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Abstract

The surge in offshore wind energy amplifies the urgency to optimise O&M lifecycle
costs, a pivotal endeavor for bolstering affordability. These costs are anticipated to
constitute a significant portion of overall lifecycle expenditures. A crucial strategy
in achieving these cost reductions involves transitioning from traditional maintenance
models, such as calendar-based repairs, to more sophisticated approaches like Predictive
Maintenance.

This paradigm shift poses a formidable challenge, as uncertainties related to damage
propagation, weather dynamics, and maintenance planning exert considerable pressure
on O&M practitioners. The objective of this thesis is to delineate steps illustrating
the design of an autonomous decision-making system for wind turbine blades. The
initial phase involves identifying the most consequential failure modes through a com-
prehensive Failure Modes, Effects and Criticality Analysis (FMECA). Subsequently,
a degradation function is proposed for a primary failure mode, namely leading edge
erosion, furnishing the groundwork for approaching the O&M optimisation challenge.

In the progression toward an autonomous system, an essential tool is introduced
to facilitate the selection of baseline calendar-based maintenance strategies for leading
edge erosion at the wind farm level. This tool serves as a precursor to the ultimate de-
sign of a RL-based autonomous decision-making agent, incorporating prognostics infor-
mation specifically for leading edge erosion. The obtained results showcase the efficacy
of the proposed agent, demonstrating a noteworthy reduction in expected costs rang-
ing from 12% to 21% when compared to condition-based maintenance. Furthermore,
the agent contributes to a diminished risk of blade failure, highlighting the promising

impact of autonomous decision-making in the realm of wind turbine O&M.

ii



Contents

Abstract ii
List of Figures vi
List of Tables X
Preface/Acknowledgements XX

1 Introduction
1.1 Background . . . . . . . . ...
1.2 Structure of the thesis . . . . . . . . . . ... ... ... ... ... ..
1.3 Research question and objectives . . . . . . .. . ... ... .. .....

1.4 Novelty of Research . . . . . . . . .. ... ... .

[ S B NG, SRS

1.5 Approach toresearch . . . . . . . . . .. ... ... ...

2 Maintenance strategies in composite structures: the potential of PHM 10
2.1 Introduction . . . . . . . . . . e 11

2.2 Overview of the main technological applications of composite structures

— Use and limitations . . . . . . . ... ... Lo oL 14
2.2.1 Aerospace industry . . . .. ... 14
2.2.2 Wind industry . . . . .. ..o 16
2.2.3 Civil construction industry . . . .. .. .. ... .. ... 19
2.2.4  Naval Shipbuilding industry . . . . .. . .. ... ... ... 23

2.2.5 Cross-sectoral maturity overview of composites and contribution

to SDGs . . . . e 25

iii



Contents

2.3 Health Monitoring of FRP composites across industries . . . . ... .. 27
2.3.1 Aerospace industry . . . .. ... 28
2.3.2 Wind industry . . . . .. ..o 31
2.3.3 Civil construction industry . . . .. .. ... ... ... ... 32
2.3.4 Naval Shipbuilding industry . . . . .. . ... ... ... 0. 33
2.3.5 Cross-sectoral SHM overview . . . . .. .. .. ... .. ..... 34

2.4 Maintenance of composite structures across industries . . . . .. .. .. 36
2.4.1 Overview of existing maintenance strategies . . . . . . . ... .. 36
2.4.2 Impact of maintenance in whole-life cycle costs . . . . . . . . .. 39

2.5 Discussion . . . . ... e 44
2.5.1 Intelligent Prognostics and Health Management (iPHM) . . . . . 44
2.5.2  Structural composites as cyber-physical structures . . .. . . .. 46

2.6 Concluding remarks . . . . . .. .. oo 48

3 Failure mode, effect and criticality analysis of wind turbine blades 51

3.1 Imtroduction . . . . . . .. .. . 52
3.2 Literature review . . . . . . . ... 54
3.3 Developing a risk-based maintenance strategy selection policy . . . . . . 56
3.4 Risk identification and criticality assessment . . . . . . . . .. ... ... 61
3.5 Results & discussion . . . . . . ... 66
3.6 Conclusion . . . . .. ... 71
4 A degradation model for leading edge erosion 72
4.1 Introduction . . . . . . . . .. L L 73
4.2 Fundamentals about leading edge erosion . . . . .. ... ... .. ... 76
4.3 Proposed modelling framework . . . . ... ... .. 0oL 79
4.3.1 Weather time series generation . . . .. .. ... ... ... ... 80
4.3.2 Airfoil performance estimation . . . .. ... ... ... ... .. 81
4.3.3 Erosion degradation model . . . . .. ... ... ... ... 82
4.3.4 Calculation of degraded power curves . . . .. .. ... ..... 84
4.3.5 Erosion progression estimation . . . . . ... ... ... ... 84

v



Contents

4.4

4.5

Casestudy . . . . . . . . 85
4.4.1 Turbine and bladedata . . . .. ... ... ... ... ... .. 85
442 CFDsetup . . . . .. 86
4.4.3 Weatherdata . . . ... ... ... L o oL 90
4.4.4 FErosion leading edge protection configuration . . . . ... .. .. 91
4.4.5 Frosion degradation . . . . . ... ... L. 92
4.4.6 Annual energy production results . . . . . ... ... ... 93
Conclusion . . . . . . . . . . e 94

5 A reliability-based framework for leading edge erosion baseline main-

tenance selection 97
5.1 Imtroduction . . . . . . . . ... L 98
5.2 Methodology . . . . . . . . . ... 102
5.2.1 Limit States/Design Criteria . . . . . ... .. ... ... .... 105
5.2.2  Selection of stochastic variables . . . . . .. ... ... ... ... 106
5.3 O&M model assumptions . . . . . . . . .. ... ... 109
5.3.1 Repair modelling . . . . . .. .. . Lo L L 111
5.3.2 Repair constraints . . . . . ... L. oo 113
533 Costmodel . ... .. . 114
54 Casestudy . . . . . ... 114
5.4.1 Reliability analysis . . . . . . ... ... ... L L. 117
54.2 Costanalysis . . . .. .. .. L 120
5.4.3 Pareto front analysis . . . . ... ... oo 120
5.5 Conclusions and further remarks . . . . .. ... . ... ... ... ... 121

6 An autonomous decision-making agent for offshore wind turbine blades

under leading edge erosion 124
6.1 Introduction . . . . . . .. .. L L L 125
6.2 Methodology . . . . . . . ... 127
6.2.1 Computational framework . . . . . . ... ... ... ... 127
6.2.2 Decision-making framework . . . . ... ... ... L. 133



Contents

6.3 O&M considerations . . . . . . . ...
6.4 Casestudies . . . . . . . . . . L
6.4.1 Casestudy 1 . . . .. .. ..
6.42 Casestudy 2 . . . . . .. .
6.5 Discussion . . . . . . ..

6.6 Conclusions and further remarks . . . . . . . . . . . ... ... ... ..

7 Discussion

7.1 Contribution . . . . . . . . e

8 Overall conclusions and future work
8.1 Conclusions . . . . . . . . . e

8.2 Future Work . . . . . . .

A Sustainable Development Goals

A.1 Sustainable Development Goals . . . . . . . .. ... ... ... .....
B FMECA Tables

C Repair success probabilities (Chapter 5)

C.1 Repair success probabilities . . . . . . .. ... ... ... ...,

D Repair success probabilities (Chapter 6)

D.1 Repair success probabilities . . . . . .. .. ... 0oL

Bibliography

vi

155
156

160
160
163

165
165

170

175
175

177
177

181



List of Figures

1.1

2.1
2.2
2.3
24

2.5

3.1
3.2
3.3
3.4
3.5

4.1
4.2

Research steps . . . . . . . . . . .o

Aircraft’s composite participation in weight [376]. . . . . . . .. ... ..
Evolution of wind energy capacity by region. Data taken from [185]. . .
Typical turbine blade cross-section. . . . . . . . .. ... ... ... ...
Applications of composite material in bridges. (a-j) pedestrian bridges.
(k-p) road bridges. locations: Kolding, Denmark (a), Svendborg, Den-
mark (b), Esbjerg, Denmark (c), Grosseto, Italy (d), Harderwijk, Nether-
land (e), Rotterdam, Netherlands (f), University of Salerno, Italy (g),
Floriadeburg, Netherland (h), Ngrre Aaby, Denmark (i), Moscow, Rus-
sia (j), Delft, Netherlands (k), Karrebaseksminde, Denmark (1), Utrecht,
Netherlands (m), Klipphausen, Germany (n), Oxfordshire, UK (o), Lan-
cashire, UK (p). Source of photographs: [17]. . . . ... ... ... ...
Schematic view of the analysis of contribution of composite materials

towards the achievement of the SDGs. . . . . . . . . . . .. ... ....

Types of maintenance. Adapted from [203]. . . .. ... ... ... ...
Wind turbine blade components. . . . . .. .. ... L.
Maintenance decision tree. Adapted from [203]. . . . . .. ... .. ...
Criticality matrix . . . . . .. . .. o

Criticality by blade component. . . . . . . . ... .. ... L.

Criticality by blade component. Source: [82]. . . . . .. ... ... ...
Typical leading edge protection configurations. Adapted from [88]. . . .

vii

54



List of Figures

4.3 Computation framework. . . . . . . .. ... ... ... ... 80
4.4 Synthetic wind data generation process. Subindex n refers to the number

of bins in which wind speed is discretised. . . . . . .. .. ... ... .. 81
4.5 Synthetic wind data generation process. . . . . .. .. .. ... ... 82
4.6 CFD setup. . . . . . . . . 86
4.7 Mesh independence study results. . . . . .. ..o L 87
4.8 Distribution of y* value for the studied meshes. . . . . . ... ... ... 88
4.9 Lift results using different y* values. . . . . . ... .. ... .. ... .. 88
4.10 NACAG64 CFD setup validation with experimental results from [409]. . . 89
4.11 NACA64 CFD results extrapolated Polars Re = 9 - 10° after 3D stall

correction and extrapolation. . . . . . ... ..o 89
4.12 Turbine original vs degraded power curve. In the rightmost panel, the

plot is zoomed in for the range 8 to 12 m/s of wind speed. . . . . . . .. 90
4.13 Weather data used in the casestudy. . . . . .. ... ... ... ... ... 90
4.14 Average rain intensity - Observed vs Synthetic data. . . . . . . . .. .. 91
4.15 Whirling arm rain erosion test data. 3Layer: 3-layer system estimated

from [29] provided by PolyTech A /S, GC': 1-layer elastomeric PU coating

from [192]. GA: Generic blade coating system supplied by Olsen Wings

A/S from [192]. GS: 3-layer system including a pink filler and PU elas-

tomeric coating from [192]. The term G20 (3.5 mm droplets) refers to

the type of needles used for the tests. . . . . . . . ... .. ... ..... 92
4.16 Erosion front progression for the different coatings analysed (GCG20,

GAG20 and 3Layer). The shadowed areas represent the 2.5-97.5% prob-

ability bands. . . . . ... L Lo 93
4.17 AEP degradation curve for blades using the coatings analysed (GCG20,

GAG20 and 3Layer). The shadowed areas represent the 2.5-97.5%.

probability bands. . . . . ... L oo 94
5.1 Repaired leading edge of the wind turbine blade (demonstration of com-

posite repair by Danish Blade Service Aps). Source: [265]. . . . . . . .. 100
5.2 LEE risk-based O&M policy selection. . . . . . . . ... ... ... ... 103

viii



List of Figures

5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11

5.11

5.12

5.13

6.1
6.2
6.3
6.4
6.5
6.6
6.7

LEE calculation framework. Source: [240]. . . . . . .. .. ... ... .. 105
Damage, d, assigned to different damage severity categories. . . . . . . . 106
Accumulated impingement at failure for GAG20 coating. . . . . . . . . . 107
Weather data used in the case study. . . . . . . .. ... ... ... ... 112
Sample Hg prediction. . . . . . . . .. L Lo 113
Repair modelling. . . . . . . . . ... 113
Weather data used in the case study. . . . . . . .. ... ... ... ... 115
Wind turbine power curves for pristine and eroded states. . . . . . . .. 116

Reliability analysis. The left axis represents the reliability g(z) of the
LEP system, the right axis represents the cumulative probability of failure.118
Reliability analysis. The left axis represents the reliability g(z) of the
LEP system, the right axis represents the cumulative PoF. . . . . . . .. 119
Total O&M cost distribution for analysed maintenance strategies. The
left axis represents the frequency and the right axis the cumulative prob-
ability of occurrence. The dashed line represents the median of the O&M
strategy. The cumulative probability of occurrence tends to 1, but the

plot was truncated at 1M for a better visualisation of the distribution of

the costs. . . . . . . 120
Pareto front plot - O&M decision-making. . . . . . ... ... ... ... 121
Relations between parameters . . . . . . . . ... ... 128
LEE calculation framework. Source: [240] . . . . . .. ... .. ... .. 129
Accumulated impingement at failure for the GAG20 coating . . . . . . . 131
Damage, d, assigned to different damage severity categories . . . . . .. 132
Repair modelling. . . . . . .. .. L oo 140
Case study 1 O&M policy analysis . . . . .. ... ... ... ... ... 144

O&M cost distribution of the CS1 policies analysed. The dashed lines
represent the median of the distribution. The right axis shows the cu-

mulative probability of the distribution. . . . . . . ... ... ... ... 146

ix



List of Figures

6.8

6.9
6.10

6.11

Cost distribution of CS1 O&M policies. The minimum and maximum
values of the whiskers repesent P; and Pys, respectively and the red
marker the average cost . . . . . . . .. ... .. Lo
Case study 2 O&M policy analysis . . . . . . .. ... .. ... ... ..
O&M cost distribution of the CS2 policies analysed. The dashed lines
represent the median of the distribution. The right axis shows the cum-
mulative probability of the distribution. . . . . . . . ... ... .. ...
Cost distribution of CS2 O&M policies. The minimum and maximum
values of the whiskers represent Ps and Pys, respectively. The right plot

is a zoomed in version of the leftone . . . . . . . . . . .. ... ... ..



List of Tables

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2

5.1
5.2

Published composite design guidelines. . . . . . .. . ... ... .. ... 20
List of pedestrian composite bridges. . . . . . . . .. ... ... ... .. 21
List of road composite bridges. . . . . . . ... ... ... L. 23
Score values for maturity factors. . . . . . .. ..o oo 25
Maturity factor values by industry. . . . . . .. .. .. ... ... 26

List of structural health monitoring techniques used in fiber reinforced

polymers. . . . ... 29

Risk and reliability studies including wind turbine blades in the literature. 56

Severity factor categorisation. . . . . . . ... ... 59
Occurrence factor categorisation. . . . . . . . . . .. ... ... ..... 59
Description of Criticality Categories. . . . . . . . . . . .. .. ... ... 59
Identified risks from the FMECA. . . . . . . . ... ... ... .. .... 62
Count of failure modes by cause. . . . . . . . ... ... ... ... .. 62
Damage monitoring references in the literature. . . . . . . . . . . . . .. 65
FMECA analysis (Failure modes 1 to 31). . . . . ... ... ... .... 67
Failure modes with high criticality. . . . . . .. ... ... ... ... .. 69
5 MW NREL Turbine data. Data extracted from [193]. . ... ... .. 85
5 MW NREL Blade Airfoil data. Data extracted from [193]. . . . . . . . 86
Leading edge damage classification by severity [36]. . . . . . ... .. .. 100

Repair costs per damage severity - 3 blades. Data obtained from [288]
and [446]. . . .. 111

pal



List of Tables

5.3
5.4
5.5

6.1
6.2

6.3
6.4
6.5

7.1

Al
A2

A3

A4

B.1
B.2
B.3

C.1
C.2
C.3

D1
D.2

Weather repair constraints. . . . . . . . .. .. ... ... ... ... 114
Maintenance strategies analysed. . . . . . . .. ... ... ... ... .. 116
End of Life (EoL) reliability summary. . . . . . . ... ... ... .... 119
Weather repair constraints. . . . . . . . .. .. ... ... L. 139
Repair costs per damage severity - 3 blades. Data obtained from [288]

and [446]. my, m, and m. are the booking, access and execution costs,

respectively. . . ... 139
5 MW NREL Turbine data. Data extracted from [193] . . . . . . . . .. 141
Cost metrics for Case study 1 . . . . . . . . .. ... ... ... ..... 145
Cost metrics for Casestudy 2 . . . . .. . ... ... 150

Contribution of research analysed by means of novelty, scientific sound-

ness and value per each set objective . . . . . . ... ... ... 158

The 17 Sustainable Development Goals (SDGs). Source [418]. . . . . . . 166
Boolean indicators of contribution of composite materials to SDGs 1 to
8, as per considered industries. . . . .. ... L Lo L 167
Boolean indicators of contribution of composite materials to SDGs 9 to
16, as per considered industries. . . . . . . ... ... .. L L. 168

Boolean indicators of contribution of composite materials to SDG 17, as

per considered industries. . . . . . . .. ... Lo oL 169
FMECA analysis (Failure modes 1 to 31). . . . . ... ... ... .... 171
FMECA analysis (Failure modes 32 t0 62). . . . . ... ... ...... 172
FMECA analysis (Failure modes 32 to 62). . . .. ... ... ...... 173
P probabilities. . . . . . ..o 175
P, probabilities. . . . . ..o oo 176
P; probabilities. . . . . . ... Lo 176
CS1 P probabilities. The first row represents the damage severity . . . 177
CS1 P, probabilities. The first row represents the damage severity . . . 178

xii



List of Tables

D.3 CS1 P5 probabilities
D.4 CS2 P; probabilities
D.5 (CS2 P, probabilities
D.6 CS2 P; probabilities

. The first row represents the damage severity
. The first row represents the damage severity
. The first row represents the damage severity

. The first row represents the damage severity

xiii

. 178
. 179
. 179
. 180



Nomenclature

C1, Cy
Caer@

Cat

Parameter controlling sampling probability
Average reliability at time t,

Average reliability over lifetime

Parameter for the calculation of sampling weights
Discount factor

Average

Policy

Optimal policy

Standard deviation

Action

Weight vector update frequency

Coating behaviour parameters
Aerodynamic losses

Downtime costs

Maintenance costs

Damage

Xiv



Nomenclature

Dins

Dma:(:

Mg
mp

Me

P(u,d)
p

p

Py, Py, P

LEE damage

Estimated damage obtained through inspection
Estimated maximum LEE damage

Energy produced

Performance function

Return

Accumulated rain impingement to erosion failure
Accumulated rain impingement

Significant wave height

Significant wave height

Rain intensity

Calendar month

Experience replay buffer

Maintenance access cost

Maintenance booking cost

Maintenance execution cost

Experience replay buffer’s size

Turbine power

Damage threshold

Sampling probability

Maintenance success probabilities

XV



Nomenclature

tid

ttm

Optimal value function
Action-value function

Reward

State

Month of operation

Time to decommissioning

Time from last maintenance

Wind speed

Local rotor speed

Average wind speed

Set of weights of the behaviour network
Set of weights of the target network

Sampling weights

Xvi



List of abbreviations

AEP Annual Energy Production
AoA Angle of Attack

ANN Artificial Neural Network
ANNs Artificial Neural Networks
BEM Blade Element Momentum
CBM Condition-Based Maintenance
CFD Computational Fluid Dynamics
CFRP Carbon-Fiber-Reinforced Polymer
CPS Cyber-Physical Structures
DQN Deep Q Networks

EoL End of Life

FMECA  Failure Mode, Effect and Criticality Analysis

FPN Fuzzy Petri Nets

FRP Fiber-Reinforced Polymer
FSI Fluid-Structure Interaction
HLV Heavy Lift Vessel

xvil



Nomenclature

1&M

iPHM

LCOE

LEE

LEP

MCS

MDP

NLP

NREL

o&M

OWTs

PdM

PHM

PMCs

PN

PNs

PPNs

PvM

PWAS

PoF

RL

Inspection & Maintenance
Intelligent PHM

Levelised Cost of Energy

Leading Edge Erosion

Leading Edge Protection

Monte Carlo Simulation

Markov Decision Process

Non-linear Programming

National Renewable Energy Laboratory
Operation & Maintenance

Offshore Wind Turbines

Predictive Maintenance

Prognostics and Health Management
Polymer-Matrix Composites

Petri Nets

Petri Nets

Plausible Petri Nets

Preventive Maintenance
Piezoelectric Wafer Active Sensors
Probability of Failure

Reinforcement Learning

xXviii



Nomenclature

ROI

RUL

SCADA

SDGs

SHM

SPIFT

uv

WARER

Return On Investment

Remaining Useful Life

Supervisory Control and Data Acquisition
Sustainable Development Goals
Structural Health Monitoring

Single Point Impact Fatigue Tester
Ultraviolet

Whirling Arm Rain Erosion Test Rig

Xix



Preface/Acknowledgements

I would like to begin by gratefully acknowledging the European Union’s Horizon 2020
research and innovation programme that have funded my research under the ENHAnCE
project (Marie Sktodowska-Curie grant agreement No 859957). I would like to thank
the management team of ENHAnCE, Professor Manuel Chiachio and Maria Megia,
for putting together such an enriching experience for all the ENHANcE Early Stage
Researchers.

I would like to give a special mention to my supervisors, Professor Athanasios
Kolios and Professor Feargal Brennan, for their patience, guidance and support offered
throughout this journey.

This special achievement would have not been possible without the love and support
of my family. The love and positiveness of my wife, Olenka, and the new star of our
family, our son Mateo, have given me the determination that I needed for the completion
of this task. My parents, Javier and Rafaela, for supporting me in every step of my
education, and my brother Sergio, for being a true inspiration in life. I feel grateful for

having all of you in my life.

XX



Chapter 0. Preface/Acknowledgements



Research output

The list of publications, which have served to shape the main chapters of this thesis, is

shown below:

e Paper A:” A cross-sectoral review of the current and potential maintenance strate-
gies for composite structures”. SN Applied Sciences, 2022. Authors: Javier
Contreras Lopez, Juan Chiachio, Ali Saleh, Manuel Chiachio and Athanasios
Kolios. [83].

e Paper B: 7 Risk-based maintenance strategy selection for wind turbine composite
blades”. Energy reports, 2022. Authors: Javier Contreras Lopez, Athanasios
Kolios. [239]

e Paper C: 7 A wind turbine blade leading edge rain erosion computational frame-
work”. Renewable Energy, 2023. Authors: Javier Contreras Lopez, Athanasios

Kolios, Lin Wang, Manuel Chiachio. [240]

e Paper D: ” Reliability-based leading edge erosion maintenance strategy selection
framework”. Accepted for publication at Applied Energy. Authors: Javier Con-

treras Lopez, Athanasios Kolios, Lin Wang, Manuel Chiachio, Nikolay Dimitrov.

e Paper E: 7 An autonomous decision-making agent for offshore wind turbine blades
under leading edge erosion”. [Accepted for publication] - Renewable Energy. Au-

thors: Javier Contreras Lopez, Athanasios Kolios.

The methods and outcomes of these papers have been included in this thesis as I
have been the main contributor to them. In all of the papers used in the thesis, my

contribution has been the following: conceptualisation/ideation, methodology, analysis

2



Chapter 0. Preface/Acknowledgements

and software development (when required) and conclusions. The appreciated support
of the coauthors was primarily in the areas of research guidance, methodological dis-
cussions and guidance on responding to the comments of the reviewers to improve the

quality of the manuscripts.



Chapter 1

Introduction

1.1 Background

In recent decades, the global energy landscape has witnessed a remarkable shift towards
sustainable and renewable sources. Omne of the most prominent contributors to this
transition is the rise of wind energy, with offshore wind energy emerging as a key
player in harnessing the vast potential of wind resources. This paradigm shift has been
fueled by the increasing demand for clean energy solutions and the need to reduce
reliance on conventional fossil fuels.

However, the integration and expansion of offshore wind energy come with a set of
distinctive challenges. Notably, the logistical intricacies associated with offshore instal-
lations and the substantial increase in the size of turbines pose formidable obstacles to
the industry’s seamless growth. As wind turbines evolve to harness more energy from
the wind, the complexity of their designs and the logistics involved in installation and
maintenance become critical areas demanding thorough investigation.

A significant aspect contributing to the overall lifecycle costs of offshore wind tur-
bines is the Operation and Maintenance (O&M) phase, which accounts for approxi-
mately 30% of the total life cycle costs [256,393]. Surprisingly, O&M costs for offshore
installations can range from 2 to 5 times those incurred for onshore wind turbines [16].
This discrepancy is attributed to the harsh marine environment, increased maintenance

complexity, and the need for specialized equipment and personnel.
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Moreover, the structural integrity of offshore wind turbines, particularly the com-
posite materials forming the blades, faces intricate challenges. The complex damage
modes experienced by these materials necessitate an in-depth understanding to develop
effective maintenance strategies and optimise the overall turbine performance.

In light of these challenges, there is a pressing need for advanced decision support
tools. These tools can play a pivotal role in mitigating O&M costs, enhancing the
reliability of offshore wind turbines, and ultimately making them more economically
viable. By leveraging cutting-edge technologies and data analytics, decision support
tools aim to streamline maintenance processes, predict potential failures, and optimise
resource allocation.

This thesis delves into the multifaceted landscape of offshore wind energy, examining
the challenges posed by logistics, turbine size, and intricate damage modes in composite
materials. Through a comprehensive analysis of the composite damage modes and the
intricacies of turbine blade O&M activities, the research aims to provide insights that
contribute to the development of decision support tools for the O&M of wind turbine
blades. These tools are envisioned to play a crucial role in reducing costs, increasing

affordability, and ensuring the long-term sustainability of offshore wind energy.

1.2 Structure of the thesis

The structure of the presented thesis does not follow the classical approach, instead
it is composed by a collection of papers produced during the PhD, which have been
peer-reviewed prior to the incorporation to this thesis. Chapters 2 to 6 are largely
based on the papers published or submitted to the journals stated in Research Output
section. These Chapters include a section named Chapter Contribution that highlights
the specific contribution of the Chapter to the thesis and references the paper which
constitutes its base. Moreover, the contribution of the author of the thesis to the paper
is stated in this Section.

This thesis is structured as follows: this chapter will first of all introduce the research
question and the motivation behind this thesis. It will also give a high level approach

of the steps followed in this research.
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Chapter 2 presents an extensive literature review of the benefits and limitations in
the use of composite structures in safety critical applications. Moreover, the structural
health monitoring (SHM) techniques and the maintenance strategies used for these
structures are discussed.

Chapter 3 delves into the failure modes of wind turbine blades. It provides a failure
mode effect and criticality analysis (FMECA) of this part to evaluate the criticality of
the different failure modes identified for this component.

Chapter 4 provides a computational framework for one of the most critical failure
modes of the blades, Leading Edge Erosion (LEE). This framework considers the aero-
dynamic effects of LEE and provides a tool to evaluate its progression throughout the
operational life of the turbine.

Chapter 5 presents a tool to evaluate the risk of different candidate maintenance
policies for LEE and make informed decisions for baseline maintenance scheduling at
wind farm level.

Chapter 6 provides the definition of the autonomous decision-making agent for LEE.
This agent makes use of the computational framework defined in Chapter 4 and a
reinforcement learning (RL) agent to recommend O&M actions based on the estimated
damage state of the blade.

Chapter 7 presents a discussion about the findings of the thesis, the application of
the methods used, and the usability of the different frameworks and tools proposed in
the chapters of this document.

Finally, Chapter 8 presents the conclusions that can be drawn from the research
performed, discussion of the findings, the key advantages and limitations of the method-
ologies presented and the opportunities that arise from this research to potential future

work.

1.3 Research question and objectives

The aim of the research is to provide insight into the following research question: ”How
an autonomous decision-making system to support OE&M for wind turbine blades based

on prognostics can be designed?”
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To answer this primary research question, a rational analysis of wind turbine blade
failure modes must be first performed. Once done, the top O&M cost contributors
need to be analysed to identify the key parameters in their evolution and propose a
degradation function. The definition of the degradation function unveils the possibility
of framing the problem as a Partially Observable Markov Decision Process (POMDP)
and the training of the autonomous decision-making system. Having stated this, this

thesis will be broken down into 5 research objectives:

1. Assemble a state-of-the-art literature review of current maintenance methods for

wind turbine blades.
2. Identify the most critical failure modes of a wind turbine blade.

3. Provide a degradation function for one fo the most critical failure modes, LEE,

to evaluate OEM policies.

4. Provide a risk-based tool to evaluate baseline calendar-based LEE maintenance

scheduling policies.
5. Design an autonomous decision-making system for the blade’s O M.

These questions are answered throughout each of the chapter of this thesis and map
onto Chapters 2, 3, 4, 5 and 6, respectively. The beginning of each chapter will present
the research question to be answered and the research performed. The conclusions of
all the research objectives will then be joined in the context of the primary research

question in the final chapter.

1.4 Novelty of Research

The novelty of the research embodied in this thesis stems from the following principles:

1. A risk-priority ranking of the most critical failure modes of a turbine blade pro-

vided through a Failure Mode and Effects Analysis at sub-component level.
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2. The development of a novel framework to estimate blade LEE progression and
evaluate wind turbine Annual Energy Production (AEP) considering weather

uncertainty.

3. The proposal of a methodology to design baseline calendar-based maintenance

strategies for LEE at wind farm level.

4. The design and proposal of a autonomous decision-making system for offshore

wind turbine blades O&M optimisation.

1.5 Approach to research

There are several steps in the journey to provide autonomous decisions for wind turbine
blade O&M optimisation. The methodologies followed are thoroughly described in
Chapters 2, 3, 4, 5 and 6. Figure 1.1 provides a high-level view of the sequence of this

research followed towards answering the primary research question of the thesis.

Analysis of Description of Proposal' of Proposgl of Design of
. . degradation baseline
current O&M wind turbine . autonomous
. . . function for calendar-based .. .
practices in blade failure o . decision-making
. LEE considering LEE maintenance
the industry modes . . system for LEE
weather uncertainty strategies

Figure 1.1: Research steps

To answer the primary research question, the current O&M practices and mainte-
nance models for safety critical composite structures were first reviewed in Chapter 2.
Following this, in Chapter 3, the wind turbine blade component was analysed through
an FMECA to identify critical failure modes to represent in the simulations and target
with the O&M activities. Then, a degradation model for one of the most risk-critical
failure modes, LEE, is presented in Chapter 4. This model has been used first to tune
calendar-based maintenance intervals and provide baseline maintenance strategies for
this failure mode in Chapter 5. In Chapter 6, an autonomous decision-support agent
based on reinforcement learning techniques is proposed. This agent makes use of the

proposed LEE computational framework for the estimation of LEE degradation. Chap-
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ter 7 presents a discussion of the findings of the thesis, the application of the methods
used, and the usability of the different frameworks and tools proposed in the chapters
of this work. Finally, Chapter 8 presents the conclusions derived from the research and

highlights the key advantages, limitations and opportunities arising from this research.



Chapter 2

Maintenance strategies in

composite structures: the

potential of PHM

Chapter contribution

The use of fiber-reinforced polymer composite structures has increased during the last
decade due to several factors. Among them, their superior strength-to-weight ratio
and fatigue capacity stand up. These materials experience complex failure modes that
depend on several parameters such as the types of fibres, resin, composition and layup
of the laminate. Moreover, they can develop barely visible impact damage than can
develop without being detectable by visual inspection. The combination of these two
factors difficult the greater spreading of the use of these materials in many safety-critical
applications.

This chapter aims to accomplish the following research objective: Assemble a state-
of-the-art literature review of current maintenance methods for wind turbine blades.

The contributions of this chapter to the thesis are as follows:
e Provide an overview of the use of composite materials for wind turbine blades.

e Show the current limitations to the growth the use of composite materials in the

10
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wind industry are.

e Convey what inspection and SHM techniques are currently available and what

their applicability and limitations are.

e Provide insight into the potential benefits of the application of PHM to wind
turbine blades and analyse the current maintenance techniques used and their

limitations.

The published peer reviewed journal article Contreras Lopez, Javier, et al. 7 A
cross-sectoral review of the current and potential maintenance strategies for composite
structures” SN Applied Sciences 4.6 (2022) was authored by myself as part of my
research completed under the direction and consultation of my supervisor, Professor
Athanasios Kolios, and my coauthors. The published article is incorporated in this

chapter and forms part of the comprehensive literature review presented.

2.1 Introduction

The commitment towards global sustainable development was signed by all United
Nations Member States in 2015 and resulted in the 2030 Agenda for Sustainable De-
velopment!. This agreement is based on 17 Sustainable Development Goals (SDGs)
which target the most critical issues that we need to face as a society. Fiber-reinforced
polymer (FRP) composite materials are high-efficiency and high-durability lightweight
materials that have the potential to positively impact several SDGs driving a change
towards sustainability. Notwithstanding, a paradigm shift in the use of these advanced
materials by the different industries is challenged by several issues, among which the
following stand out: uncertainty about long-term damage behaviour and reliability [74],
inadequacy or absence of design standards in several industries, lack of technological
demonstrators [210], unreliable manufacturing [124], shortage of long-term durability
data [165,367], high material costs [200], and recyclability issues [190,217]. These issues
mainly derive from an immature knowledge about the optimal monitoring and main-

tenance strategies throughout the lifetime of these materials within a healthy balance

"https://sdgs.un.org/goals
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between safety and cost for safety-critical applications. Hence, the use of composite ma-
terials by the different industries is still dissimilar, depending on their attitude towards
risk and their expectancy about the use of composites.

These reasons call for cross-sectoral research and development approaches to over-
come the constraints of each of the industries with the knowledge and experience of the
others. The more profound knowledge and technology development of the aerospace
industry in the use of composite structures along with the extensive experience of lower
risk industries such as the automotive and wind energy can be utilised in favour of less
developed industries such as the civil and naval. In general, we can envisage that the
(open) data and knowledge provided by the more advanced industries will boost the
adoption of composites materials by increasing the confidence of the stakeholders of
different industries to design, produce, manage and utilise composite structures. How-
ever, finding common grounds and knowledge to overcome the particularities of each
type of industry is a significant challenge, which, to the authors’ best knowledge, has
not been tackled before in the open literature. This work represents a first step in this
direction.

In particular, this chapter provides a cross-sectoral overview of the potential and
limitations of different maintenance technologies and operation strategies for thin-
walled composite structures through the analysis of their role in four key industries,
namely: aerospace, wind energy, civil and naval. These industries are currently employ-
ing FRP materials in their applications [208], and accrue a high percentage, between
50-60%, of the total use of carbon-fiber-reinforced polymers [450]. To this end, a
cross-sectoral maturity analysis is firstly provided by means of a maturity index which
measures and ranks the position of the refereed industries in the use of composites.
Next, the possibilities brought about by the recent advances in Structural Health Mon-
itoring (SHM) across industries are investigated in application to the inspection and
monitoring of composite structures. Finally, an overview about the different mainte-
nance strategies suitable for composite structures and their impact across the industries
is analysed. In essence, this research has revealed that, although relevant developments

have been carried out in the field of SHM [143, 147,161, 328, 333, 442] and more re-
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cently in the field of Prognostics and Health Management (PHM) in application to
composite structures [71,86,93,242,308], these have not yet been translated into op-
timised and predictive maintenance strategies. In this context, the development of
predictive maintenance strategies for composite structures assisted by PHM technolo-
gies and Physics-Enhanced Artificial Intelligence methods have been concluded as a key
element to boost the adoption of composites across industries by reducing the uncer-
tainty surrounding their future performance and reliability [121]. This predictability
allows inspection and maintenance strategies to be tailored for a particular structure,
which, in turn, translates into an extended lifetime and therefore increased sustain-
ability. In this context of sustainability, evidence is shown here through a quantitative
analysis that composites across the different industries can significantly contribute to
two important SDGs, in particular, SDG 7 (Affordable and Clean Energy) and SDG 9
(Industry, Innovation and Infrastructure).

The rest of the chapter is structured as follows. First, Section 2.2 identifies the
current use and limitations of plate-like composite structures within the aforemen-
tioned industries and presents innovative technologies and approaches being currently
explored. Following this, Section 2.3 reviews the current developments on SHM in ap-
plication to composite structures along with its use and limitations as per the different
industries. After the introduction of SHM, Section 2.4 provides a brief description of
the different existing maintenance strategies and their characteristics along with an
analysis of the impact of maintenance on whole life cycle costs of composite structures
in the context of these industries. Later, Section 2.5 builds on the necessary steps to-
wards intelligent PHM (iPHM) and the constraints to be overcome to integrate all the
information to produce Cyber-Physical Structures (CPS). Finally, Section 2.6 briefly

summarises the findings and conclusions of the chapter.
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2.2 Overview of the main technological applications of

composite structures — Use and limitations

In this section, the degree of maturity and the main applications of composite struc-
tures are reviewed within the context of four key industries: aerospace, wind, civil

construction, and naval.

2.2.1 Aerospace industry

Since its early days, this industry has pushed the technological limits of materials due
to the harsh environment to which they are exposed. The aerospace industry adopts
strict requirements for structures [251], such as very high reliability (even higher in
civil aviation applications), mechanical and chemical durability, aerodynamic perfor-
mance, multi-role applications, stealth, and all-weather operation. Traditionally, these
requirements were partially met by the use of advanced metallic alloys; however, these
are heavier and prone to corrosion. Thus, composites have achieved an important
role in aerospace due to their high strength-to-weight and stiffness-to-weight ratios,
greater fatigue and corrosion resistance, and ability to tailor stiffness and strength to
specific design loads [251]. This allowed the expansion of application cases of compos-
ites structures over military and civil aircraft, helicopters, satellites, launch vehicles,
etc. [8,329,376].

Indeed, the use of FRP composites in aircraft has increased since 1970 and has
reached around 50% of its total mass in some cases (e.g., the Boeing 787 structure) [281].
Initially, composite materials were used as secondary structures to provide weight sav-
ings, although nowadays they are increasingly being used for primary plate-like struc-
tures [107]. The early development of composite structures in aviation was specially
notorious in small fighter aircraft, achieving weight content of composites above 20%
for F/A-18E/F, Rafale, F-22 and Gripen models produced during the decades of the
1970s to 1990s [376], as depicted in Figure 2.1a. It is noticeable that this development
has seen a maximum participation of composites in the military aircraft with content

above 50% by weight in the Eurofighter [119]. Regarding the application in the civil
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aviation, the available data from reference aircraft manufacturers such as Boeing and
Airbus show a slower adoption of composites use with a rampant tendency since the
last two decades, as shown in Figure 2.1b. In fact, in the last years, these manufacturers
have taken a great shift passing from composite participation in weight around 12%
and 25% in their B777 and A380, respectively, to more than 50% in their latest B787
and A350.
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Figure 2.1: Aircraft’s composite participation in weight [376].

These weight reductions translate into fuel savings which, apart from the monetary
savings for operators, directly impact SDG 12 (Responsible Consumption and Produc-
tion). In fact, despite the initial manufacturing emissions being higher for hybrid com-
posites and carbon-fiber-reinforced polymers (CFRP) than for classical aluminium and
steel solutions, the whole-life CO2 emissions during operation are lower, and break-even
times range from 60 to 320 flight hours [344].

Besides, despite the positive experience and maturity of the production market,
there are still some concerns with the use of composites in plate-like structures in
the aerospace industry. Some researchers point to the severity and conservatism of
the current airworthiness regulations [110] as limitation towards an efficient use of
composite structures thus leading to over-conservative and oversized structures [329].
In addition to this, the need for clear guidance in the operation and maintenance
of composite structures by their operators has been highlighted in works like [410].

Another concern with the use of composite materials is their lack of ductility during
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the fracture process. Brittle micro-cracks and delamination cracks [400], which are
difficult to detect visually, appear and progress during operation due to fatigue [399],
impact [380], and lighting strikes [18,134], leading to an uncertainty increase about their
mechanical performance. In recent years, different solutions have emerged to partially
solve the latter drawbacks through the use of hybrid and advanced composites [7,411]
although they typically imply a reduction of the strength-to-weight and stiffness-to-

weight ratios.

2.2.2 Wind industry

Despite the fact that the first steps of electric power generation from wind date from the
late 19*" century, it was in the 1970s when the production of wind turbines experienced a
rampant increase. Initially, classical materials such as steel were used for turbine blades,
like the one manufactured by the U.S. company S.Morgan-Smith in 1941 experiencing
failure after a few hundred hours of intermittent operation. This induced the need
for a transition to high-performance blade materials such as composites, despite the
reduced knowledge about these tailored materials at that time. Moreover, in response
to the 1973 oil crisis, NASA started a program in 1975 to develop wind turbines [317]
with composites as primary blade materials based on the knowledge gained from the
application to the aerospace industry. Since then, the production of wind turbines has
experienced an unceasing increase which still continues nowadays.

The growth of this tendency has been accelerated during the last decades since the
world is moving towards greater utilisation of renewable energy due to its environmental
and economical advantages. Indeed, the wind is one of the most efficient renewable
energy resources for its numerous advantages [111], and today it is becoming strongly
cost competitive in relation to other power generation methods [183]. This efficiency
explains how fast the wind industry is growing worldwide. For example, the EU goal
is to increase the use of renewable energy to 27% of the total energy generation by
2030 and to cut greenhouse emissions by 80-95% by the year 2050 [85]. China has
experienced an increase of 27% in the growth rate of the electricity generated from wind

between 2016 and 2017 [89]. The United States set a target to increase the electricity
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generated from wind to 20% of the total electricity generated [435]. Figure 2.2 depicts
the tendency and growth of installed wind capacity by region from 2011 until 2020,
which reveals an increase of worldwide installed capacity from 220,019 MW in 2011
to 733,276 MW in 2020 [185]. Moreover, there are expectations of future growth for
electricity generated from wind and solar photovoltaics, which will probably continue
to expand reaching 29% of the market share in 2021 from 28% in 2020 [185]. These
trends indicate an increasing need for composite materials mostly applied in turbine

blades.
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Figure 2.2: Evolution of wind energy capacity by region. Data taken from [185].

Typically, laminates used on wind turbine blades (refer to Figure 2.3 for a cross-
section schematic view) are made of e-glass fibers and thermoset matrices, such as
epoxy, polyester, or vinylesther, with fiber content of about 75% in weight. Notwith-
standing, the increasing demand for larger wind turbine blades driven by offshore ap-
plications has opened up the possibilities of carbon fibers to provide greater strength
and stiffness-to-weight ratios, thus improving their resistance to gravitational loads and

fatigue life [117].
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Figure 2.3: Typical turbine blade cross-section.

Irrespective of the recent advances in manufacturing for large size blades of dif-
ferent composite materials [44], there are still some unveiling challenges with the use
of composites in the wind industry, with the most important being damage detection,
location and identification [108,163,361], long-term reliability under damage [363], and
remaining useful life prognosis [64,226]. There is a long perception that the current
design safety factors are too high; arguably as a consequence of the aforementioned
challenges, among others. Further improvements and developments in those could help
to reduce the Levelised Cost Of Energy (LCOE) [268].

In particular, with regards to damage diagnostics, SHM has shown promising results
using different techniques (see for example [62,273,325,343,416]). Similarly, there have
been some attempts to provide fatigue damage and erosion modelling [112,166,304,449],
damage progression [444] and prognosis [153,365]. Even though the feasibility of these
approaches seems encouraging, the experiments were predominantly conducted in con-
trolled laboratory environments using simplified loading and damage scenarios. There-
fore, the long-term and reliable performance of these systems in real operating con-
ditions remain to be proven [153]. Notwithstanding, some research groups such as
the Sandia National Laboratories have developed several projects such as the Contin-
uous Reliability Enhancement for Wind (CREW) database [176] that aims to provide
data-driven tools for the industry to self-assess the performance of wind turbines and
adapt the operation and maintenance accordingly. Other studies focus on the fatigue
behaviour of wind turbine blades under real conditions [5,249, 250].

The opportunities for availability and revenue improvement that SHM and predic-

18



Chapter 2. Maintenance strategies in composite structures: the potential of PHM

tive maintenance can bring to the industry are analysed in detail in Sections 2.3 and

2.4.2, respectively.

2.2.3 Civil construction industry

For around two hundred years until today, steel and concrete have dominated the
civil construction industry. For several decades, this industry has been reluctant to
incorporate composite materials for primary structures except for certain applications
[261] and pilot projects, with the most relevant ones shown in Tables 2.2, 2.3 and
Figure 2.4. Composite materials have unique properties that make them appealing
to the civil industry [157,178,200], in particular their superior resistance to corrosion
in aggressive environments along with their high strength-to-weight ratio ( [198,241,
272]) and high fatigue capacity (mainly for CFRP [336]). Also, composites provide
important weight reductions as compared to traditional materials which would enable
new architectural designs [38], easier and faster building procedures [198,241], extended
lifetime [187], and therefore, improved sustainability [445]. However, irrespective of
their potential, there are important reasons that are limiting the adoption of composites
by this industry, amongst which the following are identified as the major ones: (1) lack
of standards and design codes [360], (2) high material costs [420], (3) lack of experience
and conservationism of the industry [330].

In regards to the lack of regulatory design codes, the NIST (the US National Insti-
tute of Standards and Technology) has recently warned about the lack of design codes
and standards as one of the barriers against the adoption of composites in sustainable
infrastructure [360]. Yet, the US Congress passed the Composite Standards Act in
August 2020 that will publish guidelines and standards for using composites in infras-
tructure applications [141]. In Europe, there are plans to create such a FRP Design
Eurocode [80], as stated in a recent report from the European Commission [17]. In
the meantime, some European countries have developed their own guidelines, with the

most relevant ones being summarised in Table 2.1.
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Table 2.1: Published composite design guidelines.

Document Details

EUROCOMP Structural Design of Polymer Composites (Design Code and Handbook, Fin-

land, France, Sweden, UK, 1996);

CUR 96 Fiber Reinforced Polymers in Civil Load Bearing Structures (Dutch Recom-

mendation, 2003);

BD90/05 Design of FRP Bridges and Highway Structures (The Highways Agency,
Scottish Executive, Welsh Assembly Government, the Department for Re-

gional Development, Northern Ireland, May 2005);

DIBt Medienliste 40 fir Behélter, Auffangvorrichtungen und Rohre aus Kunst-

stoff, Berlin (Germany, May 2005);

CNR-DT 205/2007 Guide for the Design and Construction of Structures made of Pultruded FRP

elements (Italian National Research Council, October 2008);

ACMA Pre—Standard for Load and Resistance Factor Design of Pultruded Fiber
Polymer Structures (American Composites Manufacturer Association,

November 2010);

DIN 13121 Structural Polymer Components for Building and Construction (Germany,

August 2010);

BUV Tragende Kunststoff Bauteile im Bauwesen [TKB] — Richtlinie fiir Entwurf,

Bemessung und Konstruktion (Germany, 2010).

In regards to the high material costs in comparison with traditional materials such
as concrete and steel, this is a long-standing claimed issue by the construction industry
that becomes exacerbated by the massive material utilisation in this industry. A shift
from the initial-construction-cost viewpoint to a holistic lifecycle approach considering
the higher durability of composite materials in a circular economy context would help;
however, these lifecycle methods are still not widely adopted in civil engineering practice
[63,187]. Notwithstanding, the development of efficient manufacturing techniques such
as pultrusion [391] and filament winding [22] among others [113,235], along with the
need for strengthening and rehabilitation of existing structures [178], have opened up
opportunities for composite materials in the construction sector [28]. In particular,
the repair and strengthening of ageing structures using FRP materials is arguably the
most promising application of composites in civil engineering up to date, as revealed
by the extensive literature in this area (see for example the following reviews papers

(6,272, 285)).
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Table 2.2: List of pedestrian composite bridges.

Location Year Type Details and notes
Kolding, Den- 1997  100% GFRP 40 m long and 3.2 m wide, 15 years of op-
mark eration without any damage [17,125].
Svendborg, 2009  pultruded GFRP deck 40 m long and 3.2 m wide, installed in just
Denmark two hours [17,398].
Esbjerg, Den- 2012  steel beams adhesively 18 m long and 3 m wide [17].
mark bonded to pultruded

GFRP deck
Grosseto, 2004  GFRP pultruded profile 27 m long, installed in an archeological area
Italy [17].
Harderwijk, 2013 100% GFRP made by 22 m long and 6.3 m wide [17,419].
Netherland vacuum infusion tech-

nology
Rotterdam, 2013 GFRP sandwish inside 62 park bridges with lengths ranging be-
Netherlands VARTM made core tween 1.5 m and 4.5 m [17,422].
University of 2014 GFRP pultruded I- 148 m long and 37 m main span [17].
Salerno, Italy beam  with GFRP

sandwich panels deck
Floriadeburg, 2012  Steel beams covered 127.5 m long and 6 m wide, designed to
Netherland with GFRP pultruded carry heavy vehicles (12t weight) [17].

deck
Ngrre Aaby, 2007 100% pultruded Glass 23 m long, installed in just two hours, it
Denmark FRP (GFRP) replaces an old RC bridge that is 20 times

heavier [17,127].
2008 FRP profiles moulded 22.6 m long and 2.8 m wide, the first bridge

Moscow, Rus-
sia

by infusion

made of composite moulded by vacuum in-
fusion [17].

Finally, as for the lack of experience and conservationism in the construction indus-

try, the knowledge gained during decades (even centuries) about the use of traditional

materials makes the adoption of new materials a difficult and competitive task. How-

ever, this barrier could be expected to diminish as long as new evidence and pilot

applications of FRP composites become available. In general, most of FRP applica-

tions in civil engineering structures including the aforementioned pilot projects are

relatively new, and therefore, the longer the service life of these structures, the more

useful information can be collected. This will contribute to reducing the uncertainty

about the long-term reliability of composites and therefore boost the application of

composites in the civil engineering sector.
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Figure 2.4: Applications of composite material in bridges. (a-j) pedestrian bridges. (k-
p) road bridges. locations: Kolding, Denmark (a), Svendborg, Denmark (b), Esbjerg,
Denmark (c), Grosseto, Italy (d), Harderwijk, Netherland (e), Rotterdam, Nether-
lands (f), University of Salerno, Italy (g), Floriadeburg, Netherland (h), Ngrre Aaby,
Denmark (i), Moscow, Russia (j), Delft, Netherlands (k), Karrebaeksminde, Denmark
(1), Utrecht, Netherlands (m), Klipphausen, Germany (n), Oxfordshire, UK (o), Lan-
cashire, UK (p). Source of photographs: [17].
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Table 2.3: List of road composite bridges.

Location Year Type Details
Oxfordshire, 2002  100% GFRP and CFRP  The first composite public road bridge, no
UK pultruded profiles damage found when inspecting it after 12
years of service life [51,461].
Klipphausen, 2002 100% GFRP The first GFRP road bridge in Germany
Germany [17,126].
Utrecht, 2013  Hybrid GFRP-steel 142 m long and 6.5 m wide, composite deck
Netherlands bridge made  with carry Eurocode traffic loads and all the hor-
VARTM injection izontal loads [184].
Karrebaeksminde2011  pultruded GFRP deck 100% pedestrian and cycle bridge was hung
Denmark on the side to increase capacity, the first
Danish road bridge made with a composite
deck [17,390].
Delft, Nether- 2014  Vacuum infused GFRP 34 m long and 12 m wide [460].
lands sandwish structures
with steel members
Lancashire, 2006  GFRP pultruded profile 52 m long, Carry up to 400 KN weight [17,
UK 22,299].

2.2.4 Naval Shipbuilding industry

Steel and aluminium alloys have been the traditional materials massively used by the
naval industry for decades. The use of composites started in the US NAVY between
the mid-1940s and 1960s in the shape of non-critical structures and predominantly in
small boats [255]. Slightly later, the Royal Navy and the French Navy started to make
use of composites as structural material mainly for their acoustic transparency (stealth)
[182,403]. For this reason, composites started as preferred materials in minehunting
ships in the 1970s [375]. Since those military applications, and mostly during the last
few decades, the use of FRP in naval shipbuilding has grown significantly, although
there are authors pointing out that the full potential of these materials is yet to be
realised in this industry [138].

Three main benefits drive the interest in the use of FRP in this industry, namely
weight reduction, good fatigue resistance, and high durability in the marine environ-
ment [61]. The weight reduction due to the greater strength-to-weight ratio directly
translates into increased payload, range, hydrodynamic performance, greenhouse-gas

emissions savings, and durability [138,375]. Some authors have reported that expected
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weight reduction with FRP could reach up to 30% and could result in fuel consumption
savings up to 15% ( [138]), which directly impacts SDG 12. As a drawback, moisture
absorption degrades the FRP by reducing tensile and bending strengths [434]. Notwith-
standing, this type of damage is less severe than the experienced by metals (e.g., corro-
sion [283,378,447]) and repairs are easier and less expensive [150,447], providing FRP
an overall better suitability for the marine environment. Even the lower stiffness of
e-glass FRP can favour areas with high local stress concentrations where the structures
are prone to suffer fatigue cracking such as deckhouses [318].

Thus, considering the positive balance provided by FRPs, there is a natural ten-
dency to favouring their wider application, but still for small/sport vessels or for non-
structural components [279,354]. As with other industries, these reasons are predomi-
nantly centred on the shortage of knowledge and lack of reliable data about FRP per-
formance in the marine environment [279]. The lack of knowledge poses to all stages
of the production of the structure, starting from its design, following by its validation,
and ending with its manufacturing. With regards to the design stage, there is a lack
of design codes and reference models to optimise the designs of large complex vessels
( [279]). To overcome this problem, the traditional approach has been to increase the
safety factors in the design [96,120], which results in diluting the weight-saving bene-
fits of FRP. In the verification stage, Safety Of Life At Sea (SOLAS) regulations did
not contemplate the use of a material other than steel until 2002. After 2002, FRP
composites can be considered structural materials but the verification process has been
reported as long, expensive, and with a significant level of uncertainty to get the final
approval [137]; in fact, this reduces the motivation of designers to use composite ma-
terials. Finally, there is a lack of open databases to estimate the cost of fabricating
naval structures with composites and a lack of high-quality and low-cost manufacturing
processes for massive composite structures. In this context, the FEuropean Union has
recently funded two research projects to address the lack of knowledge that is limiting
the expansion of FRP, namely, RAMSSES and fiberShip [210]. These projects aim at
providing the tools, data, and demonstrators of FRP vessels to overcome the code and

knowledge constraints mentioned and familiarise the stakeholders of the industry with

24



Chapter 2. Maintenance strategies in composite structures: the potential of PHM

the requirements and processes of FRP structures.

2.2.5 Cross-sectoral maturity overview of composites and contribu-

tion to SDGs

As shown before, the different industries have unequal experience and track record in
the use of composite materials. To quantify this observation, a maturity index m is
proposed here to measure and rank the relative position of these industries in regards
to the use of composites. Three contributing factors ranging from 1 to 5 have been
considered in this index: the relative participation of composites in structures suitable
for these materials (Participation P); the time since the first standards or regulations
of the use of composites were released (Standards S); and the equivalent number of
publications during the last 40 years in the field of composite structures applied to the
industry (equivalent number of Publications Puc,), where Pu,, is computed as:

2020 .
. (2021 —
Puey = > i—1981 7”:(5 i) (2.1)

with n; being the number of composite publications at year i. Table 2.4 summarises

the aforementioned factors and the criteria used to assign the different scores.

Table 2.4: Score values for maturity factors.

. . Score
Factor Description 5 1 3 5 T
Relative par- Very
. . .. ticipation of Very . . low /
Participation composites in  high High Medium Low Non.
the industry existent
Time since Between Between
first stan- More 10 and 5 and Less Non-
Standards dards were tl;:; 20 20 10 tl;:;ls o existent
published Y years years Y
Equivalent Between Between Between
Greater
.. number of 5,000 3,000 1,000 Below
Publications .. than
publications 7 000 and and and 1,000
in 40 years ’ 7,000 5,000 3,000

Finally, the maturity index, m for each industry is calculated as m = (P+.S+ Pueg)/15
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and the results are shown in Table 2.5.

These results reveal that, according to the proposed index, the aerospace industry
has achieved the greatest maturity followed by the wind industry, which is the one with
the highest rate of participation of composites. On the contrary, results show a gap
between the aforementioned industries and the civil and naval industries in the use of

composites, with the naval being the worst positioned industry in the use of composites.

Table 2.5: Maturity factor values by industry.

Industry Participation Standards Publications Maturity

Aerospace 3 5 5 0.867
Wind 5 4 1 0.667
Civil 2 1 2 0.333
Naval 1 1 1 0.200

Apart from the maturity, the contribution of the use of composite materials across
industries in the achievement of the SDGs is presented next. To this end, the 17 SDGs
(described in Table A.1 in Appendix A.1) are considered by the achievement indicators
of their corresponding targets [418]. These indicators are assigned a unitary value if
composites directly contribute towards their achievement and 0 otherwise. The anal-
ysis for each of the industries is presented in Appendix A.1, specifically in Tables A.2
to A.4. The results are summarised using polar bar charts in Figure 2.5. These results
show that a wider use of composite structures across the different industries can signifi-
cantly contribute to SDGs 7 (Affordable and Clean Energy) and 9 (Industry, Innovation
and Infrastructure). Besides, to a lower extent, composites have a positive impact on
SDGs 11 (Sustainable cities and communities) and 12 (Responsible consumption and
production), with the remaining SDGs being minimally affected by composites (unitary
indices equal to or lower than 0.25).

In contrast, there are a few concerning issues that need to be addressed to reduce
the potential negative impact of the use of composite materials: the recyclability of
composite materials after decommissioning; the rampant increase in the extraction of

raw materials for the production of constituent materials (matrix, fibers); and the
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higher demand of energy for the manufacturing of FRPs as compared to traditional
materials. These issues have captured the attention of the research community as seen
in a number of recent publications [21,47,149, 189, 233,445] and constitute impacting

research challenges to address in a near future.

SDG 6 SDG 5 SDG 6 SDG 5
SDG 4 SDG 4

SDG 8 SDG 8
SDG 2 SDG 2
SDG 9 SDG 9
SDG 1 SDG 1
SDG 10 SDG 10

SDG 11 SDG 11

SDG 13 gpG 14 SDG 13 gpG 14
(a) Aerospace (b) Wind
SDG 6 SDG 5 SDG 6 SDG 5

SDG 4 SDG 4

SDG 8 SDG 8
SDG 2 SDG 2
SDG 9 SDG 9
SDG 1 SDG 1
SDG 10 SDG 10

SDG 11 SDG 11

SDG 15 SDG 15
SDG 13 SDG 14 SDG 13 SDG 14

(c) Civil (d) Naval

Figure 2.5: Schematic view of the analysis of contribution of composite materials to-
wards the achievement of the SDGs.

2.3 Health Monitoring of FRP composites across indus-

tries
The long-term reliability and the complexity of the inspection and maintenance of thin-
walled composite structures have emerged as barriers to the expansion of these materials

among different industries. In this context, the SHM technology has the potential to

overcome these barriers as it enables a quasi-real-time data acquisition by attaching
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sensors to the structure or even by incorporating them into their internal structure [264,
328]. This data provides the basic information for damage prognostics and predictive
maintenance [121]. Table 2.6 provides a synoptic view of the most established SHM
sensing techniques for composite structures across industries, including their advantages
and limitations. In the following, the role of SHM technology and its connection with

CBM is discussed for the industries considered in this study.

2.3.1 Aerospace industry

As with the use of composites, military aircraft has pioneered the use of SHM. It
was in the late 1950s when the UK Royal Air Force started using a device based on
accelerometers to evaluate the in-flight loads experienced in fighter airplanes [40]. Since
then, the interest of the aeronautic industry in non-destructive testing (NDT) and SHM
(both civil and military) has steadily grown [412]. At the same time, the literature on
this topic has seen a rampant development and a number of new sensing techniques
and damage identification methods have been proposed during the last few decades.
Rocha et al. [328] provides a recent review of the literature on SHM in aerospace
composites. They conclude that the adequacy of the selection of an SHM system lies
in a set of multidisciplinary factors such as the specificity of the structure, shape,
size, constituent materials, expected damage location and type, and maintenance. In
Towsyfyan et al. [412], a comprehensive review of the capabilities and limitations of
certificated NDT technologies for aerospace composite structures is provided.

As evident from the literature, there is a general consensus about SHM as an ef-
fective technology for optimised condition-based maintenance. In fact, the main man-
ufacturers of the aviation industry have identified the potential benefits of SHM pre-
dominantly in the field of maintenance [395,408]. In this industry, damage detection,
primarily based on visual inspection, takes a considerable part of the maintenance bud-
get. Indeed, access to inspection areas is one of the major drivers of maintenance costs
for aircraft. A clear example is provided by Cawley [59], which reports that Boeing
calculated that out of the 25,000 hours required for corrosion inspection for a 747-400

aircraft, 21,000 hours were spent gaining access to the inspection areas (over 80% of
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the inspection time). These figures make clear the industry’s interest in SHM. Another
driver for SHM as enabling technology for advanced maintenance is life extension of
existing aeroplanes that are close to their nominal end-of-life. SHM provides valu-
able information about the actual degree of damage that can be used for informed
life-extension decision-making. [415].

Despite the aforementioned benefits of SHM and the feasibility of their use in com-
posite structures, there are also concerns that limit their use in the aerospace industry
(and to some extent in other industries). The first concern is about the reliability of the
damage detection, location, and quantification of damage for in-service real structures.
Most of the current progress about SHM in aerospace composites has been carried
out in coupons, plates, and scaled structures under laboratory conditions [71,87,436].
However, irrespective of some insightful progress on in-situ damage monitoring tech-
nologies [114,243], there is still much uncertainty about the performance of on-board
SHM technology during long periods of time and against harsh and changing envi-
ronmental conditions. In this sense, Unmanned Aerial Vehicles (UAV) are seen as an
interesting opportunity to test SHM systems in real conditions while reducing economic
and safety risks [12,77]. Secondly, there is a lack of publicly available data for SHM
developers to work with. The research community would highly benefit from the use of
open datasets to build robust models for damage detection, quantification and progno-
sis, and therefore increasing the reliability of the systems. Thirdly, there is uncertainty
surrounding how SHM systems can deal with patched or bolted repairs. In this con-
text, the SHM system shall be able to evaluate and monitor the repaired condition
of the structure so that the system has the same reliability as the original structure;
otherwise, the main advantage of SHM (reducing inspection costs) will be jeopardised.
Finally, there is a need for a publicly available demonstrator project investigating the
whole SHM process for composite structures. A direct comparison of the whole life
cycle costs of the application of SHM against the current inspection strategies would

help close the existing gap between academic research and industrial needs in SHM.
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2.3.2 Wind industry

In the wind industry, the turbine blades along with the gearbox and electrical gener-
ators, have been identified as the turbine components with the highest failure rates
[234,405]. Moreover, the damage in the blades is regarded as one of the most expensive
and difficult to detect among the potential failures of the turbine and has the potential
to act as a precursor of secondary damages in other parts of the turbine [236]. Thus,
deploying SHM technology on turbine blades will translate in maintenance optimisa-
tion and fewer operation costs for the entire system [352]. A variety of damage types
have been identified as susceptible to appear in composite blades during their life-
time [108,384]; these are, damage in the adhesive layer between the skin and flanges of
the spar (debonding); damage in the adhesive layer between the top and bottom skins
along the leading or trailing edge (debonding); damage in sandwich panels between the
face and the core (debonding); delamination caused by tensional or buckling load; fiber
failure in tension; laminate failure in compression; buckling of the skin (debonding);
and cracks in the gelcoat or debonding of the gelcoat from the skin. Among them,
delamination and adhesive joint failures are reported as the most usual ones [363]. A
number of SHM techniques have appeared in the literature dealing with one or more of
the damages mentioned above [442], including vibration analysis [194,297,406], strain
monitoring [34, 160], acoustic emission [211,439], ultrasonic detection [148,362] and
infrared thermography [180]. Several authors [108,254] have provided recent litera-
ture surveys about the state-of-the-art damage detection techniques for turbine blades.
Of the existing techniques, acoustic emission and strain monitoring have demonstrated
efficiency on damage detection in real case scenarios [352,407], whilst Lamb-wave moni-
toring is recently being explored for its efficiency in damage location in large thin-walled
composite structures [50,397].

In practice, there are commercially available monitoring systems for the drive train
and gearbox components using information from Supervisory Control and Data Ac-
quisition (SCADA) along with other vibration control systems [92]. However, the
monitoring of the blades is still in its infancy although an increasing research effort

is reported in the literature with sound solutions [99, 108,254, 383,406,442]. The exis-
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tence of data already available registered through the SCADA system has encouraged
some researchers to further explore the data so as to find meaningful features for the
blades [104,292,451]. Nonetheless, an effective blade damage detection and evalua-
tion need dedicated blade SHM systems [254]. Indeed, a dedicated SHM system for the
blades opens up the possibilities of blade pitch control (derating) as a way of no-growth
control of existing damage or lifetime extension [154]. In addition, it has been reported
to provide a more balanced and stable load for the rotating parts of the drive train and
gearbox and thus extending their lifetime [42].

As a general comment, current SHM systems for wind turbine blades are able
to provide data in controlled environments and meaningful damage indicators [262].
Notwithstanding, there is no proof of the systems performing during long time pe-
riods and under harsh-condition environments. How the system is going to react to
uncertain and harsh environments remains unknown and conform one of the technolog-
ical challenges of this industry. A non-durable SHM system will end up adding more

maintenance costs and downtime on its own.

2.3.3 Civil construction industry

Generally, civil engineering structures are designed for long service life periods, about
100 years, and they usually require minimum maintenance throughout a significant part
of their service life. In this context, the structural asset management strategy followed
by this industry has been oriented to reactive maintenance mainly [231]. Notwithstand-
ing, an increasing amount of structures are nowadays reaching their nominal lifetime
and the use of SHM is gaining attention as a rational tool to support a reliable and
cost-efficient life extension [230]. Life extension reduces the environmental impact of
decommissioning and constructing a replacing structure and, therefore, it can be con-
sidered as a sustainable development strategy [215].

After damage has been detected and evaluated (e.g., corrosion in concrete struc-
tures), structural retrofitting is the natural step towards the life extension of the dam-
aged component. In this regard, FRP composite materials have proven efficiency for

retrofitting or rehabilitation of civil engineering structures [6,33,109,316], as explained
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before. Notwithstanding, a key challenge that still remains open is the long-term relia-
bility assessment of the retrofitted structure [227], to which dedicated SHM and PHM
solutions are needed [6,109,324].

The literature about SHM in FRP structures for the civil industry is still very lim-
ited and mainly focused on the vibration analysis and the performance monitoring of
FRP bridges. In [282], state-of-the-art SHM technologies in some demonstration FRP
bridge projects in Canada are reported. Guan and Karbhari [158] provide a framework
for a web-based SHM of an FRP composite bridge based on the vibration analysis and
modal identification along with its variation throughout time considering the degra-
dation of the structure. Following this, the same authors presented an application of
this framework for the Kings Stormwater Channel Composite Bridge [159]. Separately,
Mikotaj et al. [271] investigated the rheological effects of long-term loading on an FRP
bridge using SHM. According to their study, no rheological effects were found for a 3-
month test load. Long-term degradation was studied in [371], where the performance of
the first all-composite bridge in Poland was controlled for 8 months finding no relevant
degradation of the structural behaviour.

As a general comment, SHM has the potential to contribute to overcoming some of
the main barriers posed in this industry to the extensive use of FRP composites; how-

ever, the literature on this topic is still limited and this potential is not fully exploited.

2.3.4 Naval Shipbuilding industry

It is well known that the environmental impact of ship failures is massive, perdurable in
time, and especially difficult to revert. Each year, around a hundred large ships end up
sinking according to Allianz’s Safety and Shipping Review [10] being ship hull damage
among the top five causes of sinking. The predominant types of structural issues of
ships made of traditional metal materials are related to corrosion and fatigue cracking.
Currently, the ship’s design life cycle is estimated at around 30 years over which the
reliability of the structure should be maintained. The current practice in structural
health assessment of ships is the deployment of NDT when the ship is dry-docked. The

approach followed, unless there is an existing and known flaw in the ship, consists of
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the inspection of strategic areas of the hull to determine the thickness of the plate and
extrapolate the corrosion rate to other parts of the ship; inspecting the complete hull
including its welds would be impractical, time-consuming and expensive [195].

As with other industries, SHM in naval ships can provide insightful information
regarding the actual condition of the structure and the loads that the structure is sup-
porting. This translates into optimal design, maintenance and operation of the struc-
tures and uncertainty reduction in fatigue-life prediction [274]. The SHM approaches
predominantly followed in naval vessels are vibration analysis [70,327] and wave propa-
gation analysis [195]. Passive systems (e.g., acoustic emission) instead of active systems
(e.g., guided waves) have been reported as more practical for at-sea implementations
since they require less energy and infrastructure to work [331].

Despite the existence of some SHM systems deployed on metallic hulls, they rep-
resent a tiny proportion that does not allow the potential of this technology to be
fully explored. One of the reasons why SHM has not been intensively used in naval
vessels is the difficulty to deal with the size and shape complexity of their structural
systems [122,331]. Thus, there is a clear space for this technology to be further de-
veloped in this industry and demonstrate its potential for reliability and serviceability
increase and maintenance cost savings [197, 368, 396].

As explained before, FRP structures are currently limited to small vessels and
therefore, the application of SHM is practically nonexistent. Even though corrosion
is not expected to be such a relevant issue for FRP vessels, degradation due to water
ingress and fatigue need further exploration in practice. The latter could constitute a
rich research and application area in the context of SHM; however, to the best of the
authors’ knowledge, SHM in FRP hulls has been mostly limited to the study of small

components and connections, as reported in [175,228,264,396].

2.3.5 Cross-sectoral SHM overview

Whilst the studied industries present different levels of expertise in the use of SHM
in composites, the wide range of sensing technologies and their development level in-

creases the likelihood of its effective application. In terms of experience in the use
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of SHM solutions, the aerospace industry has been using it for longer in military and
civil aircraft. The military sector, more prone to innovation due to lower certification
constraints, provides a real testing environment for SHM solutions. In this sense, these
military SHM solutions are being used to gain knowledge and transfer similar solutions
to the civil sector. In the case of the wind industry, most existing SHM solutions are
installed in components different from the blade, such as the drivetrain or the bearings.
This industry is currently more reliant on visual inspection and further NDT in case of
detecting any issue on the blade rather than on the use of SHM solutions. In contrast,
the civil industry has adopted on-board SHM for singular and critical structures, typi-
cally based on vibrations (accelerometers) to detect changes in the native response of
the structure. Considering the dimensions of the civil structures, SHM technology is
being used to detect large damages on metal or concrete structures. Finally, the naval
industry shows less experience in the use of SHM and is currently reliant on the visual
inspection of hotspots of the hull of the boat while dry-docked to detect damage. The
literature does not show evidence that this industry will adopt SHM technology in the
near future at a rate similar to the other analysed industries.

Some common concerns across industries are related to the reliability, optimisation
and absence of open data for the further development and deployment of SHM systems.
The higher initial costs and the difficulty of access to the structure in some of the
industries such as the aerospace, wind or naval, have directed the spotlight onto their
reliability. They shall be designed so that an additional burden is not posed on the
maintenance of the structure and the limited experience in their long-time application
is seen as a potential risk for their deployment. Separately, the added weight of sensors
and wiring could dilute the potential benefits of their use, primarily in the case of the
aerospace industry. Whilst one of the principal arguments in favour of the transition to
composite materials is the positive environmental effects of weight reduction, the higher
complexity and evolution of non-visible damage types in these materials require a more
profound knowledge of the state of the structure. Finding a balance to provide effective
damage detection, location and quantification with the increase of weight caused by the

addition of sensors requires a careful study of the structure. This issue feeds back into
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the absence of data with which developers could optimise and compare the results of
different SHM system solutions, creating a complicated environment for the integration

of these systems within the structures.

2.4 Maintenance of composite structures across industries

Long-term reliability and durability have been highlighted among the most relevant
factors that drive the industry towards the use of composites in their structures. Main-
tenance is directly related to both of them, and its impact can be decisive enough to
condition the design of the structure and the materials used. In this section, the impact
of maintenance and its relation with composite structures of some of the most relevant

industries using composite structures will be analysed.

2.4.1 Overview of existing maintenance strategies

In general terms, there are four broad categories of maintenance strategies currently
in use by the industry. These categories evolved throughout time starting from the
less efficient ones, Corrective Maintenance (CM) and Preventive Maintenance (PvM)
to the more efficient and technological ones, Condition-Based Maintenance (CBM)
and Predictive Maintenance (PdM) [462]. The selection of the most suitable type
of maintenance for a given application is non-trivial and has been studied by many
authors. For instance, Zhu et al. [456] presented and compared different maintenance
strategies (CM, PvM and PdM) for wind turbine blades based on the necessary leading
time to prepare and perform maintenance actions and the associated costs of these.
This study showed that inspection costs may greatly influence the choice of the most
cost-efficient maintenance policy. Also, Chen et al. [68] presented a comparison of
different maintenance strategies (PvM, hybrid CBM combining scheduled inspections
and continuous monitoring, and pure CBM) for aircraft made of composite parts. Their
findings show that the hybrid CBM strategy, which could resemble the current way in
which CBM is applied in the aerospace industry, is the most expensive maintenance

strategy, and that this could be related to the reluctance to use SHM in the sector.
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Additionally, Florian and Sgrensen [130] studied the cost implications of optimising the
inspection intervals for PvM considering debonding damage of wind turbine blades.
PvM costs were found lower than those for CM for most of the range of inspection
intervals considered.

The most basic maintenance strategy, CM, also known as run-to-fail maintenance,
has as fundamental principle not to interfere until the failure of the system. Its main
disadvantage is the risk of sudden failure leading to unscheduled maintenance and
the structure being out of service during unpredictable time. This results in significant
unforeseen costs that include those related to production, downtime, and inventory since
workers should be always prepared with spare parts for a sudden failure. Besides, it
may lead to more severe damage modes resulting in higher repairing costs. In contrast,
the advantage of CM is that it does not require strong planning due to its simplicity, so
it makes sense for non-safety-critical assets only when the repair and downtime costs are
less than the operating costs using other maintenance types. In essence, CM would be
suitable for composite or any type of structure; however, it is acceptable for non-critical
and lightly loaded structures only [161].

As a more advanced maintenance concept, researchers and industry started to focus
on PvM in the 1960s [260]. PvM is also known as time-based or scheduled maintenance
because it is performed periodically based on a prespecified schedule [49]. The main
advantage of PvM over CM is the scheduled planning, therefore, eliminating the un-
foreseen costs of the run-to-fail strategy. It also reduces maintenance time by preparing
beforehand the required parts, supplies, and manpower. In addition, it enhances the
safety level with respect to CM since failure is prevented by routine inspection and
maintenance activities [431]. On the other hand, an important disadvantage of PvM is
that it is scheduled based on previous experience, which, depending on the case, can be
reduced or even biased [401]. In practice, this uncertainty translates into unnecessary
maintenance actions to keep failure risk to an acceptable level. For example, matrix
micro-cracks, as the first sign of fatigue in composites, tend to accumulate sharply at
the beginning of the fatigue life of the structure. Thus, inspections should ideally be

unevenly distributed to properly track this damage mode, instead of inspections at
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periodic intervals. Furthermore, the actual maintenance costs depend on the degrada-
tion level when performing maintenance and the duration of the required maintenance
action; both of them are time-varying variables [204] whereas PvM is performed period-
ically ignoring this variability. These limitations, among others, make PvM unsuitable
for composite structures where degradation evolves in a highly nonlinear fashion. A
sample of the relevance of adjusting inspection and maintenance intervals is a compre-
hensive study on the reduction of operation and maintenance costs for wind turbine
blades through the optimisation of these intervals based on the maintenance cost by
Yi and Sgrensen [443]. Another example is provided in [191], where the inspection
interval for an FRP aircraft wing is optimised and compared with the MSG-3 PvM
planning philosophy (the classical maintenance planning approach for aircraft), pro-
viding a quantitative procedure to optimise the inspection and maintenance of civil
aircraft.

In this context, the development of SHM enabled monitoring continuously or as
needed opened the doors to CBM, in which maintenance is applied based on the actual
degradation condition of the structure. CBM was introduced around 1975 [23-27] and
it is defined as the maintenance triggered by the evidence of the current state of the
system exceeding a predefined threshold. With CBM, unnecessary inspections can
be avoided thereby reducing unnecessary downtime and costs. However, defining the
proper threshold for maintenance requires accurate knowledge in order to guarantee
a healthy balance between safety and cost under different (and uncertain) conditions
[309]. In addition, performing maintenance based on the knowledge of the current
damage state only could result in unscheduled maintenance activities leading to higher
running costs due to the lack of anticipation. An example of the importance of the
definition of an optimum maintenance threshold was provided by Zhang and Chen
[448], who developed an optimised CBM policy for wind turbine blades based on a
fatigue crack growth model including imperfect repairs in which the crack length repair
threshold was tuned.

To overcome the drawbacks of CBM, more attention is recently moving toward

PdM. Both CBM and PdM rely on monitoring the state of the system through SHM,
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but they differ in the way maintenance is planned. In CBM, the maintenance decision
is made depending on the current damage state, so there might not be enough time
before the maintenance threshold is reached. Whereas in the case of PAM, the decision
is planned not only based on the current damage state, but also on an anticipation
of the future degradation of the system. The prediction of the RUL of the structure
is therefore central to allowing a dynamic adaptation of the maintenance planning in
advance. An example of the potential of PAM was provided by Griffith et al. [155],
where the optimisation of wind turbine blades O&M strategies based on SHM and
PHM was studied. The inclusion of smart operation modes during high wind periods
to increase fatigue life and contain damage progression was explored showing promising
O&M cost reduction.

In summary, the literature provides evidence showing that the criticality safety of
some applications such as aerospace, along with the current state of maturity of SHM for
large structures, pose a barrier in the adoption of innovative and optimised maintenance
strategies, being PvM and CBM the most frequently used in FRP structures currently.
In the aerospace sector, the requirements for maintenance and reliability are notably
strict and these are limiting the full potential of PdM. Notwithstanding, considering
the high inspection costs of this industry, the situation could change in the future with
the development of SHM and the acquired knowledge using composite structures [68].
In contrast, the wind industry has the potential to evolve rapidly into the adoption
of PAM given the lower risk of unexpected failures and the numerous opportunities
highlighted in the sector for life cost reduction. To the authors’ best knowledge, the
research in the remaining industries covered in this review is very limited due to the

immaturity of the use of composite structures in those, as explained in Section 2.2.

2.4.2 Impact of maintenance in whole-life cycle costs

There are many examples in the literature showing evidence about the impact of
maintenance on the life-cycle cost of industrial and physical assets. See for exam-
ple [20,78,323,340,437], to cite but a few. The same applies to composite structures;

however, the literature on this field is still incipient. In the following sections, this
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literature is reviewed across the industries considered in this work.

Aerospace industry

Worldwide air traffic has been continuously growing during the past years with an an-
nual average of 4.6% and it is expected to double in 15 years [221]. With this growth in
the aviation industry, some authors have foreseen that by 2050 the amount of accumu-
lated aircraft composites waste will reach 500,000 tons [224]. Besides, the uncertainty
about the long-term reliability of composite materials [74] along with their faster fatigue
damage accumulation rate (in relation to metals) may speed up the formation of com-
posite wastes from this industry. Optimising maintenance and inspection strategies can
help extend the service life of composite aerostructures considerably by controlling and
slowing down deterioration. This aspect has been treated in the aerospace literature
but for materials different from composites. For example, Guo et al. [162] provided
several examples of military aircraft like the Canadian CF-188 [280], the Australian
F-111C [162], and the American F-4 and B-52 fleets [43] that are operating beyond
their nominal lifespan by virtue of intensive maintenance. However, frequent inspec-
tions may require disassembly and reassembly of the parts, which, in composites, it
may result in an increased probability of damage [144]. Also, frequent inspections can
result in delays, which in turn lead to additional operating costs that can reach up to
78 $/min [84,224]. A proof of this is the development of Boeing’s B787, in which the
inclusion of maintenance costs and aeroplane availability among the evaluated factors
in the design stage has resulted in a composite participation of over 50% in weight [39].
This shift in the design has proven to be effective, resulting in a number of damage
occurrences equal to or lower than those for an equivalent metal structure [123].

Also, it is estimated that $5 million dollars can be saved during the lifetime of
an aircraft by reducing the downtime and maintenance costs using SHM with CBM
[103], but the installation of permanent sensors can cause an additional load to the
aircraft. Dong and Kim [103] found that it will require 10,000 PWAS (piezoelectric
wafer active sensors) to cover the fuselage areas of a Boeing 737, and this can lead

to an extra 1000 lbs load which will result in losing the savings from maintenance
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and downtime. This illustrates the necessity of lightweight and long-range sensors for
SHM in aerospace. Composites provide a good alternative in this context since FBG
sensors can be directly embedded inside the material from the manufacturing stage [414]
requiring no additional cabling and reducing the weight with respect to a traditional
PWAS solution. Another equally important action is the optimal positioning of the
sensors thus reducing the number of sensors (and therefore the weight, cable length,
etc.) to a minimum with enhanced detectability [295]. Approaches related to this topic
are based on either the value of information [179,349], cost-benefit analysis [52,209],

or a combination of both.

Wind industry

The growing trend in the wind industry, as depicted in Section 2.2.2, is accompanied by
the increase in wind turbine size that has led to a rise in FRP utilisation in the bigger
blades. The majority of the structural components of the wind turbine can be easily
recycled except the composite blades since the recycling of composite materials is still
difficult with the current technology [190]. Only considering the wind industry, the
amount of composite waste is expected to increase rapidly and reach around 483,000
tons of accumulated CFRP by 2050 [224]. To address this problem, Jensen and Skelton
explored the possibility of using composite waste in a circular economy context by using
different alternatives (reusing/repurposing, recycling and recovering); notwithstanding,
they note that the experience in reusing wind turbine composite materials in new
applications such as bridges, fibres in concrete, playground, urban furniture, etc. is
very little [190]. Their reuse for public infrastructure presents the main difficulty of
verifying its state and strength whilst recycling and recovering technologies are not
ready for all composite materials. In this context, elongating the lifespan of turbine
blades can be considered the only feasible choice today to postpone and control the
future explosion of composite waste, thus, offering the opportunity and time for finding
better recycling solutions for this problem. Besides, life extension can increase the
ratio of the energy generated per waste produced, increases the Return On Investment

(ROI) and decreases the LCOE [245]. Utilising SHM/CBM systems to continuously
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assess the health of the structure can be an efficient way to extend the service life
of the wind turbine when accompanied by an evaluation of the factors that influence
O&M costs and the critical failure modes of the system [245]. Griffith et al. [155] found
that monitoring the health of the blade to regulate the load and power generation can
help in elongating its fatigue life by 300%. Besnard et al. [31] considered different
strategies of inspection and online condition monitoring and the result was different
optimal maintenance schedules with different life-cycle costs for each of the strategies.
In regards to the offshore wind turbines, the impact of one or another maintenance
strategy on life-cycle costs is even more accentuated, especially when considering end-
of-life scenarios and the possibility of life extension [186,323]. In offshore wind farms,
the operation and maintenance costs are predicted to be about 30% of the total life
cycle costs [129], and this can vary from two to five times the land-based costs [284].
This makes the energy costs of offshore turbines larger than land-based ones [377].
These costs can be reduced by using SHM technology and proactive maintenance in a
profitable way taking into account the state of the structure, and this can also lead to

an increase in the overall profit and availability of the turbine [155].

Civil construction industry

As stated in Section 2.2.3, the main drawback of the massive adoption of FRP mate-
rials in civil engineering construction is the high material costs, which can represent
up to a 50% increase when compared to traditional solutions in the case of bridges [9].
Therefore, a key to the success and expansion of these materials in the construction in-
dustry will be the accurate prediction of the life cycle costs of the composite structures.
Indeed, the choice of the wrong maintenance strategy can further increase the cost of
these structures by incrementing unnecessary inspection and maintenance costs [94].
In this sense, the adoption of CBM strategies using state-of-the-art “on-board” SHM
techniques seems a suitable approach in this direction. Orcesi and Frangopol [294]
developed a generic approach to include the effects of SHM in the life cycle costs and
to optimise the maintenance strategies based on monitoring data. In their study, the

knowledge about the criticality and occurrence of the failure modes and the integration
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of SHM data were highlighted as the challenges for decision-making requiring further
analysis for O&M cost reduction. Zhao et al. [454] performed a life cycle assessment
comparing traditional concrete-filled steel tubular columns with several options includ-
ing concrete and FRP from an economic and environmental perspective considering
PvM maintenance. The results revealed that, considering uncertainties, the traditional
approach using steel and concrete is likely to be more economically and environmentally
efficient. It is important to note that different parts, loading scenarios and maintenance
policies can result in different life cycle analysis outcomes and that the optimised solu-
tion for a specific structure may be a combination of traditional and composite material

parts and different maintenance strategies.

Naval shipbuilding industry

As stated in Section 2.2, the use of FRP composites as primary structural materials in
shipbuilding is still limited in spite of their potential [61]. Accordingly, to the best of the
authors’ knowledge, there are no references in the literature investigating the impact
of FRP composites in life cycle cost reduction, service life and sustainability in the
naval shipbuilding industry. However, several papers in the literature presented generic
methodological approaches for ship maintenance optimisation that could be extended in
the case of marine composite structures. For example, Liu et al. [237] integrated risk and
maintenance cost reduction and increase in availability to optimise the repair actions
that help in extending the ship’s service life. Garbatov et al. developed a risk-based
framework for maintenance optimisation from the design stage and for updating future
maintenance plans while satisfying safety transportation requirements [136]. Dong
and Frangopol [105] developed an approach for maintenance optimisation and optimal
inspection scheduling while minimising the life cycle costs and risk of failure. They
formally found that an optimum inspection and maintenance plan can reduce the risk of
prolonged exposure of the structure to corrosion and fatigue. In summary, a high impact
would be expected from a massive application of FRP composites in the naval industry
with life-cycle cost reduction being prominent; however, this needs to be confirmed by

more research and new applications.
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2.5 Discussion

As previously discussed in Section 2.4, most inspection and maintenance approaches
currently adopted by the composite industry are based on preventive/corrective mainte-
nance methodologies with maintenance activities being scheduled in planned calendars.
These approaches can be seen as economically and managerially efficient in the short
term; however, they heavily penalise the serviceability and availability, and therefore,
the life cycle cost and sustainability of the composite structures in the longer term when
compared with predictive maintenance. The need for continuously reducing the costly
and possibly unsafe maintenance and inspection cycle of key composite structures,
like those from aircraft and turbine blades, requires ad-hoc, on-board, yet intelligent
systems, able to efficiently transfer data to knowledge [457] and knowledge to decision-
making as a paradigm shift towards the Maintenance 4.0. The latter is aligned with
Goal 9 (Industries, Innovation and Infrastructure) of the United Nations’ SDGs [276],
which enforces a radical new vision for structural asset management leading to more
predictable, sustainable, and resilient assets. In such a context, these obsolete asset
management solutions can be replaced by predictive maintenance, where decisions are
taken based on the actual and predicted state of health of the structures.

Among the potential needs to successfully materialise the PdAM paradigm in com-
posite structures, we can highlight two key technology enablers, namely the PHM and
CPS technology. The following subsections revise these two technology enablers in the
context of composite structures and provide critical perspective and discussion about

desirable research needs towards the aforementioned objective.

2.5.1 Intelligent Prognostics and Health Management (iPHM)

Prognostics is the science of predicting the remaining useful life (RUL) of physical assets
(e.g., a turbine blade) given the information about the current degree of damage of the
asset, the load history, and the anticipated future load and environmental conditions
[146]. Technically speaking, PHM is a natural extension of SHM where the focus is not

only on detecting, isolating and sizing a fault mode, but also on predicting the remaining
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time before the failure occurs with quantified uncertainty, which is further used for
rational and anticipated PdM decision-making [121]. From a practical viewpoint, it is
a continuous process of update-predict-reassess which requires periodical measurement
updates to increasingly improve the predictions of the RUL.

In application to composite structures, RUL predictions are subject to significant
uncertainty that comes not only from uncertain inputs (upcoming loads, environmental
conditions, material’s voids, etc.) but also from the lack of knowledge about the physics
of the damage process. This uncertainty, and the associated computational complexity
of the prediction problem, is exacerbated when dealing with large-scale thin-walled
composite structures under real operating conditions using noisy, sparse or missing SHM
data [145]. This is mainly the reason explaining why probability-based frameworks
have been preferred for prognostics in composites, rather than deterministic or point-
valued RUL estimations. Damage prognostics for structural applications have been
recently explored by several researchers [87,93]. In the current literature, available
damage prognostics approaches for composites are capable of only capturing some (but
few) of the specific damage modes such as micro-crack propagation, delamination, etc.,
which are only representative of some of the potential deterioration patterns of a full-
scale composite structure [71,75,86,114,243]. Moreover, the vast majority of PHM
research to date deals with predicting the RUL of structural coupons or small structural
parts and generally under laboratory-controlled damage conditions. Thus, there is a
clear research opportunity to effectively deploy iPHM methods in real-world composite
structures subject to realistic load and environmental conditions.

At this standpoint, it is important to remark that a keystone to deal with the
abovementioned achievement relies on the availability of an effective sensing system to
obtain real-time online data about the structural health state. Indeed, as previously
specified in Section 2.3, ultrasonic guided waves and acoustic emission have exhibited
strong potential as SHM solutions for detecting damage signatures in composite struc-
tures [114, 243,436]. However, to the best knowledge of the authors, available SHM
systems in composites still lack integrated, yet long-term reliable solutions adequate

for working under operational conditions. Thus, there is a fundamental technological
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and scientific issue that still remains open, which is to effectively integrate these SHM
sensors on-board a composite structure properly working in operational (loading and
environmental) conditions in the long-term.

The latter requires a deeper understanding of the sensing technology capable to
cover a wider range of damage signatures (as no single sensor type can cover all),
and most importantly, technology development for effective manufacturing methods
which enable sensor network integration with minimal or no affection to the structural
response of the composite. The aforementioned challenges imply a need for the devel-
opment of novel manufacturing methods to render smart composite materials [171,342],
which include robust, accurate and minimally invasive embedded systems for on-board,
continuous, yet reliable monitoring.

Finally, we remark that the energy supply of on-board installed sensors and com-
munication nodes supposes a major concern for efficiently deploying PHM solutions
in composite structures. Energy harvesting methods are today a major research topic
within the composites field providing suitable solutions mostly for structures subjected
to dynamical excitation [46,91,118,358,464]. This, together with the development of
low-consume sensors, might shed light on making on-board long-term embedded SHM

systems feasible.

2.5.2 Structural composites as cyber-physical structures

The concept of CPS is at the core of Al and its related disciplines, like the Internet-
of-Things (IoT) and robotics. CPS integrate physical assets with embedded sensing,
processing, communication, and networking capabilities, whereby cyber and structural
components form a collaborative integration transforming the monitored structure from
being a physical asset to a cyber-physical entity [212].

Recent works [404,459] propose that CPS can result in autonomous self-managed
systems with diagnostics, prognostics, and decision-making capabilities using online
SHM and PHM information. Indeed, the anticipation of CPS to structural damage can
be granted by self-adaptiveness of operational decisions (e.g. go / no go for inspec-

tion) based on PHM predictions. Through self-adaptation, the predicted information
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is updated to dynamically accommodate health state changes and provide autonomous
maintenance decisions, therefore increasing the system efficiency and making it more
resilient to the new conditions.

However, important research breakthroughs are needed for CPS to be directly ap-
plied to composites structures. Apart from scaling up the PHM techniques under
demanding real conditions, as previously discussed in the last subsection, a key chal-
lenge still lies in formulating system-level mathematical tools to represent and simulate
the dynamics of the CPS entity. The latter implies the development of expert system
models capable of integrating SHM data, PHM predictions (whether model-based or
data-based), and expert knowledge with system-level I&M non-linearities?. There are
some available system-level modelling paradigms in the literature to mathematically
represent expert systems [4, 300], like for example Hybrid automatas, Mixed logical
dynamical models, Piecewise affine models, Petri Nets and max-min-plus-scaling sys-
tems [90,172,246,313].

Among the aforementioned approaches, Petri nets (PN) [314] are typically re-
garded as powerful modelling tools for expert systems due to their ability to account
for resource availability, concurrency, and synchronisation, which are common aspects
that underline the majority of the aforementioned system-level non-linearities. More-
over, new PN variants like the fuzzy Petri nets (FPN) [67,238,319], Possibilistic Petri
nets [54,223], and Plausible Petri nets (PPNs) [73] have appeared in the literature to
account and react to uncertain information (e.g. from sensors, experts, etc.), which are
of special interest of CPS of composites due to the unavoidable presence of uncertainty
in the damage predictions. Particularly, the recently formulated PPNs have demon-
strated good results as self-adaptive expert-level models using off-line degradation data
and expert knowledge [73], and might constitute a useful tool to mathematically rep-
resent the dynamics of cyber-physical composite structures at system-level.

It is important to note that, in a literature search, one can realise that the idea
to integrate expert systems with other technologies is as old as Al, and this trend

still continues in the new generation of expert systems [321,322]. Particularly, expert

2System-level I&M non-linearities are understood here as artificial I&M actions and other human-
based events that influence the "natural” damage and ageing progression of the composite structure.
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systems applied as decision support tools for structural damage assessment date back
earlier than the boost of the SHM technology [212], but not as cyber-physical systems.

Nowadays, the cyber-physical technology is being superseded by the digital twin
concept [152] which combines interactive knowledge-based and geometrical virtual (dig-
ital) models with their physical counterparts within an IoT-based sensing environ-
ment [425], typically using cloud-computing and data intelligence. Within the context
of composite structures, a desirable scenario would be so that PHM predictions and
damage models were integrated within a system-level virtualisation that can be up-
dated using data from the physical twin (namely the IoT-based monitored composite
structure) to enable optimal dynamic task allocation, operations sharing, and PdM
decision-making.

The latter is the so-called Level-5 Digital Twin technology and, together with new
efficient-lightweight PHM and learning algorithms that can do on-board edge or cloud
computing [404], constitute a potentially fruitful research direction to enable efficient

and reliable I&M strategies in composite structures.

2.6 Concluding remarks

The use of FRP composites in thin-walled structures for safety-critical applications has
seen a notable rise over the last few decades, especially in the aerospace and wind indus-
tries with evidence of reliability, durability, life cycle cost reduction and sustainability.
Other industries such as the civil and naval have not seen such a rampant increase so
far presumably due to the uncertainty about the long-term performance, the lack of
technological demonstrators, and the absence of codes and standards.

To overcome this, the development of policies and codes regulating the design with
composites along with a cross-sectoral knowledge transfer among industries could be
the levers that unlock a greater use of these high-efficiency materials. Moreover, while
still relatively immature for industrial application, converting composite structures into
cyber-physical structures seems promising to promote the transition into predictive and
optimised inspection and maintenance strategies and overcome the long-term perfor-

mance uncertainty of FRP structures.
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For the case of wind turbines, typically the laminates applied to the blades con-
sist of e-glass fibers and thermoset matrices like epoxy, polyester, or vinylester, with
a fiber content of approximately 75% by weight. The growing need for larger wind
turbine blades, particularly in offshore applications, has prompted the exploration of
carbon fibers to enhance strength and stiffness-to-weight ratios. This, in turn, enhances
resistance to gravitational loads and improves fatigue life.

The utilisation of composite materials in the wind industry is associated with various
challenges. Primary concerns include uncertainties regarding failure modes, challenges
in monitoring damage progression during operational use, and reliability issues in the
manufacturing process of large composite components.

In practical situations, the effectiveness of damage detection has been established
through acoustic emission and strain monitoring. Additionally, there is a current ex-
ploration of Lamb-wave monitoring for its potential in pinpointing damage locations in
large composite structures. The implementation of monitoring systems for drive train
and gearbox components, utilising data from SCADA and other vibration control sys-
tems, has become a reality. Nevertheless, blade monitoring is still in its early stages,
although a growing body of research in the literature is providing promising solutions.

Present SHM systems for wind turbine blades can furnish data under controlled
conditions, offering meaningful damage indicators. However, the performance of these
systems over extended durations and in challenging environmental conditions lacks sub-
stantiated evidence. The response of these systems to uncertain and harsh environments
remains uncertain, posing a technological challenge within the industry. A non-durable
SHM system has the potential to increase maintenance costs and downtime, ultimately
counteracting its intended purpose.

Presently, the predominant approach to wind turbine maintenance relies on visual
and tap test inspections. As discussed in this chapter, this method has limitations,
particularly in detecting subtle impact damage that may go unnoticed. Implementing
SHM or CBM systems for continuous structural assessment proves to be an effective
strategy for prolonging the service life of wind turbines. This approach is most beneficial

when coupled with an analysis of factors influencing O&M costs and critical failure
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modes of the system.

In the realm of offshore wind farms, it is anticipated that operation and maintenance
costs will constitute approximately 30% of the total life cycle costs. Moreover, these
costs can be two to five times higher than their land-based counterparts, rendering
energy costs for offshore turbines higher. Integrating SHM technology and adopting
a proactive maintenance approach through PHM can contribute significantly to cost
reduction by considering the structural condition. Furthermore, this approach has the

potential to enhance overall profitability and turbine availability.

50



Chapter 3

Failure mode, effect and
criticality analysis of wind

turbine blades

Chapter contribution

This chapter aims to accomplish the following research objective: Identify the most
critical failure modes of a wind turbine blade.

The contributions of this chapter are detailed below:
o Identify the most critical subcomponents of the blade.
e Provide insight into the failure modes to prioritise for O&M purposes.

The published peer reviewed journal article Contreras Lopez, Javier and Kolios,
Athanasios ” Risk-based maintenance strategy selection for wind turbine composite blades”
Energy Reports 8 (2022) was authored by myself as part of my research completed un-
der the direction and consultation of my supervisor, Professor Athanasios Kolios. The

published article is incorporated in this chapter and forms part of the wind turbine

blade failure mode identification presented in this Chapter.
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3.1 Introduction

As highlighted in Chapter 2.6, the difficulties to predict and monitor damage in wind
turbine blades requires the design of careful inspection and maintenance strategies for
them. On this regard, the different failure modes of the blade need to be identified and
ranked to provide cost effective solutions that could help improve current maintenance
practices. In this sense, several offshore wind turbine life costs analyses have revealed
that operation and maintenance (O&M) costs can represent up to more than 30% of the
total costs of wind turbines throughout their life [256,393]. Furthermore, turbine blades
along with the gearbox and electrical generators have been identified as the components
with the greater failure rates of the turbines [234,405]. In contrast with gearboxes,
electrical generators and other components, where the use of condition monitoring is
much more mature and is currently implemented in some turbines [35,100,258,286,359],
the blades are rarely instrumented and their inspections and maintenance are usually
calendar-based which creates an opportunity for improvement on their reliability and
life extension by switching to condition-based types of maintenance [202,257]. As
presented in Chapter 2.6 the knowledge around failure modes of composite materials
is limited and the uncertainty about its material properties, potential manufacturing
defects and damage during installation require a careful understanding of the more
critical failure modes, causes and effects.

To determine which failure modes are more relevant and drive the reliability of
the blades, a systematic analysis is provided in this chapter by means of a compre-
hensive Failure Modes, Effects and Criticality Analysis (FMECA). In this analysis,
the severity and occurrence of each of the failure modes is considered so as to define
a criticality number (CN). Based on the resulting C'N, risks will be prioritised to
study the implementation of improved maintenance and inspection strategies. The
types of maintenance under consideration are shown in Figure 3.1. Conceptually, there
is a big difference from corrective maintenance or statistics-based preventive mainte-
nance to condition-based maintenance based on non-destructive testing or sensor data.

As opposed to corrective and statistics-based preventive maintenance, condition-based
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maintenance requires a deep knowledge of the failure mode under study.

Later, the current maintenance strategy usually applied for the failure modes is be
indicated. Following this, the feasibility of detection of each failure mode along with
the feature or features and structural health monitoring (SHM) techniques used for
its detection will be explored among the existing literature. Finally, the maintenance
decision framework proposed in [203] will be used toward the development of a risk
policy to determine a feasible maintenance strategy for each of the blade failure modes
above a considerable risk threshold to enhance the current practice and impact in the
overall reliability of the blade. This study will also serve as a guide for the main
failure modes to be included in wind turbine blade O&M modelling for an effective
representation of the physical system. In contrast with existing risk analysis of wind
turbine components where the criticality of different components is presented, this
study analyses in detail the failure modes at component level for the blades, providing
a detailed vision of the nature and effects of the failure modes and a risk policy for
the selection of the optimal inspection and maintenance strategy. Transitioning from
predetermined or corrective maintenance to condition-based maintenance can report
an increased availability of the assets if properly performed [205]. Therefore, this study
provides the natural step forward to commence the implementation of practices to
increase the reliability of wind turbines and could be used by wind farm operators and

other stakeholders as a guide for other components (tower, generator, drivetrain, ...).
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Figure 3.1: Types of maintenance. Adapted from [203].

3.2 Literature review

When facing the problem of increasing the reliability of a system, the concept of risk is
widely used in the prioritisation of components and failure modes. It is defined in ISO
31000 [387] as the effect of uncertainty on objectives. A concept closely related to risk in
O&M management is criticality. Both concepts combine the likelihood of an undesired
event happening with the severity of its consequences (usually environmental, economic
and safety), being the criticality used to provide a prioritisation of failure modes within
a system [389]. Among the existing qualitative and quantitative methods to prioritise
failure modes of systems presented in the ISO 31000 series of standards [386,387], the
Failure Mode and Effect Analysis (FMEA) and its extension, the Failure Mode Effects
and Criticality Analysis (FMECA) that incorporates the analysis of the criticality of
the failure modes of the system, have been extensively applied in the operation of
physical assets in particular. Risk prioritisation studies such as the one provided in
this chapter call for qualitative or semi-quantitative approaches in the absence of a
significant amount of date. In this sense, the FMECA has been selected as the method
for this study to overcome the lack of data with the data required to individually

characterise the identified failure modes. In the future, the application of quantitative
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methods like the ones proposed in ISO 2394 [388] will improve informed O&M decision-
making for wind turbine blades. A comprehensive review of the different risk and
reliability-based analysis can be found in [225]. The IEC 60812 standard [81] describes
in a comprehensive way the steps for the application of the FMEA and the FMECA.
The strength of these methods comes from its versatility to accommodate quantitative
and qualitative data, and therefore the combination of physics-based and data-based
knowledge, while preserving a logical and structured approach.

During the last decade, there have been several risk assessment studies considering
the complete wind turbine [14,95,102, 229,245,247, 298, 347,356,357]. Considering the
different environments to which wind turbines are exposed, the comparison of failure
modes between onshore and offshore wind turbines was studied in [356], showing that
risk and cost increase for offshore turbines while the risk rank of components is fairly
consistent. In [229], a two-stage FMECA considering 13 components including the
blades is presented in which blades are the most relevant component in terms of a
combination of cost and risk priority. In [247], a FMEA and a failure mode maintenance
analysis are presented in which six components, including the blades, are also analysed.
Arabian-Hoseynabadi et al. [14] performed a FMEA of the wind turbine and compared
it with reliability field data and suggested further analysis at the component level.
Scheu et al. [347] performed an analysis based on an in-depth FMECA study in which
337 failure modes were identified and analysed by experts. Additionally, the potential
benefit of deploying monitoring systems was assessed for the critical failure modes.
Separately, Luengo and Kolios [245] reviewed the main failure modes of wind turbines
found in the literature to provide a view on end of life scenarios for different components.

Notwithstanding the proliferation of different risk and reliability analysis of wind
turbines, to the best of the authors’ knowledge, the existing studies are focused on
the identification and prioritisation of wind turbine components without the detail
required to propose individual monitoring techniques and maintenance strategies for
the most critical failure modes. This additional step is essential for the implementation
of improvements in the system. Table 3.1 summarises some of the studies found in

the literature in which the blades or rotor were studied. In order to challenge the
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current maintenance practice, a detailed risk assessment at component level is deemed
necessary. Thus, understanding and evaluating the impact of each of the failure modes
of wind turbine blades is the first step toward the implementation of new practices for

reliability improvement of this component.

Table 3.1: Risk and reliability studies including wind turbine blades in the literature.

Reference Blade included Number of Failure modes

blade failure

modes
[14] Yes 4 Mechanical rupture, fracture, detachment, fatigue
[229] Yes 3 Blade cracks, delamination, gear teeth slip (rotor)
[247] Yes 2 Crack in blade, gear teeth slip (rotor)
[347] Yes 19 Cracks, delaminations, debonding, top coat damage,

lightning damage

[245] Yes 12 Cracks, delaminations, surface wear, increased surface

roughness, fatigue, lightning strikes, high vibrations,
flapwise fatigue damage, unsteady blades air loads,
blade fracture, unsteady performance, corrosion

[357] Yes 7 Abnormal vibration, blade surface roughness, bird
crash, ice-forming, hurricane, earthquake, wrong ma-
terials

3.3 Developing a risk-based maintenance strategy selec-

tion policy

The stakeholders of the industry are seeking important cost reductions in the mainte-
nance of wind energy assets. In this sense, the analysis of the reliability of the different
components and the selection of the optimum maintenance strategy or combination of
maintenance strategies are not trivial problems. Developing a risk policy and, there-
fore, assigning thresholds to target failure modes is a critical task to bring down these
costs. In contrast with much more mature industries such as the automotive or off-
shore Oil&Gas which have developed standardised risk policies based on accumulated
knowledge and data, the wind industry and, in particular the offshore wind industry,
are in need of more studies.

In this study, the scope of the FMECA will be the blade, and it will be broken
down into the following components as seen in Figure 3.2 (upper and bottom shell,

spar, root, and the leading and trailing edges). The first step of the analysis is the

56



Chapter 3. Failure mode, effect and criticality analysis of wind turbine blades

identification of the failure modes, which are the manners in which failures can occur.
Secondly, the effects or consequences of the failures will be presented. Furthermore,
the causes initiating them and the failure mechanisms that are developed toward the
failure will also be identified.

Tip

Leading

Root-blade
transition
Trailing

edge
Root &

Laminate

Adhesive joint

Face

Shear /

web Core

/
Cap

Adhesive

Upper shell

) Trailing edge
Surface coating

Leading edge
Lower shell  Adhesive

Adhesive [Blade cross section|

Figure 3.2: Wind turbine blade components.

The criticality will be assessed using a 2-parameter approach that will define the

criticality number (C'N). The C'N will be computed as follows:

CN=5-0 (3.1)

where S is the Severity (relative ranking of potential or actual consequences of a failure)
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and O is the Occurrence (relative likelihood of the occurrence of a failure) factor. The
range of values considered for these factors spans from 1 to 5 according to the criteria
shown in Tables 3.2 and 3.3. The values of Occurrence have been set in agreement
with the studies shown in Table 3.1 and expert elicitation. Separately, the values of
Severity, have been chosen considering the economic and structural implications of the
development of the failure mode. As defined for this work, occurrence and severity
factors have equal weight toward the criticality of the failure mode. The values for
the resulting criticality range from 1 for the less critical mode to 25 for the most
critical. The criticality domain has been divided into four categories (low, moderate,
high and extreme) as shown in the matrix of Figure 3.4 and described in Table 3.4.
The guidelines presented in [13] have been carefully considered as to provide a risk
matrix with sufficient resolution and to balance ratings so that negatively correlated
frequency and severity values of the identified failure modes can provide insightful
criticality numbers. The approach used for this study is in line with recent relevant
papers in the same field, such as [347] and [203]. While other studies include a third
factor called Beta factor or detectability, which represents the conditional probability
of the failure end effect to materialise given that the failure mode has occurred, only
Severity and Occurrence have been considered to use the risk matrix as an approach
for risk visualisation and acceptance. This practice is widely used in industry through
relevant standards and risk policies. In this study, failure modes with a criticality of
high or above will be prioritised to propose monitoring and maintenance strategies for
the reduction of their criticality owing to the potential of their consequences in the
operation of the asset and the risk of producing economic and or environmental losses

of entity.
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Table 3.2: Severity factor categorisation.

Category Description Factor
Negligible Unidentifiable or only cosmetic damage 1
Minor Damage not causing interference with the normal operation 2
of the wind turbine
Moderate Damage having slight consequences to the operation of the 3
turbine but not causing service disruptions
Major Damage interfering with the operation of the wind turbine 4
and causing service disruptions
Catastrophic  Failure of the system 5
Table 3.3: Occurrence factor categorisation.
Category Description Factor
Rare Remote possibility of failure 1
Unlikely Relatively few failures 2
Possible Occasional failures 3
Likely Repeated failures 4
5

Almost certain

Almost inevitable failure

Table 3.4: Description of Criticality Categories.

Category Description Range

Extreme Failure modes causing great economic/environmental 15-25
losses due to a high severity and or likely occurrence.
Failure of the system or need for emergency stop.

High Failure modes that could produce some economic losses, 8-14
with a lower likelihood. Major disruption of operation
or need for preventive stop.

Moderate Failure modes affecting the normal operation of the tur- 4-7
bine. Reduced power output, or increased vibration.

Low Minor failure modes having a low or negligible effect on  1-3

the operation of the asset. Even when very frequent,
the operation of the turbine is not affected.

After the classification of failure modes according to the proposed C'IN, this study
provides a systematic framework for maintenance strategy selection following the de-
cision tree in Figure 3.3. The proposed maintenance strategies are corrective mainte-
nance, preventive planned maintenance (time-based), preventive condition-based main-
tenance and predictive condition-based maintenance. The maintenance strategy selec-

tion starts with the FMECA of the blade and the determination of the criticality thresh-
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old to consider so as to increase the efficiency of the improvements to be implemented.
For non-priority failure modes, the corrective maintenance shall be enough since the
failure is not so relevant in terms of risk. For those failure modes above the threshold,
the feasibility of the monitoring is key to opt for condition-based (either predictive or
preventive) or preventive or corrective maintenance. Condition-based maintenance has
the advantage of considering the current state of the system. Choosing a predictive
maintenance strategy requires the instrumentation of the blade [257] and the ability
to provide reliable estimations on the future evolution of the failure mode under con-
sideration, which is receiving attention from the research community as shown in [72],
while preventive maintenance requires an optimised inspection interval to increase effi-
ciency. For those failure modes that are not able to be monitored, preventive planned
maintenance shall be used, when technically and economically feasible, and corrective
maintenance otherwise. Finally, if the corrective maintenance is not acceptable due to
economic, environmental, safety or other implications, improvements are required to
reduce the risk of the failure mode (for example design modifications, improvement of

materials or modification of operation).
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Select Failure Mode

No
Is the criticality above
the threshold?
Yes
Yes
Can the condition of the
%7 item be measured?
4 ™\
Is condition-based No
maintenance technically and No
economically feasible?
A4
Yes N
I termi 0 .
Ve ~N . s prede errm.ned Is run-to-failure acceptable No
maintenance technically and . S .
X X and in line with risk policy?
- . economically feasible?
Is predictive maintenance
feasible?
. J N Yes
o
Yes
Yes
Predictive Conditon-Based | |Preventive Condition-Based Preventive Planned Corrective Maintenance .
. . . . Improvements required
Maintenance Maintenance Maintenance (run-to-failure)

Figure 3.3: Maintenance decision tree. Adapted from [203].

3.4 Risk identification and criticality assessment

The identification of risks was performed in consultation with industry experts, of
which, its distribution among the different components of the blade is shown in Table
3.5 and the causes divided in four categories (design, manufacturing, installation and
operation) shown in Table 3.6. A total of 62 failure modes have been identified, being
the spar and the upper and lower shells the components with the higher number of

failure modes identified, with a total of 20, 11 and 11, respectively.
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Table 3.5: Identified risks from the FMECA.

Failure mode LE LS R S T TE US Grand Total

Adhesive joint failure (debonding) 3 3 6
Blade rupturing, blade burnout, wire melt- 1

ing. (Lightning)

Buckling 1
Cracks 1 2 5 1 3
Cracks in the gelcoat 1

Debonding 2

Debonding (laminate to core) 1
Delamination 2 5 2
Erosion of leading edge protection (LEP) 3

Failure of root-hub connection 3

Ice accumulation 1

Intralaminar fracture (matrix cracking - mi- 3 6 3
crocracks)

Receptor vaporization, surface scorching, sur- 1

face blotching, surface delamination (light-

ning)

Skin/adhesive debonding 1 1
Surface cracking, surface tearing (lightning) 1

Surface stripping, receptor loss (lightning) 1

Water ingress 1 1 1

—_
—_

—_
—_
N~ WWwOWwN N

—_

[t

W = =N

Grand Total 8 11 3 20 4 5 11 62
LE: Leading edge LS: Lower shell R: Root S: Spar T: Tip TE: Trailing Edge US: Upper Shell

Table 3.6: Count of failure modes by cause.

Cause Count of failure modes
Design 23
Installation 6
Manufacturing 22
Operation 11
Grand Total 62

The spar is the part of the blade having the mission of the structural integrity
of the blade and, therefore, its failure modes can evolve until the complete failure of
the blade requiring its complete replacement if not maintained in time. The spar is
composed of the caps, responsible for the bearing of the flapwise bending loads of the

blade, which are the predominant loads; and the shear webs, designed to withstand
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shear loading and edgewise bending. The failure modes present in this part follow the
usual damage progression of composite materials (intralaminar cracking - delamination
- crack formation), with the severity of each of those failure modes growing with dam-
age growth [164]. The occurrence of these failure modes provokes effects increasing in
severity that include the following: reduction of energy production, increase of disloca-
tions of the blade under operation, rise of stress on the laminates, critical dislocation
of the blade (tower hit) and collapse of the blade. The initiation of these failure modes
is usually related to defects present in the manufacturing process and fatigue damage
accumulated throughout the life of the blade [11]. Additionally, the disbond of the
cap-shear web connection and the water ingress constitute failure modes as well and
can contribute to the structural performance degradation of the blade.

The upper and lower shells of the blade provide the aerodynamic design of the
blade to maximize lift for energy production and minimise drag. The sandwich panels
that conform the shells are coated with a gelcoat providing superior smoothness of the
surface and wear protection. The shells are affected by the erosion effects of the rain and
the abrasive particles carried in the air. Additional failure modes affecting the shells
are related to damage in the sandwich panels forming them (interlaminar cracking,
delamination, cracks and debonding between the laminate and the core). The effects
of these failure modes are primarily related to a loss of energy production and the
modification of the aerodynamic loading that can initiate damage in the spar.

The upper and lower shells are joined together in the leading and trailing edges
by means of adhesives. The failure of the adhesive is one of the main failure modes
of these parts. The leading edge is more prone to suffer erosion due to the incidence
of the flow and is one of the most common failure modes of the blades. The blades
located in frost-prone environments are usually equipped with deicing systems to avoid
the accumulation of ice on the blade and the failure of these systems increases the mass
of the blade and can provoke structural damage and rotor imbalance. Separately, the
degradation of the trailing edge can result in the local buckling of the shells.

There are two regions of the blade that are affected by singular failure modes, the

root and the tip of the blade. The root of the blade provides the connection of the

63



Chapter 3. Failure mode, effect and criticality analysis of wind turbine blades

blade with the hub, and can experience failure modes due to manufacturing defects
in the machining of the holes and the assembly of the blade to the hub. The failure
modes affecting the root have critical consequences, since the failure of the connection
of the blade to the hub can result in the detachment of the blade. Separately, even
though the blade has a lightning protection system incorporated, it is sometimes not
able to fully protect the blade against lightning strikes and could potentially result in
different degrees of damage varying from simple receptor damage that is fixed by a
simple replacement to more severe damage modes (surface scorching, surface blotching,
delamination, surface cracking, surface tearing and blade rupturing) that could even

require the replacement of the whole blade.

Occurrence
1 2 3 4 5
Rare Unlikely Possible Likely Almost Certain
5 5 10
Catastrophic Moderate High
4 4 8 12
Major Moderate High High
=
E 3 3 6 9
5 Moderate Low Moderate High
7]
2 2 2 6 10
Minor Low Low Moderate High High
1 1 2 3 4 5
Negligible Low Low Low Moderate Moderate

Figure 3.4: Criticality matrix

In light of the failure modes identified, the recent literature regarding damage de-
tection and monitoring of wind turbine blades has been explored to assess the current
feasibility of applying condition-based maintenance strategies, as shown in Table 3.7.
This table summarises the feature and the monitoring techniques used for the different
damage modes covered in this study to shed some light on the potential improvements
that could be implemented. In terms of available non-destructive testing or monitoring
techniques for the blades, thermography, acoustic emission, ultrasonic guided waves,
digital image correlation, optical techniques and vibration analysis are the most used

in the literature. The applicability of the different techniques depends on factors such
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as the accessibility of the damaged component, the detectable size of damage, the type
of failure mode and the possibility of embedding or attaching a sensor on the structure
or needing to perform the inspection with an external device. The features and mon-
itoring techniques identified are linked with the relevant failure modes as to identify

the feasibility of continuous monitoring and propose the most adequate maintenance

strategy following the decision chart proposed in Tables 3.8, B.1, B.2 and B.3.

Table 3.7: Damage monitoring references in the literature.

Reference Feature Monitored damage Technique
[135] Temperature distribution Delamination, impact, cracks Thermography
[181] Temperature distribution Delamination, surface damage Thermography
[106] Strain fields Cracks Strain gauges
[148] Guided wave amplitude Delamination in laminates and Ultrasonic guided waves.
sandwich parts.
[381] Signal amplitude Delamination, cracks Acoustic emission
[69] Temperature distribution, strain fields Delamination in spar cap, adhesive ~ Thermography, DIC
joint debond, trailing edge buck-
ling.
[305] Standing wave energy Trailing edge, leading edge, spar Ultrasonic guided waves
debonding, Delaminations
[372] Power curve, tower lateral oscillation accelera- Ice formation detection Vibration analysis, power
tion curve analysis
[222] Strain and displacement fields Crack, debonding, delamination 3D DIC
[310] FBG reflectivity - strain Trailing edge debonding and crack-  Optical (FBG)
ing
[438] Strain and displacement fields Crack, debonding, delamination 3D DIC
[296] Natural frequency, damping ratio, mode shapes Crack Vibration analysis
and curvatures, accelerations
[211] AE power and spectral features Debonding Acoustic emission
[160] Strain Debonding and delamination Optical (FBG)
[170] Strain and displacement fields Trailing edge disbond and buckling  Optical (FBG)
[156] Modal shape, frequencies Trailing edge disbond Vibration analysis
[453] AE power and amplitude Cracks Acoustic emission
[345] Group wave propagation velocity, energy and Sandwich debonding Ultrasonic guided waves
amplitude of the wave
[402] AE energy, AE amplitude Matrix cracking, fibre breaking, Acoustic emission
matrix-fibre debonding
[332] Time of flight Delamination Acoustic emission
[439] Amplitude, decay, energy, peak frequency Matrix cracking, matrix fibre Acoustic emission
debonding, fibre breakage
[259] Wind speed - rotational speed, Wind speed - Lightning strike detection SCADA data analysis
power
[361] Image analysis aided by deep-learning Erosion, cracking and lightning Deep learning
[430] Image analysis Anomaly detection Deep learning
[207] Current Lightning impact location Fibre optic sensor
[413] Natural frequency, damping ratio Ice formation detection Vibration analysis
[364] Peak magnitude, group phase velocity Ice formation detection Ultrasonic guided waves
[428] Amplitude, group phase velocity Ice formation detection Ultrasonic guided waves
[339] Temperature distribution Cracks, delamination, dirt, erosion = Thermography
[417] Statistical vibration features Leading edge and trailing edge Vibration
cracks
[307] Frequency response functions Delaminations Lamb wave propagation
[306] Time of flight Delaminations Ultrasonic guided waves

AE: Acoustic emission DIC: Digital Image Correlation FBG: Fibre Bragg grating SCADA: Supervisory control and data acquisition
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3.5 Results & discussion

The results of the FMECA are presented in Tables 3.8, B.1, B.2 and B.3. Figure
3.5 presents a summary of the criticality assessment by blade component based on the
FMECA results, so the sum of criticality adds to 1 (or 100%). The results are presented
subdividing the total criticality of those failure modes with extreme, high, moderate or
low values. No extreme values (CN over 20) have been found in the identified failure
modes. This assessment reveals the spar and the leading edge to be the components
concentrating the highest criticality (38.2% and 16.9%, respectively) (see Figure 3.5).
In this sense, leading edge erosion is one of the issues that has captured the attention of
the industry due to the loss of production occasioned and the acceleration of degradation
of other components of the blade. The structural mission of the spar makes it vital for
the performance of the system and is also reflected in the criticality distribution. The
blade subcomponent criticality assessment is a relevant result that provides guidance
to concentrate design improvement, quality control or maintenance efforts on specific
parts of the blade, increasing the efficiency of the actions. In this line, the decision tree
presented in Figure 3.3 provides a systematic way for selecting the most appropriate

maintenance strategy for each failure mode.
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Figure 3.5: Criticality by blade component.

The top failure modes of the blade according to this study (refer to Table 3.9),
include the erosion of leading edge protection due to an underestimation in the design
stage and the usual operation of the wind turbine, the failure of root-hub connection
due to an incorrect pretension applied to the bolts, lightning damage of the blades
fostered by an insufficient lightning protection system in the design, the adhesive joint
failures of the leading and trailing edges and the crack formation and delamination of

the members of the spar.
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Table 3.9: Failure modes with high criticality.

D Failure mode Effects Cause Cause detail Failure mechanism [0 S CN  Criticality
level
LE4 Erosion of LEP Reduction of aerodynamic efficiency, produc-  Design Underestimation of wear effects Wear of coating, loss of 4 3 12 High
tion losses, damage to laminates mass of the blade
LE5 Erosion of LEP Reduction of aerodynamic efficiency, produc-  Operation Exposure to UV, rain, insects, salt Wear of coating, loss of 4 3 12  High
tion losses, damage to laminates spray and particle erosion mass of the blade
R20 Failure of root-hub connec- Increase of tension, vibrations of the blade, ~Installation Incorrect pretension applied to the Damage progression in the 2 5 10  High
tion critical damage of the blade, detachment of bolts surroundings of the bolts
blade until critical damage of the
blade
S51 Cracks Increase of stress concentration, reduction of ~Operation Misoperation, increase of loads Crack formation, failure of 2 5 10 High
stiffness, failure of the blade the blade
S52 Cracks Increase of stress concentration, reduction of Design Underestimation of loads Crack formation, failure of 2 5 10 High
stiffness, failure of the blade the blade
S53 Cracks Increase of stress concentration, reduction of ~Manufacturing Voids during manufacturing Crack formation, failure of 2 5 10 High
stiffness, failure of the blade the blade
LE6 Erosion of LEP Reduction of aerodynamic efficiency, produc-  Manufacturing Incorrect curing/application of top Wear of coating, loss of 3 3 9 High
tion losses, damage to laminates coating mass of the blade
T16 Surface stripping, receptor Surface stripping, receptor loss, normal dam-  Design Insufficient lightning protection Strike of lightning 3 3 9 High
loss (lightning) age
LE2 Adhesive  joint  failure Reduction of aerodynamic efficiency, produc- Installation Damage or overstress of adhesive Overstress of the interphase 2 4 8  High
(debonding) separation of the shell, rotor im- during handling of the blade (peeling ), se
tion of shell
TEL0  Adhesive joint failure Reduction of acrodynamic 1y, produc-  Installation Damage or overstress of adhesive of the interphase 2 4 8  High
(debonding) tion losses, separation of the shell, rotor im- during handling of the blade (peeling stresses)
balane
TEll  Adhesive joint failure Reduction of acrodynamic efficiency, produc-  Design Underestimation of environmental ress of the interphase 2 4 8 High
(Debonding) tion Ic separation of the shell loads and conditions ses
Ti5 Surface cracking, Surface Serious damage requiring immediate repair  Design Tnsufficient lightning protection Strike of lightning 2 4 8 High
tearing (lightning)
TI7 Receptor vaporization, Minor damage Design Tnsufficient lightning protection Strike of lightning 2 4 8 High
surface scorching, surface
blotching and surface de-
lamination (lightning)
845 Delamination (Caps) Increase of stress concentration, reduction of ~Manufacturing Voids during manufacturing Delamination will progress 2 4 8  High
stiffness, progress to crack formation until cracks join and the
cross section cannot with-
stand existing loads
$46 Delamination (Caps) Increase of stress concentration, reduction of Design Failure in the design, underestima- Intralaminar fractures 2 4 8  High
stiffness, progress to crack formation tion of loads progressing and  evolving
into delamination, damage
propagation until failure
S47 Delamination (Caps) Increase of stress concentration, reduction of ~Operation Incorrect operation, increase of loads  Intralaminar fractures 2 4 8 High
stiffness, progress to crack formation progressing and  evolving
into delamination, damage
propagation until failure
S54 Delamination (Shear webs)  Inc of stress concentration, re of M in, Voids during ing 1 will progress 2 4 8  High
stiffness, progress to crack formation until cracks join and the
cross section cannot with-
$55 Delamination (Shear webs ion, reduction of Design Failure in the design, underestima- 2 4 8 High

formation

tion of loads

ng and evolving
into delamination, damage
propagation until failure

O: Occurrence S: Severity ON: Criticality number LEP: Leading edge protection

Leading edge erosion is known to produce

annual energy production losses of around

5% after the first few years of operation and has the potential to reach 20-25% if

unmaintained [341]. Considering this, the design of durable protective coatings and

the identification of the optimum maintenance strategy is of vital importance to reduce

operational costs. In this sense, the constant collection and analysis of data can provide

good deterioration estimates to find optimum maintenance opportunities. The root-

hub connection is also a critical part of the blade since the machining of the holes, the

handling and the assembling of the blade are delicate operations and small defects and

damage can grow into catastrophic failures since this is the only load path for the blade

to transmit loads to the foundations of the turbine. Even though the in-place repair

of this connection is usually unfeasible, the early detection of this damage mode can

help plan the disassembly and protection of the blade to avoid catastrophic failures.

The formation and development of cracks in the spar have the difficulty of progressing
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unnoticeably for visual inspection techniques under the shells of the blade. Therefore,
the advantage of monitoring this part is the reduction of unexpected critical failures of
the blade. The debonding of the leading and trailing edges is a failure mode that will
reduce the output of energy converted from the wind turbine and potentially produce
rotor imbalance and increase the loads onto the blade. Being able to identify the length
of the debonding is key to control its growth and plan its maintenance accordingly.
Separately, lightning strike impact detection and location can also be helpful in terms
of evaluating if inspection or maintenance may be necessary and could avoid the action
of unnecessary inspections.

The reduction of the Levelised Cost of Energy (LCOE) has been achieved during
the last decades, at least partially, with an increase in the size of the turbine and the
blades [266,369]. The constant evolution and increase in size of the blades require an
understanding of how size and weight increase impact the criticality of the identified
failure modes. Overall, the increase in size and the offshore environment to which
the turbines are exposed have resulted in a decrease in reliability [60]. In this sense,
the levels of stress occasioned by aerodynamic loads can be kept from an excessive
growth by increasing the section of the spar, which results in an increase of the mass
of the blade, and by the application of both active (primarily based on pitch control)
[42,79,154,326] and passive [41,65] load control strategies. Load control strategies may
thrive in importance even at the expense of energy production as maintenance costs are
higher for offshore wind turbines. The increase of mass of the blade will lead to a rise in
the stress, occasioned by the increase in the gravitational and inertial loads. Therefore,
the role of both fatigue and extreme damage will grow in importance and those failure
modes originated during operation will see their likelihood of occurrence increased and
some new failure modes may appear. It is important to note that some fatigue-produced
damage is originated from existing manufacturing defects [253] and thus, improvement
in quality of the manufacturing will also reduce the initiation of these failure modes.
Waiting times for weather windows represent a high percentage of these costs, and
damage control along with an efficient planning can help to their reduction. Thus,

using smart operation control modes can contribute to an overall LCOE reduction if

70



Chapter 3. Failure mode, effect and criticality analysis of wind turbine blades

the state of the blade can be known, which grants SHM an additional importance.

3.6 Conclusion

In this study, a risk-based maintenance strategy selection for wind turbine composite
blades was presented. First, the failure modes of the wind turbine blade were identified
by means of an FMECA considering their likelihood of occurrence and the severity
to determine their criticality. Later, the feasibility of monitoring the identified failure
modes was explored in the literature. Finally, a maintenance decision tree was presented
and applied to determine the preferred maintenance strategy of the prioritised failure
modes providing a systematic way of choosing maintenance strategies for the critical
failure modes of the blade.

The FMECA of a wind turbine blade identified the leading edge erosion, root-
hub connection damage, spar caps and web damage, lightning strike damage, and the
debonding of leading and trailing edges to be the most critical failure modes of the
blade. This study has shown that detecting and/or monitoring these failure modes
can be feasible as shown by the literature. Notwithstanding, the optimal placement of
sensors, the tuning of inspection intervals and dealing with all the information obtained
to take operation and maintenance decisions are non-trivial problems to be solved to

unleash cost reductions for enhanced wind energy production.
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Chapter 4

A degradation model for leading

edge erosion

Chapter contribution

Leading edge erosion has been revealed as one of the most critical failure modes of
the blade. In the absence of available data, a degradation model for its evolution can
provide a tool to estimate its effects.

This chapter aims to accomplish the following research objective: Provide a degra-
dation function for one fo the most critical failure modes, LEE, to evaluate O&M
policies.

The contributions of this chapter are detailed below:

e Provide a degradation model to account for the LEE progression and estimate its

effects in annual energy production.

The published peer reviewed journal article Contreras Lopez, Javier et al. ” A wind
turbine blade leading edge rain erosion computational framework” Renewable Energy
203 (2023) was authored by myself as part of my research completed under the direction
and consultation of my supervisor, Professor Athanasios Kolios, and my coauthors. The
published article is incorporated in this chapter and forms part of the definition of the

leading edge erosion degradation framework.
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4.1 Introduction

As shown in Chapter 3.6, the study of the most critical failure modes of wind turbine
blades revealed leading edge erosion as one of the most prominent, as derived from
Figure 4.1. The high velocities experienced by the sections of the leading edge close
to the tip increases the criticality of this failure mode. Blade leading edge erosion is
a phenomenon that is produced due to many factors: environmental degradation due
to temperature, moisture, UV radiation and fatigue degradation of the edge protective
coating due to rain, and hail or wind-borne debris impacting the blade during its
rotation, to cite but the most important. Additionally, its initiation may be favoured
by manufacturing defects in the application of the leading edge protection systems or
impacts during the handling of the blade in the transport and construction phase. The
erosion produces the detachment of fragments of the coating from the blade and also
modify the airfoil geometry, which alter the performance of the blade in many aspects:

aerodynamically, acoustically, and if left unattended, structurally.
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Figure 4.1: Criticality by blade component. Source: [82].

The effects of this erosion progress from turbine power degradation to potential
damage to the skin laminates of the shell, evolving into more severe damage types such
as delamination and the failure of the joint between shells. The power degradation

of the blade is just a result of the modification of the aerodynamic properties of the
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affected sections, which produce a reduction of lift and an increase in drag [139]. This
power degradation occasions annual energy production (AEP) losses, the range of which
is not yet clear due to the high uncertainty in the degradation process, the coating
material characteristics, and the airfoil aerodynamic performance, among others. A
comprehensive overview of the leading edge erosion is provided in [270,374].

In terms of airfoil aerodynamic performance, Gaudern et al. [139] studied the lift
and drag variation of different airfoils at different erosion stages using wind tunnel tests.
Their results showed a lift reduction about 3-10 % for both airfoils, which increased
with the erosion progression. In a similar manner, Sareen et al. [341] carried out a
comprehensive wind tunnel test study for the DU 96-W-180 airfoil for different erosion
levels with lift reductions in the range of 5-15% and an AEP loss between 3 and 23%.
Schramm et al. [351] opted for a numerical approach using 2D computational fluid
dynamics (CFD) to determine the behaviour of wind turbines with eroded blades.
Airfoil polars were generated using CFD which were further employed to obtain wind
turbine loads and power curves by the blade element momentum (BEM) theory. The
referred study reported AEP losses of about 8%.

In a first effort to better understand the relation between erosion models and their
mechanical effects on the turbines blades, Eisenberg et al. [112] made use of the rain
erosion computational model developed by Springer [385] along with proprietary wind
turbine historical observations to calibrate a model able to estimate rain mechanical ero-
sion. Besides, a BEM code was applied, along with eroded aerodynamic data from [341]
to evaluate AEP losses with results around a 1.7% for turbines with a 50% time spent
operating at rated power. More recently, [366] provided experimental and numerical
CFD studies to evaluate the effects of the erosion degradation of airfoils. Similarly,
Cappugi et al. [53] used an approach based on artificial neural networks (ANNs) using
wind turbine and eroded blade data, along with CFD and BEM theory to provide power
curves, loads, and AEP of turbines with eroded blades at different erosion levels. AEP
losses between 2.2 and 4 % were reported for advanced erosion states. An uncertainty
quantification on the effects of rain-induced erosion on AEP was performed by Papi et

al. [302], where average AEP losses of up to a 1.5% were estimated.

74



Chapter 4. A degradation model for leading edge erosion

Regarding active erosion protection systems, there are some works covered in the
literature, like the one by Hasager et al. [167] who performed a lifetime assessment of
leading edge protections for turbines in Danish Seas considering a Vestas V52 turbine
using the kinetic energy and accumulated rain damage models. Their results show
expected leading edge protection lifetimes between 2 and 13 years. Also, Bech et
al. [29] studied the use of smart turbine control to reduce the rotation speed of the
blades and diminish the effect of rain erosion in a Vestas V52 850kW wind turbine. In
a different study, Hasager et al. [169] studied the expected AEP loss and leading edge
lifetime of a number of sites in the North and Baltic sea. Lifetimes between less than
1 year and more than 25 were reported and a potential O&M cost reduction using an
active erosion safe operation mode of around 70% compared to the normal operation
of the turbine.

According to the authors’ opinion, despite the efforts recently made to model the
erosion influence on the aerodynamics and mechanical behaviour of a turbine blade (in-
cluding its effects on AEP), the inherent uncertainty around this damage mode has not
been considered in a proper manner. The lack of knowledge about the expected life of
erosion protection coatings for particular site conditions implies a barrier for the appli-
cation of such preventive methods. Moreover, the current state of the knowledge in the
open literature calls for a framework to determine AEP loss with less uncertainty and to
evaluate the need of corrections, if required, in terms of operation and/or maintenance
for wind farm operators. This chapter provides an efficient framework to estimate the
evolution of erosion degradation based on rain erosion test data considering weather
uncertainty. Furthermore, it provides an estimate of the power losses occasioned by it
and an estimation of the remaining useful life of the blade. The proposed framework
can be employed to investigate the O&M costs of different leading edge protection so-
lutions in the design stage for a particular site and for the latter O&M planning of an
operative turbine with potential benefits in cost reductions in both stages.

The chapter is structured as follows: Section 4.2 provides some fundamentals about
the process of leading edge erosion, its causes and effects, the typical erosion protection

configurations found in wind turbine blades, and current testing procedures. Section
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4.3 describes the proposed modelling framework for AEP degradation calculation. In
Section 4.4, a case study for a 5MW NREL bottom-fixed offshore wind turbine using
the proposed framework is presented. Finally, conclusions derived from the use of this

framework are drawn in Section 4.5.

4.2 Fundamentals about leading edge erosion

Leading edge blade erosion is a phenomenon that has attracted the attention of both
the research community and the industry during the latest decades [112,166, 173,196,
220,341]. This attention has been accentuated by the increase in rotor diameter and
power of the turbines. The elevated speeds experienced by the sections closer to the
tip of the blade increase the impact energy of rain, hail, insects and other wind-borne
particles. Most of the experimental studies have been focused on the damage occasioned
by rain, but numerical studies considering the impact of general wind-borne particles
can also be found in the literature [57,128]. Rain-related erosion is thought to be more
predominant in offshore wind farms, and so the effort has been more focused on this
aspect.

In the case of rain erosion, most leading edge failures are believed to be developed
due to fatigue of the coatings that take place due to accumulated impacts of rain
droplets. The transient stress waves that are occasioned in the surroundings of the
location of the droplet’s impact accumulate fatigue cycles in the coating layers that,
after some time, result in the loss of coating mass [373]. The rate of progression of
this phenomenon is influenced by different factors: material properties, meteorological
and wind turbine operating characteristics are among the ones highlighted as the most
influential [112].

With regard to the materials used to protect against this phenomenon, a variety
of leading edge protection configurations can be found in the literature [2, 88,192,267,
269]. Leading edge protection coatings can be applied through in-mould manufacturing
during the manufacturing of the shells of the blade or a post-mould application in
the leading edge erosion-prone areas of the blade. The configuration of the coating

protection adopts different schemes, with the most basic consisting of 2-3 layers of
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protective coating over a layer of filler, to more advanced configurations including a
layer of primer between the coating and the filler. The usual configurations of the

protection system are shown in Figure 4.2.

LEP Coating ;l;ll’ Coating

2-3 layers < -3 layers

500-1500 pum : 500-1500 pm

Filler < Primer

1 layer ———> 1 layer

~ 1000 pm ~ 60 pm

Laminate Filler
T 1 layer

= \~ 1000 pm
Laminate
Figure 4.2: Typical leading edge protection configurations. Adapted from [88].

The evolution of impingement erosion has been discretised in different stages in the
literature [36,112,341]. The first stage, known as the incubation period (Stage 0), where
the fatigue limit of the coating has not been consumed, is characterised by no external
signs of degradation or mass loss of the coating. After this, minor pits are formed in the
LEP (leading edge protection) coating, with an increase in rugosity (Stage 1). This is
followed by an increased mass loss stage, where minor flakes of the topcoat are removed
and the filler can be intermittently seen below the topcoat (Stage 2). Then, the erosion
progresses until the epoxy below the filler can be intermittently seen whilst the filler
is not completely removed (Stage 3). The filler is then completely removed leaving
the epoxy exposed, thus being this the final erosion stage of the coating, but having
the risk of progressing to the laminate layers of the shell and creating delaminations
and loss of mass of the sandwich panel (Stage 4). The effects of erosion have different
implications through its progression and can affect the aerodynamic, acoustic, and
structural behaviour of the blade.

Concerning the acoustic effects of the leading edge erosion, the emissions can be
increased up to a 10% [218], which, in some cases, could be important for the negative
environmental impact that this could produce. Also, the aerodynamic effects affect
directly the power output of the turbine, producing a loss of power at below-rated

wind speeds. This means that not only the turbine characteristics but also the rain
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and wind characteristics of the site have an impact on the energy production losses of
the blade.

Finally, the structural integrity of the blade is also compromised. The risk of cracks,
fatigue damage and delamination grows as the erosion progresses through the protection
layers and less impact energy is absorbed by them, until the laminate is exposed and
the risk of structural damage is high. During the incubation period, there are no effects
on the structural integrity of the blade, and only minimal to negligible effects can be
observed on its aerodynamic performance. When the filler is exposed, the aerodynamic
effects start growing in importance while the structural damage is still minor. Finally,
when the epoxy is exposed, the structural integrity decays until maintenance of the
leading edge is required to recover the integrity of the blade. Some guidance can
be found in the literature published by Bladena [36] for the O&M actions related to
leading edge erosion. The recommendation given in the referred work is to perform
repairs within 6 months if the erosion reaches the laminate, and within 3 months if it
reaches the second layer of the laminate to avoid compromising the structural integrity
of the whole blade.

Rain erosion testing has been performed for several applications such as steam and
gas turbines, cooling pipes of nuclear power plants, fan blades of aero engines, and
wind turbines, with different impact speeds and droplet diameters. A summary of
the different existing testing systems can be found in [115] and [452]. To evaluate the
performance of erosion protection systems for wind turbine blades, the most common
experimental testing arrangements are the stationary sample jet impacted by an inter-
rupted jet or water jet slugs and the whirling arm testers [19]. While the stationary jet
is a more simple arrangement and facilitates the sampling methods, using impact ve-
locities higher than the terminal speed breaks the drops. Whirling arm testers produce
the impact velocity by rotating the sample instead of accelerating the water droplet,
which reduces the difficulties in producing high impact velocities but increases the dif-
ficulty in the sampling process. These tests aim to generate Wohler-like curves with
the impact speed versus the accumulated impacted water, time to failure, or specific

impacts. In this study, data from whirling arm tests available in the literature will

78



Chapter 4. A degradation model for leading edge erosion

be used to evaluate the effects of erosion degradation. Notwithstanding, these tests
are argued to not reproduce the diversity of conditions experienced in the operation of
turbine blades, which include intermittent rain, distributed raindrop sizes, and varying
impact energy and droplet sizes. Some current research focused on these aspects are
the studies of Bech et al. [30], who performed experimental tests to study the effect
of drop size in rain erosion tests and lifetime prediction, or Verma et al. [423] who
developed a probabilistic rainfall model to estimate the leading edge lifetime of coating
systems in which the effects of rain intensity and droplet size are analysed. While rain
erosion tests have been useful to comparatively analyse the performance of different
protection systems, their application to lifetime analysis seems to be not so accurate

for some researchers [66,112].

4.3 Proposed modelling framework

The proposed framework is depicted in Figure 4.3. It starts with the generation of
random rain and wind time series, which can be based on weather observations or
ERADS reanalysis data from the location of the turbine [174]. Additionally, aerodynamic
performance polar curves of eroded airfoils are obtained. Alternatively, a full 3D CFD
simulation of the blade can be performed. Notwithstanding, due to the computational
cost of each simulations and the number of simulations needed to capture different states
of degradation of the blade, the 2D approach was preferred. Also, the use of the BEM
theory allows the integration of polar curves obtained numerically or experimentally in
a more practical and efficient way. Figure 4.3 also indicates that using the modified
polar curves, the operating power curves of different eroded states of the blades are
calculated. Omnce this information is available, the synthetic weather data and the
estimated aerodynamic performance of the airfoils are combined to calculate erosion
and energy production at each timestep using the appropriate power curve representing

the degraded state of the blade under the BEM theory.
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Figure 4.3: Computation framework.

4.3.1 Weather time series generation

Weather time series with high granularity and quality are typically difficult to obtain
for a particular wind turbine location. A feasible alternative to obtain such weather
data, which ranges between 20 and 25 years long, is the use of Markov chains [293]
models to synthetically generate datasets while preserving the weather characteristics
of the site. Therefore, random rain and wind scenarios can be generated to account
for a probabilistic analysis of the erosion degradation of the blade. In this work, 10-
minute average data for wind and rain are used. Wind and rain have been modelled
as statistically independent variables. For wind data, a Markov probability transition
matrix with 0.5 m/s bins has been calibrated using FINO1 [131] wind observation data.

To avoid problems with the seasonality behaviour of wind, a different probability tran-
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Figure 4.4: Synthetic wind data generation process. Subindex n refers to the number
of bins in which wind speed is discretised.

sition matrix per month was considered, along with a general annual wind transition
probability matrix, to avoid the wind speed falling in a range where there are no oc-
currences in a month. For clarity, the process is schematically illustrated in Figure
4.4. For the rain data, the shorter available data range called for the use of a differ-
ent approach based on modelling rain intensity through monthly Weibull probability
density functions, whereby Markov probability transition matrices with rain/no rain
probability were obtained. While this approach results in unrealistic variability of rain
intensities, it is assumed to not have a significant influence on the results of this study.

The process is illustrated in Figure 4.5.

4.3.2 Airfoil performance estimation

CFD simulations are used for the estimation of the polar curves of the degraded airfoils.
The Navier-Stokes CFD code from ANSYS FLUENT(@®) is used in this work. The air
flow has been modelled as incompressible and single-phase fluid. The pressure-based
steady Reynolds-averaged Navier-Stokes (RANS) equations are solved in all cases, and
the turbulence closure is accomplished utilising the Menter’s two-equation k£ — w shear
stress transport (SST) model [263]. Polar curves are obtained at Reynolds numbers in

the range 1-10° to 9-10% every 1-10° and in a range of angles of attack from —20°
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Figure 4.5: Synthetic wind data generation process.

to 20° every 1°. The degradation of the leading edge was modelled by adjusting the
equivalent sand grain roughness height as proposed in [320] based on the stage 4 erosion
parameters defined in [341]. The equivalent sand grain roughness height, ks, was set
to a value of ks/c = 0.0076 for the final degraded state, where ¢ is the chord of the
airfoil. The roughness modification is applied in a length of a 10% of the chord in the
top shell and a 13% in the bottom shell, to account for the blade increased erosion of
the bottom shell during the pitching of the blade.

Finally, the resulting CFD-generated lift and drag curves were corrected for 3D stall
effects and extrapolated for the whole -180° to +180° using the Viterna method [424]
for their use in the BEM code OpenFAST [1].

4.3.3 Erosion degradation model

As previously mentioned in Section 4.1, there are different models to account for the
erosion progression in the blades, where the most recent are based on a droplet impact
model to establish stress states that consume the fatigue life of the coating. In most of
the studies encountered in the literature, the analytical description of this phenomenon

follows the model developed by George Springer [385], where the erosion resistance is
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fitted to a curve based either on impact energy damage, specific impacts, accumulated
rain under the rotor or impingement. Thus, the impingement model will be used here.

The rain impingement, referred to here as h, can be calculated as follows:

h=1-t-v(r) (4.1)

where ¢ is the time, v(r) the local rotor speed, and v, the volume concentration of rain

in the air, which can be calculated as shown below:

"iﬂ = I/Udrop (42)

being I the rain intensity, and vg4.., the droplet velocity at the rotor plane. The term
Varop can be obtained as the terminal velocity using the empirical relationship found in
[385] and the droplet size being the median for the rain intensity distribution proposed
in [32]. Experimental test data from whirling arm tests [19] is used to determine the
number of impacts or accumulated energy of impact required to produce erosion in the
material. These tests are performed at different speeds to provide a fit for the number

of impacts causing fatigue damage. The fitting curve equation is described as follows:

H=Cy-v(r)~ (4.3)

where H is the accumulated rain impingement to erosion failure at local rotor velocity,
and C1, Cy are material parameters calibrated using experimental test data. To eval-
uate the damage progression, linear damage accumulation using the Palmgren-Miner
damage rule is assumed, as typically done to simplify damage accumulation for different
amplitude fatigue damage [458]. Therefore, the erosion life consumption at timestep i,
namely AD;, will be computed as:

h;

AD;j = —— 4.4
1 'U(T‘);CQ “y

where h; is the accumulated rain impingement, and v(r); the local rotor speed at

timestep i.
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4.3.4 Calculation of degraded power curves

The calculation of the power curves has been performed with the BEM method using
OpenFAST, running 200-second simulations of uniform wind fields at fixed intervals of
wind speeds of 1 m/s from the cut-in to the cut-out wind turbine wind speeds. Airfoil
sections are defined at the desired points of the blade at which the erosion is computed,
whereas for the remaining control points, airfoil characteristics are averaged from the
two closest stations. Note that enough simulation time is required to provide steady-
state responses of the system and also to avoid transient disruptions of the results.
These curves have been used to compute 10-min average energy production at each

simulation timestep.

4.3.5 Erosion progression estimation

The estimation of erosion degradation has been computed according to a rain impinge-
ment accumulation fitted curve, as proposed in [167]. An incubation period of 30%
of the total life has been assumed for the leading edge erosion protection system and,
from that standpoint, linear degradation is assumed until the final erosion stage. Aero-
dynamic properties were obtained using CFD simulations with modifications of leading
edge roughness and corrected for 3D stall, which could be substituted by wind tunnel
test data, if available. For the 25-year meteorological time series required (precip-
itation and wind), observations from meteorological stations are required, otherwise
ERA5 [174] data can be used to produce synthetic time series using Markov Chains
with monthly fitted transition matrices. Leading edge erosion degradation shall be
computed for, at least, the last third of the blade along with the time series. In this
case, 10-min average wind speed and rain intensity data were used. The variability
produced by using lower resolution data (i.e. 1-hour average data or 30-min average
data) has not been studied here, and it is left as one of the desirable further works of
this research. Eroded airfoil polar curves have been discretised in segments of 10% so
that the 10% degraded curve is used for degradation ranges between 5% and 15%, the
20% for the range 15% to 25% and so on until the final degradation of the section.
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4.4 Case study

To exemplify the use of the proposed framework, a case study is presented and analysed

in the sections below.

4.4.1 Turbine and blade data

For this study, the 5 MW NREL wind turbine [193] has been chosen. The main char-
acteristics of the turbine are shown in Table 4.1, where the airfoils used in the blade
are shown in Table 4.2. In this case, only the erosion effect on the NACAG4 airfoil
was investigated due to the lower velocities experienced by the remaining airfoils of the
blade. Leading edge erosion damage is more prone to appear on the outermost part of

the blade due to the higher impact energy of the rain in those areas.

Table 4.1: 5 MW NREL Turbine data. Data extracted from [193].

Property Value

Rated power 5 MW

Control Variable speed, collective pitch
Drivetrain High speed, multiple-stage gearbox
Rotor diameter 126 m

Hub height 90 m

Cut-In / Rated / Cut-out wind speed 3 m/s /114 m/s / 25 m/s

Cut-in / Rated rotor speed 6.9 rpm, 12.1 rpm

Rated tip speed 80 m/s
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Table 4.2: 5 MW NREL Blade Airfoil data. Data extracted from [193].

Stationid R(m) Twist(°) Chord(m) Airfoil

1 2.87 13.31 3.542 Cylinder

2 5.6 13.31 3.854 Cylinder

3 8.333 13.31 4.167 Cylinder

4 11.75  13.31 4.557 DU40 A17

5 15.85 11.48 4.652 DU35 A17

6 19.95 10.16 4.458 DU35 A17

7 24.05 9.1 4.249 DU30 A17

8 28.15 7.79 4.007 DU25 A17

9 32.25 6.54 3.748 DU25 A17

10 36.35 5.36 3.502 DU21 A17

11 40.45 4.18 3.256 DU21 A17

12 44.55 3.13 3.010 NACA64 A17
13 48.65 2.32 2.764 NACA64 A17
14 52.75 1.53 2.518 NACA64 A17
15 56.17 0.86 2.313 NACA64 A17
16 58.9  0.37 2.086 NACA64 A17
17 61.63 0.11 1.419 NACA64 A17

4.4.2 CFD setup

C-shaped structured mesh has been used for this analysis. Its structure and the bound-
ary conditions used in the simulations are shown in Figure 4.6. To provide meaningful
results, a mesh size independence study and a validation with published NACA64 A17

results has been performed, as is shown next.

Velocity inlet ANSYS
- 2020 R1

C

Pressure outlet

N 50 - ¢ |

Figure 4.6: CFD setup.

86



Chapter 4. A degradation model for leading edge erosion

Mesh size independence analysis

In this work, four different mesh sizes were explored, with a number of cells ranging
from 3-10° to more than 1.2-10% for different angles of attack and Reynolds number
of 6-105. The CFD simulation was solved utilising the Menter’s two-equation k — w
shear stress transport (SST) model. The results, which are shown in Figure 4.7, show
a close agreement of the lift coefficients for the two finer meshes (1.2-10° and 615,00
cells, respectively) with maximum lift coefficient values as shown in the table of Figure
4.7. Considering the results presented and to reduce the computational effort of this

case study, the second finer mesh (615,901 cells) was selected.

Mesh size independence study - Re = 6 - 108

| — 1,213,768 cells
—— 615,901 cells
—— 497,783 cells
—— 303,536 cells

=
o

=
i
L

Cells  Cjmaz(clean)  Cymaq(eroded)

G
g 1,213,768  1.6632 1.2154
gL T 615,901 1.6197 1.1828
£ 03 497,783 1.4714 1.1186
- 303,536 1.1771 1.0278
0.4 4
0 2 4 6 8 lIO 12 14
AOA (degrees)
(a) Mesh size independence study (continuous and
dashed lines represent the clean and eroded case re-
spectively). (b) Mesh independence results.

Figure 4.7: Mesh independence study results.

Study of the influence of y™

For the sake of efficiency, the effect of wall functions was investigated and solutions
were compared for the cases of average y values of approximately 1 and 87. The
model with the greater value of ™ makes use of wall functions to solve the flow within
the boundary layer. The distribution of y* values along the chord is shown in Figure
4.8. Figure 4.9 shows the results of lift coefficient for different angles of attack and a
R. = 6-10° for the studied models. The results show a good agreement for the lift of

the airfoil in the linear and non-linear parts of the graph, with a slight overestimation
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of lift by the model using a y™ ~ 87. Considering the efficiency of both models, the

model with the y* ~ 87 was chosen in this case.

Distribution of y* values Distribution of y* values

—— Top shell 160 —— Top shell
2.0 —— Bottom shell —— Bottom shell

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 ()IO Otz ()I4 OtG 025 ltO 122 1t4
Chord (m) Chord (m)
(a) Low y* mesh. (b) Large y™ mesh (wall functions).

Figure 4.8: Distribution of y* value for the studied meshes.
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Figure 4.9: Lift results using different y™ values.

Validation

To evaluate the accuracy of our CFD setup, simulation results were compared with
NACAG64 experimental aerodynamic coefficient results from [409] in Figure 4.10. Note
that, in general, the simulation results show a good agreement in terms of the overall
behaviour of the flow detachment around 12°-14°, and generally a fair agreement in
terms of maximum lift coefficient. Note also that the lift values of the simulations are
in close agreement with the experimental results for the range -5° to 5° of angle of

attack (AoA), while the model tends to overestimate them for higher AoAs.
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NACA64 Aerodynamic lift Coefficient
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Figure 4.10: NACA64 CFD setup validation with experimental results from [409].

Baseline and eroded aerodynamic properties of the NACAG64 airfoil were generated
using Fluent Ansys following the procedure detailed in Section 4.3.2 and the CFD setup
explained above. The resulting lift coefficients for the baseline and eroded profiles after
their correction for 3D stall effects and extrapolation for the whole -180° to +180°

range by the Viterna method, are shown in Figure 4.11.

— Intact airfoil

1.5
—— Final airfoil erosion state

1.04

0.5 4

0.0 4

Lift Coefficient (Cl)

—0.5

~1.0

-150 -100 -50 0 50 100 150
Angle of attack (°)

Figure 4.11: NACA64 CFD results extrapolated Polars Re = 9 - 105 after 3D stall
correction and extrapolation.

Moreover, Figure 4.12 shows a comparison between the baseline power curve of the
wind turbine and a power curve considering the full degradation of sections 12 to 17

(from 45 to 62.5 meters from the root of the blade), which would simulate the final

erosion state of the blade.
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Figure 4.12: Turbine original vs degraded power curve. In the rightmost panel, the
plot is zoomed in for the range 8 to 12 m/s of wind speed.

4.4.3 Weather data

In this work, the location of the turbine is assumed in the vicinity of FINO1 offshore
measurement platform, sited 45 km north of the coast of the island of Borkum, Ger-
many. Wind speed data was obtained from the FINO1 database and rain data from
ERAS reanalysis and used to calibrate the Markov Chains models as explained in Sec-
tion 4.3.1. A hundred random 25-year wind and rain time series were generated. The

average values of 10-min wind speed and rain intensity by month are shown in Figures

4.13 and 4.14.

Observations vs synthetic wind speed

Synthetic data
W Observed data
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o
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2 4 6 8 10 12 10 15 20 30

Month 10-min average wind speed (m/s)
(a) Average monthly wind speed - Ob- (b) Wind speed distribution - Observed vs
served vs Synthetic data. Synthetic data.

Figure 4.13: Weather data used in the case study.

For the case of wind, the generation of time series follows the overall monthly shape
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with a lag, producing a slight underestimate of the average wind speed (Figure 4.13a).
The annual wind speed distribution of the observed and synthetically generated data
are presented in Figure 4.13b. It can be seen that the distribution of the generated
data is slightly shifted towards lower wind speeds; however, the overall shape is main-
tained. Separately, the synthetic rain generation time series process seems to provide a
closer match with the average weather observations, even though there is also a slight

underestimation of the average rain intensity for some months.

Observations vs synthetic rain intensity

0.16 4 —— Synthetic series
—— Observations
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=

Figure 4.14: Average rain intensity - Observed vs Synthetic data.

4.4.4 Erosion leading edge protection configuration

Here, several erosion protection configurations are investigated. The different configura-
tions are labelled as ’3Layer’, ’GS’, "GC’, and *GA’. The "GC’ and *GA’ configurations
are simpler, consisting only of a single layer of PU elastomeric coating, while *3Layer’
and ’GS’ are more complex consisting of several coating layers and a filler. Their

characteristic whirling arm test SN curves are shown in Figure 4.15.
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Erosion coatings

1001 —— 3Layer coating
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901 GAG20 coating
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Figure 4.15: Whirling arm rain erosion test data. SLayer: 3-layer system estimated
from [29] provided by PolyTech A/S, GC: 1-layer elastomeric PU coating from [192].
GA: Generic blade coating system supplied by Olsen Wings A/S from [192]. GS: 3-
layer system including a pink filler and PU elastomeric coating from [192]. The term
G20 (3.5 mm droplets) refers to the type of needles used for the tests.

It is important to note that these curves represent the average behaviour of a
number of tests, and that the variability shown by the different samples can represent
a significant impact on the final service life of the erosion protection coating. This issue
can be overcome with the use of inspection data, with which the model can be corrected
and the behaviour of the actual erosion protection coating of the blade captured for

better O&M optimisation.

4.4.5 Erosion degradation

The results of the progression of erosion degradation is shown in Figure 4.16. This
figure represents the time at which the total degradation is reached for the sections at
which the erosion degradation has been calculated. The results show that the leading
edge coatings composed of 1-2 layers (namely, GC and GA) have a faster progression
of the erosion front, reaching the erosion failure of the tip sections between years 2
and 4. The more advanced erosion protection configurations (GS and 3Layer) revealed
greater resistance. Note that the erosion protection coating configuration 3Layer is
consumed at the tip section before year 7, whereas GS is able to survive the complete

lifetime of the turbine. With the progression of the erosion front, the laminate of the
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leading edge shell starts deteriorating, thus the risk of leading edge splitting increases.
These results are useful for leading edge erosion maintenance planning, being able to

set maintenance targets based on specific damage thresholds.

Total Erosion degradation front progression
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Figure 4.16: Erosion front progression for the different coatings analysed (GCG20),
GAG20 and 3Layer). The shadowed areas represent the 2.5-97.5% probability bands.

4.4.6 Annual energy production results

The degradation along the blade has a direct impact on the aerodynamic behaviour of
the aifoils, which translates into AEP losses. The results of the analysis are shown in
Figure 4.17. The evolution of the AEP loss is presented into 2 phases: the incubation
period and the deterioration phase. As mentioned before, during the incubation period,
there are negligible effects on mass loss, aerodynamic performance, and AEP. Following
the incubation period, LEP coatings start to deteriorate and the rate of increase of
AEP loss is reduced throughout time in consequence of a reduction of damage with
the reduction in local rotor velocity with the distance from the tip. The results reflect
the complete failure of the leading edge erosion protection for sections 12 to 17 (17.5
meters from the tip) using the GC configuration by year 9; while GA, 3Layer and GS
are not completely consumed within the service life of the wind turbine (25 years).
The maximum AEP degradation for the failure of the 17.5 meters of the leading edge

protection for this site and turbine is between 1.5-1.75%. The GC configuration reaches
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the maximum AEP loss by year 9, while GA and 3Layer would reach an average
AEP loss of 1.5% and 0.9% at year 25 respectively. Finally, GS would not see its
incubation period consumed, experiencing no AEP erosion-related losses in the 25 years
of operation.

Notice that an important point to note is that weather-related uncertainty in the
loss of AEP with respect to leading edge erosion, can be quantified whereby probabilistic
scenarios can be assessed. The referred uncertainty grows with time and, for the case
of study presented here, accounts for an approximate value of 0.3% AEP at the most

advanced erosion stages.

AEP degradation over time caused by LEE
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Figure 4.17: AEP degradation curve for blades using the coatings analysed (GCG20,
GAG20 and 3Layer). The shadowed areas represent the 2.5-97.5%. probability bands.

4.5 Conclusion

An efficient leading edge erosion framework for AEP degradation erosion estimation
has been presented and illustrated through a case study. The presented framework
requires the aerodynamic curves of the pristine and eroded airfoils of, approximately, the
outermost third of the blade (obtained through wind-tunnel tests or CEFD simulations),

weather (rain and wind) data of the site of study (based on on-site observations or other
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sources such as ERAD reanalysis data), and erosion protection coating survivability data
(based on erosion tests such as whirling arm tests). Based on this and assuming linear
damage accumulation of the rain impingement model and a BEM model, the erosion and
AFEP degradation throughout time can be estimated. Alternatively, the aerodynamic
performance of the blade can be obtained considering 3D CFD simulations. Physical
testing of weathered sections of the blade can improve the accuracy of the evaluation
of the aerodynamic performance of eroded airfoils.

The case study using the 5SMW NREL wind turbine located in the location of FINO1
weather station revealed the importance of designing an adequate LEP coating. For
one of the LEP configurations, GS, the incubation period was not consumed, and no
relevant AEP losses are expected. For the other configurations analysed, maximum
AEP losses in the range of 0.9-1.75% have been obtained. The AEP loss for the total
degradation of the blade, are in fair agreement with those reported by Eisenberg et
al. [112] and Papi et al. [302]. The variability of results obtained from the use of different
LEP configurations, the uncertainty of the behaviour of each sample in the rain erosion
whirling arm test, and the unpredictability of the response of the LEP under local rotor
velocities lower than those tested guide the requirements for the optimisation of O&M
towards a model that can be dynamically updated with inspection data.

The interest of this framework relies on its capability to be applied in the develop-
ment stage for O&M cost estimation, and in the operation phase for O&M planning.
The variability of the erosion degradation behaviour of the sample from the whirling
arm test to its actual conditions can be overcome by updating the parameters of the
power-law with inspection or SHM data through bayesian updates [72]. Qualitative
damage levels, which can be identified during blade inspections, can be mapped to ero-
sion damage intervals and used to provide an estimate of the deterioration state of the
blade at different sections that would serve to better capture the particular behaviour
of the erosion process of the inspected blade and plan its maintenance accordingly;
degradation caused by manufacturing defects can be also be corrected in the same way.
This prognosis model can provide an estimation of the current power loss of the turbine

due to this phenomenon and its expected evolution, providing a tool to actively plan
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maintenance to avoid catastrophic failures of the blades and optimise the production

of the wind turbine.
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Chapter 5

A reliability-based framework for
leading edge erosion baseline

maintenance selection

Chapter contribution

This chapter aims to accomplish the following research objective: Provide a risk-based
tool to evaluate baseline calendar-based LEE maintenance scheduling policies.

The contributions of this chapter are detailed below:

e Provide a framework to design calendar-based LEE maintenance strategies at

wind farm level for offshore locations considering site-specific climatic conditions.

The published peer reviewed journal article Contreras Lopez, Javier et al. ” Reliability-
based leading edge erosion maintenance strategy selection framework” Applied Energy
358 (2024) was authored by myself as part of my research completed under the direc-
tion and consultation of my supervisor, Professor Athanasios Kolios, and my coauthors.
The published article is incorporated in this chapter and forms part of the definition
of a framework for baseline O&M decision-making at wind farm level for leading edge

erosion.
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5.1 Introduction

The interest for offshore wind has grown driven by the greater availability of space, the
higher energy availability, and the lower social impact of the marine environment [244].
Some of the most important constraints to its growth are the high construction costs
and the difficulties in the operation and maintenance (O&M) of the wind turbines,
which can constitute a considerable percentage of their life cycle costs [219,248].

To address the problem of life cycle cost reduction, a proper understanding the
wind turbine failure modes and their implications in cost and risk is a key aspect.
In this line, the blades are one of the components carrying the highest cost and of
which the maintenance and potential replacement have important influence in terms of
planning, logistics, cost, and unavailability of the turbine [348]. While other mechanical
components of the turbine have more complex condition monitoring systems such as the
drivetrain or the bearings, the blades are usually inspected using time-based schedules
either visually or with the aid of drones to identify potential damage. The difficulty of
scheduling these campaigns in geographical zones with harsh weather conditions and
the implications of damage or failure that require blade removal necessitate careful
consideration. The degradation model for leading edge erosion proposed in Chapter
4.5 opens the opportunity to improve maintenance scheduling for this failure mode.

Risk-based maintenance emerges as a potential solution to optimise maintenance
planning. Nielsen and Sorensen [289] present an overview of the available risk-based
planning methods for wind turbines in the literature. The same authors [287] also
proposed a risk-based optimal planning method. The proposed approach considers the
optimisation from the design stage, considering some candidate designs, to the final
decommissioning of the turbine and bayesian updating to incorporate any available
information that can improve the decision-making such as Structural Health Monitoring
(SHM), inspection data or data from other turbines. Morato et al. [278] propose a
combination of dynamic Bayesian networks with Partially Observable Markov Decision
Processes (POMDPs) in a joint framework for optimal inspection and maintenance

planning in problems dominated by structural reliability. This proposed framework is
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compared with classic heuristics-based policies showing a better performance. Nielsen
et al. [288] estimate the value of information of a vibration-based SHM system through
bayesian networks and MCS using the computational framework proposed in [291].
Dimitrov [101] presented a risk-assessment for wind turbine blade damages observed
during visual inspection demonstrated on LEE and trailing edge cracks.

Depending on the severity of LEE damage sustained, the repair process can en-
compass a wide range of techniques, from the application of coatings, tapes, or shields
for minor damage, to filling and sealing techniques or resin injection for non-structural
matrix cracks, small surface cracks, or delamination, to the use of composite laminate
patching for structural damage. A classification of damage according to its severity is
shown in Table 5.1. The time required for repair can vary greatly, and in certain cases,
the disassembly of the blade may be needed if the damage is critical. Figure 5.1 shows
an example of leading edge blade repair. The challenges associated with performing
the repair without disassembly, coupled with the difficulties of accessibility, workforce
safety, and weather-related constraints, present significant obstacles in the successful
completion of wind turbine blade repair missions. Therefore, it is essential to carefully
plan its maintenance to overcome these challenges and improve the efficiency and safety
of wind turbine blades. There are guidelines in the literature, such as the provided by
Bladena [36], that contain recommendations for operation and maintenance actions re-
lated to LEE. It is suggested that repairs should be done within 6 months if the erosion
reaches the laminate and within 3 months if it reaches the second layer of the laminate

to prevent compromising the structural integrity of the whole blade.

99



Chapter 5. A reliability-based framework for leading edge erosion baseline

maintenance selection

Table 5.1: Leading edge damage classification by severity [36].

Damage Type Severity ~ Action recommended by [37]
LE discoloration, paint or bugs 1 No nfeed for 1mmed1at.e action .
Continue normal turbine operation
Coat /paint damage, surface: Missing less than 10 cm? 2 Repair only if other damages are to be repaired

Coat/paint damage, surface. Missing more than 10 cm?
Damaged leading edge protection

Damaged leading edge tape 3
LE erosion, down to laminate

LE erosion, down to laminate and first layer laminate 4
LE erosion, through laminate / Open LE 5

Continue normal turbine operation

Repair within 6 months
Continue normal turbine operation

Repair within 3 months and monitor damage
Continue normal turbine operation

Repair immediately

Stop turbine operation

The problem of LEE on wind turbine blades is met with a diverse array of solu-

tions. These include the use of protection tapes, protective coatings, and epoxy or

polyurethane fillers. Protective coatings are relatively quick to install and may offer

reliable protection but can also alter the original aerodynamics of the blade, potentially

impacting Annual Energy Production (AEP). Epoxy and polyurethane fillers require a

more labour-intensive application process and may be impacted by weather conditions

such as temperature and relative humidity. On the other hand, tapes or sheets, which

are easy to install and have fewer weather-related restrictions, may be a viable option.

However, the lifetime of each solution and its cost-benefit and suitability for a specific

site are not yet fully understood [133], as research on this topic is still ongoing.

o

&

Figure 5.1: Repaired leading edge of the wind turbine blade (demonstration of com-
posite repair by Danish Blade Service Aps). Source: [265].
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The potential criticality of blade erosion-related failures [270], the difficulties to
access offshore wind turbines for inspection and maintenance due to the harsh weather
conditions of some regions and the uncertainty in the evolution of this failure mode
increase the importance of adequate maintenance scheduling given that the miss of a
maintenance opportunity window can lead to a late maintenance and suboptimal op-
eration of the asset or even a catastrophic failure of the blade. In response to this, the
present chapter aims to provide a framework for the maintenance planning of leading
edge erosion of offshore wind turbine blades based on reliability and considering the un-
certainty in weather, damage evolution and the success on the planning and execution
of the maintenance missions. This framework can be of great use for baseline mainte-
nance planning at wind farm level when the need to consider different failure modes
and conditions for a number of failure modes and turbines can increase the complexity
of the problem making it difficult to be scheduled efficiently.

Designing O&M policies for wind energy assets is a non-trivial task requiring a
multi-level and site-specific approach. The first step is being able to obtain a good
representation of the dynamics of high priority failure modes at low-level (compo-
nent/subcomponent level), which is the foundation for an accurate description of the
system. It is important that the low-level modelling is able to capture the most im-
portant sources of uncertainties (material and weather among others) related to each
of the failure modes considered. For some offshore locations, the constraints and par-
ticularities of a site can widely modify the evolution of particular failure modes and
the characteristics for optimal policies. The next step would be the joint analysis of
the relevant failure modes of different components of the system. For this step to
be performed, a description of the evolution of the failure modes considered by effi-
cient surrogate models may be required for a computationally affordable simulation of
different maintenance strategies. Finally, a reliability analysis of the system is to be
performed in order to make risk-informed O&M strategy decisions for the asset that
align with the tolerance to risk of the organisation managing the asset.

In this chapter, a framework for risk-based maintenance strategy selection for lead-

ing edge blade erosion is proposed. This method provides an approach for O&M opera-
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tors to design baseline calendar-based site-specific maintenance strategies at wind farm
level using rain test erosion experiment data. One of the novelties of this work is the
consideration of uncertainty in weather and coating durability. A reliability function
for this failure mode is proposed to obtain the probability of failure of the proposed
maintenance policies. A pareto front plot is then drawn considering risk and cost met-
rics such as the accumulated Probability of Failure (PoF) at the end of the lifetime and
median of O&M lifetime costs, respectively, to aid in the design of the policy.

The chapter is structured as follows. Section 5.2 provides a description of the
methodology used, the definition of the reliability function and the stochastic variables
considered for the reliability analysis. Section 5.3 presents all the assumptions consid-
ered in the O&M simulations. A case study demonstrating the use of the proposed
framework and considering a 5-MW turbine is presented in Section 5.4. Finally, the
conclusions of this study are presented in Section 5.5 and the potential of condition-

based maintenance is also discussed.

5.2 Methodology

The proposed framework for risk-based maintenance strategy selection for leading edge
blade erosion is presented here. The first step in the framework is the definition of the
stochastic variables to consider in the study. In this case, model parameters govern-
ing the dynamics of the evolution of LEE and site-specific environmental parameters
(namely, wind speed, u, and rain intensity, I) are considered as stochastic variables to
analyse the reliability of the blade affected by leading edge erosion. Second, the defi-
nition of the LEE damage threshold for the reliability function defining the failure of
the blade. Then, candidate O&M policies are simulated through MCS to obtain their
lifetime cost distribution and Probability of Failure (PoF). Two type of policies are
considered, namely policies based strictly on the calendar, labelled as SM, and others
based on a maintenance interval or time between repairs, labelled as TBR. In this work,
maintenance interval is defined as the time threshold over which a maintenance action
is scheduled after a successful repair. For SM policies, maintenance is attempted once

the planned maintenance month is reached until success. In the case of TBR policies,
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a time interval from the last performed maintenance is defined. Once this interval is
reached, maintenance actions attempted until weather constraints allow their comple-
tion. With the results of the simulations using the candidate policies, a Pareto front
plot can be drawn in order to identify the policy that meets the requirements of a pre-
defined maintenance strategy, providing a way to make risk-informed decisions. The
suggested metrics for the Pareto plot are the median of the cost and the accumulated
PoF at the end of life following a specific policy. Figure 5.2 provides a scheme to better

clarify the main calculation steps of the proposed methodology.

For each maintenance interval

Simulate O&M with

Define [Define LEE damage maglift:fnce chosen poiey Build Pareto Select O&M
stochastic |—>»| threshold for F—3 . ¢ st —> | font oot .
variables reliability function ma(:;;:e 0 ¢ ront plof policy

Extract cost and PoF

Y

1. Environmental
2. Material

This study is focused on the leading edge erosion failure mode and will be the

Figure 5.2: LEE risk-based O&M policy selection.

only one considered for the reliability-based maintenance optimisation. As commented
above, this failure mode develops over time and requires timely maintenance to avoid
the structural failure of the blade. For the reliability analysis, a performance function
g(X) is needed. In the case of leading edge erosion, the following performance function

can be defined:

9(X,t) =p—d(X,?) (5.1)

where p is the selected damage threshold, X the set of stochastic variables affecting
erosion damage progression and d(X,t) is the accumulated erosion damage at time .

Damage progression can be calculated as:
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where h; is the accumulated rain impingement h during time step i and H the ac-
cumulated rain impingement to erosion failure of the coating resulting from Whirling
Arm Rain Erosion Test Rig (WARER) or Rain Erosion Tester (RET) tests, which is
considered as the equivalent of damage severity 5 from Table 5.1. The accumulated

rain impingement to erosion failure, H, can be obtained as:

H=Cy-v(r)~ (5.3)

being C1, C2 model parameters describing the durability of the system and calibrated
using experimental WARER test data for a specific protection system.

The computation framework used in this study is taken from Chapter 4.5 and repro-
duced here under a concise and unifying notation, for clarity. A schematic of this frame-
work is shown in Figure 5.3. To address the impact of uncertain site-specific weather
conditions, the proposed methodology commences with the generation of stochastic
wind and rain time series. These can be derived from either observed meteorological
data or ERA5 reanalysis data for the precise location of the wind turbine [174]. In
the absence of data, the aerodynamic effects of LEE can be estimated through 2D or
3D Computational Fluid Dynamics (CFD) simulations or experimental testing, such
as wind tunnel experiments of eroded airfoils. Given the significant computational ex-
pense of each simulation, and the number of simulations necessary to capture the various
stages of blade degradation, the 2D modelling approach is preferred in this study. The
maximum expected aerodynamic losses for a severe degradation state can be estimated
using the 2D CFD method on the different airfoils conforming the last third of the blade
by adjusting the sand grain roughness height, ks, to a value of ks/c = 0.0076, where
¢ is the chord of the airfoil, as proposed in [320]. Intermediate degradation states can
be linearly interpolated considering the damage state of the section of interest. More-
over, the use of the Blade Element Momentum (BEM) theory enables the integration
of numerically or experimentally obtained polar curves in a more practical and efficient
manner, as shown in [213], given that different combinations of damage states along the
blade can be considered in a more efficient way than a 3D CFD simulation. Once the

aerodynamic efficiency of eroded airfoils has been estimated, the power production of
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the wind turbine across different degrees of blade erosion can be computed. A number
of calculation points are defined in the last third of the blade, which is the area more
prone to LEE. For the calculation points defined, d is calculated at every time step.
Lift values of the airfoils are linearly interpolated for discrete degradation states. In
the current study, damage was discretised every 10% increase. The synthetic weather
data and the estimated aerodynamic performance of airfoils are subsequently merged
to estimate LEE degradation and energy production at each time step, using the ap-
propriate power curve that represents the degraded state of the blade under the BEM

theory.

Existing wind Existing rain o
observation data [ observation data Airfoil Polars

CFD or wind
tunnel test
Generate monthly Generate monthly

Markov Chains Markov Chains Generrat]e delgraded

model model airofl polars

l l | eem
Generate N Generate N Generate degraded
timeseries samples timeseries samples turbine power curves

For each timeseries
sample

For each timestep of the timeseries

Calculate erosion degradation for each section
035 o
Aerosionsection = gry=cs

If erosion difference > tolerance then update
turbine power curve

Calculate energy produced

Figure 5.3: LEE calculation framework. Source: [240].

5.2.1 Limit States/Design Criteria

Linear degradation has been assumed for the LEE failure mode. In this study, damage,
d, is defined in the interval [0,1]. The physical meaning attributed to different physical
degradation states of the blade is shown in Figure 5.4. The intervals between different
damage severity categories can be tuned using a thorough WARER test campaign or

based on experience of operation data of turbine blades using similar coatings. This
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categorisation is used to assign meaningful repair costs to the different degradation
states. The evaluation of the performance function requires a careful selection of the
abovementioned damage threshold, p. In this case, a value of 0.8 was chosen for the
damage threshold representing the beginning of damage to the laminate (transition
from severity 4 to severity 5), which requires a careful repair treatment to avoid the
damage evolution that could develop into a catastrophic failure of the blade. Damage
above this level could lead to difficult repairs of the blade requiring its disassembly
or catastrophic failures leading to a large downtime. The failure of the blade is then
considered when ¢(X,t) < 0. For the computation of the PoF this study assumes the
failure of the blade from a specific time step ¢ even if the blade is restored to a working
condition g(X) > 0. The PoF is obtained by MCS and computed as:

PoF(t) = @ (5.4)

n

where f(t) is the number of failures at a given time step and n the number of simula-

tions.
N % ) ™ “
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Figure 5.4: Damage, d, assigned to different damage severity categories.

5.2.2 Selection of stochastic variables

In this study, both parameters C; and Cy describing the durability of the coatings
and site-specific environmental parameters wind speed, u, and rain intensity, I are
considered as stochastic variables to analyse the reliability of the blade affected by

leading edge erosion.

Model parameters C; and Cs

This framework allows the consideration of the uncertainty in the results of experiments

on the model parameters of the protection system. This approach overcomes the limita-
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tions of relying solely on a deterministic value for the entire population, which may not

accurately reflect the behaviour of each individual. By conducting experiments with
varying drop sizes and rotation speeds, the uncertainty in the results can be taken into
account for the maintenance of the blades, thereby preventing an unnecessary increase
in maintenance costs and avoiding catastrophic failures. A proper definition of these
parameters allows us to include test data using different testing conditions. To this
end, confidence intervals can be defined with the number of tests performed on the

coating and the fitting parameters Cy and C5. Figure 5.5 shows this approach for a
specific coating defined in [192].
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Figure 5.5: Accumulated impingement at failure for GAG20 coating.

Climatic variables

Acquiring high-granular and high-quality weather time-series data for a specific wind
farm location over extended periods can be challenging and costly. To account for site-
specific weather conditions, uncertainty in wind speed v and rain intensity I has been

considered in this framework. Depending on the availability of data for the location,
different approaches can be applied.

The solution proposed to generate synthetic wind speed datasets that mimic the

weather patterns at the site of interest considers the use of Markov chain models [293].
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The generated datasets must cover a period of 20 to 25 years, which encompasses the
expected service life of the turbine. This study utilises 10-minute average data for
wind speed and rain intensity. The wind data is modelled using a Markov probability
transition matrix with 0.5 m/s bins, calibrated using FINO1 10-minute average wind
speed observation data [131]. A finer discretisation would produce a distribution closer
to the observations at the expense of a greater amount of data for the calibration of
the transition probability matrices. The process can be summarised in the following

steps:

1. Calibration of the generative model:
(a) Binning the observations of wind speeds using the desired bin width monthly
and annually.

(b) Computing the transition probabilities by counting the number of wind speed

transitions from each of the bins to the rest of the bins.
2. Generation of synthetic time series:
(a) Initialise wind value from histogram of observations. The wind speed value

is drawn from a uniform PDF within the limits of the drawn bin.

(b) Drawing the next wind value bin using the transition probabilities of the

current bin.

(¢c) Next wind value is drawn from a uniform PDF within the limits of the

current bin.

3. Postprocessing: The first year of the synthetic series can be removed to reduce

the bias.

To account for the seasonal variation of average wind speeds, separate probability
transition matrices for each month, in addition to a general annual wind transition
probability matrix, are considered to ensure that wind speeds fall within observed

ranges.
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In the case of rain intensity an alternative approach is required given that the
available data range was limited. The approach considered in this study is described

here:

1. Using ERAS reanalysis data, fit monthly probability density functions for rain

intensity. In this case, Weibull PDF's were used.

2. From the reanalysis data, calibrate a simple Markov chain model considering 2
states (Raining and not raining) and the transition probabilities from each of

them to the other states.

3. For data generation, every time step a rain state will be drawn. When the state

is raining, the rain intensity will be drawn from the site-calibrated Weibull PDFs.

ERAS reanalysis data can be obtained to fit monthly Weibull probability density
functions of 10-min average rain intensity data. In addition, Markov probability tran-
sition matrices for rain/no rain probability can be generated. When combining these
techniques, rain intensities are drawn for the monthly fitted density functions when the
rain state is drawn from the Markov chains. While this approach may result in abrupt
variations in rain intensities, it will not significantly affect the results of the study since
the relative variation of rain intensity is assumed not to affect the degradation rate of
the blade. In this study, wind and rain have been modelled as statistically independent

variables.

5.3 0O&M model assumptions

For the O&M simulations, the following assumptions were considered:

e Only the O&M costs of the blade due to LEE are considered as defined in Table
5.2 and obtained from [288] and [446].

e Operation of the turbine is assumed to start at the beginning of January.

e Imperfect repairs. After each repair, the true damage state of every calculation

point, d, is set to a value drawn from a normal distribution d ~ N (u,0?) with
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@ =0.05 an o = 0.001 and truncated at the interval [0,1] to avoid values out of

the defined interval for d.

e Imperfect inspection is considered. Inspected damage, D, follows a Gaussian
distribution with u = d and ¢ = 0.1, truncated at the interval [0,1] to avoid

values out of the defined interval for D.

e If any of the calculation points of the blade reaches d = 1, the turbine will
be preventively stopped until its repair/replacement. This study assumes that
when the blade reaches that degradation step, other systems such as SCADA will

produce alarms and the turbine will be preventively stopped.

e Energy cost of 50£/MWh is considered, which is in line with the Contracts for
Difference (CfD) strike price signed for CfD4 in 2022 in the UK.

e Probabilistic definition of repair success discretised by month and trying to mimic
the real O&M scheduling. The associated cost of a repair is a function of the
damage and the month at which the repair is attempted. This is defined in
Section 5.3.1.

e For calendar-based scheduled maintenance strategies (labelled as SM), repairs
are attempted until success when the scheduled date arrives. In these policies,
maintenance is planned for a specific calendar month (i.e. June) and is attempted

until success irrespective of what the state of the blade is.

e For time between repair maintenance strategies, labelled as TBR, a time between
successful repairs threshold is defined. Once the threshold is surpassed, repairs

are attempted until weather constraints allow their completion.

e Energy production losses due to the reduced aerodynamic performance of the
blade caused by erosion are considered following the calculation framework from

[82].

e Energy production losses due to downtime and preventive stops are also consid-

ered.
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5.3.1 Repair modelling

Repair costs have been discretised according to the erosion damage level of the blade.

The costs considered are shown in Table 5.2.Repair costs are made of 3 factors:

Co = myp +mg +me (5.5)

Being m;, the booking cost for the logistics and staff required for the inspection/repair,
mg the access cost to the turbine and m, the execution cost of the maintenance activity.
The costs of maintenance activities depending on the severity of the damage are shown

in Table 5.2.

Table 5.2: Repair costs per damage severity - 3 blades. Data obtained from [288]
and [446].

Damage severity mp (£)  mg (£) me (£)

0 (Inspection) 1,600 1,000 3,200
1 2,000 1,000 4,000
2 2,000 1,000 4,000
3 3,000 1,000 6,000
4 5000 1,000 36,000
5 0 250,000 3,500,000
6 0 250,000 5,000,000

In this study, the probabilities of repair success have been modelled in three steps.
First, the probability of a given month having wind speed values below the constraints
shown in Table 5.3, P;. These constraints have been adopted from [290]. Second,
the probability of the forecast weather to comply with a required weather window,
P,. Finally, the probability of the real weather to comply with a required weather
window, P3. These probabilities have been obtained through MCS for each month and
damage severity. Weather time series have been built using the framework shown in
[240]. Synthetic significant wave height, Hy, data has been created through a Artificial
Neural Network (ANN) trained using FINO1 data. The chosen fully connected ANN
architecture is composed of an input layer, a hidden layer of 4 neurons using the sigmoid

activation function and the output layer. The ANN The parameters used for the ANN
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are described here:

e H,, ,: Average significant wave height of the previous time step.

H,, ,: Average significant wave height of 2 time steps ago.

W;: Current average wind speed.

W;_1: Average wind speed of previous time step.

W;_9: Average wind speed of 2 time steps ago.

M;: Month of time step 1.

In order to verify the quality of the H generative model, it has been tested in an
unseen dataset of 22,000 samples. The distribution of H for the synthetic data and
observations and the calibration plot are shown in Figure 5.6 showing a good agreement
and therefore a good potential for the generation of synthetic H, time series for the

location of the project.
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Figure 5.6: Weather data used in the case study.

A sample of the ANN outcome when compared with FINO1 data is shown in Figure
5.7. The weather restrictions parameters to comply for a successful weather window
are significant wave height and 10-min average wind speed at hub height. It is assumed

that for the case of Pj, the real weather deviates from the forecast with a growing
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uncertainty. This has been modelled as a Gaussian distribution centred on the forecast

value with a standard deviation that grows a 4% daily.

—— prediction 02
— data
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0 5000 10000 15000 20000 25000 30000
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Figure 5.7: Sample H; prediction.

The modelling of the repair success and the associated cost of each of the repair

outcomes is depicted in Figure 5.8.
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Figure 5.8: Repair modelling.

Repair success probability matrices P, P, and Ps for the study case are shown in
Section C.1.
5.3.2 Repair constraints

The repair constraints considered for the study are based on the weather restrictions

assumed by [290] and summarised in Table 5.3.

113



Chapter 5. A reliability-based framework for leading edge erosion baseline
maintenance selection

Table 5.3: Weather repair constraints.

Max. significant Max 10-min

Damage category Logistic requirements Duration (h) wave height (m)  wind speed (m/s)

1: LE discoloration, paint or bugs CTV, rope access 6 1.5 11
12\/.[iSs,(i)r?gt;/lzs:icthiinllzgs&zurface. CTV, rope access 15 1.5 11
3: Coat/paint damage, surface:
Missing more than 10 cm?
Damaged leading edge protection CTV, rope access 18 1.5 11
Damaged leading edge tape

LE erosion, down to laminate

4: LE erosion, down to laminate

and first layer laminate CTV, crawler platform 40 1.5 12
5: LE erosion, through .

laminate / Open LE HLV, blade disassembly 72 1.8 10
6: LE erosion, blade failure HLV, blade disassembly 72 1.8 10

5.3.3 Cost model

The O&M cost for the simulations is calculated as follows:

C=C+Cph+Cy (5.6)

where Cj is the the cost of the energy lost due to the degradation caused by the
ageing of the turbine and the aerodynamic performance of LEE; (), is the maintenance
costs including the costs of booking, logistics and performance of the repair for all the
maintenance activities performed on the blades; and C,; are the losses produced by the
downtime of the turbine due to its preventive stop to avoid catastrophic failures or the

repair of the blades.

5.4 Case study

To demonstrate the utility of this framework, a case study using an NREL 5-MW
fixed-bottom wind turbine [193] located in the vicinity of FINO1 offshore measurement
platform, sited 45 km north of the coast of the island of Borkum, Germany. Wind speed
data was obtained from the FINO1 database and rain data from ERA5 reanalysis. Wind

and rain synthetic data is shown in Figure 5.9.
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Figure 5.9: Weather data used in the case study.

The maximum effects of erosion considered for the calculations derived from 2D
CFD simulations of pristine and eroded airfoils are shown in Figure 5.10. The degraded
power curve represents an expected AEP loss for the site between 1.46% to 1.78% [240]
with a LEE degradation of the last third of the blade. The coating of the blade
considered for this study is a generic blade coating system supplied by Olsen Wings
A/S from [192]. For each of the runs, C; and Cy are drawn from normal distributions
with mean and standard deviation as shown here: C; ~ N (1.45- 10, 0.05-1.45- 1011)
Cy ~ N (4.98, 0.02-4.98). These distributions for the model parameters are derived from
the WARER test results using G20 needles, 3.5 mm droplet size, found in [192], and
represent damage evolution rates in the range of others found in the literature [167,169].
The uncertainty in the behaviour for different droplet sizes in the WARER test was

not considered in this case study.
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Figure 5.10: Wind turbine power curves for pristine and eroded states.

The maintenance strategies analysed for this case are divided in two types, calendar-
based scheduled in the months of summer and time-between repairs. The analysed

strategies are summarised in Table 5.4.

Table 5.4: Maintenance strategies analysed.

Label Description

SM-12 Repairs every June (annually)
TBR-4 Repairs every 4 months
TBR-6 Repairs every 6 months
TBR-8 Repairs every 8 months
TBR-10 Repairs every 10 months
TBR-12 Repairs every 12 months
TBR-1/ Repairs every 14 months

Every of the maintenance strategies was run for 50,000 simulations for the 25 years
of the lifetime of the turbine. In the case of TBR maintenance strategies, the trig-
ger for maintenance is the time since last repair. Once it is reached, the maintenance
is attempted until being successful. For SM maintenance strategies, repairs are at-
tempted once the scheduled calendar month arrives until the maintenance is executed

successfully.
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5.4.1 Reliability analysis

The reliability of the blade using the different maintenance strategies has been studied
using Equation 5.1. The reliability and PoF over the life time of the turbine are shown
in Figure 5.11. The PoF was calculated after running 50,000 independent simulations.

The average reliability at time tx, g(tx), can be defined as follows:
_ RS
9(te) = > ai(X, 1) (5.7)
i=1

Similarly, the average reliability over the lifetime of the turbine, G can be defined

as:

n T
G= 233 glan) (55)

i=1 t,=To

being Ty and T the initial and final month of operation of the turbine, respectively.

In terms of reliability, it can be observed a first non-stationary phase in which
failures having a lower time to failure than time to first maintenance appear and increase
the accumulated PoF. After this phase, the rate of increase of PoF over time decreases
until it is reduced to a small value. The accumulated PoF values at the end of the
service life are summarised in Table 5.5. As expected, PoF increases with the increase
in time between repairs. The lower repair success probability during winter months is
noted by the difference in the PoF and G of maintenance strategies SM-12 and TBR-12
for which PoFs are 0.0850 and 0.1216 and average G of 0.5577 and 0.5360, respectively.
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Figure 5.11: Reliability analysis. The left axis represents the reliability g(z) of the LEP
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Figure 5.11: Reliability analysis. The left axis represents the reliability g(z) of the LEP
system, the right axis represents the cumulative PoF.

Table 5.5: End of Life (EoL) reliability summary.

Label PoF at Eol. G

TBR-4 0.0183 0.6522
TBR-6 0.0294 0.6307
TBR-8 0.0484 0.6054

TBR-10 0.0818 0.5695
TBR-12 0.1216 0.5360
TBR-14 0.1692 0.4936
SM-12 0.0850 0.5577
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5.4.2 Cost analysis

O&M costs for the maintenance strategies analysed have been obtained considering
the ageing and erosion losses, downtime losses and maintenance costs. The total cost
distributions are shown in Figure 5.12. This figure presents the effects of an increased
number of maintenance activities, with an increase on the median of the cost and a
reduction of its variance with the decrease of time between repairs. There is a trade-off

between the probability of failure and the median of the O&M cost.
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Figure 5.12: Total O&M cost distribution for analysed maintenance strategies. The
left axis represents the frequency and the right axis the cumulative probability of oc-
currence. The dashed line represents the median of the O&M strategy. The cumulative
probability of occurrence tends to 1, but the plot was truncated at 1M for a better
visualisation of the distribution of the costs.

5.4.3 Pareto front analysis

A Pareto front analysis of the results obtained through the simulations is presented in
Figure 5.13. In this case, the median and the PoF were chosen as representative values

for the decision-making of this failure mode, although these metrics can be chosen as
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per the organisation’s requirements. This step is critical for a risk-informed decision-
making. In this particular case, it can be noted that there is a trade-off between the
median of the O&M cost and the PoF of the LEE. By analysing the different strategies,
it can be observed that the relation of the increase in PoF and the decrease in median
cost is non-costant. Once this information is ready, the most appropriate maintenance

strategy according to the policy of the organisation operating the asset can be selected.

Pareto-front plot for maintenance strategy selection

—— Non-condition-based maintenance front
550K ® TBR4
TBR-6
g ® TBR-8
+ 500k ® TBR-10
S ® TBR-12
g ® TBR-14
= 450k
8 SM-12
3
& 400k +
‘s
5
5 350k
[
=
300k 1 \‘\’

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Probability of Failure

Figure 5.13: Pareto front plot - O&M decision-making.

5.5 Conclusions and further remarks

This section presents a framework for site-specific analysis and O&M policy selection
of LEE damage for wind turbine blades. This approach can serve to study different
maintenance strategies at the planning stage, anticipate the degradation rates of dif-
ferent coating solutions and plan inspections/maintenance at wind farm level. This
framework is able to accommodate the uncertainty that lies in the coating behaviour
and degradation dynamics, weather and maintenance success. The definition of a relia-
bility function g(z) allows for the quantification of the PoF of the chosen maintenance
strategies. By selecting the appropriate cost metric and combining it with the probabil-

ity of failure, a maintenance strategy can be chosen by adjusting the balance between

121



Chapter 5. A reliability-based framework for leading edge erosion baseline
maintenance selection

cost and PoF to meet the policy of the organisation in charge of the operation of the
asset. While suboptimal policies are achieved by not considering the actual condition
and material properties of the component of the turbine being operated, this can serve
as a baseline for the O&M of the asset while policies based on inspection/SHM are
deployed. The adoption of predictive maintenance techniques can be a complicated
and costly task if not performed in a structured approach and counter-producing if not
executed properly. Therefore, improvements in the O&M shall be deployed in a staged
way and with the aid of preanalysis based on models of the assets and the environment.
The detailed knowledge of the dynamics of the most risk-critical failure modes requires
an exhaustive analysis of all the uncertainties surrounding it. Once this knowledge is
acquired, different failure modes can be analysed and combined through the use of sur-
rogate models to provide computationally affordable representations of the asset that
allow the study of combined failure modes, such as proposed in [337]. Given the poten-
tial catastrophic failures that a high-risk O&M policy can produce, numerical models
emerge as a key tool to unveil further O&M cost reductions. Condition-based mainte-
nance is more common for other components of the turbine such as the drivetrain, for
which advanced data-based predictive models are developed, not without the difficulty
of dealing with different parameters, logging frequencies and equipment manufactur-
ers. In the case of the blade, it is not yet clear for the industry what failure modes to
monitor, for which a risk analysis at component level is highly important [239].

Given the highly dimensional state space that this problem entails, conditon-based
maintenance design is not a trivial task. A promising strategy to extract insightful
information is the use of Reinforcement Learning (RL) agents to try to discover and
exploit interesting policies. While this technique requires a careful definition of the
problem, reward function and parameters among others, the outcomes can be of great
importance for the iteration towards optimal policies. A promising follow-up study
would be the comparison of the proposed maintenance strategies with condition-based
policies discovered through autonomous decision-making systems.

The framework introduced in this chapter serves as a valuable tool for comparing

candidate strategies by considering both risk and cost metrics. It enables the evaluation

122



Chapter 5. A reliability-based framework for leading edge erosion baseline
maintenance selection

of the impact of different maintenance intervals, allowing for the definition of baseline
strategies at the wind farm level during the initial planning stage. These baseline
strategies can subsequently be refined and updated with condition-based approaches
once the operational phase starts.

Furthermore, the presented framework equips O&M practitioners with a tool to
juxtapose the cost against the PoF associated with candidate maintenance policies.
This capability facilitates alignment with a global risk tolerance policy for the wind
farm, ensuring that maintenance decisions are made in accordance with overarching
risk management objectives.

The incorporation of this framework into the decision-making process enhances the
strategic planning for wind farm maintenance, offering a systematic approach that
considers both economic considerations and risk mitigation in the development and

adaptation of maintenance strategies.
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Chapter 6

An autonomous decision-making
agent for offshore wind turbine

blades under leading edge erosion

Chapter contribution

This chapter aims to accomplish the following research objective: Design an autonomous
decision-making system for blade’s O&M.

The contributions of this chapter are detailed below:
e Define the simulation environment for the O&M simulations.
e Design the autonomous system for the decision-making of O&M activities.

The submitted peer reviewed journal article Contreras Lopez, Javier and Kolios,
Athanasios ” An autonomous decision-making agent for offshore wind turbine blades
under leading edge erosion” was authored by myself as part of my research completed
under the direction and consultation of my supervisor, Professor Athanasios Kolios.
The submitted article is incorporated in this chapter and forms part of the definition
of a framework for baseline O&M decision-making at wind farm level for leading edge

erosion.
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6.1 Introduction

Despite the promising outlook for the offshore wind industry, several issues still need
to be addressed to make this technology as competitive as its onshore counterpart.
The O&M costs of OWTs are estimated to account for 25-30% of the total lifecycle
costs [392]. Offshore maintenance activities are estimated to be five to ten times more
expensive than those performed onshore [177,355]. When combined with the required
weather windows for maintenance activities, this can result in O&M costs that are
double those of onshore turbines [16]. The combination of accessibility challenges and
the lower reliability of large rotor turbines offshore turbines [60] creates a challenging
scenario leading the operators to use preventive or reactive maintenance resulting in
unnecessary O&M costs [427].

Given the challenges of maintenance planning, the use of decision support tools is
vital for offshore wind farm operators, as discussed in Chapter 5.5. The limitations of
calendar-based maintenance policies lie on the difficulty to provide cost-effective solu-
tions when the dynamics of the evolution of the damage are uncertain. The tunning of
the maintenance interval can be a complex task and end up producing repair activities
with a higher frequency than needed or end in a catastrophic failure. Many efforts have
recently been made to develop different tools to optimise one or many of the different
existing maintenance methods: routine inspections, corrective maintenance, preventive
maintenance, condition-based maintenance, predictive maintenance or opportunistic
maintenance. Several different approaches have been used. These include methods
such as Mixed Integer Programming (MIP), Non-linear Programming (NLP), stochas-
tic models, Markov models, Petri Nets (PN) models, analytical models, fuzzy models,
intelligent algorithmic models, and multi-objective models, to name a few. Regardless
of the method used, scholars have targeted different levels for optimisation, ranging
from individual components such as the tower, foundation, or drivetrain, to the en-
tire turbine or wind farm. The objectives for optimisation include O&M costs, logistics
costs, availability, reliability, and environmental impact. Some of the most recent publi-

cations are summarised here. Saleh et al. [338] proposed a PN model combined with RL
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for the O&M of wind turbines. Elusakin et al. [116] developed a stochastic PN model
for O&M planning of floating offshore wind turbines. Yan and Dunnet [440] studied
the maintenance of OWTs under the PN paradigm and considering periodic mainte-
nance, condition-based maintenance and reactive maintenance policies. Ge et al. [140]
designed a maintenance planning optimisation algorithm based on MIP to minimise
power generation losses on maintenance activities. Li et al. [232] proposed a multi-
objective maintenance strategy optimisation framework at wind-farm level considering
uncertainty in the maintenance performance. In [350], Schouten et al. introduce a
single-component model for maintenance optimisation under time-varying costs that is
applicable to offshore wind turbine maintenance. Aafif et al. [3] provides an optimal
preventive maintenance strategy for a wind turbine gearbox based on its temperature.
In [432], Yong and Qjirong propose an optimisation maintenance scheme for the mainte-
nance missions considering the time windows based on a hybrid ant colony algorithm.
In [463], Zou and Kolios propose a framework to improve maintenance decision-making
by quantifying the value of information of condition monitoring.

The modelling of the O&M of OWTs at turbine level or wind farm level requires
a deep knowledge about the failure modes of the components that carry the highest
weights in the maintenance activities. Damage is usually discretised in states and its
progression represented with a probabilistic description of the transition between them.
The calibration of these require the possession of considerable amounts of failure and
maintenance data of the same or similar equipment in sites with similar weather condi-
tions to provide good results. Alternatively, the use of detailed models, can provide with
a numerical testing environment to obtain synthetic data. Higher level models require
more computationally affordable damage descriptions that can mimic the real behaviour
of damage degradation. Being the rotor one of the most critical components [239,426]
and LEE one of the failure modes carrying the higher criticality [168,173, 196, 239],
its O&M planning requires a careful analysis. Lifetime assessments of erosion protec-
tion systems can be found in the literature, such as the works performed by Hasager
et al. [167,169] and [29]. In [167], the lifetime assessment of leading edge protection

systems of Vestas V52 turbines for sites in the Danish Seas was performed, finding ex-
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pected lifetimes between 2 and 13 years. Also, in [169], for sites in the North and Baltic
Sea, the expected lifetime of coatings was in the range of 1 to 25 years. Under this high
uncertainty in coating lifetime and weather effects, there is a need for a decision support
tool to improve the decision-making capability of wind farm operators. In this sense,
the current study presents an autonomous decision-making RL agent to optimise OWT
LEE O&M costs. The uncertainties in weather scenarios, maintenance performance
and LEE protective coating behaviour are considered in this analysis. The proposed
agent, once trained, can provide an action suggestion at any stage of the turbine ser-
vice life. Also, the proposed agent can be retrained once real operation data becomes
available improving its accuracy an providing further cost O&M cost reduction.

The remainder of this chapter is structured as follows: Section 6.2 presents the
methodology used for the optimisation of the O&M planning. Section 6.3 provides
the assumptions and considerations of the O&M model used in this study. Section
6.4 presents two case studies to evaluate the performance of the proposed decision-
support agent. Section 6.5 offers a discussion about the benefits and limitations of
the framework presented as well as some follow-up opportunities. Finally, Section 6.6

summarises the conclusions of the application of the proposed methodology.

6.2 Methodology

This section delineates the methodology employed in this study, which is divided into
two subsections. The first subsection elucidates the computational framework for LEE
degradation and turbine operation simulation, while the second one delves into the

decision-making framework for the optimisation of O&M costs.

6.2.1 Computational framework

This subsection provides a description of the environment and the computational frame-
work that defines the dynamics of the degradation of the system.
LEE is a degradation phenomenon that affects wind turbine blades in several as-

pects (acoustic, aerodynamic and structural). The relations between the parameters

127



Chapter 6. An autonomous decision-making agent for offshore wind turbine blades
under leading edge erosion

affecting this problem is shown in Figure 6.1. This phenomenon is caused by fatigue
degradation through a repeated number of impacts of airborne particles (rain, insects
and other airborne particles) onto the outermost layers of the blade. The dynamics of
this process are affected by a number of parameters such as the impact energy, coating
material parameters and weather conditions. The present computational framework
provides a method to consider uncertainty in the abovementioned parameters. This
computational framework is presented in [240] and depicted in Figure 6.2. To account
for the uncertainty in climatic, material and aerodynamic parameters, the techniques

described below can be used.
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Figure 6.1: Relations between parameters
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Figure 6.2: LEE calculation framework. Source: [240]

First, synthetic weather data needs to be generated for the location of the turbine.
Rain intensity, wind speed and significant wave height time series should be generated
in order to compute damage degradation and maintenance success rates. Depending
on the availability of data for the project’s location, various approaches can be con-
sidered. If a considerable amount of observations is not available, data can then be
obtained from the ERAD reanalysis data [174]. A Markov chains model [293] can then
be used to generate synthetic wind series as shown in [240]. Significant wave height is
an important parameter to account for the limitations in the logistics for offshore wind
turbine maintenance activities. The generation of significant wave height series should
be dependent on wind speed. Different approaches can be used to achieve this condi-
tioned on data availability. In this case, an Artificial Neural Network (ANN) was used
to mimic the significant wave height, hs, patterns registered by the FINO1 platform.
The parameters of the neural network used are the significant wave height of the two

previous time steps, the wind speed of the current and two previous time steps and
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the calendar month (to account for seasonality). The proposed ANN is composed of
a hidden layer of 4 neurons using the sigmoid activation function and an output layer
with the significant wave height value.

LEE is known to cause effects on the aerodynamic performance of wind turbine
blades [173,214, 270, 341], resulting in reduced lift and increased drag forces. These
effects lead to a decrease in the power generated by the turbine. The estimated an-
nual energy production losses can range from 1.5% to 10%, depending on the turbine’s
characteristics and site-specific climatic conditions [57,112,301,341,351]. Estimating
changes in aerodynamic performance is a non-trivial task, often requiring the applica-
tion of 2D and 3D Computational Fluid Dynamics (CFD) numerical models due to the
limited availability of observational data [55,252,270,303]. Once the blade’s perfor-
mance at various levels of LEE degradation is determined, the degraded power curves
of the turbine can be constructed. These curves are used to assess the energy losses of
the turbine. The energy produced at each time step, AE;, is calculated using Equation
6.1, where P(u,d) represents the power obtained from the degraded power curves, and
At is the computational time step. Energy losses due to LEE degradation are then

estimated as the difference between the pristine and degraded power curves.

AE; = P(u,d) - At (6.1)

Considering the high uncertainty in the behaviour of various coating materials is
essential because the agent needs to account for uncertain degradation dynamics. To
address this, the proposed method leverages the inherent uncertainty found in the
Whirling Arm Rain Erosion test Rig (WARER) results, as shown in Figure 6.3. In
these tests, leading edge protection coatings are subjected to water droplet impacts
until they reach their final degradation. By analysing the evolution of the coating’s
degradation, the accumulated volume of water impacting the blade, and the velocity
of the section being tested, curves showing the coating’s failure can be obtained, as

illustrated in Figure 6.3. The curve fitting used in this case follows Equation 6.2.

H=Cy-v(r)” ¢ (6.2)
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being H, the accumulated rain impingement to erosion failure and C7, Cy material

parameters calibrated using experimental WARER, test data for a specific protection

system. For this study, damage evolution is assumed to be linear and damage accumu-
lation calculated using the Palmgren-Miner rule:

h;
Ad—= — i
d Cy-v(r)=¢2

(6.3)

with h being the accumulated rain impingement and v(r) the local rotor speed during
time-step ¢.
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Figure 6.3: Accumulated impingement at failure for the GAG20 coating

In the literature, the evolution of LEE damage is typically described using a five-
stage framework, which includes the following stages: incubation (stage 0), formation
of minor pits (stage 1), formation of pits (stage 2), partial removal of topcoat (stage 3),
and total removal of topcoat with delaminations (stage 4). In this study, a continuous

damage parameter, denoted as d, is defined within the interval [0,1], allowing for the
representation of the damage severity across these stages. Figure 6.4 illustrates the
mapping of these stages to the damage levels within the [0,1] range, providing a clear

visualisation of how different damage severity levels are associated with the stages of
LEE damage evolution.
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Figure 6.4: Damage, d, assigned to different damage severity categories

The proposed framework operates on two different timescales: one for computa-
tional modeling (computational time step) and another for decision-making (decision
time step). In this study, the computational time step is set to 10 minutes, while the
decision time-step is 1 calendar month. To mimic real-world conditions, the agent op-
erates without prior knowledge of the model but relies on observations. The agent’s

state representation at each time step includes:

1. Time from last maintenance, t;,,: represents the last time a successful mainte-

nance was performed.
2. Time until decommissioning, t;4: remaining time of the life of the turbine.

3. Estimated maximum damage Dp,q,: represents the maximum level of damage of
the turbine as estimated through the model and updated through inspection data

when available.
4. Current calendar month.

5. Average annual erosion rate, ag: this is the prognostic feature for the agent
representing the average annual erosion rate expected for the turbine given the

information available.

At each decision step, the RL agent is presented with three possible actions: con-
tinue operating normally with no maintenance activities, attempt inspection, and at-
tempt repair. The variable D,,,; is updated at each decision time step using the average
annual erosion rate, unless new maintenance information is acquired. When new main-
tenance data, denoted as D;,s, becomes available, D,,,, is updated using the equation
below:

Dinaz + Dins

Doz — — 5 (6.4)

132



Chapter 6. An autonomous decision-making agent for offshore wind turbine blades
under leading edge erosion

The average annual erosion rate is initially set at 0.3, representing the average rate
for the coating and the specific study site. Whenever new inspection data becomes
available, ag4 is updated using a weighted average, where the weights are proportional
to the time between inspections. Greater weight is assigned to inspection data collected

over longer intervals.

6.2.2 Decision-making framework

The decision-making process is executed by an agent trained using Reinforcement
Learning. In this context, the agent is trained by interacting with the environment,
receiving rewards and penalties to maximise a reward signal R. The problem is framed
as a Markov Decision Process (MDP). Using this formalism, at each time step ¢, the
agent receives some representation of the environment’s state, S; € S, and selects an
action, Ay € A(s). In the subsequent time step, the agent receives a numerical reward,
Riy1 € R C R and receives the representation of the new state of the environment,
Si+1. In an MDP, the dynamics of the environment (S;, R;) are entirely characterised
by the dynamics function p(S, A) that depends only on the immediately preceding state
and action (Sy—1, A¢—1).

p(s,r|s,a) =Pr{S; =5 R =r]|Si_1=sA4_1=a}

Therefore, the interaction between agent and environment in a finite MDP gives
rise to a trajectory {Sp, Ao}, {R1,51,A1},...,{Rp, S, Ar} being T the termination
state. The flexibility of the MDP framework makes it ideal for modeling O&M tasks,
including the one addressed in this work. The final goal of the agent in RL is the
maximisation of the cumulative sum of rewards, referred to as return G, following an

action:

T
k=t+1

being v € [0, 1] the discount factor used in continuous task problems, where T' = oo, to

avoid the potential issue of G} approaching infinity. For finite episodic tasks, « shall be
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taken as 1 to avoid suboptimal solutions in the optimisation of G. However, reducing -y
can aid in stabilising the training process and encourage riskier decision-making [132].
To assess the preference for different actions in a given state, the agent utilises value
functions or action-value functions. The action-value function of a state s under a

policy 7, denoted ¢x(s,a), is defined as follows:
gr(s,a) =Er[Gy | St = s, A = d]

The optimal value function ¢*(s,a) provides the maximum values in all states and can

be determined by solving the Bellman equation:

¢"(s,a) =E[R(s,a) +7 ) _ P(s' | 5,a) maxq*(s',a)] (6.5)

8/

the optimal policy n* is then constructed by following:

7 (s) = arg max ¢* (s, a)
a

To achieve the optimal policy, one of the strategies is to make use of the e-greedy

policy, which can be expressed as follows:

argmax, ¢*(s,a) with probability 1 — ¢
Ay = ¢ (6.6)

A e A(Sy) with probability e
where the agent balances the exploration, arg max, ¢*(s,a) with the exploration, ran-
dom action, by utilising the exploration rate, ¢ € [0,1]. Typical approaches consider
a decaying exploration rate over time to explore more intensively the state space fre-
quented by the best-known policy to the agent. In this case, the update rule for the

exploration is as follows:

min(z, f)

gi=¢eo0+ (ef —¢o) - (6.7)

where 4 is the step, €o the initial learning rate, and e; the final learning rate. The
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values used were 0.6, 0.03 and 10° for ¢ , € ¢ and f, respectively.

Given the nature of the problem at hand, Temporal Difference (TD) learning meth-
ods, in which the values are updated online based on the difference of temporally
successive estimates, can be beneficial. In this case, the method chosen to solve the
problem is Q-learning [433]. @-learning is an off-policy TD method used to find the
action-value function of the states to find the optimal or nearly optimal policy. To
address this problem, Deep Q Networks (DQN) are used for function approximation.
The value ¢(s, a) is approximated as ¢, (s, a,w) =~ ¢r(s,a), where w represents the set
of weights for the DQN. This approach was chosen to improve the generalisation of
the agent and better approach different regions of the state space given the continuous
value of the damage state and the large state-action space of the problem. To use this
method, two separate networks need to be kept, one called the online or behaviour
network with weights w, which is the one being updated every step, and the target net-
work, which shares architecture with the first but has a different weight vector w™ that
is updated less frequently. In the agent’s design, the weight vector update frequency C
is set to 10* steps (months). The adoption of this approach, along with the use of the
experience replay buffer M, help break the correlation of the sequence and stabilise the
training of the agent. Throughout the learning process, Q-learning updates are applied

to minibatches extracted from the experience replay, following the equation below:

2=

N
W1 4 we o~ Y[Ry + yargmax (s}, af; w;) — (i, ai; wp)] - Vad(si, ai;wy) (6.8)
i=1 '

ai
where the subindex ¢ is used to denote the sample in the batch, and ¢ is the time index
at which the weights are updated. Here, o represents the learning rate, and IV is the
number of samples in the minibatch. The chosen size of the minibatch for the RL agent
solving the LEE degradation O&M optimisation problem is 128. The weights learnt
by the agent approximate the optimal state-action function ¢*(s,a) regardless of the
followed policy. Then, the agent can approximate the optimal policy 7* by choosing

the action with the greatest state-action value:
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T = argmax §* (s, a; w) ~ (6.9)
a

The experiences from the replay buffer are not sampled uniformly but by a priority,

P, assigned on its importance, using what is termed as prioritised replay buffer [346].

When stored in the replay buffer, each experience is assigned a priority based on its

TD-error, creating what is termed a prioritised replay buffer [346]. These priorities are

then used to calculate a probability distribution for sampling, which has been calculated
as:

br = % (6.10)

Zj:l P(j)*
With « as a parameter emphasising higher probabilities, p as the sampling probability
of experience k, and N as the size of the experience replay buffer, sampling weights, de-

noted as ws, are used to compensate for the bias introduced by the sampling probability

distribution. These weights are calculated using the following expression:

ws, = (le . P(1k)>5 (6.11)

During the training of the agent, the loss calculated for each experience is weighted
by ws to increase the importance of experiences with higher priorities. In this case,
values of 0.6 and 0.4 were used for the parameters « and 3, respectively.

The Deep Neural Network used is a fully connected network composed of three
hidden layers with 300, 600, and 150 units, respectively, and it employs the ReLU
activation function. The output layer provides the state-action value, ¢(s,a;w), for
each of the actions available for the agent. The activation function for the output layer
is linear, allowing the network to provide negative g-values, as expected for the rewards
of the environment. The optimisation algorithm chosen for training the network is
ADAM [201], using a fixed learning rate, a, of 0.0001. The reward function defined
for this problem is shown in Equation 6.12. The reward is composed of 3 terms, the
aerodynamic losses, Cyero, the maintenance costs, Cyp, and the downtime costs, Cy;.
Claero 1s computed as the difference in production between the original and the eroded

power curves of the turbine, C,,, using the costs provided in Table 6.2 and Cy as
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energy lost during downtime. Maintenance costs are obtained following the procedure
depicted in Figure 6.5. This function is defined to produce rewards < 0 for which a
zero initialisation of Q-values will encourage exploration. The algorithm outlining the

training of the RL agent is provided in Algorithm 1.

Ri - Caero - C’om - Cdt (612)

Algorithm 1 Deep Q-learning for wind turbine blade LEE O&M optimisation with
experience replay buffer

1: Initialise priority replay buffer M to capacity N

2: Initialise action-value function ¢ with random weights w
3: Initialise action-value function ¢ for target network with weights w™ = w
4: Environment initialisation > Wind turbine definition, Blade degradation power
curves, weather data, maintenance success probabilities
5: Generate k transitions to pre-fill M using a random policy
6: for episode = 1, m do
T Reset environment, s = sg
8: Generate random material coating parameters Cp,Cy and weather scenarios
I(t),u(t).
9: for decision step t; =1 ,T do
10: With probability € select a random action a;
11: otherwise select a;, = arg max, §*(s, a; w)
12: execute action ay,
13: while computation time ¢, < {5 do
14: Accumulate impacted rain.
15: Calculate real erosion degradation accrued, Ad.
16: if Ad > tol then
17: Update turbine power curve due to erosion degradation.
18: Accumulate energy production, AFE.
19: Calculate downtime and maintenance costs Cy; and Coy,.
20: Calculate erosion energy losses.
21: Estimate blade damage state, D,,qz
22: Generate reward 7,11 and next state s;, 41
23: Observe 7,11 and s;,41
24: Store transition (s¢,, at,, Tt 41, Sty+1) in M
25: Sample minibatch of transitions (sj, a;, 741, Sj+1) from M
26: Calculate average loss of transitions
27: Perform training step with respect to network parameters w
28: Every C steps reset w™ = w
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6.3 O&M considerations

For the O&M simulations, the following assumptions were considered:

¢ Only the O&M costs related to blade damage due to LEE are considered in this

study; no other failure modes are taken into account.
e Turbine operation is assumed to commence at the beginning of January.

e Imperfect repairs are considered, where the true damage state of each calculation
point, denoted as d, is set to a value drawn from a Gaussian distribution with

d ~ N (u,0?), where u = 0.05 and o = 0.001, and truncated at the interval [0, 1].

¢ Imperfect inspections are also considered, with inspected damage denoted as D;ys.
Inspected damage follows a Gaussian distribution with parameters p = d and

o = 0.1, truncated within the interval [0, 1].

o If any real damage calculation point on the blade reaches d = 1, the turbine
will be preventively stopped until it undergoes repair or replacement. This study
assumes that when the blade reaches this degradation level, alarms from other

systems such as SCADA will trigger the preventive shutdown.

e An energy cost of 50 GBP/MWh is considered, in line with the Contracts for
Difference (CfD) strike price signed for CfD4 in the UK in 2022.

e Probabilistic definitions of repair success are discredited by month to mimic real
O&M scheduling. The associated cost of a repair is a function of the damage and

the month when the repair is attempted.

e For condition-based maintenance strategies, referred to as AC, repairs are at-
tempted upon reaching an estimated damage, D, above a specified damage thresh-

old.

e Energy production losses resulting from reduced aerodynamic performance of the
blade due to erosion are considered, following the calculation framework outlined

in [240] and summarised in this study.
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e Energy production losses stemming from downtime and preventive stops are also

taken into account.
e Maintenance costs are as specified in Table 6.2.

o Inspections are mandated for all maintenance strategies during the early operation
phase of the turbine, specifically during months 3 to 6, to ensure more stable

results that closely resemble real-life operations.

Table 6.1: Weather repair constraints.

Max. significant Max 10-min avg.

Damage category Logistic requirements Duration (h) wave height (m)  wind speed (m/s)

1: LE discoloration, paint or bugs CTV, rope access 6 1.5 11
12\/'[jscs(i)s;/lzsslithjiniggcer’nzurface' CTYV, rope access 15 1.5 11
3: Coat/paint damage, surface:
Missing more than 10 cm?
Damaged leading edge protection CTV, rope access 18 1.5 11
Damaged leading edge tape

LE erosion, down to laminate

4: LE erosion, down to laminate

and first layer laminate CTV, crawler platform 40 1.5 12
5: LE erosion, through .

laminate / Open LE HLV, blade dissassembly 72 1.8 10
6: LE erosion, blade failure HLV, blade disassembly 72 1.8 10

Table 6.2: Repair costs per damage severity - 3 blades. Data obtained from [288]
and [446]. mp, m, and m, are the booking, access and execution costs, respectively.

Damage severity mp(£)  mg(£) me(£)
0 (Inspection) 1,600 1,000 3,200
1 2,000 1,000 4,000

2 2,000 1,000 4,000

3 3,000 1,000 6,000

4 5,000 1,000 36,000

5 0 250,000 3,500,000

6 0 250,000 5,000,000

This study models the maintenance success rate for a maintenance mission in three
sequential steps as shown in Figure 6.5. First, it considers the probability of a given
month to have wind and significant wave height values below the threshold, denoted

as P;. Second, it evaluates the probability of the forecasted weather complying with a
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required weather window, known as P,. Finally, it assesses the probability of the actual
weather matching the weather predictions, labelled as P3. The weather constraints
for different maintenance methods and the required weather windows are provided in
Tables 6.1 and 6.2. Synthetic weather data generation techniques, as described earlier,
are used to obtain values for P; and P». In the absence of data, real weather is
assumed to deviate from the forecast with increasing uncertainty. For the calculation
of P values, a Gaussian distribution is employed, centred on the forecast value, with

a standard deviation increasing by 4% daily.

Sample from
random [0,1]

Maintenance
performed.
Cost=m, +m,

Scheduled
maintenance

Mission

£

Maintenance not
performed.
Cost =my, + m,

Maintenance not
performed.
Cost =my,

Maintenance not
performed. Cost = 0.

No weather windows Maint heduled Real weather

P . . inconsistent with
in given month but insufficient forecasted

. weather forecast
weather window

Figure 6.5: Repair modelling.

6.4 Case studies

To assess the effectiveness of the proposed framework, two case studies were conducted.
Both cases share the same location and turbine model but differ in terms of maintenance
success probabilities. In Case 2, there is a lower maintenance success rate and a more
pronounced seasonal influence, resulting in a higher difference between the success rates
during spring-summer and autumn-winter months. These probabilities are presented
in Section D.1.

For these cases, the O&M costs related to leading-edge erosion were analysed under
condition-based maintenance policies, AC, and the policies generated by the RL agents.
Two AC policies were selected as baselines for comparison with the performance of RL
agents: AC 0.4 and AC 0.3. These AC policies initiate maintenance when the blade

reaches 0.4 and 0.3 D42, respectively. The results are analysed and compared in terms

140



Chapter 6. An autonomous decision-making agent for offshore wind turbine blades
under leading edge erosion

of several aspects, including the average estimated damage throughout the turbine’s
lifetime, the estimated damage when maintenance is attempted, the evolution of the
frequency of maintenance activities over time, the average time between maintenance
actions in relation to the estimated annual damage rate, repair frequency per calendar
month and the percentage of O&M actions taken. Finally, a thorough cost analysis
based on a number of cost metrics is shown to compare the analysed policies.

Both case studies are situated at the FINO1 platform, located 45 km off the coast
of Germany. The 5SMW NREL offshore wind turbine serves as the model for simulating

these scenarios, with its characteristics detailed in Table 6.3.

Table 6.3: 5 MW NREL Turbine data. Data extracted from [193]

Property Value

Rated power 5 MW

Control Variable speed, collective pitch
Drivetrain High speed, multiple-stage gearbox
Rotor diameter 126 m

Hub height 90 m

Cut-In / Rated / Cut-out wind speed 3 m/s / 11.4 m/s / 25 m/s

Cut-in / Rated rotor speed 6.9 rpm, 12.1 rpm

Rated tip speed 80 m/s

For these case studies, a training period of 10 months was employed for training
the RL agents. Simulations were conducted using ~ values ranging from 0.95 to 1 at
intervals of 0.01. The two best-performing agents are compared with condition-based
maintenance strategies featuring damage repair thresholds of 0.3 and 0.4.

Both condition-based and RL maintenance strategies utilised updates in the esti-
mated maximum damage, Dy,q., and the average annual erosion rate, ag4, to estimate
the blade’s condition. To evaluate the results of the various O&M strategies, 5,000
simulations spanning 25 years each were performed.

When assessing risk, the expected O&M cost value must be supplemented with
additional metrics. Therefore, the policies will be compared based on the following
metrics: Conditional Value at Risk (CVaRg.95), which represents the average of values

above the 95th percentile; the median; the expected cost (mean); and Value at Risk
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(VaRg.95).

6.4.1 Case study 1

In this subsection, we present and analyse the results of Case Study 1. Figure 6.6
provides a summary of the most relevant aspects of the different policies. Figure 6.6a
illustrates the evolution of the average maximum blade LEE damage over time. At the
start of the operation, the 90" percentile damage approaches the damage threshold of
AC strategies. The periodic waviness in the data series is attributed to the seasonal-
ity of maintenance success probability, with a period of 12 months, and the distinct
strategies employed for maintenance scheduling. AC' strategies exhibit a more regular
damage pattern compared to RL strategies. It’s worth noting that RL strategies tend
to utilise most of the LEE’s lifespan before decommissioning. This tendency is more
pronounced in the case of the RL CS1 v = 0.98 RL agent.

Figure 6.6b displays the distribution of D4, for the maintenance attempts of the
different strategies. AC strategies follow an exponential-like distribution with peaks
at their respective damage thresholds (0.3 and 0.4), which decrease with the success
of maintenance activities. Conversely, the RL agents employ different strategies. RL
CS1 v = 1 demonstrates a Gaussian distribution with a mean of 0.3, while RL CS1
v = 0.98 shows a wider Gaussian-like distribution with a mean around 0.35.

The frequency of attempted repair activities over the turbine’s service life is pre-
sented in Figure 6.6¢c. AC strategies maintain a constant maintenance rate throughout
the turbine’s life, whereas RL strategies tend to accumulate more maintenance activities
at the beginning of their service life and reduce them as decommissioning approaches.
This trend is more pronounced in the RL CS1 vy = 0.98 policy but is also evident in
the RL CS1 ~ =1 policy.

Figure 6.6d illustrates the average time between maintenance actions for the dif-
ferent policies analysed. AC 0.4 shows the longest time between maintenance actions
for all values of a4. As expected, the time between maintenance actions for this policy
is greater than AC 0.3. RL agents adopt different approaches, with RL CS1 ~v = 0.98
being closer to AC 0.3, while RL CS1 v =1 follows a safer strategy for ag < 0.4.
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Figure 6.6e provides insights into the planning of maintenance activities by calendar
month. It’s important to note that this graph displays all maintenance attempts, not
just the successful ones. AC policies show a curve with lower values in the months of
April to October, with similar shapes and values. This is because maintenance success
probabilities are higher during those months, reducing the need for maintenance actions
in the coming months. In contrast, RL policies exhibit a different behavior, with a
significant increase in maintenance planning intentions for the period from October to
February. RL agents have learned the benefit of anticipating maintenance, as failure
to do so would lead to an increase in the blade’s damage state and higher maintenance
costs. RL policies adopt a more conservative approach in this regard compared to AC
policies.

Finally, Figure 6.6f presents the percentage of different actions taken. Given that
AC 0.4 has a higher damage repair threshold, it’s expected that the ’operate’ action is
more frequent (85.29% of months) compared to AC 0.3 (82.77%). The fixed inspections
scheduled for all policies remain at 1.34%, with RL agents showing a marginal increase
in the use of inspections (2.00% and 2.22% for RL CS1 v =1 and RL CS1 v = 0.98,
respectively). RL CS1~ =1 employs the highest maintenance intention rate (16.98%),
while RL CS1 ~ = 0.98 adopts a rate of 14.98%, falling between AC 0.3 and AC 0.4.
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Figure 6.6: Case study 1 O&M policy analysis

Figures 6.7 and 6.8 display the distribution of the O&M cost for the evaluated

0O&M maintenance policies, while Table 6.4 presents various cost metrics compared to

the baseline policy AC 0.3. Concerning cost distribution, AC' 0.4 exhibits a higher
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number of values at the lower end of the cost spectrum. This can be attributed to
the fixed policy of AC 0.4, which entails some risk to the blade’s condition but proves
effective for scenarios involving slow damage growth.

In contrast, both AC 0.3 and RL CS1 ~v = 0.98 show similar cost distributions,
with a slight advantage in median values observed for RL CS1 v = 0.98. On the other
hand, RL CS1 v = 1 outperforms in terms of the average, C'VaRy95, and VaRy.g5
values. It presents reductions of 23.4%, 46.1%, and 8.7%, respectively, when compared
to the AC 0.3 policy, along with a marginal increase in the median value (8.5%).

RL CS1 v = 0.98 closely resembles the behavior of AC 0.3 by achieving a 5% re-
duction in median cost, with slight increases observed in the CVaRy 95 and VaRy.9s5
values. Conversely, AC' 0.4 displays a 12.1% reduction in the median value but expe-

riences significant increases in the remaining metrics.

Table 6.4: Cost metrics for Case study 1

Label Median Average CVaRgpgs VaRyos
RL CS1~v=0.98 95.0%  100.7% 102.4%  105.4%
RL CS1~v=1 108.5% 78.6% 53.9% 91.3%
AC 0.3 100.0%  100.0% 100.0%  100.0%
AC 0.4 87.9%  192.0% 273.2%  432.8%
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6.4.2 Case study 2

In this subsection, we present and analyse the results of case study 2. Figure 6.9 sum-

marises the most relevant aspects of the different policies. Figure 6.9a illustrates the
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evolution of the average maximum blade LEE damage over the turbine’s operational
period. During the turbine’s operation, the 90th percentile damage increases above
the thresholds of the AC strategies, reaching 0.47 for AC 0.4 and 0.39 for AC 0.5.
The wavy pattern in the data series is attributed to the seasonality of maintenance
success probability, exhibiting a periodic behaviour with a 12-month cycle, and the
distinct strategies in maintenance scheduling. While AC' strategies demonstrate a sim-
ilar regularity in the damage pattern compared to RL strategies, the last 50 months of
operation show a noticeable difference. RL strategies tend to make more extensive use
of the blade’s leading-edge erosion resistance before decommissioning. This trend is
managed differently by RL CS2 v = 0.98 and RL CS2 v = 0.99, with the agent having
v = 0.98 progressively reducing the average damage.

Figure 6.9b presents the distribution of D,,,, for the maintenance attempts of
various strategies. AC' strategies exhibit an exponential-like distribution with peaks at
their respective damage thresholds (0.3 and 0.4), which decrease with the success of
maintenance activities. In contrast, the RL agents adopt different strategies. RL CS2
v = 0.99 showcases a Gaussian-shaped distribution with a mean around 0.3, while RL
CS2 v = 0.98 displays a more skewed distribution, peaking around 0.4.

The frequency of attempted repair activities over the turbine’s service life is shown
in Figure 6.9c. AC strategies maintain a consistent maintenance rate throughout the
turbine’s life, whereas RL strategies aim to reduce repair activities as the turbine
approaches the end of its operational life. Both RL strategies exhibit a peak in main-
tenance activities during the final years, with year 23 for RL CS2 v = 0.99 and years
20-21 for RL CS2 ~v = 0.98.

Figure 6.9d displays the average time between maintenance actions for the different
policies analysed. AC 0.4 shows the longest intervals between maintenance actions for
all ag. As expected, the time between maintenance actions in this policy is greater than
that of AC 0.3. RL agents follow distinct policies, with RL CS2 v = 0.98 resembling
the approach of AC 0.3, while RL CS2 v = 0.99 adopts a more cautious strategy
for ag < 0.4. However, RL CS2 v = 0.99 appears to face generalisation issues for

0.8 < ag < 1.0.
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Figure 6.9¢e provides insight into maintenance planning by calendar month. Notably,
this graph illustrates all maintenance attempts, not just the successful ones. AC policies
and RL CS2 v = 0.99 exhibit a similar curve with lower values during the months from
April to October. This behaviour aligns with higher maintenance success probabilities
in those months, reducing the need for maintenance actions in the coming months.
In contrast, the RL CS2 v = 0.98 policy deviates from this pattern, displaying a
pronounced increase in maintenance planning from October to December.

Lastly, Figure 6.9f presents the percentage of different actions taken. As AC 0.4
has a higher damage repair threshold, it is unsurprising that the ”operate” action is
more prevalent (77.37% of months) compared to AC 0.8 (73.23%). Fixed inspections
are scheduled for all policies at a rate of 1.34%, with RL agents demonstrating an
increase in inspection usage, particularly RL CS2 v = 0.98 (13.3%) compared to RL
CS2~v=10.99 (5.61%). Furthermore, RL CS2~ = 0.99 exhibits a slightly higher repair
intention rate than AC 0.3 (25.95% vs. 25.44%), and RL CS2~ = 0.98 adopts a repair
attempt rate of 23.12%, positioning it between AC 0.3 and AC 0.4.
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Figure 6.9: Case study 2 O&M policy analysis

Figures 6.10 and 6.11 display the distribution of O&M costs for the evaluated O&M

maintenance policies, and Table 6.5 presents various cost metrics compared to the

baseline policy, AC 0.3. Regarding cost distribution, AC' 0./ has more values in the
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lower end, which can be attributed to the fixed policy of AC 0.4 taking risks with the
blade’s condition and being successful for slowly growing damage cases. AC 0.3 reaches
a higher cumulative probability (0.91) at £1.5 million than AC 0.4 (0.88), while higher
values are achieved by RL policies, specifically RL CS2 v = 0.98 (0.948) and v = 0.99
(0.95). In terms of cost metrics, RL CS2 v = 0.98 and v = 0.99 outperform AC 0.3,
with reductions in the range of 12-13%, 16-19%, and 73-78% for Average, CVaRg g5,
and VaRyo5, respectively. They also exhibit a slight increase in the median value
(11.5% and 6.2%, respectively). In contrast, AC 0.4 shows a 6.2% reduction in the

median value but experiences significant increases in the other metrics.

Table 6.5: Cost metrics for Case study 2

Label Median Average CVaRyos VaRgos

RL CS2~=0.98 111.5% 86.8% 80.9% 26.9%

RL CS2~=0.99 106.2% 87.3% 84.0% 21.7%

AC 0.8 100.0%  100.0% 100.0%  100.0%

AC 0.4 93.8%  159.4% 154.4%  308.5%
le-6 1.0

>
o
!

ro.8

I
3
L

g
o
L

z
063
5257 g
§ 5
o
o >
20 i
= 3
04 E
154 —— RLCS2y=0.98 ©
Median
—— RLCS2y=0.99
1.0 1 )
Median Loz

—— Condition 0.3 HDU 17.3
Median

—— Condition 0.4 HDU 17.3

Median

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
O&M Cost (GBP) 1e6

Figure 6.10: O&M cost distribution of the CS2 policies analysed. The dashed lines
represent the median of the distribution. The right axis shows the cummulative prob-
ability of the distribution
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6.5 Discussion

The analysis of both case studies has led us to the conclusion that RL agents have
been able to improve the target metric of the optimization, which is the expected value
of the O&M cost, within a certain range. Additionally, v values between 0.98 and
1.0 have proven to be the most effective in achieving this reduction. Alongside the
reduction in average costs, there was also a decrease in several relevant cost metrics
related to risk-based decision-making, such as CVaRy g5 and VaRgg5. This reduction
comes with an increase in the median cost, making the condition-based policies (AC)
more cost-efficient in some cases. Overall, RL agents have successfully identified a
cost advantage by reducing maintenance activities towards the end of the turbines’
operational life. The use of inspections by RL agents has increased as maintenance
success rates decreased; the inspection intention rate grew from 2.0% in CS1 to a range
of 5-13% in CS2, explaining the importance of a reduced uncertainty of the damage
state for low accessibility sites. Regarding maintenance planning by calendar month,

RL agents did not provide a clear indication of a single planning strategy.
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The presented framework has proven to be effective in high-uncertainty scenarios,
with the material parameters C'; and Cy having the greatest influence on the degra-
dation dynamics. This information is valuable for the initial planning of the O&M of
the turbine. To reduce the uncertainty in the degradation dynamics, the probabilis-
tic description of the abovementioned parameters can be modified once real operation
data becomes available to improve the performance of the agent. Unfortunately, the
modification of the description of the stochastic variables requires the retraining of the
agent, which can be time-consuming.

This framework can be used by operators at the early O&M design stage at the
wind farm level. By analysing the behavior of the best agents, important qualitative
metrics can be extracted to define global policies such as the damage threshold for
optimal maintenance scheduling for a particular failure mode if considered alone. If
combined with additional components and failure modes, this framework can provide
O&M policies at the wind turbine level. In this study, only the leading-edge erosion
failure mode of the blade was considered. Nevertheless, it can be extended to accom-
modate different failure modes as long as a degradation function can be defined. This
would require the inclusion of, at least, two parameters for the DQN per failure mode.
One of the parameters would be the estimation of the state of the component and fail-
ure mode, and the other a prognostic parameter to improve the O&M planning of the
agent. The selection of the failure modes to consider should be based on risk priority
to provide efficiency to the framework.

In this study, material parameters C1 and Cs have been assumed to remain constant
throughout the life of the turbine. It is important to note that there are many types
of repair available (protection tapes, protective coatings, and epoxy or polyurethane
fillers) the durability of which is not well known yet. An interesting opportunity to over-
come this issue would be the inclusion of SHM in the turbine to provide timely inspec-
tion data. Moreover, this would reduce the cost of inspection data for low-accessibility
sites, which has proven to be determinant for O&M for cost reduction. Also, there is
potential for improvement in the quantification of uncertainty in the damage state and

prognostic features of the agent. In the proposed definition of the RL agent, there is
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no quantification of the uncertainty about Dy, and ag made by the agent, which can
be bypassed by the usage of the parameters ti,, and tyq. Another interesting direction
of providing additional functionality to this framework would be the inclusion of op-
portunistic maintenance as an action for the agent. It would be interesting to explore
the damage level at which opportunistic maintenance becomes attractive, as this is
sometimes the case when unexpected failures of different components of the turbines

occur.

6.6 Conclusions and further remarks

In this chapter, a comprehensive framework designed for the development of an au-
tonomous decision-making agent has been presented. The proposed framework is
grounded in the RL paradigm, training the agent to make independent decisions for
O&M activities. It specifically addresses uncertainties inherent in damage evolution,
climatic conditions, and repair success rates.The proposed O&M blade LEE mainte-
nance optimisation based on RL is able to produce an improvement in average costs
in the range 12-21% and a reduction in risk of failure of the blades under this failure
mode against condition-based policies. This framework has proven to be robust as to
produce consistent improvements in different settings. Besides, the provided framework
has the option to be re-trained with real data of different turbines of a site during op-
eration to reduce the uncertainty in the material parameters and approximate better
the degradation dynamics of this failure mode.

The versatility of this framework extends to various applications, notably serving as
a tool for online O&M decision support and facilitating the early-stage design of O&M
strategies, particularly in the context of the identified failure mode. Furthermore, this
framework lays the groundwork for a more sophisticated O&M representation that
encompasses all components of a wind turbine or extends to the entire wind farm.

Notwithstanding, the high uncertainty underlying this problem sets a difficult sce-
nario for decision-making in which the interpretability of the recommendations and the
models used is key for practitioners to modify their current way of operating. Also,

the need to incorporate the risk-critical failure modes to produce a common mainte-
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nance strategy calls for computationally efficient frameworks in which the logistics of
the whole wind farm is considered and the opportunities for maintenance actions when
not strictly required can be studied. In order to reduce the complexity of the models, a
thorough understanding of the problem at hand is required, and this is why frameworks
such as the proposed are required. Once there is a more profound knowledge about
the dynamics of the failure mode and the relevance of different parameters modifying
them, computationally efficient reduced-order models can be built for strategic wind
farm decision-making. Techniques such as intelligent PN [337,338] are promising for
this last step in which the maintenance optimisation of assets in similar conditions can
be jointly considered.

Beyond its immediate applications, this tool has the potential to establish a founda-
tion for a higher-level O&M approach, accommodating additional failure modes. This
flexibility becomes evident when incorporating degradation functions and prognostic
features, thus enabling a more comprehensive consideration of diverse failure scenarios.

In essence, the designed framework not only addresses the intricacies of the identified
failure mode but also sets the stage for a broader and more advanced O&M decision-
making system that can adapt to evolving conditions and encompass a wider array of

potential failure modes across wind turbine components and wind farm levels.
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Discussion

Reinforcement learning stands out as a potent method for crafting autonomous decision-
making systems, offering diverse techniques adaptable to various problem domains and
input natures, be they data-based, physics-based, or hybrid. The primary challenge in
employing models, as proposed in this thesis, lies in striking a delicate balance between
accuracy and computational demands, particularly when confronted with constraints in
dimensionality. Models developed herein can incur substantial computational expenses,
escalating with the addition of numerous failure modes and degradation functions. Ac-
quiring sufficient data representing a diverse array of failure modes proves challenging,
especially considering the variety of systems available in the market. This underscores
the pressing need for detailed knowledge on different failure modes to construct surro-
gate models that are both robust and computationally efficient. Additionally, strategic
maintenance planning necessitates varying levels of representation, prompting the care-
ful selection of the level of detail in system modeling.

The framework presented herein finds practical application for operators in the early
Operations and Maintenance (O&M) design phase at the wind farm level. Through
an analysis of optimal agent behavior, qualitative metrics emerge, facilitating the es-
tablishment of overarching policies, such as defining damage thresholds for efficient
maintenance scheduling in isolation for a specific failure mode. When integrated with
additional components and failure modes, the framework’s adaptability extends to for-

mulating O&M policies at the wind turbine level. Although the study exclusively
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focused on the leading-edge erosion failure mode of the blade, its versatility allows the
incorporation of various failure modes, contingent upon the definition of a degradation
function. This extension requires at least two parameters for the Deep Q-Network
(DQN) per failure mode—one for estimating the state of the component and failure
mode and another as a prognostic parameter to enhance the O&M planning of the
agent. The choice of which failure modes to consider should prioritise risk, optimis-
ing the framework’s efficiency. Once trained for a specific site, the model is poised to
provide real-time recommendations based on the current condition of the blade.

Integrating additional failure modes into the proposed agent mandates defining
the degradation model of the failure mode and prognostic features for the agent to
consider. While the method can be retrained with real data to enhance performance, its
computational expense and the necessity for multiple iterations to find an optimal policy
candidate pose challenges. Tuning hyperparameters is non-trivial, requiring problem-
specific knowledge and iterative adjustments to establish a feasible range. Moreover,
modifying the problem by adding failure modes or altering climatic parameters for a
different site may necessitate a reevaluation of hyperparameters, incurring additional
computational costs.

The proposed model has effectively reduced Operations and Maintenance (O&M)
costs and mitigated failure risks associated with offshore wind turbine blades under
Leading Edge Erosion (LEE). However, the results lack contrast with real operational
data due to accessibility challenges. Given the high uncertainty in coating behavior
compared to WARER test data, it is anticipated that the model’s accuracy will improve

with the inclusion of real operational data.

7.1 Contribution

This section aims to consolidate the findings and substantiate the contribution of the
thesis and the approach followed to fulfill the objectives. The overall contribution The
overall contribution of this work is analysed from the perspectives of novelty, scientific
soundness and value to the different stakeholders.

Table 7.1 presents a summary of the objectives of the research project, how they are
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addressed through the research performed, along with the contribution of each objective
in terms of novelty, scientific soundness and value to the different stakeholders.

The first objective was addressed through a literature review of the maintenance
practices used for wind turbine blades and other safety-critical composite structures.
Furthermore, the benefits and limitations in the use of composite structures for this kind
of applications in different sectors (Aerospace, Civil, Naval and Wind) was analysed.
This review provides an overview of the current state of the art of the maintenance
models applied to wind turbines along with the limitations experienced in the current
market. This review can be valuable primarily to researchers and academics in O&M
problems, listing latest applications of different maintenance methods and highlighting
benefits and limitations of each method.

Chapter 3 provided an FMECA to identify the most risk-critical failure modes and
subcomponents of the wind turbine blade. Leading edge erosion, root-hub connec-
tion damage, spar caps and web damage, lightning strike damage, and the debonding
of leading and trailing edges were identified as the most critical failure modes of the
blade. Potential SHM technologies were also proposed for the failure modes identified.
Furthermore, the spar and the leading edge were highlighted as the most critical sub-
components of the blade. This study can be useful for O&M wind industry practitioners

that need to stablish a maintenance policy for a wind farm.
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Following on from the failure mode identification, Chapter 4 focuses on providing a
degradation function for LEE, one of the most risk critical failure modes. The proposed
framework provides the estimated service life of a protection coating and expected AEP
reduction considering weather uncertainty. This can be a useful tool when performing
life cycle cost comparisons of different coatings and O&M simulations considering this
failure mode.

Making use of the proposed degradation function, a risk-based maintenance selec-
tion tool for calendar-based LEE maintenance policies was presented in Chapter 5. This
tool considers the uncertainty in coating behaviour, weather and repair success. This
tool can be useful for O&M practitioners when designing preliminary policies, given
that it provides a direct way to compare candidate policies and find a good balance
between PoF and cost for this failure mode.

Finally, Chapter 6 provides the definition of an autonomous decision-making agent
for wind turbine blade O&M optimisation. This agent is based on Reinforcement learn-
ing and provides the approximation of the action-value function by means of Deep Q
Networks. Combining this agent with the proposed degradation function from Chapter
4, the maintenance lifecycle costs of this failure mode can be optimised. This work pro-
vides a valuable framework for prognostics-based O&M optimisation of wind turbine
blades that can accommodate additional failure modes by including degradation func-

tion, required state parameters describing the damage and a useful prognostic feature.
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Overall conclusions and future

work

The aim of the research presented in this Thesis is to provide insight into the following
research question:

"How an autonomous decision-making system to support OEM for wind turbine
blades based on prognostics can be designed?”

Each of the chapters has presented research to build up the steps to provide in-
sight into the primary research question, however it is now important to discuss these
findings in its context. The conclusions below will attempt to bring out the pertinent
findings of each chapter, however full detail along with all uncertainties, assumptions
and discussion can be found in each individual chapter. This chapter will conclude by
outlining future work, and provide an overview of how the research and conclusions

presented will contribute to the wind industry.

8.1 Conclusions

Chapter 2 has presented an overview of the current landscape of maintenance practices
in the wind industry, specifically focusing on turbine blades and the challenges asso-
ciated with applying Prognostics and Health Management practices to safety-critical

composite structures. The utilisation of composite materials in the wind sector intro-
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duces various challenges, including uncertainties related to failure modes, difficulties in
monitoring damage progression during operational use, and reliability issues in manu-
facturing large composite components.

While monitoring systems for drive train and gearbox components, leveraging data
from SCADA and other vibration control systems, have been successfully implemented,
blade monitoring remains in its early stages. Despite an expanding body of research
offering promising solutions, existing SHM systems for wind turbine blades provide data
under controlled conditions, yielding meaningful damage indicators. However, there
is insufficient substantiated evidence regarding the performance of these systems over
extended durations and in challenging environmental conditions, raising concerns about
the potential drawbacks of non-durable SHM systems, such as increased maintenance
costs and downtime.

Currently, the dominant approach to wind turbine maintenance relies on visual and
tap test inspections, often supplemented by calendar-based campaigns. As discussed
in this chapter, this method has limitations, particularly in detecting subtle impact
damage that may go unnoticed. The implementation of SHM or CBM systems for
continuous structural assessment proves to be an effective strategy for extending the
service life of wind turbines. This approach is most advantageous when combined with
an analysis of factors influencing Operations and Maintenance (O&M) costs and critical
failure modes of the system.

In the realm of offshore wind farms, where operation and maintenance costs are
projected to constitute approximately 30% of the total life cycle costs, integrating
SHM technology and adopting a predictive maintenance approach through PHM can
significantly contribute to cost reduction by considering the structural condition. Fur-
thermore, this approach has the potential to enhance overall profitability and turbine
availability, aligning with the overarching goal of this thesis.

In order to offer a comprehensive understanding of the system and address its most
crucial failure modes, it is essential to adopt a systematic approach for identifying
these modes at the component level. Chapter 3 takes on this task by conducting an

FMECA specifically for the wind turbine blade. This analysis meticulously pinpoints
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the most critical subcomponents and failure modes inherent to the wind turbine blade.
The study illuminates that among the identified failure modes, leading edge erosion,
damage to the root-hub connection, issues with spar caps and web integrity, lightning
strike damage, and the debonding of both leading and trailing edges stand out as the
most critical. Furthermore, the analysis singles out the spar and leading edge as the
most critical subcomponents within the wind turbine blade system. This FMECA,
thus, provides valuable insights into the vulnerabilities of the system, facilitating a
more targeted and informed approach to addressing potential failures.

Armed with this information, the next step involves establishing degradation func-
tions for the most critical failure modes and identifying prognostic features to address
the assessment of damage progression. Chapter 4 takes on this task by outlining a com-
putational framework specifically for Leading Edge Erosion (LEE) degradation. Within
this framework, an estimation of the aerodynamic consequences of leading edge erosion
is also presented, shedding light on its impact on the Annual Energy Production (AEP)
reduction.

This computational framework is adept at generating the anticipated degradation
state of a blade affected by LEE, taking into account data from the Wind Turbine
Blade Erosion (WARER) test and site-specific climatic parameters. Furthermore, it
offers insights into the power degradation of the wind turbine, taking into consideration
the compromised state of the blade.

Upon establishing a degradation function for a specific failure mode, the optimi-
sation of O&M activities becomes viable. Chapter 5 initiates this process by focusing
on calendar-based optimisation at the wind farm level for the identified failure mode.
While this approach may yield suboptimal policies when applied at the individual wind
turbine level, it serves as a foundational reference point for crafting maintenance poli-
cies during the early stages. Additionally, it offers an anticipated cost for the O&M of
the blade.

This chapter equips O&M practitioners with a valuable tool for evaluating potential
maintenance strategies, allowing them to analyse cost-benefit relationships through

metrics related to risk and expenditure. By providing insights into the expected costs
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associated with various maintenance approaches, it facilitates informed decision-making
in optimising O&M practices for enhanced efficiency and effectiveness.

Having established the initial framework for O&M optimisation, the opportunity
arises to explore a condition-based approach. Chapter 6 delves into the depiction of
an autonomous RL-based agent designed to optimise O&M costs. Employing Deep
Q-Networks, this agent focuses on refining O&M decisions concerning LEE, account-
ing for uncertainties in climatic parameters, dynamics of damage evolution, and the
efficacy of maintenance activities. The approach introduces a fundamental prognostic
feature—the average degradation rate—to address the problem.

In the presented case study, the prevailing scenario, where the blade’s state is typ-
ically revealed through inspections, is taken into account. This method has demon-
strated its effectiveness in reducing expected O&M costs compared to basic CBM
approaches. Moreover, it has proven successful in minimising catastrophic failures

associated with blade deterioration.

8.2 Future Work

Neural networks, offering complex function approximations, often yield challenging-
to-interpret weights, necessitating exploration into enhancing the interpretability of
decision support systems. Extracting knowledge from system recommendations holds
the potential to provide valuable insights for optimising efficiency and reducing the
expansive search space inherent to these systems. Moreover, garnering knowledge from
system outputs can contribute to a more accurate high-level representation for strategic
decisions.

Reducing the training time of the agent represents a promising avenue for future
work. Injecting expert knowledge or leveraging transfer learning from agents in similar
environments could expedite training by allowing the agent to focus on critical regions.
However, caution is warranted to avoid overly constraining the agent’s freedom to
explore, preventing it from inadvertently settling into suboptimal regions.

Addressing the challenges of high-level representations for Operations and Main-

tenance (O&M) optimisation at the wind farm level requires careful consideration.
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Given the complexities of managing numerous turbines, their diverse components, fail-
ure modes, and logistical constraints, an intriguing approach involves the utilisation
of intelligent Petri Nets (PNs) [338]. These PNs efficiently represent damage states
across different components and turbines, making them well-suited for integration with
Reinforcement Learning (RL)-based agents.

The exploration of smart operation modes for fatigue and Leading Edge Erosion
(LEE) damage reductions presents an interesting avenue for preventing damage progres-
sion. Investigating the cost-effectiveness of damage arrest or prevention and identifying
optimal scenarios for their implementation could provide valuable insights. Addition-
ally, incorporating additional actions into O&M models offers a promising direction for
enhancing the existing framework. Analysing the implications of various actions, such
as curtailment, and exploring how they can mitigate turbine downtime losses during
maintenance tasks would contribute to a more comprehensive understanding of the

system dynamics.
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Sustainable Development (Goals

A.1 Sustainable Development Goals
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Table A.1: The 17 Sustainable Development Goals (SDGs). Source [418].

Sustainable Development Goals

Goal 1: No poverty
End poverty in all its forms everywhere.

Goal 2: Zero hunger
End hunger, achieve food security and improved nutrition and promote sustainable agricul-
ture.

Goal 3: Good health and well-being
Ensure healthy lives and promote well-being for all at all ages.

Goal 4: Quality education
Ensure inclusive and equitable quality education and promote lifelong learning opportunities
for all.

Goal 5: Gender equality
Achieve gender equality and empower all women and girls.

Goal 6: Clean water and sanitation
Ensure availability and sustainable management of water and sanitation for all.

Goal 7: Affordable and clean energy
Ensure access to affordable, reliable, sustainable and modern energy for all.

Goal 8: Decent work and economic growth
Promote sustained, inclusive and sustainable economic growth, full and productive employ-
ment and decent work for all.

Goal 9: Industry, innovation and infrastructure
Build resilient infrastructure, promote inclusive and sustainable industrialization and foster
mnovation.

Goal 10: Reduced inequalities
Reduce inequality within and among countries.

Goal 11: Sustainable cities and communities
Make cities and human settlements inclusive, safe, resilient and sustainable.

Goal 12: Responsible consumption and production
Ensure sustainable consumption and production patterns.

Goal 13: Climate action
Take urgent action to combat climate change and its impacts.

Goal 14: Life below water
Conserve and sustainably use the oceans, seas and marine resources for sustainable develop-
ment.

Goal 15: Life on land

Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage
forests, combat desertification, and halt and reverse land degradation and halt biodiversity
loss.

Goal 16: Peace, justice and strong institutions
Promote peaceful and inclusive societies for sustainable development, provide access to justice
for all and build effective, accountable and inclusive institutions at all levels.

Goal 17: Partnerships for the goals
Strengthen the means of implementation and revitalize the global partnership for sustainable
development.
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Table A.2: Boolean indicators of contribution of composite materials to SDGs 1 to 8,
as per considered industries.

Target Aerospace Civil Wind Naval Target Aerospace Civil Wind Naval
1.1 0 0 0 0 2.1 0 0 0 0
1.2 0 0 0 0 2.2 0 0 0 0
1.3 0 0 0 0 2.3 0 1 1 0
1.4 0 0 0 0 2.4 0 0 1 0
1.5 0 0 0 0 2.5 0 0 0 0
1.A 0 0 0 0 2.A 0 0 0 0
1.B 0 0 0 0 2.B 0 0 0 0

Total o/7 o/7 o0/7 0/7 2.C 0 0 0 0
(a) SDG 1 Total 0/8 1/8 2/8 0/8
(b) SDG 2

Target Aerospace Civil Wind Naval Target Aerospace Civil Wind Naval
3.1 0 0 0 0 4.1 0 0 0 0
3.2 0 0 0 0 4.2 0 0 0 0
3.3 0 0 0 0 4.3 0 0 0 0
3.4 0 0 0 0 4.4 0 0 0 0
3.5 0 0 0 0 4.5 0 0 0 0
3.6 0 0 0 0 4.6 0 0 0 0
3.7 0 0 0 0 4.7 0 0 0 0
3.8 0 0 0 0 4.A 0 0 0 0
3.9 1 0 1 1 4.B 0 0 0 0
3.A 0 0 0 0 4.C 0 0 0 0
3.B 0 0 0 0 Total 0/10 0/10 0/10 0/10
3.C 0 0 0 0 (d) SDG 4
3.D 0 0 0 0

Total 1/13 0/13 1/13 1/13
(c) SDG 3

Target Aerospace Civil Wind Naval Target Aerospace Civil Wind Naval
5.1 0 0 0 0 6.1 0 0 1 0
5.2 0 0 0 0 6.2 0 0 0 0
5.3 0 0 0 0 6.3 1 1 1 1
5.4 0 0 0 0 6.4 0 1 0 0
5.5 0 0 0 0 6.5 0 0 0 0
5.6 0 0 0 0 6.6 0 0 0 0
5.A 0 0 0 0 6.A 0 0 0 0
5.B 0 0 0 0 6.B 0 0 0 0
5.C 0 0 0 0 Total 1/8 2/8 1/8 1/8

Total 0/9 0/9 0/9 0/9 (f) SDG 6
(e) SDG 5

Target Aerospace Civil Wind Naval Target Aerospace Civil Wind Naval
7.1 0 0 1 0 8.1 0 0 0 0
7.2 0 0 1 0 8.2 1 1 1 1
7.3 1 1 1 1 8.3 0 0 0 0
T.A 0 1 1 0 8.4 1 1 1 1
7.B 0 1 1 0 8.5 0 0 0 0

Total 1/5 3/5 5/5 1/5 8.6 0 0 0 0
(g) SDG 7 8.7 0 0 0 0

8.8 0 0 0 0

8.9 0 0 0 0

8.A 0 0 0 0

8.B 0 0 0 0

167  Total 2/11 2/11 2/11 2/11

(h) SDG 8
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Table A.3: Boolean indicators of contribution of composite materials to SDGs 9 to 16,
as per considered industries.

Target Aerospace Civil Wind Naval Target Aerospace Civil Wind Naval
9.1 0 1 1 0 10.1 0 0 0 0
9.2 1 1 1 1 10.2 0 0 0 0
9.3 0 0 0 0 10.3 0 0 0 0
9.4 1 1 1 1 10.4 0 0 0 0
9.5 1 1 1 1 10.5 0 0 0 0
9.A 0 1 1 1 10.6 0 0 0 0
9.B 1 1 1 1 10.7 0 0 0 0
9.C 0 0 0 0 10.A 0 0 0 0

Total 4/8 6/8 6/8 5/8 10.B 0 0 0 0
(a) SDG 9 10.C 0 0 0 0
Total 0/10 0/10 0/10 0/10

(b) SDG 10

Target Aerospace Civil Wind Naval Target Aerospace Civil Wind Naval
11.1 0 1 0 0 12.1 0 0 0 0
11.2 1 1 1 1 12.2 1 1 1 1
11.3 0 0 0 0 12.3 0 0 0 0
11.4 0 0 0 0 12.4 0 0 0 0
11.5 0 0 0 0 12.5 1 1 1 1
11.6 0 1 1 0 12.6 1 1 1 0
11.7 0 0 0 0 12.7 0 0 0 0

11.A 0 0 0 0 12.8 0 0 0 0
11.B 0 1 1 0 12.A 0 0 0 0
11.C 0 1 0 0 12.B 0 0 0 0
Total 1/10 5/10 3/10 1/10 12.C 0 0 0 0
(c) SDG 11 Total 3/11 3/11 3/11 2/11

(d) SDG 12

Target Aerospace Civil Wind Naval Target Aerospace Civil Wind Naval
13.1 0 0 0 0 14.1 0 0 0 1
13.2 0 0 0 0 14.2 0 0 0 0
13.3 0 0 0 0 14.3 0 0 0 0

13.A 0 0 0 0 14.4 0 0 0 0
13.B 0 0 0 0 14.5 0 0 0 0
Total o/5 0/5 0/5 0/5 14.6 0 0 0 0
(e) SDG 13 14.7 0 0 0 0
14.A 0 0 0 0
14.B 0 0 0 0
14.C 0 0 0 0
Total 0/10 0/10 0/10 1/10

(f) SDG 14

Target Aerospace Civil Wind Naval Target Aerospace Civil Wind Naval
15.1 0 0 0 0 16.1 0 0 0 0
15.2 0 0 0 0 16.2 0 0 0 0
15.3 0 0 0 0 16.3 0 0 0 0
15.4 0 0 0 0 16.4 0 0 0 0
15.5 0 0 0 0 16.5 0 0 0 0
15.6 0 0 0 0 16.6 0 0 0 0
15.7 0 0 0 0 16.7 0 0 0 0
15.8 0 0 0 0 16.8 0 0 0 0
15.9 0 0 0 0 16.9 0 0 0 0

15.A 0 0 0 0 16.10 0 0 0 0
15.B 0 0 0 0 168 16.A 0 0 0 0
15.C 0 0 0 0 16.B 0 0 0 0
Total 0/12 0/12 0/12 0/12 Total 0/12 0/12 0/12 0/12

(g) SDG 15 (h) SDG 16
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Table A.4: Boolean indicators of contribution of composite materials to SDG 17, as
per considered industries.

Target Aerospace Civil Wind Naval

171 0 0 0 0
17.2 0 0 0 0
17.3 0 0 0 0
17.4 0 0 0 0
17.5 0 0 0 0
17.6 11 1 1
17.7 11 1 1
17.8 0 0 0 0
17.9 0 0 0 0
17.10 0 0 0 0
17.11 10 0 1
17.12 0 0 0 0
17.13 0 0 0 0
17.14 0 0 0 0
17.15 0 0 0 0
17.16 0 0 0 0
17.17 0 0 0 0
17.18 0 0 0 0
17.19 0 0 0 0
Total 3/19 2/19 2/19 3/19
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Appendix B. FMECA Tables
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Appendix C

Repair success probabilities

(Chapter 5)

C.1 Repair success probabilities

Table C.1: P; probabilities.

0 (Inspection) 1 2 3 4 5 6
Jan  0.6614 0.6614 0.6614 0.6614 0.6614 0.3665 0.3665
Feb  0.7075 0.7075 0.7075 0.7075 0.7075 0.4052 0.4052
Mar 0.7194 0.7194 0.7194 0.7194 0.7194 0.4138 0.4138
Apr  0.8004 0.8004 0.8004 0.8004 0.8004 0.4807 0.4807
May 0.8138 0.8138 0.8138 0.8138 0.8138 0.4812 0.4812
Jun  0.8533 0.8533 0.8533 0.8533 0.8533 0.5326 0.5326
Jul 0.8663 0.8663 0.8663 0.8663 0.8663 0.5356 0.5356
Aug  0.8388 0.8388 0.8388 0.8388 0.8388 0.5083 0.5083
Sep  0.7908 0.7908 0.7908 0.7908 0.7908 0.4722 0.4722
Oct  0.7169 0.7169 0.7169 0.7169 0.7169 0.3162 0.3162
Nov  0.6880 0.6880 0.6880 0.6880 0.6880 0.3813 0.3813
Dec  0.6605 0.6605 0.6605 0.6605 0.6605 0.3841 0.3841
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Appendix C. Repair success probabilities (Chapter 5)

Table C.2: P, probabilities.

0 (Inspection) 1 2 3 4 5 6
Jan  0.8444 0.7615 0.7243 0.6891 0.4624 0.1000 0.1000
Feb  0.8653 0.7925 0.7595 0.7281 0.5264 0.1000 0.1000
Mar 0.8832 0.8186 0.7892 0.7611 0.5715 0.1000 0.1000
Apr  0.9071 0.8544 0.8298 0.8062 0.6418 0.1000 0.1000
May 0.9070 0.8556 0.8317 0.8088 0.6483 0.1000 0.1000
Jun  0.9191 0.8728 0.8514 0.8307 0.6846 0.1000 0.1000
Jul  0.9221 0.8772 0.8514 0.8356 0.6921 0.1000 0.1000
Aug 0.8945 0.8369 0.8103 0.7849 0.6118 0.1000 0.1000
Sep  0.8912 0.8314 0.8037 0.7772 0.5964 0.1000 0.1000
Oct  0.8442 0.7597 0.7216 0.6856 0.4571 0.1000 0.1000
Nov  0.8303 0.7409 0.7006 0.6624 0.4264 0.1000 0.1000
Dec  0.8412 0.7576 0.7198 0.6840 0.4567 0.1000 0.1000
Table C.3: Ps3 probabilities.
0 (Inspection) 1 2 3 4 5 6
Jan  0.9614 0.9414 0.9309 0.9191 0.8066 0.1000 0.1000
Feb 0.9613 0.9409 0.9302 0.9196 0.8124 0.3930 0.3779
Mar 0.9680 0.9510 0.9417 0.9321 0.8387 0.1000 0.1000
Apr  0.9703 0.9538 0.9449 0.9352 0.8432 0.4560 0.4560
May 0.9708 0.9550 0.9463 0.9374 0.8502 0.4124 0.4124
Jun  0.9666 0.9481 0.9383 0.9281 0.8320 0.2432 0.2571
Jul 0.9751 0.9606 0.9383 0.9446 0.8645 0.3236 0.2991
Aug 0.9689 0.9521 0.9433 0.9342 0.8447 0.6747 0.6898
Sep  0.9703 0.9545 0.9459 0.9369 0.8510 0.2917 0.2917
Oct  0.9590 0.9353 0.9223 0.9095 0.7857 0.1000 0.1000
Nov  0.9630 0.9425 0.9316 0.9199 0.8057 0.1000 0.1000
Dec  0.9690 0.9534 0.9447 0.9359 0.8492 0.1000 0.1000
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Appendix D

Repair success probabilities

(Chapter 6)

D.1 Repair success probabilities

Table D.1: CS1 P; probabilities. The first row represents the damage severity

0 (Inspection) 1 2 3 4 5 6
Jan  0.6614 0.6614 0.6614 0.6614 0.6614 0.3665 0.3665
Feb  0.7075 0.7075 0.7075 0.7075 0.7075 0.4052 0.4052
Mar 0.7194 0.7194 0.7194 0.7194 0.7194 0.4138 0.4138
Apr  0.8004 0.8004 0.8004 0.8004 0.8004 0.4807 0.4807
May 0.8138 0.8138 0.8138 0.8138 0.8138 0.4812 0.4812
Jun  0.8533 0.8533 0.8533 0.8533 0.8533 0.5326 0.5326
Jul 0.8663 0.8663 0.8663 0.8663 0.8663 0.5356 0.5356
Aug  0.8388 0.8388 0.8388 0.8388 0.8388 0.5083 0.5083
Sep  0.7908 0.7908 0.7908 0.7908 0.7908 0.4722 0.4722
Oct  0.7169 0.7169 0.7169 0.7169 0.7169 0.3162 0.3162
Nov  0.6880 0.6880 0.6880 0.6880 0.6880 0.3813 0.3813
Dec  0.6605 0.6605 0.6605 0.6605 0.6605 0.3841 0.3841
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Appendix D. Repair success probabilities (Chapter 6)

Table D.2: CS1 P, probabilities. The first row represents the damage severity

0 (Inspection) 1 2 3 4 5 6
Jan  0.8444 0.7615 0.7243 0.6891 0.4624 0.1000 0.1000
Feb  0.8653 0.7925 0.7595 0.7281 0.5264 0.1000 0.1000
Mar 0.8832 0.8186 0.7892 0.7611 0.5715 0.1000 0.1000
Apr  0.9071 0.8544 0.8298 0.8062 0.6418 0.1000 0.1000
May 0.9070 0.8556 0.8317 0.8088 0.6483 0.1000 0.1000
Jun  0.9191 0.8728 0.8514 0.8307 0.6846 0.1000 0.1000
Jul  0.9221 0.8772 0.8514 0.8356 0.6921 0.1000 0.1000
Aug 0.8945 0.8369 0.8103 0.7849 0.6118 0.1000 0.1000
Sep  0.8912 0.8314 0.8037 0.7772 0.5964 0.1000 0.1000
Oct  0.8442 0.7597 0.7216 0.6856 0.4571 0.1000 0.1000
Nov  0.8303 0.7409 0.7006 0.6624 0.4264 0.1000 0.1000
Dec  0.8412 0.7576 0.7198 0.6840 0.4567 0.1000 0.1000

Table D.3: CS1 Ps probabilities. The first row represents the damage severity

0 (Inspection) 1 2 3 4 5 6
Jan  0.9614 0.9414 0.9309 0.9191 0.8066 0.1000 0.1000
Feb 0.9613 0.9409 0.9302 0.9196 0.8124 0.3930 0.3779
Mar 0.9680 0.9510 0.9417 0.9321 0.8387 0.1000 0.1000
Apr  0.9703 0.9538 0.9449 0.9352 0.8432 0.4560 0.4560
May 0.9708 0.9550 0.9463 0.9374 0.8502 0.4124 0.4124
Jun  0.9666 0.9481 0.9383 0.9281 0.8320 0.2432 0.2571
Jul 0.9751 0.9606 0.9383 0.9446 0.8645 0.3236 0.2991
Aug 0.9689 0.9521 0.9433 0.9342 0.8447 0.6747 0.6898
Sep  0.9703 0.9545 0.9459 0.9369 0.8510 0.2917 0.2917
Oct  0.9590 0.9353 0.9223 0.9095 0.7857 0.1000 0.1000
Nov  0.9630 0.9425 0.9316 0.9199 0.8057 0.1000 0.1000
Dec  0.9690 0.9534 0.9447 0.9359 0.8492 0.1000 0.1000
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Appendix D. Repair success probabilities (Chapter 6)

Table D.4: CS2 P; probabilities. The first row represents the damage severity

0 (Inspection) 1 2 3 4 5 6
Jan  0.4374 0.4374 0.4374 0.4374 0.6614 0.3665 0.3665
Feb  0.5006 0.5006 0.5006 0.5006 0.7075 0.4052 0.4052
Mar 0.5175 0.5175 0.5175 0.5175 0.7194 0.4138 0.4138
Apr  0.6406 0.6406 0.6406 0.6406 0.8004 0.4807 0.4807
May 0.6622 0.6622 0.6622 0.6622 0.8138 0.4812 0.4812
Jun  0.7282 0.7282 0.7282 0.7282 0.8533 0.5326 0.5326
Jul  0.7504 0.7504 0.7504 0.7504 0.8663 0.5356 0.5356
Aug 0.7036 0.7036 0.7036 0.7036 0.8388 0.5083 0.5083
Sep  0.6253 0.6253 0.6253 0.6253 0.7908 0.4722 0.4722
Oct  0.5140 0.5140 0.5140 0.5140 0.7169 0.3162 0.3162
Nov  0.4733 0.4733 0.4733 0.4733 0.6880 0.3813 0.3813
Dec  0.4362 0.4362 0.4362 0.4362 0.6605 0.3841 0.3841

Table D.5: CS2 P» probabilities. The first row represents the damage severity

0 (Inspection) 1 2 3 4 5 6
Jan  0.7130 0.5799 0.5246 0.4748 0.4624 0.1000 0.1000
Feb  0.7488 0.6280 0.5768 0.5302 0.5264 0.1000 0.1000
Mar 0.7800 0.6701 0.6228 0.5793 0.5715 0.1000 0.1000
Apr  0.8229 0.7300 0.6885 0.6500 0.6418 0.1000 0.1000
May 0.8226 0.7320 0.6917 0.6541 0.6483 0.1000 0.1000
Jun  0.8448 0.7618 0.7248 0.6900 0.6846 0.1000 0.1000
Jul 0.8502 0.7694 0.4790 0.6983 0.6921 0.1000 0.1000
Aug 0.8001 0.7004 0.6566 0.6160 0.6118 0.1000 0.1000
Sep  0.7943 0.6912 0.6459 0.6041 0.5964 0.1000 0.1000
Oct  0.7126 0.5771 0.5207 0.4700 0.4571 0.1000 0.1000
Nov  0.6894 0.5489 0.4908 0.4388 0.4264 0.1000 0.1000
Dec  0.7077 0.5740 0.5181 0.4678 0.4567 0.1000 0.1000
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Appendix D. Repair success probabilities (Chapter 6)

Table D.6: CS2 P5 probabilities. The first row represents the damage severity

0 (Inspection) 1 2 3 4 5 6
Jan  0.9243 0.8862 0.8666 0.8447 0.8066 0.1000 0.1000
Feb  0.9241 0.8853 0.8653 0.8457 0.8124 0.3930 0.3779
Mar 0.9370 0.9044 0.8868 0.8688 0.8387 0.0940 0.0880
Apr  0.9415 0.9097 0.8928 0.8746 0.8432 0.4560 0.4560
May 0.9425 0.9120 0.8955 0.8787 0.8502 0.4124 0.4124
Jun  0.9343 0.8989 0.8804 0.8614 0.8320 0.2432 0.2571
Jul  0.9508 0.9228 0.7474 0.8923 0.8645 0.3236 0.2991
Aug 0.9388 0.9065 0.8898 0.8727 0.8447 0.6747 0.6898
Sep  0.9415 0.9111 0.8947 0.8778 0.8510 0.2917 0.2917
Oct  0.9197 0.8748 0.8506 0.8272 0.7857 0.1000 0.1000
Nov  0.9274 0.8883 0.8679 0.8462 0.8057 0.1000 0.1000
Dec  0.9390 0.9090 0.8925 0.8759 0.8492 0.1000 0.1000
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