaving for a given

role

189

work_chng_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given

role at a given time

required: array(ALL_ROLES, TIME) of integer ! =1 if

role r is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can

carry out role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is

on board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

ag_starting: array(ALL_ROLES) of integer ! =1 if

agency employee is in role r at time 0, =0 otherwise

work_zero, rest_zero: array(REG_EMP) of integer ! initial values

of work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial

value of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum

on working time, minimum on resting time

ag_max_work: array(ALL_ROLES) of integer ! maximum

on working time for agency crew, possibly different for each role

overall_regular_max_work: integer

overall_agency_max_work: integer

overall_max_work: integer

! Added for the recovery problem:

! - the details of the current roster...

cur_allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer

cur_board, cur_depart: array(REG_EMP, VESSELS, TIME) of integer

cur_ag_rboard, cur_ag_rdepart: array(ALL_ROLES, TIME) of integer

cur_undertime, cur_overtime: array(GUARANTEED) of real

end-declarations

!reading data

initializations from "bin:shmem:probdata"

board_chng_cost depart_chng_cost work_chng_cost

190

ag_board_chng_cost ag_depart_chng_cost

required eligable starting ag_starting

work_zero rest_zero

max_work min_rest ag_max_work

cur_allocate cur_board cur_depart cur_ag_rboard cur_ag_rdepart

cur_undertime cur_overtime

end-initializations

overall_regular_max_work := max(e in REG_EMP) max_work(e)

overall_agency_max_work := max(r in ALL_ROLES) ag_max_work(r)

if(overall_regular_max_work > overall_agency_max_work) then

overall_max_work := overall_regular_max_work

else

overall_max_work := overall_agency_max_work

end-if

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate_master(e,r,t))

end-if

end-do

declarations

!parameter

lambda = 1..overall_max_work

long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real

!decision variable

long_work_master: array(lambda, ALL_EMP, ALL_ROLES, TIME) of mpvar

!parameters

extension_chng_cost: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real !

Cost of CHANGES TO an employee working on board a vessel for longer

than usual

cur_long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of integer

191

! results obtained from dual model

sol_dual_3, sol_dual_5: array(REG_EMP, VESSELS) of real

sol_dual_4, sol_dual_6: array(REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of real

! or takes a non-negative integer

value for agency crew

sol_dual_7: array(ALL_ROLES) of real

sol_dual_8: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of real

sol_dual_9: array(GUARANTEED) of real

sol_dual_10: array(GUARANTEED) of real

sol_dual_14: array(lambda, REG_EMP, ALL_ROLES, 2..WEEKS_TO_PLAN) of real

sol_dual_15: array(ALL_ROLES) of real

sol_dual_16: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of real !

Used to track the consecutive working time of the agency employees

sol_dual_17: array(ALL_ROLES, TIME) of real

sol_dual_18: array(lambda, ALL_ROLES, TIME) of real

sol_dual_19:array(REG_EMP) of real

sol_dual_21:array(REG_EMP, TIME) of real

sol_dual_20:array(REG_EMP, 2..WEEKS_TO_PLAN) of real

sol_dual_23:array(REG_EMP,2..WEEKS_TO_PLAN) of real

sol_dual_24:array(REG_EMP,2..WEEKS_TO_PLAN) of real

sol_dual_25: array(lambda,REG_EMP, ALL_ROLES, 2..WEEKS_TO_PLAN) of real

z_best: array(range) of real

end-declarations

initializations from "bin:shmem:probdata"

extension_chng_cost cur_long_work

end-initializations

declarations

!constraints for master

All_covered: dynamic array(ALL_ROLES, TIME) of linctr

No_overlap: array(REG_EMP, TIME) of linctr

Long_work_count: dynamic array(lambda, REG_EMP, ALL_ROLES, TIME) of linctr

Rest_vs_work: array(REG_EMP,1..1) of linctr

Work_count: array(REG_EMP, TIME) of linctr

AG_long_work: dynamic array(lambda, ALL_ROLES, TIME) of linctr

z:mpvar

Primal_cost:linctr

192

end-declarations

forall(r in ALL_ROLES, t in TIME | required(r,t) > 0) do

create(All_covered(r,t))

All_covered(r,t) := sum(e in ALL_EMP)(eligable(e,r,t)*allocate_master(e,r,

t)) = required(r,t)

end-do

forall(e in REG_EMP, t in TIME) No_overlap(e,t) := sum(r in ALL_ROLES)

allocate_master(e,r,t) <= 1

forall(e in REG_EMP) Work_count(e,1) := work_total_master(e,1) >=

work_zero(e) + sum(r in ALL_ROLES)(allocate_master(e,r,1)) - max_work(e

)*(1-(sum(r in ALL_ROLES)(allocate_master(e,r,1))))

forall(l in lambda, e in REG_EMP, r in ALL_ROLES | exists(long_work_master

(l,e,r,1))) do

create(Long_work_count(l,e,r,1))

Long_work_count(l,e,r,1) := max_work(e)*long_work_master(l,e,r,1) >=

work_zero(e) - max_work(e)*(1-allocate_master(e,r,1)) + allocate_master

(e,r,1) - (l-1)

end-do

forall(e in REG_EMP) Rest_vs_work(e,1) := min_rest(e)*(1-(sum(r in

ALL_ROLES)(allocate_master(e,r,1)))) >= rest_zero(e)

! finally, whether vessels are binary, integer, non-negative, or free:

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(allocate_master(e,

r,t))) allocate_master(e,r,t) is_binary

forall(l in lambda, e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(

long_work_master(l,e,r,t))) long_work_master(l,e,r,t) is_binary

193

z is_free

send(EVENT_READY,0) ! Model is ready (= running)

repeat

wait

ev:= getnextevent

ct:= integer(getvalue(ev))

initializations from "bin:shmem:sol"

sol_dual_3 sol_dual_5 sol_dual_4 sol_dual_6 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_15

sol_dual_16 sol_dual_17 sol_dual_18 sol_dual_19 sol_dual_21

sol_dual_20 sol_dual_23 sol_dual_24 sol_dual_25 cut_type

end-initializations

z_best(1):=-1000000000000000

setparam("XPRS_miprelstop",(0.55-(0.05*ct)+0.01))

! Add a new constraint as optimality cut

if(cut_type=1)then

writeln("Cut_type",cut_type)

MC(ct):= z >= (sum(e in REG_EMP, v in VESSELS)(sol_dual_3(e,v)*(sum(r in

ROLES(v))(allocate_master(e,r,1)) - starting(e,v)))+

sum(r in ALL_ROLES)(sol_dual_7(r)*(allocate_master("AGENCY",r,1) -

ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(sol_dual_8(r,t)*(

allocate_master("AGENCY",r,t) - allocate_master("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(sol_dual_9(e)*(g_weeks(e) - (exp_worktime(e) + sum(r

in ALL_ROLES, t in TIME)(allocate_master(e,r,t)))))+

sum(e in GUARANTEED)(sol_dual_10(e)*((exp_worktime(e) + sum(r in ALL_ROLES

, t in TIME)(allocate_master(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES)(sol_dual_15(r)*(ag_work_zero(r) + allocate_master("

AGENCY",r,1)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) (sol_dual_16(r,t)*

allocate_master("AGENCY",r,t))+

sum(r in ALL_ROLES, t in TIME)(sol_dual_17(r,t)*allocate_master("AGENCY",r

,t))+

194

sum(l in lambda, r in ALL_ROLES, t in TIME)(sol_dual_18(l,r,t)*(-

ag_max_work(r)*long_work_master(l,"AGENCY",r,t) - (l-1)))+

sum(e in REG_EMP)(sol_dual_19(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate_master(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(sol_dual_20(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate_master(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(sol_dual_23(e,t)*(- min_rest(e)

*(1-(sum(r in ALL_ROLES)(allocate_master(e,r,t))))))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(sol_dual_4(e,v,t)*(

sum(r in ROLES(v))(allocate_master(e,r,t)) - sum(r in ROLES(v))(

allocate_master(e,r,(t-1)))))+

sum(e in REG_EMP, v in VESSELS)(sol_dual_5(e,v)*(starting(e,v) - sum(r in

ROLES(v))(allocate_master(e,r,1))))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(sol_dual_6(e,v,t)*(

sum(r in ROLES(v))(allocate_master(e,r,(t-1))) - sum(r in ROLES(v))(

allocate_master(e,r,t))))+

sum(l in lambda, e in REG_EMP, r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(

sol_dual_25(l,e,r,t)* ((max_work(e)*long_work_master(l,e,r,t)) + (

max_work(e)*(1-allocate_master(e,r,t))) - allocate_master(e,r,t) + (l

-1)))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(sol_dual_24(e,t)*(sum(r in

ALL_ROLES)(allocate_master(e,r,t)) - max_work(e)*(1-(sum(r in ALL_ROLES

)(allocate_master(e,r,t)))))))

end-if

if(cut_type=0)then

writeln("Cut_type",cut_type)

MC(ct):= (sum(e in REG_EMP, v in VESSELS)(sol_dual_3(e,v)*(sum(r in ROLES(

v))(allocate_master(e,r,1)) - starting(e,v)))+

sum(r in ALL_ROLES)(sol_dual_7(r)*(allocate_master("AGENCY",r,1) -

ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(sol_dual_8(r,t)*(

allocate_master("AGENCY",r,t) - allocate_master("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(sol_dual_9(e)*(g_weeks(e) - (exp_worktime(e) + sum(r

in ALL_ROLES, t in TIME)(allocate_master(e,r,t)))))+

sum(e in GUARANTEED)(sol_dual_10(e)*((exp_worktime(e) + sum(r in ALL_ROLES

, t in TIME)(allocate_master(e,r,t)))- g_weeks(e)))+

195

sum(r in ALL_ROLES)(sol_dual_15(r)*(ag_work_zero(r) + allocate_master("

AGENCY",r,1)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) (sol_dual_16(r,t)*

allocate_master("AGENCY",r,t))+

sum(r in ALL_ROLES, t in TIME)(sol_dual_17(r,t)*allocate_master("AGENCY",r

,t))+

sum(l in lambda, r in ALL_ROLES, t in TIME)(sol_dual_18(l,r,t)*(-

ag_max_work(r)*long_work_master(l,"AGENCY",r,t) - (l-1)))+

sum(e in REG_EMP)(sol_dual_19(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate_master(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(sol_dual_20(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate_master(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(sol_dual_23(e,t)*(- min_rest(e)

*(1-(sum(r in ALL_ROLES)(allocate_master(e,r,t))))))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(sol_dual_4(e,v,t)*(

sum(r in ROLES(v))(allocate_master(e,r,t)) - sum(r in ROLES(v))(

allocate_master(e,r,(t-1)))))+

sum(e in REG_EMP, v in VESSELS)(sol_dual_5(e,v)*(starting(e,v) - sum(r in

ROLES(v))(allocate_master(e,r,1))))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(sol_dual_6(e,v,t)*(

sum(r in ROLES(v))(allocate_master(e,r,(t-1))) - sum(r in ROLES(v))(

allocate_master(e,r,t))))+

sum(l in lambda, e in REG_EMP, r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(

sol_dual_25(l,e,r,t)* ((max_work(e)*long_work_master(l,e,r,t)) + (

max_work(e)*(1-allocate_master(e,r,t))) - allocate_master(e,r,t) + (l

-1)))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(sol_dual_24(e,t)*(sum(r in

ALL_ROLES)(allocate_master(e,r,t)) - max_work(e)*(1-(sum(r in ALL_ROLES

)(allocate_master(e,r,t)))))))<=0

end-if

Primal_cost:=(z+sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)((

work_chng_cost(e,r,t)*((allocate_master(e,r,t)-cur_allocate(e,r,t))

/(1-2*(cur_allocate(e,r,t)))))+ sum(l in lambda)(extension_chng_cost(l,

e,r,t)*((long_work_master(l,e,r,t) -cur_long_work(l,e,r,t))/(1-2*(

cur_long_work(l,e,r,t))))))+

sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost(e,v,t)*(

cur_board(e,v,t)/((2*cur_board(e,v,t))-1)))+ (depart_chng_cost(e,v,t)*(

196

cur_depart(e,v,t)/((2*cur_depart(e,v,t)-1))))) +

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r,t)*(cur_ag_rboard(r,t

)/((2*cur_ag_rboard(r,t))-1))) + (ag_depart_chng_cost(r,t)*(

cur_ag_rdepart(r,t)/((2*cur_ag_rdepart(r,t))-1)))) +

sum(e in GUARANTEED)((-under_rate(e)*cur_undertime(e))+ (-over_rate(e)*

cur_overtime(e))))

fopen(OUTPUTFILE, F_OUTPUT)

setparam("XPRS_verbose",true)

!minimize(Total_cost)

minimize(Primal_cost)

! Store solution values of y

forall(l in lambda, e in ALL_EMP, r in ALL_ROLES, t in TIME)do

long_work_dual(l,e,r,t):=getsol(long_work_master(l,e,r,t))

end-do

!allocate_master: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_dual(l,r,t):=getsol(allocate_master(l,r,t))

end-do

initializations to "bin:shmem:sol"

allocate_dual long_work_dual work_total_dual

end-initializations

send(EVENT_SOLVED, getobjval)

write("Master: ",(getobjval), " ")

if(ct=1)then

if(getparam("XPRS_BESTBOUND")>=z_best(1))then

z_best(2):=getparam("XPRS_BESTBOUND")

end-if

end-if

if(ct>=2)then

if(z_best(ct)<=getparam("XPRS_BESTBOUND"))then

z_best(ct+1):=getparam("XPRS_BESTBOUND")

else

z_best(ct+1):= z_best(ct)

end-if

end-if

writeln("z_best: ", z_best(ct+1))

write("\n Slack: ")

197

forall(j in 1..ct) write(getslack(MC(j)), " ")

writeln

writeln("long_work: [")

forall(l in lambda) do

forall(e in ALL_EMP) do

forall(r in ALL_ROLES) do

forall(t in TIME) write(getsol(long_work_dual(l,e,r,t)),"\t")

end-do

write("\n")

end-do

write("\n")

end-do

write("]\n")

writeln("allocate: [")

forall(e in ALL_EMP) do

forall(r in ALL_ROLES) do

forall(t in TIME) write(getsol((allocate_dual(e,r,t))),"\t")

end-do

write("\n")

end-do

write("]\n")

fflush

fclose(F_OUTPUT)

write("Master: ",(getobjval), " ")

writeln("z_best: ", z_best(ct+1))

until false

end-model

B.1.2 Modified Recovery Model

The simplified and modified version of recovery model on FICOr Xpress-MP (Mosel

v3.6.0, Xpress-MP v7.7) is shown in this section.

model ModelName

uses "mmxprs", "mmsystem"; !gain access to the Xpress-Optimizer solver

parameters

198

DATE = "6-09-17"

PARAMETERFILE = "batch-input-parameters.dat"

end-parameters

declarations

InstanceName: string

end-declarations

initializations from PARAMETERFILE

InstanceName

end-initializations

DATAFILE := "Time-Windows-medium - Captains - "+InstanceName+".txt"

LOGFILE := InstanceName+"\\Logfile - TW 10min- Modified Integer Medium- "+

InstanceName+" - "+DATE+".txt"

SUMMARYFILE := "Results -TW 10 min- Modified Integer Medium- "+DATE+".txt"

prog_starttime := gettime ! get the time so that at the end,

running time can be calculated

declarations

status: array({XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH}) of string !

Used to indicate the solution status of the probelm

REG_EMP: set of string ! Regular employee names / numbers (ie not

Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which

will require cover, divided by vessels

ALL_ROLES: set of string ! List of all roles

199

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real !

Data relating to over/undertime payments for employees

end-declarations

initializations from DATAFILE

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

under_rate over_rate g_weeks exp_worktime

end-initializations

ALL_EMP := REG_EMP + {"AGENCY"}

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

declarations

TIME = 1..WEEKS_TO_PLAN ! Time index

allocate: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar ! Variable for

allocating employee to role during given time period

board, depart: array(REG_EMP, VESSELS, TIME) of mpvar ! =1 if employee

boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer value for agency crew

ag_rboard, ag_rdepart: array(ALL_ROLES, TIME) of mpvar ! =1 if agency

crew starts / ends working on a role in given time period, 0 otherwise

undertime, overtime: array(GUARANTEED) of mpvar !

Variables to calculate the amount of under/overtime carried out by

employee

work_total, rest_total: array(REG_EMP, TIME) of mpvar ! Used to track

the consecutive working time / rest period requirements of each

employee

ag_work_total: array(ALL_ROLES, TIME) of mpvar ! Used to

track the consecutive working time of the agency employees

board_chng_cost, depart_chng_cost: array(REG_EMP, VESSELS, TIME) of real !

Costs of CHANGES TO employees boarding / leaving vessel

200

ag_board_chng_cost, ag_depart_chng_cost: array(ALL_ROLES, TIME) of real !

Costs of CHANGES TO agency employees boarding / leaving for a given

role

work_chng_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given

role at a given time

required: array(ALL_ROLES, TIME) of integer ! =1 if

role r is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can

carry out role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is

on board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

ag_starting: array(ALL_ROLES) of integer ! =1 if

agency employee is in role r at time 0, =0 otherwise

work_zero, rest_zero: array(REG_EMP) of integer ! initial values

of work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial

value of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum

on working time, minimum on resting time

ag_max_work: array(ALL_ROLES) of integer ! maximum

on working time for agency crew, possibly different for each role

overall_regular_max_work: integer

overall_agency_max_work: integer

overall_max_work: integer

! Added for the recovery problem:

! - the details of the current roster...

cur_allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer

cur_board, cur_depart: array(REG_EMP, VESSELS, TIME) of integer

cur_ag_rboard, cur_ag_rdepart: array(ALL_ROLES, TIME) of integer

cur_undertime, cur_overtime: array(GUARANTEED) of real

! ... and the ’change’ variables...

chng_allocate: array(ALL_EMP, ALL_ROLES, TIME) of mpvar

201

chng_board, chng_depart: array(REG_EMP, VESSELS, TIME) of mpvar

chng_ag_rboard, chng_ag_rdepart: array(ALL_ROLES, TIME) of mpvar

chng_undertime, chng_overtime: array(GUARANTEED) of mpvar

end-declarations

initializations from DATAFILE

board_chng_cost depart_chng_cost work_chng_cost

ag_board_chng_cost ag_depart_chng_cost

required eligable starting ag_starting

work_zero rest_zero

max_work min_rest ag_max_work

cur_allocate cur_board cur_depart cur_ag_rboard cur_ag_rdepart

cur_undertime cur_overtime

end-initializations

overall_regular_max_work := max(e in REG_EMP) max_work(e)

overall_agency_max_work := max(r in ALL_ROLES) ag_max_work(r)

if(overall_regular_max_work > overall_agency_max_work) then

overall_max_work := overall_regular_max_work

else

overall_max_work := overall_agency_max_work

end-if

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate(e,r,t))

end-if

end-do

declarations

Total_cost: linctr

All_covered: dynamic array(ALL_ROLES, TIME) of linctr

No_overlap: array(REG_EMP, TIME) of linctr

Board_constr: array(REG_EMP, VESSELS, TIME) of linctr

Depart_constr: array(REG_EMP, VESSELS, TIME) of linctr

202

AG_board_vs_depart: array(ALL_ROLES, TIME) of linctr

Calc_undertime: array(GUARANTEED) of linctr

Calc_overtime: array(GUARANTEED) of linctr

Work_count: array(REG_EMP, TIME) of linctr

Work_count_start: array(REG_EMP) of linctr

AG_work_count: array(ALL_ROLES, TIME) of linctr

AG_work_count_start: array(ALL_ROLES) of linctr

Rest_count: array(REG_EMP, TIME) of linctr

Rest_reset: array(REG_EMP, TIME) of linctr

Rest_vs_work: array(REG_EMP, TIME) of linctr

!for controlling rest with modified version

Rest_new: array(REG_EMP,ALL_ROLES,range) of linctr

Rest_new1: array(REG_EMP, 1..WEEKS_TO_PLAN-1,range) of linctr

Depart_linking:array(REG_EMP, TIME) of linctr

!for recovery problem - constraints to link change, current and new values

:

Update_allocate: array(ALL_EMP, ALL_ROLES, TIME) of linctr

Update_board: array(REG_EMP, VESSELS, TIME) of linctr

Update_depart: array(REG_EMP, VESSELS, TIME) of linctr

Update_ag_rboard: array(ALL_ROLES, TIME) of linctr

Update_ag_rdepart: array(ALL_ROLES, TIME) of linctr

Update_undertime: array(GUARANTEED) of linctr

Update_overtime: array(GUARANTEED) of linctr

a:integer

b:integer

c:integer

end-declarations

prog_setup_time := gettime

!objective function- cost calculation

Total_cost := (sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost

(e,v,t)*chng_board(e,v,t)) + (depart_chng_cost(e,v,t)*chng_depart(e,v,t

))) +

203

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r,t)*chng_ag_rboard(r,t

)) + (ag_depart_chng_cost(r,t)*chng_ag_rdepart(r,t))) +

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)((work_chng_cost(e,r,t)*

chng_allocate(e,r,t)))+

sum(e in GUARANTEED)((under_rate(e)*chng_undertime(e))+ (over_rate(e)*

chng_overtime(e))))

!covering tasks

forall(r in ALL_ROLES, t in TIME | required(r,t) > 0) do

create(All_covered(r,t))

All_covered(r,t) := sum(e in ALL_EMP)(eligable(e,r,t)*allocate(e,r,t)) =

required(r,t)

end-do

!no overlap

forall(e in REG_EMP, t in TIME) No_overlap(e,t) := sum(r in ALL_ROLES)

allocate(e,r,t) <= 1

!board

forall(e in REG_EMP, v in VESSELS) Board_constr(e,v,1) := board(e,v,1) >=

sum(r in ROLES(v))(allocate(e,r,1)) - starting(e,v)

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) Board_constr(e,v

,t) := board(e,v,t) >= sum(r in ROLES(v))(allocate(e,r,t)) - sum(r in

ROLES(v))(allocate(e,r,(t-1)))

!depart

forall(e in REG_EMP, v in VESSELS) Depart_constr(e,v,1) := depart(e,v,1)

>= starting(e,v) - sum(r in ROLES(v))(allocate(e,r,1))

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) Depart_constr(e,

v,t) := depart(e,v,t) >= sum(r in ROLES(v))(allocate(e,r,(t-1))) - sum(

r in ROLES(v))(allocate(e,r,t))

!-------------depart linking------------------------------------

forall(e in REG_EMP, t in TIME) Depart_linking(e,t):=sum(v in VESSELS)

depart(e,v,t)+sum(r in ALL_ROLES) allocate(e,r,t)<=1

!-------------depart linking------------------------------------

204

!agency board and depart

forall(r in ALL_ROLES) AG_board_vs_depart(r,1) := ag_rboard(r,1) -

ag_rdepart(r,1) = allocate("AGENCY",r,1) - ag_starting(r)

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) AG_board_vs_depart(r,t) :=

ag_rboard(r,t) - ag_rdepart(r,t) = allocate("AGENCY",r,t) - allocate("

AGENCY",r,(t-1))

!under & over time

forall(e in GUARANTEED) Calc_undertime(e) := undertime(e) >= g_weeks(e) -

(exp_worktime(e) + sum(r in ALL_ROLES, t in TIME)(allocate(e,r,t)))

forall(e in GUARANTEED) Calc_overtime(e) := overtime(e) >= (exp_worktime(e

) + sum(r in ALL_ROLES, t in TIME)(allocate(e,r,t)))- g_weeks(e)

!max consecutive work

forall(e in REG_EMP|work_zero(e)>=1) Work_count_start(e) := max_work(e) >=

work_zero(e) + sum(r in ALL_ROLES, t in 0..max_work(e)-work_zero(e))(

allocate(e,r,t+1))

forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-max_work(e)) Work_count(e,t) :=

max_work(e) >= sum(r in ALL_ROLES, k in 0..max_work(e))(allocate(e,r,t

+k))

!agency max consecutive work

forall(r in ALL_ROLES|ag_work_zero(r)>=1) AG_work_count_start(r) :=

ag_max_work(r) >= ag_work_zero(r) + sum(t in 0..ag_max_work(r)-

ag_work_zero(r))(allocate("AGENCY",r,t+1))

forall(r in ALL_ROLES, t in 1..WEEKS_TO_PLAN-ag_max_work(r)) AG_work_count

(r,t) := ag_max_work(r) >= sum(k in 0..ag_max_work(r))(allocate("

AGENCY",r,t+k))

!min rest constraints

forall(e in REG_EMP) Rest_count(e,1) := rest_total(e,1) >= rest_zero(e) -

(1-(sum(r in ALL_ROLES)(allocate(e,r,1))))

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN) Rest_count(e,t) := rest_total(

e,t) >=rest_total(e,(t-1)) - (1-(sum(r in ALL_ROLES)(allocate(e,r,t))))

forall(e in REG_EMP, t in TIME) Rest_reset(e,t) := rest_total(e,t) >= (

min_rest(e)-1)*(sum(v in VESSELS)(depart(e,v,t)))

205

forall(e in REG_EMP) Rest_vs_work(e,1) := min_rest(e)*(1-(sum(r in

ALL_ROLES)(allocate(e,r,1)))) >= rest_zero(e)

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN) Rest_vs_work(e,t) := min_rest(

e)*(1-(sum(r in ALL_ROLES)(allocate(e,r,t)))) >= rest_total(e,(t-1))

!---------------------------comb cut

forall(e in REG_EMP ,r in ALL_ROLES,t in 1..rest_zero(e)) do

if(rest_zero(e)>=1)then

Rest_new(e,r,t):= allocate(e,r,t)=0

end-if

end-do

forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-1)do

if(min_rest(e)>=1)then

b:=(min_rest(e)-1)

a:=(WEEKS_TO_PLAN-t)

if(b<=a) then

c:=b

else

c:=a

end-if

end-if

forall(y in 1..c)do

Rest_new1(e,t,y) := sum(r in ALL_ROLES)(allocate(e,r,t+y))+sum (v in

VESSELS) depart(e,v,t)<=1

end-do

end-do

!---------------------------comb cut

! Added for recovery problem - linking change to current variables:

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) do

if(exists(allocate(e,r,t)) = true) then

206

if(cur_allocate(e,r,t) = 0) then Update_allocate(e,r,t) := chng_allocate(e

,r,t) = allocate(e,r,t)

else Update_allocate(e,r,t) := chng_allocate(e,r,t) = cur_allocate(e,r,t)

- allocate(e,r,t)

end-if

else

Update_allocate(e,r,t) := chng_allocate(e,r,t) = cur_allocate(e,r,t)

end-if

end-do

forall(e in REG_EMP, v in VESSELS, t in TIME) do

if(cur_board(e,v,t) = 0) then Update_board(e,v,t) := chng_board(e,v,t) =

board(e,v,t)

else Update_board(e,v,t) := chng_board(e,v,t) = cur_board(e,v,t) - board(e

,v,t)

end-if

end-do

forall(e in REG_EMP, v in VESSELS, t in TIME) do

if(cur_depart(e,v,t) = 0) then Update_depart(e,v,t) := chng_depart(e,v,t)

= depart(e,v,t)

else Update_depart(e,v,t) := chng_depart(e,v,t) = cur_depart(e,v,t) -

depart(e,v,t)

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(cur_ag_rboard(r,t) = 0) then Update_ag_rboard(r,t) := chng_ag_rboard(r,

t) = ag_rboard(r,t)

else Update_ag_rboard(r,t) := chng_ag_rboard(r,t) = cur_ag_rboard(r,t) -

ag_rboard(r,t)

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(cur_ag_rdepart(r,t) = 0) then Update_ag_rdepart(r,t) := chng_ag_rdepart

(r,t) = ag_rdepart(r,t)

207

else Update_ag_rdepart(r,t) := chng_ag_rdepart(r,t) = cur_ag_rdepart(r,t)

- ag_rdepart(r,t)

end-if

end-do

forall(e in GUARANTEED) Update_undertime(e) := chng_undertime(e) =

undertime(e) - cur_undertime(e)

forall(e in GUARANTEED) Update_overtime(e) := chng_overtime(e) = overtime(

e) - cur_overtime(e)

! finally, whether vessels are binary, integer, non-negative, or free:

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(allocate(e,r,t)))

allocate(e,r,t) is_binary

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) chng_allocate(e,r,t)

is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) board(e,v,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) chng_board(e,v,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) depart(e,v,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) chng_depart(e,v,t) is_binary

forall(r in ALL_ROLES, t in TIME) ag_rboard(r,t) is_binary

forall(r in ALL_ROLES, t in TIME) chng_ag_rboard(r,t) is_binary

forall(r in ALL_ROLES, t in TIME) chng_ag_rdepart(r,t) is_binary

forall(r in ALL_ROLES, t in TIME) ag_rdepart(r,t) is_binary

forall(e in GUARANTEED) undertime(e) >= 0

forall(e in GUARANTEED) chng_undertime(e) is_free

forall(e in GUARANTEED) overtime(e) >= 0

forall(e in GUARANTEED) chng_overtime(e) is_free

!--

setparam("XPRS_verbose",true)

minimize(Total_cost)

208

end-model

B.1.3 Classical Benders Decomposition Algorithm

The implementation of Classical Benders Decomposition method with MW pareto

optimality cuts in FICOr Xpress-MP (Mosel v3.6.0, Xpress-MP v7.7) is given in

this section. There are two files one is about to maintain the main algorithm and

the other one is dual sub problem.

(!***

Mosel Example Problems

======================

file benders_main.mos

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Benders decomposition for solving a simple MIP.

- Master model -

*** ATTENTION: This model will return an error if ***

*** no more than one Xpress licence is available. ***

(c) 2008 Fair Isaac Corporation

author: S. Heipcke, Jan. 2006, rev. Jan. 2013

***!)

model "Benders (master model)"

uses "mmxprs", "mmjobs", "mmsystem"

parameters

ALG = 1

BIGM = 100000000

DATE = "25-09-17"

209

PARAMETERFILE = "batch-input-parameters.dat"

end-parameters

declarations

InstanceName: string

end-declarations

initializations from PARAMETERFILE

InstanceName

end-initializations

DATAFILE :=InstanceName+"\\Time-Windows - Captains - "+InstanceName+".txt"

LOGFILE := InstanceName+"\\Logfile-1hr -Benders-mw "+InstanceName+" - "+

DATE+".txt"

SUMMARYFILE := "Results -Benders 1 hr-mw"+DATE+".txt"

forward procedure solve_cont

forward procedure save_solution_dual

forward procedure evaluate_solution

forward function subprob : real

!forward function paretoprob : real

forward function heuristic_solve : real

forward procedure solve_primal_int(ct: integer)

forward procedure define_dualprob(prob:mpproblem)

forward function solve_dualprob(prob:mpproblem): real

forward procedure define_intprob(prob:mpproblem)

forward function solve_intprob(prob:mpproblem, ct:integer): real

declarations

STEP_0=2 ! Codes sent to subproblems

STEP_1=3

STEP_2=4

STAT_SOLVED=6 ! Status codes returned by subproblems

STAT_INFEAS=7

210

STAT_READY=8

UB:real !upperbound

LB: real !lowerbound

REG_EMP: set of string ! Regular employee names / numbers (ie not

Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which

will require cover, divided by vessels

ALL_ROLES: set of string ! List of all roles

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real !

Data relating to over/undertime payments for employees

mip_x:integer

sol_obj: real ! Objective function value (primal)

MC: array(range) of linctr ! Constraints generated by alg.

cuts_added:array(range) of integer

RM: range ! Model indices

cut_type: real

accept: real

Dualmodel: Model

Heuristic: Model

!Pareto:Model

Primal_cost:linctr

mybasis:basis

stepprob: array(RM) of mpproblem

best_bound:real

z_best:array (range) of real

end-declarations

!DECLARATION OF PARAMETERS AND DECISION VARIABLES

initializations from DATAFILE

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

under_rate over_rate g_weeks exp_worktime

211

end-initializations

ALL_EMP := REG_EMP + {"AGENCY"}

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

declarations

TIME = 1..WEEKS_TO_PLAN

allocate: dynamic array(ALL_EMP, ALL_ROLES, TIME) of integer ! Variable

for allocating employee to role during given time period

allocate_dual: dynamic array(ALL_EMP, ALL_ROLES, TIME) of integer !

Variable for allocating employee to role during given time period

depart_dual: array(REG_EMP, VESSELS, TIME) of integer

depart: array(REG_EMP, VESSELS, TIME) of integer

allocate_best: dynamic array(ALL_EMP, ALL_ROLES, TIME) of integer

allocate_iteration: dynamic array(range,ALL_EMP, ALL_ROLES, TIME) of

integer ! Variable for allocating employee to role during given time

period

depart_iteration: array(range,REG_EMP, VESSELS, TIME) of integer

board_chng_cost, depart_chng_cost: array(REG_EMP, VESSELS, TIME) of real !

Costs of CHANGES TO employees boarding / leaving vessel

ag_board_chng_cost, ag_depart_chng_cost: array(ALL_ROLES, TIME) of real !

Costs of CHANGES TO agency employees boarding / leaving for a given

role

work_chng_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given

role at a given time

required: array(ALL_ROLES, TIME) of integer ! =1 if

role r is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can

carry out role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is

on board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

212

ag_starting: array(ALL_ROLES) of integer ! =1 if

agency employee is in role r at time 0, =0 otherwise

work_zero, rest_zero: array(REG_EMP) of integer ! initial values

of work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial

value of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum

on working time, minimum on resting time

ag_max_work: array(ALL_ROLES) of integer ! maximum

on working time for agency crew, possibly different for each role

overall_regular_max_work: integer

overall_agency_max_work: integer

overall_max_work: integer

! Added for the recovery problem:

! - the details of the current roster...

cur_allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer

cur_board, cur_depart: array(REG_EMP, VESSELS, TIME) of integer

cur_ag_rboard, cur_ag_rdepart: array(ALL_ROLES, TIME) of integer

cur_undertime, cur_overtime: array(GUARANTEED) of integer

end-declarations

!Reading from txt file

initializations from DATAFILE

board_chng_cost depart_chng_cost work_chng_cost

ag_board_chng_cost ag_depart_chng_cost

required eligable starting ag_starting

work_zero rest_zero

max_work min_rest ag_max_work

cur_allocate cur_board cur_depart cur_ag_rboard cur_ag_rdepart

cur_undertime cur_overtime

end-initializations

!Continue to define parameters and decision variables

213

declarations

!Added for recovery problem - detail of current roster, and change

variable

!solution of dual sub problem

dual_3: array(REG_EMP, VESSELS) of mpvar

dual_4: array(REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of mpvar

dual_7: array(ALL_ROLES) of mpvar

dual_8: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of mpvar

dual_9: array(GUARANTEED) of mpvar

dual_10: array(GUARANTEED) of mpvar

dual_30: array(ALL_ROLES,TIME) of mpvar

dual_31: array(ALL_ROLES,TIME) of mpvar

dual_40: array(REG_EMP, VESSELS, TIME) of mpvar

dual_19:array(REG_EMP) of mpvar

dual_21:array(REG_EMP, TIME) of mpvar

dual_20:array(REG_EMP, 2..WEEKS_TO_PLAN) of mpvar

dual_23:array(REG_EMP,2..WEEKS_TO_PLAN) of mpvar

dual_3_new: array(REG_EMP, VESSELS) of mpvar

dual_4_new: array(REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of mpvar

dual_7_new: array(ALL_ROLES) of mpvar

dual_8_new: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of mpvar

dual_9_new: array(GUARANTEED) of mpvar

dual_10_new: array(GUARANTEED) of mpvar

dual_30_new: array(ALL_ROLES,TIME) of mpvar

dual_31_new: array(ALL_ROLES,TIME) of mpvar

dual_40_new: array(REG_EMP, VESSELS, TIME) of mpvar

dual_19_new:array(REG_EMP) of mpvar

dual_21_new:array(REG_EMP, TIME) of mpvar

dual_20_new:array(REG_EMP, 2..WEEKS_TO_PLAN) of mpvar

dual_23_new:array(REG_EMP,2..WEEKS_TO_PLAN) of mpvar

sol_dual_3: array(range,REG_EMP, VESSELS) of real

214

sol_dual_4: array(range,REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of real

! or takes a non-negative integer

value for agency crew

sol_dual_7: array(range,ALL_ROLES) of real

sol_dual_8: array(range,ALL_ROLES, 2..WEEKS_TO_PLAN) of real

sol_dual_9: array(range,GUARANTEED) of real

sol_dual_10: array(range,GUARANTEED) of real

sol_dual_19:array(range,REG_EMP) of real

sol_dual_21:array(range,REG_EMP, TIME) of real

sol_dual_20:array(range,REG_EMP, 2..WEEKS_TO_PLAN) of real

sol_dual_23:array(range,REG_EMP,2..WEEKS_TO_PLAN) of real

sol_dual_30: array(range,ALL_ROLES,TIME) of real

sol_dual_31: array(range,ALL_ROLES,TIME) of real

sol_dual_40: array(range,REG_EMP, VESSELS, TIME) of real

dummy:linctr

dummy2:array(range) of linctr

! Objective Value of dual problem

Dual_cost:real

end-declarations

! reading the parameters

initializations from DATAFILE

allocate depart

end-initializations

declarations

!constraints for dual problem

dual_cons_board: array(REG_EMP, VESSELS, TIME) of linctr

dual_cons_depart: array(REG_EMP, VESSELS, TIME) of linctr ! =1 if

employee boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer

value for agency crew

dual_cons_ag_rboard: array(ALL_ROLES, TIME) of linctr

dual_cons_ag_rdepart: array(ALL_ROLES, TIME) of linctr ! =1 if agency

crew starts / ends working on a role in given time period, 0 otherwise

dual_cons_undertime: array(GUARANTEED) of linctr

215

dual_cons_overtime: array(GUARANTEED) of linctr !

Variables to calculate the amount of under/overtime carried out by

employee

dual_cons_board_new: array(REG_EMP, VESSELS, TIME) of linctr

dual_cons_depart_new: array(REG_EMP, VESSELS, TIME) of linctr ! =1 if

employee boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer

value for agency crew

dual_cons_ag_rboard_new: array(ALL_ROLES, TIME) of linctr

dual_cons_ag_rdepart_new: array(ALL_ROLES, TIME) of linctr ! =1 if

agency crew starts / ends working on a role in given time period, 0

otherwise

dual_cons_undertime_new: array(GUARANTEED) of linctr

dual_cons_overtime_new: array(GUARANTEED) of linctr !

Variables to calculate the amount of under/overtime carried out by

employee

dual_cons_rest_total:array(REG_EMP, TIME) of linctr

!constraints for integer problem

All_covered: dynamic array(ALL_ROLES, TIME) of linctr

No_overlap: array(REG_EMP, TIME) of linctr

Work_count: array(REG_EMP, TIME) of linctr

Work_count_start: array(REG_EMP) of linctr

Depart_constr: array(REG_EMP, VESSELS, TIME) of linctr

Rest_vs_work: array(REG_EMP, TIME) of linctr

!Rest_new: array(REG_EMP) of linctr

!Rest_new1: array(REG_EMP, TIME) of linctr

Rest_new: array(REG_EMP,ALL_ROLES,range) of linctr

Rest_new1: array(REG_EMP, 1..WEEKS_TO_PLAN-1,range) of linctr

Depart_linking: array(REG_EMP, TIME) of linctr

ct:integer

int_started:integer

allocate_master: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar

depart_master: array(REG_EMP, VESSELS, TIME) of mpvar ! =1 if employee

boards / departs vessel in given time period, 0 otherwise

216

Obj: linctr

Dual_first:linctr

z:mpvar

status: array(mpproblem) of integer ! Subproblem status

AG_work_count_start:array(ALL_ROLES) of linctr

AG_work_count:array(ALL_ROLES, TIME) of linctr

extra:array(REG_EMP) of linctr

z1:array(REG_EMP, VESSELS) of mpvar

z2:array(ALL_ROLES)of mpvar

z4:array(REG_EMP)of mpvar

z3:array(GUARANTEED)of mpvar

MC10: array(range,REG_EMP, VESSELS) of linctr ! Constraints generated by

alg.

MC20: array(range,ALL_ROLES) of linctr

MC30: array(range,GUARANTEED) of linctr

MC40: array(range,REG_EMP) of linctr

Obj_mwp: linctr

Obj_mwp_value:mpvar

UB1:real

Cut:dynamic array(range)of linctr

type:dynamic array(range)of integer

cutid: array(range) of integer

finish:real

begin:real

end-declarations

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate_master(e,r,t))

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate_dual(e,r,t))

end-if

217

end-do

forall(a in 1..ct,r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate_iteration(a,e,r

,t))

end-if

end-do

!sharing data info with submodels

ct:=0

UB_first:=10000000000

x:=1

best_bound:=-10000000000

z_best(0):= best_bound

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_iteration(0,l,r,t):=allocate(l,r,t)

end-do

forall(r in REG_EMP, v in VESSELS, t in TIME)do

depart_iteration(0,r,v,t):=depart(r,v,t)

end-do

create(stepprob(1)); define_intprob(stepprob(1))

create(stepprob(2)); define_dualprob(stepprob(2))

procedure solve_primal_int(ct: integer)

sol_obj:= solve_intprob(stepprob(1), ct)

end-procedure

procedure solve_cont

! Start the problem solving

res:= solve_dualprob(stepprob(2))

end-procedure

218

fixed:=(sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost(e,v,t)

*(cur_board(e,v,t)/((2*cur_board(e,v,t))-1))))+

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r,t)*(cur_ag_rboard(r,t

)/((2*cur_ag_rboard(r,t))-1))) + (ag_depart_chng_cost(r,t)*(

cur_ag_rdepart(r,t)/((2*cur_ag_rdepart(r,t))-1)))) +

sum(e in GUARANTEED)((-under_rate(e)*cur_undertime(e))+ (-over_rate(e)*

cur_overtime(e))))

!---

! Define the dual problem

procedure define_dualprob(prob:mpproblem)

!board

with prob do

!board

forall(e in REG_EMP, v in VESSELS) dual_cons_board(e,v,1):=dual_3(e,v)+

dual_40(e,v,1)<=(board_chng_cost(e,v,1))/(1-(2*cur_board(e,v,1)))

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_cons_board(

e,v,t):=dual_4(e,v,t)+dual_40(e,v,t)<=(board_chng_cost(e,v,t))/(1-(2*

cur_board(e,v,t)))

forall(e in REG_EMP, v in VESSELS, t in TIME)sethidden(dual_cons_board(e,v

,t),false)

!ag_rboard

forall(r in ALL_ROLES) dual_cons_ag_rboard(r,1):= dual_7(r)+dual_31(r,1)

<=(ag_board_chng_cost(r,1)/(1-(2*cur_ag_rboard(r,1))))

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rboard(r,t) :=

dual_8(r,t)+dual_31(r,t)<=(ag_board_chng_cost(r,t)/(1-(2*cur_ag_rboard(

r,t))))

forall(r in ALL_ROLES,t in TIME) sethidden(dual_cons_ag_rboard(r,t),false

)

!ag_rdepart

forall(r in ALL_ROLES) dual_cons_ag_rdepart(r,1):= -dual_7(r)+dual_30(r,1)

<=(ag_depart_chng_cost(r,1)/(1-(2*cur_ag_rdepart(r,1))))

219

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rdepart(r,t) :=

-dual_8(r,t)+dual_30(r,t)<=(ag_depart_chng_cost(r,t)/(1-(2*

cur_ag_rdepart(r,t))))

forall(r in ALL_ROLES,t in TIME) sethidden(dual_cons_ag_rdepart(r,t),

false)

!undertime

forall(e in GUARANTEED) dual_cons_undertime(e):= dual_9(e)<=under_rate(e)

forall(e in GUARANTEED) sethidden(dual_cons_undertime(e),false)

!overtime

forall(e in GUARANTEED) dual_cons_overtime(e):= dual_10(e)<=over_rate(e)

forall(e in GUARANTEED) sethidden(dual_cons_overtime(e),false)

!rest_total

forall(e in REG_EMP) dual_cons_rest_total(e,1):= dual_19(e)-dual_20(e,2)+

dual_21(e,1)-dual_23(e,2)<=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN-1) dual_cons_rest_total(e,t):=

dual_20(e,t)-dual_20(e,t+1)+dual_21(e,t)-dual_23(e,t+1)<=0

forall(e in REG_EMP,t in WEEKS_TO_PLAN..WEEKS_TO_PLAN)

dual_cons_rest_total(e,t):= dual_20(e,t)+dual_21(e,t)<=0

forall(e in REG_EMP,t in TIME) sethidden(dual_cons_rest_total(e,t),false)

forall(e in REG_EMP, v in VESSELS) dual_3(e,v)>=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_4(e,v,t)>=0

forall(r in ALL_ROLES) dual_7(r) is_free

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) dual_8(r,t) is_free

forall(e in GUARANTEED) dual_9(e)>=0

forall(e in GUARANTEED) dual_10(e)>=0

forall(e in REG_EMP) dual_19(e)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_20(e,t)>=0

forall(e in REG_EMP,t in TIME) dual_21(e,t)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_23(e,t)>=0

forall(r in ALL_ROLES, t in TIME) dual_30(r,t)<=0

220

forall(r in ALL_ROLES, t in TIME) dual_31(r,t)<=0

forall(e in REG_EMP, v in VESSELS, t in TIME) dual_40(e,v,t)<=0

status(prob):= STAT_READY

end-do

end-procedure

! Process dual solution data

procedure save_dualsolution(prob:mpproblem)

if(ct=0)then

forall(e in REG_EMP, v in VESSELS)do

sol_dual_3(ct,e,v):=getsol(dual_3(e,v))

end-do

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)do

sol_dual_4(ct,e,v,t):=getsol(dual_4(e,v,t))

end-do

forall(e in REG_EMP, v in VESSELS, t in TIME)do

sol_dual_40(ct,e,v,t):=getsol(dual_40(e,v,t))

end-do

forall(r in ALL_ROLES)do

sol_dual_7(ct,r):=getsol(dual_7(r))

end-do

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)do

sol_dual_8(ct,r,t):= getsol(dual_8(r,t))

end-do

forall(e in GUARANTEED)do

sol_dual_9(ct,e):=getsol(dual_9(e))

end-do

forall(e in GUARANTEED) do

221

sol_dual_10(ct,e):=getsol(dual_10(e))

end-do

forall(r in ALL_ROLES, t in TIME)do

sol_dual_30(ct,r,t):= getsol(dual_30(r,t))

end-do

forall(r in ALL_ROLES, t in TIME)do

sol_dual_31(ct,r,t):= getsol(dual_31(r,t))

end-do

forall(e in REG_EMP)do

sol_dual_19(ct,e):=getsol(dual_19(e))

end-do

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_20(ct,e,t):= getsol(dual_20(e,t))

end-do

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_23(ct,e,t):= getsol(dual_23(e,t))

end-do

forall(e in REG_EMP, t in TIME)do

sol_dual_21(ct,e,t):= getsol(dual_21(e,t))

end-do

end-if

status(prob):= STAT_SOLVED

fflush

end-procedure

! (Re)solve the dual problem

function solve_dualprob(prob:mpproblem): real

with prob do

222

status(prob):= STAT_READY

Dual_first:=(sum(e in REG_EMP, v in VESSELS, t in TIME)(dual_40(e,v,t))+

sum(e in REG_EMP, v in VESSELS)(dual_3(e,v)*(sum(r in ROLES(v))(allocate(e

,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4(e,v,t)*(sum(

r in ROLES(v))(allocate(e,r,t)) - sum(r in ROLES(v))(allocate(e,r,(t-1)

))))+

sum(r in ALL_ROLES)(dual_7(r)*(allocate("AGENCY",r,1) - ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8(r,t)*(allocate("AGENCY",

r,t) - allocate("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(dual_9(e)*(g_weeks(e) - (exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate(e,r,t)))))+

sum(e in GUARANTEED)(dual_10(e)*((exp_worktime(e) + sum(r in ALL_ROLES, t

in TIME)(allocate(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES, t in TIME)(dual_30(r,t)*(1-allocate("AGENCY",r,t)))+

sum(r in ALL_ROLES)(dual_31(r,1)*(1- ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_31(r,t)*(1-allocate("

AGENCY",r,(t-1))))+

sum(e in REG_EMP)(dual_19(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23(e,t)*(- min_rest(e)*(1-(

sum(r in ALL_ROLES)(allocate(e,r,t))))))+

sum(e in REG_EMP, t in TIME)(dual_21(e,t)*((min_rest(e)-1)*(sum(v in

VESSELS)(depart(e,v,t))))))

sethidden(Dual_first,false)

if (ct=0) then ! Produce an initial solution for the

! dual problem using a dummy objective

maximize(XPRS_BAR,Dual_first)

if(getprobstat = XPRS_INF) then

writeln("Problem is infeasible")

223

send(STAT_INFEAS,0) ! Problem is infeasible

else

write("**** Start solution: ")

write("**** Problem is not infeasible: ")

if(getprobstat = XPRS_UNB) then

writeln("Problem is unbounded")

cut_type:=0

writeln("Cut_type",cut_type)

Obj_mwp:=Obj_mwp_value=0

Dual_cost_mwp:=(sum(e in REG_EMP, v in VESSELS, t in TIME)(dual_40(e,v,t))

+

sum(e in REG_EMP, v in VESSELS)(dual_3(e,v)*(sum(r in ROLES(v))(allocate(e

,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4(e,v,t)*(sum(

r in ROLES(v))(allocate(e,r,t)) - sum(r in ROLES(v))(allocate(e,r,(t-1)

))))+

sum(r in ALL_ROLES)(dual_7(r)*(allocate("AGENCY",r,1) - ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8(r,t)*(allocate("AGENCY",

r,t) - allocate("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(dual_9(e)*(g_weeks(e) - (exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate(e,r,t)))))+

sum(e in GUARANTEED)(dual_10(e)*((exp_worktime(e) + sum(r in ALL_ROLES, t

in TIME)(allocate(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES, t in TIME)(dual_30(r,t)*(1-allocate("AGENCY",r,t)))+

sum(r in ALL_ROLES)(dual_31(r,1)*(1- ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_31(r,t)*(1-allocate("

AGENCY",r,(t-1))))+

sum(e in REG_EMP)(dual_19(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23(e,t)*(- min_rest(e)*(1-(

sum(r in ALL_ROLES)(allocate(e,r,t))))))+

224

sum(e in REG_EMP, t in TIME)(dual_21(e,t)*((min_rest(e)-1)*(sum(v in

VESSELS)(depart(e,v,t))))))=1

!board

forall(e in REG_EMP, v in VESSELS) dual_cons_board(e,v,1):=dual_3(e,v)+

dual_40(e,v,1)<=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_cons_board(

e,v,t):=dual_4(e,v,t)+dual_40(e,v,t)<=0

!ag_rboard

forall(r in ALL_ROLES) dual_cons_ag_rboard(r,1):= dual_7(r)+dual_31(r,1)

<=0

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rboard(r,t) :=

dual_8(r,t)+dual_31(r,t)<=0

!ag_rdepart

forall(r in ALL_ROLES) dual_cons_ag_rdepart(r,1):= -dual_7(r)+dual_30(r,1)

<=0

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rdepart(r,t) :=

-dual_8(r,t)+dual_30(r,t)<=0

!undertime

forall(e in GUARANTEED) dual_cons_undertime(e):= dual_9(e)<=0

!overtime

forall(e in GUARANTEED) dual_cons_overtime(e):= dual_10(e)<=0

!rest_total

forall(e in REG_EMP) dual_cons_rest_total(e,1):= dual_19(e)-dual_20(e,2)+

dual_21(e,1)-dual_23(e,2)<=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN-1) dual_cons_rest_total(e,t):=

dual_20(e,t)-dual_20(e,t+1)+dual_21(e,t)-dual_23(e,t+1)<=0

225

forall(e in REG_EMP,t in WEEKS_TO_PLAN..WEEKS_TO_PLAN)

dual_cons_rest_total(e,t):= dual_20(e,t)+dual_21(e,t)<=0

forall(e in REG_EMP, v in VESSELS) dual_3(e,v)>=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_4(e,v,t)>=0

forall(r in ALL_ROLES) dual_7(r) is_free

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) dual_8(r,t) is_free

forall(e in GUARANTEED) dual_9(e)>=0

forall(e in GUARANTEED) dual_10(e)>=0

forall(e in REG_EMP) dual_19(e)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_20(e,t)>=0

forall(e in REG_EMP,t in TIME) dual_21(e,t)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_23(e,t)>=0

forall(r in ALL_ROLES, t in TIME) dual_30(r,t)<=0

forall(r in ALL_ROLES, t in TIME) dual_31(r,t)<=0

forall(e in REG_EMP, v in VESSELS, t in TIME) dual_40(e,v,t)<=0

maximize(XPRS_BAR, Obj_mwp_value)

writeln("UB_first: +infinity")

writeln("UB_first:", UB_first)

UB:=UB_first

accept:=0

Dual_cost:=UB_first

else

writeln("Problem is feasible")

cut_type:=1

writeln("Cut_type:",cut_type)

accept:=1

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_best(l,r,t):=allocate(l,r,t)

end-do

Dual_cost:=getobjval

(! UB:=(Dual_cost+

226

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)(work_chng_cost(e,r,t)*((

allocate(e,r,t)-cur_allocate(e,r,t))/(1-2*(cur_allocate(e,r,t)))))+

sum(e in REG_EMP, v in VESSELS, t in TIME)(depart_chng_cost(e,v,t)*((

depart(e,v,t)-cur_depart(e,v,t))/(1-2*(cur_depart(e,v,t)))))+fixed)

!)

UB:=UB_first

writeln("UB_first:", UB)

end-if

writeln("accept: ", accept)

save_dualsolution(prob)

UB1:=(Dual_cost+

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)(work_chng_cost(e,r,t)*((

allocate(e,r,t)-cur_allocate(e,r,t))/(1-2*(cur_allocate(e,r,t)))))+

sum(e in REG_EMP, v in VESSELS, t in TIME)(depart_chng_cost(e,v,t)*((

depart(e,v,t)-cur_depart(e,v,t))/(1-2*(cur_depart(e,v,t)))))+fixed)

writeln("UB1: ",UB1)

writeln("Dual_cost_first: ",Dual_cost)

BigM:= 0

end-if

end-if

end-do

end-function

!---

solve_cont

!-------------1st iteration of dual finished---------------

initializations to "bin:shmem:sol"

InstanceName sol_dual_3 sol_dual_4 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_19 sol_dual_20 sol_dual_21

sol_dual_23 sol_dual_30 sol_dual_31 sol_dual_40 Dual_cost UB cut_type

227

accept allocate_best

end-initializations

!---

! Define the integer problem

procedure define_intprob(prob:mpproblem)

with prob do

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate_master(e,r,t))

end-if

end-do

forall(r in ALL_ROLES, t in TIME | required(r,t) > 0) do

create(All_covered(r,t))

All_covered(r,t) := sum(e in ALL_EMP)(eligable(e,r,t)*allocate_master(e,r,

t)) = required(r,t)

end-do

forall(e in REG_EMP, t in TIME) No_overlap(e,t) := sum(r in ALL_ROLES)

allocate_master(e,r,t) <= 1

forall(e in REG_EMP, v in VESSELS) Depart_constr(e,v,1) := depart_master(e

,v,1) >= starting(e,v) - sum(r in ROLES(v))(allocate_master(e,r,1))

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) Depart_constr(e,

v,t) := depart_master(e,v,t) >= sum(r in ROLES(v))(allocate_master(e,r

,(t-1))) - sum(r in ROLES(v))(allocate_master(e,r,t))

!-------------depart linking------------------------------------

228

forall(e in REG_EMP, t in TIME) Depart_linking(e,t):=sum(v in VESSELS)

depart_master(e,v,t)+sum(r in ALL_ROLES) allocate_master(e,r,t)<=1

!-------------depart linking------------------------------------

forall(e in REG_EMP|work_zero(e)+WEEKS_TO_PLAN>max_work(e))

Work_count_start(e) := max_work(e) >= work_zero(e) + sum(r in ALL_ROLES

, t in 0..max_work(e)-work_zero(e))(allocate_master(e,r,t+1))

!forall(e in REG_EMP| work_zero(e)+WEEKS_TO_PLAN>max_work(e))sethidden(

Work_count_start(e) ,true)

!master11

forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-max_work(e)| work_zero(e)+

WEEKS_TO_PLAN>max_work(e)) Work_count(e,t) := max_work(e) >= sum(r in

ALL_ROLES, k in 0..max_work(e))(allocate_master(e,r,t+k))

!forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-max_work(e)| work_zero(e)+

WEEKS_TO_PLAN>max_work(e))sethidden(Work_count(e,t) ,true)

!master12

!forall(e in REG_EMP| max_work(e)<=WEEKS_TO_PLAN) extra(e):=sum(r in

ALL_ROLES,t in 1..max_work(e)+1, y in 0..WEEKS_TO_PLAN-max_work(e)-1)

allocate_master(e,r,t+y) <= max_work(e)*(WEEKS_TO_PLAN-max_work(e))

!master12_ekstra

forall(r in ALL_ROLES|ag_work_zero(r)+WEEKS_TO_PLAN>ag_max_work(r))

AG_work_count_start(r) := ag_max_work(r) >= ag_work_zero(r) + sum(t in

0..ag_max_work(r)-ag_work_zero(r))(allocate_master("AGENCY",r,t+1))

!forall(r in ALL_ROLES|ag_work_zero(r)+WEEKS_TO_PLAN>ag_max_work(r))

sethidden(AG_work_count_start(r),true)

!master13

forall(r in ALL_ROLES, t in 1..WEEKS_TO_PLAN-ag_max_work(r)|ag_work_zero(r

)+WEEKS_TO_PLAN>ag_max_work(r)) AG_work_count(r,t) := ag_max_work(r) >=

sum(k in 0..ag_max_work(r))(allocate_master("AGENCY",r,t+k))

!forall(r in ALL_ROLES, t in 1..WEEKS_TO_PLAN-ag_max_work(r)|ag_work_zero(

r)+WEEKS_TO_PLAN>ag_max_work(r)) sethidden(AG_work_count(r,t) ,true)

!master14

229

! forall(e in REG_EMP | rest_zero(e)>=1) Rest_new(e):= sum(r in ALL_ROLES

,t in 1..rest_zero(e)) allocate_master(e,r,t)=0

forall(e in REG_EMP ,r in ALL_ROLES,t in 1..rest_zero(e)) do

if(rest_zero(e)>=1)then

Rest_new(e,r,t):= allocate_master(e,r,t)=0

end-if

end-do

forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-1)do

if(min_rest(e)>=1)then

b:=(min_rest(e)-1)

a:=(WEEKS_TO_PLAN-t)

if(b<=a) then

c:=b

else

c:=a

end-if

end-if

Rest_new2(e,t) := sum(r in ALL_ROLES, y in 0..c)(allocate_master(e,r,t+y))

<=c*(1-sum (v in VESSELS) depart_master(e,v,t))

sethidden(Rest_new2(e,t),true)

end-do

forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-1)do

if(min_rest(e)>=1)then

b:=(min_rest(e)-1)

a:=(WEEKS_TO_PLAN-t)

if(b<=a) then

c:=b

else

c:=a

end-if

end-if

forall(y in 0..c)do

if(c>=1)then

230

Rest_new1(e,t,y) := sum(r in ALL_ROLES)(allocate_master(e,r,t+y))+sum (v

in VESSELS) depart_master(e,v,t)<=1

end-if

end-do

end-do

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(allocate_master(e,

r,t))) allocate_master(e,r,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) depart_master(e,v,t)

is_binary

z is_free

forall(e in REG_EMP, v in VESSELS) z1(e,v) is_free

forall(r in ALL_ROLES) z2(r) is_free

forall(e in REG_EMP) z4(e) is_free

forall(e in GUARANTEED) z3(e) is_free

end-do

status(prob):= STAT_READY

end-procedure

! Solve the integer problem

function solve_intprob(prob:mpproblem, ct:integer): real

with prob do

status(prob):= STAT_READY

Primal_cost:=(z+

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)(work_chng_cost(e,r,t)*((

allocate_master(e,r,t)-cur_allocate(e,r,t))/(1-2*(cur_allocate(e,r,t)))

))+

sum(e in REG_EMP, v in VESSELS, t in TIME)(depart_chng_cost(e,v,t)*((

depart_master(e,v,t)-cur_depart(e,v,t))/(1-2*(cur_depart(e,v,t)))))+

231

sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost(e,v,t)*(

cur_board(e,v,t)/((2*cur_board(e,v,t))-1))))+

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r,t)*(cur_ag_rboard(r,t

)/((2*cur_ag_rboard(r,t))-1))) + (ag_depart_chng_cost(r,t)*(

cur_ag_rdepart(r,t)/((2*cur_ag_rdepart(r,t))-1)))) +

sum(e in GUARANTEED)((-under_rate(e)*cur_undertime(e))+ (-over_rate(e)*

cur_overtime(e))))

if(cut_type=1)then

writeln("Cut_type",cut_type)

(!MC(ax):= z >= (sum(e in REG_EMP, v in VESSELS, t in TIME)(sol_dual_40(ax

,e,v,t))+

sum(e in REG_EMP, v in VESSELS)(sol_dual_3(ax,e,v)*(sum(r in ROLES(v))(

allocate_master(e,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(sol_dual_4(ax,e,v,t

)*(sum(r in ROLES(v))(allocate_master(e,r,t)) - sum(r in ROLES(v))(

allocate_master(e,r,(t-1)))))+

sum(r in ALL_ROLES)(sol_dual_7(ax,r)*(allocate_master("AGENCY",r,1) -

ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(sol_dual_8(ax,r,t)*(

allocate_master("AGENCY",r,t) - allocate_master("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(sol_dual_9(ax,e)*(g_weeks(e) - (exp_worktime(e) + sum

(r in ALL_ROLES, t in TIME)(allocate_master(e,r,t)))))+

sum(e in GUARANTEED)(sol_dual_10(ax,e)*((exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate_master(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES, t in TIME)(sol_dual_30(ax,r,t)*(1-allocate_master("

AGENCY",r,t)))+

sum(r in ALL_ROLES)(sol_dual_31(ax,r,1)*(1- ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(sol_dual_31(ax,r,t)*(1-

allocate_master("AGENCY",r,(t-1))))+

sum(e in REG_EMP)(sol_dual_19(ax,e)*(rest_zero(e) - (1-(sum(r in

ALL_ROLES)(allocate_master(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(sol_dual_20(ax,e,t)*(- (1-(sum(r

in ALL_ROLES)(allocate_master(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(sol_dual_23(ax,e,t)*(- min_rest(e

)*(1-(sum(r in ALL_ROLES)(allocate_master(e,r,t))))))+

232

sum(e in REG_EMP, t in TIME)(sol_dual_21(ax,e,t)*((min_rest(e)-1)*(sum(v

in VESSELS)(depart_master(e,v,t))))))

end-do

!)

forall(ax in 0..ct)do

forall(e in REG_EMP, v in VESSELS)do

MC10(ax,e,v):=z1(e,v)>= (sum(t in TIME)(sol_dual_40(ax,e,v,t))+

(sol_dual_3(ax,e,v)*(sum(r in ROLES(v))(allocate_master(e,r,1)) - starting

(e,v)))+

sum(t in 2..WEEKS_TO_PLAN)(sol_dual_4(ax,e,v,t)*(sum(r in ROLES(v))(

allocate_master(e,r,t)) - sum(r in ROLES(v))(allocate_master(e,r,(t-1))

))))

end-do

forall(r in ALL_ROLES)do

MC20(ax,r):=z2(r) >= ((sol_dual_7(ax,r)*(allocate_master("AGENCY",r,1) -

ag_starting(r)))+

sum(t in 2..WEEKS_TO_PLAN)(sol_dual_8(ax,r,t)*(allocate_master("AGENCY",r,

t) - allocate_master("AGENCY",r,(t-1))))+

sum(t in TIME)(sol_dual_30(ax,r,t)*(1-allocate_master("AGENCY",r,t)))+

(sol_dual_31(ax,r,1)*(1- ag_starting(r)))+

sum(t in 2..WEEKS_TO_PLAN)(sol_dual_31(ax,r,t)*(1-allocate_master("AGENCY

",r,(t-1)))))

end-do

forall(e in GUARANTEED)do

MC30(ax,e):= z3(e) >= ((sol_dual_9(ax,e)*(g_weeks(e) - (exp_worktime(e) +

sum(r in ALL_ROLES, t in TIME)(allocate_master(e,r,t)))))+

(sol_dual_10(ax,e)*((exp_worktime(e) + sum(r in ALL_ROLES, t in TIME)(

allocate_master(e,r,t)))- g_weeks(e))))

end-do

forall(e in REG_EMP)do

MC40(ax,e):= z4(e) >=(sol_dual_19(ax,e)*(rest_zero(e) - (1-(sum(r in

ALL_ROLES)(allocate_master(e,r,1)))))+

sum(t in 2..WEEKS_TO_PLAN)(sol_dual_20(ax,e,t)*(- (1-(sum(r in ALL_ROLES)

(allocate_master(e,r,t))))))+

233

sum(t in 2..WEEKS_TO_PLAN)(sol_dual_23(ax,e,t)*(- min_rest(e)*(1-(sum(r

in ALL_ROLES)(allocate_master(e,r,t))))))+

sum(t in TIME)(sol_dual_21(ax,e,t)*((min_rest(e)-1)*(sum(v in VESSELS)(

depart_master(e,v,t))))))

end-do

MC(ax):= z >= (sum(e in REG_EMP, v in VESSELS) (z1(e,v))+ sum (e in

GUARANTEED) z3(e)+sum(r in ALL_ROLES)z2(r)+sum (e in REG_EMP) z4(e))

end-do

end-if

if(cut_type=0)then

writeln("Cut_type",cut_type)

forall(ax in 0..ct)do

MC(ax):= (sum(e in REG_EMP, v in VESSELS, t in TIME)(sol_dual_40(ax,e,v,t)

)+

sum(e in REG_EMP, v in VESSELS)(sol_dual_3(ax,e,v)*(sum(r in ROLES(v))(

allocate_master(e,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(sol_dual_4(ax,e,v,t

)*(sum(r in ROLES(v))(allocate_master(e,r,t)) - sum(r in ROLES(v))(

allocate_master(e,r,(t-1)))))+

sum(r in ALL_ROLES)(sol_dual_7(ax,r)*(allocate_master("AGENCY",r,1) -

ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(sol_dual_8(ax,r,t)*(

allocate_master("AGENCY",r,t) - allocate_master("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(sol_dual_9(ax,e)*(g_weeks(e) - (exp_worktime(e) + sum

(r in ALL_ROLES, t in TIME)(allocate_master(e,r,t)))))+

sum(e in GUARANTEED)(sol_dual_10(ax,e)*((exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate_master(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES, t in TIME)(sol_dual_30(ax,r,t)*(1-allocate_master("

AGENCY",r,t)))+

sum(r in ALL_ROLES)(sol_dual_31(ax,r,1)*(1- ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(sol_dual_31(ax,r,t)*(1-

allocate_master("AGENCY",r,(t-1))))+

sum(e in REG_EMP)(sol_dual_19(ax,e)*(rest_zero(e) - (1-(sum(r in

ALL_ROLES)(allocate_master(e,r,1))))))+

234

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(sol_dual_20(ax,e,t)*(- (1-(sum(r

in ALL_ROLES)(allocate_master(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(sol_dual_23(ax,e,t)*(- min_rest(e

)*(1-(sum(r in ALL_ROLES)(allocate_master(e,r,t))))))+

sum(e in REG_EMP, t in TIME)(sol_dual_21(ax,e,t)*((min_rest(e)-1)*(sum(v

in VESSELS)(depart_master(e,v,t))))))<=0

end-do

end-if

setparam("XPRS_heurstrategy",3)

if(cut_type=0)then

setparam("XPRS_maxtime",-30)

else

if(x>=2)then

if(50*(x+1)>=3600-(finish-begin))then

setparam("XPRS_maxtime",-400)

else

setparam("XPRS_maxtime",-(50*(x+1)))

end-if

else

setparam("XPRS_maxtime",-(50*(x+1)))

end-if

end-if

!setparam("XPRS_miprelstop",(0.8-(0.1*x)))

setcallback(XPRS_CB_INTSOL, "printsol")

setparam("XPRS_verbose",true)

minimize(Primal_cost)

z_best(ct):=getparam("XPRS_BESTBOUND")

best_bound:=max(i in 0..ct)z_best(ct)

end-do

235

end-function

!---

int_started:=1

begin:=gettime

if(int_started=1)then

cuts_added(0):=0

forall(y in 1..200)do

x:=y

!writeln("x:",x)

! writeln(" best_bound:", best_bound)

solve_primal_int(ct)

finish:=gettime

writeln("FINISh_BEGIN: ", finish-begin)

ct:=ct+1

if(finish-begin>=3250)then

res2:= compile("subdualcombcut_updated-acmw.mos") ! Compile the knapsack

model

load(Dualmodel, "subdualcombcut_updated-acmw.bim") ! Load the knapsack

model

initializations to "bin:shmem:sol"

allocate_dual depart_dual ct UB Dual_cost InstanceName allocate_best

236

end-initializations

run(Dualmodel) ! Start solving knapsack subproblem

wait ! Wait until subproblem finishes

dropnextevent ! Ignore termination message

initializations from "bin:shmem:sol"

sol_dual_3 sol_dual_4 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_19 sol_dual_20 sol_dual_21

sol_dual_23 sol_dual_30 sol_dual_31 sol_dual_40 Dual_cost UB cut_type

accept allocate_best

end-initializations

fopen(SUMMARYFILE, F_APPEND)

write(InstanceName)

write("\t",finish-begin)

write("\t",UB1,"\t",UB,"\t", z_best(ct))

write("\n")

fclose(F_APPEND)

fopen(LOGFILE, F_APPEND)

writeln("allocate: [")

forall(e in ALL_EMP) do

forall(r in ALL_ROLES) do

forall(t in TIME) write(allocate_best(e,r,t),"\t")

end-do

write("\n")

end-do

write("]\n")

fclose(F_APPEND)

break

else

237

res2:= compile("subdualcombcut_updated-acmw.mos") ! Compile the knapsack

model

load(Dualmodel, "subdualcombcut_updated-acmw.bim") ! Load the knapsack

model

initializations to "bin:shmem:sol"

allocate_dual depart_dual ct UB Dual_cost InstanceName allocate_best

end-initializations

run(Dualmodel) ! Start solving knapsack subproblem

wait ! Wait until subproblem finishes

dropnextevent ! Ignore termination message

initializations from "bin:shmem:sol"

sol_dual_3 sol_dual_4 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_19 sol_dual_20 sol_dual_21

sol_dual_23 sol_dual_30 sol_dual_31 sol_dual_40 Dual_cost UB cut_type

accept allocate_best

end-initializations

cuts_added(x):=ct

fopen(LOGFILE,F_APPEND)

write(InstanceName)

write("\t",finish-begin)

write("\t",UB1,"\t",UB,"\t", z_best(ct))

write("\n")

fclose(F_APPEND)

end-if

evaluate_solution

cuts_added(x):=ct

end-do

end-if

!--

procedure printsol

238

declarations

objval:real

mip:integer

time_passed:real

end-declarations

time_passed:=gettime

objval:= getparam("XPRS_MIPOBJVAL")

mip:=getparam("XPRS_MIPSOLS")

mip_x:=mip

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_dual(l,r,t):=round(getsol(allocate_master(l,r,t)))

end-do

forall(r in REG_EMP, v in VESSELS, t in TIME)do

depart_dual(r,v,t):=round(getsol(depart_master(r,v,t)))

end-do

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_iteration(ct,l,r,t):=round(getsol(allocate_master(l,r,t)))

end-do

forall(r in REG_EMP, v in VESSELS, t in TIME)do

depart_iteration(ct,r,v,t):=round(getsol(depart_master(r,v,t)))

end-do

writeln("INTEGER PROBLEM")

end-procedure

!--

239

procedure save_solution_dual

! Store values of u and x

if(ct=0)then

forall(e in REG_EMP, v in VESSELS)do

sol_dual_3(ct,e,v):=getsol(dual_3(e,v))

end-do

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)do

sol_dual_4(ct,e,v,t):=getsol(dual_4(e,v,t))

end-do

forall(e in REG_EMP, v in VESSELS, t in TIME)do

sol_dual_40(ct,e,v,t):=getsol(dual_40(e,v,t))

end-do

forall(r in ALL_ROLES)do

sol_dual_7(ct,r):=getsol(dual_7(r))

end-do

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)do

sol_dual_8(ct,r,t):= getsol(dual_8(r,t))

end-do

forall(e in GUARANTEED)do

sol_dual_9(ct,e):=getsol(dual_9(e))

end-do

forall(e in GUARANTEED) do

sol_dual_10(ct,e):=getsol(dual_10(e))

end-do

forall(r in ALL_ROLES, t in TIME)do

sol_dual_30(ct,r,t):= getsol(dual_30(r,t))

end-do

240

forall(r in ALL_ROLES, t in TIME)do

sol_dual_31(ct,r,t):= getsol(dual_31(r,t))

end-do

forall(e in REG_EMP)do

sol_dual_19(ct,e):=getsol(dual_19(e))

end-do

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_20(ct,e,t):= getsol(dual_20(e,t))

end-do

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_23(ct,e,t):= getsol(dual_23(e,t))

end-do

forall(e in REG_EMP, t in TIME)do

sol_dual_21(ct,e,t):= getsol(dual_21(e,t))

end-do

end-if

end-procedure

!--

procedure mypreintsol(isheur:boolean,cutoff:real)

declarations

tamam:integer

end-declarations

tamam:=1

241

forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-1)do

if(min_rest(e)>=1)then

b:=(min_rest(e)-1)

a:=(WEEKS_TO_PLAN-t)

if(b<=a) then

c:=b

else

c:=a

end-if

end-if

forall(y in 0..c)do

if(c>=1)then

if(sum(r in ALL_ROLES)(getsol(allocate_master(e,r,t+y)))+sum (v in VESSELS

) (getsol(depart_master(e,v,t)))>=2)then

sethidden(Rest_new1(e,t,y),false)

tamam:=0

end-if

end-if

end-do

end-do

if(tamam=0)then

rejectintsol

else

writeln("no reject")

ct:=ct+1

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_iteration(ct,l,r,t):=round(getsol(allocate_master(l,r,t)))

end-do

forall(r in REG_EMP, v in VESSELS, t in TIME)do

depart_iteration(ct,r,v,t):=round(getsol(depart_master(r,v,t)))

end-do

tamam:=1

242

end-if

end-procedure

!--

procedure evaluate_solution

if(ct=0)then

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_iteration(ct,l,r,t):=allocate(l,r,t)

end-do

forall(r in REG_EMP, v in VESSELS, t in TIME)do

depart_iteration(ct,r,v,t):=depart(r,v,t)

end-do

end-if

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_dual(l,r,t):=allocate_iteration(ct,l,r,t)

end-do

forall(r in REG_EMP, v in VESSELS, t in TIME)do

depart_dual(r,v,t):=depart_iteration(ct,r,v,t)

end-do

initializations to "bin:shmem:sol"

allocate_dual depart_dual ct

end-initializations

end-procedure

!--

function subprob : real

243

initializations to "bin:shmem:sol"

allocate_dual depart_dual ct InstanceName allocate_best

end-initializations

run(Dualmodel) ! Start solving knapsack subproblem

wait ! Wait until subproblem finishes

dropnextevent ! Ignore termination message

initializations from "bin:shmem:sol"

sol_dual_3 sol_dual_4 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_19 sol_dual_20 sol_dual_21

sol_dual_23 sol_dual_30 sol_dual_31 sol_dual_40 Dual_cost UB cut_type

accept allocate_best

end-initializations

end-function

!--

function heuristic_solve : real

initializations to "bin:shmem:sol"

allocate_dual depart_dual InstanceName

end-initializations

run(Heuristic) ! Start solving knapsack subproblem

wait ! Wait until subproblem finishes

dropnextevent ! Ignore termination message

initializations from "bin:shmem:sol"

allocate_dual depart_dual InstanceName

end-initializations

end-function

!--

function cut_manage : boolean

loadcuts(-1,-1)

end-function

!---

244

end-model

!---

(!***

Mosel Example Problems

======================

file benders_main.mos

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Benders decomposition for solving a simple MIP.

- Master model -

*** ATTENTION: This model will return an error if ***

*** no more than one Xpress licence is available. ***

(c) 2008 Fair Isaac Corporation

author: S. Heipcke, Jan. 2006, rev. Jan. 2013

***!)

model "Benders (master model)"

uses "mmxprs", "mmjobs", "mmsystem"

parameters

ALG = 1

BIGM = 100000000

!PARAMETERFILE = "batch-input-parameters.dat"

end-parameters

declarations

InstanceName: string

end-declarations

initializations from "bin:shmem:sol"

245

InstanceName

end-initializations

DATAFILE :=InstanceName+"\\Time-Windows - Captains - "+InstanceName+".txt"

OUTPUTFILE_subdual:="Results - SubDual-Benders-mw - "+InstanceName+".txt"

forward procedure save_solution_dualsub

declarations

STEP_0=2 ! Codes sent to subproblems

STEP_1=3

STEP_2=4

STAT_SOLVED=6 ! Status codes returned by subproblems

STAT_INFEAS=7

STAT_READY=8

UB:real !upperbound

LB: real !lowerbound

REG_EMP: set of string ! Regular employee names / numbers (ie not

Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which

will require cover, divided by vessels

ALL_ROLES: set of string ! List of all roles

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real !

Data relating to over/undertime payments for employees

sol_obj: real ! Objective function value (primal)

246

MC: array(range) of linctr ! Constraints generated by alg.

RM: range ! Model indices

cut_type: real

accept: real

stepmod: array(RM) of Model ! Submodels

end-declarations

!DECLARATION OF PARAMETERS AND DECISION VARIABLES

initializations from DATAFILE

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

under_rate over_rate g_weeks exp_worktime

end-initializations

ALL_EMP := REG_EMP + {"AGENCY"}

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

declarations

TIME = 1..WEEKS_TO_PLAN

allocate_dual: dynamic array(ALL_EMP, ALL_ROLES, TIME) of integer !

Variable for allocating employee to role during given time period

depart_dual: array(REG_EMP, VESSELS, TIME) of integer

board_chng_cost, depart_chng_cost: array(REG_EMP, VESSELS, TIME) of real !

Costs of CHANGES TO employees boarding / leaving vessel

ag_board_chng_cost, ag_depart_chng_cost: array(ALL_ROLES, TIME) of real !

Costs of CHANGES TO agency employees boarding / leaving for a given

role

work_chng_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given

role at a given time

allocate_best: dynamic array(ALL_EMP, ALL_ROLES, TIME) of integer

required: array(ALL_ROLES, TIME) of integer ! =1 if

role r is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can

carry out role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is

on board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

247

ag_starting: array(ALL_ROLES) of integer ! =1 if

agency employee is in role r at time 0, =0 otherwise

work_zero, rest_zero: array(REG_EMP) of integer ! initial values

of work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial

value of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum

on working time, minimum on resting time

ag_max_work: array(ALL_ROLES) of integer ! maximum

on working time for agency crew, possibly different for each role

overall_regular_max_work: integer

overall_agency_max_work: integer

overall_max_work: integer

! Added for the recovery problem:

! - the details of the current roster...

cur_allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer

cur_board, cur_depart: array(REG_EMP, VESSELS, TIME) of integer

cur_ag_rboard, cur_ag_rdepart: array(ALL_ROLES, TIME) of integer

cur_undertime, cur_overtime: array(GUARANTEED) of integer

mwp:linctr

end-declarations

!Reading from txt file

initializations from DATAFILE

board_chng_cost depart_chng_cost work_chng_cost

ag_board_chng_cost ag_depart_chng_cost

required eligable starting ag_starting

work_zero rest_zero

max_work min_rest ag_max_work

cur_allocate cur_board cur_depart cur_ag_rboard cur_ag_rdepart

cur_undertime cur_overtime

end-initializations

!Continue to define parameters and decision variables

248

declarations

!Added for recovery problem - detail of current roster, and change

variable

!solution of dual sub problem

dual_3: array(REG_EMP, VESSELS) of mpvar

dual_4: array(REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of mpvar

dual_7: array(ALL_ROLES) of mpvar

dual_8: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of mpvar

dual_9: array(GUARANTEED) of mpvar

dual_10: array(GUARANTEED) of mpvar

dual_30: array(ALL_ROLES,TIME) of mpvar

dual_31: array(ALL_ROLES,TIME) of mpvar

dual_40: array(REG_EMP, VESSELS, TIME) of mpvar

dual_19:array(REG_EMP) of real

dual_21:array(REG_EMP, TIME) of real

dual_20:array(REG_EMP, 2..WEEKS_TO_PLAN) of real

dual_23:array(REG_EMP,2..WEEKS_TO_PLAN) of real

dual_3_new: array(REG_EMP, VESSELS) of mpvar

dual_4_new: array(REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of mpvar

dual_7_new: array(ALL_ROLES) of mpvar

dual_8_new: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of mpvar

dual_9_new: array(GUARANTEED) of mpvar

dual_10_new: array(GUARANTEED) of mpvar

dual_30_new: array(ALL_ROLES,TIME) of mpvar

dual_31_new: array(ALL_ROLES,TIME) of mpvar

dual_40_new: array(REG_EMP, VESSELS, TIME) of mpvar

dual_19_new:array(REG_EMP) of mpvar

dual_21_new:array(REG_EMP, TIME) of mpvar

dual_20_new:array(REG_EMP, 2..WEEKS_TO_PLAN) of mpvar

dual_23_new:array(REG_EMP,2..WEEKS_TO_PLAN) of mpvar

sol_dual_3: array(range,REG_EMP, VESSELS) of real

249

sol_dual_4: array(range,REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of real

! or takes a non-negative integer

value for agency crew

sol_dual_7: array(range,ALL_ROLES) of real

sol_dual_8: array(range,ALL_ROLES, 2..WEEKS_TO_PLAN) of real

sol_dual_9: array(range,GUARANTEED) of real

sol_dual_10: array(range,GUARANTEED) of real

sol_dual_19:array(range,REG_EMP) of real

sol_dual_21:array(range,REG_EMP, TIME) of real

sol_dual_20:array(range,REG_EMP, 2..WEEKS_TO_PLAN) of real

sol_dual_23:array(range,REG_EMP,2..WEEKS_TO_PLAN) of real

sol_dual_30: array(range,ALL_ROLES,TIME) of real

sol_dual_31: array(range,ALL_ROLES,TIME) of real

sol_dual_40: array(range,REG_EMP, VESSELS, TIME) of real

! or takes a non-negative integer value

for agency crew

dummy:linctr

! Objective Value of dual problem

Dual_cost:real

end-declarations

! reading the parameters

declarations

!constraints for dual problem

dual_cons_board: array(REG_EMP, VESSELS, TIME) of linctr

dual_cons_depart: array(REG_EMP, VESSELS, TIME) of linctr ! =1 if

employee boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer

value for agency crew

dual_cons_ag_rboard: array(ALL_ROLES, TIME) of linctr

dual_cons_ag_rdepart: array(ALL_ROLES, TIME) of linctr ! =1 if agency

crew starts / ends working on a role in given time period, 0 otherwise

dual_cons_undertime: array(GUARANTEED) of linctr

250

dual_cons_overtime: array(GUARANTEED) of linctr !

Variables to calculate the amount of under/overtime carried out by

employee

dual_cons_board_new: array(REG_EMP, VESSELS, TIME) of linctr

dual_cons_depart_new: array(REG_EMP, VESSELS, TIME) of linctr ! =1 if

employee boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer

value for agency crew

dual_cons_ag_rboard_new: array(ALL_ROLES, TIME) of linctr

dual_cons_ag_rdepart_new: array(ALL_ROLES, TIME) of linctr ! =1 if

agency crew starts / ends working on a role in given time period, 0

otherwise

dual_cons_undertime_new: array(GUARANTEED) of linctr

dual_cons_overtime_new: array(GUARANTEED) of linctr !

Variables to calculate the amount of under/overtime carried out by

employee

dual_cons_rest_total:array(REG_EMP, TIME) of linctr

dual_cons_rest_total_new:array(REG_EMP, TIME) of linctr

!constraints for integer problem

All_covered: dynamic array(ALL_ROLES, TIME) of linctr

No_overlap: array(REG_EMP, TIME) of linctr

Work_count: array(REG_EMP, TIME) of linctr

Work_count_start: array(REG_EMP) of linctr

Depart_constr: array(REG_EMP, VESSELS, TIME) of linctr

Rest_vs_work: array(REG_EMP, TIME) of linctr

Rest_new: array(REG_EMP) of linctr

Rest_new1: array(REG_EMP, TIME) of linctr

ct:integer

int_started:integer

allocate_master: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar

depart_master: array(REG_EMP, VESSELS, TIME) of mpvar ! =1 if employee

boards / departs vessel in given time period, 0 otherwise

Obj: linctr

Dual_first:linctr

251

z:mpvar

Primal_cost:linctr

stepprob: array(RM) of mpproblem ! Subproblems

status: array(mpproblem) of integer ! Subproblem status

AG_work_count_start:array(ALL_ROLES) of linctr

AG_work_count:array(ALL_ROLES, TIME) of linctr

Obj_mwp:linctr

Obj_mwp_value:mpvar

Dual_cost_mwp:linctr

allocate_mwp: dynamic array(1..1,ALL_EMP, ALL_ROLES, TIME) of real !

Variable for allocating employee to role during given time period

depart_mwp: array(1..1, REG_EMP, VESSELS, TIME) of real

allocate: dynamic array(ALL_EMP, ALL_ROLES, TIME) of integer

depart: array(REG_EMP, VESSELS, TIME) of integer

end-declarations

initializations from DATAFILE

allocate depart

end-initializations

initializations from "bin:shmem:sol"

allocate_dual depart_dual ct UB Dual_cost allocate_best

end-initializations

writeln("SUB DUAL STARTED")

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate_dual(e,r,t))

end-if

end-do

Obj:= (sum(e in REG_EMP, v in VESSELS, t in TIME)(dual_40_new(e,v,t))+

sum(e in REG_EMP, v in VESSELS)(dual_3_new(e,v)*(sum(r in ROLES(v))(

allocate_dual(e,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4_new(e,v,t)*(

sum(r in ROLES(v))(allocate_dual(e,r,t)) - sum(r in ROLES(v))(

allocate_dual(e,r,(t-1)))))+

252

sum(r in ALL_ROLES)(dual_7_new(r)*(allocate_dual("AGENCY",r,1) -

ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8_new(r,t)*(allocate_dual

("AGENCY",r,t) - allocate_dual("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(dual_9_new(e)*(g_weeks(e) - (exp_worktime(e) + sum(r

in ALL_ROLES, t in TIME)(allocate_dual(e,r,t)))))+

sum(e in GUARANTEED)(dual_10_new(e)*((exp_worktime(e) + sum(r in ALL_ROLES

, t in TIME)(allocate_dual(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES, t in TIME)(dual_30_new(r,t)*(1-allocate_dual("AGENCY",

r,t)))+

sum(r in ALL_ROLES)(dual_31_new(r,1)*(1- ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_31_new(r,t)*(1-

allocate_dual("AGENCY",r,(t-1))))+

sum(e in REG_EMP)(dual_19_new(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate_dual(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20_new(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23_new(e,t)*(- min_rest(e)

*(1-(sum(r in ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, t in TIME)(dual_21_new(e,t)*((min_rest(e)-1)*(sum(v in

VESSELS)(depart_dual(e,v,t))))))

sethidden(Obj,false)

!board

forall(e in REG_EMP, v in VESSELS) dual_cons_board_new(e,v,1):=dual_3_new(

e,v)+dual_40_new(e,v,1)<=(board_chng_cost(e,v,1))/(1-(2*cur_board(e,v

,1)))

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)

dual_cons_board_new(e,v,t):=dual_4_new(e,v,t)+dual_40_new(e,v,t)<=(

board_chng_cost(e,v,t))/(1-(2*cur_board(e,v,t)))

!ag_rboard

forall(r in ALL_ROLES) dual_cons_ag_rboard_new(r,1):= dual_7_new(r)+

dual_31_new(r,1)<=(ag_board_chng_cost(r,1)/(1-(2*cur_ag_rboard(r,1))))

253

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rboard_new(r,t)

:= dual_8_new(r,t)+dual_31_new(r,t)<=(ag_board_chng_cost(r,t)/(1-(2*

cur_ag_rboard(r,t))))

!ag_rdepart

forall(r in ALL_ROLES) dual_cons_ag_rdepart_new(r,1):= -dual_7_new(r)+

dual_30_new(r,1)<=(ag_depart_chng_cost(r,1)/(1-(2*cur_ag_rdepart(r,1)))

)

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rdepart_new(r,t)

:= -dual_8_new(r,t)+dual_30_new(r,t)<=(ag_depart_chng_cost(r,t)/(1-(2*

cur_ag_rdepart(r,t))))

!undertime

forall(e in GUARANTEED) dual_cons_undertime_new(e):= dual_9_new(e)<=

under_rate(e)

!overtime

forall(e in GUARANTEED) dual_cons_overtime_new(e):= dual_10_new(e)<=

over_rate(e)

!rest_total

forall(e in REG_EMP) dual_cons_rest_total_new(e,1):= dual_19_new(e)-

dual_20_new(e,2)+dual_21_new(e,1)-dual_23_new(e,2)<=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN-1) dual_cons_rest_total_new(e,t)

:= dual_20_new(e,t)-dual_20_new(e,t+1)+dual_21_new(e,t)-dual_23_new(e,t

+1)<=0

forall(e in REG_EMP,t in WEEKS_TO_PLAN..WEEKS_TO_PLAN)

dual_cons_rest_total_new(e,t):= dual_20_new(e,t)+dual_21_new(e,t)<=0

forall(e in REG_EMP, v in VESSELS) dual_3_new(e,v)>=0

254

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_4_new(e,v,t

)>=0

forall(r in ALL_ROLES) dual_7_new(r) is_free

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) dual_8_new(r,t) is_free

forall(e in GUARANTEED) dual_9_new(e)>=0

forall(e in GUARANTEED) dual_10_new(e)>=0

forall(e in REG_EMP) dual_19_new(e)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_20_new(e,t)>=0

forall(e in REG_EMP,t in TIME) dual_21_new(e,t)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_23_new(e,t)>=0

forall(r in ALL_ROLES, t in TIME) dual_30_new(r,t)<=0

forall(r in ALL_ROLES, t in TIME) dual_31_new(r,t)<=0

forall(e in REG_EMP, v in VESSELS, t in TIME) dual_40_new(e,v,t)<=0

!fopen(OUTPUTFILE_subdual, F_OUTPUT)

!setparam("XPRS_verbose",true)

maximize(XPRS_BAR, Obj)

cut_type:=1

if(getprobstat=XPRS_UNB) then

write("Dual Unbounded ")

cut_type:=0

writeln("Cut_type",cut_type)

Obj_mwp:=Obj_mwp_value=0

Dual_cost_mwp:=(sum(e in REG_EMP, v in VESSELS, t in TIME)(dual_40_new(e,v

,t))+

sum(e in REG_EMP, v in VESSELS)(dual_3_new(e,v)*(sum(r in ROLES(v))(

allocate_dual(e,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4_new(e,v,t)*(

sum(r in ROLES(v))(allocate_dual(e,r,t)) - sum(r in ROLES(v))(

allocate_dual(e,r,(t-1)))))+

sum(r in ALL_ROLES)(dual_7_new(r)*(allocate_dual("AGENCY",r,1) -

ag_starting(r)))+

255

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8_new(r,t)*(allocate_dual

("AGENCY",r,t) - allocate_dual("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(dual_9_new(e)*(g_weeks(e) - (exp_worktime(e) + sum(r

in ALL_ROLES, t in TIME)(allocate_dual(e,r,t)))))+

sum(e in GUARANTEED)(dual_10_new(e)*((exp_worktime(e) + sum(r in ALL_ROLES

, t in TIME)(allocate_dual(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES, t in TIME)(dual_30_new(r,t)*(1-allocate_dual("AGENCY",

r,t)))+

sum(r in ALL_ROLES)(dual_31_new(r,1)*(1- ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_31_new(r,t)*(1-

allocate_dual("AGENCY",r,(t-1))))+

sum(e in REG_EMP)(dual_19_new(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate_dual(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20_new(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23_new(e,t)*(- min_rest(e)

*(1-(sum(r in ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, t in TIME)(dual_21_new(e,t)*((min_rest(e)-1)*(sum(v in

VESSELS)(depart_dual(e,v,t))))))=1

!board

forall(e in REG_EMP, v in VESSELS) dual_cons_board_new(e,v,1):=dual_3_new(

e,v)+dual_40_new(e,v,1)<=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)

dual_cons_board_new(e,v,t):=dual_4_new(e,v,t)+dual_40_new(e,v,t)<=0

!ag_rboard

forall(r in ALL_ROLES) dual_cons_ag_rboard_new(r,1):= dual_7_new(r)+

dual_31_new(r,1)<=0

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rboard_new(r,t)

:= dual_8_new(r,t)+dual_31_new(r,t)<=0

!ag_rdepart

256

forall(r in ALL_ROLES) dual_cons_ag_rdepart_new(r,1):= -dual_7_new(r)+

dual_30_new(r,1)<=0

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rdepart_new(r,t)

:= -dual_8_new(r,t)+dual_30_new(r,t)<=0

!undertime

forall(e in GUARANTEED) dual_cons_undertime_new(e):= dual_9_new(e)<=0

!overtime

forall(e in GUARANTEED) dual_cons_overtime_new(e):= dual_10_new(e)<=0

!rest_total

forall(e in REG_EMP) dual_cons_rest_total_new(e,1):= dual_19_new(e)-

dual_20_new(e,2)+dual_21_new(e,1)-dual_23_new(e,2)<=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN-1) dual_cons_rest_total_new(e,t)

:= dual_20_new(e,t)-dual_20_new(e,t+1)+dual_21_new(e,t)-dual_23_new(e,t

+1)<=0

forall(e in REG_EMP,t in WEEKS_TO_PLAN..WEEKS_TO_PLAN)

dual_cons_rest_total_new(e,t):= dual_20_new(e,t)+dual_21_new(e,t)<=0

forall(e in REG_EMP, v in VESSELS) dual_3_new(e,v)>=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_4_new(e,v,t

)>=0

forall(r in ALL_ROLES) dual_7_new(r) is_free

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) dual_8_new(r,t) is_free

forall(e in GUARANTEED) dual_9_new(e)>=0

forall(e in GUARANTEED) dual_10_new(e)>=0

forall(e in REG_EMP) dual_19_new(e)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_20_new(e,t)>=0

forall(e in REG_EMP,t in TIME) dual_21_new(e,t)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_23_new(e,t)>=0

forall(r in ALL_ROLES, t in TIME) dual_30_new(r,t)<=0

forall(r in ALL_ROLES, t in TIME) dual_31_new(r,t)<=0

forall(e in REG_EMP, v in VESSELS, t in TIME) dual_40_new(e,v,t)<=0

257

!setparam("XPRS_verbose",true)

maximize(XPRS_BAR, Obj_mwp_value)

end-if

writeln("Cut_type",cut_type)

if(cut_type=1) then

Dual_cost:=getobjval

writeln("Cut_type",cut_type)

writeln("Dual_cost: ",Dual_cost)

writeln("UB_once",UB)

if (UB>= (Dual_cost+

sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost(e,v,t)*(

cur_board(e,v,t)/((2*cur_board(e,v,t))-1))))+

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r,t)*(cur_ag_rboard(r,t

)/((2*cur_ag_rboard(r,t))-1))) + (ag_depart_chng_cost(r,t)*(

cur_ag_rdepart(r,t)/((2*cur_ag_rdepart(r,t))-1)))) +

sum(e in GUARANTEED)((-under_rate(e)*cur_undertime(e))+ (-over_rate(e)*

cur_overtime(e)))+

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)(work_chng_cost(e,r,t)*((

allocate_dual(e,r,t)-cur_allocate(e,r,t))/(1-2*(cur_allocate(e,r,t)))))

+

sum(e in REG_EMP, v in VESSELS, t in TIME)(depart_chng_cost(e,v,t)*((

depart_dual(e,v,t)-cur_depart(e,v,t))/(1-2*(cur_depart(e,v,t)))))))

then

UB:=(Dual_cost+

sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost(e,v,t)*(

cur_board(e,v,t)/((2*cur_board(e,v,t))-1))))+

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r,t)*(cur_ag_rboard(r,t

)/((2*cur_ag_rboard(r,t))-1))) + (ag_depart_chng_cost(r,t)*(

cur_ag_rdepart(r,t)/((2*cur_ag_rdepart(r,t))-1)))) +

sum(e in GUARANTEED)((-under_rate(e)*cur_undertime(e))+ (-over_rate(e)*

cur_overtime(e)))+

258

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)(work_chng_cost(e,r,t)*((

allocate_dual(e,r,t)-cur_allocate(e,r,t))/(1-2*(cur_allocate(e,r,t)))))

+

sum(e in REG_EMP, v in VESSELS, t in TIME)(depart_chng_cost(e,v,t)*((

depart_dual(e,v,t)-cur_depart(e,v,t))/(1-2*(cur_depart(e,v,t))))))

accept:=1

writeln("UB_sonra: ",UB)

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_best(l,r,t):=allocate_dual(l,r,t)

end-do

else

UB:=UB

writeln("UB_noimprove: ",UB)

accept:=0

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_best(l,r,t):=allocate_best(l,r,t)

end-do

end-if

save_solution_dualsub

y:=1

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) allocate_mwp(y,e,r,t):=(

allocate(e,r,t)*0.3)+(allocate_dual(e,r,t)*0.7)

forall(e in REG_EMP, v in VESSELS, t in TIME) depart_mwp(y,e,v,t):=(depart

(e,v,t)*0.3)+(depart_dual(e,v,t)*0.7)

Obj:= (sum(e in REG_EMP, v in VESSELS, t in TIME)(dual_40_new(e,v,t))+

259

sum(e in REG_EMP, v in VESSELS)(dual_3_new(e,v)*(sum(r in ROLES(v))(

allocate_mwp(y,e,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4_new(e,v,t)*(

sum(r in ROLES(v))(allocate_mwp(y,e,r,t)) - sum(r in ROLES(v))(

allocate_mwp(y,e,r,(t-1)))))+

sum(r in ALL_ROLES)(dual_7_new(r)*(allocate_mwp(y,"AGENCY",r,1) -

ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8_new(r,t)*(allocate_mwp(y

,"AGENCY",r,t) - allocate_mwp(y,"AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(dual_9_new(e)*(g_weeks(e) - (exp_worktime(e) + sum(r

in ALL_ROLES, t in TIME)(allocate_mwp(y,e,r,t)))))+

sum(e in GUARANTEED)(dual_10_new(e)*((exp_worktime(e) + sum(r in ALL_ROLES

, t in TIME)(allocate_mwp(y,e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES, t in TIME)(dual_30_new(r,t)*(1-allocate_mwp(y,"AGENCY

",r,t)))+

sum(r in ALL_ROLES)(dual_31_new(r,1)*(1- ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_31_new(r,t)*(1-

allocate_mwp(y,"AGENCY",r,(t-1))))+

sum(e in REG_EMP)(dual_19_new(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate_mwp(y,e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20_new(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate_mwp(y,e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23_new(e,t)*(- min_rest(e)

*(1-(sum(r in ALL_ROLES)(allocate_mwp(y,e,r,t))))))+

sum(e in REG_EMP, t in TIME)(dual_21_new(e,t)*((min_rest(e)-1)*(sum(v in

VESSELS)(depart_mwp(y,e,v,t))))))

sethidden(Obj,false)

!mwp constraints

mwp:=(sum(e in REG_EMP, v in VESSELS, t in TIME)(dual_40_new(e,v,t))+

sum(e in REG_EMP, v in VESSELS)(dual_3_new(e,v)*(sum(r in ROLES(v))(

allocate_dual(e,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4_new(e,v,t)*(

sum(r in ROLES(v))(allocate_dual(e,r,t)) - sum(r in ROLES(v))(

allocate_dual(e,r,(t-1)))))+

sum(r in ALL_ROLES)(dual_7_new(r)*(allocate_dual("AGENCY",r,1) -

ag_starting(r)))+

260

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8_new(r,t)*(allocate_dual

("AGENCY",r,t) - allocate_dual("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(dual_9_new(e)*(g_weeks(e) - (exp_worktime(e) + sum(r

in ALL_ROLES, t in TIME)(allocate_dual(e,r,t)))))+

sum(e in GUARANTEED)(dual_10_new(e)*((exp_worktime(e) + sum(r in ALL_ROLES

, t in TIME)(allocate_dual(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES, t in TIME)(dual_30_new(r,t)*(1-allocate_dual("AGENCY",

r,t)))+

sum(r in ALL_ROLES)(dual_31_new(r,1)*(1- ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_31_new(r,t)*(1-

allocate_dual("AGENCY",r,(t-1))))+

sum(e in REG_EMP)(dual_19_new(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate_dual(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20_new(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23_new(e,t)*(- min_rest(e)

*(1-(sum(r in ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, t in TIME)(dual_21_new(e,t)*((min_rest(e)-1)*(sum(v in

VESSELS)(depart_dual(e,v,t))))))=Dual_cost

!board

forall(e in REG_EMP, v in VESSELS) dual_cons_board_new(e,v,1):=dual_3_new(

e,v)+dual_40_new(e,v,1)<=(board_chng_cost(e,v,1))/(1-(2*cur_board(e,v

,1)))

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)

dual_cons_board_new(e,v,t):=dual_4_new(e,v,t)+dual_40_new(e,v,t)<=(

board_chng_cost(e,v,t))/(1-(2*cur_board(e,v,t)))

!ag_rboard

forall(r in ALL_ROLES) dual_cons_ag_rboard_new(r,1):= dual_7_new(r)+

dual_31_new(r,1)<=(ag_board_chng_cost(r,1)/(1-(2*cur_ag_rboard(r,1))))

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rboard_new(r,t)

:= dual_8_new(r,t)+dual_31_new(r,t)<=(ag_board_chng_cost(r,t)/(1-(2*

261

cur_ag_rboard(r,t))))

!ag_rdepart

forall(r in ALL_ROLES) dual_cons_ag_rdepart_new(r,1):= -dual_7_new(r)+

dual_30_new(r,1)<=(ag_depart_chng_cost(r,1)/(1-(2*cur_ag_rdepart(r,1)))

)

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rdepart_new(r,t)

:= -dual_8_new(r,t)+dual_30_new(r,t)<=(ag_depart_chng_cost(r,t)/(1-(2*

cur_ag_rdepart(r,t))))

!undertime

forall(e in GUARANTEED) dual_cons_undertime_new(e):= dual_9_new(e)<=

under_rate(e)

!overtime

forall(e in GUARANTEED) dual_cons_overtime_new(e):= dual_10_new(e)<=

over_rate(e)

!rest_total

forall(e in REG_EMP) dual_cons_rest_total_new(e,1):= dual_19_new(e)-

dual_20_new(e,2)+dual_21_new(e,1)-dual_23_new(e,2)<=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN-1) dual_cons_rest_total_new(e,t)

:= dual_20_new(e,t)-dual_20_new(e,t+1)+dual_21_new(e,t)-dual_23_new(e,t

+1)<=0

forall(e in REG_EMP,t in WEEKS_TO_PLAN..WEEKS_TO_PLAN)

dual_cons_rest_total_new(e,t):= dual_20_new(e,t)+dual_21_new(e,t)<=0

forall(e in REG_EMP, v in VESSELS) dual_3_new(e,v)>=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_4_new(e,v,t

)>=0

262

forall(r in ALL_ROLES) dual_7_new(r) is_free

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) dual_8_new(r,t) is_free

forall(e in GUARANTEED) dual_9_new(e)>=0

forall(e in GUARANTEED) dual_10_new(e)>=0

forall(e in REG_EMP) dual_19_new(e)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_20_new(e,t)>=0

forall(e in REG_EMP,t in TIME) dual_21_new(e,t)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_23_new(e,t)>=0

forall(r in ALL_ROLES, t in TIME) dual_30_new(r,t)<=0

forall(r in ALL_ROLES, t in TIME) dual_31_new(r,t)<=0

forall(e in REG_EMP, v in VESSELS, t in TIME) dual_40_new(e,v,t)<=0

! setparam("XPRS_verbose",true)

maximize(XPRS_BAR, Obj)

if(getprobstat=XPRS_UNB) then

write("MWP Unbounded ")

end-if

if(getprobstat = XPRS_INF) then

writeln("MWP is infeasible")

end-if

if(getprobstat=XPRS_OPT) then

write("MWP Optimal ")

save_solution_dualsub

end-if

else

Dual_cost:=getobjval

263

UB:=UB

writeln("Cut_type",cut_type)

writeln("Dual_unb: ",Dual_cost)

writeln("UB_unb: ",UB)

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_best(l,r,t):=allocate_best(l,r,t)

end-do

save_solution_dualsub

end-if

(! writeln("allocate: [")

forall(e in ALL_EMP) do

forall(r in ALL_ROLES) do

forall(t in TIME) write(allocate_best(e,r,t),"\t")

end-do

write("\n")

end-do

write("]\n")

!)

! fclose(F_OUTPUT)

writeln("UB: ",UB)

fflush

!--

procedure save_solution_dualsub

! Store values of u and x

forall(e in REG_EMP, v in VESSELS)do

sol_dual_3(ct,e,v):=getsol(dual_3_new(e,v))

end-do

264

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)do

sol_dual_4(ct,e,v,t):=getsol(dual_4_new(e,v,t))

end-do

forall(e in REG_EMP, v in VESSELS, t in TIME)do

sol_dual_40(ct,e,v,t):=getsol(dual_40_new(e,v,t))

end-do

forall(r in ALL_ROLES)do

sol_dual_7(ct,r):=getsol(dual_7_new(r))

end-do

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)do

sol_dual_8(ct,r,t):= getsol(dual_8_new(r,t))

end-do

forall(e in GUARANTEED)do

sol_dual_9(ct,e):=getsol(dual_9_new(e))

end-do

forall(e in GUARANTEED) do

sol_dual_10(ct,e):=getsol(dual_10_new(e))

end-do

forall(r in ALL_ROLES, t in TIME)do

sol_dual_30(ct,r,t):= getsol(dual_30_new(r,t))

end-do

forall(r in ALL_ROLES, t in TIME)do

sol_dual_31(ct,r,t):= getsol(dual_31_new(r,t))

end-do

forall(e in REG_EMP)do

265

sol_dual_19(ct,e):=getsol(dual_19_new(e))

end-do

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_20(ct,e,t):= getsol(dual_20_new(e,t))

end-do

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_23(ct,e,t):= getsol(dual_23_new(e,t))

end-do

forall(e in REG_EMP, t in TIME)do

sol_dual_21(ct,e,t):= getsol(dual_21_new(e,t))

end-do

initializations to "bin:shmem:sol"

sol_dual_3 sol_dual_4 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_19 sol_dual_20 sol_dual_21

sol_dual_23 sol_dual_30 sol_dual_31 sol_dual_40 UB Dual_cost cut_type

accept allocate_best

end-initializations

end-procedure

end-model

B.1.4 Modern Benders Decomposition Algorithm

Hybrid method of Modern Benders Decomposition method with heuristic is also

coded in FICOr Xpress-MP (Mosel v3.6.0, Xpress-MP v7.7) and the related code

is given in this section. There are three functions in this section, one is about to

maintain the main algorithm and others are dual sub problem and heuristic imple-

mentations.

266

model "Benders (master model)"

uses "mmxprs", "mmjobs", "mmsystem"

parameters

ALG = 1

BIGM = 100000000

DATE = "11-09-17"

PARAMETERFILE = "batch-input-parameters.dat"

end-parameters

declarations

InstanceName: string

end-declarations

initializations from PARAMETERFILE

InstanceName

end-initializations

DATAFILE :=InstanceName+"\\Time-Windows - Captains - "+InstanceName+".txt"

LOGFILE := InstanceName+"\\Logfile-1hr -Benders-onetree-heur-mw "+

InstanceName+" - "+DATE+".txt"

SUMMARYFILE := "Results -Benders 1 hr- one tree-heur-mw"+DATE+".txt"

forward procedure solve_cont

forward procedure save_solution_dual

forward procedure evaluate_solution

forward function subprob : real

!forward function paretoprob : real

forward function heuristic_solve : real

forward procedure solve_primal_int(ct: integer)

forward procedure define_dualprob(prob:mpproblem)

forward function solve_dualprob(prob:mpproblem): real

forward procedure define_intprob(prob:mpproblem)

forward function solve_intprob(prob:mpproblem, ct:integer): real

267

declarations

STEP_0=2 ! Codes sent to subproblems

STEP_1=3

STEP_2=4

STAT_SOLVED=6 ! Status codes returned by subproblems

STAT_INFEAS=7

STAT_READY=8

UB:real !upperbound

LB: real !lowerbound

REG_EMP: set of string ! Regular employee names / numbers (ie not

Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which

will require cover, divided by vessels

ALL_ROLES: set of string ! List of all roles

limited_time:real

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real !

Data relating to over/undertime payments for employees

mip_x:integer

sol_obj: real ! Objective function value (primal)

MC: array(range) of linctr ! Constraints generated by alg.

cuts_added:array(range) of integer

RM: range ! Model indices

cut_type:array(range) of real

accept: real

Dualmodel: Model

Heuristic: Model

!Pareto:Model

Primal_cost:linctr

mybasis:basis

268

stepprob: array(RM) of mpproblem

best_bound:real

z_best:array (range) of real

end-declarations

!DECLARATION OF PARAMETERS AND DECISION VARIABLES

initializations from DATAFILE

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

under_rate over_rate g_weeks exp_worktime

end-initializations

ALL_EMP := REG_EMP + {"AGENCY"}

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

declarations

TIME = 1..WEEKS_TO_PLAN

allocate: dynamic array(ALL_EMP, ALL_ROLES, TIME) of integer ! Variable

for allocating employee to role during given time period

allocate_dual: dynamic array(ALL_EMP, ALL_ROLES, TIME) of integer !

Variable for allocating employee to role during given time period

depart_dual: array(REG_EMP, VESSELS, TIME) of integer

depart: array(REG_EMP, VESSELS, TIME) of integer

allocate_best: dynamic array(ALL_EMP, ALL_ROLES, TIME) of integer

allocate_iteration: dynamic array(range,ALL_EMP, ALL_ROLES, TIME) of

integer ! Variable for allocating employee to role during given time

period

depart_iteration: array(range,REG_EMP, VESSELS, TIME) of integer

board_chng_cost, depart_chng_cost: array(REG_EMP, VESSELS, TIME) of real !

Costs of CHANGES TO employees boarding / leaving vessel

ag_board_chng_cost, ag_depart_chng_cost: array(ALL_ROLES, TIME) of real !

Costs of CHANGES TO agency employees boarding / leaving for a given

role

work_chng_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given

role at a given time

269

required: array(ALL_ROLES, TIME) of integer ! =1 if

role r is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can

carry out role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is

on board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

ag_starting: array(ALL_ROLES) of integer ! =1 if

agency employee is in role r at time 0, =0 otherwise

work_zero, rest_zero: array(REG_EMP) of integer ! initial values

of work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial

value of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum

on working time, minimum on resting time

ag_max_work: array(ALL_ROLES) of integer ! maximum

on working time for agency crew, possibly different for each role

overall_regular_max_work: integer

overall_agency_max_work: integer

overall_max_work: integer

! Added for the recovery problem:

! - the details of the current roster...

cur_allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer

cur_board, cur_depart: array(REG_EMP, VESSELS, TIME) of integer

cur_ag_rboard, cur_ag_rdepart: array(ALL_ROLES, TIME) of integer

cur_undertime, cur_overtime: array(GUARANTEED) of integer

end-declarations

!Reading from txt file

initializations from DATAFILE

board_chng_cost depart_chng_cost work_chng_cost

ag_board_chng_cost ag_depart_chng_cost

required eligable starting ag_starting

270

work_zero rest_zero

max_work min_rest ag_max_work

cur_allocate cur_board cur_depart cur_ag_rboard cur_ag_rdepart

cur_undertime cur_overtime

end-initializations

!Continue to define parameters and decision variables

declarations

!Added for recovery problem - detail of current roster, and change

variable

!solution of dual sub problem

dual_3: array(REG_EMP, VESSELS) of mpvar

dual_4: array(REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of mpvar

dual_7: array(ALL_ROLES) of mpvar

dual_8: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of mpvar

dual_9: array(GUARANTEED) of mpvar

dual_10: array(GUARANTEED) of mpvar

dual_30: array(ALL_ROLES,TIME) of mpvar

dual_31: array(ALL_ROLES,TIME) of mpvar

dual_40: array(REG_EMP, VESSELS, TIME) of mpvar

dual_19:array(REG_EMP) of mpvar

dual_21:array(REG_EMP, TIME) of mpvar

dual_20:array(REG_EMP, 2..WEEKS_TO_PLAN) of mpvar

dual_23:array(REG_EMP,2..WEEKS_TO_PLAN) of mpvar

dual_3_new: array(REG_EMP, VESSELS) of mpvar

dual_4_new: array(REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of mpvar

dual_7_new: array(ALL_ROLES) of mpvar

dual_8_new: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of mpvar

dual_9_new: array(GUARANTEED) of mpvar

dual_10_new: array(GUARANTEED) of mpvar

dual_30_new: array(ALL_ROLES,TIME) of mpvar

271

dual_31_new: array(ALL_ROLES,TIME) of mpvar

dual_40_new: array(REG_EMP, VESSELS, TIME) of mpvar

dual_19_new:array(REG_EMP) of mpvar

dual_21_new:array(REG_EMP, TIME) of mpvar

dual_20_new:array(REG_EMP, 2..WEEKS_TO_PLAN) of mpvar

dual_23_new:array(REG_EMP,2..WEEKS_TO_PLAN) of mpvar

sol_dual_3: array(range,REG_EMP, VESSELS) of real

sol_dual_4: array(range,REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of real

! or takes a non-negative integer

value for agency crew

sol_dual_7: array(range,ALL_ROLES) of real

sol_dual_8: array(range,ALL_ROLES, 2..WEEKS_TO_PLAN) of real

sol_dual_9: array(range,GUARANTEED) of real

sol_dual_10: array(range,GUARANTEED) of real

sol_dual_19:array(range,REG_EMP) of real

sol_dual_21:array(range,REG_EMP, TIME) of real

sol_dual_20:array(range,REG_EMP, 2..WEEKS_TO_PLAN) of real

sol_dual_23:array(range,REG_EMP,2..WEEKS_TO_PLAN) of real

sol_dual_30: array(range,ALL_ROLES,TIME) of real

sol_dual_31: array(range,ALL_ROLES,TIME) of real

sol_dual_40: array(range,REG_EMP, VESSELS, TIME) of real

dummy:linctr

dummy2:array(range) of linctr

! Objective Value of dual problem

Dual_cost:real

end-declarations

! reading the parameters

initializations from DATAFILE

allocate depart

end-initializations

declarations

!constraints for dual problem

dual_cons_board: array(REG_EMP, VESSELS, TIME) of linctr

272

dual_cons_depart: array(REG_EMP, VESSELS, TIME) of linctr ! =1 if

employee boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer

value for agency crew

dual_cons_ag_rboard: array(ALL_ROLES, TIME) of linctr

dual_cons_ag_rdepart: array(ALL_ROLES, TIME) of linctr ! =1 if agency

crew starts / ends working on a role in given time period, 0 otherwise

dual_cons_undertime: array(GUARANTEED) of linctr

dual_cons_overtime: array(GUARANTEED) of linctr !

Variables to calculate the amount of under/overtime carried out by

employee

dual_cons_board_new: array(REG_EMP, VESSELS, TIME) of linctr

dual_cons_depart_new: array(REG_EMP, VESSELS, TIME) of linctr ! =1 if

employee boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer

value for agency crew

dual_cons_ag_rboard_new: array(ALL_ROLES, TIME) of linctr

dual_cons_ag_rdepart_new: array(ALL_ROLES, TIME) of linctr ! =1 if

agency crew starts / ends working on a role in given time period, 0

otherwise

dual_cons_undertime_new: array(GUARANTEED) of linctr

dual_cons_overtime_new: array(GUARANTEED) of linctr !

Variables to calculate the amount of under/overtime carried out by

employee

dual_cons_rest_total:array(REG_EMP, TIME) of linctr

!constraints for integer problem

All_covered: dynamic array(ALL_ROLES, TIME) of linctr

No_overlap: array(REG_EMP, TIME) of linctr

Work_count: array(REG_EMP, TIME) of linctr

Work_count_start: array(REG_EMP) of linctr

Depart_constr: array(REG_EMP, VESSELS, TIME) of linctr

Rest_vs_work: array(REG_EMP, TIME) of linctr

!Rest_new: array(REG_EMP) of linctr

273

!Rest_new1: array(REG_EMP, TIME) of linctr

Rest_new: array(REG_EMP,ALL_ROLES,range) of linctr

Rest_new1: array(REG_EMP, 1..WEEKS_TO_PLAN-1,range) of linctr

Depart_linking: array(REG_EMP, TIME) of linctr

ct:integer

int_started:integer

allocate_master: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar

depart_master: array(REG_EMP, VESSELS, TIME) of mpvar ! =1 if employee

boards / departs vessel in given time period, 0 otherwise

Obj: linctr

Dual_first:linctr

z:mpvar

status: array(mpproblem) of integer ! Subproblem status

AG_work_count_start:array(ALL_ROLES) of linctr

AG_work_count:array(ALL_ROLES, TIME) of linctr

extra:array(REG_EMP) of linctr

z1:array(REG_EMP, VESSELS) of mpvar

z2:array(ALL_ROLES)of mpvar

z4:array(REG_EMP)of mpvar

z3:array(GUARANTEED)of mpvar

MC10: array(range,REG_EMP, VESSELS) of linctr ! Constraints generated

by alg.

MC20: array(range,ALL_ROLES) of linctr

MC30: array(range,GUARANTEED) of linctr

MC40: array(range,REG_EMP) of linctr

Obj_mwp: linctr

Obj_mwp_value:mpvar

UB1:real

Cut:dynamic array(range)of linctr

type:dynamic array(range)of integer

cutid: array(range) of integer

finish:real

begin:real

end-declarations

274

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate_master(e,r,t))

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate_dual(e,r,t))

end-if

end-do

forall(a in 1..ct,r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate_iteration(a,e,r

,t))

end-if

end-do

!sharing data info with submodels

ct:=0

UB_first:=10000000000

x:=1

best_bound:=-10000000000

z_best(0):= best_bound

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_iteration(0,l,r,t):=allocate(l,r,t)

end-do

forall(r in REG_EMP, v in VESSELS, t in TIME)do

depart_iteration(0,r,v,t):=depart(r,v,t)

end-do

275

create(stepprob(1)); define_intprob(stepprob(1))

create(stepprob(2)); define_dualprob(stepprob(2))

procedure solve_primal_int(ct: integer)

sol_obj:= solve_intprob(stepprob(1), ct)

end-procedure

procedure solve_cont

! Start the problem solving

res:= solve_dualprob(stepprob(2))

end-procedure

fixed:=(sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost(e,v,t)

*(cur_board(e,v,t)/((2*cur_board(e,v,t))-1))))+

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r,t)*(cur_ag_rboard(r,t

)/((2*cur_ag_rboard(r,t))-1))) + (ag_depart_chng_cost(r,t)*(

cur_ag_rdepart(r,t)/((2*cur_ag_rdepart(r,t))-1)))) +

sum(e in GUARANTEED)((-under_rate(e)*cur_undertime(e))+ (-over_rate(e)*

cur_overtime(e))))

!---

! Define the dual problem

procedure define_dualprob(prob:mpproblem)

!board

with prob do

!board

forall(e in REG_EMP, v in VESSELS) dual_cons_board(e,v,1):=dual_3(e,v)+

dual_40(e,v,1)<=(board_chng_cost(e,v,1))/(1-(2*cur_board(e,v,1)))

276

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_cons_board(

e,v,t):=dual_4(e,v,t)+dual_40(e,v,t)<=(board_chng_cost(e,v,t))/(1-(2*

cur_board(e,v,t)))

forall(e in REG_EMP, v in VESSELS, t in TIME)sethidden(dual_cons_board(e,v

,t),false)

!ag_rboard

forall(r in ALL_ROLES) dual_cons_ag_rboard(r,1):= dual_7(r)+dual_31(r,1)

<=(ag_board_chng_cost(r,1)/(1-(2*cur_ag_rboard(r,1))))

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rboard(r,t) :=

dual_8(r,t)+dual_31(r,t)<=(ag_board_chng_cost(r,t)/(1-(2*cur_ag_rboard(

r,t))))

forall(r in ALL_ROLES,t in TIME) sethidden(dual_cons_ag_rboard(r,t),false

)

!ag_rdepart

forall(r in ALL_ROLES) dual_cons_ag_rdepart(r,1):= -dual_7(r)+dual_30(r,1)

<=(ag_depart_chng_cost(r,1)/(1-(2*cur_ag_rdepart(r,1))))

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rdepart(r,t) :=

-dual_8(r,t)+dual_30(r,t)<=(ag_depart_chng_cost(r,t)/(1-(2*

cur_ag_rdepart(r,t))))

forall(r in ALL_ROLES,t in TIME) sethidden(dual_cons_ag_rdepart(r,t),

false)

!undertime

forall(e in GUARANTEED) dual_cons_undertime(e):= dual_9(e)<=under_rate(e)

forall(e in GUARANTEED) sethidden(dual_cons_undertime(e),false)

!overtime

forall(e in GUARANTEED) dual_cons_overtime(e):= dual_10(e)<=over_rate(e)

forall(e in GUARANTEED) sethidden(dual_cons_overtime(e),false)

!rest_total

forall(e in REG_EMP) dual_cons_rest_total(e,1):= dual_19(e)-dual_20(e,2)+

dual_21(e,1)-dual_23(e,2)<=0

277

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN-1) dual_cons_rest_total(e,t):=

dual_20(e,t)-dual_20(e,t+1)+dual_21(e,t)-dual_23(e,t+1)<=0

forall(e in REG_EMP,t in WEEKS_TO_PLAN..WEEKS_TO_PLAN)

dual_cons_rest_total(e,t):= dual_20(e,t)+dual_21(e,t)<=0

forall(e in REG_EMP,t in TIME) sethidden(dual_cons_rest_total(e,t),false)

forall(e in REG_EMP, v in VESSELS) dual_3(e,v)>=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_4(e,v,t)>=0

forall(r in ALL_ROLES) dual_7(r) is_free

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) dual_8(r,t) is_free

forall(e in GUARANTEED) dual_9(e)>=0

forall(e in GUARANTEED) dual_10(e)>=0

forall(e in REG_EMP) dual_19(e)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_20(e,t)>=0

forall(e in REG_EMP,t in TIME) dual_21(e,t)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_23(e,t)>=0

forall(r in ALL_ROLES, t in TIME) dual_30(r,t)<=0

forall(r in ALL_ROLES, t in TIME) dual_31(r,t)<=0

forall(e in REG_EMP, v in VESSELS, t in TIME) dual_40(e,v,t)<=0

status(prob):= STAT_READY

end-do

end-procedure

! Process dual solution data

procedure save_dualsolution(prob:mpproblem)

if(ct=0)then

forall(e in REG_EMP, v in VESSELS)do

sol_dual_3(ct,e,v):=getsol(dual_3(e,v))

end-do

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)do

sol_dual_4(ct,e,v,t):=getsol(dual_4(e,v,t))

end-do

278

forall(e in REG_EMP, v in VESSELS, t in TIME)do

sol_dual_40(ct,e,v,t):=getsol(dual_40(e,v,t))

end-do

forall(r in ALL_ROLES)do

sol_dual_7(ct,r):=getsol(dual_7(r))

end-do

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)do

sol_dual_8(ct,r,t):= getsol(dual_8(r,t))

end-do

forall(e in GUARANTEED)do

sol_dual_9(ct,e):=getsol(dual_9(e))

end-do

forall(e in GUARANTEED) do

sol_dual_10(ct,e):=getsol(dual_10(e))

end-do

forall(r in ALL_ROLES, t in TIME)do

sol_dual_30(ct,r,t):= getsol(dual_30(r,t))

end-do

forall(r in ALL_ROLES, t in TIME)do

sol_dual_31(ct,r,t):= getsol(dual_31(r,t))

end-do

forall(e in REG_EMP)do

sol_dual_19(ct,e):=getsol(dual_19(e))

end-do

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_20(ct,e,t):= getsol(dual_20(e,t))

end-do

279

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_23(ct,e,t):= getsol(dual_23(e,t))

end-do

forall(e in REG_EMP, t in TIME)do

sol_dual_21(ct,e,t):= getsol(dual_21(e,t))

end-do

end-if

status(prob):= STAT_SOLVED

fflush

end-procedure

! (Re)solve the dual problem

function solve_dualprob(prob:mpproblem): real

with prob do

status(prob):= STAT_READY

Dual_first:=(sum(e in REG_EMP, v in VESSELS, t in TIME)(dual_40(e,v,t))+

sum(e in REG_EMP, v in VESSELS)(dual_3(e,v)*(sum(r in ROLES(v))(allocate(e

,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4(e,v,t)*(sum(

r in ROLES(v))(allocate(e,r,t)) - sum(r in ROLES(v))(allocate(e,r,(t-1)

))))+

sum(r in ALL_ROLES)(dual_7(r)*(allocate("AGENCY",r,1) - ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8(r,t)*(allocate("AGENCY",

r,t) - allocate("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(dual_9(e)*(g_weeks(e) - (exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate(e,r,t)))))+

sum(e in GUARANTEED)(dual_10(e)*((exp_worktime(e) + sum(r in ALL_ROLES, t

in TIME)(allocate(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES, t in TIME)(dual_30(r,t)*(1-allocate("AGENCY",r,t)))+

sum(r in ALL_ROLES)(dual_31(r,1)*(1- ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_31(r,t)*(1-allocate("

AGENCY",r,(t-1))))+

280

sum(e in REG_EMP)(dual_19(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23(e,t)*(- min_rest(e)*(1-(

sum(r in ALL_ROLES)(allocate(e,r,t))))))+

sum(e in REG_EMP, t in TIME)(dual_21(e,t)*((min_rest(e)-1)*(sum(v in

VESSELS)(depart(e,v,t))))))

sethidden(Dual_first,false)

if (ct=0) then ! Produce an initial solution for the

! dual problem using a dummy objective

maximize(XPRS_BAR,Dual_first)

if(getprobstat = XPRS_INF) then

writeln("Problem is infeasible")

send(STAT_INFEAS,0) ! Problem is infeasible

else

write("**** Start solution: ")

write("**** Problem is not infeasible: ")

if(getprobstat = XPRS_UNB) then

writeln("Problem is unbounded")

cut_type(ct):=0

writeln("Cut_type",cut_type(ct))

Obj_mwp:=Obj_mwp_value=0

Dual_cost_mwp:=(sum(e in REG_EMP, v in VESSELS, t in TIME)(dual_40(e,v,t))

+

sum(e in REG_EMP, v in VESSELS)(dual_3(e,v)*(sum(r in ROLES(v))(allocate(e

,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4(e,v,t)*(sum(

r in ROLES(v))(allocate(e,r,t)) - sum(r in ROLES(v))(allocate(e,r,(t-1)

))))+

281

sum(r in ALL_ROLES)(dual_7(r)*(allocate("AGENCY",r,1) - ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8(r,t)*(allocate("AGENCY",

r,t) - allocate("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(dual_9(e)*(g_weeks(e) - (exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate(e,r,t)))))+

sum(e in GUARANTEED)(dual_10(e)*((exp_worktime(e) + sum(r in ALL_ROLES, t

in TIME)(allocate(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES, t in TIME)(dual_30(r,t)*(1-allocate("AGENCY",r,t)))+

sum(r in ALL_ROLES)(dual_31(r,1)*(1- ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_31(r,t)*(1-allocate("

AGENCY",r,(t-1))))+

sum(e in REG_EMP)(dual_19(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23(e,t)*(- min_rest(e)*(1-(

sum(r in ALL_ROLES)(allocate(e,r,t))))))+

sum(e in REG_EMP, t in TIME)(dual_21(e,t)*((min_rest(e)-1)*(sum(v in

VESSELS)(depart(e,v,t))))))=1

!board

forall(e in REG_EMP, v in VESSELS) dual_cons_board(e,v,1):=dual_3(e,v)+

dual_40(e,v,1)<=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_cons_board(

e,v,t):=dual_4(e,v,t)+dual_40(e,v,t)<=0

!ag_rboard

forall(r in ALL_ROLES) dual_cons_ag_rboard(r,1):= dual_7(r)+dual_31(r,1)

<=0

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rboard(r,t) :=

dual_8(r,t)+dual_31(r,t)<=0

!ag_rdepart

forall(r in ALL_ROLES) dual_cons_ag_rdepart(r,1):= -dual_7(r)+dual_30(r,1)

<=0

282

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rdepart(r,t) :=

-dual_8(r,t)+dual_30(r,t)<=0

!undertime

forall(e in GUARANTEED) dual_cons_undertime(e):= dual_9(e)<=0

!overtime

forall(e in GUARANTEED) dual_cons_overtime(e):= dual_10(e)<=0

!rest_total

forall(e in REG_EMP) dual_cons_rest_total(e,1):= dual_19(e)-dual_20(e,2)+

dual_21(e,1)-dual_23(e,2)<=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN-1) dual_cons_rest_total(e,t):=

dual_20(e,t)-dual_20(e,t+1)+dual_21(e,t)-dual_23(e,t+1)<=0

forall(e in REG_EMP,t in WEEKS_TO_PLAN..WEEKS_TO_PLAN)

dual_cons_rest_total(e,t):= dual_20(e,t)+dual_21(e,t)<=0

forall(e in REG_EMP, v in VESSELS) dual_3(e,v)>=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_4(e,v,t)>=0

forall(r in ALL_ROLES) dual_7(r) is_free

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) dual_8(r,t) is_free

forall(e in GUARANTEED) dual_9(e)>=0

forall(e in GUARANTEED) dual_10(e)>=0

forall(e in REG_EMP) dual_19(e)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_20(e,t)>=0

forall(e in REG_EMP,t in TIME) dual_21(e,t)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_23(e,t)>=0

forall(r in ALL_ROLES, t in TIME) dual_30(r,t)<=0

forall(r in ALL_ROLES, t in TIME) dual_31(r,t)<=0

forall(e in REG_EMP, v in VESSELS, t in TIME) dual_40(e,v,t)<=0

maximize(XPRS_BAR, Obj_mwp_value)

writeln("UB_first: +infinity")

283

writeln("UB_first:", UB_first)

UB:=UB_first

accept:=0

Dual_cost:=UB_first

else

writeln("Problem is feasible")

cut_type(ct):=1

writeln("Cut_type:",cut_type(ct))

accept:=1

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_best(l,r,t):=allocate(l,r,t)

end-do

Dual_cost:=getobjval

(! UB:=(Dual_cost+

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)(work_chng_cost(e,r,t)*((

allocate(e,r,t)-cur_allocate(e,r,t))/(1-2*(cur_allocate(e,r,t)))))+

sum(e in REG_EMP, v in VESSELS, t in TIME)(depart_chng_cost(e,v,t)*((

depart(e,v,t)-cur_depart(e,v,t))/(1-2*(cur_depart(e,v,t)))))+fixed)

!)

UB:=UB_first

writeln("UB_first:", UB)

end-if

writeln("accept: ", accept)

save_dualsolution(prob)

UB1:=(Dual_cost+

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)(work_chng_cost(e,r,t)*((

allocate(e,r,t)-cur_allocate(e,r,t))/(1-2*(cur_allocate(e,r,t)))))+

sum(e in REG_EMP, v in VESSELS, t in TIME)(depart_chng_cost(e,v,t)*((

depart(e,v,t)-cur_depart(e,v,t))/(1-2*(cur_depart(e,v,t)))))+fixed)

writeln("UB1: ",UB1)

writeln("Dual_cost_first: ",Dual_cost)

BigM:= 0

284

end-if

end-if

end-do

end-function

!---

solve_cont

!-----------------------------------1st iteration of dual finished

initializations to "bin:shmem:sol"

InstanceName sol_dual_3 sol_dual_4 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_19 sol_dual_20 sol_dual_21

sol_dual_23 sol_dual_30 sol_dual_31 sol_dual_40 Dual_cost UB cut_type

accept allocate_best

end-initializations

!-----------------------------------1st iteration of dual finished

! Define the integer problem

procedure define_intprob(prob:mpproblem)

with prob do

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate_master(e,r,t))

end-if

end-do

forall(r in ALL_ROLES, t in TIME | required(r,t) > 0) do

create(All_covered(r,t))

285

All_covered(r,t) := sum(e in ALL_EMP)(eligable(e,r,t)*allocate_master(e,r,

t)) = required(r,t)

end-do

forall(e in REG_EMP, t in TIME) No_overlap(e,t) := sum(r in ALL_ROLES)

allocate_master(e,r,t) <= 1

forall(e in REG_EMP, v in VESSELS) Depart_constr(e,v,1) := depart_master(e

,v,1) >= starting(e,v) - sum(r in ROLES(v))(allocate_master(e,r,1))

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) Depart_constr(e,

v,t) := depart_master(e,v,t) >= sum(r in ROLES(v))(allocate_master(e,r

,(t-1))) - sum(r in ROLES(v))(allocate_master(e,r,t))

!-------------depart linking------------------------------------

forall(e in REG_EMP, t in TIME) Depart_linking(e,t):=sum(v in VESSELS)

depart_master(e,v,t)+sum(r in ALL_ROLES) allocate_master(e,r,t)<=1

!-------------depart linking------------------------------------

forall(e in REG_EMP|work_zero(e)+WEEKS_TO_PLAN>max_work(e))

Work_count_start(e) := max_work(e) >= work_zero(e) + sum(r in ALL_ROLES

, t in 0..max_work(e)-work_zero(e))(allocate_master(e,r,t+1))

!forall(e in REG_EMP| work_zero(e)+WEEKS_TO_PLAN>max_work(e))sethidden(

Work_count_start(e) ,true)

!master11

forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-max_work(e)| work_zero(e)+

WEEKS_TO_PLAN>max_work(e)) Work_count(e,t) := max_work(e) >= sum(r in

ALL_ROLES, k in 0..max_work(e))(allocate_master(e,r,t+k))

!forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-max_work(e)| work_zero(e)+

WEEKS_TO_PLAN>max_work(e))sethidden(Work_count(e,t) ,true)

!master12

!forall(e in REG_EMP| max_work(e)<=WEEKS_TO_PLAN) extra(e):=sum(r in

ALL_ROLES,t in 1..max_work(e)+1, y in 0..WEEKS_TO_PLAN-max_work(e)-1)

286

allocate_master(e,r,t+y) <= max_work(e)*(WEEKS_TO_PLAN-max_work(e))

!master12_ekstra

forall(r in ALL_ROLES|ag_work_zero(r)+WEEKS_TO_PLAN>ag_max_work(r))

AG_work_count_start(r) := ag_max_work(r) >= ag_work_zero(r) + sum(t in

0..ag_max_work(r)-ag_work_zero(r))(allocate_master("AGENCY",r,t+1))

!forall(r in ALL_ROLES|ag_work_zero(r)+WEEKS_TO_PLAN>ag_max_work(r))

sethidden(AG_work_count_start(r),true)

!master13

forall(r in ALL_ROLES, t in 1..WEEKS_TO_PLAN-ag_max_work(r)|ag_work_zero(r

)+WEEKS_TO_PLAN>ag_max_work(r)) AG_work_count(r,t) := ag_max_work(r) >=

sum(k in 0..ag_max_work(r))(allocate_master("AGENCY",r,t+k))

!forall(r in ALL_ROLES, t in 1..WEEKS_TO_PLAN-ag_max_work(r)|ag_work_zero(

r)+WEEKS_TO_PLAN>ag_max_work(r)) sethidden(AG_work_count(r,t) ,true)

!master14

forall(e in REG_EMP) Rest_vs_work(e,1) := min_rest(e)*(1-(sum(r in

ALL_ROLES)(allocate_master(e,r,1)))) >= rest_zero(e)

! forall(e in REG_EMP | rest_zero(e)>=1) Rest_new(e):= sum(r in ALL_ROLES

,t in 1..rest_zero(e)) allocate_master(e,r,t)=0

forall(e in REG_EMP ,r in ALL_ROLES,t in 1..rest_zero(e)) do

if(rest_zero(e)>=1)then

Rest_new(e,r,t):= allocate_master(e,r,t)=0

end-if

end-do

forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-1)do

if(min_rest(e)>=1)then

b:=(min_rest(e)-1)

a:=(WEEKS_TO_PLAN-t)

if(b<=a) then

c:=b

else

c:=a

287

end-if

end-if

Rest_new2(e,t) := sum(r in ALL_ROLES, y in 0..c)(allocate_master(e,r,t+y))

<=c*(1-sum (v in VESSELS) depart_master(e,v,t))

sethidden(Rest_new2(e,t),true)

end-do

forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-1)do

if(min_rest(e)>=1)then

b:=(min_rest(e)-1)

a:=(WEEKS_TO_PLAN-t)

if(b<=a) then

c:=b

else

c:=a

end-if

end-if

forall(y in 0..c)do

if(c>=1)then

Rest_new1(e,t,y) := sum(r in ALL_ROLES)(allocate_master(e,r,t+y))+sum (v

in VESSELS) depart_master(e,v,t)<=1

sethidden(Rest_new1(e,t,y),false)

end-if

end-do

end-do

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(allocate_master(e,

r,t))) allocate_master(e,r,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) depart_master(e,v,t)

is_binary

z is_free

forall(e in REG_EMP, v in VESSELS) z1(e,v) is_free

forall(r in ALL_ROLES) z2(r) is_free

288

forall(e in REG_EMP) z4(e) is_free

forall(e in GUARANTEED) z3(e) is_free

end-do

status(prob):= STAT_READY

end-procedure

! Solve the integer problem

function solve_intprob(prob:mpproblem, ct:integer): real

with prob do

status(prob):= STAT_READY

Primal_cost:=(z+

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)(work_chng_cost(e,r,t)*((

allocate_master(e,r,t)-cur_allocate(e,r,t))/(1-2*(cur_allocate(e,r,t)))

))+

sum(e in REG_EMP, v in VESSELS, t in TIME)(depart_chng_cost(e,v,t)*((

depart_master(e,v,t)-cur_depart(e,v,t))/(1-2*(cur_depart(e,v,t)))))+

sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost(e,v,t)*(

cur_board(e,v,t)/((2*cur_board(e,v,t))-1))))+

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r,t)*(cur_ag_rboard(r,t

)/((2*cur_ag_rboard(r,t))-1))) + (ag_depart_chng_cost(r,t)*(

cur_ag_rdepart(r,t)/((2*cur_ag_rdepart(r,t))-1)))) +

sum(e in GUARANTEED)((-under_rate(e)*cur_undertime(e))+ (-over_rate(e)*

cur_overtime(e))))

forall(ax in 0..ct)do

if(cut_type(ax)=1)then

!writeln("Cut_type",cut_type(ct))

forall(e in REG_EMP, v in VESSELS)do

MC10(ax,e,v):=z1(e,v)>= (sum(t in TIME)(sol_dual_40(ax,e,v,t))+

(sol_dual_3(ax,e,v)*(sum(r in ROLES(v))(allocate_master(e,r,1)) - starting

(e,v)))+

289

sum(t in 2..WEEKS_TO_PLAN)(sol_dual_4(ax,e,v,t)*(sum(r in ROLES(v))(

allocate_master(e,r,t)) - sum(r in ROLES(v))(allocate_master(e,r,(t-1))

))))

end-do

forall(r in ALL_ROLES)do

MC20(ax,r):=z2(r) >= ((sol_dual_7(ax,r)*(allocate_master("AGENCY",r,1) -

ag_starting(r)))+

sum(t in 2..WEEKS_TO_PLAN)(sol_dual_8(ax,r,t)*(allocate_master("AGENCY",r,

t) - allocate_master("AGENCY",r,(t-1))))+

sum(t in TIME)(sol_dual_30(ax,r,t)*(1-allocate_master("AGENCY",r,t)))+

(sol_dual_31(ax,r,1)*(1- ag_starting(r)))+

sum(t in 2..WEEKS_TO_PLAN)(sol_dual_31(ax,r,t)*(1-allocate_master("AGENCY

",r,(t-1)))))

end-do

forall(e in GUARANTEED)do

MC30(ax,e):= z3(e) >= ((sol_dual_9(ax,e)*(g_weeks(e) - (exp_worktime(e) +

sum(r in ALL_ROLES, t in TIME)(allocate_master(e,r,t)))))+

(sol_dual_10(ax,e)*((exp_worktime(e) + sum(r in ALL_ROLES, t in TIME)(

allocate_master(e,r,t)))- g_weeks(e))))

end-do

forall(e in REG_EMP)do

MC40(ax,e):= z4(e) >=(sol_dual_19(ax,e)*(rest_zero(e) - (1-(sum(r in

ALL_ROLES)(allocate_master(e,r,1)))))+

sum(t in 2..WEEKS_TO_PLAN)(sol_dual_20(ax,e,t)*(- (1-(sum(r in ALL_ROLES)

(allocate_master(e,r,t))))))+

sum(t in 2..WEEKS_TO_PLAN)(sol_dual_23(ax,e,t)*(- min_rest(e)*(1-(sum(r

in ALL_ROLES)(allocate_master(e,r,t))))))+

sum(t in TIME)(sol_dual_21(ax,e,t)*((min_rest(e)-1)*(sum(v in VESSELS)(

depart_master(e,v,t))))))

end-do

MC(ax):= z >= (sum(e in REG_EMP, v in VESSELS) (z1(e,v))+ sum (e in

GUARANTEED) z3(e)+sum(r in ALL_ROLES)z2(r)+sum (e in REG_EMP) z4(e))

290

end-if

if(cut_type(ax)=0)then

!writeln("Cut_type",cut_type(ct))

MC(ax):= (sum(e in REG_EMP, v in VESSELS, t in TIME)(sol_dual_40(ax,e,v,t)

)+

sum(e in REG_EMP, v in VESSELS)(sol_dual_3(ax,e,v)*(sum(r in ROLES(v))(

allocate_master(e,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(sol_dual_4(ax,e,v,t

)*(sum(r in ROLES(v))(allocate_master(e,r,t)) - sum(r in ROLES(v))(

allocate_master(e,r,(t-1)))))+

sum(r in ALL_ROLES)(sol_dual_7(ax,r)*(allocate_master("AGENCY",r,1) -

ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(sol_dual_8(ax,r,t)*(

allocate_master("AGENCY",r,t) - allocate_master("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(sol_dual_9(ax,e)*(g_weeks(e) - (exp_worktime(e) + sum

(r in ALL_ROLES, t in TIME)(allocate_master(e,r,t)))))+

sum(e in GUARANTEED)(sol_dual_10(ax,e)*((exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate_master(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES, t in TIME)(sol_dual_30(ax,r,t)*(1-allocate_master("

AGENCY",r,t)))+

sum(r in ALL_ROLES)(sol_dual_31(ax,r,1)*(1- ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(sol_dual_31(ax,r,t)*(1-

allocate_master("AGENCY",r,(t-1))))+

sum(e in REG_EMP)(sol_dual_19(ax,e)*(rest_zero(e) - (1-(sum(r in

ALL_ROLES)(allocate_master(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(sol_dual_20(ax,e,t)*(- (1-(sum(r

in ALL_ROLES)(allocate_master(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(sol_dual_23(ax,e,t)*(- min_rest(e

)*(1-(sum(r in ALL_ROLES)(allocate_master(e,r,t))))))+

sum(e in REG_EMP, t in TIME)(sol_dual_21(ax,e,t)*((min_rest(e)-1)*(sum(v

in VESSELS)(depart_master(e,v,t))))))<=0

end-if

end-do

291

setparam("XPRS_heurstrategy",3)

if(cut_type(ct)=0)then

setparam("XPRS_MAXTIME",-30)

else

if(x>=2)then

if(50*(x+1)>=3600-(finish-begin))then

setparam("XPRS_MAXTIME",-800)

else

setparam("XPRS_MAXTIME",-(50*(x+1)))

end-if

else

setparam("XPRS_MAXTIME",-(50*(x+1)))

end-if

end-if

!setparam("XPRS_miprelstop",(0.8-(0.1*x)))

!setparam("XPRS_maxmipsol",x)

setcallback(XPRS_CB_INTSOL, "printsol")

setparam("XPRS_verbose",true)

minimize(Primal_cost)

z_best(ct):=getparam("XPRS_BESTBOUND")

best_bound:=max(i in 0..ct)z_best(ct)

end-do

end-function

!---

int_started:=1

292

begin:=gettime

if(int_started=1)then

cuts_added(0):=0

forall(y in 1..2000)do

x:=y

!writeln("x:",x)

! writeln(" best_bound:", best_bound)

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_dual(l,r,t):=allocate(l,r,t)

end-do

forall(r in REG_EMP, v in VESSELS, t in TIME)do

depart_dual(r,v,t):=depart(r,v,t)

end-do

solve_primal_int(ct)

finish:=gettime

writeln("FINISh_BEGIN: ", finish-begin)

if(finish-begin>=3598)then

res3:= compile("heuristic_updated.mos") ! Compile the knapsack model

load(Heuristic, "heuristic_updated.bim") ! Load the knapsack model

initializations to "bin:shmem:sol"

allocate_dual depart_dual InstanceName

end-initializations

run(Heuristic) ! Start solving knapsack subproblem

wait ! Wait until subproblem finishes

dropnextevent ! Ignore termination message

initializations from "bin:shmem:sol"

allocate_dual depart_dual

end-initializations

293

res2:= compile("subdualcombcut_updated-otheur.mos") ! Compile the knapsack

model

load(Dualmodel, "subdualcombcut_updated-otheur.bim") ! Load the knapsack

model

initializations to "bin:shmem:sol"

allocate_dual depart_dual ct UB Dual_cost InstanceName allocate_best

end-initializations

run(Dualmodel) ! Start solving knapsack subproblem

wait ! Wait until subproblem finishes

dropnextevent ! Ignore termination message

initializations from "bin:shmem:sol"

sol_dual_3 sol_dual_4 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_19 sol_dual_20 sol_dual_21

sol_dual_23 sol_dual_30 sol_dual_31 sol_dual_40 Dual_cost UB cut_type

accept allocate_best

end-initializations

fopen(SUMMARYFILE, F_APPEND)

write(InstanceName)

write("\t",finish-begin)

write("\t",UB1,"\t",UB,"\t", z_best(ct))

write("\n")

fclose(F_APPEND)

fopen(LOGFILE, F_APPEND)

writeln("allocate: [")

forall(e in ALL_EMP) do

forall(r in ALL_ROLES) do

forall(t in TIME) write(allocate_best(e,r,t),"\t")

end-do

write("\n")

end-do

write("]\n")

fclose(F_APPEND)

294

break

else

cuts_added(x):=ct

fopen(LOGFILE,F_APPEND)

write(InstanceName)

write("\t",finish-begin)

write("\t",UB1,"\t",UB,"\t", z_best(ct))

write("\n")

fclose(F_APPEND)

res2:= compile("subdualcombcut_updated-otheur.mos") ! Compile the knapsack

model

load(Dualmodel, "subdualcombcut_updated-otheur.bim") ! Load the knapsack

model

initializations to "bin:shmem:sol"

allocate_dual depart_dual ct UB Dual_cost InstanceName allocate_best

end-initializations

run(Dualmodel) ! Start solving knapsack subproblem

wait ! Wait until subproblem finishes

dropnextevent ! Ignore termination message

initializations from "bin:shmem:sol"

sol_dual_3 sol_dual_4 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_19 sol_dual_20 sol_dual_21

sol_dual_23 sol_dual_30 sol_dual_31 sol_dual_40 Dual_cost UB cut_type

accept allocate_best

end-initializations

res3:= compile("heuristic_updated.mos") ! Compile the knapsack model

load(Heuristic, "heuristic_updated.bim") ! Load the knapsack model

initializations to "bin:shmem:sol"

allocate_dual depart_dual InstanceName

end-initializations

run(Heuristic) ! Start solving knapsack subproblem

295

wait ! Wait until subproblem finishes

dropnextevent ! Ignore termination message

initializations from "bin:shmem:sol"

allocate_dual depart_dual

end-initializations

ct:=ct+1

res2:= compile("subdualcombcut_updated-otheur.mos") ! Compile the knapsack

model

load(Dualmodel, "subdualcombcut_updated-otheur.bim") ! Load the knapsack

model

initializations to "bin:shmem:sol"

allocate_dual depart_dual ct UB Dual_cost InstanceName allocate_best

end-initializations

run(Dualmodel) ! Start solving knapsack subproblem

wait ! Wait until subproblem finishes

dropnextevent ! Ignore termination message

initializations from "bin:shmem:sol"

sol_dual_3 sol_dual_4 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_19 sol_dual_20 sol_dual_21

sol_dual_23 sol_dual_30 sol_dual_31 sol_dual_40 Dual_cost UB cut_type

accept allocate_best

end-initializations

end-if

evaluate_solution

cuts_added(x):=ct

end-do

end-if

!--

procedure printsol

declarations

objval:real

296

mip:integer

time_passed:real

end-declarations

time_passed:=gettime

objval:= getparam("XPRS_MIPOBJVAL")

mip:=getparam("XPRS_MIPSOLS")

mip_x:=mip

ct:=ct+1

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_dual(l,r,t):=round(getsol(allocate_master(l,r,t)))

end-do

forall(r in REG_EMP, v in VESSELS, t in TIME)do

depart_dual(r,v,t):=round(getsol(depart_master(r,v,t)))

end-do

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_iteration(ct,l,r,t):=round(getsol(allocate_master(l,r,t)))

end-do

forall(r in REG_EMP, v in VESSELS, t in TIME)do

depart_iteration(ct,r,v,t):=round(getsol(depart_master(r,v,t)))

end-do

res2:= compile("subdualcombcut_updated-otheur.mos") ! Compile the knapsack

model

load(Dualmodel, "subdualcombcut_updated-otheur.bim") ! Load the knapsack

model

initializations to "bin:shmem:sol"

allocate_dual depart_dual ct UB Dual_cost InstanceName allocate_best

end-initializations

297

run(Dualmodel) ! Start solving knapsack subproblem

wait ! Wait until subproblem finishes

dropnextevent ! Ignore termination message

initializations from "bin:shmem:sol"

sol_dual_3 sol_dual_4 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_19 sol_dual_20 sol_dual_21

sol_dual_23 sol_dual_30 sol_dual_31 sol_dual_40 Dual_cost UB cut_type

accept allocate_best

end-initializations

writeln("INTEGER PROBLEM")

end-procedure

!--

procedure save_solution_dual

! Store values of u and x

if(ct=0)then

forall(e in REG_EMP, v in VESSELS)do

sol_dual_3(ct,e,v):=getsol(dual_3(e,v))

end-do

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)do

sol_dual_4(ct,e,v,t):=getsol(dual_4(e,v,t))

end-do

forall(e in REG_EMP, v in VESSELS, t in TIME)do

sol_dual_40(ct,e,v,t):=getsol(dual_40(e,v,t))

end-do

forall(r in ALL_ROLES)do

sol_dual_7(ct,r):=getsol(dual_7(r))

end-do

298

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)do

sol_dual_8(ct,r,t):= getsol(dual_8(r,t))

end-do

forall(e in GUARANTEED)do

sol_dual_9(ct,e):=getsol(dual_9(e))

end-do

forall(e in GUARANTEED) do

sol_dual_10(ct,e):=getsol(dual_10(e))

end-do

forall(r in ALL_ROLES, t in TIME)do

sol_dual_30(ct,r,t):= getsol(dual_30(r,t))

end-do

forall(r in ALL_ROLES, t in TIME)do

sol_dual_31(ct,r,t):= getsol(dual_31(r,t))

end-do

forall(e in REG_EMP)do

sol_dual_19(ct,e):=getsol(dual_19(e))

end-do

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_20(ct,e,t):= getsol(dual_20(e,t))

end-do

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_23(ct,e,t):= getsol(dual_23(e,t))

end-do

forall(e in REG_EMP, t in TIME)do

sol_dual_21(ct,e,t):= getsol(dual_21(e,t))

end-do

299

end-if

end-procedure

!--

procedure mypreintsol(isheur:boolean,cutoff:real)

declarations

tamam:integer

end-declarations

tamam:=1

forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-1)do

if(min_rest(e)>=1)then

b:=(min_rest(e)-1)

a:=(WEEKS_TO_PLAN-t)

if(b<=a) then

c:=b

else

c:=a

end-if

end-if

forall(y in 0..c)do

if(c>=1)then

if(sum(r in ALL_ROLES)(getsol(allocate_master(e,r,t+y)))+sum (v in VESSELS

) (getsol(depart_master(e,v,t)))>=2)then

sethidden(Rest_new1(e,t,y),false)

tamam:=0

end-if

end-if

end-do

end-do

300

if(tamam=0)then

rejectintsol

else

writeln("no reject")

ct:=ct+1

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_iteration(ct,l,r,t):=round(getsol(allocate_master(l,r,t)))

end-do

forall(r in REG_EMP, v in VESSELS, t in TIME)do

depart_iteration(ct,r,v,t):=round(getsol(depart_master(r,v,t)))

end-do

tamam:=1

end-if

end-procedure

!--

procedure evaluate_solution

if(ct=0)then

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_iteration(ct,l,r,t):=allocate(l,r,t)

end-do

forall(r in REG_EMP, v in VESSELS, t in TIME)do

depart_iteration(ct,r,v,t):=depart(r,v,t)

end-do

end-if

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_dual(l,r,t):=allocate_iteration(ct,l,r,t)

301

end-do

forall(r in REG_EMP, v in VESSELS, t in TIME)do

depart_dual(r,v,t):=depart_iteration(ct,r,v,t)

end-do

initializations to "bin:shmem:sol"

allocate_dual depart_dual ct

end-initializations

end-procedure

!--

function subprob : real

initializations to "bin:shmem:sol"

allocate_dual depart_dual ct InstanceName allocate_best

end-initializations

run(Dualmodel) ! Start solving knapsack subproblem

wait ! Wait until subproblem finishes

dropnextevent ! Ignore termination message

initializations from "bin:shmem:sol"

sol_dual_3 sol_dual_4 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_19 sol_dual_20 sol_dual_21

sol_dual_23 sol_dual_30 sol_dual_31 sol_dual_40 Dual_cost UB cut_type

accept allocate_best

end-initializations

end-function

!--

function heuristic_solve : real

initializations to "bin:shmem:sol"

302

allocate_dual depart_dual InstanceName

end-initializations

run(Heuristic) ! Start solving knapsack subproblem

wait ! Wait until subproblem finishes

dropnextevent ! Ignore termination message

initializations from "bin:shmem:sol"

allocate_dual depart_dual InstanceName

end-initializations

end-function

!--

function cut_manage : boolean

loadcuts(-1,-1)

end-function

!---

end-model

!---------------------Dual Sub Problem

model "Benders (master model)"

uses "mmxprs", "mmjobs", "mmsystem"

parameters

ALG = 1

BIGM = 100000000

end-parameters

declarations

InstanceName: string

end-declarations

initializations from "bin:shmem:sol"

InstanceName

end-initializations

303

DATAFILE :=InstanceName+"\\Time-Windows - Captains - "+InstanceName+".txt"

OUTPUTFILE_subdual:=InstanceName+"\\Results - SubDual-Benders - "+

InstanceName+".txt"

forward procedure save_solution_dualsub

declarations

STEP_0=2 ! Codes sent to subproblems

STEP_1=3

STEP_2=4

STAT_SOLVED=6 ! Status codes returned by subproblems

STAT_INFEAS=7

STAT_READY=8

UB:real !upperbound

LB: real !lowerbound

REG_EMP: set of string ! Regular employee names / numbers (ie not

Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which

will require cover, divided by vessels

ALL_ROLES: set of string ! List of all roles

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real !

Data relating to over/undertime payments for employees

sol_obj: real ! Objective function value (primal)

MC: array(range) of linctr ! Constraints generated by alg.

RM: range ! Model indices

cut_type:array(range) of real

304

accept: real

stepmod: array(RM) of Model ! Submodels

end-declarations

!DECLARATION OF PARAMETERS AND DECISION VARIABLES

initializations from DATAFILE

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

under_rate over_rate g_weeks exp_worktime

end-initializations

ALL_EMP := REG_EMP + {"AGENCY"}

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

declarations

TIME = 1..WEEKS_TO_PLAN

allocate_dual: dynamic array(ALL_EMP, ALL_ROLES, TIME) of integer !

Variable for allocating employee to role during given time period

depart_dual: array(REG_EMP, VESSELS, TIME) of integer

board_chng_cost, depart_chng_cost: array(REG_EMP, VESSELS, TIME) of real !

Costs of CHANGES TO employees boarding / leaving vessel

ag_board_chng_cost, ag_depart_chng_cost: array(ALL_ROLES, TIME) of real !

Costs of CHANGES TO agency employees boarding / leaving for a given

role

work_chng_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given

role at a given time

allocate_best: dynamic array(ALL_EMP, ALL_ROLES, TIME) of integer

required: array(ALL_ROLES, TIME) of integer ! =1 if

role r is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can

carry out role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is

on board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

ag_starting: array(ALL_ROLES) of integer ! =1 if

agency employee is in role r at time 0, =0 otherwise

305

work_zero, rest_zero: array(REG_EMP) of integer ! initial values

of work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial

value of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum

on working time, minimum on resting time

ag_max_work: array(ALL_ROLES) of integer ! maximum

on working time for agency crew, possibly different for each role

overall_regular_max_work: integer

overall_agency_max_work: integer

overall_max_work: integer

! Added for the recovery problem:

! - the details of the current roster...

cur_allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer

cur_board, cur_depart: array(REG_EMP, VESSELS, TIME) of integer

cur_ag_rboard, cur_ag_rdepart: array(ALL_ROLES, TIME) of integer

cur_undertime, cur_overtime: array(GUARANTEED) of integer

mwp:linctr

end-declarations

!Reading from txt file

initializations from DATAFILE

board_chng_cost depart_chng_cost work_chng_cost

ag_board_chng_cost ag_depart_chng_cost

required eligable starting ag_starting

work_zero rest_zero

max_work min_rest ag_max_work

cur_allocate cur_board cur_depart cur_ag_rboard cur_ag_rdepart

cur_undertime cur_overtime

end-initializations

!Continue to define parameters and decision variables

declarations

306

!Added for recovery problem - detail of current roster, and change

variable

!solution of dual sub problem

dual_3: array(REG_EMP, VESSELS) of mpvar

dual_4: array(REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of mpvar

dual_7: array(ALL_ROLES) of mpvar

dual_8: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of mpvar

dual_9: array(GUARANTEED) of mpvar

dual_10: array(GUARANTEED) of mpvar

dual_30: array(ALL_ROLES,TIME) of mpvar

dual_31: array(ALL_ROLES,TIME) of mpvar

dual_40: array(REG_EMP, VESSELS, TIME) of mpvar

dual_19:array(REG_EMP) of real

dual_21:array(REG_EMP, TIME) of real

dual_20:array(REG_EMP, 2..WEEKS_TO_PLAN) of real

dual_23:array(REG_EMP,2..WEEKS_TO_PLAN) of real

dual_3_new: array(REG_EMP, VESSELS) of mpvar

dual_4_new: array(REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of mpvar

dual_7_new: array(ALL_ROLES) of mpvar

dual_8_new: array(ALL_ROLES, 2..WEEKS_TO_PLAN) of mpvar

dual_9_new: array(GUARANTEED) of mpvar

dual_10_new: array(GUARANTEED) of mpvar

dual_30_new: array(ALL_ROLES,TIME) of mpvar

dual_31_new: array(ALL_ROLES,TIME) of mpvar

dual_40_new: array(REG_EMP, VESSELS, TIME) of mpvar

dual_19_new:array(REG_EMP) of mpvar

dual_21_new:array(REG_EMP, TIME) of mpvar

dual_20_new:array(REG_EMP, 2..WEEKS_TO_PLAN) of mpvar

dual_23_new:array(REG_EMP,2..WEEKS_TO_PLAN) of mpvar

sol_dual_3: array(range,REG_EMP, VESSELS) of real

sol_dual_4: array(range,REG_EMP, VESSELS, 2..WEEKS_TO_PLAN) of real

! or takes a non-negative integer

307

value for agency crew

sol_dual_7: array(range,ALL_ROLES) of real

sol_dual_8: array(range,ALL_ROLES, 2..WEEKS_TO_PLAN) of real

sol_dual_9: array(range,GUARANTEED) of real

sol_dual_10: array(range,GUARANTEED) of real

sol_dual_19:array(range,REG_EMP) of real

sol_dual_21:array(range,REG_EMP, TIME) of real

sol_dual_20:array(range,REG_EMP, 2..WEEKS_TO_PLAN) of real

sol_dual_23:array(range,REG_EMP,2..WEEKS_TO_PLAN) of real

sol_dual_30: array(range,ALL_ROLES,TIME) of real

sol_dual_31: array(range,ALL_ROLES,TIME) of real

sol_dual_40: array(range,REG_EMP, VESSELS, TIME) of real

! or takes a non-negative integer value

for agency crew

dummy:linctr

! Objective Value of dual problem

Dual_cost:real

end-declarations

! reading the parameters

declarations

!constraints for dual problem

dual_cons_board: array(REG_EMP, VESSELS, TIME) of linctr

dual_cons_depart: array(REG_EMP, VESSELS, TIME) of linctr ! =1 if

employee boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer

value for agency crew

dual_cons_ag_rboard: array(ALL_ROLES, TIME) of linctr

dual_cons_ag_rdepart: array(ALL_ROLES, TIME) of linctr ! =1 if agency

crew starts / ends working on a role in given time period, 0 otherwise

dual_cons_undertime: array(GUARANTEED) of linctr

dual_cons_overtime: array(GUARANTEED) of linctr !

Variables to calculate the amount of under/overtime carried out by

employee

308

dual_cons_board_new: array(REG_EMP, VESSELS, TIME) of linctr

dual_cons_depart_new: array(REG_EMP, VESSELS, TIME) of linctr ! =1 if

employee boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer

value for agency crew

dual_cons_ag_rboard_new: array(ALL_ROLES, TIME) of linctr

dual_cons_ag_rdepart_new: array(ALL_ROLES, TIME) of linctr ! =1 if

agency crew starts / ends working on a role in given time period, 0

otherwise

dual_cons_undertime_new: array(GUARANTEED) of linctr

dual_cons_overtime_new: array(GUARANTEED) of linctr !

Variables to calculate the amount of under/overtime carried out by

employee

dual_cons_rest_total:array(REG_EMP, TIME) of linctr

dual_cons_rest_total_new:array(REG_EMP, TIME) of linctr

!constraints for integer problem

All_covered: dynamic array(ALL_ROLES, TIME) of linctr

No_overlap: array(REG_EMP, TIME) of linctr

Work_count: array(REG_EMP, TIME) of linctr

Work_count_start: array(REG_EMP) of linctr

Depart_constr: array(REG_EMP, VESSELS, TIME) of linctr

Rest_vs_work: array(REG_EMP, TIME) of linctr

Rest_new: array(REG_EMP) of linctr

Rest_new1: array(REG_EMP, TIME) of linctr

ct:integer

int_started:integer

allocate_master: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar

depart_master: array(REG_EMP, VESSELS, TIME) of mpvar ! =1 if employee

boards / departs vessel in given time period, 0 otherwise

Obj: linctr

Dual_first:linctr

z:mpvar

Primal_cost:linctr

stepprob: array(RM) of mpproblem ! Subproblems

309

status: array(mpproblem) of integer ! Subproblem status

AG_work_count_start:array(ALL_ROLES) of linctr

AG_work_count:array(ALL_ROLES, TIME) of linctr

Obj_mwp:linctr

Obj_mwp_value:mpvar

Dual_cost_mwp:linctr

allocate_mwp: dynamic array(1..1,ALL_EMP, ALL_ROLES, TIME) of real !

Variable for allocating employee to role during given time period

depart_mwp: array(1..1, REG_EMP, VESSELS, TIME) of real

allocate: dynamic array(ALL_EMP, ALL_ROLES, TIME) of integer

depart: array(REG_EMP, VESSELS, TIME) of integer

end-declarations

initializations from DATAFILE

allocate depart

end-initializations

initializations from "bin:shmem:sol"

allocate_dual depart_dual ct UB Dual_cost allocate_best

end-initializations

writeln("SUB DUAL STARTED")

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate_dual(e,r,t))

end-if

end-do

Obj:= (sum(e in REG_EMP, v in VESSELS, t in TIME)(dual_40_new(e,v,t))+

sum(e in REG_EMP, v in VESSELS)(dual_3_new(e,v)*(sum(r in ROLES(v))(

allocate_dual(e,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4_new(e,v,t)*(

sum(r in ROLES(v))(allocate_dual(e,r,t)) - sum(r in ROLES(v))(

allocate_dual(e,r,(t-1)))))+

sum(r in ALL_ROLES)(dual_7_new(r)*(allocate_dual("AGENCY",r,1) -

ag_starting(r)))+

310

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8_new(r,t)*(allocate_dual

("AGENCY",r,t) - allocate_dual("AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(dual_9_new(e)*(g_weeks(e) - (exp_worktime(e) + sum(r

in ALL_ROLES, t in TIME)(allocate_dual(e,r,t)))))+

sum(e in GUARANTEED)(dual_10_new(e)*((exp_worktime(e) + sum(r in ALL_ROLES

, t in TIME)(allocate_dual(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES, t in TIME)(dual_30_new(r,t)*(1-allocate_dual("AGENCY",

r,t)))+

sum(r in ALL_ROLES)(dual_31_new(r,1)*(1- ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_31_new(r,t)*(1-

allocate_dual("AGENCY",r,(t-1))))+

sum(e in REG_EMP)(dual_19_new(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate_dual(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20_new(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23_new(e,t)*(- min_rest(e)

*(1-(sum(r in ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, t in TIME)(dual_21_new(e,t)*((min_rest(e)-1)*(sum(v in

VESSELS)(depart_dual(e,v,t))))))

sethidden(Obj,false)

!board

forall(e in REG_EMP, v in VESSELS) dual_cons_board_new(e,v,1):=dual_3_new(

e,v)+dual_40_new(e,v,1)<=(board_chng_cost(e,v,1))/(1-(2*cur_board(e,v

,1)))

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)

dual_cons_board_new(e,v,t):=dual_4_new(e,v,t)+dual_40_new(e,v,t)<=(

board_chng_cost(e,v,t))/(1-(2*cur_board(e,v,t)))

!ag_rboard

forall(r in ALL_ROLES) dual_cons_ag_rboard_new(r,1):= dual_7_new(r)+

dual_31_new(r,1)<=(ag_board_chng_cost(r,1)/(1-(2*cur_ag_rboard(r,1))))

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rboard_new(r,t)

:= dual_8_new(r,t)+dual_31_new(r,t)<=(ag_board_chng_cost(r,t)/(1-(2*

311

cur_ag_rboard(r,t))))

!ag_rdepart

forall(r in ALL_ROLES) dual_cons_ag_rdepart_new(r,1):= -dual_7_new(r)+

dual_30_new(r,1)<=(ag_depart_chng_cost(r,1)/(1-(2*cur_ag_rdepart(r,1)))

)

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rdepart_new(r,t)

:= -dual_8_new(r,t)+dual_30_new(r,t)<=(ag_depart_chng_cost(r,t)/(1-(2*

cur_ag_rdepart(r,t))))

!undertime

forall(e in GUARANTEED) dual_cons_undertime_new(e):= dual_9_new(e)<=

under_rate(e)

!overtime

forall(e in GUARANTEED) dual_cons_overtime_new(e):= dual_10_new(e)<=

over_rate(e)

!rest_total

forall(e in REG_EMP) dual_cons_rest_total_new(e,1):= dual_19_new(e)-

dual_20_new(e,2)+dual_21_new(e,1)-dual_23_new(e,2)<=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN-1) dual_cons_rest_total_new(e,t)

:= dual_20_new(e,t)-dual_20_new(e,t+1)+dual_21_new(e,t)-dual_23_new(e,t

+1)<=0

forall(e in REG_EMP,t in WEEKS_TO_PLAN..WEEKS_TO_PLAN)

dual_cons_rest_total_new(e,t):= dual_20_new(e,t)+dual_21_new(e,t)<=0

forall(e in REG_EMP, v in VESSELS) dual_3_new(e,v)>=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_4_new(e,v,t

)>=0

312

forall(r in ALL_ROLES) dual_7_new(r) is_free

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) dual_8_new(r,t) is_free

forall(e in GUARANTEED) dual_9_new(e)>=0

forall(e in GUARANTEED) dual_10_new(e)>=0

forall(e in REG_EMP) dual_19_new(e)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_20_new(e,t)>=0

forall(e in REG_EMP,t in TIME) dual_21_new(e,t)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_23_new(e,t)>=0

forall(r in ALL_ROLES, t in TIME) dual_30_new(r,t)<=0

forall(r in ALL_ROLES, t in TIME) dual_31_new(r,t)<=0

forall(e in REG_EMP, v in VESSELS, t in TIME) dual_40_new(e,v,t)<=0

!fopen(OUTPUTFILE_subdual, F_OUTPUT)

!setparam("XPRS_verbose",true)

maximize(XPRS_BAR, Obj)

cut_type(ct):=1

if(getprobstat=XPRS_UNB) then

write("Dual Unbounded ")

cut_type(ct):=0

writeln("Cut_type",cut_type(ct))

Obj_mwp:=Obj_mwp_value=0

Dual_cost_mwp:=(sum(e in REG_EMP, v in VESSELS, t in TIME)(dual_40_new(e,v

,t))+

sum(e in REG_EMP, v in VESSELS)(dual_3_new(e,v)*(sum(r in ROLES(v))(

allocate_dual(e,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4_new(e,v,t)*(

sum(r in ROLES(v))(allocate_dual(e,r,t)) - sum(r in ROLES(v))(

allocate_dual(e,r,(t-1)))))+

sum(r in ALL_ROLES)(dual_7_new(r)*(allocate_dual("AGENCY",r,1) -

ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8_new(r,t)*(allocate_dual

("AGENCY",r,t) - allocate_dual("AGENCY",r,(t-1))))+

313

sum(e in GUARANTEED)(dual_9_new(e)*(g_weeks(e) - (exp_worktime(e) + sum(r

in ALL_ROLES, t in TIME)(allocate_dual(e,r,t)))))+

sum(e in GUARANTEED)(dual_10_new(e)*((exp_worktime(e) + sum(r in ALL_ROLES

, t in TIME)(allocate_dual(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES, t in TIME)(dual_30_new(r,t)*(1-allocate_dual("AGENCY",

r,t)))+

sum(r in ALL_ROLES)(dual_31_new(r,1)*(1- ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_31_new(r,t)*(1-

allocate_dual("AGENCY",r,(t-1))))+

sum(e in REG_EMP)(dual_19_new(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate_dual(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20_new(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23_new(e,t)*(- min_rest(e)

*(1-(sum(r in ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, t in TIME)(dual_21_new(e,t)*((min_rest(e)-1)*(sum(v in

VESSELS)(depart_dual(e,v,t))))))=1

!board

forall(e in REG_EMP, v in VESSELS) dual_cons_board_new(e,v,1):=dual_3_new(

e,v)+dual_40_new(e,v,1)<=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)

dual_cons_board_new(e,v,t):=dual_4_new(e,v,t)+dual_40_new(e,v,t)<=0

!ag_rboard

forall(r in ALL_ROLES) dual_cons_ag_rboard_new(r,1):= dual_7_new(r)+

dual_31_new(r,1)<=0

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rboard_new(r,t)

:= dual_8_new(r,t)+dual_31_new(r,t)<=0

!ag_rdepart

forall(r in ALL_ROLES) dual_cons_ag_rdepart_new(r,1):= -dual_7_new(r)+

dual_30_new(r,1)<=0

314

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rdepart_new(r,t)

:= -dual_8_new(r,t)+dual_30_new(r,t)<=0

!undertime

forall(e in GUARANTEED) dual_cons_undertime_new(e):= dual_9_new(e)<=0

!overtime

forall(e in GUARANTEED) dual_cons_overtime_new(e):= dual_10_new(e)<=0

!rest_total

forall(e in REG_EMP) dual_cons_rest_total_new(e,1):= dual_19_new(e)-

dual_20_new(e,2)+dual_21_new(e,1)-dual_23_new(e,2)<=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN-1) dual_cons_rest_total_new(e,t)

:= dual_20_new(e,t)-dual_20_new(e,t+1)+dual_21_new(e,t)-dual_23_new(e,t

+1)<=0

forall(e in REG_EMP,t in WEEKS_TO_PLAN..WEEKS_TO_PLAN)

dual_cons_rest_total_new(e,t):= dual_20_new(e,t)+dual_21_new(e,t)<=0

forall(e in REG_EMP, v in VESSELS) dual_3_new(e,v)>=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_4_new(e,v,t

)>=0

forall(r in ALL_ROLES) dual_7_new(r) is_free

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) dual_8_new(r,t) is_free

forall(e in GUARANTEED) dual_9_new(e)>=0

forall(e in GUARANTEED) dual_10_new(e)>=0

forall(e in REG_EMP) dual_19_new(e)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_20_new(e,t)>=0

forall(e in REG_EMP,t in TIME) dual_21_new(e,t)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_23_new(e,t)>=0

forall(r in ALL_ROLES, t in TIME) dual_30_new(r,t)<=0

forall(r in ALL_ROLES, t in TIME) dual_31_new(r,t)<=0

forall(e in REG_EMP, v in VESSELS, t in TIME) dual_40_new(e,v,t)<=0

!setparam("XPRS_verbose",true)

maximize(XPRS_BAR, Obj_mwp_value)

315

end-if

writeln("Cut_type",cut_type(ct))

if(cut_type(ct)=1) then

Dual_cost:=getobjval

writeln("Cut_type",cut_type(ct))

writeln("Dual_cost: ",Dual_cost)

writeln("UB_once",UB)

if (UB>= (Dual_cost+

sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost(e,v,t)*(

cur_board(e,v,t)/((2*cur_board(e,v,t))-1))))+

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r,t)*(cur_ag_rboard(r,t

)/((2*cur_ag_rboard(r,t))-1))) + (ag_depart_chng_cost(r,t)*(

cur_ag_rdepart(r,t)/((2*cur_ag_rdepart(r,t))-1)))) +

sum(e in GUARANTEED)((-under_rate(e)*cur_undertime(e))+ (-over_rate(e)*

cur_overtime(e)))+

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)(work_chng_cost(e,r,t)*((

allocate_dual(e,r,t)-cur_allocate(e,r,t))/(1-2*(cur_allocate(e,r,t)))))

+

sum(e in REG_EMP, v in VESSELS, t in TIME)(depart_chng_cost(e,v,t)*((

depart_dual(e,v,t)-cur_depart(e,v,t))/(1-2*(cur_depart(e,v,t)))))))

then

UB:=(Dual_cost+

sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost(e,v,t)*(

cur_board(e,v,t)/((2*cur_board(e,v,t))-1))))+

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r,t)*(cur_ag_rboard(r,t

)/((2*cur_ag_rboard(r,t))-1))) + (ag_depart_chng_cost(r,t)*(

cur_ag_rdepart(r,t)/((2*cur_ag_rdepart(r,t))-1)))) +

sum(e in GUARANTEED)((-under_rate(e)*cur_undertime(e))+ (-over_rate(e)*

cur_overtime(e)))+

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)(work_chng_cost(e,r,t)*((

allocate_dual(e,r,t)-cur_allocate(e,r,t))/(1-2*(cur_allocate(e,r,t)))))

316

+

sum(e in REG_EMP, v in VESSELS, t in TIME)(depart_chng_cost(e,v,t)*((

depart_dual(e,v,t)-cur_depart(e,v,t))/(1-2*(cur_depart(e,v,t))))))

accept:=1

writeln("UB_sonra: ",UB)

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_best(l,r,t):=allocate_dual(l,r,t)

end-do

else

UB:=UB

writeln("UB_noimprove: ",UB)

accept:=0

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_best(l,r,t):=allocate_best(l,r,t)

end-do

end-if

save_solution_dualsub

y:=1

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) allocate_mwp(y,e,r,t):=(

allocate(e,r,t)*0.3)+(allocate_dual(e,r,t)*0.7)

forall(e in REG_EMP, v in VESSELS, t in TIME) depart_mwp(y,e,v,t):=(depart

(e,v,t)*0.3)+(depart_dual(e,v,t)*0.7)

Obj:= (sum(e in REG_EMP, v in VESSELS, t in TIME)(dual_40_new(e,v,t))+

sum(e in REG_EMP, v in VESSELS)(dual_3_new(e,v)*(sum(r in ROLES(v))(

allocate_mwp(y,e,r,1)) - starting(e,v)))+

317

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4_new(e,v,t)*(

sum(r in ROLES(v))(allocate_mwp(y,e,r,t)) - sum(r in ROLES(v))(

allocate_mwp(y,e,r,(t-1)))))+

sum(r in ALL_ROLES)(dual_7_new(r)*(allocate_mwp(y,"AGENCY",r,1) -

ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8_new(r,t)*(allocate_mwp(y

,"AGENCY",r,t) - allocate_mwp(y,"AGENCY",r,(t-1))))+

sum(e in GUARANTEED)(dual_9_new(e)*(g_weeks(e) - (exp_worktime(e) + sum(r

in ALL_ROLES, t in TIME)(allocate_mwp(y,e,r,t)))))+

sum(e in GUARANTEED)(dual_10_new(e)*((exp_worktime(e) + sum(r in ALL_ROLES

, t in TIME)(allocate_mwp(y,e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES, t in TIME)(dual_30_new(r,t)*(1-allocate_mwp(y,"AGENCY

",r,t)))+

sum(r in ALL_ROLES)(dual_31_new(r,1)*(1- ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_31_new(r,t)*(1-

allocate_mwp(y,"AGENCY",r,(t-1))))+

sum(e in REG_EMP)(dual_19_new(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate_mwp(y,e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20_new(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate_mwp(y,e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23_new(e,t)*(- min_rest(e)

*(1-(sum(r in ALL_ROLES)(allocate_mwp(y,e,r,t))))))+

sum(e in REG_EMP, t in TIME)(dual_21_new(e,t)*((min_rest(e)-1)*(sum(v in

VESSELS)(depart_mwp(y,e,v,t))))))

sethidden(Obj,false)

!mwp constraints

mwp:=(sum(e in REG_EMP, v in VESSELS, t in TIME)(dual_40_new(e,v,t))+

sum(e in REG_EMP, v in VESSELS)(dual_3_new(e,v)*(sum(r in ROLES(v))(

allocate_dual(e,r,1)) - starting(e,v)))+

sum(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)(dual_4_new(e,v,t)*(

sum(r in ROLES(v))(allocate_dual(e,r,t)) - sum(r in ROLES(v))(

allocate_dual(e,r,(t-1)))))+

sum(r in ALL_ROLES)(dual_7_new(r)*(allocate_dual("AGENCY",r,1) -

ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_8_new(r,t)*(allocate_dual

("AGENCY",r,t) - allocate_dual("AGENCY",r,(t-1))))+

318

sum(e in GUARANTEED)(dual_9_new(e)*(g_weeks(e) - (exp_worktime(e) + sum(r

in ALL_ROLES, t in TIME)(allocate_dual(e,r,t)))))+

sum(e in GUARANTEED)(dual_10_new(e)*((exp_worktime(e) + sum(r in ALL_ROLES

, t in TIME)(allocate_dual(e,r,t)))- g_weeks(e)))+

sum(r in ALL_ROLES, t in TIME)(dual_30_new(r,t)*(1-allocate_dual("AGENCY",

r,t)))+

sum(r in ALL_ROLES)(dual_31_new(r,1)*(1- ag_starting(r)))+

sum(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)(dual_31_new(r,t)*(1-

allocate_dual("AGENCY",r,(t-1))))+

sum(e in REG_EMP)(dual_19_new(e)*(rest_zero(e) - (1-(sum(r in ALL_ROLES)(

allocate_dual(e,r,1))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_20_new(e,t)*(- (1-(sum(r in

ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, t in 2..WEEKS_TO_PLAN)(dual_23_new(e,t)*(- min_rest(e)

*(1-(sum(r in ALL_ROLES)(allocate_dual(e,r,t))))))+

sum(e in REG_EMP, t in TIME)(dual_21_new(e,t)*((min_rest(e)-1)*(sum(v in

VESSELS)(depart_dual(e,v,t))))))=Dual_cost

!board

forall(e in REG_EMP, v in VESSELS) dual_cons_board_new(e,v,1):=dual_3_new(

e,v)+dual_40_new(e,v,1)<=(board_chng_cost(e,v,1))/(1-(2*cur_board(e,v

,1)))

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)

dual_cons_board_new(e,v,t):=dual_4_new(e,v,t)+dual_40_new(e,v,t)<=(

board_chng_cost(e,v,t))/(1-(2*cur_board(e,v,t)))

!ag_rboard

forall(r in ALL_ROLES) dual_cons_ag_rboard_new(r,1):= dual_7_new(r)+

dual_31_new(r,1)<=(ag_board_chng_cost(r,1)/(1-(2*cur_ag_rboard(r,1))))

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rboard_new(r,t)

:= dual_8_new(r,t)+dual_31_new(r,t)<=(ag_board_chng_cost(r,t)/(1-(2*

cur_ag_rboard(r,t))))

!ag_rdepart

319

forall(r in ALL_ROLES) dual_cons_ag_rdepart_new(r,1):= -dual_7_new(r)+

dual_30_new(r,1)<=(ag_depart_chng_cost(r,1)/(1-(2*cur_ag_rdepart(r,1)))

)

forall(r in ALL_ROLES,t in 2..WEEKS_TO_PLAN) dual_cons_ag_rdepart_new(r,t)

:= -dual_8_new(r,t)+dual_30_new(r,t)<=(ag_depart_chng_cost(r,t)/(1-(2*

cur_ag_rdepart(r,t))))

!undertime

forall(e in GUARANTEED) dual_cons_undertime_new(e):= dual_9_new(e)<=

under_rate(e)

!overtime

forall(e in GUARANTEED) dual_cons_overtime_new(e):= dual_10_new(e)<=

over_rate(e)

!rest_total

forall(e in REG_EMP) dual_cons_rest_total_new(e,1):= dual_19_new(e)-

dual_20_new(e,2)+dual_21_new(e,1)-dual_23_new(e,2)<=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN-1) dual_cons_rest_total_new(e,t)

:= dual_20_new(e,t)-dual_20_new(e,t+1)+dual_21_new(e,t)-dual_23_new(e,t

+1)<=0

forall(e in REG_EMP,t in WEEKS_TO_PLAN..WEEKS_TO_PLAN)

dual_cons_rest_total_new(e,t):= dual_20_new(e,t)+dual_21_new(e,t)<=0

forall(e in REG_EMP, v in VESSELS) dual_3_new(e,v)>=0

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) dual_4_new(e,v,t

)>=0

forall(r in ALL_ROLES) dual_7_new(r) is_free

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) dual_8_new(r,t) is_free

forall(e in GUARANTEED) dual_9_new(e)>=0

forall(e in GUARANTEED) dual_10_new(e)>=0

320

forall(e in REG_EMP) dual_19_new(e)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_20_new(e,t)>=0

forall(e in REG_EMP,t in TIME) dual_21_new(e,t)>=0

forall(e in REG_EMP,t in 2..WEEKS_TO_PLAN) dual_23_new(e,t)>=0

forall(r in ALL_ROLES, t in TIME) dual_30_new(r,t)<=0

forall(r in ALL_ROLES, t in TIME) dual_31_new(r,t)<=0

forall(e in REG_EMP, v in VESSELS, t in TIME) dual_40_new(e,v,t)<=0

! setparam("XPRS_verbose",true)

maximize(XPRS_BAR, Obj)

if(getprobstat=XPRS_UNB) then

write("MWP Unbounded ")

end-if

if(getprobstat = XPRS_INF) then

writeln("MWP is infeasible")

end-if

if(getprobstat=XPRS_OPT) then

write("MWP Optimal ")

save_solution_dualsub

end-if

else

Dual_cost:=getobjval

UB:=UB

writeln("Cut_type",cut_type)

writeln("Dual_unb: ",Dual_cost)

321

writeln("UB_unb: ",UB)

forall(l in ALL_EMP, r in ALL_ROLES, t in TIME)do

allocate_best(l,r,t):=allocate_best(l,r,t)

end-do

save_solution_dualsub

end-if

(! writeln("allocate: [")

forall(e in ALL_EMP) do

forall(r in ALL_ROLES) do

forall(t in TIME) write(allocate_best(e,r,t),"\t")

end-do

write("\n")

end-do

write("]\n")

!)

! fclose(F_OUTPUT)

writeln("UB: ",UB)

fflush

!--

procedure save_solution_dualsub

! Store values of u and x

forall(e in REG_EMP, v in VESSELS)do

sol_dual_3(ct,e,v):=getsol(dual_3_new(e,v))

end-do

322

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN)do

sol_dual_4(ct,e,v,t):=getsol(dual_4_new(e,v,t))

end-do

forall(e in REG_EMP, v in VESSELS, t in TIME)do

sol_dual_40(ct,e,v,t):=getsol(dual_40_new(e,v,t))

end-do

forall(r in ALL_ROLES)do

sol_dual_7(ct,r):=getsol(dual_7_new(r))

end-do

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN)do

sol_dual_8(ct,r,t):= getsol(dual_8_new(r,t))

end-do

forall(e in GUARANTEED)do

sol_dual_9(ct,e):=getsol(dual_9_new(e))

end-do

forall(e in GUARANTEED) do

sol_dual_10(ct,e):=getsol(dual_10_new(e))

end-do

forall(r in ALL_ROLES, t in TIME)do

sol_dual_30(ct,r,t):= getsol(dual_30_new(r,t))

end-do

forall(r in ALL_ROLES, t in TIME)do

sol_dual_31(ct,r,t):= getsol(dual_31_new(r,t))

end-do

forall(e in REG_EMP)do

sol_dual_19(ct,e):=getsol(dual_19_new(e))

end-do

323

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_20(ct,e,t):= getsol(dual_20_new(e,t))

end-do

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN)do

sol_dual_23(ct,e,t):= getsol(dual_23_new(e,t))

end-do

forall(e in REG_EMP, t in TIME)do

sol_dual_21(ct,e,t):= getsol(dual_21_new(e,t))

end-do

initializations to "bin:shmem:sol"

sol_dual_3 sol_dual_4 sol_dual_7

sol_dual_8 sol_dual_9 sol_dual_10 sol_dual_19 sol_dual_20 sol_dual_21

sol_dual_23 sol_dual_30 sol_dual_31 sol_dual_40 UB Dual_cost cut_type

accept allocate_best

end-initializations

end-procedure

end-model

!-------------------------Heuristic

model "Benders (master model)"

uses "mmxprs", "mmjobs", "mmsystem"

parameters

!cost

max_iteration = 3000

max_runtime = 60

short_list_fraction = 1

accept_rule = "current" ! the solution to be compared to when

deciding whether to accept a change automatically

324

!PARAMETERFILE = "batch-input-parameters.dat"

end-parameters

declarations

InstanceName: string

end-declarations

initializations from "bin:shmem:sol"

InstanceName

end-initializations

DATAFILE :=InstanceName+"\\Time-Windows - Captains - "+InstanceName+".txt"

OUTPUTFILE_heuristic:=InstanceName+"\\Results - Heuristics-Benders- - "+

InstanceName+".txt"

prog_starttime := gettime

! declare the basic values

declarations

REG_EMP: set of string ! Regular employee names / numbers (ie not

Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which

will require cover, divided by vessels

ALL_ROLES: set of string ! List of all roles

EMP_NO: integer

ROLE_NO: integer

SOL_TYPE: set of string

FEAS_CHECK: set of string

325

end-declarations

initializations from DATAFILE

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

end-initializations

SOL_TYPE := {"current", "best", "eval", "backward", "forward", "swap", "

candidate", "kick"}

FEAS_CHECK := {"backward", "forward", "swap", "kick"}

ORD_RULES := {"earliest", "latest", "random"}

! calculate the set of all employees, and declare the rest of the Time-

Windows variables

ALL_EMP := REG_EMP + {"AGENCY"}

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

EMP_NO := getsize(REG_EMP)

ROLE_NO := getsize(ALL_ROLES)

declarations

! EMP_INDEX = 1..48!EMP_NO

! ROLE_INDEX = 1..25!ROLE_NO

! emp_array = array(1..48) of string !array(EMP_INDEX) of string

! role_array = array(1..25) of string !array(ROLE_INDEX) of string

emp_count, role_count: integer

TIME = 1..WEEKS_TO_PLAN ! Time index

board_chng_cost, depart_chng_cost: array(REG_EMP, VESSELS, TIME) of real !

Costs of CHANGES TO employees boarding / leaving vessel

ag_board_chng_cost, ag_depart_chng_cost: array(ALL_ROLES, TIME) of real !

Costs of CHANGES TO agency employees boarding / leaving for a given

role

work_chng_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given

326

role at a given time

required: array(ALL_ROLES, TIME) of integer ! =1 if

role r is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can

carry out role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is

on board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

ag_starting: array(ALL_ROLES) of integer ! =1 if

agency employee is in role r at time 0, =0 otherwise

work_zero, rest_zero: array(REG_EMP) of integer ! initial values

of work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial

value of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum

on working time, minimum on resting time

ag_max_work: array(ALL_ROLES) of integer ! maximum

on working time for agency crew, possibly different for each role

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real !

Data relating to over/undertime payments for employees

! Added for the recovery problem - the details of the current roster...

cur_allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer

cur_board, cur_depart: array(REG_EMP, VESSELS, TIME) of integer

cur_ag_rboard, cur_ag_rdepart: array(ALL_ROLES, TIME) of integer

cur_undertime, cur_overtime: array(GUARANTEED) of integer

end-declarations

initializations from DATAFILE

board_chng_cost depart_chng_cost work_chng_cost

ag_board_chng_cost ag_depart_chng_cost

required eligable starting ag_starting

work_zero rest_zero

max_work min_rest ag_max_work ag_work_zero

327

under_rate over_rate g_weeks exp_worktime

cur_allocate cur_board cur_depart cur_ag_rboard cur_ag_rdepart

cur_undertime cur_overtime

end-initializations

emp_count := 0

forall(e in REG_EMP) do

emp_count := emp_count + 1

emp_array(emp_count) := e

end-do

role_count := 0

forall(r in ALL_ROLES) do

role_count := role_count + 1

role_array(role_count) := r

end-do

! Calculate the parameters for the Long Work variables, and declare these

overall_regular_max_work := max(e in REG_EMP) max_work(e)

overall_agency_max_work := max(r in ALL_ROLES) ag_max_work(r)

if(overall_regular_max_work > overall_agency_max_work) then

overall_max_work := overall_regular_max_work

else

overall_max_work := overall_agency_max_work

end-if

declarations

lambda = 1..overall_max_work

! Index used for number of consecutive

weeks

extension_chng_cost: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real !

Cost of CHANGES TO an employee working on board a vessel for longer

than usual

cur_long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real !Added

for recovery problem - detail of current roster, and change variable

328

end-declarations

initializations from DATAFILE

extension_chng_cost cur_long_work

end-initializations

! The rest of these declarations are required for the Heuristics:

declarations

! The initial solution:

taskbased_sol: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i

carries out role r at time t in the task-based soltion, =0 otherwise

! Relating to main programme:

iteration: integer

best_sol_time: integer

no_fwd, no_bkwd, no_swap, no_cand, no_kick: integer

no_tabu, no_infeas: integer

no_nonreduce: integer

initial_cost: real

terminate: boolean

update_done: boolean

candidate_exist: boolean

last_kick_time: integer

! Relating to the various solutions which must be recorded:

number_best: integer

best_index = 1..(max_iteration+1)

best_sols: array(best_index, REG_EMP) of list of string

ag_best_sols: array(best_index, ALL_ROLES) of set of integer

same_best: array(best_index) of boolean

new_best: boolean

329

tabu_sol: array(REG_EMP) of list of string

ag_tabu_sol: array(ALL_ROLES) of set of integer

to_check_tabu: string

transfer_sol_to, transfer_sol_from: string

emp_cost: array(SOL_TYPE, REG_EMP) of real

ag_cost: array(SOL_TYPE, ALL_ROLES) of real

total_cost: array(SOL_TYPE) of real

list_sol: array(SOL_TYPE, REG_EMP) of list of string

ag_list_sol: array(SOL_TYPE, ALL_ROLES) of set of integer

ag_crewchange: array(SOL_TYPE, ALL_ROLES) of set of integer

allocate_sol:dynamic array(SOL_TYPE, ALL_EMP, ALL_ROLES, TIME) of integer

board_sol, depart_sol: array(SOL_TYPE, REG_EMP, VESSELS, TIME) of integer

ag_rboard_sol, ag_rdepart_sol: array(SOL_TYPE, ALL_ROLES, TIME) of integer

undertime_sol, overtime_sol: array(SOL_TYPE, GUARANTEED) of integer

long_work_sol: array(SOL_TYPE, lambda, ALL_EMP, ALL_ROLES, TIME) of real

allocate_dual:dynamic array(ALL_EMP, ALL_ROLES, TIME) of integer

depart_dual: array(REG_EMP, VESSELS, TIME) of integer

! Relating to calculating the costs:

emps_changed: set of string

ag_roles_changed: set of string

to_calculate: string

work_total, rest_total: array(REG_EMP, TIME) of real ! Used to track

the consecutive working time / rest period requirements of each

employee

ag_work_total: array(ALL_ROLES, TIME) of real ! Used to

track the consecutive working time of the agency employees

chng_allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer

chng_board, chng_depart: array(REG_EMP, VESSELS, TIME) of integer

chng_ag_rboard, chng_ag_rdepart: array(ALL_ROLES, TIME) of integer

330

chng_undertime, chng_overtime: array(GUARANTEED) of integer

chng_long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of integer

! Required for calculating the least-cost Agency crew movements:

divide_number, tracking_number: real

definite_crewchange, possible_crewchange, evaluate_crewchange: set of

integer

crewchange_cost, min_crewchange_cost: real

poss_ag_rboard, poss_ag_rdepart: array(TIME) of integer

poss_chng_ag_rboard, poss_chng_ag_rdepart: array(TIME) of integer

poss_ag_long_work, poss_chng_ag_long_work: array(lambda, TIME) of real

! Relating to the identification and manipulation of the working blocks:

max_bkwd_extend, max_fwd_extend: integer

extend_len_bkwd, extend_len_fwd: integer

current_list, new_list: list of string

reverse_current_list, reverse_new_list: list of string

emp_extend, swap_emp: string

swappable_emp: array(REG_EMP) of boolean

ag_swappable: boolean

task_extend, swap_task: string

vessel_extend, swap_vessel: string

block_found, swap_block_found: boolean

new_block, swap_new_block: boolean

time_count, find_time, swap_find_time: integer

block_start, swap_block_start, swap_block_earliest: integer

block_end, swap_block_end, swap_block_latest: integer

block_len, swap_block_len: integer

too_early, swap_allowed: boolean

all_rest: boolean

331

length_count: integer

add_to_emp: string

removed: set of integer

prev_work: boolean

in_reserve_bkwd, in_reserve_fwd: integer

reserve_list_bkwd, reserve_list_fwd: array(ALL_ROLES) of set of integer

conflict_found_bkwd, conflict_found_fwd: integer

feasible, tabu: boolean

do_extend_bkwd, do_extend_fwd, do_swap: boolean

extend_cost_bkwd, extend_cost_fwd, swapping_cost, candidate_cost: real

swaps_examined: array(REG_EMP) of set of string

emps_to_update: set of string

candidate_emps: set of string

! Used for selecting a random assignment with which to alter the current

solution

random_emp, random_task, random_length, random_time: integer

kick_emp, kick_task: string

kick_start, kick_end: integer

kick_feas: boolean

kick_count: integer

y: integer

! Relating to determining the order in which employees are examined:

order_rule: string

order_number, last_changed: array(REG_EMP) of real

ordered_list, short_ordered_list: list of string

added_set: set of string

min_no, change_no: real

min_emp: string

end-declarations

332

initializations from "bin:shmem:sol"

allocate_dual depart_dual

end-initializations

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate_dual(e,r,t))

end-if

end-do

forall(a in SOL_TYPE, r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate_sol(a,e,r,t))

end-if

end-do

!--

!--

procedure transfer_solution

! transfer all solution details from one solution type to another (eg when

the ’candidate’ becomes new ’current’ solution

if(transfer_sol_from in SOL_TYPE and transfer_sol_to in SOL_TYPE) then

total_cost(transfer_sol_to) := total_cost(transfer_sol_from)

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) do

allocate_sol(transfer_sol_to,e,r,t) := allocate_sol(transfer_sol_from,e,r,

t)

end-do

forall(e in REG_EMP) do

emp_cost(transfer_sol_to,e) := emp_cost(transfer_sol_from,e)

list_sol(transfer_sol_to,e) := list_sol(transfer_sol_from,e)

forall(t in TIME, v in VESSELS) do

board_sol(transfer_sol_to,e,v,t) := board_sol(transfer_sol_from,e,v,t)

333

depart_sol(transfer_sol_to,e,v,t) := depart_sol(transfer_sol_from,e,v,t)

end-do

if(e in GUARANTEED) then

undertime_sol(transfer_sol_to,e) := undertime_sol(transfer_sol_from,e)

overtime_sol(transfer_sol_to,e) := overtime_sol(transfer_sol_from,e)

end-if

end-do

forall(r in ALL_ROLES) do

ag_cost(transfer_sol_to,r) := ag_cost(transfer_sol_from,r)

ag_list_sol(transfer_sol_to,r) := ag_list_sol(transfer_sol_from,r)

ag_crewchange(transfer_sol_to,r) := ag_crewchange(transfer_sol_from,r)

forall(t in TIME) do

ag_rboard_sol(transfer_sol_to,r,t) := ag_rboard_sol(transfer_sol_from,r,t)

ag_rdepart_sol(transfer_sol_to,r,t) := ag_rdepart_sol(transfer_sol_from,r,

t)

end-do

end-do

else

writeln("ERROR - incorrect option selected for transfer")

end-if

transfer_sol_to := ""

transfer_sol_from := ""

end-procedure

!--

procedure compare_to_best

if(total_cost("current") = total_cost("best")) then

new_best := true

x := 0

334

while(new_best = true and x < number_best) do

x := x + 1

same_best(x) := true

emp_count := 0

while(same_best(x) = true and emp_count < EMP_NO) do

emp_count := emp_count + 1

if(list_sol("current",emp_array(emp_count)) <> best_sols(x,emp_array(

emp_count))) then same_best(x) := false; end-if

end-do

role_count := 0

while(same_best(x) = true and role_count < ROLE_NO) do

role_count := role_count + 1

if(ag_list_sol("current",role_array(role_count)) <> ag_best_sols(x,

role_array(role_count))) then same_best(x) := false; end-if

end-do

if(same_best(x) = true) then new_best := false; end-if

end-do

if(new_best = true) then

writeln("\t(This solution is a new equal ’best’ solution)")

number_best := number_best + 1

forall(e in REG_EMP) best_sols(number_best,e) := list_sol("current",e)

forall(r in ALL_ROLES) ag_best_sols(number_best,r) := ag_list_sol("current

",r)

else

writeln("\t(This solution is identical to a previously found ’best’

solution)")

end-if

end-if

if(total_cost("current") < total_cost("best")) then

transfer_sol_from := "current"

transfer_sol_to := "best"

transfer_solution

number_best := 1

forall(e in REG_EMP) best_sols(1,e) := list_sol("best",e)

335

forall(r in ALL_ROLES) ag_best_sols(1,r) := ag_list_sol("best",r)

writeln("New best solution found, with cost ",total_cost("best"))

best_sol_time := iteration

end-if

end-procedure

!--

procedure check_tabu

tabu := true

if(to_check_tabu in SOL_TYPE) then

emp_count := 0

while(tabu = true and emp_count < EMP_NO) do

emp_count := emp_count + 1

if(list_sol(to_check_tabu,emp_array(emp_count)) <> tabu_sol(emp_array(

emp_count))) then tabu := false; end-if

end-do

role_count := 0

while(tabu = true and role_count < ROLE_NO) do

role_count := role_count + 1

if(ag_list_sol(to_check_tabu,role_array(role_count)) <> ag_tabu_sol(

role_array(role_count))) then tabu := false; end-if

end-do

else

writeln("ERROR - incorrect option selected for checking")

end-if

end-procedure

336

!--

procedure update_swaps_and_changes

forall(e in emps_to_update) do

swaps_examined(e) := {}

forall(f in REG_EMP | f not in emps_to_update) do

if(e in swaps_examined(f)) then swaps_examined(f) -= {e}; end-if

end-do

end-do

if(last_kick_time = iteration) then

forall(e in REG_EMP) last_change(e) := iteration

else

forall(e in emps_to_update) last_changed(e) := iteration

end-if

end-procedure

!--

procedure check_feasibility

feasible := TRUE

if(feasible = true) then

JCfeas := TRUE ! Job Cover constraints

forall(r in ALL_ROLES, t in TIME | required(r,t) > 0) do

if(sum(e in ALL_EMP | eligable(e,r,t)>=1)(eligable(e,r,t)*allocate_sol("

eval",e,r,t)) <> required(r,t)) then

JCfeas := FALSE

writeln("JC inf: ", r," ", t)

end-if

337

end-do

if(JCfeas = FALSE) then

feasible := FALSE

end-if

end-if

! Overlap constraints

if(feasible = true) then

OLfeas := TRUE

forall(e in emps_changed, t in TIME) do

if(sum(r in ALL_ROLES) allocate_sol("eval",e,r,t) > 1) then

OLfeas := FALSE

writeln("OL inf")

end-if

end-do

if(OLfeas = FALSE) then feasible := FALSE; end-if

end-if

! Boarding constraints

if(feasible = true) then

Brdfeas := TRUE

forall(e in emps_changed, v in VESSELS) do

if(board_sol("eval",e,v,1) < sum(r in ROLES(v))(allocate_sol("eval",e,r,1)

) - starting(e,v)) then

Brdfeas := FALSE

writeln("Board inf")

end-if

forall(t in 2..WEEKS_TO_PLAN) do

if(board_sol("eval",e,v,t) < sum(r in ROLES(v))(allocate_sol("eval",e,r,t)

) - sum(r in ROLES(v))(allocate_sol("eval",e,r,(t-1)))) then

Brdfeas := FALSE

writeln("Board inf")

end-if

end-do

end-do

if(Brdfeas = FALSE) then feasible := FALSE; end-if

end-if

338

! Departing constraints

if(feasible = true) then

Dprtfeas := TRUE

forall(e in emps_changed, v in VESSELS) do

if(depart_sol("eval",e,v,1) < starting(e,v) - sum(r in ROLES(v))(

allocate_sol("eval",e,r,1))) then

Dprtfeas := FALSE

writeln("depart inf")

end-if

forall(t in 2..WEEKS_TO_PLAN) do

if(depart_sol("eval",e,v,t) < sum(r in ROLES(v))(allocate_sol("eval",e,r,(

t-1))) - sum(r in ROLES(v))(allocate_sol("eval",e,r,t))) then

Dprtfeas := FALSE

writeln("depart inf")

end-if

end-do

end-do

forall(e in REG_EMP, t in TIME) do

if(sum(v in VESSELS)depart_sol("eval",e,v,t) + sum(r in ALL_ROLES)(

allocate_sol("eval",e,r,(t)))>=2) then

Dprtfeas := FALSE

writeln("depart inf")

end-if

end-do

if(Dprtfeas = FALSE) then feasible := FALSE; end-if

end-if

! Agency board / depart constraints

if(feasible = true) then

AGBDfeas := TRUE

forall(r in ag_roles_changed) do

if(ag_rboard_sol("eval",r,1) - ag_rdepart_sol("eval",r,1) <> allocate_sol

("eval","AGENCY",r,1) - ag_starting(r)) then

AGBDfeas := FALSE

339

writeln("agboard inf")

end-if

forall(t in 2..WEEKS_TO_PLAN) do

if(ag_rboard_sol("eval",r,t) - ag_rdepart_sol("eval",r,t) <> allocate_sol

("eval","AGENCY",r,t) - allocate_sol("eval","AGENCY",r,(t-1))) then

AGBDfeas := FALSE

writeln("agboard inf")

end-if

end-do

end-do

if(AGBDfeas = FALSE) then feasible := FALSE; end-if

end-if

! Undertime constraints

if(feasible = true) then

UTfeas := TRUE

forall(e in emps_changed | e in GUARANTEED) do

if(undertime_sol("eval",e) < g_weeks(e) - (exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate_sol("eval",e,r,t)))) then

UTfeas := FALSE

writeln("undertime inf")

end-if

end-do

if(UTfeas = FALSE) then feasible := FALSE; end-if

end-if

! Overtime constraints

if(feasible = true) then

OTfeas := TRUE

forall(e in emps_changed | e in GUARANTEED) do

if(overtime_sol("eval",e) < (exp_worktime(e) + sum(r in ALL_ROLES, t in

TIME)(allocate_sol("eval",e,r,t)))- g_weeks(e)) then

OTfeas := FALSE

writeln("overtime inf")

end-if

end-do

if(OTfeas = FALSE) then feasible := FALSE; end-if

340

end-if

! Long Work constraints

if(feasible = true) then

! First, calculate work resource values:

LWfeas := TRUE

forall(e in emps_changed|work_zero(e)>=1) do

if(work_zero(e) + sum(r in ALL_ROLES, t in 0..max_work(e)-work_zero(e))(

allocate_sol("eval",e,r,t+1))>max_work(e)) then

LWfeas := FALSE

writeln("long work inf")

end-if

end-do

forall(e in emps_changed,t in 1..WEEKS_TO_PLAN-max_work(e)) do

if(sum(r in ALL_ROLES, k in 0..max_work(e))(allocate_sol("eval",e,r,t+k))

> max_work(e)) then

LWfeas := FALSE

writeln("lw inf")

end-if

end-do

if(LWfeas = FALSE) then feasible := FALSE; end-if

end-if

! Agency Long Work constraints

if(feasible = true) then

AGLWfeas := TRUE

! First, calculate Agency work resource values

forall(r in ag_roles_changed|ag_work_zero(r)>=1) do

if(ag_max_work(r) < ag_work_zero(r) + sum(t in 0..ag_max_work(r)-

ag_work_zero(r))(allocate_sol("eval","AGENCY",r,t+1))) then

AGLWfeas := FALSE

341

writeln("aglw inf")

end-if

end-do

forall(r in ag_roles_changed,t in 1..WEEKS_TO_PLAN-ag_max_work(r)) do

if(ag_max_work(r) < sum(k in 0..ag_max_work(r))(allocate_sol("eval","

AGENCY",r,t+k))) then

AGLWfeas := FALSE

writeln("aglw inf")

end-if

end-do

if(AGLWfeas = FALSE) then feasible := FALSE; end-if

end-if

! Rest vs Work constraints

if(feasible = true) then

! First, calculate rest resource values

(! forall(e in emps_changed) do

rest_total(e,1) := rest_zero(e) - (1-(sum(r in ALL_ROLES)(allocate_sol("

eval",e,r,1)))) !;if(e = "C-37") then writeln("

rest_total(",e,",1) := ",rest_zero(e)," - (1-",(sum(r in ALL_ROLES)(

allocate(e,r,1))),")"); end-if

if(rest_total(e,1) < (min_rest(e)-1)*(sum(v in VESSELS)(depart_sol("eval",

e,v,1)))) then

rest_total(e,1) := (min_rest(e)-1)*(sum(v in VESSELS)(depart_sol("eval",e,

v,1))) !;if(e = "C-37") then writeln("

rest_total(",e,",1) < (",min_rest(e),"-1)*",(sum(v in VESSELS)(depart(e

,v,1)))," => reset, so rest_total(",e,",1) := (",min_rest(e),"-1)*",(

sum(v in VESSELS)(depart(e,v,1)))); end-if

end-if

forall(t in 2..WEEKS_TO_PLAN) do

rest_total(e,t) := rest_total(e,(t-1)) - (1-(sum(r in ALL_ROLES)(

allocate_sol("eval",e,r,t)))) !;if(e = "C-37") then writeln("

342

rest_total(",e,",",t,") := ",rest_total(e,(t-1))," - (1-",(sum(r in

ALL_ROLES)(allocate(e,r,t))),")"); end-if

if(rest_total(e,t) < (min_rest(e)-1)*(sum(v in VESSELS)(depart_sol("eval",

e,v,t)))) then

rest_total(e,t) := (min_rest(e)-1)*(sum(v in VESSELS)(depart_sol("eval",e,

v,t))) !;if(e = "C-37") then writeln("rest_total(",

e,",",t,") < (",min_rest(e),"-1)*",(sum(v in VESSELS)(depart(e,v,t))),"

=> reset, so rest_total(",e,",",t,") := (",min_rest(e),"-1)*",(sum(v

in VESSELS)(depart(e,v,t)))); end-if

end-if

end-do

end-do!)

RvWfeas := TRUE

forall(e in emps_changed) do

forall(r in ALL_ROLES,t in 1..rest_zero(e)) do

if(rest_zero(e)>=1)then

if(allocate_sol("eval",e,r,t)>0) then

RvWfeas := FALSE

end-if

end-if

end-do

end-do

forall(e in emps_changed) do

forall(t in 1..WEEKS_TO_PLAN-1) do

if(min_rest(e)>=1)then

b:=(min_rest(e)-1)

a:=(WEEKS_TO_PLAN-t)

if(b<=a) then

c:=b

else

c:=a

end-if

end-if

forall(ax in 0..c)do

343

if(sum(r in ALL_ROLES)(allocate_sol("eval",e,r,t+ax))+sum (v in VESSELS)

depart_sol("eval",e,v,t)>=2)then

RvWfeas := FALSE

end-if

end-do

end-do

end-do

if(RvWfeas = FALSE) then feasible := FALSE; end-if

end-if

! Variable linking constraints

if(feasible = true) then

Linkfeas := TRUE

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | e in emps_changed or (e =

"AGENCY" and r in ag_roles_changed)) do

if(cur_allocate(e,r,t) = 0) then

if(chng_allocate(e,r,t) <> allocate_sol("eval",e,r,t)) then

Linkfeas := FALSE

end-if

else

if(chng_allocate(e,r,t) <> cur_allocate(e,r,t) - allocate_sol("eval",e,r,t

)) then

Linkfeas := FALSE

end-if

end-if

end-do

forall(e in emps_changed, v in VESSELS, t in TIME) do

if(cur_board(e,v,t) = 0) then

if(chng_board(e,v,t) <> board_sol("eval",e,v,t)) then

Linkfeas := FALSE

end-if

344

else

if(chng_board(e,v,t) <> cur_board(e,v,t) - board_sol("eval",e,v,t)) then

Linkfeas := FALSE

end-if

end-if

end-do

forall(e in emps_changed, v in VESSELS, t in TIME) do

if(cur_depart(e,v,t) = 0) then

if(chng_depart(e,v,t) <> depart_sol("eval",e,v,t)) then

Linkfeas := FALSE

end-if

else

if(chng_depart(e,v,t) <> cur_depart(e,v,t) - depart_sol("eval",e,v,t))

then

Linkfeas := FALSE

end-if

end-if

end-do

forall(r in ag_roles_changed, t in TIME) do

if(cur_ag_rboard(r,t) = 0) then

if(chng_ag_rboard(r,t) <> ag_rboard_sol("eval",r,t)) then

Linkfeas := FALSE

end-if

else

if(chng_ag_rboard(r,t) <> cur_ag_rboard(r,t) - ag_rboard_sol("eval",r,t))

then

Linkfeas := FALSE

end-if

end-if

end-do

forall(r in ag_roles_changed, t in TIME) do

if(cur_ag_rdepart(r,t) = 0) then

if(chng_ag_rdepart(r,t) <> ag_rdepart_sol("eval",r,t)) then

Linkfeas := FALSE

end-if

else

345

if(chng_ag_rdepart(r,t) <> cur_ag_rdepart(r,t) - ag_rdepart_sol("eval",r,t

)) then

Linkfeas := FALSE

end-if

end-if

end-do

forall(e in emps_changed | e in GUARANTEED) do

if(chng_undertime(e) <> undertime_sol("eval",e) - cur_undertime(e)) then

Linkfeas := FALSE

end-if

if(chng_overtime(e) <> overtime_sol("eval",e) - cur_overtime(e)) then

Linkfeas := FALSE

end-if

end-do

if(Linkfeas = FALSE) then feasible := FALSE; end-if

end-if

! Status of variables

if(feasible = true) then

Statfeas := TRUE

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | e in emps_changed or (e =

"AGENCY" and r in ag_roles_changed)) do

if(allocate_sol("eval",e,r,t) <> 0 and allocate_sol("eval",e,r,t) <> 1)

then Statfeas := FALSE; end-if

if(chng_allocate(e,r,t) <> 0 and chng_allocate(e,r,t) <> 1) then Statfeas

:= FALSE; end-if

end-do

forall(e in emps_changed, v in VESSELS, t in TIME) do

if(board_sol("eval",e,v,t) <> 0 and board_sol("eval",e,v,t) <> 1) then

Statfeas := FALSE; end-if

if(chng_board(e,v,t) <> 0 and chng_board(e,v,t) <> 1) then Statfeas :=

FALSE; end-if

if(depart_sol("eval",e,v,t) <> 0 and depart_sol("eval",e,v,t) <> 1) then

Statfeas := FALSE; end-if

if(chng_depart(e,v,t) <> 0 and chng_depart(e,v,t) <> 1) then Statfeas :=

FALSE; end-if

346

end-do

forall(r in ag_roles_changed, t in TIME) do

if(ag_rboard_sol("eval",r,t) <> 0 and ag_rboard_sol("eval",r,t) <> 1) then

Statfeas := FALSE; end-if

if(chng_ag_rboard(r,t) <> 0 and chng_ag_rboard(r,t) <> 1) then Statfeas :=

FALSE; end-if

if(chng_ag_rdepart(r,t) <> 0 and chng_ag_rdepart(r,t) <> 1) then Statfeas

:= FALSE; end-if

if(ag_rdepart_sol("eval",r,t) <> 0 and ag_rdepart_sol("eval",r,t) <> 1)

then Statfeas := FALSE; end-if

end-do

forall(e in emps_changed | e in GUARANTEED) do

if(undertime_sol("eval",e) < 0) then Statfeas := FALSE; end-if

if(overtime_sol("eval",e) < 0) then Statfeas := FALSE; end-if

end-do

forall(e in emps_changed, t in TIME) do

if(work_total(e,t) < 0) then Statfeas := FALSE; end-if

if(rest_total(e,t) < 0) then Statfeas := FALSE; end-if

end-do

if(Statfeas = FALSE) then

feasible := FALSE

end-if

end-if

if(feasible = FALSE) then

no_infeas := no_infeas +1

end-if

end-procedure

!--

347

procedure calculate_cost

! writeln("Costs may have changed for employees: ",emps_changed)

! writeln("Costs may have changed for agency in roles: ",

ag_roles_changed)

if(to_calculate in SOL_TYPE) then

forall(e in REG_EMP) list_sol("eval",e) := list_sol(to_calculate,e)

forall(r in ALL_ROLES) ag_list_sol("eval",r) := ag_list_sol(to_calculate,r

)

total_cost("eval") := 0

forall(e in REG_EMP) do

if(e not in emps_changed) then

emp_cost("eval",e) := emp_cost("current",e)

!; writeln("Emp ",e," cost is same as current = ",emp_cost("eval

",e))

forall(t in TIME) do

forall(r in ALL_ROLES) do

allocate_sol("eval",e,r,t) := allocate_sol("current",e,r,t)

end-do

forall(v in VESSELS) board_sol("eval",e,v,t) := board_sol("current",e,v,t)

forall(v in VESSELS) depart_sol("eval",e,v,t) := depart_sol("current",e,v,

t)

end-do

if(e in GUARANTEED) then

undertime_sol("eval",e) := undertime_sol("current",e)

overtime_sol("eval",e) := overtime_sol("current",e)

end-if

else

emp_cost("eval",e) := 0

!; writeln("Emp ",e," cost must be recalculated,

now = ",emp_cost("eval",e))

calc_time_count := 0

348

consec_work := work_zero(e)

forall(j in list_sol("eval",e)) do

calc_time_count := calc_time_count +1

forall(r in ALL_ROLES) do

allocate_sol("eval",e,r,calc_time_count) := 0

if(j = r) then

allocate_sol("eval",e,r,calc_time_count) := 1

consec_work := consec_work +1

end-if

end-do

if(j = "rest") then

consec_work := 0

end-if

end-do

forall(v in VESSELS) do

board_sol("eval",e,v,1) := 0

depart_sol("eval",e,v,1) := 0

if((sum(r in ROLES(v)) allocate_sol("eval",e,r,1)) < starting(e,v)) then

depart_sol("eval",e,v,1) := 1

elif((sum(r in ROLES(v)) allocate_sol("eval",e,r,1)) > starting(e,v)) then

board_sol("eval",e,v,1) := 1

end-if

forall(t in TIME | t > 1) do

board_sol("eval",e,v,t) := 0

depart_sol("eval",e,v,t) := 0

if((sum(r in ROLES(v)) allocate_sol("eval",e,r,t)) < (sum(r in ROLES(v))

allocate_sol("eval",e,r,t-1))) then

depart_sol("eval",e,v,t) := 1

349

elif((sum(r in ROLES(v)) allocate_sol("eval",e,r,t)) > (sum(r in ROLES(v))

allocate_sol("eval",e,r,t-1))) then

board_sol("eval",e,v,t) := 1

end-if

end-do

end-do

if(e in GUARANTEED) then

if(g_weeks(e) > (exp_worktime(e) + sum(r in ALL_ROLES, t in TIME)(

allocate_sol("eval",e,r,t)))) then

undertime_sol("eval",e) := integer(g_weeks(e) - (exp_worktime(e) + sum(r

in ALL_ROLES, t in TIME)(allocate_sol("eval",e,r,t))))

overtime_sol("eval",e) := 0

else

overtime_sol("eval",e) := integer((exp_worktime(e) + sum(r in ALL_ROLES, t

in TIME)(allocate_sol("eval",e,r,t)))- g_weeks(e))

undertime_sol("eval",e) := 0

end-if

chng_undertime(e) := integer(undertime_sol("eval",e) - cur_undertime(e))

chng_overtime(e) := integer(overtime_sol("eval",e) - cur_overtime(e))

emp_cost("eval",e) := emp_cost("eval",e) + (under_rate(e)*chng_undertime(e

)) + (over_rate(e)*chng_overtime(e)) !; if((under_rate(e)*

chng_undertime(e)) + (over_rate(e)*chng_overtime(e)) <> 0) then writeln

("Emp ",e,", UT & OT costs: ",(under_rate(e)*chng_undertime(e)) + (

over_rate(e)*chng_overtime(e))); end-if

end-if

forall(r in ALL_ROLES, t in TIME) do

if(cur_allocate(e,r,t) = 0) then chng_allocate(e,r,t) := allocate_sol("

eval",e,r,t)

else chng_allocate(e,r,t) := cur_allocate(e,r,t) - allocate_sol("eval",e,r

,t)

end-if

emp_cost("eval",e) := emp_cost("eval",e) + (work_chng_cost(e,r,t)*

chng_allocate(e,r,t)) !; if((

work_chng_cost(e,r,t)*chng_allocate(e,r,t)) <> 0) then writeln("Emp ",e

,", work change costs: ",(work_chng_cost(e,r,t)*chng_allocate(e,r,t)));

350

end-if

end-do

forall(v in VESSELS, t in TIME) do

if(cur_board(e,v,t) = 0) then chng_board(e,v,t) := board_sol("eval",e,v,t)

else chng_board(e,v,t) := cur_board(e,v,t) - board_sol("eval",e,v,t)

end-if

emp_cost("eval",e) := emp_cost("eval",e) + (board_chng_cost(e,v,t)*

chng_board(e,v,t)) !; if((

board_chng_cost(e,v,t)*chng_board(e,v,t)) <> 0) then writeln("Emp ",e

,", board change costs: ",(board_chng_cost(e,v,t)*chng_board(e,v,t)));

end-if

end-do

forall(v in VESSELS, t in TIME) do

if(cur_depart(e,v,t) = 0) then chng_depart(e,v,t) := depart_sol("eval",e,v

,t)

else chng_depart(e,v,t) := cur_depart(e,v,t) - depart_sol("eval",e,v,t)

end-if

emp_cost("eval",e) := emp_cost("eval",e) + (depart_chng_cost(e,v,t)*

chng_depart(e,v,t)) !; if((

depart_chng_cost(e,v,t)*chng_depart(e,v,t)) <> 0) then writeln("Emp ",e

,", depart change costs: ",(depart_chng_cost(e,v,t)*chng_depart(e,v,t))

); end-if

end-do

end-if

end-do

forall(r in ALL_ROLES) do

if(r not in ag_roles_changed) then

ag_cost("eval",r) := ag_cost("current",r)

!; writeln("Ag Role ",r,"

cost is same as current = ",ag_cost("eval",r))

ag_crewchange("eval",r) := ag_crewchange("current",r)

351

forall(t in TIME) do

allocate_sol("eval","AGENCY",r,t) := allocate_sol("current","AGENCY",r,t)

ag_rboard_sol("eval",r,t) := ag_rboard_sol("current",r,t)

ag_rdepart_sol("eval",r,t) := ag_rdepart_sol("current",r,t)

end-do

else

ag_cost("eval",r) := 0

!; writeln("

Ag Role ",r," cost must be recalculated, now = ",ag_cost("eval",r))

if(ag_starting(r) = 1) then

onboard := true

else

onboard := false

end-if

possible_crewchange := {}

definite_crewchange := {}

forall(t in TIME) do

if(t in ag_list_sol("eval",r)) then

allocate_sol("eval","AGENCY",r,t) := 1

if(onboard) = FALSE then

definite_crewchange += {t}

else

possible_crewchange += {t}

end-if

onboard := TRUE

else

allocate_sol("eval","AGENCY",r,t) := 0

if(onboard) = TRUE then

definite_crewchange += {t}

end-if

onboard := FALSE

end-if

end-do

352

if(ag_list_sol("eval",r) = ag_list_sol("best",r) and iteration > 0) then

ag_crewchange("eval",r) := ag_crewchange("best",r)

!; writeln("Evaluating solution = best

solution (and iteration = ",iteration,") for agency for role ",r,"\t=>

crewchange set = ",ag_evaluating_crewchange(r))

elif(to_calculate <> "current" and ag_list_sol("eval",r) = ag_list_sol("

current",r)) then

ag_crewchange("eval",r) := ag_crewchange("current",r)

!; writeln("Evaluating solution = current

solution (but ’to_calculate <> current) for agency for role ",r,"\t=>

crewchange set = ",ag_evaluating_crewchange(r))

else

ag_crewchange("eval",r) := {}

!; writeln("Evaluating

solution <> best or current solution for agency for role ",r)

if(possible_crewchange = {}) then

forall(p in definite_crewchange) ag_crewchange("eval",r) += {p}

!; writeln("\tPossible crewchange set is empty, so crewchange

set = ",ag_evaluating_crewchange(r))

else

number_to_run := 2^(getsize(possible_crewchange))

!; writeln("\tPossible crewchange set = ",

possible_crewchange,"\t=> must examine ",number_to_run," combinations

...")

forall(x in 1..integer(number_to_run)) do

divide_number := number_to_run

tracking_number := x-1

feas_crewchange := true

crewchange_cost := 0

evaluate_crewchange := {}

consec_work := ag_work_zero(r)

forall(t in TIME) do

353

if(t in possible_crewchange) then

divide_number := divide_number/2

if(tracking_number/divide_number < 1) then

poss_ag_rboard(t) := 0

poss_ag_rdepart(t) := 0

else

evaluate_crewchange += {t}

poss_ag_rboard(t) := 1

poss_ag_rdepart(t) := 1

tracking_number := tracking_number - divide_number

consec_work := 0

end-if

if(cur_ag_rboard(r,t) = 0) then

poss_chng_ag_rboard(t) := poss_ag_rboard(t)

else

poss_chng_ag_rboard(t) := cur_ag_rboard(r,t) - poss_ag_rboard(t)

end-if

if(cur_ag_rdepart(r,t) = 0) then

poss_chng_ag_rdepart(t) := poss_ag_rdepart(t)

else

poss_chng_ag_rdepart(t) := cur_ag_rdepart(r,t) - poss_ag_rdepart(t)

end-if

crewchange_cost := crewchange_cost + (ag_board_chng_cost(r,t)*

poss_chng_ag_rboard(t)) + (ag_depart_chng_cost(r,t)*

poss_chng_ag_rdepart(t))

end-if

end-do

if(feas_crewchange = true) then

354

if(ag_crewchange("eval",r) = {}) then

forall(p in definite_crewchange) ag_crewchange("eval",r) += {p}

forall(p in evaluate_crewchange) ag_crewchange("eval",r) += {p}

min_crewchange_cost := crewchange_cost

!; writeln("\t\tCombination ",

evaluate_crewchange," is first feasible one\tCost = ",crewchange_cost)

else

if(crewchange_cost < min_crewchange_cost) then

ag_crewchange("eval",r) := {}

forall(p in definite_crewchange) ag_crewchange("eval",r) += {p}

forall(p in evaluate_crewchange) ag_crewchange("eval",r) += {p}

min_crewchange_cost := crewchange_cost

!; writeln("\t\tCombination ",

evaluate_crewchange," gives an improvement \tCost = ",crewchange_cost)

! else

! writeln("\t\

tCombination ",evaluate_crewchange," is not an improvement\tCost = ",

crewchange_cost)

end-if

end-if

! else

! writeln("\t\tCombination ",

evaluate_crewchange," is infeasible")

end-if

end-do

! writeln("\tBest solution is to have

crewchange set = ",ag_evaluating_crewchange(r))

end-if

end-if

consec_work := ag_work_zero(r)

forall(t in TIME) do

ag_rboard_sol("eval",r,t) := 0

ag_rdepart_sol("eval",r,t) := 0

355

if(t in ag_crewchange("eval",r)) then

consec_work := 0

if(t = 1) then

if(ag_starting(r) = 1) then

ag_rdepart_sol("eval",r,t) := 1

end-if

else

if(allocate_sol("eval","AGENCY",r,t-1) = 1) then

ag_rdepart_sol("eval",r,t) := 1

end-if

end-if

if(allocate_sol("eval","AGENCY",r,t) = 1) then

ag_rboard_sol("eval",r,t) := 1

end-if

end-if

if(cur_allocate("AGENCY",r,t) = 0) then chng_allocate("AGENCY",r,t) :=

allocate_sol("eval","AGENCY",r,t)

else chng_allocate("AGENCY",r,t) := cur_allocate("AGENCY",r,t) -

allocate_sol("eval","AGENCY",r,t)

end-if

ag_cost("eval",r) := ag_cost("eval",r) + (work_chng_cost("AGENCY",r,t)*

chng_allocate("AGENCY",r,t)) !; if((

work_chng_cost("AGENCY",r,t)*chng_allocate("AGENCY",r,t)) <> 0) then

writeln("Ag Role ",r,", work change costs: ",(work_chng_cost("AGENCY",r

,t)*chng_allocate("AGENCY",r,t))); end-if

!; if(r = "Ospr-01" and to_calculate = "current") then writeln("

In time period ",t,", allocate = ",allocate_sol("eval","AGENCY",r,t),"

=> change = ",chng_allocate("AGENCY",r,t)," => added cost = ",

work_chng_cost("AGENCY",r,t),"*",chng_allocate("AGENCY",r,t)); end-if

if(cur_ag_rboard(r,t) = 0) then chng_ag_rboard(r,t) := ag_rboard_sol("eval

",r,t)

else chng_ag_rboard(r,t) := cur_ag_rboard(r,t) - ag_rboard_sol("eval",r,t)

end-if

356

ag_cost("eval",r) := ag_cost("eval",r) + (ag_board_chng_cost(r,t)*

chng_ag_rboard(r,t))

!; if((ag_board_chng_cost(r,t)*chng_ag_rboard(r,t)) <> 0) then writeln

("Ag Role ",r,", board change costs: ",(ag_board_chng_cost(r,t)*

chng_ag_rboard(r,t))); end-if

!; if(r = "Ospr-01" and

to_calculate = "current") then writeln("In time period ",t,", board =

",ag_rboard_sol("eval",r,t)," => change = ",chng_ag_rboard(r,t)," =>

added cost = ",ag_board_chng_cost(r,t),"*",chng_ag_rboard(r,t)); end-if

if(cur_ag_rdepart(r,t) = 0) then chng_ag_rdepart(r,t) := ag_rdepart_sol("

eval",r,t)

else chng_ag_rdepart(r,t) := cur_ag_rdepart(r,t) - ag_rdepart_sol("eval",r

,t)

end-if

ag_cost("eval",r) := ag_cost("eval",r) + (ag_depart_chng_cost(r,t)*

chng_ag_rdepart(r,t))

!; if((ag_depart_chng_cost(r,t)*chng_ag_rdepart(r,t)) <> 0) then

writeln("Ag Role ",r,", depart change costs: ",(ag_depart_chng_cost(r,t

)*chng_ag_rdepart(r,t))); end-if

!; if(r = "Ospr-01" and

to_calculate = "current") then writeln("In time period ",t,", depart =

",ag_rdepart_sol("eval",r,t)," => change = ",chng_ag_rdepart(r,t)," =>

added cost = ",ag_depart_chng_cost(r,t),"*",chng_ag_rdepart(r,t)); end-

if

end-do

end-if

end-do

total_cost("eval") := (sum(e in REG_EMP) emp_cost("eval",e)) + (sum(r in

ALL_ROLES) ag_cost("eval",r))

transfer_sol_from := "eval"

357

transfer_sol_to := to_calculate

transfer_solution

else

writeln("ERROR - incorrect option selected for evaluation")

end-if

if(to_calculate in FEAS_CHECK) then

check_feasibility

end-if

end-procedure

!---

procedure evaluate_backwards

extend_len_bkwd := max_bkwd_extend

while(do_extend_bkwd = false and extend_len_bkwd > 0) do

emps_changed := {}

ag_roles_changed := {}

forall(e in REG_EMP) list_sol("backward",e) := list_sol("current",e)

forall(r in ALL_ROLES) ag_list_sol("backward",r) := ag_list_sol("current",

r)

list_sol("backward",emp_extend) := []

emps_changed += {emp_extend}

time_count := 0

rest_count := 0

358

length_count := work_zero(emp_extend)

forall(r in ALL_ROLES) reserve_list_bkwd(r) := {}

in_reserve_bkwd := 0

forall(j in list_sol("current",emp_extend)) do

time_count := time_count +1

if(time_count <= block_end) then

list_sol("backward",emp_extend) += [j]

if(j = "rest") then length_count := 0

else length_count := length_count + 1

end-if

elif(time_count <= block_end + extend_len_bkwd) then

list_sol("backward",emp_extend) += [task_extend]

!; if(j <>

task_extend) then writeln("\t Add role ",task_extend," at time ",

time_count," for extending emp"); end-if

length_count := length_count + 1

if(j <> task_extend and j <> "rest") then

reserve_list_bkwd(j) += {time_count}

!; writeln("\tRemove

role ",j," at time ",time_count," for extending emp")

in_reserve_bkwd := in_reserve_bkwd + 1

end-if

else

if(j <> "rest" and (rest_count < min_rest(emp_extend) or length_count >

max_work(emp_extend))) then

list_sol("backward",emp_extend) += ["rest"]

reserve_list_bkwd(j) += {time_count}

!; writeln("\tRemove

role ",j," at time ",time_count," for extending emp")

in_reserve_bkwd := in_reserve_bkwd + 1

rest_count := rest_count +1

length_count := 0

else

list_sol("backward",emp_extend) += [j]

359

if(j = "rest") then

rest_count := rest_count +1

length_count := 0

else

length_count := length_count + 1

end-if

end-if

end-if

end-do

conflict_found_bkwd := 0

forall(i in 1..extend_len_bkwd) do

if((block_end+i) in ag_list_sol("backward",task_extend)) then

! writeln("\tFor i = ",i,", conflicting task is

currently assigned to agency crew")

conflict_found_bkwd := conflict_found_bkwd + 1

ag_list_sol("backward",task_extend) -= {block_end+i}

!; writeln("\tRemove role ",

task_extend," at time ",block_end+i," for agency crew")

ag_roles_changed += {task_extend}

end-if

end-do

forall(r in ALL_ROLES | reserve_list_bkwd(r) <> {}) do

removed := {}

forall(t in reserve_list_bkwd(r)) do

if(t-1 in ag_list_sol("backward",r)) then

ag_list_sol("backward",r) += {t}

!; writeln("\

t Add role ",r," at time ",t," for agency crew")

ag_roles_changed += {r}

removed += {t}

in_reserve_bkwd := in_reserve_bkwd - 1

end-if

end-do

forall(t in removed) reserve_list_bkwd(r) -= {t}

end-do

360

forall(e in REG_EMP | e <> emp_extend) do

if(conflict_found_bkwd < extend_len_bkwd or in_reserve_bkwd > 0) then

list_sol("backward",e) := []

time_count := 0

rest_count := 0

length_count := work_zero(e)

add_to_emp := ""

if(work_zero(e) > 0) then

prev_work := true

rest_count := 0

else

prev_work := false

rest_count := min_rest(e) - rest_zero(e)

end-if

forall(j in list_sol("current",e)) do

time_count := time_count +1

if(time_count <= block_end) then

list_sol("backward",e) += [j]

if(j <> "rest") then

length_count := length_count + 1

prev_work := true

rest_count := 0

else

length_count := 0

prev_work := false

rest_count := rest_count + 1

end-if

else

if(j = "rest") then

if(add_to_emp <> "") then

list_sol("backward",e) += [add_to_emp]

!; writeln("\t Add role ",add_to_emp," at

time ",time_count," for employee ",e)

361

emps_changed += {e}

length_count := length_count + 1

reserve_list_bkwd(add_to_emp) -= {time_count}

in_reserve_bkwd := in_reserve_bkwd - 1

rest_count := 0

prev_work := true

if(time_count < WEEKS_TO_PLAN) then

if(length_count >= max_work(e) or eligable(e,add_to_emp,time_count+1) < 1

or time_count+1 not in reserve_list_bkwd(add_to_emp)) then

add_to_emp := ""

end-if

else

add_to_emp := ""

end-if

else

list_sol("backward",e) += [j]

length_count := 0

rest_count := rest_count + 1

prev_work := false

end-if

else

if(j = task_extend and time_count <= block_end + extend_len_bkwd) then

! writeln("\tFor i

= ",block_start-time_count,", conflicting task is currently assigned to

",e)

conflict_found_bkwd := conflict_found_bkwd + 1

list_sol("backward",e) += ["rest"]

!; writeln("\tRemove role ",j," at

time ",time_count," for employee ",e)

emps_changed += {e}

length_count := 0

rest_count := rest_count + 1

prev_work := false

else

if(prev_work = false and rest_count < min_rest(e)) then

362

list_sol("backward",e) += ["rest"]

!; writeln("\tRemove role ",j," at time ",

time_count," for employee ",e)

ag_list_sol("backward",j) += {time_count}

!; writeln("\t Add role ",j," at time ",

time_count," for agency crew")

ag_roles_changed += {j}

rest_count := rest_count + 1

else

list_sol("backward",e) += [j]

length_count := length_count + 1

rest_count := 0

prev_work := true

if(time_count < WEEKS_TO_PLAN) then

if(length_count < max_work(e) and eligable(e,j,time_count+1) > 0 and

time_count+1 in reserve_list_bkwd(j)) then

add_to_emp := j

else

add_to_emp := ""

end-if

else

add_to_emp := ""

end-if

end-if

end-if

end-if

end-if

end-do

end-if

end-do

forall(r in ALL_ROLES | reserve_list_bkwd(r) <> {}) do

! writeln("\tTimes still ’in reserve’ for role ",r,":

",reserve_list_bkwd(r))

forall(t in reserve_list_bkwd(r)) ag_list_sol("backward",r) += {t}

!; forall(t in

reserve_list_bkwd(r)) writeln("\t Add role ",r," at time ",t," for

agency crew")

363

ag_roles_changed += {r}

end-do

! Check if this solution is "tabu":

to_check_tabu := "backward"

check_tabu

if(tabu = true) then

no_tabu := no_tabu + 1

else

! Now, evaluate cost and decide whether to accept these changes...

! If the extending cost is negative we should accept the change.

! It it is zero we should probably accept the change.

! If it is positive perhaps we should:

! Evaluate the cost of the alternative forward extension.

! If the forward extension yields a negative (or non-positive

?) cost, accept this.

! Otherwise identify whichever is the cheapest...

! ... and carry it out so long as it is within a certain cost

range?

! Or perhaps evaluate based on another property? E.g.

! If it is taking a task away from agency crew?

! Or not removing another working task (from the extending

schedule)

! Then is it a more promising move?

to_calculate := "backward"

calculate_cost

if(feasible = true) then

extend_cost_bkwd := total_cost("backward") - total_cost("current")

if(total_cost("backward") < total_cost(accept_rule)) then !!!!!!!!

Decision rule for accepting

do_extend_bkwd := true

!!!!!!!! backward extension

no_nonreduce := 0

364

emps_to_update := emps_changed

update_swaps_and_changes

else

if(candidate_exist = false or total_cost("backward") < total_cost("

candidate")) then

writeln("New candidate solution using backward extension (change in cost =

",extend_cost_bkwd,")")

writeln("Details - Emp: ",emp_extend,"\tRole: ",task_extend,"\tOrig start:

",block_start,"\tOrig End: ",block_end,"\tExt length: ",

extend_len_bkwd)

writeln

candidate_exist := true

transfer_sol_from := "backward"

transfer_sol_to := "candidate"

transfer_solution

candidate_cost := extend_cost_bkwd

forall(e in emps_changed) candidate_emps += {e}

end-if

end-if

end-if

end-if

if(do_extend_bkwd = false) then extend_len_bkwd := extend_len_bkwd - 1 ;

end-if

end-do

end-procedure

! -

procedure evaluate_forwards

extend_len_fwd := max_fwd_extend

while(do_extend_fwd = false and extend_len_fwd > 0) do

365

emps_changed := {}

ag_roles_changed := {}

forall(e in REG_EMP) list_sol("forward",e) := list_sol("current",e)

forall(r in ALL_ROLES) ag_list_sol("forward",r) := ag_list_sol("current",r

)

reverse_current_list := getreverse(list_sol("current",emp_extend))

reverse_new_list := []

time_count := WEEKS_TO_PLAN+1

rest_count := 0

forall(r in ALL_ROLES) reserve_list_fwd(r) := {}

in_reserve_fwd := 0

forall(j in reverse_current_list) do

time_count := time_count -1

if(time_count >= block_start) then

reverse_new_list += [j]

!; writeln("\t Keep role ",j," at time ",time_count," for

extending emp")

elif(time_count >= block_start - extend_len_fwd) then

if(j <> task_extend) then

reverse_new_list += [task_extend]

!;

writeln("\t Add role ",task_extend," at time ",time_count," for

extending emp")

if(j <> "rest") then

reserve_list_fwd(j) += {time_count}

!; writeln("\

tRemove role ",j," at time ",time_count," for extending emp")

in_reserve_fwd := in_reserve_fwd + 1

end-if

end-if

else

366

if(j <> "rest" and rest_count < min_rest(emp_extend)) then

reverse_new_list += ["rest"]

reserve_list_fwd(j) += {time_count}

!; writeln("\

tRemove role ",j," at time ",time_count," for extending emp")

in_reserve_fwd := in_reserve_fwd + 1

ag_roles_changed += {j}

rest_count := rest_count +1

else

reverse_new_list += [j]

!;

writeln("\t Keep role ",j," at time ",time_count," for extending emp")

if(j = "rest") then rest_count := rest_count +1; end-if

end-if

end-if

end-do

list_sol("forward",emp_extend) := getreverse(reverse_new_list)

emps_changed += {emp_extend}

conflict_found_fwd := 0

forall(i in 1..extend_len_fwd) do

if((block_start-i) in ag_list_sol("forward",task_extend)) then

! writeln("\tFor i = ",i,", conflicting task is

currently assigned to agency crew")

conflict_found_fwd := conflict_found_fwd + 1

ag_list_sol("forward",task_extend) -= {block_start-i}

!; writeln("\tRemove role ",

task_extend," at time ",block_end+i," for agency crew")

ag_roles_changed += {task_extend}

end-if

end-do

forall(r in ALL_ROLES | reserve_list_fwd(r) <> {}) do

removed := {}

forall(t in reserve_list_fwd(r)) do

if(t+1 in ag_list_sol("forward",r)) then

367

ag_list_sol("forward",r) += {t}

!; writeln("\

t Add role ",r," at time ",t," for agency crew")

ag_roles_changed += {r}

removed += {t}

in_reserve_fwd := in_reserve_fwd - 1

end-if

end-do

forall(t in removed) reserve_list_fwd(r) -= {t}

end-do

forall(e in REG_EMP | e <> emp_extend) do

if(conflict_found_fwd < extend_len_fwd or in_reserve_fwd > 0) then

reverse_current_list := getreverse(list_sol("current",e))

reverse_new_list := []

time_count := WEEKS_TO_PLAN + 1

rest_count := min_rest(e)

length_count := 0

add_to_emp := ""

prev_work := false

forall(j in reverse_current_list) do

time_count := time_count -1

if(time_count >= block_start) then

reverse_new_list += [j]

!; writeln("\

t Keep role ",j," at time ",time_count," for employee ",e)

if(j <> "rest") then

length_count := length_count + 1

prev_work := true

else

length_count := 0

prev_work := false

end-if

else

368

if(j = "rest") then

if(add_to_emp <> "") then

reverse_new_list += [add_to_emp]

!; writeln("\t Add role ",

add_to_emp," at time ",time_count," for employee ",e)

emps_changed += {e}

length_count := length_count + 1

reserve_list_fwd(add_to_emp) -= {time_count}

in_reserve_fwd := in_reserve_fwd - 1

prev_work := true

rest_count := 0

if(time_count > 1) then

if(length_count >= max_work(e) or eligable(e,add_to_emp,time_count-1) < 1

or time_count-1 not in reserve_list_fwd(add_to_emp) or time_count-1 <=

rest_zero(e)) then

add_to_emp := ""

else

if(((sum(v in VESSELS | add_to_emp not in ROLES(v)) starting(e,v)) > 0 and

time_count-1 <= min_rest(e)) or ((sum(v in VESSELS | add_to_emp in

ROLES(v)) starting(e,v)) > 0 and time_count-1 >= 2 and time_count-1 <=

min_rest(e))) then

add_to_emp := ""

end-if

end-if

else

add_to_emp := ""

end-if

else

reverse_new_list += [j]

!; writeln("\t Keep role ",j

," at time ",time_count," for employee ",e)

length_count := 0

rest_count := rest_count + 1

prev_work := false

end-if

else

369

if(j = task_extend and time_count >= block_start - extend_len_fwd) then

! writeln("\tFor i

= ",block_start-time_count,", conflicting task is currently assigned to

",e)

conflict_found_fwd := conflict_found_fwd + 1

reverse_new_list += ["rest"]

!; writeln("\tRemove role ",j," at

time ",time_count," for employee ",e)

emps_changed += {e}

length_count := 0

rest_count := rest_count + 1

prev_work := false

else

if(prev_work = false and rest_count < min_rest(e)) then

reverse_new_list += ["rest"]

!; writeln("\tRemove role ",j," at time ",

time_count," for employee ",e)

ag_list_sol("forward",j) += {time_count}

!; writeln("\t Add role ",j," at time ",

time_count," for agency crew")

ag_roles_changed += {j}

rest_count := rest_count + 1

else

reverse_new_list += [j]

!; writeln("\t Keep role ",j," at

time ",time_count," for employee ",e)

length_count := length_count + 1

rest_count := 0

prev_work := true

if(time_count > 1) then

if(length_count < max_work(e) and eligable(e,j,time_count-1) > 0 and

time_count-1 in reserve_list_fwd(j) and time_count-1 > rest_zero(e))

then

if(((sum(v in VESSELS | add_to_emp not in ROLES(v)) starting(e,v)) < 1 or

time_count-1 > min_rest(e)) and ((sum(v in VESSELS | add_to_emp in

ROLES(v)) starting(e,v)) < 1 or time_count-1 = 1 or time_count-1 >

min_rest(e))) then

370

add_to_emp := j

else

add_to_emp := ""

end-if

else

add_to_emp := ""

end-if

else

add_to_emp := ""

end-if

end-if

end-if

end-if

end-if

end-do

list_sol("forward",e) := getreverse(reverse_new_list)

end-if

end-do

forall(r in ALL_ROLES | reserve_list_fwd(r) <> {}) do

forall(t in reserve_list_fwd(r)) ag_list_sol("forward",r) += {t}

!; forall(t in

reserve_list_fwd(r)) writeln("\t Add role ",r," at time ",t," for

agency crew")

ag_roles_changed += {r}

end-do

! Check if this solution is "tabu":

to_check_tabu := "forward"

check_tabu

if(tabu = true) then

no_tabu := no_tabu + 1

else

371

! Now, evaluate cost and decide whether to accept these changes...

! If the extending cost is negative we should accept the change.

! It it is zero we should probably accept the change.

! If it is positive perhaps we should:

! Evaluate the cost of the alternative forward extension.

! If the forward extension yields a negative (or non-positive

?) cost, accept this.

! Otherwise identify whichever is the cheapest...

! ... and carry it out so long as it is within a certain cost

range?

! Or perhaps evaluate based on another property? E.g.

! If it is taking a task away from agency crew?

! Or not removing another working task (from the extending

schedule)

! Then is it a more promising move?

to_calculate := "forward"

calculate_cost

if(feasible = true) then

extend_cost_fwd := total_cost("forward") - total_cost("current")

if(total_cost("forward") < total_cost(accept_rule)) then !!!!!!!!

Decision rule for accepting

do_extend_fwd := true

!!!!!!!! forward extension

no_nonreduce := 0

emps_to_update := emps_changed

update_swaps_and_changes

else

if(candidate_exist = false or total_cost("forward") < total_cost("

candidate")) then

candidate_exist := true

writeln("New candidate solution using forward extension (change in cost =

",extend_cost_fwd,")")

writeln("Details - Emp: ",emp_extend,"\tRole: ",task_extend,"\tOrig start:

",block_start,"\tOrig End: ",block_end,"\tExt length: ",extend_len_fwd

372

)

writeln

transfer_sol_from := "forward"

transfer_sol_to := "candidate"

transfer_solution

candidate_cost := extend_cost_fwd

forall(e in emps_changed) candidate_emps += {e}

end-if

end-if

end-if

end-if

if(do_extend_fwd = false) then extend_len_fwd := extend_len_fwd - 1; end-

if

end-do

end-procedure

! -

procedure swap_calculation

emps_changed := {}

ag_roles_changed := {}

forall(e in REG_EMP) list_sol("swap",e) := list_sol("current",e)

forall(r in ALL_ROLES) ag_list_sol("swap",r) := ag_list_sol("current",r)

list_sol("swap",emp_extend) := []

emps_changed += {emp_extend}

373

time_count := 0

forall(j in list_sol("current",emp_extend)) do

time_count := time_count +1

if(time_count < block_start and time_count < swap_block_start) then

if(swap_block_start < block_start and time_count >= (swap_block_start -

min_rest(emp_extend)) and j <> "rest") then

list_sol("swap",emp_extend) += ["rest"]

ag_list_sol("swap",j) += {time_count}

ag_roles_changed += {j}

else

list_sol("swap",emp_extend) += [j]

end-if

elif(time_count >= swap_block_start and time_count <= swap_block_end) then

list_sol("swap",emp_extend) += [swap_task]

if(j <> "rest" and (time_count < block_start or time_count > block_end))

then

ag_list_sol("swap",j) += {time_count}

ag_roles_changed += {j}

end-if

elif(time_count >= block_start and time_count <= block_end) then

list_sol("swap",emp_extend) += ["rest"]

else

if(swap_block_end > block_end and time_count <= (swap_block_end + min_rest

(emp_extend)) and j <> "rest") then

list_sol("swap",emp_extend) += ["rest"]

ag_list_sol("swap",j) += {time_count}

ag_roles_changed += {j}

else

list_sol("swap",emp_extend) += [j]

end-if

end-if

end-do

374

if(swap_emp <> "AGENCY") then

list_sol("swap",swap_emp) := []

emps_changed += {swap_emp}

time_count := 0

!if(swap_task = "rest") then writeln("Original block starts / ends: ",

block_start," / ",block_end,"\tSwap block starts / ends: ",

swap_block_start," / ",swap_block_end); end-if

forall(j in list_sol("current",swap_emp)) do

time_count := time_count +1

if(time_count < block_start and time_count < swap_block_start) then

if((block_start < swap_block_start or swap_task = "rest") and time_count

>= (block_start - min_rest(swap_emp)) and j <> "rest") then

list_sol("swap",swap_emp) += ["rest"]

!; if(swap_task = "rest") then writeln("At time

",time_count," replace task ",j," with ’rest’"); end-if

ag_list_sol("swap",j) += {time_count}

ag_roles_changed += {j}

else

list_sol("swap",swap_emp) += [j]

!; if(swap_task = "rest") then writeln("At

time ",time_count," item ",j," remains unchanged (time is before block

starts)"); end-if

end-if

elif(time_count >= block_start and time_count <= block_end) then

list_sol("swap",swap_emp) += [task_extend]

!; if(swap_task = "rest") then writeln("At

time ",time_count," insert the extending task ",task_extend); end-if

if(j <> "rest" and (time_count < swap_block_start or time_count >

swap_block_end)) then

ag_list_sol("swap",j) += {time_count}

!; if(swap_task = "rest") then writeln("\t(This

is done in place of task ",j); end-if

375

ag_roles_changed += {j}

end-if

elif(time_count >= swap_block_start and time_count <= swap_block_end) then

list_sol("swap",swap_emp) += ["rest"]

!; if(swap_task = "rest") then writeln("At

time ",time_count," we insert a ’rest’ task"); end-if

else

if((block_end > swap_block_end or swap_task = "rest") and time_count <= (

block_end + min_rest(swap_emp)) and j <> "rest") then

list_sol("swap",swap_emp) += ["rest"]

!; if(swap_task = "rest") then writeln("At time

",time_count," replace task ",j," with ’rest’"); end-if

ag_list_sol("swap",j) += {time_count}

ag_roles_changed += {j}

else

list_sol("swap",swap_emp) += [j]

!; if(swap_task = "rest") then writeln("At

time ",time_count," item ",j," remains unchanged (time is after block

ends)"); end-if

end-if

end-if

end-do

else

forall(t in block_start..block_end) do

if(t > 0) then ag_list_sol("swap",task_extend) += {t}; end-if

end-do

ag_roles_changed += {task_extend}

if(swap_task <> "rest") then

forall(t in swap_block_start..swap_block_end) ag_list_sol("swap",swap_task

) -= {t}

ag_roles_changed += {swap_task}

end-if

376

end-if

! Check if this solution is "tabu":

to_check_tabu := "swap"

check_tabu

if(tabu = true) then

no_tabu := no_tabu + 1

else

to_calculate := "swap"

calculate_cost

if(feasible = true) then

swapping_cost := total_cost("swap") - total_cost("current")

if(total_cost("swap") < total_cost(accept_rule)) then !!!!!!!! Decision

rule for accepting

do_swap := true

!!!!!!!! swap procedure

no_nonreduce := 0

emps_to_update := emps_changed

update_swaps_and_changes

else

if(candidate_exist = false or total_cost("swap") < total_cost("candidate")

) then

candidate_exist := true

writeln("New candidate solution using swap procedure (change in cost = ",

swapping_cost,")")

writeln(" Details - Emp: ",emp_extend," \tRole: ",task_extend,"\tStart: ",

block_start,"\tEnd: ",block_end)

writeln("Swap with - Emp: ",swap_emp," \tRole: ",swap_task,"\tStart: ",

swap_block_start,"\tEnd: ",swap_block_end)

writeln

transfer_sol_from := "swap"

377

transfer_sol_to := "candidate"

transfer_solution

candidate_cost := swapping_cost

candidate_emps := {emp_extend}

if(swap_emp <> "AGENCY") then candidate_emps += {swap_emp}; end-if

end-if

end-if

end-if

end-if

end-procedure

! -

procedure evaluate_swap

ag_swappable := true

forall(t in block_start..block_end | t > 0) do

if(eligable("AGENCY",task_extend,t) < 1) then ag_swappable := false; end-

if

end-do

if(ag_swappable = true) then

forall(r in ALL_ROLES | r <> task_extend) do

if(do_swap = false) then

swap_emp := ""

swap_task := ""

swap_block_start := 0

swap_block_end := 0

swap_block_len := 0

378

swap_find_time := 0

swap_block_found := false

too_early := false

swap_allowed := true

end-if

forall(t in TIME) do

if(do_swap = false) then

swap_new_block := FALSE

if(swap_block_found = FALSE and t in ag_list_sol("current",r) and t <=

swap_block_latest) then

if(t < swap_block_earliest) then too_early := true; end-if

if((sum(v in VESSELS | r in ROLES(v)) starting(emp_extend,v)) > 0 and t >=

2 and t <= min_rest(emp_extend)) then too_early := true; end-if

if((sum(v in VESSELS | r not in ROLES(v)) starting(emp_extend,v)) > 0 and

t <= min_rest(emp_extend)) then too_early := true; end-if

if(eligable(emp_extend,r,t) < 1) then

swap_allowed := false

end-if

swap_new_block := TRUE

swap_emp := "AGENCY"

swap_task := r

swap_block_start := t

elif(swap_block_found = TRUE and t in ag_list_sol("current",r)) then

if(t in ag_crewchange("current",r)) then

swap_block_end := t-1

swap_block_len := (swap_block_end - swap_block_start) +1

if(too_early = false and swap_allowed = true) then

if(swap_block_len <= max_work(emp_extend)) then

swap_calculation

end-if

379

end-if

if(t <= swap_block_latest and do_swap = false) then

! also, new block is starting...

swap_task := r

swap_block_start := t

if(t < swap_block_earliest) then too_early := true

elif((sum(v in VESSELS | r in ROLES(v)) starting(emp_extend,v)) > 0 and t

>= 2 and t <= min_rest(emp_extend)) then too_early := true

elif((sum(v in VESSELS | r not in ROLES(v)) starting(emp_extend,v)) > 0

and t <= min_rest(emp_extend)) then too_early := true

else too_early := false

end-if

if(eligable(emp_extend,r,t) < 1) then swap_allowed := false

else swap_allowed := true

end-if

swap_block_end := 0

swap_block_len := 0

else

swap_block_found := false

end-if

else

if(t > swap_block_latest) then

swap_block_found := false

else

if(eligable(emp_extend,r,t) < 1) then

swap_allowed := false

end-if

end-if

end-if

elif(swap_block_found = TRUE and t not in ag_list_sol("current",r)) then

380

swap_block_end := t-1

swap_block_len := (swap_block_end - swap_block_start) +1

if(too_early = false and swap_allowed = true) then

if(swap_block_len <= max_work(emp_extend)) then

swap_calculation

end-if

end-if

swap_block_found := FALSE

if(do_swap = false) then ! and reset...

too_early := false

swap_allowed := true

swap_block_start := 0

swap_block_end := 0

swap_block_len := 0

swap_emp := ""

swap_task := ""

end-if

end-if

if(swap_new_block = TRUE) then

swap_block_found := TRUE

swap_new_block := FALSE

end-if

! if we are at the end of the planning period, conclude any remaining

blocks

if(t = WEEKS_TO_PLAN and swap_block_found = TRUE) then

if(eligable(emp_extend,r,t) < 1) then

swap_allowed := false

end-if

swap_block_end := t

swap_block_len := (swap_block_end - swap_block_start) +1

381

if(too_early = false and swap_allowed = true) then

if(swap_block_len <= max_work(emp_extend)) then

swap_calculation

end-if

end-if

end-if

end-if

end-do

end-do

! could also potentially "swap" with an un-used Agency employee

if(do_swap = false) then

swap_emp := "AGENCY"

swap_task := "rest"

swap_block_start := block_start

swap_block_end := block_end

swap_calculation

end-if

end-if

forall(e in REG_EMP) do

swappable_emp(e) := true

if(e = emp_extend) then swappable_emp(e) := false; end-if

if(block_len > max_work(e)) then swappable_emp(e) := false; end-if

if(block_start <= rest_zero(e)) then swappable_emp(e) := false; end-if

forall(i in block_start..block_end | i > 0) do

if(eligable(e,task_extend,i) < 1) then swappable_emp(e) := false; end-if

end-do

382

if((sum(v in VESSELS | task_extend not in ROLES(v)) starting(e,v)) > 0 and

block_start <= min_rest(e)) then swappable_emp(e) := false; end-if

if((sum(v in VESSELS | task_extend in ROLES(v)) starting(e,v)) > 0) then

if(block_start >= 2 and block_start <= min_rest(e)) then swappable_emp(e)

:= false; end-if

if(block_start <= 1 and (block_len + work_zero(e)) > max_work(e)) then

swappable_emp(e) := false; end-if

end-if

end-do

! forall(e in ordered_list | swappable_emp(e) = true and (e not in

swaps_examined(emp_extend) or do_kick = true)) do

forall(e in ordered_list | swappable_emp(e) = true and (e not in

swaps_examined(emp_extend))) do

if(do_swap = false) then

swap_emp := ""

swap_task := ""

swap_vessel := ""

swap_block_start := 0

swap_block_end := 0

swap_block_len := 0

swap_find_time := 0

swap_block_found := false

too_early := false

swap_allowed := true

all_rest := true

end-if

new_list := list_sol("current",e)

while(do_swap = false and getsize(new_list) > 0) do

383

! forall(j in new_list) do

! if(do_swap = false) then

j := getfirst(new_list)

cuthead(new_list,1)

swap_find_time := swap_find_time + 1 !; writeln("\

tTime: ",swap_find_time,", j = ",j)

if(j <> "rest" and swap_find_time >= swap_block_earliest and

swap_find_time <= swap_block_latest) then

all_rest := false

end-if

swap_new_block := FALSE

if(swap_block_found = FALSE and j <> "rest" and swap_find_time <=

swap_block_latest) then

if(swap_find_time < swap_block_earliest) then too_early := true; end-if

if((sum(v in VESSELS | j in ROLES(v)) starting(emp_extend,v)) > 0 and

swap_find_time >= 2 and swap_find_time <= min_rest(emp_extend)) then

too_early := true; end-if

if((sum(v in VESSELS | j not in ROLES(v)) starting(emp_extend,v)) > 0 and

swap_find_time <= min_rest(emp_extend)) then too_early := true; end-if

if(eligable(emp_extend,j,swap_find_time) < 1) then

swap_allowed := false

end-if

swap_new_block := TRUE

swap_emp := e

swap_task := j

swap_block_start := swap_find_time

forall(v in VESSELS, k in ROLES(v)) do

if(j = k) then

swap_vessel := v

end-if

end-do

384

elif(swap_block_found = TRUE and j <> "rest") then

if(j <> swap_task) then

link_to_vessel := FALSE

if(swap_vessel <> "") then

forall(k in ROLES(vessel_extend)) do

if(j = k) then

link_to_vessel := TRUE

end-if

end-do

end-if

if(link_to_vessel) = TRUE then

if(swap_find_time > swap_block_latest) then

swap_block_found := false

else

if(eligable(emp_extend,j,swap_find_time) < 1) then

swap_allowed := false

else

swap_task := j

end-if

end-if

else

swap_block_end := swap_find_time-1

swap_block_len := (swap_block_end - swap_block_start) +1

if(too_early = false and swap_allowed = true) then

if(swap_block_len <= max_work(emp_extend)) then

swap_calculation

end-if

end-if

if(swap_find_time <= swap_block_latest and do_swap = false) then

! also, new block is starting...

swap_task_extend := j

385

swap_block_start := swap_find_time

if(swap_find_time < swap_block_earliest) then too_early := true

elif((sum(v in VESSELS | j in ROLES(v)) starting(emp_extend,v)) > 0 and

swap_find_time >= 2 and swap_find_time <= min_rest(emp_extend)) then

too_early := true

elif((sum(v in VESSELS | j not in ROLES(v)) starting(emp_extend,v)) > 0

and swap_find_time <= min_rest(emp_extend)) then too_early := true

else too_early := false

end-if

if(eligable(emp_extend,j,swap_find_time) < 1) then swap_allowed := false

else swap_allowed := true

end-if

forall(v in VESSELS, k in ROLES(v)) do

if(j = k) then

swap_vessel := v

end-if

end-do

swap_block_end := 0

swap_block_len := 0

else

swap_block_found := false

end-if

end-if

else

if(swap_find_time > swap_block_latest) then

swap_block_found := false

else

if(swap_allowed = true and eligable(emp_extend,j,swap_find_time) < 1) then

swap_allowed := false

end-if

end-if

386

end-if

elif(swap_block_found = TRUE and j = "rest") then

swap_block_end := swap_find_time-1

swap_block_len := (swap_block_end - swap_block_start) +1

if(too_early = false and swap_allowed = true) then

if(swap_block_len <= max_work(emp_extend)) then

swap_calculation

end-if

end-if

swap_block_found := FALSE

if(do_swap = false) then

! and reset...

too_early := false

swap_allowed := true

swap_block_start := 0

swap_block_end := 0

swap_block_len := 0

swap_emp := ""

swap_task := ""

swap_vessel := ""

end-if

end-if

if(swap_new_block = TRUE) then

swap_block_found := TRUE

swap_new_block := FALSE

end-if

! if we are at the end of the planning period, conclude any remaining

blocks

if(swap_find_time = WEEKS_TO_PLAN and swap_block_found = TRUE) then

if(eligable(emp_extend,j,swap_find_time) < 1) then

387

swap_allowed := false

end-if

swap_block_end := swap_find_time

swap_block_len := (swap_block_end - swap_block_start) +1

if(too_early = false and swap_allowed = true) then

if(swap_block_len <= max_work(emp_extend)) then

swap_calculation

end-if

end-if

end-if

! end-if

end-do

if(do_swap = false and all_rest = true) then

swap_emp := e

swap_task := "rest"

swap_block_start := block_start

swap_block_end := block_end

swap_calculation

end-if

end-do

end-procedure

!---

388

procedure evaluate_block

! Examine the block which has been identified as being useable

extend_cost_bkwd := 0

extend_cost_fwd := 0

swapping_cost := 0

do_extend_bkwd := FALSE

do_extend_fwd := FALSE

do_swap := FALSE

if(max_work(emp_extend) - block_len > 0) then

max_bkwd_extend := max_work(emp_extend) - block_len

max_fwd_extend := max_work(emp_extend) - block_len

else

max_bkwd_extend := 0

max_fwd_extend := 0

end-if

! Can the block be extended backwards?

if(max_bkwd_extend > WEEKS_TO_PLAN - block_end) then max_bkwd_extend :=

WEEKS_TO_PLAN - block_end; end-if

if(max_bkwd_extend > 0) then

x := max_bkwd_extend

forall(i in 1..x) do

if(eligable(emp_extend, task_extend, block_end+i) < 1 or required(

task_extend, block_end+i) < 1) then

if(max_bkwd_extend >= i) then max_bkwd_extend := i-1; end-if

end-if

end-do

end-if

if(block_end = 0 and rest_zero(emp_extend) > 0) then max_bkwd_extend := 0;

end-if

if(max_bkwd_extend > 0) then

evaluate_backwards

end-if

389

! Can the block be extended forwards?

if(do_extend_bkwd = false) then

if(max_fwd_extend > block_start - rest_zero(emp_extend) - 1) then

max_fwd_extend := block_start - rest_zero(emp_extend) - 1; end-if

if((sum(v in VESSELS | task_extend not in ROLES(v)) starting(emp_extend,v)

) > 0) then

if(max_fwd_extend > block_start - min_rest(emp_extend) - 1) then

max_fwd_extend := block_start - min_rest(emp_extend) - 1; end-if

end-if

if(max_fwd_extend > 0) then

x := max_fwd_extend

forall(i in 1..x) do

if(max_fwd_extend >= i) then

if((sum(v in VESSELS | task_extend in ROLES(v)) starting(emp_extend,v)) >

0 and block_start - i > 1 and block_start - i - 1 < min_rest(emp_extend

)) then max_fwd_extend := i-1; end-if

if(eligable(emp_extend, task_extend, block_start-i) < 1 or required(

task_extend, block_start-i) < 1) then max_fwd_extend := i-1; end-if

end-if

end-do

end-if

if(max_fwd_extend > 0) then

evaluate_forwards

end-if

end-if

! Can the block be swapped with another?

if(do_extend_bkwd = false and do_extend_fwd = false) then

if(block_start > 0) then

evaluate_swap

end-if

end-if

390

! Now, assuming a decision has been made to extend (forward or backward),

we can deal with the actual extension:

if(do_extend_bkwd = true) then

writeln("Backward extension has been selected (change in cost = ",

extend_cost_bkwd,")")

writeln("Details - Emp: ",emp_extend,"\tRole: ",task_extend,"\tOrig start:

",block_start,"\tOrig End: ",block_end,"\tExt length: ",

extend_len_bkwd)

transfer_sol_from := "backward"

no_bkwd := no_bkwd + 1

elif(do_extend_fwd = true) then

writeln("Forward extension has been selected (change in cost = ",

extend_cost_fwd,")")

writeln("Details - Emp: ",emp_extend,"\tRole: ",task_extend,"\tOrig start:

",block_start,"\tOrig End: ",block_end,"\tExt length: ",extend_len_fwd

)

transfer_sol_from := "forward"

no_fwd := no_fwd + 1

elif(do_swap = true) then

writeln("Swap has been selected (change in cost = ",swapping_cost,")")

writeln(" Details - Emp: ",emp_extend," \tRole: ",task_extend,"\tStart: ",

block_start,"\tEnd: ",block_end)

writeln("Swap with - Emp: ",swap_emp," \tRole: ",swap_task,"\tStart: ",

swap_block_start,"\tEnd: ",swap_block_end)

transfer_sol_from := "swap"

no_swap := no_swap + 1

end-if

if(do_extend_bkwd = true or do_extend_fwd = true or do_swap = true) then

forall(e in REG_EMP) tabu_sol(e) := list_sol("current",e)

forall(r in ALL_ROLES) ag_tabu_sol(r) := ag_list_sol("current",r)

transfer_sol_to := "current"

transfer_solution

391

update_done := true

writeln("Current solution cost is ",total_cost("current"))

compare_to_best

end-if

end-procedure

!---

procedure find_useable_block

! Looking for blocks which can be extended or swapped:

update_done := FALSE

candidate_exist := false

candidate_emps := {}

forall(e in short_ordered_list) do

if(update_done = false) then

emp_extend := ""

task_extend := ""

block_start := 0

block_end := 0

block_len := 0

block_found := FALSE

forall(v in VESSELS) do

if(starting(e,v) = 1) then

block_found := TRUE

392

emp_extend := e

block_start := 1-work_zero(e)

swap_block_earliest := 1

vessel_extend := v

end-if

if(block_found = FALSE) then

vessel_extend := ""

end-if

end-do

end-if

find_time := 0

current_list := list_sol("current",e)

while(update_done = false and getsize(current_list) > 0) do

! forall(j in current_list) do

! if(update_done = false) then

j := getfirst(current_list)

cuthead(current_list,1)

find_time := find_time + 1

new_block := FALSE

if(block_found = FALSE and j <> "rest") then

new_block := TRUE

emp_extend := e

task_extend := j

block_start := find_time

if(find_time = 1) then swap_block_earliest := 1

elif(find_time-1 <= rest_zero(e)) then swap_block_earliest := find_time

else swap_block_earliest := find_time -1

end-if

forall(v in VESSELS, k in ROLES(v)) do

if(j = k) then

vessel_extend := v

end-if

393

end-do

elif(block_found = TRUE and j <> "rest") then

if(j <> task_extend) then

link_to_vessel := FALSE

if(vessel_extend <> "") then

forall(k in ROLES(vessel_extend)) do

if(j = k) then

link_to_vessel := TRUE

end-if

end-do

end-if

if(link_to_vessel) = TRUE then

task_extend := j

else

block_end := find_time-1

swap_block_latest := find_time-1

block_len := (block_end - block_start) +1

if(task_extend <> "") then

evaluate_block

else

if(block_len < max_work(e)) then

forall(k in ROLES(vessel_extend)) do

task_extend := k

evaluate_block

end-do

end-if

end-if

! also, new block is starting...

task_extend := j

block_start := find_time

swap_block_earliest := find_time

394

forall(v in VESSELS, k in ROLES(v)) do

if(j = k) then

vessel_extend := v

end-if

end-do

block_end := 0

block_len := 0

end-if

end-if

elif(block_found = TRUE and j = "rest") then

block_end := find_time-1

swap_block_latest := find_time

block_len := (block_end - block_start) +1

if(task_extend <> "") then

evaluate_block

else

if(block_len < max_work(e)) then

forall(k in ROLES(vessel_extend)) do

task_extend := k

evaluate_block

end-do

end-if

end-if

! and reset...

block_found := FALSE

block_start := 0

block_end := 0

block_len := 0

emp_extend := ""

395

task_extend := ""

vessel_extend := ""

end-if

if(new_block = TRUE) then

block_found := TRUE

new_block := FALSE

end-if

! if we are at the end of the planning period, conclude any remaining

blocks

if(find_time = WEEKS_TO_PLAN and block_found = TRUE) then

block_end := find_time

swap_block_latest := find_time

block_len := (block_end - block_start) +1

if(task_extend <> "") then

evaluate_block

else

if(block_len < max_work(e)) then

forall(k in ROLES(vessel_extend)) do

task_extend := k

evaluate_block

end-do

end-if

end-if

end-if

! end-if

end-do

if(update_done = false) then

396

forall(f in REG_EMP | f <> e) swaps_examined(e) += {f}

end-if

end-do

! If no improving solution has been found for any of the examined

employees,

! implement the best non-improving solution (if one exists):

if(update_done = false and candidate_exist = true) then

writeln("Best non-improving candidate has been selected")

forall(e in REG_EMP) tabu_sol(e) := list_sol("current",e)

forall(r in ALL_ROLES) ag_tabu_sol(r) := ag_list_sol("current",r)

if(candidate_cost < 0) then no_nonreduce := 0

else no_nonreduce := no_nonreduce + 1

end-if

transfer_sol_from := "candidate"

transfer_sol_to := "current"

transfer_solution

update_done := true

no_cand := no_cand + 1

compare_to_best

emps_to_update := candidate_emps

update_swaps_and_changes

writeln("Current solution cost is ",total_cost("current"))

end-if

end-procedure

397

!--

procedure random_kick

writeln

("---")

writeln("As no improvement has been made recently, a ’kick’ will be

carried out:")

update_done := false

while(update_done = false) do

emps_changed := {}

ag_roles_changed := {}

random_emp := integer((getsize(REG_EMP)*random) + 1)

y := 0

forall(e in REG_EMP) do

y := y +1

if(y = random_emp) then kick_emp := e; end-if

end-do

random_task := integer((getsize(ALL_ROLES)*random) + 1)

y := 0

forall(r in ALL_ROLES) do

y := y +1

if(y = random_task) then kick_task := r; end-if

end-do

random_length := integer((5*random) + 1)

random_time := integer(((WEEKS_TO_PLAN - (random_length-1))*random) + 1)

kick_start := random_time

398

kick_end := random_time + random_length - 1

kick_feas := true

if(kick_start <= rest_zero(kick_emp)) then kick_feas := false; end-if

if((sum(v in VESSELS | kick_task not in ROLES(v)) starting(kick_emp,v)) >

0 and kick_start <= min_rest(kick_emp)) then kick_feas := false; end-if

if((sum(v in VESSELS | kick_task in ROLES(v)) starting(kick_emp,v)) > 0)

then

if(kick_start >= 2 and kick_start <= min_rest(kick_emp)) then kick_feas :=

false; end-if

if(kick_start <= 1 and (random_length + work_zero(kick_emp)) > max_work(

kick_emp)) then kick_feas := false; end-if

end-if

forall(t in kick_start..kick_end) do

if(eligable(kick_emp, kick_task, t) < 1) then kick_feas := false; end-if

end-do

if(kick_feas = true) then

forall(r in ALL_ROLES) ag_list_sol("kick",r) := ag_list_sol("current",r)

forall(t in kick_start..kick_end) do

if(t in ag_list_sol("kick",kick_task)) then

ag_list_sol("kick",kick_task) -= {t}

ag_roles_changed += {kick_task}

end-if

end-do

forall(e in REG_EMP) do

list_sol("kick",e) := []

if(e <> kick_emp) then

kick_count := 0

rest_count := 0

if((sum(v in VESSELS | kick_task in ROLES(v)) starting(e,v)) > 0) then

if(kick_start = 1) then rest_count := min_rest(e); end-if

end-if

399

forall(j in list_sol("current",e)) do

kick_count := kick_count + 1

if(kick_count = kick_start - 1 and j = kick_task) then

list_sol("kick",e) += [j]

rest_count := min_rest(e)

elif(kick_count = kick_start) then

if(j = kick_task) then

list_sol("kick",e) += ["rest"]

emps_changed += {e}

rest_count := rest_count - 1

else

list_sol("kick",e) += [j]

rest_count := 0

end-if

elif(kick_count > kick_start and kick_count <= kick_end) then

if(j = kick_task) then

list_sol("kick",e) += ["rest"]

emps_changed += {e}

rest_count := rest_count - 1

elif(j <> "rest") then

if(rest_count > 0) then

list_sol("kick",e) += ["rest"]

ag_list_sol("kick",j) += {kick_count}

ag_roles_changed += {j}

rest_count := rest_count - 1

else

list_sol("kick",e) += [j]

end-if

else

list_sol("kick",e) += [j]

rest_count := rest_count - 1

end-if

elif(kick_count > kick_end and j <> "rest" and rest_count > 0) then

list_sol("kick",e) += ["rest"]

ag_list_sol("kick",j) += {kick_count}

ag_roles_changed += {j}

400

rest_count := rest_count - 1

else

list_sol("kick",e) += [j]

end-if

end-do

else

emps_changed += {e}

kick_count := 0

forall(j in list_sol("current",e)) do

kick_count := kick_count + 1

if(kick_count < kick_start - min_rest(e)) then

list_sol("kick",e) += [j]

elif(kick_count < kick_start) then

list_sol("kick",e) += ["rest"]

if(j <> "rest") then

ag_list_sol("kick",j) += {kick_count}

ag_roles_changed += {j}

end-if

elif(kick_count <= kick_end) then

list_sol("kick",e) += [kick_task]

if(j <> "rest" and j <> kick_task) then

ag_list_sol("kick",j) += {kick_count}

ag_roles_changed += {j}

end-if

elif(kick_count <= kick_end + min_rest(e)) then

list_sol("kick",e) += ["rest"]

if(j <> "rest") then

ag_list_sol("kick",j) += {kick_count}

ag_roles_changed += {j}

end-if

else

list_sol("kick",e) += [j]

end-if

end-do

end-if

end-do

401

! ensure that this kick is not ’tabu’:

to_check_tabu := "kick"

check_tabu

if(tabu = true) then

no_tabu := no_tabu + 1

else

to_calculate := "kick"

calculate_cost

if(feasible = true) then

writeln("Kick selected - place ",kick_emp," in role ",kick_task," from

time ",kick_start," to ",kick_end)

forall(e in REG_EMP) tabu_sol(e) := list_sol("current",e)

forall(r in ALL_ROLES) ag_tabu_sol(r) := ag_list_sol("current",r)

transfer_sol_from := "kick"

transfer_sol_to := "current"

transfer_solution

last_kick_time := iteration

update_done := true

no_nonreduce := 0

compare_to_best

emps_to_update := emps_changed

update_swaps_and_changes

writeln("Current solution cost is ",total_cost("current"))

end-if

end-if

end-if

end-do

402

end-procedure

!--

procedure sort_employee_list

if(order_rule not in ORD_RULES) then

writeln("ERROR - incorrect option selected for order rule. List will be

RANDOMIZED.")

order_rule := "random"

end-if

forall(e in REG_EMP) order_number(e) := random

ordered_list := []

short_ordered_list := []

added_set := {}

forall(x in REG_EMP) do

min_no := 1

if(order_rule = "earliest") then change_no := iteration

else change_no := 0

end-if

min_emp := ""

forall(e in REG_EMP | e not in added_set) do

if((order_rule = "earliest" and last_changed(e) < change_no) or (

order_rule = "latest" and last_changed(e) > change_no)) then

change_no := last_changed(e)

min_no := order_number(e)

403

min_emp := e

elif((order_rule = "earliest" and last_changed(e) = change_no) or (

order_rule = "latest" and last_changed(e) = change_no) or (order_rule =

"random")) then

if(order_number(e) < min_no) then

min_no := order_number(e)

min_emp := e

end-if

end-if

end-do

if(getsize(short_ordered_list) < short_list_fraction*getsize(REG_EMP))

then short_ordered_list += [min_emp]; end-if

ordered_list += [min_emp]

added_set += {min_emp}

end-do

writeln("Employee list sorted using ’",order_rule,"’ ordering rule.")

writeln(" List is: ",ordered_list)

writeln("Short list is: ",short_ordered_list)

writeln

end-procedure

!--

procedure initialise

! calculate the list representation

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) taskbased_sol(e,r,t):=

allocate_dual(e,r,t)

404

emps_changed := {}

forall(e in REG_EMP) do

list_sol("current",e) := []

list_sol("best",e) := []

forall(x in best_index) best_sols(x,e) := []

forall(t in TIME) do

added_t := FALSE

forall(r in ALL_ROLES) do

if(added_t = FALSE and taskbased_sol(e,r,t) = 1) then

list_sol("current",e) += [r]

list_sol("best",e) += [r]

added_t := TRUE

end-if

end-do

if(added_t = FALSE) then

list_sol("current",e) += ["rest"]

list_sol("best",e) += ["rest"]

end-if

end-do

emps_changed += {e}

swaps_examined(e) := {}

end-do

ag_roles_changed := {}

forall(r in ALL_ROLES) do

ag_list_sol("current",r) := {}

ag_list_sol("best",r) := {}

forall(x in best_index) ag_best_sols(x,r) := {}

forall(t in TIME | required(r,t) > 0) do

if(sum(e in REG_EMP) taskbased_sol(e,r,t) < 1) then

ag_list_sol("current",r) += {t}

ag_list_sol("best",r) += {t}

end-if

end-do

ag_roles_changed += {r}

end-do

405

! and calculate the initial cost

to_calculate := "current"

calculate_cost

initial_cost := total_cost("current")

transfer_sol_from := "current"

transfer_sol_to := "best"

transfer_solution

best_sol_time := 0

number_best := 1

forall(e in REG_EMP) best_sols(1,e) := list_sol("best",e)

forall(r in ALL_ROLES) ag_best_sols(1,r) := ag_list_sol("best",r)

writeln

writeln("Initial solution:")

writeln

forall(e in REG_EMP) writeln(e,"\t",list_sol("current",e),"\tCost: ",

emp_cost("current",e))

writeln

write("AGENCY")

forall(r in ALL_ROLES) do

write("\t",r,"\t",ag_list_sol("current",r),"\tCost: ",ag_cost("current",r)

)

if(ag_list_sol("current",r) <> {}) then

write("\t\t(Crew changes take place ahead of the following weeks: ",

ag_crewchange("current",r),")")

end-if

write("\n")

end-do

writeln

writeln

writeln("Cost for initial solution is:\t",initial_cost)

406

! and set initial values:

no_fwd := 0

no_bkwd := 0

no_swap := 0

no_cand := 0

no_kick := 0

no_tabu := 0

no_infeas := 0

terminate := false

iteration := 0

last_kick_time := 0

no_nonreduce := 0

forall(e in REG_EMP) last_changed(e) := 0

end-procedure

!--

! MAIN PROGRAMME!!

writeln("Heuristic Started")

fopen(OUTPUTFILE_heuristic, F_OUTPUT)

initialise

! Apply heuristics...

writeln

writeln

("--")

407

writeln("Applying heuristics...")

writeln

while(terminate = false) do

iteration := iteration +1

if(no_nonreduce >= 1) then

order_rule := "earliest"

! prioritize employees who have been examined

less recently

elif((iteration - last_kick_time > 1) or (iteration > 1 and last_kick_time

= 0)) then

order_rule := "latest"

! prioritize employees who have recently been

examined

else

order_rule := "random"

! if a kick has just been carried out or the

algorithm is just starting, randomize the list

end-if

sort_employee_list

find_useable_block

writeln

writeln("End of iteration ",iteration)

writeln("\t(Best solution value so far: ",total_cost("best"),")")

writeln("\t(There is/are ",number_best," solution(s) found with this value

)")

writeln

if(update_done = false) then

writeln("No useable block was found - terminate programme")

terminate := true

else

current_time := gettime

if(iteration = max_iteration) then

writeln("Iteration limit now reached - terminate programme")

408

terminate := true

else

writeln("Running time so far: ",current_time - prog_starttime)

if(current_time - prog_starttime >= max_runtime) then

writeln("Time limit now exceeded - terminate programme")

terminate := true

end-if

end-if

end-if

if((iteration - best_sol_time) >= 4 and terminate = false) then

if(last_kick_time = 0 or (last_kick_time > 0 and (iteration -

last_kick_time) >= 20) or (total_cost("current") = total_cost("best")

and no_nonreduce >= 1) or no_nonreduce >= 4) then

random_kick

no_kick := no_kick + 1

writeln("Running time so far: ",current_time - prog_starttime)

end-if

end-if

writeln

("---")

end-do

writeln

writeln("Best available solution:")

writeln

forall(e in REG_EMP) writeln(e,"\t",list_sol("best",e))

writeln

write("AGENCY")

forall(r in ALL_ROLES) do

write("\t",r,"\t",ag_list_sol("best",r))

if(ag_list_sol("best",r) <> {}) then

write("\t\t(with crew changes ahead of the following weeks: ",

ag_crewchange("best",r),")")

409

end-if

write("\n")

end-do

writeln

writeln("Solution cost is:\t",total_cost("best"))

if(number_best > 1) then writeln("NOTE: in total there were ",number_best

," solutions found with this cost"); end-if

prog_endtime := gettime

writeln

writeln("--")

writeln("Total running time: ", prog_endtime - prog_starttime)

writeln

writeln("Number of iterations: ",iteration)

writeln("which were of the following types:")

writeln("\tbackward: ",no_bkwd)

writeln("\tforward: ",no_fwd)

writeln("\tswapping: ",no_swap)

writeln("\tcandidate: ",no_cand)

writeln

writeln("Best solution found at iteration: ",best_sol_time)

writeln

writeln("No of kick procedures carried out: ",no_kick)

writeln("No of tabu solutions proposed: ",no_tabu)

writeln("No of infeasible solutions proposed: ",no_infeas)

! Calculate some stats...

changes_to_reg := 0 ! number of changes to regular employees in

the (best) solution

410

changes_to_AG := 0 ! number of changes to agency employees in

the (best) solution

number_of_AG := 0 ! number of times agency employees are

utilised in the (best) solution

forall(e in REG_EMP) do

final_count := 0

forall(j in list_sol("best",e)) do

final_count := final_count + 1

forall(r in ALL_ROLES) do

if(r = j and cur_allocate(e,r,final_count) = 0) then changes_to_reg :=

changes_to_reg +1; end-if

if(r <> j and cur_allocate(e,r,final_count) = 1) then changes_to_reg :=

changes_to_reg +1; end-if

end-do

end-do

end-do

forall(r in ALL_ROLES, t in TIME) do

if(t in ag_list_sol("best",r)) then

number_of_AG := number_of_AG +1

if(cur_allocate("AGENCY",r,t) = 0) then changes_to_AG := changes_to_AG +1;

end-if

else

if(cur_allocate("AGENCY",r,t) = 1) then changes_to_AG := changes_to_AG +1;

end-if

end-if

end-do

fclose(F_OUTPUT)

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) allocate_dual(e,r,t):=

allocate_sol("best",e,r,t)

forall(e in REG_EMP, v in VESSELS, t in TIME) depart_dual(e,v,t):=

depart_sol("best",e,v,t)

writeln("Solution cost is:\t",total_cost("best"))

initializations to "bin:shmem:sol"

allocate_dual depart_dual InstanceName

411

end-initializations

writeln("Heuristic Finished")

end-model

B.2 Robust Formulations

The robust model ,which is explained by equation (6.9), is applied in FICOr Xpress-

MP (Mosel v3.6.0, Xpress-MP v7.7) with the code given under Appendix B.2.1.

B.2.1 Robust Formulation Against Uncertainty of Crew Avail-

ability

This sections shows the implementation suggested model for dealing with one type

of uncertainty.

model ModelName

uses "mmxprs", "mmsystem"; !gain access to the Xpress-Optimizer solver

DATAFILE := "Real time-window data - Captains.txt"

LOGFILE := "Logfile-Robust-Time-window real data.txt"

SUMMARYFILE := "Results-Robust-Time-window real data.txt"

declarations

status: array({XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH}) of string !

Used to indicate the solution status of the probelm

REG_EMP: set of string ! Regular employee names / numbers (ie not

Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which

will require cover, divided by vessels

412

ALL_ROLES: set of string ! List of all roles

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real !

Data relating to over/undertime payments for employees

end-declarations

initializations from DATAFILE

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

under_rate over_rate g_weeks exp_worktime

end-initializations

ALL_EMP := REG_EMP + {"AGENCY"}

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

declarations

TIME = 1..WEEKS_TO_PLAN ! Time index

allocate: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar ! Variable for

allocating employee to role during given time period

board, depart: array(REG_EMP, VESSELS, TIME) of mpvar ! =1 if employee

boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer value for agency crew

Robust_eligable:dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar !gamma

linear_dv: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar !z_ijt

ag_rboard, ag_rdepart: array(ALL_ROLES, TIME) of mpvar ! =1 if agency

crew starts / ends working on a role in given time period, 0 otherwise

undertime, overtime: array(GUARANTEED) of mpvar !

Variables to calculate the amount of under/overtime carried out by

employee

work_total, rest_total: array(REG_EMP, TIME) of mpvar ! Used to track

the consecutive working time / rest period requirements of each

employee

ag_work_total: array(ALL_ROLES, TIME) of mpvar ! Used to

track the consecutive working time of the agency employees

413

board_cost, depart_cost: array(REG_EMP, VESSELS, TIME) of real ! Costs of

CHANGES TO employees boarding / leaving vessel

ag_board_cost, ag_depart_cost: array(ALL_ROLES, TIME) of real ! Costs of

CHANGES TO agency employees boarding / leaving for a given role

work_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given

role at a given time

required: array(ALL_ROLES, TIME) of integer ! =1 if

role r is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can

carry out role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is

on board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

ag_starting: array(ALL_ROLES) of integer ! =1 if

agency employee is in role r at time 0, =0 otherwise

work_zero, rest_zero: array(REG_EMP) of integer ! initial values

of work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial

value of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum

on working time, minimum on resting time

ag_max_work: array(ALL_ROLES) of integer ! maximum

on working time for agency crew, possibly different for each role

overall_regular_max_work: integer

overall_agency_max_work: integer

overall_max_work: integer

end-declarations

initializations from DATAFILE

board_cost depart_cost work_cost

ag_board_cost ag_depart_cost

required eligable starting ag_starting

work_zero rest_zero

max_work min_rest ag_max_work

414

end-initializations

overall_regular_max_work := max(e in REG_EMP) max_work(e)

overall_agency_max_work := max(r in ALL_ROLES) ag_max_work(r)

if(overall_regular_max_work > overall_agency_max_work) then

overall_max_work := overall_regular_max_work

else

overall_max_work := overall_agency_max_work

end-if

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate(e,r,t))

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(linear_dv(e,r,t))

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(Robust_eligable(e,r,t))

end-if

end-do

initializations from DATAFILE

extension_cost

end-initializations

declarations

415

Total_cost: linctr

All_covered: dynamic array(ALL_ROLES, TIME) of linctr

No_overlap: array(REG_EMP, TIME) of linctr

Board_constr: array(REG_EMP, VESSELS, TIME) of linctr

Depart_constr: array(REG_EMP, VESSELS, TIME) of linctr

AG_board_vs_depart: array(ALL_ROLES, TIME) of linctr

Calc_undertime: array(GUARANTEED) of linctr

Calc_overtime: array(GUARANTEED) of linctr

Work_count: array(REG_EMP, TIME) of linctr

Work_count_start: array(REG_EMP) of linctr

AG_work_count: array(ALL_ROLES, TIME) of linctr

AG_work_count_start: array(ALL_ROLES) of linctr

AG_work_reset: array(ALL_ROLES, TIME) of linctr

Rest_count: array(REG_EMP, TIME) of linctr

Rest_reset: array(REG_EMP, TIME) of linctr

Rest_vs_work: array(REG_EMP, TIME) of linctr

Rest_new: array(REG_EMP,ALL_ROLES,range) of linctr

Rest_new1: array(REG_EMP, 1..WEEKS_TO_PLAN-1,range) of linctr ! Added for

recovery problem - constraints to link change, current and new values:

linear1: array(ALL_EMP, ALL_ROLES, TIME) of linctr

linear2: array(ALL_EMP, ALL_ROLES, TIME) of linctr

linear3: array(ALL_EMP, ALL_ROLES, TIME) of linctr

Depart_linking:array(REG_EMP, TIME) of linctr

Robust_criteria:array(TIME) of linctr

a:integer

b:integer

c:integer

end-declarations

!objective function- cost calculation

prog_setup_time := gettime

Total_cost := (sum(e in REG_EMP, v in VESSELS, t in TIME)((board_cost(e,v,

t)*board(e,v,t)) + (depart_cost(e,v,t)*depart(e,v,t))) +

sum(r in ALL_ROLES, t in TIME)((ag_board_cost(r,t)*ag_rboard(r,t)) + (

ag_depart_cost(r,t)*ag_rdepart(r,t))) +

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)((work_cost(e,r,t)*allocate(e,

r,t)))+

416

sum(e in GUARANTEED)((under_rate(e)*undertime(e))+ (over_rate(e)*overtime(

e))))

!covering tasks

forall(r in ALL_ROLES, t in TIME | required(r,t) > 0) do

create(All_covered(r,t))

All_covered(r,t) := sum(e in ALL_EMP)(eligable(e,r,t)*allocate(e,r,t))-

sum(e in ALL_EMP)(linear_dv(e,r,t))= required(r,t)

end-do

!level of uncertainty

forall(r in ALL_ROLES, t in TIME)Robust_eligable("AGENCY",r,t)=0

forall(t in TIME) Robust_criteria(t) := sum(e in REG_EMP,r in ALL_ROLES|

eligable(e,r,t)>0)(Robust_eligable(e,r,t)) >=32

!linearization

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME)linear1(e,r,t):=linear_dv(e

,r,t)<=Robust_eligable(e,r,t)

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME)linear2(e,r,t):=linear_dv(e

,r,t)<=allocate(e,r,t)

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME)linear3(e,r,t):=linear_dv(e

,r,t)>=Robust_eligable(e,r,t)+allocate(e,r,t)-1

!overlap

forall(e in REG_EMP, t in TIME) No_overlap(e,t) := sum(r in ALL_ROLES)

allocate(e,r,t) <= 1

!board

forall(e in REG_EMP, v in VESSELS) Board_constr(e,v,1) := board(e,v,1) >=

sum(r in ROLES(v))(allocate(e,r,1)) - starting(e,v)

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) Board_constr(e,v

,t) := board(e,v,t) >= sum(r in ROLES(v))(allocate(e,r,t)) - sum(r in

ROLES(v))(allocate(e,r,(t-1)))

!depart

forall(e in REG_EMP, v in VESSELS) Depart_constr(e,v,1) := depart(e,v,1)

>= starting(e,v) - sum(r in ROLES(v))(allocate(e,r,1))

417

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) Depart_constr(e,

v,t) := depart(e,v,t) >= sum(r in ROLES(v))(allocate(e,r,(t-1))) - sum(

r in ROLES(v))(allocate(e,r,t))

!-------------depart linking------------------------------------

forall(e in REG_EMP, t in TIME) Depart_linking(e,t):=sum(v in VESSELS)

depart(e,v,t)+sum(r in ALL_ROLES) allocate(e,r,t)<=1

!-------------depart linking------------------------------------

!agency boarding and departing

forall(r in ALL_ROLES) AG_board_vs_depart(r,1) := ag_rboard(r,1) -

ag_rdepart(r,1) = allocate("AGENCY",r,1) - ag_starting(r)

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) AG_board_vs_depart(r,t) :=

ag_rboard(r,t) - ag_rdepart(r,t) = allocate("AGENCY",r,t) - allocate("

AGENCY",r,(t-1))

!under and over time

forall(e in GUARANTEED) Calc_undertime(e) := undertime(e) >= g_weeks(e) -

(exp_worktime(e) + sum(r in ALL_ROLES, t in TIME)(allocate(e,r,t)))

forall(e in GUARANTEED) Calc_overtime(e) := overtime(e) >= (exp_worktime(e

) + sum(r in ALL_ROLES, t in TIME)(allocate(e,r,t)))- g_weeks(e)

!max consecutive work

forall(e in REG_EMP|work_zero(e)>=1) Work_count_start(e) := max_work(e) >=

work_zero(e) + sum(r in ALL_ROLES, t in 0..max_work(e)-work_zero(e))(

allocate(e,r,t+1))

forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-max_work(e)) Work_count(e,t) :=

max_work(e) >= sum(r in ALL_ROLES, k in 0..max_work(e))(allocate(e,r,t

+k))

forall(r in ALL_ROLES|ag_work_zero(r)>=1) AG_work_count_start(r) :=

ag_max_work(r) >= ag_work_zero(r) + sum(t in 0..ag_max_work(r)-

ag_work_zero(r))(allocate("AGENCY",r,t+1))

forall(r in ALL_ROLES, t in 1..WEEKS_TO_PLAN-ag_max_work(r)) AG_work_count

(r,t) := ag_max_work(r) >= sum(k in 0..ag_max_work(r))(allocate("

AGENCY",r,t+k))

418

!rest

forall(e in REG_EMP) Rest_count(e,1) := rest_total(e,1) >= rest_zero(e) -

(1-(sum(r in ALL_ROLES)(allocate(e,r,1))))

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN) Rest_count(e,t) := rest_total(

e,t) >=rest_total(e,(t-1)) - (1-(sum(r in ALL_ROLES)(allocate(e,r,t))))

forall(e in REG_EMP, t in TIME) Rest_reset(e,t) := rest_total(e,t) >= (

min_rest(e)-1)*(sum(v in VESSELS)(depart(e,v,t)))

forall(e in REG_EMP) Rest_vs_work(e,1) := min_rest(e)*(1-(sum(r in

ALL_ROLES)(allocate(e,r,1)))) >= rest_zero(e)

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN) Rest_vs_work(e,t) := min_rest(

e)*(1-(sum(r in ALL_ROLES)(allocate(e,r,t)))) >= rest_total(e,(t-1))

!--------comb cut--

forall(e in REG_EMP ,r in ALL_ROLES,t in 1..rest_zero(e)) do

if(rest_zero(e)>=1)then

Rest_new(e,r,t):= allocate(e,r,t)=0

end-if

end-do

forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-1)do

if(min_rest(e)>=1)then

b:=(min_rest(e)-1)

a:=(WEEKS_TO_PLAN-t)

if(b<=a) then

c:=b

else

c:=a

end-if

end-if

forall(y in 1..c)do

Rest_new1(e,t,y) := sum(r in ALL_ROLES)(allocate(e,r,t+y))+sum (v in

VESSELS) depart(e,v,t)<=1

end-do

end-do

419

!---------comb cut---------------------

! finally, DVs binary, integer, non-negative, or free:

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(allocate(e,r,t)))

allocate(e,r,t) is_binary

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(linear_dv(e,r,t)))

linear_dv(e,r,t) is_binary

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(Robust_eligable(e,

r,t))) Robust_eligable(e,r,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) board(e,v,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) depart(e,v,t) is_binary

forall(r in ALL_ROLES, t in TIME) ag_rboard(r,t) is_binary

forall(r in ALL_ROLES, t in TIME) ag_rdepart(r,t) is_binary

forall(e in GUARANTEED) undertime(e) >= 0

forall(e in GUARANTEED) overtime(e) >= 0

setparam("XPRS_verbose",true)

minimize(Total_cost)

end-model

B.2.2 Robust Formulation Against Uncertainty of Crew Avail-

ability and Demand

model ModelName

uses "mmxprs", "mmsystem"; !gain access to the Xpress-Optimizer solver

DATAFILE := "Real time-window data - Captains.txt"

LOGFILE := "Logfile-Robust-Time-window real data.txt"

SUMMARYFILE := "Results-Robust-Time-window real data.txt"

declarations

420

status: array({XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH}) of string !

Used to indicate the solution status of the probelm

REG_EMP: set of string ! Regular employee names / numbers (ie not

Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which

will require cover, divided by vessels

ALL_ROLES: set of string ! List of all roles

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real !

Data relating to over/undertime payments for employees

end-declarations

initializations from DATAFILE

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

under_rate over_rate g_weeks exp_worktime

end-initializations

ALL_EMP := REG_EMP + {"AGENCY"}

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

declarations

TIME = 1..WEEKS_TO_PLAN ! Time index

allocate: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar ! Variable for

allocating employee to role during given time period

board, depart: array(REG_EMP, VESSELS, TIME) of mpvar ! =1 if employee

boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer value for agency crew

421

Robust_eligable:dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar !z_ijt

linear_dv: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar

ag_rboard, ag_rdepart: array(ALL_ROLES, TIME) of mpvar ! =1 if agency

crew starts / ends working on a role in given time period, 0 otherwise

undertime, overtime: array(GUARANTEED) of mpvar !

Variables to calculate the amount of under/overtime carried out by

employee

work_total, rest_total: array(REG_EMP, TIME) of mpvar ! Used to track

the consecutive working time / rest period requirements of each

employee

ag_work_total: array(ALL_ROLES, TIME) of mpvar ! Used to

track the consecutive working time of the agency employees

Robust_demand:dynamic array(ALL_ROLES, TIME) of mpvar !z_ijt

board_cost, depart_cost: array(REG_EMP, VESSELS, TIME) of real ! Costs of

CHANGES TO employees boarding / leaving vessel

ag_board_cost, ag_depart_cost: array(ALL_ROLES, TIME) of real ! Costs of

CHANGES TO agency employees boarding / leaving for a given role

work_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given

role at a given time

required: array(ALL_ROLES, TIME) of integer ! =1 if

role r is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can

carry out role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is

on board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

ag_starting: array(ALL_ROLES) of integer ! =1 if

agency employee is in role r at time 0, =0 otherwise

work_zero, rest_zero: array(REG_EMP) of integer ! initial values

of work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial

value of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum

on working time, minimum on resting time

422

ag_max_work: array(ALL_ROLES) of integer ! maximum

on working time for agency crew, possibly different for each role

overall_regular_max_work: integer

overall_agency_max_work: integer

overall_max_work: integer

end-declarations

initializations from DATAFILE

board_cost depart_cost work_cost

ag_board_cost ag_depart_cost

required eligable starting ag_starting

work_zero rest_zero

max_work min_rest ag_max_work

end-initializations

overall_regular_max_work := max(e in REG_EMP) max_work(e)

overall_agency_max_work := max(r in ALL_ROLES) ag_max_work(r)

if(overall_regular_max_work > overall_agency_max_work) then

overall_max_work := overall_regular_max_work

else

overall_max_work := overall_agency_max_work

end-if

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate(e,r,t))

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(linear_dv(e,r,t))

end-if

end-do

423

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(Robust_eligable(e,r,t))

end-if

end-do

declarations

Total_cost: linctr

All_covered: dynamic array(ALL_ROLES, TIME) of linctr

No_overlap: array(REG_EMP, TIME) of linctr

Board_constr: array(REG_EMP, VESSELS, TIME) of linctr

Depart_constr: array(REG_EMP, VESSELS, TIME) of linctr

AG_board_vs_depart: array(ALL_ROLES, TIME) of linctr

Calc_undertime: array(GUARANTEED) of linctr

Calc_overtime: array(GUARANTEED) of linctr

Work_count: array(REG_EMP, TIME) of linctr

Work_count_start: array(REG_EMP) of linctr

AG_work_count: array(ALL_ROLES, TIME) of linctr

AG_work_count_start: array(ALL_ROLES) of linctr

AG_work_reset: array(ALL_ROLES, TIME) of linctr

Rest_count: array(REG_EMP, TIME) of linctr

Rest_reset: array(REG_EMP, TIME) of linctr

Rest_vs_work: array(REG_EMP, TIME) of linctr

Rest_new: array(REG_EMP,ALL_ROLES,range) of linctr

Rest_new1: array(REG_EMP, 1..WEEKS_TO_PLAN-1,range) of linctr ! Added for

recovery problem - constraints to link change, current and new values:

linear1: array(ALL_EMP, ALL_ROLES, TIME) of linctr

linear2: array(ALL_EMP, ALL_ROLES, TIME) of linctr

linear3: array(ALL_EMP, ALL_ROLES, TIME) of linctr

Depart_linking:array(REG_EMP, TIME) of linctr

Robust_criteria:array(TIME) of linctr

a:integer

b:integer

c:integer

end-declarations

!objective function- cost calculation

424

prog_setup_time := gettime

Total_cost := (sum(e in REG_EMP, v in VESSELS, t in TIME)((board_cost(e,v,

t)*board(e,v,t)) + (depart_cost(e,v,t)*depart(e,v,t))) +

sum(r in ALL_ROLES, t in TIME)((ag_board_cost(r,t)*ag_rboard(r,t)) + (

ag_depart_cost(r,t)*ag_rdepart(r,t))) +

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)((work_cost(e,r,t)*allocate(e,

r,t)))+

sum(e in GUARANTEED)((under_rate(e)*undertime(e))+ (over_rate(e)*overtime(

e))))

!covering tasks

forall(r in ALL_ROLES, t in TIME | required(r,t) > 0) do

create(All_covered(r,t))

All_covered(r,t) := sum(e in ALL_EMP)(eligable(e,r,t)*allocate(e,r,t))-

sum(e in ALL_EMP)(linear_dv(e,r,t))= required(r,t)*(1-Robust_demand(r,t

))

end-do

forall(r in ALL_ROLES, t in TIME | required(r,t)=0) do

create(All_covered(r,t))

All_covered(r,t) := sum(e in ALL_EMP)(eligable(e,r,t)*allocate(e,r,t))-

sum(e in ALL_EMP)(linear_dv(e,r,t))= required(r,t)+(Robust_demand(r,t))

end-do

!level of uncertainty

forall(r in ALL_ROLES, t in TIME)Robust_eligable("AGENCY",r,t)=0

forall(t in TIME) Robust_criteria(t) := sum(e in REG_EMP,r in ALL_ROLES|

eligable(e,r,t)>0)(Robust_eligable(e,r,t)) >=32

!upper and lower should be decided

Robust_criteria2 := sum(r in ALL_ROLES, t in TIME|required(r,t)=0)(

Robust_demand(r,t))>=0

Robust_criteria3 := sum(r in ALL_ROLES, t in TIME|required(r,t)=0)(

Robust_demand(r,t))<=13*25

425

!linearization

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME)linear1(e,r,t):=linear_dv(e

,r,t)<=Robust_eligable(e,r,t)

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME)linear2(e,r,t):=linear_dv(e

,r,t)<=allocate(e,r,t)

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME)linear3(e,r,t):=linear_dv(e

,r,t)>=Robust_eligable(e,r,t)+allocate(e,r,t)-1

!overlap

forall(e in REG_EMP, t in TIME) No_overlap(e,t) := sum(r in ALL_ROLES)

allocate(e,r,t) <= 1

!board

forall(e in REG_EMP, v in VESSELS) Board_constr(e,v,1) := board(e,v,1) >=

sum(r in ROLES(v))(allocate(e,r,1)) - starting(e,v)

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) Board_constr(e,v

,t) := board(e,v,t) >= sum(r in ROLES(v))(allocate(e,r,t)) - sum(r in

ROLES(v))(allocate(e,r,(t-1)))

!depart

forall(e in REG_EMP, v in VESSELS) Depart_constr(e,v,1) := depart(e,v,1)

>= starting(e,v) - sum(r in ROLES(v))(allocate(e,r,1))

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) Depart_constr(e,

v,t) := depart(e,v,t) >= sum(r in ROLES(v))(allocate(e,r,(t-1))) - sum(

r in ROLES(v))(allocate(e,r,t))

!-------------depart linking------------------------------------

forall(e in REG_EMP, t in TIME) Depart_linking(e,t):=sum(v in VESSELS)

depart(e,v,t)+sum(r in ALL_ROLES) allocate(e,r,t)<=1

!-------------depart linking------------------------------------

!agency boarding and departing

forall(r in ALL_ROLES) AG_board_vs_depart(r,1) := ag_rboard(r,1) -

ag_rdepart(r,1) = allocate("AGENCY",r,1) - ag_starting(r)

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) AG_board_vs_depart(r,t) :=

ag_rboard(r,t) - ag_rdepart(r,t) = allocate("AGENCY",r,t) - allocate("

426

AGENCY",r,(t-1))

!under and over time

forall(e in GUARANTEED) Calc_undertime(e) := undertime(e) >= g_weeks(e) -

(exp_worktime(e) + sum(r in ALL_ROLES, t in TIME)(allocate(e,r,t)))

forall(e in GUARANTEED) Calc_overtime(e) := overtime(e) >= (exp_worktime(e

) + sum(r in ALL_ROLES, t in TIME)(allocate(e,r,t)))- g_weeks(e)

!max consecutive work

forall(e in REG_EMP|work_zero(e)>=1) Work_count_start(e) := max_work(e) >=

work_zero(e) + sum(r in ALL_ROLES, t in 0..max_work(e)-work_zero(e))(

allocate(e,r,t+1))

forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-max_work(e)) Work_count(e,t) :=

max_work(e) >= sum(r in ALL_ROLES, k in 0..max_work(e))(allocate(e,r,t

+k))

forall(r in ALL_ROLES|ag_work_zero(r)>=1) AG_work_count_start(r) :=

ag_max_work(r) >= ag_work_zero(r) + sum(t in 0..ag_max_work(r)-

ag_work_zero(r))(allocate("AGENCY",r,t+1))

forall(r in ALL_ROLES, t in 1..WEEKS_TO_PLAN-ag_max_work(r)) AG_work_count

(r,t) := ag_max_work(r) >= sum(k in 0..ag_max_work(r))(allocate("

AGENCY",r,t+k))

!rest

forall(e in REG_EMP) Rest_count(e,1) := rest_total(e,1) >= rest_zero(e) -

(1-(sum(r in ALL_ROLES)(allocate(e,r,1))))

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN) Rest_count(e,t) := rest_total(

e,t) >=rest_total(e,(t-1)) - (1-(sum(r in ALL_ROLES)(allocate(e,r,t))))

forall(e in REG_EMP, t in TIME) Rest_reset(e,t) := rest_total(e,t) >= (

min_rest(e)-1)*(sum(v in VESSELS)(depart(e,v,t)))

forall(e in REG_EMP) Rest_vs_work(e,1) := min_rest(e)*(1-(sum(r in

ALL_ROLES)(allocate(e,r,1)))) >= rest_zero(e)

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN) Rest_vs_work(e,t) := min_rest(

e)*(1-(sum(r in ALL_ROLES)(allocate(e,r,t)))) >= rest_total(e,(t-1))

!--------comb cut--

427

forall(e in REG_EMP ,r in ALL_ROLES,t in 1..rest_zero(e)) do

if(rest_zero(e)>=1)then

Rest_new(e,r,t):= allocate(e,r,t)=0

end-if

end-do

forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-1)do

if(min_rest(e)>=1)then

b:=(min_rest(e)-1)

a:=(WEEKS_TO_PLAN-t)

if(b<=a) then

c:=b

else

c:=a

end-if

end-if

forall(y in 1..c)do

Rest_new1(e,t,y) := sum(r in ALL_ROLES)(allocate(e,r,t+y))+sum (v in

VESSELS) depart(e,v,t)<=1

end-do

end-do

!---------comb cut---------------------

! finally, DVs binary, integer, non-negative, or free:

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(allocate(e,r,t)))

allocate(e,r,t) is_binary

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(linear_dv(e,r,t)))

linear_dv(e,r,t) is_binary

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(Robust_eligable(e,

r,t))) Robust_eligable(e,r,t) is_binary

forall(r in ALL_ROLES, t in TIME) Robust_demand(r,t) is_binary

428

forall(e in REG_EMP, v in VESSELS, t in TIME) board(e,v,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) depart(e,v,t) is_binary

forall(r in ALL_ROLES, t in TIME) ag_rboard(r,t) is_binary

forall(r in ALL_ROLES, t in TIME) ag_rdepart(r,t) is_binary

forall(e in GUARANTEED) undertime(e) >= 0

forall(e in GUARANTEED) overtime(e) >= 0

setparam("XPRS_verbose",true)

minimize(Total_cost)

end-model

B.2.3 Robust Formulation with Cost Uncertainty

model ModelName

uses "mmrobust","mmxprs", "mmsystem"; !gain access to the Xpress-Optimizer

solver

parameters

TC=0.3

end-parameters

! Model for the Subsea 7 problem, using formulation as set out in 2nd Year

Review document

! This program aims to solve the problem directly from this formulation

DATAFILE := "Real time-window data - Captains.txt"

LOGFILE := "Logfile-Robust Cost-Time-window real data.txt"

SUMMARYFILE := "Results-Robust-Cost-Time-window real data.txt"

! Set parameters relating to running time and acceptable optimality gap:

setparam("XPRS_maxtime", -3600)

!setparam("XPRS_miprelstop",0.05)

! Set parameters for numbers of Cover and Gomory cuts to apply:

!setparam("XPRS_covercuts",1000)

429

!setparam("XPRS_gomcuts",1000)

prog_starttime := gettime ! get the time so that at the end,

running time can be calculated

declarations

status: array({XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH}) of string !

Used to indicate the solution status of the probelm

REG_EMP: set of string ! Regular employee names / numbers (ie not

Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which

will require cover, divided by vessels

ALL_ROLES: set of string ! List of all roles

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real !

Data relating to over/undertime payments for employees

end-declarations

initializations from DATAFILE

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

under_rate over_rate g_weeks exp_worktime

end-initializations

ALL_EMP := REG_EMP + {"AGENCY"}

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

declarations

430

TIME = 1..WEEKS_TO_PLAN ! Time index

allocate: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar ! Variable for

allocating employee to role during given time period

board, depart: array(REG_EMP, VESSELS, TIME) of mpvar ! =1 if employee

boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer value for agency crew

Robust_eligable:dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar

linear_dv: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar

ag_rboard, ag_rdepart: array(ALL_ROLES, TIME) of mpvar ! =1 if agency

crew starts / ends working on a role in given time period, 0 otherwise

undertime, overtime: array(GUARANTEED) of mpvar !

Variables to calculate the amount of under/overtime carried out by

employee

work_total, rest_total: array(REG_EMP, TIME) of mpvar ! Used to track

the consecutive working time / rest period requirements of each

employee

ag_work_total: array(ALL_ROLES, TIME) of mpvar ! Used to

track the consecutive working time of the agency employees

board_cost, depart_cost: array(REG_EMP, VESSELS, TIME) of real ! Costs of

CHANGES TO employees boarding / leaving vessel

ag_board_cost, ag_depart_cost: array(ALL_ROLES, TIME) of real ! Costs of

CHANGES TO agency employees boarding / leaving for a given role

work_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given

role at a given time

required: array(ALL_ROLES, TIME) of integer ! =1 if

role r is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can

carry out role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is

on board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

ag_starting: array(ALL_ROLES) of integer ! =1 if

agency employee is in role r at time 0, =0 otherwise

431

work_zero, rest_zero: array(REG_EMP) of integer ! initial values

of work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial

value of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum

on working time, minimum on resting time

ag_max_work: array(ALL_ROLES) of integer ! maximum

on working time for agency crew, possibly different for each role

overall_regular_max_work: integer

overall_agency_max_work: integer

overall_max_work: integer

end-declarations

initializations from DATAFILE

board_cost depart_cost work_cost

ag_board_cost ag_depart_cost

required eligable starting ag_starting

work_zero rest_zero

max_work min_rest ag_max_work

end-initializations

overall_regular_max_work := max(e in REG_EMP) max_work(e)

overall_agency_max_work := max(r in ALL_ROLES) ag_max_work(r)

if(overall_regular_max_work > overall_agency_max_work) then

overall_max_work := overall_regular_max_work

else

overall_max_work := overall_agency_max_work

end-if

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate(e,r,t))

end-if

end-do

432

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(linear_dv(e,r,t))

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(Robust_eligable(e,r,t))

end-if

end-do

declarations

lambda = 1..overall_max_work

! Index used for number of consecutive

weeks

long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of mpvar ! Used to

indicate if a special bonus / penalty payment relating to consecutive

time at sea is required

extension_cost: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real ! Cost of

CHANGES TO an employee working on board a vessel for longer than usual

end-declarations

initializations from DATAFILE

extension_cost

end-initializations

declarations

Total_cost: robustctr

All_covered: dynamic array(ALL_ROLES, TIME) of linctr

No_overlap: array(REG_EMP, TIME) of linctr

Board_constr: array(REG_EMP, VESSELS, TIME) of linctr

Depart_constr: array(REG_EMP, VESSELS, TIME) of linctr

AG_board_vs_depart: array(ALL_ROLES, TIME) of linctr

Calc_undertime: array(GUARANTEED) of linctr

Calc_overtime: array(GUARANTEED) of linctr

433

Work_count: array(REG_EMP, TIME) of linctr

Work_count_start: array(REG_EMP) of linctr

Long_work_count: dynamic array(lambda, REG_EMP, ALL_ROLES, TIME) of linctr

AG_work_count: array(ALL_ROLES, TIME) of linctr

AG_work_count_start: array(ALL_ROLES) of linctr

AG_work_reset: array(ALL_ROLES, TIME) of linctr

AG_long_work: dynamic array(lambda, ALL_ROLES, TIME) of linctr

Rest_count: array(REG_EMP, TIME) of linctr

Rest_reset: array(REG_EMP, TIME) of linctr

Rest_vs_work: array(REG_EMP, TIME) of linctr

Rest_new: array(REG_EMP,ALL_ROLES,range) of linctr

Rest_new1: array(REG_EMP, 1..WEEKS_TO_PLAN-1,range) of linctr ! Added for

recovery problem - constraints to link change, current and new values:

linear1: array(ALL_EMP, ALL_ROLES, TIME) of linctr

linear2: array(ALL_EMP, ALL_ROLES, TIME) of linctr

linear3: array(ALL_EMP, ALL_ROLES, TIME) of linctr

Depart_linking:array(REG_EMP, TIME) of linctr

Robust_criteria:array(TIME) of linctr

a:integer

b:integer

c:integer

transportation_cost: array(ALL_EMP, ALL_ROLES, TIME) of uncertain

end-declarations

!objective function- cost calculation

prog_setup_time := gettime

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) do

transportation_cost(e,r,t)<=work_cost(e,r,t)*TC

transportation_cost(e,r,t)>=0

end-do

Total_cost := (sum(e in REG_EMP, v in VESSELS, t in TIME)((board_cost(e,v,

t)*board(e,v,t)) + (depart_cost(e,v,t)*depart(e,v,t))) +

434

sum(r in ALL_ROLES, t in TIME)((ag_board_cost(r,t)*ag_rboard(r,t)) + (

ag_depart_cost(r,t)*ag_rdepart(r,t))) +

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)(((work_cost(e,r,t)+

transportation_cost(e,r,t))*allocate(e,r,t)))+

sum(e in GUARANTEED)((under_rate(e)*undertime(e))+ (over_rate(e)*overtime(

e))))

forall(r in ALL_ROLES, t in TIME | required(r,t) > 0) do

create(All_covered(r,t))

All_covered(r,t) := sum(e in ALL_EMP)(eligable(e,r,t)*allocate(e,r,t))-

sum(e in ALL_EMP)(linear_dv(e,r,t))= required(r,t)

end-do

forall(r in ALL_ROLES, t in TIME)Robust_eligable("AGENCY",r,t)=0

forall(t in TIME) Robust_criteria(t) := sum(e in REG_EMP,r in ALL_ROLES|

eligable(e,r,t)>0)(Robust_eligable(e,r,t)) >=32

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME)linear1(e,r,t):=linear_dv(e

,r,t)<=Robust_eligable(e,r,t)

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME)linear2(e,r,t):=linear_dv(e

,r,t)<=allocate(e,r,t)

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME)linear3(e,r,t):=linear_dv(e

,r,t)>=Robust_eligable(e,r,t)+allocate(e,r,t)-1

forall(e in REG_EMP, t in TIME) No_overlap(e,t) := sum(r in ALL_ROLES)

allocate(e,r,t) <= 1

forall(e in REG_EMP, v in VESSELS) Board_constr(e,v,1) := board(e,v,1) >=

sum(r in ROLES(v))(allocate(e,r,1)) - starting(e,v)

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) Board_constr(e,v

,t) := board(e,v,t) >= sum(r in ROLES(v))(allocate(e,r,t)) - sum(r in

ROLES(v))(allocate(e,r,(t-1)))

forall(e in REG_EMP, v in VESSELS) Depart_constr(e,v,1) := depart(e,v,1)

>= starting(e,v) - sum(r in ROLES(v))(allocate(e,r,1))

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) Depart_constr(e,

v,t) := depart(e,v,t) >= sum(r in ROLES(v))(allocate(e,r,(t-1))) - sum(

435

r in ROLES(v))(allocate(e,r,t))

!-------------depart linking------------------------------------

forall(e in REG_EMP, t in TIME) Depart_linking(e,t):=sum(v in VESSELS)

depart(e,v,t)+sum(r in ALL_ROLES) allocate(e,r,t)<=1

!-------------depart linking------------------------------------

forall(r in ALL_ROLES) AG_board_vs_depart(r,1) := ag_rboard(r,1) -

ag_rdepart(r,1) = allocate("AGENCY",r,1) - ag_starting(r)

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) AG_board_vs_depart(r,t) :=

ag_rboard(r,t) - ag_rdepart(r,t) = allocate("AGENCY",r,t) - allocate("

AGENCY",r,(t-1))

forall(e in GUARANTEED) Calc_undertime(e) := undertime(e) >= g_weeks(e) -

(exp_worktime(e) + sum(r in ALL_ROLES, t in TIME)(allocate(e,r,t)))

forall(e in GUARANTEED) Calc_overtime(e) := overtime(e) >= (exp_worktime(e

) + sum(r in ALL_ROLES, t in TIME)(allocate(e,r,t)))- g_weeks(e)

forall(e in REG_EMP|work_zero(e)>=1) Work_count_start(e) := max_work(e) >=

work_zero(e) + sum(r in ALL_ROLES, t in 0..max_work(e)-work_zero(e))(

allocate(e,r,t+1))

forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-max_work(e)) Work_count(e,t) :=

max_work(e) >= sum(r in ALL_ROLES, k in 0..max_work(e))(allocate(e,r,t

+k))

forall(r in ALL_ROLES|ag_work_zero(r)>=1) AG_work_count_start(r) :=

ag_max_work(r) >= ag_work_zero(r) + sum(t in 0..ag_max_work(r)-

ag_work_zero(r))(allocate("AGENCY",r,t+1))

forall(r in ALL_ROLES, t in 1..WEEKS_TO_PLAN-ag_max_work(r)) AG_work_count

(r,t) := ag_max_work(r) >= sum(k in 0..ag_max_work(r))(allocate("

AGENCY",r,t+k))

forall(e in REG_EMP) Rest_count(e,1) := rest_total(e,1) >= rest_zero(e) -

(1-(sum(r in ALL_ROLES)(allocate(e,r,1))))

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN) Rest_count(e,t) := rest_total(

e,t) >=rest_total(e,(t-1)) - (1-(sum(r in ALL_ROLES)(allocate(e,r,t))))

436

forall(e in REG_EMP, t in TIME) Rest_reset(e,t) := rest_total(e,t) >= (

min_rest(e)-1)*(sum(v in VESSELS)(depart(e,v,t)))

forall(e in REG_EMP) Rest_vs_work(e,1) := min_rest(e)*(1-(sum(r in

ALL_ROLES)(allocate(e,r,1)))) >= rest_zero(e)

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN) Rest_vs_work(e,t) := min_rest(

e)*(1-(sum(r in ALL_ROLES)(allocate(e,r,t)))) >= rest_total(e,(t-1))

!----------------comb cut-------------------------------

forall(e in REG_EMP ,r in ALL_ROLES,t in 1..rest_zero(e)) do

if(rest_zero(e)>=1)then

Rest_new(e,r,t):= allocate(e,r,t)=0

end-if

end-do

forall(e in REG_EMP, t in 1..WEEKS_TO_PLAN-1)do

if(min_rest(e)>=1)then

b:=(min_rest(e)-1)

a:=(WEEKS_TO_PLAN-t)

if(b<=a) then

c:=b

else

c:=a

end-if

end-if

forall(y in 1..c)do

Rest_new1(e,t,y) := sum(r in ALL_ROLES)(allocate(e,r,t+y))+sum (v in

VESSELS) depart(e,v,t)<=1

end-do

end-do

!---------------------------comb cut------------------

! finally, whether vessels are binary, integer, non-negative, or free:

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(allocate(e,r,t)))

allocate(e,r,t) is_binary

437

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(linear_dv(e,r,t)))

linear_dv(e,r,t) is_binary

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(Robust_eligable(e,

r,t))) Robust_eligable(e,r,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) board(e,v,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) depart(e,v,t) is_binary

forall(r in ALL_ROLES, t in TIME) ag_rboard(r,t) is_binary

forall(r in ALL_ROLES, t in TIME) ag_rdepart(r,t) is_binary

forall(e in GUARANTEED) undertime(e) >= 0

forall(e in GUARANTEED) overtime(e) >= 0

setparam("XPRS_verbose",true)

minimize(Total_cost)

end-model

438

