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Abstract 

 
This thesis is devoted to the identification of electric power system dynamic 

equivalent for online application which calls for the equivalent featuring high 

reliability but limited modelling data use. The aim is to develop dynamic equivalent 

based on grey-box approach where recorded responses at boundaries are used 

together with partial modelling data (i.e. only power flow modelling data) to 

construct the dynamic equivalent. 

 

The proposed identification-based dynamic equivalencing method consists of three 

major steps: coherent generator identification from power flow modelling data, 

determination of an appropriate model structure for the equivalent of the external 

part (i.e. a reduced set of equations without the values of their coefficient) from the 

knowledge of coherent generators, and parameter identification of the model 

structure without a complete system simulation. The obtained equivalent is modelled 

by a combination of equivalent generators, equivalent transmission lines, and 

equivalent shunts. Therefore, it can be directly implemented into conventional power 

system software without any modification. 

 

A node weighted graph model and its coherency theorem are employed to develop 

the coherent generator identification. The node weighted graph model represents 

power system dynamic model in the way that parameters of generators and of 

transmission network are presented in different components of the graph. Therefore 

it allows making an assumption to identify coherent generator by using only power 

flow modelling data. 

 

An aggregation process of coherency-based dynamic equivalent is adapted to 

develop a procedure to determine the model structure for the equivalent of the 

external part. The procedure is straightforward except that no generator parameters 

are used. This results in the sets of equations which represent the model structure 

preserving the form of conventional power system components (i.e. equivalent 

generator, reduced transmission lines, and equivalent shunts). As the model structure 

for the equivalent is determined based on knowledge of coherent generator rather 

than an intuitive choosing, the obtained dynamic equivalent would be more reliable. 

 

The values of the parameters of the model structure, in particular the parameters of 

equivalent generators, are identified by using non-linear optimisation technique to fit 

the responses of the reduced model (i.e. internal part and external equivalent) with 



 v 

that of the original system. In order to reduce the time usage during the parameter 

identification process, the parameter identification technique that does not require a 

complete system simulation is developed. The technique is based on re-formulation 

of the obtained model structure as the input-output model. One set of recorded 

responses at boundaries is used as the input while another set is used as the original 

response for fitting. By using this technique, only external equivalent is needed to be 

simulated during fitting process. Therefore, the total usage time would be greatly 

reduced. 

 

Finally, the proposed identification-based dynamic equivalencing method has been 

applied to IEEE39 bus and IEEE118 bus system for extensive performance 

evaluation. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

External equivalent is a simplified model for replacing an uninterested part, known 

as an external part, of a power system model. This replacement aims to reduce the 

dimension of the original model whilst the part of interest remains unchanged. The 

model reduction through using equivalent expects to provide a reduced model that 

can perform detailed studies of the interested part in cost-effective way, for instance 

requiring less computing resources (time and memory) while retaining acceptable 

accuracy. Hence, more analysis can be performed within available resources [1]. 

 

According to type of analysis, there are two kinds of equivalents known as Static 

Equivalent and Dynamic Equivalent. The static equivalent is an equivalent model 

applied in steady state analysis, in particular power flow analysis. The dynamic 

equivalent is an equivalent model applied in dynamic analysis and may be further 

divided into three broad categories according to their dynamics of interest: high 

frequency equivalent, low frequency equivalent, and wide-band equivalent[2]. The 

first two categories correspond to the equivalents of electromagnetic transient model 

and electromechanical transient model, respectively, while the equivalent that is able 

to represent both high and low frequency dynamics of power system falls into the 

wide-band category. The problem of deriving and utilising static equivalent is 

practically solved and the reviews of major techniques are documented [3-6]. 

However, there is still need for the dynamic equivalent, especially the low frequency 

equivalent. 

 

The low frequency equivalent or electromechanical equivalent has received high 

attention as it benefits the angle stability analysis of a power system; and it has been 

extensively developed since 1960s. Despite a long development in conjunction with 
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a dramatic progress in computer performance, the need for further research in 

dynamic equivalent is still required.This is because a recently arising unconventional 

power system model from connection of power electronics [2, 7] as well as a 

changing of analysis environments towards online that place more constraints on 

equivalencing method and its equivalent model[8]. In this thesis, attention is directed 

to the second topic - for online application. 

 

This chapter set out to give an overview of dynamic equivalent. Equivalencing 

approach and equivalent model are firstly reviewed, and then the challenging issues 

are addressed. Research aim and objectives, research methodology, and contribution 

of thesis are next discussed. Finally, the organisation for the rest of thesis is given. 

 

1.2 Review of dynamic equivalent 

 

This review is divided into two parts. The first part discusses equivalencing approach 

and equivalent models as these are fundamental aspects of dynamic equivalencing. 

Instead of focusing on the development and the details of well accepted methods, 

selected literatures are brought to show a variety of equivalencing methods and 

equivalent models. The second part addresses the challenging issues involving the 

current need of development, in particular dynamic equivalent for online application, 

and discusses the possible solutions of these challenging issues.  

 

1.2.1 Equivalencing approach and Equivalent model  

 

From the modeling point of view[9], the dynamic equivalent may be constructed by 

following two distinct frameworks: Analytical framework and Identification 

framework. In the analytical framework, the construction of dynamic equivalent is 

based on an application of laws from various disciplines such as mathematics, linear 

system theory, and non-linear system theory to reduce an original model. By 

contrast, the dynamic equivalent is determined by adjusting an assumed model until 

its response matches the response from the original model or field measurements 

when using identification framework approach. From these two distinct frameworks 
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and their combinations, a variety of dynamic equicalencing has been developed and 

may be classified into three approaches, similar to the classification of 

modelling[10], and can be named as White box approach, Black box approach and 

Grey box approach as shown in Figure 1. 

 

 

 

Figure 1.1 Overview of construction of dynamic equivalent 

 

The white box approach is purely based on the analytical framework. It is normally 

applies when a complete set of modelling data (e.g. model, parameter values, and 

operating status) is available and the parts to be equivalenced are represented by 

simple models. Most researchers have paid attention on this approach because the 

obtained dynamic equivalent is reliable and has a high possibility of keeping physical 

insight. Two of the well accepted methods are Coherency-based methods [11-14] and 

Modal-based methods [15, 16]. 

 

The black box approach is purely based on identification framework. It applies when 

the access to the modelling data is limited or the parts to be equivalenced are 

represented by more complex models and where there is a lack of analytical 

techniques. Even though it sounds practical, research works based on this approach 

are much fewer than the previous approach and are quite diverse due to different 

opinions on choosing the type of model representing the equivalent. Many types of 

models, such as differential equation model in fictitious generator formulation [17], 

stochastic model [18], and nonparametric model based on artificial neural network 

[19], have been tried and claimed successful results. However, since the part to be 

equivalenced is treated as unknown, their true capability and validity are difficult to 

justify because there are no any other evidences to prove except a testing on different 

set of training data. 
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The grey box approach is a combination of the white box and black box approaches 

to compromise for a particular practical solution. A traditional combination 

mentioned in [10] and may be well applied to the context of equivalencing is that the 

model type and the model structure of the part to be equivalenced are determined 

from the white box approach, whilst its parameters are determined from the black 

box approach. However, an implementation of grey-box equivalencing method is 

rather complicated and is problem dependent. Furthermore, it requires good 

experience in power system modelling and system dynamics of the part to be 

equivalenced as well as a familiarity with existing equivalencing methods. For 

example, dynamic equivalent for extended time simulation in DYNRED software [1] 

is composed of two parts regarding to their impacts of different time. The first part, 

fundamental part (reduced network and equivalent generators), is constructed by 

Coherency-based method. The second part, extended part (excitation system), is 

constructed by identification technique based on sensitivity method due to its 

nonlinearity and multitude of excitation system models. 

 

Apart from focusing on approach, the study also concerns the model formulation as it 

determines permissible analysis tasks (time domain simulation and linearised 

analysis), compatible power system analysis software, and applicable equivalencing 

techniques. The equivalent model may be classified into two classes which are power 

system component respectively preserved equivalents and non-power system 

component preserved equivalents. The former represents the equivalent by a 

combination of conventional power system components such as transmission lines, 

shunt reactance, and generators; but the latter represents the equivalent by other 

models such as state equation, differential algebraic equation (DAE), and artificial 

neural network. In some literatures[20], the equivalent represented by DAE is called 

power system structure preserved equivalent because it preserves the structure of the 

power system model which consist of dynamic devices (differential equation) and 

transmission network (algebraic equation). However, the zero entries of matrices are 

not retained so these equivalents cannot be reformulated back to power system 

components. Figure 2 shows an overview of model formulation for dynamic 

equivalent as mentioned above. So far the power system component preserved 

equivalents have received wide acceptance, especially those obtained by Coherency-
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based method, because they have physical meaning and is compatible with most of 

power system analysis software, and can be performed in both time domain 

simulation and linearised analysis. 

 

 

 

Figure 1.2 Overview of model formulation for dynamic equivalent 

 

1.2.2 Challenging issues of dynamic equivalent for online application 

 

Basically, online analysis [21] is performing analyses on a snapshot of current 

system condition. The main aim is to obtain the results of analyses from accurate 

system condition than those based on forecasting condition under offline condition. 

However, online analysis requires an extensive computation power and up-to-date 

model, and hence restricts its implementation due to the limited computational 

resources of an installed system and a lack of real-time detailed modeling data of 

neighbouring system[8]. A reduced external system has been considered as one way 

to overcome these difficulties by reducing the size of the overall system and 

decreasing the amount of real-time data required. This, therefore, makes dynamic 

equivalent more involved and faced a number of challenging issues. 

 

There are three major challenging issues towards online application, namely 

modeling data, validity of equivalent, and compatibility of software. Firstly, 

modeling data (both offline data and real time data) may not be completely 

accessible, thus restricting an applicable equivalencing approaches (black-box or 

grey-box). Secondly, as the analyses are normally a predictive type, an equivalent 

itself must be valid for various circumstances such as various types of faults, various 

locations of faults, and various operating conditions. Thirdly, the equivalent should 

be formulated in conventional power system component models so as to be 

compatible with various existing software and applications.  
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Accordingly, many research works on dynamic equivalent aiming for online 

application have been conducted and at least two main schemes have commonly 

been found in the literatures. The first scheme focuses on an offline construction of a 

robust equivalent which could cover wide circumstance of validity. By contrast, the 

second scheme is more like a tailor-made model where the equivalent is 

reconstructed or partly updated for each particular circumstance such as a new 

operating condition or a new zone of contingencies[22] before performing analyses.  

 

In the first scheme, an artificial neural network-based dynamic equivalent [19, 23-25] 

is a promising solution as it can capture a wide range of system dynamics. However, 

the main objection is its incompatibility with many commercial power system 

software and applications. With respect to compatibility issue, the second scheme is 

more appealing as it can generally apply to many equivalent models based on 

identification framework (either black box approach or grey box approach), 

especially those using conventional model of power system components.  

 

However, identification-based dynamic equivalent intended for use in the second 

scheme requires further investigation and improvement in two aspects: its validity 

and its construction time. The validity of equivalent determines what studies within 

the internal part (illustrated by a box with upward diagonal pattern in Figure 3) can 

be accurately performed, while the construction time determines how frequently the 

equivalent can be reconstructed or updated. These two aspects affect effectiveness 

and efficiency of the scheme.  

 

 

 

 

 

 

 

Figure 1.3 Second implementation scheme of dynamic equivalent for online 

application 
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Until now, the identification-based dynamic equivalent (either black-box or grey-box 

approaches) has no clear answer about a selection of an appropriate model structure 

corresponding to a chosen model type. For example, in the case of fictitious 

generator model type, the choice of a suitable number of fictitious generators and 

their proper way of interconnection are still not solved; and, attaching one fictitious 

generator to each boundary buses is simply used among the literatures. This may 

cause an inappropriate model structure and hence deteriorating the validity of the 

obtained equivalent. The possible consequence is that the study, which can be 

performed with an acceptable accuracy, on a resultant reduced system would be very 

limited and unpredictable. Another concern is a time usage during parameter 

identification process as it usually involves a non-linear optimization that requires a 

simulation of a full system (i.e. internal part and the equivalent) every time 

parameters adjusted to produce the responses of the reduced system for a comparison 

with those of the original system. The repetitive full system simulation is a time 

consuming process, especially when the internal part is very large or is modelled in 

great detail. This may result in a long construction time that is unable to fit to an 

allocated time during online construction stage. 

 

1.3 Research aim and objectives 

 

The aim of this thesis is to develop dynamic equivalent for online applications based 

on the second scheme mentioned in the previous section. In order to achieve this aim, 

the identification-based dynamic equivalent (grey box approach) having the 

following three properties is being developed: 

 

- Compatible with conventional power system software 

- More reliable (i.e. the model structure relies on the modelling data rather 

than iterative process), and 

- Fast construction time.  
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1.4 Research methodology 

 

The methodology used to develop identification-based dynamic equivalent for online 

applications is divided into two major phases: development phase and evaluation 

phase. The development phase comprises of the three following steps: 

1. Study the feasibility of the determination of a suitable model structure 

from limited data of the part to be equivalenced. 

2. Develop a procedure to identify the equivalent based on the obtained 

model structure. 

3. Develop a procedure to identify parameters of an equivalent without full 

system simulation. 

In the evaluation phase, the key performances of the developed equivalent are 

examined as follows: 

1. the validity of the equivalent by a study of a full system under various 

conditions 

2. the improvement in reliability by a comparison with full system study 

formed by other equivalents 

3. the improvement in construction time by a comparison with the procedure 

that requires full system simulation  

 

1.5 Contributions of the thesis 

 

The major contributions of this thesis are fourfolds: 

 

1. Development and verification of a new methodology for constructing 

identification-based dynamic equivalent based on grey-box approach 

 

2. Development and verification of a new methodology for coherent generator 

identification based on graph model 

 

3. Development and verification of a new methodology for parameter 

identification without full system simulation. 

 



9 

4. Application of the developed computer programs based on the above 

methodologies of (1), (2), and (3) to IEEE 39 bus system and IEEE 118 bus 

system. 

 

1.6 Organisation of the thesis 

 

The thesis is organised in seven chapters. Chapter 2 is a mathematical survey of 

dynamic equivalent to investigate the applicability to the development of dynamic 

equivalents for online application. 

 

Chapter 3 describes the identification of coherent generator based on Graph model. 

The related graph theorems and their application to identify coherent generators 

together with test results are included. Moreover, an extension for coherent generator 

identification without parameters of generators is discussed. 

 

By using a structure of equivalent based on the knowledge of coherent generator 

provided from the above technique, the procedure to construct more reliable 

identification-based dynamic equivalent that requires only power flow modeling data 

and measurements at boundary buses is explained and illustrated in Chapter 4. 

 

In order to reduce the construction time of the procedure in Chapter 4, Chapter 5 

provides the modified parameter identification technique that requires no simulation 

of complete system. Test results are also discussed in this chapter. 

 

Combining the parametric identification of dynamic equivalent and the modified 

parameter identification technique described in Chapter 4 and 5 respectively, a 

procedure for constructing identification-based dynamic equivalent aiming for online 

application is developed. Chapter 6 is devoted to the applications of the procedure to 

the two case studies (IEEE 39 bus system and IEEE 118 bus system). 

 

Finally, Chapter 7 is the conclusion and suggestion for future work. 
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CHAPTER 2 

 

MATHEMATICAL SURVEY OF DYNAMIC EQUIVALENT 

 

 

2.1 Introduction 

 

Derivation of dynamic equivalent was initially based on empirical method. For 

example, a transmission network and loads are reduced by a method of static 

equivalent while all external generators are simply replaced by one equivalent 

generator [1] or by equivalent generators whose inertias are allocated following the 

distribution factor [2]. An accuracy of dynamics study by using these equivalents 

may not be adequate because the equivalencing procedures do not directly focus on 

the actual impact of dynamics interaction between the part being retained (the 

internal part) and the part being equivalenced (the external part). Therefore, more 

sophisticated methods have been proposed and studied to obtain a better performance 

of dynamic equivalent including additional features such as a short construction time, 

less modeling data required, and a power system structure preserved. Over past four 

decades, a number of dynamic equivalencing methods have been developed. Among 

them are three classes of methods dominated, namely Modal-based method, 

Coherency-based method, and identification-based method. Understanding of these 

methods (e.g. their key concepts, properties, and progress) is not only necessary for 

using but also useful for further developing. 

 

This chapter provides a mathematical survey of dynamic equivalent, in particular 

Modal-based method, Coherency-based method, and identification-based method. 

First, the individual method and its variations are reviewed. Afterward, their 

applicability to the development of identification-based dynamic equivalent for 

online application is discussed.    

 

2.2 Modal-based methods 

 

The key concept of modal-based method is that some modes of responses of the 

external part, such as fast decay modes, have negligible effect on the internal part. 

Thus, they could be eliminated in order to obtain the reduced order model of the 
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external part. According to this concept, Undrill et al. [3, 4] utilised the linear modal 

analysis of the external part to identify the insignificant modes from its eigenvalues 

and proposed the equivalencing method that could be summarized into four major 

steps as shown in Figure 2.1. 
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Figure 2.1 Summarized procedure for constructing Modal-based dynamic equivalent 

by Undrill et al. 
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 In the first step, the equations of transmission network, loads, and generating units, 

which belong to the external part, are extracted from the entire power system model. 

Next, these equations are linearised and reformulated into a linearised state equation 

form in the second step. Afterward, in the third step, the linearised state equation 

form is transformed into the canonical form for a separation of natural modes of the 

responses; and then, the selected natural modes (such as large negative eigenvalues 

corresponding to fast decay modes) are deleted for the order reduction of the 

canonical form equation. Finally, the fourth step combines the reduced canonical 

form equation and the nonlinear differential equations of the internal part to form a 

reduced system for the dynamics simulation. In this step, the based points of terminal 

voltages and currents are needed to be included as the reduced canonical form 

equation of the external part is a small-signal model type (a linearised model). 

 

A modal-based equivalent method was successful implemented and tested on a large-

scale system (1323 bus system) [5, 6] and revealed that, even the equivalent was for 

a small-signal type, the obtained reduced system is able to perform with sufficient 

accuracy for large-signal time domain simulation (i.e. transient stability) under 

numerous fault locations, as long as, the faults are far from the boundary. However, 

the implementation of modal-based equivalent requires a time-consuming Eigen 

analysis and some modification of the main simulation program. It also appears that 

elimination of selected modes following the authors’ proposed criteria could give 

unacceptable equivalent and further research on mode-selection is required The 

authors, therefore, suggest using the original unreduced canonical state equation in 

order to avoid degradation of accuracy resulting from improper selection of modes. 

This would not significantly affect the benefit of using equivalent because the 

obtained unreduced canonical state equation of the external part is computationally 

efficient due to its diagonalised structure. In addition, the effectiveness of this modal-

based method was confirmed by the testing in [7]. 

 

Furthermore, Takeda et al. [8] proposed a modal-based dynamic equivalent having a 

model in a parallel-generator formation. The general idea of deriving the equivalent 

is similar to Undrill’s method [3, 4] except that the related equations of the external 

part are formulated in the term of transfer function to neglect terms having small 
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coefficients and an extra step to re-compose the reduced transfer function to 

generator formation is introduced. Afterward, de Oliveira et al [9, 10] extended 

above method and developed the dynamic equivalent in generator formation, called 

Modal-generator, where one of the modal-generators corresponds to one retained 

mode of oscillation. By including the base points as constant admittances, both 

methods need no modification of the main simulation program. The difficulty in 

mode selection is not reported as the reduction is directly considered from explicit 

expression between outputs and inputs. Their test results show good quality of the 

equivalents and both methods can be applied to a more complicated generator model. 

However, the obtained equivalents are artificial generators having no physical 

meaning.  

 

Yu-Ken et al. [11] also proposed the equivalencing method which produces the 

equivalent in power system component. However, the major difference of their 

method is that linear analysis is applied to the entire power system model rather than 

the extracted external equations. The concepts of Reachability Grammian and 

Singular value decomposition are utilized for order reduction, which is confined to 

the part belonging to the external. The final equivalent model in the form of 

generators and power network is then synthesized from the corresponding terms of 

the reduced equations. The authors also suggested the technique for matching power 

flows at boundaries in order to connect the obtained equivalent with the detailed 

model of the internal part for transient stability analysis. Even though this method is 

developed from a rigorous mathematical technique, it is limited to a classical 

generator model for the external part and no numerical testing results are presented.   

 

In addition, Perez-Arriaga et al. [12, 13] introduced a new framework for physically-

based model reduction called Selective Modal Analysis (SMA). The basic concept is 

to perform the model reduction on the original state equation setting, which has a 

physical meaning, rather than the transformed version (e.g. diagonalised state 

equation). In order to achieve the model reduction based on this concept, the portion 

of model and its states variables significantly involved with the modes being retained 

are first identified; and then, the remaining part and its associated states (less relevant 

states) are collapsed in the way that do not affect the retained dynamics. Although an 
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iterative algorithm for performing the model reduction following this framework has 

been proposed, its application in dynamic equivalent of power system has not 

received much attention. This is because of the difficulty in finding the suitable 

modes being retained (and accordingly their relevant states).  

 

Ramawamy et al. [14, 15] later proposed a Synchronic Modal Equivalencing (SME) 

which grows out of Slow-coherency and SMA frameworks. The method is composed 

of two phases: a structuring phase and a modal equivalencing phase. In the 

structuring phase, an analysis of modal structure is performed on a simple model 

(e.g. linearised swing-equation model) of the entire original system to cluster the 

generators into decomposable groups, called Synchronic groups. Then, in the 

equivalencing phase, one of these groups is chosen as a study system while others are 

equivalenced in SMA style by considering states of one generator in each group as 

relevant states. Although a full detailed model of the original system is resumed 

during this phase, the equivalencing based on SMA framework gives an equivalent in 

a small-signal type represented by a linear multi-port admittance. In order to use the 

equivalent in non-linear time domain simulation, the based-points (corresponding to 

the nominal steady-state condition) are included by using a constant current source.  

The testing with intermediate-sized model for various perturbations in the study 

system [16] showed promising results except when the perturbation is at the 

transmission line connected between different groups of synchrony. Therefore, the 

further research is still needed. 

 

2.3 Coherency-based methods 

 

Coherency-based method was originally introduced by Chang et al. [17]. The 

derivation of equivalent was based on the condition that there exist groups of 

generators oscillating in cohesion, known as Coherent, which is defined in (1). 

 

maxijji tt,C)t()t( ≤≤≅− 0δδ                                        (1) 

 

Where )t(iδ and )t(iδ  are the rotor angle of i-th and j-th generators at time t 

respectively and ijC is a constant. 
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The existence of this condition results in a reasonably mathematical approximation 

of each group of coherent generators by one set of generator equation. However, in 

this original method, the derivation is based on a time-varying current source 

representing generator which is uncommon for the main simulation program (see 

[17] for details).  

 

This concept is further developed by Podmore et al. [18-20]and leads to the 

coherency-based method that provides an equivalent in a conventional power system 

component representation. The method is composed of four main steps: coherency 

identification, generator bus reduction, load bus reduction, and dynamic aggregation 

of generating unit models (see figure 2.2).  

 

From Figure 2.2, the groups of coherent generators are first identified from swing 

curves obtained by time domain simulation of the full system for a particular fault. 

Next, the coherent generators of each group are transferred to the equivalent buses 

via ideal phase-shift transformers; and then, their terminal buses are eliminated in the 

second step.  The third step is load bus reduction and is often based on technique of 

network equivalent (such as Ward method). For example, the loads are represented 

by constant impedances and then Gaussian elimination is performed to eliminate the 

buses. Finally, the dynamic models of generating units for each coherent group are 

aggregated.  

 

Similar to Chang’s concept, the derivation of the equivalent relies on justification for 

simplifying or approximating parts of model when the coherent condition exists. In 

fact, there are two types of coherencies (the generator terminal bus coherency and the 

generator internal bus coherency) sequentially identified in this method during the 

first step. The former coherency gives the condition to obtain an approximately 

constant transformation ratio of phase-shift transformer for transferring (terminal 

bus) coherent generators to the same equivalent bus. The later coherency is the 

condition to ensure that generators have a similar dynamics and hence allowing the 

aggregation of their dynamic models.  
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Figure 2.2 Summarized procedure for constructing coherency-based dynamic 

equivalent by Podmore et al.  
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The coherency-based method developed by Podmore et al. has two interesting 

features summarized as follows: 

 

- The equivalent is a large-signal type and it is represented by conventional 

power system components with their physical meaning preserved. 

- The equivalencing method decouples the construction of the static part of 

equivalent (transmission network) from the construction of the dynamic 

part of the equivalent (generating units).  

 

According to these interesting features, the coherency-based method has been widely 

acknowledged. A large effort has been paid to improve the identification of coherent 

generators and the aggregation of generating unit models as they largely determine 

the performance of the obtained equivalent. The following two sub-sections give 

reviews on these two topics. 

 

2.3.1 Identification of coherent generators 

 

Originally, the coherent generators were identified by examining the angle variations 

of generator buses obtained from a time domain simulation of the detailed power 

system model for a particular fault. This method is straightforward and can 

accurately identify coherent generators including non-linear effects. However, it is 

time-consuming process and the identified coherent groups are fault-dependent. A 

large initial effort, therefore, is required during construction of equivalent but the 

resultant equivalent has a very limited use. In this regard, many research works on 

coherent-generator identification have been attempting to improve this inefficiency.  

 

The first group of works has emphasized on the improvement in computational 

expense. Lee and Schweppe [21] first developed the method utilizing the concept of 

pattern recognition. The method was very fast but its recognition criteria produced by 

observations from one simple system may affect accuracy and confident of results. 

Spalding et al. [22] later proposed the method based on comparison of machine 

angles at two steady-state operating points (stable and unstable points). This method 
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is less empirical than previous methods, but the major difficulty is the determining 

the unstable operating point.  

 

Concerning accuracy, Podmore [18]went back to the direct method where the rotor 

angle time response of generators obtained from numerical integration are compared. 

However, to decrease the computational time and memory usage, the author used a 

linearised swing equation model of power system rather than non-linear detailed 

model. Hiyama [23] also considered the identification of coherent generators from 

comparison of rotor angle responses. In order to further improve the speed of 

calculation, the modeling of power system, solving for its solution, and identifying 

coherent generators are performed in frequency domain as the differential equations 

become algebraic equations.  

 

Regarding to above drawbacks (either using only steady-state information or 

integrating over long interval), Rudnick [24] proposed the method utilized machine 

conditions at initial steady-state and at the critical clearing time for identifying 

coherent generators. This method still requires numerical integration for calculating 

machine conditions during fault, but its interval is much shorter (up to the critical 

clearing time) and may be obtained from transient stability simulation when accuracy 

is of major concern. However, the critical clearing time must be known priory.  

 

Furthermore, Haque et al. [25] identify coherent generators by using a combination 

of faulted and post-fault rotor angles, and the electric coupling between generators. 

The rotor angles are approximated by Taylor series expansion so it is faster than 

direct integration and could preserve the non-linearity of power-system model by 

using higher order of Taylor series. Later in [26], the same authors introduced 

another method using energy function for checking the coherent generators at post-

fault condition while the coherent generators during faulted period are still identified 

from comparison of rotor angles approximated by Taylor series. The groups of 

coherent generators identified from these two conditions are checked for agreement 

to finalise the coherent generators of the system. This method considerably minimize 

the computation required than their previous method as the calculation of high order 

Taylor series at post-fault is no required. Haque [27] finally combines the strengths 
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from the previous two methods and proposed a method for coherent generator 

identification using information during three periods: faulted period, early part of 

post-fault period and later part of post-fault period. By contrast, Lo et al. [28, 29] 

proposed the method based on concept of predicting rotor angles by Taylor series but 

they emphasize on improving the accuracy rather than minimizing the computation. 

This is achieved by using multi-step Taylor series expansion and that the coefficients 

are recalculated at each time-step; and comparing the predicted angles in the 

frequency domain as it is barely perceptible.  

 

Apart from numerical solution, Gallai and Thomas [30] solved a linearised power 

system model after disturbance for close-form solution using Cayley-Hamilton 

theorem and proved the condition for coherency. This condition leads to the 

development of a coherent generator identification method that requires no numerical 

integration. However there is an additional burden of computation for coefficients 

which represent matrix exponential. Similarly, Al Fuhaid [31] also proposed the 

coherent identification based on the condition derived from the close form solution. 

However, the condition is slightly different as the author defines the coherent of 

generators in term of mean-square error rather than absolute error.  

 

The attempt to decrease the computation expense during the identification of 

coherent generator has a great benefit to the utilization of coherency-based 

equivalent. However, a unique equivalent must be constructed for each fault as the 

coherent generators identified by above methods are fault-dependent. For this reason, 

the second group of works has paid attention to study and to develop the 

identification of fault-independent coherent groups. 

 

Lawler et al. [32] developed the coherent identification method based on applying a 

probabilistic disturbance to all mechanical inputs of linearised power system model. 

By using a root-mean-square (RMS) coherency measure and more specific 

probabilistic disturbance (i.e. a zero mean and a variance proportional to the square 

of the generator inertia), the coherent measure can be determined from the system 

parameters hence making disturbance-independent. Besides the theoretic 
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development, the authors also provided algorithm and numerical results in [33]. 

Although the authors claimed this kind of disturbance could represent many classes 

of practical fault, its analytic relation is difficult to verify. 

 

Wu et al. [34] studied the conditions for exact coherent of generators, in terms of 

controllability subspace, according to both a single disturbance and a set of 

disturbances. The model used for the study is based on incorporating fault model 

(load shedding, generator dropping, and line switching) into a linearlised swing 

equation model of power system. An algebraic characterization of coherency 

revealed from the study is used to develop the coherent generator identification 

algorithm. Later in Wu et al. [35] extend the method for more practical situation 

where coherent condition need not to exactly adhered to but allow for a small 

difference However, both works involved many matrix-operations and no numerical 

evaluations were reported. 

 

Chow [36] introduced Slow coherency method in which coherent generators are 

identified by examining the dependency of slow-eigenvector basis of linearised 

power system model. The author formulated the grouping of dependent row 

eigenvectors as an optimization problem and proposed a finite-step algorithm based 

on Gaussian elimination to approximate the solution for this problem. As the 

eigenvector basis is calculated from the linearised model before fault, the identified 

coherent generators are fault location independent. In addition to the closeness of 

rotor angle time response when low frequencies of oscillation are considered, another 

appealing property is that it allows the linearised model to be partitioned following 

slow coherent group aggregability. This reason reinforces the justification of the 

dynamic aggregation of generator unit models and makes the method widely 

accepted even time-consuming Eigen analysis required. Chow et al. [37] later 

improved a condition of the method that has a tendency to obtain a large-size group 

containing less coherent generators, especially for a large scale system, by removing 

the restriction on equality between number of coherent groups and number of slow 

modes and introducing loose and tight coherent concept. However, the key idea of 

identification still relies on examining the dependency of slow-eigenvector basis. To 
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further improve the accuracy, Joo et al. [38] incorporate voltage dynamics in the 

identification of coherent generators by adding the modes involving AVR action 

based on participation factors to the eigenvector basis being examined and clustering 

groups by K-mean algorithm. 

 

Moreover, Geeves [39] proposed the coherent generator identification based on 

examining modal-contents of simplified linearised power system model before fault. 

The basic concept is to display modal data as hierarchical tree structure, called 

Modal tree. The root of modal tree represents the mode that all generators are in 

phase while each branch represents the particular mode and sub-group of generators 

which are in phase for that mode. Any generators under the same sub-tree are 

identified as a group of coherent generators. By using modal tree, the group of 

coherent generators could preserve high frequency modes. However, in term of 

computation, the creation of modal tree requires the graph clustering which may be 

an additional time-consuming routine besides the Eigen analysis. 

 

Apart from the solution of model (either analytical or numerical), Lamba et al. [40] 

identify coherent generators by investigating the weak coupling structure in the 

matrix of linearised swing equation model as it causes the slow coherency. The 

authors introduced the ratio of off-diagonal block-matrix norms to diagonal block-

matrix norms, called “Coupling Factor”, as the coupling measure and proposed the 

ordering algorithm to arrange the sub-matrices (representing generators) in the 

relative coupling order. The plot of the coupling factor versus the ordered sub-

matrices (generators) is used for the identification of weak coupling areas and hence 

the coherent generators. The weak coupling method is further improved by Nath et 

al. [41]. Another plot of the change of coupling factor called Grouping bar chart was 

introduced in order to allow the method to be able to identify the weak coupling 

areas consisting of only one generator. Furthermore, Lo et al. [42] modified the weak 

coupling method by using the Taylor series expansion of the swing equation model 

of the power system up to the second order terms rather than using the linearised 

model. The test results showed that this modified method which takes account of the 

nonlinearity is highly effective and more accurate to identify the coherent groups. 
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In addition, Gacic [43] also proposed the identification of coherent generators based 

on identifying weak coupling structure in dynamic system. The author decided to 

identify such a structure from the Jacobian matrix by using Epsilon decomposition. 

The reason to use the Jacobian matrix is due to its availability in most standard 

power system program. However, the identification process is not straightforward 

because the variables associated with generators are indirectly linked. Recently, De 

Tuglie et al. [44] developed the method based on applying Epsilon decomposition 

using their formulated matrix which represented direct coupling among generators. 

This direct coupling is quantified from the linearised algebraic equations that 

describe the system connection. Even though the way to build the matrix is 

reasonable, the link with the real structure in the dynamic model that causes the 

coherency is weak. 

  

2.3.2 Dynamic Aggregation of generating unit models  

 

The dynamic aggregation of generating unit models is a determination of a 

representative generating unit model for the generators within the coherent group. 

Several researchers have developed the methods based on the concept of transferring 

coherent generators to a common terminal bus introduced by Podmore [20]. By this 

concept, the coherent generators are at the same terminal voltage and at the same 

speed. The inertia constant and damping factor of the representative generator, 

therefore, are the sum of their individual inertia constants and individual damping 

factor, respectively. For other parameters, the calculations are not uniform and are 

dependent on the methods used. DeMello and Podmore [45,cited in [44]] proposed 

the weight logarithmic average method. The equivalent transient reactance is 

calculated as a parallel of individual while the other parameters of synchronous 

generators and their controls are calculated based on weight logarithmic average by 

the rated output. The only limitation of this method is that the generating units must 

be represented by the same type of model. Later in [19], Germond and Podmore 

developed a method that allows aggregation of different model types. However, the 

method is time-consuming as it is based on iterative process for fitting of transfer 
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functions in the frequency domain. Additionally, Galarza et al. [46] developed a 

sensitivity method to determine the parameters of the aggregated exciter model. The 

method is based on tuning of the exciter parameters until the boundary bus voltages 

of the reduced model and the full model are matched.  

 

Nath and Lamba [47] proposed a method based on time-domain aggregation using 

structure constraints. In this method, the equivalent parameters of synchronous 

machine and excitation system are determined by structure preservation of the 

coefficient matrices. Although this method can be applied to the same types of 

model, the method is less heuristic comparing with [45, cited in [44]] and requires no 

iteration. Lo. et al  [48] and Qi [49] further extended Nath’s and Lambda’s method to 

include turbine governor system and power system stabilizer (PSS). Moreover, this 

extended method requires no matrix inversion. In addition to the concept of 

transferring coherent generators to a common terminal bus, Ghafunrian and Berg 

[50] proposed a dynamic aggregation of generating units based on retaining terminal 

bus and equation of one generator in each coherent group. This result of aggregation 

is reached by using coherency conditions to eliminate terminal buses and equations 

of other generators within the coherent group.   

 

Furthermore, Chow et al. [51] introduced another two dynamic aggregations: inertial 

aggregation and slow coherency aggregation. These two aggregations improve the 

stiff problem in Podmore’s methods by performing the aggregation at generator 

internal buses. However, these two techniques are limited to only classical model of 

generator. 

 

2.4 Identification-based methods 

 

The identification-based method is another dominating method for construction of 

dynamic equivalent. This method is based on either black-box approach or grey-box 

approach mentioned in chapter 1. The essence of the method is to incorporate 

measurement for adjusting the assumed model; and only the methods taking 

measurement outside the part to be equivalent (external part) are discussed in this 
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thesis. From the implementation aspect, there are two schemes commonly found in 

the literature on identification-based dynamic equivalent. 

 

The first scheme, see Figure 2.3, requires a simulation of full system (internal part 

and equivalent). The recorded responses from the internal part of the original system 

are compared with the simulated responses from the reduced system under the same 

condition of disturbance; and then, the equivalent model (e.g. parameters, order, and 

structure) are adjusted until the pre-defined criteria are satisfied.  

 

Recording responses from the original system

Choosing model for external part and adjusting its characters  

External network

Internal network

External part

disturbance

responses

Internal network

External Equivalent

disturbance

responses

 

 

Figure 2.3 First scheme for implementation of identification-based dynamic 

equivalent 

 

The full system simulation in this scheme is time-consuming and, moreover, the 

implementation of disturbance for the reduced system having the same condition as it 
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occurs in the original system is rather difficult, especially when the natural 

fluctuation of loads is considered as disturbance [52]. However, the great benefit of 

using this scheme is that the reduced system is obtained at the same time as the 

adjusting process finished.   

 

According to this scheme of implementation, Price et al. [52] proposed the 

mathematical development of maximum likelihood technique to identify the 

equivalent from natural fluctuation of power system. The key concept is to compare 

the recorded responses with the simulated responses from the reduced system (the 

assumed external equivalent and the internal part) formulated as a Kalman Filter 

estimator. Price et al. [53] later showed the feasibility of the method by using the 

external equivalent having the same structure as the unreduced external part. In order 

to reduce the dimension of external part, the authors suggested using knowledge of 

coherent generators from the off-line data for the derivation of the assumed model 

structure. 

 

Furthermore, Yao-nan and El-Sharkawi [54] proposed the identification-based 

dynamic equivalent using  differential equations in fictitious generator formulation as 

the model for the equivalent. Each individual fictitious generator was directly 

connected to each boundary bus and its parameters were identified by fitting the 

responses of one particular generator within the internal part. Moreover, the authors 

provided a guideline for choosing an appropriate model order by observing the 

uniqueness of the minimum cost function values. Next, Ramrez Arredondo [55] also 

proposed a method that utilized the fictitious generator model. However, the author 

used a different criterion (based on active power flow transients) and introduced the 

concept of using different set of values of parameters for different zones of 

contingency. The zone of contingency is calculated through using a composite 

electromechanical distance [56]. In addition, Ramirez and Valle [57] developed the 

fictitious generator dynamic equivalent as well; but the major difference is in the 

criterion that takes operating conditions into account. The authors proposed the 

criterion based on difference between eigen-values of original system and eigen-
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values of reduced system for the set of operating conditions under study; and used 

Genetic algorithm (GA) to identify the parameters. 

 

In the second scheme (see Figure 2.4), it requires only a simulation of the equivalent. 

This is achieved by the modelling the equivalent in an input/output formulation so 

that one set of recorded responses from the original system is used as input to the 

equivalent while the rest is used for a comparison with those obtained from the 

simulation of the equivalent. 

 

 

Recording responses from the original system

Choosing model for external part and adjusting its characters  

External Equivalent

input

responses

input

outputoutput

External network

Internal network

External part

disturbance

responses

 

 

Figure 2.4 Second scheme for implementation of identification-based dynamic 

equivalent 
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Apart from much smaller in dimension of the model required for simulation, another 

advantage of the second implementation scheme is that a standard system 

identification package could be employed (depending on how the external equivalent 

is modeled) since the requirement of power system simulator for the internal part is 

no longer needed. At these points, the second scheme is considerably superior. 

However, the adjusting process may not converge or it may produce a poor final 

equivalent. This is because the input to the external equivalent (Figure2.4) is not 

actually the true cause of the external part producing the response but it is the 

response caused by dynamics interaction from both internal part and external part. 

Moreover, a modification of the power system simulation program may be required 

for interfacing the obtained equivalent with the internal part. 

  

Based on the second implementation, Ibrahim et al. [58] proposed the black-box 

method by choosing a combination of a reduced network and stochastic linear 

difference equations as the model for the dynamic equivalent. The reduced network 

represents the quasi-steady state performance while the stochastic linear difference 

equations represent the dynamic changes of voltages at boundaries. The parameters 

of these two components could be identified from the measurements taken at the 

boundaries based on least square technique. However, in the demonstration, the 

reduced network was obtained from a network reduction technique so it was slightly 

based on a grey-box approach. In addition, this dynamic equivalent was tested by Lo. 

and Al-Ghafri [59]. The results confirmed the good performance of the model. 

 

Wilson and Aplevich [60] developed the method utilised the linear transfer function 

between voltages and currents at boundaries for the assumed model of the external 

part and used least square technique for its parameters identification. Besides the 

identification of parameters, the author also estimated the model order by using 

different orders of transfer function and chose the lowest order that satisfied the 

criteria. In order to form the reduced model for non-linear time domain simulation, 

the author reformulated the obtained equivalent into the state-space formulation and 

connected it with the internal part by simply adding based-points of voltages and 

currents. However, this equivalent is a small-signal type.   
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Ju et al. [61] proposed the equivalent having a form of fictitious generator (third 

order model) and a electric load in parallel and provided a proof of the identifiability 

of parameters. The proof showed that all parameters of the assumed model are 

identifiable when pre-steady, dynamic and post-steady responses are all used for the 

parameter identification. Ju et al. [62] further validated their proposed equivalent 

with field tests. Although a comparison of time responses and a comparison of 

maximum clearing times are close, the identified parameters of the equivalent are 

much dependent on fault location. This may infer unsuitable model structure and 

model order.  

 

Another group of works that employ the second scheme of implementation is based 

on modelling external equivalent by artificial neural network (ANN) and it is trained 

by a supervised learning technique. Stankovic et al. [63] proposed the ANN-based 

equivalent composed of two stages. The first stage is a bottleneck type used for 

extracting estimates about states and the second stage is a recurrent type used for 

approximating the right-hand side of a continuous-time system. These two stages 

actually emulate a structure of solver for numerical solution of multi-machines model 

[64]. Recorded voltages and currents at the boundaries are used for training the 

ANN. However, these recorded data are not separately used as input and output. The 

values of both voltage and current at current time are considered as inputs and their 

values at the next time step are considered as outputs. Stankovic et al. [65] further 

proposed the hybrid implementation of ANN-based and Coherency-based equivalent. 

However, Shakouri and Radmanesh [66] claimed that the methods proposed in [63, 

65] are one-way interaction between the internal part and the external equivalent. 

Also, the methods may have some deficiency in simultaneously solving the internal 

part and the external equivalent, because there is no emphasis on the implementation 

given. Shakouri and Radmanesh developed a two-way interaction ANN-based 

equivalent having currents and voltages at boundaries as inputs and outputs, 

respectively. In addition to these methods, ANN-based equivalents having different 

ANN-type and ANN-structure have been proposed in [67, 68]. Although all the 

references mentioned here showed promising results of reproducing the responses at 

boundaries, the implementation of reduced system and the compatibility with 

standard power system software are the main objections. Evidently, there are no any 
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references showing the simulation results within the internal system (such as rotor 

angle of internal generators) by using the equivalent.  

 

2.5 Applicability to the development of identification-based dynamic equivalent 

for online applications 

 

As mentioned in Chapter 1, the development of dynamic equivalent for online 

application has been facing three major challenging issues which are modeling data, 

validity of equivalent, and compatibility of software. These challenging issues 

necessitate further investigating and improving identification-based dynamic 

equivalent having a model with conventional power system components in two 

aspects: its validity and its computational time. 

 

The validity of identification-based dynamic equivalent could be improved by a 

selection of suitable model structure (and order) corresponding to the chosen model 

type. This might be achieved by either adding a cascade-loop for model structure 

selection over parameter identification-loop or deriving a suitable structure from 

available modelling data. The former is a time-consuming iterative process but it 

requires no modeling data of the part to be equivalenced. By contrast, the later relies 

on an experience of power system dynamic model as well as an availability of 

modelling data.  

 

From the previous section, the suggestion of using knowledge of coherent generators 

in the derivation of the assumed model structure for the external part from off-line 

modelling data [53] is very interesting because the obtained model structure is in 

conventional power system components and preserves a physical-meaning (e.g. 

equivalent generators, reduced transmission network, and constant impedance loads). 

However, the identification of coherent generator requires a complete set of dynamic 

modelling data (e.g. topology of transmission network and its parameters, model of 

generator and its parameters, and operating states) at least for a swing equation 

model. This could be a deadlock since we are looking for the procedure that could 

provide a model structure without such a complete data requirement, even they are 
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from the offline data, otherwise modal-based equivalents or coherency-based 

equivalents can be applied.    

 

As the derivation of model structure based on the knowledge of coherent generators 

is intended to provide a better model structure for identification-based dynamic 

equivalent, an idea of using approximate information about coherent generators is 

justified to compromise on the required modelling data. Taylor et al. [69] proposed 

an approximation of coherent generator based on synchronization coefficient that 

requires only power-flow modelling data. The synchronization coefficient reflects 

strength of dynamic coupling between generators and its weak connections causes an 

approximate time-scale separation, hence slow coherency of generators. Although 

the authors gave a reasonable explanation referring to theoretical development in 

[36] and showed a feasibility of the method on a 179bus test system, yet more 

evaluation of the performance is needed. Moreover, the calculation of the 

synchronization coefficient requires not only power-flow modelling data but also 

transient reactance of generator. Therefore, the piece of modelling information that is 

actually neglected is only the inertia of generator.  

 

Instead of conducting more extensive evaluation of the method above, in this thesis 

the explanation of coherency phenomenon based on graph model [70] is adopted for 

developing new coherent generator identification technique. It will be discussed in 

the next chapter that the coherent generator identification based on graph model 

could provide an aid to interpretation and allow to make a reasonable assumption for 

identification of coherent generators using only power-flow modelling data.   

 

For the computational time, the implementation scheme of identification-based 

dynamic equivalent that requires no full system simulation is preferred. The key 

concept is to formulate the assumed model of the external part into input/output 

formulation. As our assumed model has a power system structure, the technique for 

reformulation from modal-based methods in [3, 4] is adapted to be used in this thesis. 

The criterion based on recorded responses of active power flow in the transmission 

lines at boundaries [55] is chosen as it has high possibility for further practical 

development by using online measurements. However, the recorded responses will 
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be taken from a simulation of original system in this thesis. The detail of 

implementation will be explained in Chapter 5. 

 

The development framework of dynamic equivalent for online application in this 

thesis could be summarized in Figure 2.5. 

 

 

 

 

Figure 2.5 Development framework of dynamic equivalent for online application of 

this thesis 
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2.6 Conclusion 

 

In this chapter, modal-based methods, coherency-based methods, and identification-

based methods of dynamic equivalencing have been reviewed. Modal-based 

equivalent methods rely on applying technique of linear system to eliminate less 

significant modal contents of the external part for order reduction. These methods 

provide an equivalent model in a small-signal type; however it could be used for 

non-linear time domain simulation as long as faults are far from boundaries. 

Coherency-based methods rely on justification for simplifying or approximating 

parts of model when the coherent condition exists. There are two key steps of 

coherency-based methods which are coherent generator identification and dynamic 

aggregation of generating unit model. Both are reviewed in this chapter. The 

equivalent obtained from coherency-based methods is a large-signal type and is 

represented by a conventional power system components with physical meaning 

preserved. Identification-based methods rely on either back-box approach or grey-

box approach; and two implementation schemes (with full system simulation and 

without full system simulation) have been reviewed. However, several diverse 

methods of identification-based dynamic equivalent have been proposed due to 

different opinions on choosing the assumed model and the recorded measurements.   

 

In addition, the applicability to the development of identification-based dynamic 

equivalent for online application has been discussed with respect to the issues of 

validity and computational time, respectively. This leads to the proposed 

identification-based method that utilizes knowledge of coherent generator and 

technique of adjusting model without full system simulation for deriving the assumed 

model and identifying the parameters, respectively. This proposed identification-

based dynamic equivalencing method requires only the power-flow modelling data 

and the recorded measurements at boundaries; and it is expected to have an 

improvement in its reliability and its construction time.    
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CHAPTER 3  

 

GRAPH MODEL-BASED COHERENT GENERATOR IDENTIFICATION 

 

3.1 Introduction 

 

Identification of coherent generators could be classified into two major approaches: 

an effect-based approach and a cause-based approach. The former identifies coherent 

generators by an observation of their influences on power system, e.g. a relatively 

constant between rotor angle (or speed) variations[1], a row-dependency of basis-

eigenvectors [2], and an equality of rotor angle deviation from a reference generator 

at both a stable operating point and an unstable operating point [3]. The latter 

identifies coherent generators by an inspection of a particular structure of power 

system that causes a coherency, e.g. a weak coupling between diagonal blocks inside 

a model matrix [4], and an equality of a ratio of admittance (between generator and 

fault) to inertia [5].    

 

The graph model-based method proposed in this chapter is the cause-based approach 

where the coherent generators are identified from a particular structure of the graph 

model causing the coherency. By using the graph model, it helps the interpretation of 

and could make a reasonable approximation for identifying the coherent generators 

without parameters of generators. Although there are developments of power system 

partitioning based on graph model [6-8], their aim is for islanding and require 

initialising groups obtained from the slow coherency based method. Moreover, those 

graph models are not directly built from dynamic model of power system. 

 

This chapter presents the identification of coherent generator based on the graph 

model. The graph model, in particular a node-weight graph type, of oscillatory 

network and its related coherency theorems are first described. Next, their 

application to identify coherent generators of power system is explained. Afterward, 

three proposed techniques (based on a visual inspection, a weak coupling technique, 

and an epsilon decomposition technique) are developed and evaluated. Finally, an 

extension to identify coherent generators without generator parameters is discussed. 
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3.2 Graph model and its coherency 

 

Ayazifar [9] has modelled a class of dynamic systems called oscillatory network by a 

node-weighted graph model and has studied the mutual influence between a structure 

of graph and its dynamic behaviour, in particular coherency phenomenon. In this 

section, a representation of oscillatory network by the node-weighted graph model is 

first presented; and then, the related coherency theorems will be summarised. 

 

3.2.1 Node-weighted graph representation of oscillatory network 

 

The oscillatory network is a network comprising dynamic and static elements such as 

LC-circuit, mass-spring systems, and electric power system which behaves according 

to equation (1). 

0LyyM =+ )()( tt&&                                                     (1) 

 

Where M is a diagonal matrix, L is a matrix whose off-diagonal entries are 

symmetry and a diagonal entry is a negative sum of off-diagonal entries in the same 

row (known as Laplacian matrix), and y(t) is a displacement vector. 

 

According to this equation, its node-weighted graph model can be established by 

associating nodes, edges and weights with the entries of the matrices in eqn. (1) as 

shown in figure 3.1. 
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Figure 3.1 Establishing a node-weighted graph model of oscillatory network 
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From figure 3.1, the elements of y denote the nodes whose weights correspond to the 

diagonal entries of matrix M. The nodes are connected by the edges according to the 

existence of the off-diagonal entries of the L matrix and the edge-weights are 

denoted by those entries. 

 

In addition to straightforward establishing the graph, system dynamics of oscillatory 

network could be deduced from the representation of eqn (1). This is because a 

generalized eigen-problem defined directly on L-matrix and M-matrix following eqn 

(2) gives the solutions, eigenvalue ( 2ω ) and eigenvector ( υ ), that characterize the 

time response of oscillatory network ( )(ty ) according to eqn (3). 

 

 MυLυ
2ω=                                                      (2) 

 

 υy tjcet ω=)(                                                      (3) 

 

where c is a constant from initial condition. Consequently, the mutual influence 

between a structure of graph and its dynamic behaviour can be studied. 

 

3.2.2 Coherency in term of node-weighted graph 

 

Coherency studied by Ayazifar [9] is based on characterizing the time response by 

eigenvalue and eigenvector. This make coherency could be observed from the 

dependency between rows of basis eigenvector-matrix in the same manner as slow 

coherency introduced by Chow [2]. However, Ayazifar has employed a matrix 

perturbation approach and a generalised eigenvalue technique so that the study of 

coherency phenomena is conduced on the original M and L matrices setting, hence 

connecting with the node-weighted graph model.  

 

There are two major proofs of coherency in terms of the node-weighted graph 

introduced by Ayazifar. These proofs cover the case of the graph having both zero 

weighted node (called L-node) and non-zero weighted node (called G-node). The 

first proof is Slow-coherency while the second proof is Exact-Coherency. However, 

only the Slow-coherency theorem is mentioned here because it is needed to 
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understand our development of the coherent generator identification method. The 

Slow-Coherency in Graph Theoretic Terms states that:   

 

‘Consider a graph G with n vertices, Laplacian matrix L, and vertex weight 

matrix M. Let the graph have a q-partition },,{ 1 qq VV K=ν , where each cluster 

)( iVG contains at least one G-node. The intra-area weights are of order )1(Ο , 

while the inter-area link strengths are of order )(εΟ . Then 

1. the fastest Gn -q eigenvalues of (L,M) are of order )1(Ο . 

2. the slowest q eigenvalues of (L,M) are of order )(εΟ . 

3. the slowest q eigenvectors of (L,M) exhibit approximate coherency, i.e., they 

are approximately constant over any given area )( iVG , i=1,…,q.’ 

Theorem 5.3, p.98-99, Ayazifar[9] 

 

According to this theorem, each cluster of the nodes are slow coherent (i.e. 

coherency occurs in the slow modes of an oscillations) if the intra-area edge weights 

are of order O(1), while the inter-area edge weights are of order O(ε) provided that 

each cluster contains at least one non-zero weighted node. The ε  is a small number 

approaching zero. The intra-area edge weight is the weight of edge which connects 

between the nodes in the same cluster (or group). The inter-area edge weight is the 

weight of edge which connects between the nodes of different clusters (or groups). 

Therefore, the groups of coherency can be identified by looking for the particular 

structure of the graph, in which the groups of coherent nodes have the strong 

connections between nodes within their group and have the weak connections among 

nodes of other groups. It is note that this theorem requires no value of node weight 

for the identification of coherent nodes.  

 

3.3 Coherent Generator identification from Graph model 

 

The graph model-based coherent generator identification is composed of two 

successive steps: establishing node-weighted graph model of power system and 

identifying groups of strong-intra linked nodes and weak-inter linked nodes, 

respectively. These two steps are described in the following two subsections. 
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3.3.1 Node-weighted graph model of power system 

 

In electric power system, a particular dynamics whose model fits to the 

representation of eqn (1) is the small-signal rotor angle dynamics.  
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Where J  is the matrix of normalized generator inertias, ∆δ  is the displacement 

vector of bus voltage phase angle from a specific operating point (subscript G for a 

generator internal voltage bus and L for a load bus including a generator terminal 

voltage bus), iv  is the i
th

 bus voltage magnitude, iδ  is the i
th 

bus voltage angle, and 

ijS  is the transmission line susceptance between buses i and j. As the displacement 

variables (nodes) are bus-angles, the coherent groups of nodes identified here are the 

coherent groups of generators in the context of coherency-based equivalent. 

 

The node-weighted graph model of the power system dynamic model eqns (4)-(5) 

can be established by the same procedure previously described in the section 3.2.1. 

Alternatively, it could be directly established from a one line diagram and power-

flow solutions as shown in Figure 3-2. 

 

Figure 3.2 Establishing the node-weighted graph model of power system from a one 

line diagram and power-flow solutions 
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From Figure 3.2, the left hand side shows a single line diagram of power system 

where iv  is the i
th

 bus voltage magnitude, iδ  is the i
th 

bus voltage angle, where iE  is 

the i
th

 generator internal bus voltage magnitude, eiδ  is the i
th 

generator internal bus 

voltage angle, and ijX  is the reactance of transmission line between the i-th bus and 

the j-th bus. The right hand side shows the node-weighted graph model of the system 

on the left hand side where ijw is the edge weight between the i-th node and the j-th 

node, iJ  is the weight of i-th non-zero weighted node.  

 

The nodes and the edges of the graph correspond to the buses and the transmission 

lines of power system, respectively. The load buses and generator terminal buses are 

the zero-weighted node type (represented by un-filled circles), while the generator 

internal buses are the nonzero-weighted node type (represented by filled circles). The 

edge-weights are calculated from a reactance of associated transmission lines and 

voltages at its two ends. For example, the edge-weight between node 2 and node 3 is 

)32cos(

23

32
23 δδ −=

X

vv
w . The weight of the generator internal node (bus) equals the 

normalized inertia of generator at that node (bus). For example, the node-weight of 

the generator internal node 1 is 
f

H
J

π2

12
1 = , where H is the inertia constant in 

kWs/kVA and f is the frequency in Hertz. 

 

However, the node weights need not be calculated as their values are not used 

according to the theorem in the section 3.2.2. The inertia of generator, therefore, is 

not required. Moreover, if the edge weight between the generator terminal and 

internal nodes is assumed to be strong, the coherent groups can be identified without 

the necessity of parameters of generators. 

 

3.3.2 Identification of strong intra-linked nodes and weak inter-linked nodes 

 

There are three techniques to identify the groups of strong intra-linked nodes among 

weak inter-link nodes proposed in this section, which are a visual inspection, an 
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applied weak coupling, and an applied epsilon decomposition techniques, 

respectively.  

 

3.3.2.1 Visual inspection technique 

 

This technique is based on a direct inspection on a drawing of graph model whose 

edges are drawn by a line of two-different thicknesses. Edges whose weight is strong 

will be drawn by a thick line while other edges, whose weights are weak, will be 

drawn by a thin line. This drawing of graph model provides a visual aid to identify 

the groups of strong intra-linked nodes among weak inter-linked nodes. However, the 

decision is human. In this thesis, the drawing of graph model with two levels of edge 

thickness is drawn by the following process.  

 

 

Drawing of a graph model with two levels of edge thickness 

 

Step 1: Set a strength threshold, (e.g. in a percent of the maximum value of the edge-

weight in the graph model), to differentiate between strong and weak. 

Step 2: Draw a thick line for the edge whose weight is greater than or equal the 

threshold; and drawn a thin line for others. 

 

 

3.3.2.2 Applied weak coupling technique 

 

The second technique is based on an application of the Weak Coupling method [4, 

10, 11] to a matrix of edge weight, which is a Laplacian matrix whose diagonal 

entries are set to zero. The weak coupling method was developed to identify sub-

matrices which are internally strong but externally weak coupling. By applying the 

weak coupling method to the matrix of edge weight, the identified sub-matrices 

would mean the groups of strong intra-linked nodes among weak inter-linked nodes.  

 

The key idea of Weak Coupling method is to quantify the relative strength of the 

connections between groups of sub-matrices (nodes) by ‘Coupling Factor’, which is 

a ratio of a summation of their off-diagonal entries to a summation of their diagonal 



48 

entries as depicted in Figure 3.3 (a). The Weak Coupling method uses this Coupling 

Factor to reorder sub-matrices according to their relative coupling by a successive 

inclusion of another node that gives a minimum value of Coupling Factor as depicted 

in Figure 3.3 (b). Then, the groups of strong internal connections among weak 

external connections are identified by investigating the changes in Coupling Factor 

versus the re-ordered sub-matrices with the aid of two plots, namely the coupling 

graph and the grouping bar chart as depicted in Figure 3.3 (c).  

 

 

(a) 

 

 

(b) 

 

 

(c) 

Figure 3.3 Weak Coupling method 

 

In this thesis, the re-ordering algorithm are adopted from [11] with minor 

modifications to neglect the second order term and to exclude the diagonal entries of 

matrix, since the diagonal entries are not related to any particular edge-weight. In 

order to ensure that the identified groups are coherent groups (i.e. each group 

contains at least one non-zero weighted-node), the matrix of edge-weight of a 

reduced graph model whose all zero weighted nodes are eliminated should be used. 

The elimination of nodes could be performed by Gaussian elimination. 
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Node (Generator) Ordering Algorithm 

  

Step1: Divide the matrix (L-matrix whose the diagonal entries are set to zeros) into 

two sub-matrices with the first one containing an arbitrarily chosen node 

(generator) “i”, so that n1=1. The second one contains the remaining (n-1) 

nodes. 

  

Step2:  Calculate  

 ∑ ∑ ∑+∑=
+= = +==
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111 STN SSS −=                                                                                                  (6) 

 

Step3: Calculate the coupling factor, )n(CC ff 1=  by  

1

1

N

S
f

S

S
C =                                                                                                          (7) 

and set  )n(CC fminf 1= , i)n(L =1  

Step4: Substitute node “i” in the first subsystem by any one nodes from the second 

sub-matrix. Calculate the corresponding )n(CC ff 1=  

 

Step5: If minff C)n(C <1 , Reset minfC  and )n(L 1  

 

Step6: Repeat Step 4 and 5 for all the remaining nodes in the second sub-matrix. 

Then from Step 5 the node )n(L 1  corresponding to the minimum coupling 

factor can be identified. 

 

Step7: Divide the total matrix into two sub-matrices with the first one consisting of 

nodes )(L 1 , )(L 2 ,…, )n(L 1  that have been identified in Step 6 together with an 

arbitrarily chosen node “i”. Thus 111 += nn  and the second one contains the 

remaining ( 1nn − ) nodes. 

 

Step8: Go to Step 3 if nn <1  and stop if nn =1 . 
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Two plots for helping the identification of the groups of strong internal connections 

among weak external connections are defined below. 

 

Coupling Graph: 

A plot of )m(C f  against )m(L  (m=1, 2,…, n). 

 

Grouping Bar Chart: 

 A bar plot of )m(fC
2∆  against )m(L  (m=1, 2,…, n), where )m(fC

2∆  can be calculated 

as follows[11].  
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The slope of the coupling graph indicates a coupling between a node and sub-

matrices. It shows that, if 01 <−+=∆ )m(C)m(C)m(C fff , a node )m(L 1+  is stronger 

coupling with the first sub-matrix but the second sub-matrix if 0>∆ )m(C f . Therefore, 

the relative minima points could divide the nodes into groups that are weakly 

coupled.  

 

On the other hand, the grouping bar chart provides a coupling between two 

successive nodes. A node )m(L 1+  is weakly coupled to node )m(L  if 02 >∆ )m(fC  but 

it is strongly coupled to node )m(L  if 02 <∆ )m(fC , while the magnitude of bar 

indicates its strength. Hence, a group of strongly coupled nodes begins at a negative 

bar after a positive bar and ends at the next positive bar. Furthermore, the group of 

one node is indicated by a positive bar after a positive bar. However, these indicators 

must be used in conjunction with the positive slope ( 0>∆ )m(C f ) of the coupling 

graph (as shown in figure 3-4). This is because the grouping bar chart shows local 
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information (i.e. a relative coupling between two successive nodes) and the nodes 

may be considerably strong coupled as a whole (i.e. 0)( <∆ mC f ). 

 

Accordingly, the coupling graph and the grouping bar chart must be used together for 

an efficient identification of the groups of strong internal connections among weak 

external connections. 

 

coupling graph

grouping bar chart

divisibleindivisible

 

 

Figure 3.4 Indicators on the coupling graph and the grouping bar chart for the 

division of group.  

 

 

3.3.2.3 Applied epsilon decomposition technique 

 

The third technique is based on an application of Epsilon Decomposition [12] to the 

matrix of edge weight. The Epsilon Decomposition was also developed to identify 

the sub-matrices which are internally strong but externally weak connected. 

However, the key idea to quantify the strength of connection and the process to 

identify the sub-matrices are quite different from the Weak Coupling method. 

 

In this technique, the strength of connection (i.e. off-diagonal entries of matrix) is 

quantified by a comparison to a pre-defined number, called ‘Epsilon’. The 

connection is strong if its value greater than the Epsilon, otherwise it will be 

considered as weak. The procedure to identify the internally strong but externally 

weak connected sub-matrices by using the Epsilon Decomposition is simply depicted 

in Figure 3.5. 
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(a)  

 

 

(b) 

 

Cluster remaining entries

G1

G2

G3

G4
 

(c) 

 

Figure 3.5 Epsilon decomposition method 

 

From Figure 3.5 (a), the value of the off-diagonal entry is depicted by a filled box 

with a different darkness. The off-diagonal entries of matrix having value (weight) 

less than ‘Epsilon’ will be deleted (Figure 3.5 (b)) and the disjoint clusters of the 

remaining will be identified as the groups of coherent nodes (Figure 3.5 (c)).  

 

Due to the algorithm in [12] is designed for a directed graph and rather complex to 

understand, the clustering method in [13] is alternatively chosen for this task. 

However, it is modified to include the case of non-symmetrical matrix as shown 

below. 

 

 

Epsilon Decomposition Algorithm 

 

Step1: Normalise entries of the matrix by its maximum entry and set the entries 

having values smaller than the value of a pre-assigned Epsilon to zero. 

 

Step2: Start searching the first row not yet covered to its right and records the 

column numbers if non-zero entries are found. 

 

Step3: Each individual recorded column (not yet covered) searches its down and 

records the row numbers if non-zero entries are found. 

 

Step4: Go to Step 7 if all recorded row is covered, otherwise continues Step 5. 
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Step5: Each individual recorded row (not yet covered) searches its right and records 

the column number if non-zero entries are found. 

 

Step6: Go to Step 7 if all recorded column is covered, otherwise continues Step 3. 

 

Step7: Create a non-redundant set of recorded rows and recorded columns as one of 

disjoint cluster for the matrix. 

 

Step8: Stop if all row and all column are covered, otherwise go to Step 2. 

 

 

 

 

3.4 Test results and discussion 

 

There are two types of system studied here which are an artificial system and a real 

power system. The former aims to provide a proof of a concept and a consistency of 

the coherent group identification based on the graph model when the system is ideal 

(strong-intra group and vanishingly weak-inter group connections). The latter aims to 

assess performance of graph model-based coherent generator identification when 

conditions of the studied system are more practical and gradually deviate from the 

ideal system. For example, there is an inclusion of the resistance of transmission line.  

Furthermore, the coherent generator identification by using only the power-flow 

modelling data is studied. All case studies are summarised below. 

 

A. Artificial system cases (an ideal system) 

 

Case 1: Consistency between the coherent groups identified by the graph-based 

method and other methods (the slow coherency and the weak coupling). 

- A twelve-node system (i.e. six non-zero weighted nodes and six zero weighted 

nodes)  

  

Case 2: Performance of the coherent group identification based on the applied 

weak coupling technique and the applied epsilon decomposition technique. 

- A twelve non-zero weighted node system  
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B. Power system cases  

 

Case 3: Feasibility of the identification of coherent generators by the graph-based 

method. 

- Nine bus power system [14] (no assumption of strong internal edge-weight) 

 

Case 4: Consistency between the coherent groups identified by the graph-based 

method and other methods. ( the tolerance-based slow coherency method, and the 

weak coupling method). 

-IEEE 39 bus system [15] (no assumption of strong internal edge-weight) 

 

Case 5: Effect of the assumption on the strong internal generator edge-weight 

-IEEE 39 bus system (with assumption of strong internal edge-weight) 

 

All studies have been conducted on MATLAB[16] and Power System Analysis 

Toolbox (PSAT)[17]. The related coherency identification techniques have been 

coded in MATLAB’s m-file based-on algorithms provided in this chapter and 

appendixes.   
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Case 1: The system for this case study is shown in Figure 3.6. It is composed of 

twelve nodes (i.e. six non-zero weighted nodes and six zero weighted nodes). The 

non-zero weighted node is denoted by a filled-circle while the zero weighted-node is 

denoted by an unfilled circle. All weights of non-zero nodes are 10 units and they are 

shown beside the filled circle. The edge-weight is shown in the middle of each edge. 
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Figure 3.6 Artificial test system 1 

 

The matrix of mass (M) and the matrix of connection (L-laplacian matrix) that 

describe this system ( 0LyyM =+ )t()t(&& ) are shown below: 
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The coherent nodes, in particular the non-zero weighted nodes, of the artificial test 

system 1 are identified by three methods: the slow-coherency method [2], the weak 

coupling method [11] and the graph model-based method. For the graph model-based 

method, three techniques (the visual inspection, the applied weak coupling technique, 

and the applied epsilon decomposition) are illustrated under two conditions: with and 

without assumption of strong internal edge-weight. To ensure that each identified 

group contains at least one non-zero weighted node, the applied weak coupling 

technique and the applied epsilon decomposition are applied to a reduced graph, i.e. 

a graph model where its zero-weighted nodes are all eliminated. The study of 

coherent node identification for this artificial system is summarized below.   

 

(cause-based approach) (effect-based approach)

Weak coupling method

Graph model-based methods

Slow coherency methodA1.1:
 A1.2:

A1.3:

Visual inspection

Visual inspection

Case Study A1

with a presumption on strong-internal edge-weightwithout a  presumption on strong-internal edge-weight

A1.3.1:

Applied weak coupling

Applied epsilon decomposition

A1.3.2:

A1.3.3:

A1.3.4:

reduced graphfull graph

Visual inspectionA1.3.5:

full graph

require no internal edge-weight

(corresponding ot X'd)

reduced graph

Visual inspection

Applied weak coupling

Applied epsilon decomposition

A1.3.6:

A1.3.7:

A1.3.8:

Figure 3.7 Summary of case study 1 
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Case 1.1: The slow-coherency method: 

Step1: apply Gaussian elimination to eliminate the zero-weighted nodes. The reduced 

zero-weighted node graph model (see Figure 3.8) and its associated matrices are 

shown below.  

 
 
 

 

 

 

 

 

Figure 3.8 Artificial test system 1 after an elimination of the zero-weighted nodes 

 

Step2: re-write the reduced graph model ( 0LyyM =+ )t()t(&& ) in a normal form of 

second order state-model ( Axx =&& ) by multiplying Lred-matrix with the inverse of M-

matrix.  
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Step3: specify the number of the slow modes (groups) and apply the slow-coherency 

algorithm (see Appendix E) to identify the coherent nodes. The calculation was 

performed up to the fourth step of those presented in Appendix E as 1
12
−= VVLd  is 

enough to provide information of the slow coherent groups. The entry of i-th row and 

j-th column of dL matrix show a degree of coherency between the i-th reference node 

and the j-th non-reference node. The more the value of entry closes to one, the more 

the j-th non-reference node and the i-th reference node are coherent. The entries of 

dL matrix are shown in Table 3.1 below when the number of the slowest modes is 

chosen as three. 

 

Table 3.1 Slow coherency of artificial test system A 

 

Non-reference nodes 
Reference nodes 

3 2   6 

1 -0.00 1.00 -0.00 

4 0.00 -0.00 1.00 

5 0.00 0.00 1.00 

 
 

From table 1, the (slow) coherent nodes are (1, 2), (3), and (4, 5, 6) based on this 

result.    

 

Case 1.2: The weak coupling method: 

 

The simplified version of the weak coupling technique proposed in [11] (neglecting 

the second order terms, described in section 3.3.2.2) is applied to A-matrix 

(including its diagonal entries) and then the coupling graph and the grouping bar 

chart are plotted following the method mentioned in section 3.3.2.2. The plots are 

shown in Figure 3.9. 
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Figure 3.9 Coupling graph and the grouping bar chart of the A-matrix of the artificial 

test system 1 

 

The coupling graph (Figure 3.9 (top)) shows the coupling factor against the node 

while the grouping bar chart (Figure 3.9 (bottom)) shows the change in the coupling 

factor against the node. The coherent groups can be determined from the grouping 

bar chart by examining the groups of nodes that begins at a negative bar after a 

positive bar and ends at the next positive bar. The negative bar after the positive bar 

must occur under a positive slope of the coupling graph to ensure that these two 

successive nodes are divisible (as shown in Figure 3.4). From the coupling graph 

(Figure 3.9(top)) and the grouping bar chart (Figure 3.9(bottom)), the coherent 

groups are nodes (2, 1) and nodes (5, 6, 4). 

 

Case 1.3: The graph model-based method: 

 

As shown in Figure 3.7, eight sub-cases of the graph model-based method (case 1.3.1 

– case 1.3.8) were studied. These cases correspond to four categories of using 

information on L-matrix of the graph model which are: (1) a full graph model with 

complete information; (2) a reduced graph model with complete information; (3) a 
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full graph model with partial information; and (4) a reduced graph model with partial 

information. In the categories of using complete information, all modelling data 

contained in the L-matrix were used for the identification of coherent nodes, while 

only modelling data that related to the edge-weight of the non-zero weighted node 

were used in the categories of using partial information. This partial modelling data 

usage corresponds to an adoption of the assumption of strong edge-weight between 

the zero-weighted node and the non zero-weighted node. 

 

The graph models and their associated part of L-matrices for each category are 

shown in Figures 3.10-3.13, respectively. 

 

 

(a) 

 

 

(b) 

Figure 3.10 Modelling data for the first category showing (a) the graph model and (b) 

its associated part on L-matrix  
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(a) 

 

 

 

 

(b) 

 

 

Figure 3.11 Modelling data for the second category showing (a) the part of the graph 

model and (b) its associated part on L-matrix. 

 

From Figure 3.11, the reduced graph model and the reduced L-matrix are obtained by 

applying Gaussian elimination to eliminate the zero-weighted nodes of the graph 

model inside a dashed box of Figure 3.10. 
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(a) 

 

 

 

(b) 

 

Figure 3.12 Modelling data for the third category showing (a) the part of the graph 

model and (b) its associated part on L-matrix. 

 

From Figure 3.12 (b), the diagonal-entries of the part of the L-matrix inside the 

dashed box are modified to exclude the effect of the off-diagonal entries outside the 

dashed box. 
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(a) 

 

 

(b) 

 

Figure 3.13 Modelling data for the fourth category showing (a) the part of the graph 

model and (b) its associated part on L-matrix. 

 

From Figure 3.13, the reduced graph model and the reduced L-matrix are obtained by 

applying Gaussian elimination to eliminate the zero-weighted nodes of the graph 

model inside a dashed box of Figure 3.12. However, in this case, the zero weighted 

nodes inside the dashed box are all the representatives of the non-zero weighted 

nodes (denoted by the filled-node over the unfilled-node). Therefore, the reduced 

graph and its reduced L-matrix contain the same information as in Figure 3.12. 
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-The visual inspection technique (Case 1.3.1-Case1.3.4) 

 

In this technique, the coherent groups are identified from the node-weighted graph 

representation by using two levels of line thickness under various edge-weight 

thresholds. Edges whose weights are above the threshold will be considered as strong 

and drawn by thick line while the others are considered as weak and drawn by thin 

line (as mentioned in section 3.3.2.1). The results shown in Figure 3.14, Figure 3.15 

and Figure 3.16 are obtained when the threshold of 10 units is chosen. These results 

correspond to the cases 1.3.1, 1.3.2, and 1.3.3, respectively. Figure 3-16 also presents 

the result the case 1.3.4. It is clearly seen from the figures that they give the same 

coherent groups which are (1, 2), (3), and (4, 5, 6). 

 

 

 

Figure 3.14 Two levels of line thickness plot of the full graph model without the 

assumption of strong internal edge-weight at threshold of 10 units 
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Figure 3.15 Two levels of line thickness plot of the reduced graph model without the 

assumption of strong internal edge-weight at threshold of 10 units 

 

 

 

Figure 3.16 Two levels of line thickness plot of the full graph model (inside red-

dashed box) with the assumption of strong internal edge-weight at threshold of 10 

units  
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The applied weak coupling technique (Case 1.3.5 and Case 1.3.6) 

 

Step1: Select the part of L-matrix according to each case (complete information or 

partial information of L-matrix) and set the diagonal entries to zero because they do 

not involve any particular edge-weights. In power system model, the off-diagonal 

entries of L-matrix which are irrelevant to generator internal buses (the partial 

information case here) can be calculated from the power flow model and its solutions 

(no need generator parameters).  

 

Step2: apply the weak-coupling technique (as mentioned in section 3.3.2.2) to the 

above modified matrix in order to identify the strong-intra and weak-inter connected 

nodes. For both cases, the coherent nodes are (1, 2), (3), and (4, 5, 6), shown in 

Figures 3.17 and 3.18. 

 

 

 

Figure 3.17 Coupling graph and coupling bar chart from complete information on L-

matrix of the artificial test system 1. 
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Figure 3.18 Coupling graph and coupling bar chart from partial information on L-

matrix of the artificial test system 1. 

 

The applied epsilon decomposition technique (Case 1.3.7 and Case 1.3.8) 

  

Step1: Select the part of L-matrix according to each case (complete information or 

partial information of L matrix) and set the diagonal entries to zero because they do 

not involve any particular edge-weights.  

 

Step2: apply the epsilon-decomposition technique (as mentioned in section 3.3.2.3) 

to the above modified matrix in order to identify the strong-intra and weak-inter 

connected nodes 

 

The images of the modified matrices after a permutation of their rows and columns 

until nodes in the same group are next to each other are shown in Figure 3.19 and 

3.20. The off-diagonal entries having magnitude less than the epsilon (0.5 units in 

this case) are shown in white while the others are shown in different level of 

darkness corresponding to their magnitudes. The coherent nodes are (1, 2), (3), and 

(4, 5, 6) for both cases. 
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Figure 3.19 Image of normalised complete L-matrix of the artificial test system 1 for 

the epsilon of 0.5 units 

 

 

 

Figure 3.20 Image of normalised partial L-matrix of the artificial test system A1 for 

the epsilon of 0.5 units 

 

Although the different groups of the coherent nodes (with different strength of 

coherency) could be obtained by setting a different value of the epsilon, an epsilon 

values of 0.5 units is chosen here to show a consistency of the result.  
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Case 2: This example is to show a better performance of the applied epsilon 

decomposition technique over the applied weak-coupling technique, considering 

information about degree of coherency versus size of group provided by these two 

methods. The example system ( Axx =&& ) here is described by A-matrix below.  
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This system represents a graph model of twelve non-zero weighted nodes and A-

matrix here can also be considered as L-matrix of a reduced graph to their internal 

non-zero weighted-nodes. With representing the magnitude of each entry by different 

level of darkness, it is obviously seen that the degree of coupling between the nodes 

are a nest-structure (see Figure 3.21).  

 

 

 

Figure 3.21 Image of A-matrix of the study case 2 
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 Firstly, the coherent nodes are identified by the applied weak coupling technique 

(with the diagonal entries set to zero) and the result is shown in Figure 3.22. 

 

 

 

Figure 3.22 Coupling graph and grouping bar chart of A-matrix in the study case2 

 

From the grouping bar chart (Figure 3.22), the coherent nodes are (5,6), (11,12), 

(3,4), (9,10), (1,2), and (7,8). In order to compromise between accuracy and 

computational resources (memory and time) of a subsequent reduced system, the 

coherent identification method should reasonably provide the flexibility in varying 

group size. In [10], the authors suggested that the different sizes of groups (according 

to different strength of coherency) could be determined from the grouping bar chart 

when the divisions according to the small magnitudes of the positive S2∆  are 

neglected. By setting S2∆  > 0.25 as a criterion for the division, the groups of (5, 6, 

11, 12, 3, 4, 9, 10), (1, 2), and (7, 8) are identified as weakly coherent groups. 
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Although the nodes (non-zero weighted nodes) in each weakly coherent groups are 

less coherent, the more proper groups of weakly coherent should be (1, 2, 3, 4), (7, 8, 

9, 10), (5, 6), and (11, 12) as obviously seen on the image of the A-matrix in figure 

3.21. These observations are also supported by time responses of the system ( Axx =&& ) 

formed by the above A-matrix.  

 

 

 

Figure 3.23 Time responses of the twelve states of the dynamic system formed by A-

matrix ( Axx =&& ) of the case study 2 when the initial states are all excited slightly 

different (1, 1, 0.999, 0.999, 0.99, 0.99, 1, 1, 0.999, 0.999, 0.99, 0.99) 

 

From Figure 3.23, the clustering of weakly coherent responses according to groups 

of (1, 2, 3, 4), (7, 8, 9, 10), (5, 6) and (11,12) are more reasonable than the weakly 

coherent groups obtained from the grouping bar chart, (5, 6, 11, 12, 3, 4, 9,10 ), (1 2), 

and (7,8). Moreover, the contradiction between the responses within the weakly 

coherent groups identified from the coupling graph and the grouping bar chart, such 

as the responses of x3 and x5, is another indication of failure in varying a group size 

by this method. 
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In case of the applied epsilon decomposition technique, the groups of different size 

according to different degree of coherency can be identified by changing the value of 

epsilon.  As shown in Figure 3.24, the applied epsilon decomposition method gives 

the idea of how groups should be according to their different degree of coherency 

close to the image of A-matrix (Figure 3.21); and, these results are also supported by 

the time responses in Figure 3.23.  
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Figure 3.24 Images of normalized A-matrix of the case study 2 for the different 

values of epsilon: (a) epsilon=0.2; (b) epsilon=0.06; (c) epsilon=0.025; and (d) 

epsilon=0.005. 
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Case 3: This case study aims are to show a feasibility of identification of coherent 

generators by Graph model- based technique.  

 

The procedure to identify coherent generators from the graph model of power system 

is composed of two successive steps: establishing node-weighted graph model of 

power system and identifying groups of strong-intra linked nodes and weak-inter 

linked nodes. However there are four assumptions not explicitly mentioned before 

the graph model is established. These assumptions (shown in Figure 3.25) cause the 

graph model to be departed from its original power system where the coherent 

generators are going to be identified.  

 

1st assumption: (p, ) and (q,v) are decoupling

3rd assumption: X >> R ( of transmission line)

4th assumption: linearised model is adquate to capture 

                            the dynamics of interest

Node-weighted graph model

<1>

<2>

<3>

<4>

Non-linear (rotor-angle) 

dynamic model of power system

2nd assumption: generators represented by classical model

 
 

Figure 3.25 Four assumptions for establishing a node-weighted graph model of 

power system  
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The procedure and its related data to establish the node-weighted graph model are 

shown with the case of nine bus power system of Figure 3.26.     

 

 

 

Figure 3.26 Calculations and their related data for establishing the node-weighted 

graph model.  
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From Figure 3.26, the modelling data of nine bus power system are divided into two 

major groups in the first step. The first group is static modelling data which involve 

the calculation through the solid-line paths. The second group is dynamic modelling 

data which involve the calculation through the dashed-line paths. In the second step, 

the static modelling data (i.e. power flow modelling data) is used to calculate the 

power flow solution, in particular bus voltages. Then, the bus voltages (both 

magnitude and angle) are used together with the susceptance of transmission line to 

calculate the edge-weight of the graph model in the third step. In this step, the 

transient reactance of generator and the additional routine to calculate the generator 

internal bus voltages are required for the calculation of the weight of edge between 

the generator terminal and internal buses. In the fourth step, the weights of nodes are 

calculated from the inertia constants of the generators. Finally, the node-weighted 

graph model is completely established in the fifth step. 

 

However, to identify the coherent generators by the graph model method the inertia 

constants are no required and, therefore, the dashed-path along the forth step can be 

neglected. Moreover, based on the assumption of strong internal edge weight, the 

identification of coherent generator can be done without the value of transient 

reactance (no path of dashed-line to the third step). 

 

To show the feasibility of coherent generator identification the visual inspection of 

the complete graph will be demonstrated first, while other techniques and 

consequence of neglecting generator parameters will be discussed in the next 

examples. From the graph model of the nine bus power system the groups of strong-

intra linked nodes and weak inter-linked nodes can be easily identified by two levels 

of line thickness plot. As shown in Figure 3.27, the coherent generators are the 

generator 2 and the generator 3 when the thresholds of 6 are chosen.   
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Figure 3.27 Two levels of line thickness plot of the node-weighted graph model of 

the nine-bus power system at the thresholds of 6 P.U. 

 

These identified coherent generators (generator 2 and generator 3) are consistent with 

the results from Slow Coherency method as shown in Table 3.2 below. The reference 

generators are the generator 2 and 1 while the non-reference generator is the 

generator 3. As shown in the table, the non-reference generator is more correlates, 

0.6871, to the generator 2 than the generator 1. 

 

Table 3.2 Slow coherency of the nine bus power system 

 

Non-reference nodes 
Reference nodes 

2 1  

3 0.6871 0.3129 
 

 

This result is obtained by applying the slow coherency method to the A-matrix of the 

nine-bus system which is calculated by using a procedure given in Appendix G. The 

calculation of the A-matrix is also based on the same assumptions in Figure 3.25. 

However, to provide a stronger verification, the non-linear time domain simulation of 

nine-bus system is performed and the rotor angles when a small fault is applied at 

bus 8 are given in Figure 3.28. 
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(a) 

 

 
 

(b) 
 

Figure 3.28 Deviation of rotor angle from the operating point when a fault with 10 

PU impedances is applied at bus 8: (a) generator 2 & 3 when generator 1 is chosen as 

the reference; (b) generator 2, 3 and 1 when angle of voltage at bus 5 is chosen as the 

reference 

 

From Figure 3.28, the deviations of rotor angle from the operating point confirm that 

the generator 2 and generator 3 are coherent in the slowest modes of oscillation. The 

reason for using the deviations of rotor angle from the operating point in the 

comparison because the definition of coherency here is given in term of the 

responses of linear model, so the deviations from the operating point have to be used 

when a linearlised model is considered.   
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Case 4: This case study aims to evaluate the performance of the graph model-based 

coherent generator identification (without the assumption of strong internal edge 

weight) by a comparison of its identified coherent groups with the groups obtained 

from other methods (the weak coupling method and the tolerance-based slow 

coherency method) that require the inertia of generators.  

  

IEEE39 bus (with a classical generator model) is considered here as the test case.  

The identifications of coherent generators by the graph model-based method (the 

visual inspection, the applied weak coupling technique, and the applied epsilon 

decomposition technique) will be first demonstrated and then the evaluation of its 

performance will be discussed. In order to succeed in analyzing the results, the 

coherent groups identified through using an effect-based approach will be accepted 

as a standard for the comparison. Tolerance-based Slow Coherency method [18] is 

chosen here to provide this standard as it can specify the degree of coherency of the 

groups to be identified (see Appendix F). An outline of the experiment conducted for 

this case study is shown in Figure 3.29.    

 

 

Figure 3.29 Outline of the study case 4 

 

From Figure 3.29, all methods identify the groups of coherent generators based on 

the linearized model of power system, but they are different in an approach and a 

requirement of generator parameter, in particular the inertia of generator. 
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Case 4.1: the graph model-based method 

 

Cased 4.1.1: the applied visual inspection technique 

 

The node-weight graph model of IEEE 39 bus power system (Figure 3.30) is 

established and given in Figure 3.31. 

 

 

Figure 3.30 One line diagram of IEEE 39 bus system. 

 

Figure 3.31 Node-weighted graph model of IEEE 39 bus system including the 

generator internal nodes (edge-weight shown in the middle of each edge).  
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The two levels of line thickness plot of the full node-weighted graph model of the 

IEEE 39 bus system for various thresholds in percent of the maximum values of edge 

weight is shown in Figure 3.32. The identification of strong-intra linked nodes and 

weak-inter linked nodes from the full node-weighted graph is not straightforward. 

For a high threshold level, the thick lines, which represent a strong-connection, are 

not connected to a generator bus. And for the low threshold levels when thick lines 

do actually connect to a generator, most of generators are accumulated in the same 

group.  

 

(a) >30% (b) >20%

(c) >15% (d) >10%
 

 

Figure 3.32 Two levels of line thickness plot of the node-weighted graph model of 

the IEEE 39 bus system for various thresholds 

 

To avoid these difficulties, the reduced graph model to the generator internal bus 

(non-zero node weight) is used instead (see Figure 3.33). This reduced graph model 

is established from the one line diagram of IEEE39 that the load buses and the 

generator terminal buses are eliminated.  

 

The two levels of line thickness plot of the reduced node-weighted graph model of 

the IEEE 39 bus system for various thresholds in percent of the maximum values of 
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edge weight is shown in Figure 3.34. This figure shows that various groups of 

strongly connected generator internal buses exist depending on threshold level. For 

example, if the thresholds above 50% of maximum edge weight are chosen, the 

coherent generators will be (G1, G2, G3, G8, G10), (G4, G5), (G6, G7), and (G9)  

 

 

Figure 3.33 Reduced node-weighted graph model of the IEEE 39 bus system when 

the load buses and the generator terminal buses are eliminated. 

 

 

Figure 3.34 Two levels of line thickness plot of the reduced node-weighted graph 

model of the IEEE 39 bus system for various thresholds 
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Figure 3.34 (cont.) Two levels of line thickness plot of the reduced node-weighted 

graph model of the IEEE 39 bus system for various thresholds 

 

Case 4.1.2: the applied weak coupling technique 

 

In this part, the reduced graph model where its zero-weighted nodes (load buses) are 

eliminated is used to ensure that each identified group contains at least one non-zero 

weighted node (generator internal bus). The weak coupling technique is applied to 

the L-matrix of the reduced graph model with its diagonal entries set to zero and the 

result indicates that the coherent nodes are (G5), (G4), (G9), (G6, G7), (G8, G10, 

G1), and (G3, G2), as shown in Figure 3.35. 

 

Figure 3.35 Coupling graph and grouping bar chart for the reduced L-matrix of 

IEEE39 bus system. 
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Case 4.1.3: the applied epsilon decomposition technique 

 

The epsilon decomposition is applied to the same reduced L-matrix as in the case of 

applied weak coupling technique and the result is shown in Figure 3.36. The different 

groups of coherent nodes (shown on the figure) could be determined for the different 

values of epsilon.  

 

                        

Figure 3.36 Images of normalized reduced L-matrix of IEEE39 bus system for the 

different values of epsilon. 
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Case 4.2: the weak coupling method 

 

For this part, the weak coupling method is applied directly to A-matrix of the 

linearised model of IEEE 39 bus system. The derivation of A-matrix is the same 

procedure as those in Appendix G. The coupling graph and the grouping bar chart 

given in Figure 3.37 show the groups of coherent generators are (G9), (G5, G4), (G6, 

G7), and (G3, G2, G1, G10, G8). 

 

Figure 3.37 Coupling graph and grouping bar chart of the A-matrix of IEEE39 bus 

system. 

 

Case 4.3: the tolerance-based slow coherency method 

 

The tolerance-based slow coherency method identifies the groups of slow coherent 

generators based on the solutions (Eigenvalues and Eigenvectors) of a linearised 

power system model. Its specified parameters (number of slow modes and tolerance) 

of tolerance-base slow coherency algorithm can directly control the degree of 

closeness among the angle responses of generators to be accepted into the same 

groups. In other words, the tightness of coherency can be correctly implied from the 

results of this method as well. Table 3.3 and 3.4 show the results of the groups of 

coherent generators when the values of tolerance are 0.95 and 0.9 respectively. In 

each table, the coherent groups for different number of slow modes are given. The 

more number of slow modes is specified, the more closeness of angle responses are. 

Moreover, for each specified number of slow modes, the loos-coherent groups and 

their decomposition results to more tight-coherent groups are also given. 
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Table 3.3 Coherent groups of IEEE39 bus system identified by Tolerance-based slow coherency method with a tolerance of 0.95 

Number of slow modes Tight-coherent groups Loose-coherent groups 
Decomposition 

Of loose-coherent groups 

10 G1, G2, G3, G4, G5, G6, G7, G8, G9, G10 - - 

9 G1, G2, G3, G4, G5, (G6,G7), G8, G9, G10 - - 

8 G1, G2, G3, G4, G5, (G6,G7), (G8, G10),G9  - - 

7 G1, G2, G3, G4, G5, (G6,G7), (G8, G10),G9 - - 

6 G1, (G2, G3), G4, G5, (G6,G7), (G8, G10),G9 - - 

5 G1, (G2, G3), G4, G5, (G6,G7), (G8, G10),G9 - - 

4 G1, (G2, G3), G4, G5, (G6,G7), (G8, G10),G9 - - 

3 G1, (G2, G3, G8, G10), (G4,G6,G7),G5 ,G9 - - 

2 G1, (G2, G3, G4, G5, G6,G7, G8, G9, G10) - - 

1 (G1,G2, G3, G4, G5, G6,G7, G8, G9, G10) - - 

 

Table 3.4 Coherent groups of IEEE39 bus system identified by Tolerance-based slow coherency method with a tolerance of 0.90 

 

 

 

Number of slow modes Tight-coherent groups Loose-coherent groups 
Decomposition 

Of loose-coherent groups 

10 G1, G2, G3, G4, G5, G6, G7, G8, G9, G10 - - 

9 G1, G2, G3, G4, G5, (G6,G7), G8, G9, G10 - - 

8 G1, G2, G3, G4, G5, (G6,G7), (G8, G10),G9  - - 

7 G1, G2, G3, G4, G5, (G6,G7), (G8, G10),G9 - - 

6 G1, (G2, G3), G4, G5, (G6,G7), (G8, G10),G9 - - 

5 G1, (G2, G3), G4, G5, (G6,G7), (G8, G10),G9 - - 

4 G1, (G2, G3), G5, (G4, G6,G7), (G8, G10),G9 - - 

3 G1, G9 (G2, G3, G4,G5,G6,G7, G8, G10) (G4, G5), (G6, G7), (G2, G3,G8,G10) 

2 G1, (G2, G3, G4, G5, G6,G7, G8, G9, G10) - - 

1 (G1,G2, G3, G4, G5, G6,G7, G8, G9, G10) - - 
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The major results are summarised in the following tables, Table 3.5 to Table 3.9, 

together with the rotor angle deviations of generators in the IEEE39 bus system for a 

discussion. 

 

Table 3.5 Coherent groups obtained from Tolerance-based slow coherency technique 

with the tolerance of 0.90. 

Degree of coherency Coherent groups 

Tight  (G6,G7) 

. 

. 

. 

 (G6,G7), (G8, G10) 

(G2, G3), (G6,G7), (G8, G10) 

(G2, G3),  (G4, G6,G7), (G8, G10) 

(G4, G5), (G6, G7), (G2, G3,G8,G10) 

Loose (G2, G3, G4, G5, G6,G7, G8, G9, G10) 

 

 Table 3.6 Coherent groups obtained from Weak coupling method. 

Degree of coherency Coherent groups 

Tight (G4, G5), (G6, G7), (G1,G2, G3,G8,G10) 

 (G4, G5,G9), (G6, G7), (G1,G2, G3,G8,G10) 

Loose (G4, G5,G9, G6, G7), (G1,G2, G3,G8,G10) 

 

 

Table 3.7 Coherent groups obtained from the graph model with the visual inspection 

technique. 

Degree of coherency Coherent groups 

   Tight (G1,G10) 

. 

. 

(G1,G10), (G6,G7) 

(G1, G2, G3, G8, G10), (G4,G5), (G6,G7) 

Loose (G1, G2, G3, G8, G10), (G4,G5, G6,G7) 

 

 

Table 3.8 Coherent groups obtained from the graph model with the applied weak 

coupling technique. 

Degree of coherency Coherent groups 

Tight (G2,G3), (G6,G7), (G1, G8, G10) 

 (G2,G3, G1, G8, G10), (G6,G7) 

Loose (G2,G3, G1, G8, G10, G6,G7) 

 

 

Table 3.9 Coherent groups obtained from the graph model with the applied epsilon 

decomposition technique. 

Degree of coherency Coherent groups 

   Tight (G1,G10) 

. 

. 

(G1,G10), (G6,G7) 

(G1, G2, G3, G8, G10), (G4,G5), (G6,G7) 

Loose (G1, G2, G3, G8, G10), (G4,G5, G6,G7) 
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 (a) G6 and G7                                                (b) G8 and G10 

 

 (c) G2 and G3                                              (d) G4, G5 and G9 

 

Figure 3.38 Rotor angle deviations of IEEE39 bus system when a fault with 10 P.U. 

impedance is applied at bus 16 (generator 1 as reference). 

 

 
        (a) G6 and G7                                            (b) G8, G10 and G1 

 
(c) G2 and G3                                              (c) G4 and G5  

 

 

Figure 3.39 Rotor angle deviations of IEEE39 bus system when a fault with 10 P.U. 

impedance is applied at bus 16 (generator 9 as reference). 
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Regarding only the evaluation of results from the graph model-based methods, it is 

evidently that all techniques (the visual inspection, the applied weak coupling, and 

the applied epsilon decomposition) can identify the tightest coherent group of G6 and 

G7 (see Table 3.5, Figure 3.38 (a) and Figure 3.39 (a)) out of other groups. However, 

the coherent group of G6 and G7 does not appear as the tightest group in the visual 

inspection method and the applied epsilon decomposition method but the group of 

G1 and G10 does (see Table 3.7 and Table 3.9). Having a close look at the angle 

responses of G1 and G10 (see Figure 3.39 (b)), the closeness between them is larger 

when compared to the case of G6 and G7. This result indicates nothing wrong about 

the graph model of power system, the methods applied to identify the strong-intra 

and weak-inter linked node structure, or even the (slow) coherency theorem of graph. 

The graph model of IEEE39 bus system is correctly established. The G1 and G10 are 

linked by the edge having the strongest weight in the graph (see Figure 3.33) and 

they can be considered as coherent generators which is supported by the result from 

Weak Coupling method (see Table 3.6). The reason for identifying wrong order of 

coherent groups is that the coherency caused by the structure of strong-intra and 

weak-inter linked node is weaker than the coherency caused by the conditions of 

exact coherency theorem [9] (detail in Appendix D) where the group of G6 and G7 is 

fully satisfied. The exact coherency conditions are: 
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The two requirements for exact coherency in term of graph model given in eqn (6) 

and eqn (7) state that nodes will be exact coherent if their inter group part of L-

matrix ( i
~
L ) from the original graph (left hand side of the equations) have the values 

equal to those calculated from the condition on its aggregated graph (right hand side 

of the equations).The definitions and the calculation of the matrices and their entries 

are illustrated in Figure 3.40 for the case of node 6 and node7.     
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Figure 3.40 Reduced graph and its aggregated graph of node G6 and G7 
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Figure 3.40 shows how their matrices required for checking the exact coherency 

condition are calculated in case of node 6 and node 7. From the right hand side of 

eqn (6) and eqn (7) the requirements for G6 and G7 to be exact coherent are: 

 

 

 

 

 

 

These requirements can be checked by a comparison with the values obtained from 

the original graph. By rearranging L-matrix of the original graph until first two rows 

and columns belong to G6 and G7, the actual values can be extracted from the 

diagonal block and off-diagonal block of inter group part as shown below. 

 

 

 

 

 

 

From the comparison between the requirement matrices and the actual matrices, it is 

clearly seen that the structure on the graph model related to G6 and G7 is very close 

to the requirements of exact coherent structure. On the other hand, even G1 and G10 

having a strong-linked edge, the condition of exact coherency between them is not 

totally satisfied. 
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Requirement matrices for G1 and G10 to be exact coherent 

 

 

Actual matrices for the group of G1 and G10 

 

 

Actually not only the group of G6 and G7, the other group such as the group of G8 

and G10 is also well satisfied the exact coherency conditions compare to the group of 

G1 and G10. 

 

Requirement matrices for G8 and G10 to be exact coherent 

 

 

Actual matrices for the group of G8 and G10 

 

 

 

From these results, caution should be exercised when attempt to identify the coherent 

generators through using slow coherency theorem in term of graph. The obtained 

groups are coherent but they may be relatively weak if there are other groups that 

fully satisfy the exact coherency conditions.  However, the identification of the exact 

or true tight coherent groups requires not only generator inertia but also a huge 

amount of computation. For example, calculating Eigenvalues/eigenvectors is 

required in case of Tolerance-based slow coherency technique; and a combinatorial 

search of proper criterion, such as those based on conditions of eqns (6) & (7), is 

required in case of graph model. Without these computations, tight and weak 

coherent generators can not be suitably distinguished as seen from the result of Weak 

coupling method (first row of Table 3.6) that the weakly coherent generator G1 is 

still included in the group considered as tight.  
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The conclusions that can be drawn about the performance of coherent generator 

identification based on slow coherency theorem in term of graph model are as 

follows. 

 

-The three methods (visual inspection, applied weak coupling, and applied 

epsilon decomposition) can identify only the groups of coherent generators caused by 

strong-intra and weak-inter linked node structure in which the degree of coherency 

may not be strong if there are exact coherent structure hidden in the system. 

 

- Although the visual inspection and applied epsilon decomposition give the 

same coherent groups in this case, they might give different results for other systems 

due to the grouping based on visual inspection is subjective. 
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Case 5: This case study aims to evaluate the performance of the graph model-based 

coherent generator identification when the strong edge weight between the generator 

internal bus and the generator terminal bus is assumed.  

 

On this assumption, the nodes corresponding to the generator terminal buses are 

considered as the representatives for the nodes of the generator internal buses 

(similarly to Figure 3.13 of the case study 1). Therefore, establishing a node-weight 

graph model of IEEE39 bus system requires only power-flow modelling data. The 

full node-weight graph model and its two levels of line thickness plot are shown in 

Figure 3.41 and Figure 3.42, respectively. 

 

 

 

 

Figure 3.41 Node-weighted graph model of IEEE 39 bus system excluding the 

generator internal nodes (edge-weight shown in the middle of each edge).  
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Figure 3.42 Two levels of line thickness plot of the node-weighted graph model of 

the IEEE 39 bus system excluding the generator internal nodes for various thresholds 

 

 

From Figure 3.42, the identification of strong-intra linked nodes and weak-inter 

linked nodes from the full node-weighted graph is not straightforward as in the study 

case 4. For a high threshold level, the thick lines, which represent a strong-

connection, are not connected to a generator bus. And for the low threshold levels 

when thick lines do actually connect to a generator, most of generators are 

accumulated in the same group.  
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To avoid these difficulties, the reduced graph model to the generator internal bus 

(non-zero node weight) is used instead (see Figure 3.43). This reduced graph model 

is established from the one line diagram of IEEE39 that only load buses are 

eliminated. The generator terminal buses are now considered as the representative of 

the generator internal buses. The resultant reduced node-weight graph model is given 

in Figure 3.43.  

  

 

 

 

Figure 3.43 Reduced node-weighted graph model of IEEE 39 bus system when only 

load buses are eliminated (excluding the generator internal buses). 

 

 

The coherent generators are identified by using three techniques (the visual 

inspection, the applied weak coupling, and the applied epsilon decomposition) as in 

the previous case study. The results obtained for each technique are shown in Figure 

3.44, Figure 3.45, and Figure 3.46, respectively. 
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- The visual inspection technique 

 

Figure 3.44 Two levels of line thickness plot of the reduced node-weighted graph 

model of the case 5 for various thresholds 

 

 

 

 

 

 

 

 
                                            (a) > 90%                                                                  (b)  >70% 

 

 
                                           (c) > 60%                                                                    (d)  >50% 

 

 
                                          (e) > 40%                                                                      (f) >30% 

 

 
                                         (g) >20%                                                                        (h) >10% 
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- The applied weak coupling technique  

 

 

 

Figure 3.45 Coupling graph and the grouping bar chart for the L-matrix of the case 5 

 

- The applied epsilon decomposition technique 

 

Figure 3.46 Images of normalized reduced L-matrix of the case 5 for the different 

values of epsilon. 
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Figure 3.46 (cont.) Images of normalized reduced L-matrix of the case 5 for the 

different values of epsilon. 

 

 

The identified coherent groups according to different levels of coherency for each 

individual technique are summarised in the Table 3.10, Table 3.11, and Table 3.12, 

respectively. 

 

 

Table 3.10 Coherent groups obtained from the graph model with the visual 

inspection technique. 

 

Degree of coherency Coherent groups 

   Tight (G4, G5), (G6,G7) 

. 

. 

(G4,G5), (G6,G7), (G8, G10) 

(G2, G3), (G4,G5), (G6,G7), (G8, G10) 

(G2, G3), (G4,G5), (G6,G7), (G1, G8, G10) 

(G1, G2, G3, G8, G10), (G4,G5, G6,G7) 

Loose (G1, G2, G3, G8, G9, G10), (G4,G5, G6,G7) 
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Table 3.11 Coherent groups obtained from the graph model with the applied weak 

coupling technique. 

Degree of coherency Coherent groups 

Tight (G2,G3), (G4, G5, G6,G7), (G1, G8, G10) 

Loose (G1,G2,G3, G8, G10), (G4, G5, G6,G7) 

 

 

 

Table 3.12 Coherent groups obtained from the graph model with the applied epsilon 

decomposition technique. 

  Degree of 

coherency 
Coherent groups 

   Tight (G4, G5), (G6,G7) 

. 

. 

(G4,G5), (G6,G7), (G8, G10) 

(G2, G3), (G4,G5), (G6,G7), (G8, G10) 

(G2, G3), (G4,G5), (G6,G7), (G1, G8, G10) 

(G1, G2, G3, G8, G10), (G4,G5, G6,G7) 

Loose (G1, G2, G3, G8, G9, G10), (G4,G5, G6,G7) 

                                                                                                    

                                                                                                                                                                                                                        

In this case, the results obtained from the visual inspection technique are the same as 

those obtained from the applied epsilon decomposition technique; but, the results 

obtained from the applied weak coupling technique are a bit different and having less 

discrimination. However, in average, all the methods identify acceptable coherent 

groups. This could be confirmed from a comparison of the results in the Table 3.10, 

3.11, and 3.12 respectively with the coherent groups identified by the tolerance-

based slow coherency method of the previous case (Table 3.5). It can be seen that the 

similar generators are identified in the same group of coherent such as the group of 

G6 and G7. By contrast, no strong contradiction is presented such as grouping the 

incoherent generators together. 

 

Compared with the results obtained from the graph model method of the previous 

study case, it shows some differences. However, this is not a result of the 

assumption. All the internal edge-weights are relatively strong compare to the other 

edges as shown in Figure 3.47. In fact, the differences are from using the different 

nodes of references in the identification of coherent generators. The previous case 

(case 4) uses the generator internal nodes of the reduced graph of IEEE 39 bus 

system when both the generator buses and the load buses are eliminated. This case 



100 

(case 5) uses the generator terminal nodes of the reduced graph of IEEE 39 bus 

system when only the load buses are eliminated.  

 

 

 

Figure 3.47 Reduced node-weighted graph model including the generator internal 

edges of IEEE 39 bus system when only load buses are eliminated. 

 

 

 

3.5 Conclusion 

 

The graph model-based coherent generator identification has been proposed in this 

chapter. The method is based on identifying the groups of coherent nodes of the 

corresponding node-weighted graph model of the power system. The groups of 

coherent nodes could be determined from the groups of nodes having strong intra 

group connections and weak inter group connections. In order to identify this 
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particular structure three techniques have been developed: the visual inspection, the 

applied weak coupling technique, and the epsilon decomposition technique. 

 

The results from the study on the artificial system and the nine bus power system 

confirm that the proposed method is feasible. For these two cases, three techniques 

consistently identified the same groups of coherent generators. The performance of 

the proposed method then has been evaluated with the IEEE39 bus system. The three 

techniques have given slightly different results in this case. Moreover, the evaluation 

has also revealed that the coherent groups identified based on the structure of strong 

intra group connections and weak inter group connections could be weakly coherent 

if there exist the exact coherent structure for the different groups. However, to 

identify the coherent groups caused by the exact coherent structure, a combinatorial 

search for all possible combination of groups need to be performed. 

 

Finally, the case of coherent generator identification by using only power flow 

modeling data has been studied. As the parameters of generators and of transmission 

network are presented in different components of the graph model, this allows 

making an assumption to identification to identify coherent generator by using only 

power flow modelling data. The coherent groups identified by three techniques are 

all acceptable, especially for providing the information about the model structure of 

identification-based dynamic equivalent.    
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CHAPTER 4 

 

PARAMETERIC IDENTIFICATION OF DYNAMIC EQUIVALENT 

 

4.1 Introduction 

 

Parametric identification of dynamic equivalent is a modelling of the external part 

based on an appropriate model structure and measurements. It is typically composed 

of two sequential tasks similar to the parametric identification technique of the 

system identification framework [1]. The first task is to determine the appropriate 

model structure, a set of equations (without the values of their coefficients), that 

describes the dynamics of the external part. The second task is the identification of 

the parameters (or coefficients) of the appropriate model structure by using the 

measurements. These two tasks affect the performance of the equivalencing process 

and of the equivalent model itself. As for the result, they need to be well planned 

with a good justification of several fundamental issues, for examples, what types of 

equations and how many of them to be used; how the equations will be 

parameterised; and what is the criterion for parameter identification.      

 

Accordingly, various existing methods of identification-based dynamic equivalent 

have been reviewed in Chapter 2; and the conclusion of using the model structure 

based on the knowledge of coherent generator and using the criterion based on the 

active power flow in the transmission lines at boundaries have been reached. The 

knowledge of coherent generator could lead to the reduced sets of differential 

algebraic equations (represented in the generator model and the transmission network 

model formulations, respectively) postulating the suitable model structure. With the 

graph model-based coherent generator identification techniques developed in 

Chapter 3, the identification-based dynamic equivalent that requires only power flow 

modelling data and measurements at boundaries is presented in this chapter. The 

details of two essential tasks, the model structure determination and the parameter 

identification, are explained in the next section. Afterward, the proposed procedure 

will be demonstrated with the nine bus power system and a short evaluation is also 

presented. Finally, the conclusions are drawn. 
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4.2 Identification procedure of dynamic equivalent 

 

4.2.1 Model structure determination 

 

The aim of this task is to arrive at the small set of equations (without the values of 

their coefficients) describing the dynamics of the external part by using the 

knowledge of coherent generator in power system component formulation. The 

determination process, therefore, is similar to the derivation of coherency-based 

dynamic equivalent taking incomplete generator modelling data into consideration. 

This could be summarised into five fundamental steps: establishing the node-

weighted graph model, identifying coherent generator from the graph, aggregating of 

coherent generator buses, reducing the transmission network, and attaching the 

generator equations. The first two steps have been described in chapter 3. In this 

chapter, only the last three steps are explained. 

 

The aggregation of coherent generator buses 

 

As the parameters of generators may not be available, the aggregating of coherent 

generator buses should be performed at the terminal buses. Therefore, the method 

proposed in [2] is adopted with a minor modification. For each group of coherent 

generators, k-th group, a new common generator bus (or the aggregated bus) is first 

created with its voltage magnitude and its voltage angle calculated by eqn. (4.1) and 

eqn. (4.2), respectively. Here, the complex power magnitudes are chosen as the 

weights for averaging the angles rather than the inertia of each coherent generator, 

which is considered as unknown. All coherent generator terminal buses are then 

connected to the common bus via the ideal phase shift transformers having the 

voltage transformation ratios following eqn. (4.3). Finally, the power generations on 

the new common bus and on the coherent generator buses are adjusted by setting the 

values of the former to the total sum and the values of the later buses to zeros. At this 

stage, the coherent generator buses become the PQ-type buses. 
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where  
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V k
v

  is the k-th aggregated bus voltage 

i
v
v

         is the i-th generator terminal bus voltage  

( )
eq

kθ   is the k-th aggregated bus voltage angle 

i
θ           is the i-th generator terminal bus voltage angle 

i k
a

−

v
    is the ideal transformer from the i-th generator terminal bus to the k-th   

aggregated bus  

iS
v

 is the i-th complex power generation  

n         is the number of coherent generators of the k-th group 

 

The reduction of transmission network 

 

After the generator bus aggregation, all PQ-type buses of the external part can be 

eliminated for the reduction of transmission network size. There are many well 

developed techniques [3, 4] that could be employed to perform this task. The 

technique based on Ward injection method is briefly mentioned here. The key 

concept is to obtain the reduced transmission network from the admittance matrix 

when its rows and its columns corresponding to the external buses eliminated. This 

process starts from partitioning the admittance matrix of the complex current 

injection into internal part and external part, as shown in eqn. (4.4). 
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After elimination of the voltages belonging to the external part, the eqn. (4.5) are 

obtained.  
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From eqn. (4.5), the resultant of terms in the parenthesis represents the reduced 

admittance matrix of the system after the external buses are eliminated, while the 

second term inside the parenthesis represents new equivalent lines joining the 

boundary buses and shunts at the boundary buses. The second term of eqn. (4.5) 

represents equivalent current at boundary buses. 

 

The attachment of the generator equation  

 

What we have at this stage is the external part composed of the reduced network and 

the new common generator buses (or the aggregated buses). In order to complete the 

derivation of the model structure, the generator dynamic equations need to be 

attached to each common generator buses. For different problems, different degree of 

details of generator model may be used; and the justification could be based on either 

heuristics or iterative process such as the cost function sensitivity analysis method 

proposed in [5] (shown in Figure 4-1). 

 

 

 

Figure 4.1 Procedure of the cost function sensitivity analysis 

 

From Figure4.1, the process starts from the highest order model of generator. The 

sensitivity is justified by investigating the variation of the cost function ( )αJ , defined 

in eqn. (4.6), under the perturbation of model parameters:  

 

∫=
ft

t

T
dt)(e)(e)(J

0

ααα                                              (4.6) 
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where )(e α  is the difference between the output of the original model and the output 

of the reduced model under α -th set of parameters. The current model will be 

replaced by the lower-order model if insensitivity is noticed. This process will 

continue until the cost function is sensitive to all parameters in the model.  

 

4.2.2 Parameter identification 

 

Since one of the objectives is to obtain the dynamic equivalent in power system 

component formulation, the implementation of the parameter identification in this 

thesis relies on a non-linear optimisation process where nothing alters the 

parameterisation of the model structure derived from the previous section. The 

parameters of the model structure, i.e. the equivalent generators’ parameters, are 

directly identified by adjusting their values until the predefined criterion based on the 

difference between the responses from the reduced model and those from the original 

model is satisfied. 

 

The transient responses of the active power flows from the i-th to the k-th bus [6] are 

selected, as discussed in Chapter 2, for the calculation of the error criterion: 

 

 ( )∑ ∑ −=
∈ ∈Ii Kk

reduced
ik

original
ik

)x(PP)x(J
2

                                     (4.7) 

 

where I is the set of boundary buses and K is the set of buses in the internal system 

linked with the boundary buses.  

 

In this chapter, only the parameter identification which requires a full system 

simulation (the first scheme described in Chapter 2) is presented (see Figure 4-2) 

while the method that requires no full system simulation will be discussed in Chapter 

5. The procedure starts from the zero-th step where the corresponding time responses 

of the original system are simulated and recorded. Next, in step1, the power flow of 

the reduced system, which is created from the derived model structure of the external 

part (the external reduced network and the equivalent generator model without the 

values of parameters) and the model of the internal part, is simulated and recorded. 
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This power flow result is used with the initial guess of the generators’ parameters (in 

the step 2) to calculate the initial conditions of the external generator model (in step 

3) for the dynamic simulation in the step 4. The transient responses of the active 

power flows from the external to the boundaries obtained from the dynamic 

simulation in the step 4 are recorded and are compared with the records of the 

original system in the step 5. The comparison is justified by considering the error 

criterion (4.7). The process is stopped and the parameters are obtained if the error is 

less than the predefined tolerance, otherwise it continues through the route of the step 

6.  

Run Power-Flow,Time-Domain Simulation (PSAT), 

and record the time responses of the original system

Run Power-Flow (PSAT) and record the results 

for the reduced system

give the initial guess of the external equivalent 

generators' parameters

calculate initial conditions of the external equivalent 

generators

Simulate the active power flows transient from 

the external system to the boundaries by 

a simulation of the complete system

(internal system + external equivalent)

check an error between simulated active power flows 

of the external ssytem and the records from 

the original system 

terminate criterion 

not satisfied

terminate criterion satisfied

The identified values of equivalent parameters

adjust the parameters 

of equivalent generators

<0>

<1>

<2>

<3>

<4>

<5>

<6>

<7>
 

 

Figure 4.2 Proposed parameter identification procedure which require a full system 

simulation  
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4.3 Test results and discussions 

 

The proposed method described in section 4.2 is demonstrated with the nine bus 

power system (shown in Figure 4-3).  

 
 

Figure 4.3 One line diagram of nine bus system 

 

Step 1: Model structure determination 

 

1.1 Establishing the node-weighted graph model 

 

The node-weighted graph model of the nine bus power system is established by the 

same procedure as described in Chapter 3 and only the result (the graph model) is re-

presented here in Figure 4.4. However, the node-weight of the generator internal bus 

and the weight of the edge between the generator internal bus and the generator 

terminal bus are not calculated; because the parameters of the generators are 

considered as unknowns. 

 

 

Figure 4.4 Graph model of nine bus power system 
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1.2 Identifying coherent generator  

 

Based on the assumption of the strong internal edge-weight, the generator 2 and the 

generator 3 are identified as the coherent generators by using two levels of line-

thickness plot (see Figure 4-5). 

 

 

Figure 4.5 Two levels of line-thickness plot for the graph model of nine bus system 

 

1.3 Aggregating of coherent generator buses 

 

Firstly, the common generator bus for the coherent generator 2 and 3 is created. The 

voltage magnitude and angle are calculated from the power flow solutions (see Table 

4-1) as following: 

 

Aggregated active power = 163 + 85 = 248 MW. 

Aggregated bus voltage magnitude = 
2

32
1

VV
Vagg

vv

v +
= =1.0250 P.U. 

Aggregated bus voltage angle         =  
32

3322

1
SS

SS

agg vv

vv

+

+
=

θθ
θ  =7.6886 degree 

 

 

Table 4.1 Power flow solutions of bus 2 and bus 3 of nine bus power system 

Bus No. Voltage magnitude (P.U.) Voltage angle (degree) 
Apparent power 

injection (MVA) 

2 1.0250 9.28 163.1 

3 1.0250 4.66 85.7 
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The generator buses of generator 2 and 3 are then connected to the common bus via 

the ideal phase-shift transformers whose transformation ratios are calculated by using 

eqn. (4.3). 

 

Table 4.2 Ideal phase shift transformer for aggregation of bus 2 and bus 3 of nine bus 

power system 

 

From bus – To bus Transformation ratio 

2 – agg1 591411 .∠  

3 – agg1 028631 .−∠  

 

Finally, generator 2 and 3 are deleted and the new equivalent generator is added to 

the common bus. The resultant one line diagram of the system when the coherent 

generator terminal buses are aggregated is shown in Figure 4.6.  

 

Figure 4.6 One line diagram of the nine bus system when coherent generator buses 

are aggregated 

Aggregated bus 
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1.4 Reducing the transmission network 

 

In this case the bus 1, bus 4, bus 5 and bus 6 are chosen as the internal part. The 

equivalencing tool of PowerWorld (which is based on Ward’s method) is employed 

to eliminate the load buses of the external part (i.e. bus 2, 3, 7, 8, and 9). This results 

in the equivalent transmission lines and the equivalent shunts as shown in Table 4.3 

and Table 4.4 respectively. The one line diagram of the static reduced system that 

combines the external equivalent and the internal part is given in Figure 4.7. 

 

Table 4.3 Equivalent transmission lines for the external part of nine bus system 

 

From bus To bus Resistance, R (P.U.) Reactance, X (P.U.) 

5 6 1.27336 3.53964 

5 Agg1 0.02922 0.22170 

6 Agg1 0.02549 0.23026 

 

Table 4.4 Equivalent shunts for the external part of nine bus system 

 

Bus 
Shunt conductance, G (MW) 

(Actual / Nominal) 

Shunt susceptance, B (MVar) 

(Actual / Nominal) 

5 -8.03 / -8.101 19.41 / 19.584 

6 -27.75 / -27.058 26.96 / 26.291 

Agg1 -63.97 / -60.885 18.44 / 17.555 

 

 
 

Figure 4.7 One line diagram of the nine bus system after coherent generator bus 

aggregation and load bus reduction  

Aggregated bus 
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1.5 Attaching the generator equation 

 

The last step is to attach the generator dynamic model to the static reduced system, 

shown in Figure 4.7. For the sake of simplicity, the classical generator dynamic 

model having only two parameters, transient reactance ( d'X ) and inertia (H), is used. 

 

Step 2: Parameter identification 

 

The parameter identification as described in section 4.2.2 is implemented in 

MATLAB with the aid of Power System Analysis Tool box (PSAT) [7] and 

Optimisation Tool box [8]. The implementation is illustrated in Figure 4.8. 

 

IDENTIFIED PARAMATERS

X'd , H

boundary
 bus

boundary
 bus

boundary
 bus

boundary

 bus

Intentional 
disturbance

Intentional 
disturbance

External part External part

Equivalent 
generator

ORIGINAL SYSTEM  REDUCED SYSTEM

( )∑ ∑ −=
∈ ∈Ii Kk

reduced
ik

original
ik

)x(PP)x(J
2

OPTIMIZATION CRITERION

RECORDED  RESPONSES FROM ORIGINAL SYSTEM

RECORDED  RESPONSES FROM REDUCED SYSTEM

 

Figure 4.8 Parameter identification process implemented in MATLAB 
 

 

From Figure 4.8, the power systems (the original system and the reduced system) are 

modelled and simulated by PSAT. The classical generator dynamic model is used for 

each generator of both systems where the generator data are obtained from [9].The 

relevant transient responses are the active power flows from bus 4 to bus 5 and bus 4 

to bus 6 during a small fault applied at bus 1 (a fault with 10 P.U. resistance at 
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t=0.05s). The time duration for the records is 2.5 seconds. This is considered long 

enough to capture the slow rotor angle dynamics (0.4 Hz-0.7Hz) [10] and still is 

sufficiently short for the swing equation, which is a basis of graph model used for 

identifying coherent generators, to be valid. The discrepancy between the simulated 

responses of the reduced dynamic system under the current guessing parameters and 

those of the original system is improved by using new values of equivalent 

parameters supplied from a nonlinear optimisation routine of the Optimisation 

toolbox. The Levenberg-Marquardt algorithm is chosen throughout the thesis for the 

optimization. The fitting responses and the identified parameters of the equivalent 

generators after the termination criteria of the nonlinear optimisation routine satisfied 

are shown in Table 4.5 and in Figure 4.9, respectively. 

   

Table 4.5 Identified parameters of the equivalent generator of the proposed reduced 

system 

Equivalent 

Generator 
Equivalent Parameters 

Direct axis transient 

reactance ( dX' ), p.u. 
Inertia constant 

(H),  kWs/kVA 

Geq1 
Initial Value 0.0500 10.0000 

Identified Value 0.0931 9.0438 
 

 
 

Figure 4.9 Active power responses of the original system and the proposed reduced 

system after the parameter identification is terminated. 
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The obtained equivalent is evaluated by the following comparisons. First, the 

simulated responses of the internal generator from the proposed reduced system 

(called the reduced system A) and those from the original system under various fault 

locations are compared. Besides the location of fault, the different types of fault are 

studied which consist of a small fault (a fault with 10 P.U. resistance) and a large 

fault (the solid fault applied at t=0.05 sec. and cleared at t=0.06 sec.). Second, 

another reduced system (called the reduced system B) which is based on a fictitious 

generator attached at each boundary bus is considered for comparison.  

 

The reduced system B is formed by attaching two fictitious generators to bus 5 and 

bus 6, as shown Figure 4.10. 

 

Fictitious generator 1 Fictitious generator 2

External Part

 

Figure 4.10 Reduced system B for the nine bus system 

 

The static operating condition of the internal part is preserved by setting the power 

injection and the bus voltage magnitudes at the boundary buses (bus 5 and bus 6) 

equal to the values calculated by the power flow of the original system. The 

parameters of the fictitious generators are identified by the same process illustrated 

in Figure 4.8. The identified parameters of the fictitious generators and the responses 

at boundaries after process terminates are shown in the Table 4-6 and in the Figure 4-

11, respectively.  
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Table 4.6 Identified parameters of the fictitious generators for the reduced system B 

of the nine bus system. 

 

Fictitious 

Generator 

Equivalent 

Parameters 

Direct axis transient 

reactance ( dX' ), p.u. 
Inertia constant 

(H), kWs/kVA 

FG1 
Initial Value 0.5 0.3688 

Identified Value 5.0 5.4364 

FG2 
Initial Value 0.5 0.4993 

Identified Value 5.0 4.4080 

 

 
 

Figure 4.11 Active power responses of the original system and the reduced system B 

after the parameter identification is terminated. 

 

Moreover, the simulated result from the reduced system when the group of coherent 

generators is replaced by the coherency-based dynamic equivalent [2] (called the 

reduced system D) is also presented. For this coherency-based equivalent, the inertia 

constants of corresponding coherent generators are used as the weights for the 

common bus angle average. The inertia constant of the equivalent generator is the 

sum of inertia constant of individual coherent generator. The direct axis transient 

reactance of the equivalent generator is calculated as transient reactance of the 
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individual generator in parallel. The reduced system D is shown in Figure 4.12 while 

its related components and the parameters are given in the Table 4.7 to Table 4.9 

respectively.  

 

Fig. 4.12 Reduced system D for the nine bus system 

 

Table 4.7 Equivalent transmission lines of the reduced system D 

 

From bus To bus Resistance, R (P.U.) Reactance, X (P.U.) 

5 6 1.27335 3.53964 

5 Agg1 0.02878 0.22176 

6 Agg1 0.02503 0.23031 

 

Table 4.8 Equivalent shunts of the reduced system D 

 

Bus 
Shunt conductance, G (MW) 

(Actual / Nominal) 

Shunt susceptance, B (MVar) 

(Actual / Nominal) 

5 -8.902 / -8.980 19.527 / 19.699 

6 -28.620 / -27.909 27.056 / 26.384 

Agg1 -62.171 / -59.175 19.080 / 18.161 

 

Table 4.9 Equivalent parameters of the equivalent generator of the reduced system D  

Equivalent 

Generator 

Direct axis transient reactance ( dX' ) 

p.u. 

Inertia constant (H) 

kWs/kVA 

Geq 0.0721 9.410 
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The calculated equivalent parameter in Table 4.9 is also used with the proposed 

equivalent to form another reduced system, called the reduced system C. All the 

reduced system are summarised as following: 

 

- The reduced system A is constructed from the proposed equivalent 

- The reduced system B is constructed from the fictitious generator equivalent. 

- The reduced system C is constructed from the proposed equivalent with the 

parameters of equivalent generator from the calculation (Table 4.9). 

- The reduced system D is constructed from the coherency-based equivalent. 

 

These reduced systems are shown in Figure 4.13 below. 
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Figure 4.13 Summary of reduced systems studied in Chapter 4 
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The results of each reduced system and of the original system are presented together 

for each type of fault and each location of fault, respectively in Figure 4.14 to Figure 

4.19. 

 

From the results (each top sub-figure of the Figure 4.14 to Figure 4.19), the transient 

of rotor angle of the internal generator of the original system can be similarly 

reproduced by the reduced system A for all locations of fault and for both types of 

faults, especially the small fault. This is because the proposed model structure is 

derived from the knowledge of the coherent group that is independent to the fault 

location. Moreover, in the case of the small fault, the reduced system worked within 

the limit where its linearised model is good valid, thus giving a well condition for the 

equivalent model. However, the validity of the equivalent for all locations of fault do 

not assure because the parameters of the equivalent generator was not obtained by 

theoretical aggregation [11]. 

 

In comparison, the performance of the reduced system B (each second sub-figure 

from top of the Figure 4.14 to Figure 4.19) and the performance of the reduced 

system A are nearly the same, even the fitting results during the parameter 

identification of the reduced system A is poorer than those of the reduced system B 

(see Figure 4.9 and Figure 4.11). However the proposed equivalent has one fewer 

generator, hence producing the smaller size of the reduced system.  

 

The poor result is not from the improper values of the identified parameters, but 

because it is the best performance that could be achieved by using the model 

structure based on the knowledge of the coherent generator. It can be clearly seen 

that the performance of the reduced system A is even better than those of the reduced 

system C and of the reduced system D (see each last two sub-figure of Figure 4.14 to 

Figure 4.19). The performance of this model structure largely relies on coherency 

between the generators, which depends on the character of each particular system. 

For this nine bus system, the coherency of the generator 2 and the generator 3 is not 

so tight (see Figure 3.28 of Chapter 3).      
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4.4 Conclusion 

 

The development of a dynamic equivalent of a power system based on parametric 

identification has been presented in this Chapter. The model structure which largely 

determines the performance (i.e. accuracy, validity, and size) of the resultant reduced 

system is derived through using the knowledge of coherent generator. With the 

coherent generator identification technique proposed in Chapter 3, the model 

structure can be obtained without the parameters of the generators. The 

identification-based dynamic equivalencing method requires only power flow 

modelling data and measurements at the boundaries.  

 

The nine bus power system was used to demonstrate the feasibility of this proposed 

method. Moreover, the proposed dynamic equivalent was also tested and compared 

with another equivalent to evaluate its validity and reliability. The results show good 

validity and reliability of the equivalent. However, further studies with a larger 

system were conducted in Chapter 6 to assess the real performance and the 

limitations of the proposed method. 
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Figure 4.14 Rotor angles of the generator 1 from the reduced systems and the 

original system of the nine bus power system when a fault with 10 P.U. resistance is 

applied at bus 4.  
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Fig 4.15 Rotor angles of the generator 1 from the reduced systems and the original 

system of the nine bus power system when a fault with 10 P.U. resistance is applied 

at bus 5. 
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Figure 4.16 Rotor angles of the generator 1 from the reduced systems and the 

original system of the nine bus power system when a fault with 10 P.U. resistance is 

applied at bus 6. 
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Figure 4.17 Rotor angles of the generator 1 from the reduced systems and the 

original system of the nine bus power system when a solid fault is applied at bus 4.  
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Figure 4.18 Rotor angles of the generator 1 from the reduced systems and the 

original system of the nine bus power system when a solid fault is applied at bus 5; 

the fault regions are magnified and shown in sub-figures.  
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Figure 4.19 Rotor angles of the generator 1 from the reduced systems and the 

original system of the nine bus power system when a solid fault is applied at bus 6; 

the fault regions are magnified and shown in sub-figures.  
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CHAPTER 5 

 

IDENTIFICATION OF EQUIVALENT GENERATOR PARAMETERS 

WITHOUT FULL SYSTEM SIMULATION 

 

5.1 Introduction 

 

Parameter identification is one essential task for constructing identification-based 

dynamic equivalent. Its performance (i.e. accuracy and usage time) directly affects 

the efficiency of the dynamic equivalent especially when online application is 

concerned as discussed in Chapter 1. In this Chapter, the aim is directed to improve 

the usage time of the parameter identification process. 

 

In general, the parameter identification could be formulated as an optimization 

problem [1] which can be further divided into linear and nonlinear optimization 

problems, respectively. These two sub-classes of optimization problem differ on how 

the error criterion is parameterized. In our case, the parameter identification falls into 

the latter as the consequence of a nonlinearity in parameters of the equivalent model. 

The total time used to solve this kind of problem largely depends on many factors [2] 

such as the chosen optimisation methods, the initial guessing parameters, and the 

character of the problem. The focus of this chapter is on the character of problem, in 

particular the reduction of the time to calculate the error criterion which is based on 

the difference between the recorded responses from the original system and the 

simulated responses from the reduced system under the current assuming parameter 

values. It is expected to have a large improvement; because, the simulation of the 

reduced system (i.e. the internal system together with the external equivalent) is a 

time consuming process and need to be repeated for each newly adjusted parameter 

during the optimisation process.  

 

The parameter identification technique that requires no simulation of the complete 

system is presented in this chapter. This technique is modified from the previous 

parameter identification proposed in Chapter 4. Firstly, the input-output formulation 

of external part is described. Next, the modified parameter identification procedure is 

explained according to two schemes of implementation. In the first scheme, 
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parameters of equivalent generators are identified all at once while a set of 

parameters of each equivalent generator is individually identified in the second 

scheme. Finally, test results with IEEE39 bus system are discussed and the 

conclusions are drawn. 

 

5.2 Input-output formulation of external system 

 

The input-output formulation of external system here is adopted from [3, 4]. 

Electromechanical transient of the external system is modelled by three fundamental 

components (see Figure 5-1): a reduced transmission network of the external part, the 

generator dynamic equations in their coordinates, and the frame transformations.  

 

 

 

Figure 5.1 Components comprising the electromechanical transient model of power 

system 

 

From Figure 5.1, the loads are represented by the constant admittances and are 

placed in the transmission network. The interfacing variables at the boundaries from 

the external system are the vectors of voltages and currents which are related to other 

components by the following sets of equations. 

 

A. Reduced network equation of the external part 

 

The derivation of the reduced network equation of the external part starts by 

rearranging the complete network equation (5.1) into a new order of bus as shown in 

eqn. (5.2)  
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=

















E

B

I

E,EB,E

E,BB,BI,B

B,II,I

E

I

V

V

V

YY

YYY

YY

I

I

0

0

0                                         (5.2) 



130 

The underline denotes a complex variable. The sub-matrices inside a complex 

injection current are put in order with the injections of generator buses at the 

beginning, as eqn. (5.3). The zeros belong to the load injections which have been 

converted to the constant shunt admittances. 

                                                              [ ] [ ]T
GII 0=                                                       (5.3) 

 

The subscripts I, B, and E indicate that the matrix is related to internal bus, boundary 

bus, and external bus, respectively, while the subscript G denote the generator bus.  

After the parts associated with the external system are extracted (excluding the loads 

at boundaries) and load buses are eliminated, the reduced network equation of the 

external part is obtained as given in eqn. (5.4). 
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From eqn. (5.4), an occurrence of the complex injection currents at boundary buses 

( BI ) is resulted from the separation at boundaries to balance those of the internal 

system.  

 

B. Generator dynamic equations  

 

For the sake of simplicity, the simplified classical generator dynamic model is used 

in this chapter. The related equations which are expressed in two-axis of individual 

machines co-ordinate are given below.  

 

Stator voltage equation:  

[ ] [ ] [ ][ ] [ ][ ][ ]i
md

i
mi

i
m

i
m IXQPIREV '' −−=

                                  (5.5) 

Electric torque equation: 

{ }i
d

i
d

i
q

i
q

i
em I'EI'ET +−=                                             (5.6) 

Rotor motion equations:  
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i TT
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− ωωω
2                                      (5.7) 

e
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d
ωω

δ
−=                                                  (5.8) 
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Where  

i
m

i
m

i
m 'E,V,I  2 element vectors containing d and q axis components of generator 

armature current, generator terminal voltage, and generator internal 

voltage. 

i
emT , i

mechT  an electrical and a mechanical torques of the i-th generator, p.u. 

iδ  a rotor angle of the i-th generator, radians 

i
rω  a shaft speed of the i-th generator 

iH  an inertia constant of the i-th generator 

[PQ] permutation matrix, 






 −

01

10
 

 

C. Frame transformation 

 

The individual set of generator equations and the equation of the reduced 

transmission network of the external part are worked together via the frame 

transformation of eqn. (5.9). The capital subscript denotes the network reference 

frame while the lower case subscript denotes the generator reference frame. 

 

i
ai

i
A

ITI = ,     i
ai

i
A

VTV =                                                     (5.9) 

Where 








 −
=

ii

ii
i

cossin

sincos
T

δδ

δδ
                                                       (5.10) 

 

This frame transformation is based on the notation of generator and network axes 

shown in Figure 5.2. 

 

Figure 5.2 generator and network axes 
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By applying the frame transforms eqns. (5.9)-(5.10) to eqn. (5.5) and substitute into 

eqn. (5.4), the algebraic part of the external system dynamic model is obtained in 

eqn. (5.11). 
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This equation can be reduced to eqn. (5.12) by a multiplying both sides of eqn. (5.11) 

with the inverse of its most left matrix. 
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Where A’, B’, C’, and D’ are the sub-matrices inside the resultant matrix obtained 

from the multiplication of the matrix of admittances on the right hand side of eqn. 

(5.11) by the inverse of the most left matrix of eqn. (5.11). 

 

The equations (5.12) and (5.6)-(5.8) are the input-output formulation of dynamic 

model for the external part. The inputs are the voltages at boundary buses and the 

outputs are the injection currents at boundary buses from the external part.  

 

As our recorded responses for the parameter identification are active power flows, 

another equation for the calculation of active power flow from the voltages and the 

currents at boundaries need to be included. 

 

QQDDT IVIVp +=                                                   (5.13) 

Where   

QD VV ,  D and Q axis components of voltages at boundaries 

QD II ,  D and Q axis components of injection currents at boundaries 

 

The idea to simulate the dynamic responses from the external part at boundaries 

without performing a full system simulation is tested with the IEEE39 bus system[5]. 

The external part and its corresponding inputs and outputs are defined in Figure 5-3. 
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(a) 

                                        

 

 

(b) 

 

Figure 5.3 IEEE39 bus system: (a) single-line diagram with the external part inside 

dashed box (b) input-output model representation 

 

From Figure 5.3 (a), the boundary buses are bus 16 and bus 26. The thick 

transmission lines inside the external part represent the lines that contribute the 

active power outputs of model. According to Figure 5.3 (a), the input-output model is 

summarised in Figure 5.3 (b). 
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The modelling techniques from [6, 7] are adapted for developing the dynamic model 

of the external system in Simulink/MATLAB [8]. The result of the developed model 

is shown in Figure 5.4.  

 

 

(a) 

 

(b) 

Figure 5.4 Simulink diagram (a) dynamic model of the external system (b) the details 

inside generator block. 

 

From Figure 5.4 (a), the group of connected blocks on the left constitutes the 

equation (5.12), which represents the algebraic equations from the reduced network 

and the generator’s stator. In the middle, each block is composed of the electric 

torque equation (eqn. (5.6)), the motion equations (eqns. (5.7) and (5.8)), and the 

frame transformation (eqn. (5.10)). The details inside each block are shown in Figure 

5.4 (b). Finally, each group of connected blocks on the right corresponds to the 

equation (5.13) for calculating the active power outputs. 
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In order to validate the external dynamic model, the transient responses of the 

voltages (magnitude and angle) at boundary buses (bus 16 and bus 26) of the IEEE39 

bus system when a small fault (a fault with 10 PU resistance) is applied at bus 18 are 

simulated by PSAT and the results are recorded in MATLAB workspace. After the 

recorded transient responses are transformed to DQ co-ordinate, by using equations 

(5.14)-(5.15), they are applied to the input terminals of simulink model (Figure 5.4 

(a)).  

 

( ))(sin)()( tVtVtV boundaryboundaryD ∠−=                               (5.14) 

 

( ))(cos)()( tVtVtV boundaryboundaryQ ∠=                                    (5.15) 

 

Then the active power outputs from the simulink model are recorded and compare 

with those produced by PSAT. For each boundary bus, two groups of the recorded 

active power responses from PSAT are bought to compare. The first group is a 

summation of the active power flows in the lines from the external part to the 

boundary bus. The second group is a negative summation of the active power flows 

in the lines from the internal part to the boundary bus including that from the branch 

of the constant shunt admittance load. The comparisons in Figure 5.5 show good 

agreements. 

 

Figure 5.5 Active power flows (a) to boundary bus 16, and (b) to boundary bus 26 
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5.3 Modified parameter identification procedure 

 

Based on the parameter identification procedure explained in Chapter 4 and the 

input-output formulation of the external system mentioned in the previous section, a 

modified parameter identification technique that does not require a full system 

simulation is shown in Figure 5-6. 

 

Run Power-Flow,Time-Domain Simulation (PSAT), 

and record the time responses of the original system

Run Power-Flow (PSAT) and record the results 

for the reduced system

give the initial guess of the external equivalent 

generators' parameters

calculate initial conditions of the external equivalent 

generators

build the external system matrix, equation (5.12)

check an error between simulated active power flows 

of the external system and the records from 

the original system 

terminate criterion 

not satisfied

terminate criterion satisfied

The identified values of equivalent parameters

adjust the parameters 

of equivalent generators

<0>

<1>

<2>

<3>

<4>

<5>

<6>

<7>

<8>

Simulate the active power flows transient from 

the external system 

(equations (5.6)-(5.8),(5.10), (5-12) and (5.13))

when the recorded voltages at boundary of 

the original system are used as the inputs

 

 

Figure 5.6 Parameter identification procedure which does not require a full system 

time domain simulation. 

 

From Figure 5.6, the modified parameter identification procedure is similar to the 

parameter identification shown in Figure 4.2 except the fourth and the fifth steps. In 
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the fourth step of Figure 5.6, the initial guesses of the parameters of equivalent 

generators (from the second step) are used with the power flow modelling data and 

its solutions (from the first step) to calculate the values of entries (i.e. A’,B’,C’, and 

D’) in the matrix of equation (5.12). Next, in the fifth step, the dynamic model of the 

external part is built and its output responses are simulated following the method 

described in the previous section. The simulated responses are then compared with 

those recorded from the original system (from the zero-th step). The difference 

between them is examined to justify whether the process will be terminated or 

continue through to the seventh step.  

 

By comparison with the previous procedure of Chapter 4 (Figure 4-2), the major 

expected reduction in the calculating time of this modified parameter identification 

procedure would be from the fifth step, which requires only the simulation of the 

external part of the reduced model to produce the responses at the boundaries. 

 

It is worth mentioning that there are two possible schemes for implementation this 

modified parameter identification technique. The first scheme is to identify 

parameters of all generators together at the same time while the second scheme is to 

separately identify an individual set of parameters for each equivalent generator. The 

procedure shown in Figure 5.6 is applied equally to both schemes except for a 

difference in the extent of the internal and the external part. More details of these 

schemes are explained as follows. 

 

5.3.1 Parameter identification for all equivalent generators 

 

In this scheme, the partitioning between the internal part and the external part is 

defined in the way that all equivalent generators are together in the external part (see 

Figure 5.7). For this partitioning, the responses at boundary are contributed from all 

equivalent generators of the external part. As described in section 5.2, there are two 

possibilities of recording for use in the comparison with those simulated from the 

external dynamic model (see Figure 5.8). 
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Figure 5.7 The partitioning for parameter identification of all equivalent generators  

 

 

 

(a) 

 

(b) 

 

Figure 5.8 Two possibilities of responses recorded (a) from the internal side (b) from 

the external side. 

 

The first possibility is to use the summation of the active power flows in the lines 

from the external part to the boundary buses (see Figure 5.8 (a)). The limitation for 

using this kind of records depends on the accessibility of the responses from the 

external part. However, the external part discussed in this section need not be the 

same as that drawn from the ownership boundary. One might re-define the partition 

so that the required responses are accessible. 

 

Equivalent 

generator 

Equivalent 

generator 

Equivalent 

generator 

Equivalent 

generator 

Equivalent 

generator 

Equivalent 

generator 
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The second possibility is to use the negative summation of the active power flows in 

the lines from the internal part to the boundary buses including that from branch of 

the constant shunt admittance loads. This method can be applied to the original 

partitioning of the system; however, the transient responses from the load branches at 

boundaries included in the internal side may add some difficulties. For example, 

these responses are not presented by the power system simulator (i.e. PSAT) and 

need to be separately calculated by an additional routine. 

 

In addition to the partitioning, the load buses of the external part may be eliminated 

to reduce the size of the external network before performing the parameter 

identification, as shown in Figure 5.9. However, only the recorded responses from 

the internal side are justifiable for this case because the lines from the external part 

now become the artificial lines in which recording the responses may be impractical. 

 

 

 

 

Figure 5.9 The partitioning for parameter identification of all equivalent generators 

when the external load buses are eliminated 

 

  

5.3.2 Parameter identification for individual equivalent generator 

 

This scheme partitions the internal part and the external part so that only equivalent 

generator whose parameters are to be identified contribute to the responses at 

boundaries from the external side, as shown in Figure 5-10.    

 

 

Equivalent 

generator 

Equivalent 

generator 
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(a) 

 

 

(b) 

 

Figure 5.10 The partitioning for parameter identification of each equivalent generator 

 

 

Different partitionings are needed for each particular equivalent generator (see 

Figure 5.10(a)-(b)). For each partitioning, the possibilities of either recording the 

responses at boundaries mentioned in previous sub-section could be applied. The 

applicability of the parameter identification for individual equivalent generator is 

subject to attaining the partition whose responses at boundaries from the external 

side are contributed by only one equivalent generator. Moreover, the corresponding 

responses must be accessible. 

 

5.4 Test results and discussion 

 

The modified parameter identification procedure has been developed on MATLAB 

with the aid of PSAT (Power System Analysis Toolbox) [9], Simulink, and 

Optimisation Toolbox. Its performance (i.e. accuracy and calculating time) is 

evaluated for both schemes described in the previous section with IEEE39 bus 

system.  

Equivalent 

generator 

Equivalent 

generator 

Equivalent 

generator 

Equivalent 

generator 



141 

The internal part and the external part are defined as shown in Figure 5.11. The 

groups of coherent generators according to the results in Chapter 3 (from the case 

study 5 by using two levels of line thickness plot with the thresholds > 50%) are also 

presented in the figure. Therefore, for this case, the parameters of three equivalent 

generators are needed to be identified. This corresponds to the reduced model shown 

in Figure 5.12. The external equivalent generator buses are aggregated as described 

in Chapter 4. The external network is reduced by using the Equivalencing tool of 

PowerWorld Simulator [10] with a default setting (a maximum per unit impedance 

for equivalent lines = 2.5). 

 

 

 

 

 

 

Figure 5.11 Single line diagram of IEEE39 bus system showing the external part 

including its groups of coherent generators 
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Figure 5.12 Single line diagram of the reduced model of IEEE39 bus system 

 

Accordingly, fives study cases have been conducted. Case 1 is based on the 

parameter identification technique proposed in Chapter 4, while the others (case2-

case5) are based on the parameter identification technique proposed in this Chapter. 

The details for each case are as follows. 

 

-Case 1: the parameters of all equivalent generators are identified by using the 

techniques that requires a full system simulation. The model structure for this case is 

the same as shown in Figure 5.12 where the second-order of generator dynamic 

model with only two parameters (X’d and H) is attached for each equivalent 

generator. The relevant transient responses are the active power flows from bus 27 to 

bus 26, bus 25 to bus 26, bus 15 to bus 16, and bus 17 to bus 16 during a small fault 

applied at bus 18 (fault with 10 pu resistance at t=0.1s). For the same reason as 

explained in Chapter 4, all transient responses are recorded with the time durations of 

2.5 seconds. 
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For case 2 to case 5, the modified parameter identification process is applied to the 

external part having the aggregation of coherent generator buses. The reason for not 

using the reduced network is because the power flows in the lines from the external 

side are our responses and are being recorded. Various components of model 

associated with the external generator(s) whose parameters are to be identified have 

to be defined for building the external system (the 4
th

-step in Figure 5.6). These 

components are described below following the remaining four study cases. 

 

The modified identification of the first scheme (all at once):  

 

-Case2 (see figure 5.13) 

  Parameters to be identified: of equivalent generator 1, 2, and 3 

Inputs:  voltages (magnitude and angle) at boundary bus  

      Input1=Voltage at bus 16 

Input2=Voltage at bus 26 

Outputs: summations of active power transient in the line from bus� to bus 

Output1= P (19�16) +P (21�16) +P (24�16) 

Output2= P (28�26) + P (29�26) 

 

The modified identification of the second scheme (individual): 

 

-Case3 (see figure 5.14)  

Parameters to be identified: of equivalent generator 1 

Input: voltage (magnitude and angle) at bus 26. 

Output: P (28�26) + P (P29�26) 

 

-Case4 (see figure 5.15)    

Parameters to be identified: of equivalent generator 2 

Input: voltage (magnitude and angle) at bus 16. 

Output:  P (21�16) + P (24�16) 

 

-Case5 (see figure 5.16) 

Parameters to be identified: of equivalent generator 3 

Input: voltage (magnitude and angle) at bus 16. 

Output:  P (19�16)  
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All study cases have been carried out by using the same optimization technique (non-

linear least square technique with Levenberg-Marquardt algorithm), termination 

criterion and set of initial guess parameters. The results are summarised and are 

given in two tables. The first table (Table 5.1) is to show a comparison of their 

identified parameters while the second table (Table 5.2) is to show a comparison of 

their calculating time. For the first table, the values of parameters obtained by using 

the structure preservation technique [11] are also included. 

 

Table 5.1 Identified parameters of equivalent generators 
 

Equivalent  

Parameters 

Equivalent 

Generator1 

Equivalent 

Generator2 

Equivalent 

Generator3 

d'X  H d'X  H d'X  H 

Initial values 0.050 50.00 0.050 50.00 0.050 50.00 

Case 1 0.052 36.91 0.014 75.63 0.058 43.24 

Case 2 0.054 36.65 0.021 68.35 0.044 60.59 

Case 3/  

Case 4/  

Case 5 

0.056 35.00 0.024 64.29 0.056 51.21 

Structure 

preservation   
0.057 34.50 0.025 61.20 0.035 54.60 

 

Table 5.2 Calculating time of each parameter identification technique 
 

 

Parameter Identification 

Method 

Calculating time (sec.) 

Equivalent  

Generator1 

Equivalent 

 Generator2 

Equivalent 

 Generator3 

Case 1 197.90 

Case2 20.44 

Case 3/ Case 4/ Case 5 5.73 8.16 8.22 
 

* The calculating times are measured by using “cputime” function in MATLAB 
 

 

From Table 5.1, it shows that the values of parameters identified from the modified 

technique of both schemes (case2 and cases3-5) are within acceptable range when 

compared to the values calculated by using structure preservation technique [11]. 

The quality of these identified values is also evidenced by using them with the 

reduced system of Figure 5.12 to simulate swing curves of the internal generators. 

The plots of swing curves of the internal generators, when a fault with 10 p.u. 

resistance is applied at bus 18, for the original system and the reduced systems whose 

values of parameters of the external equivalent generators are from different 

techniques are given in the Table 5.1 and are shown in Figure 5.17.  
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Figure 5.17 Swing curves of internal generators when a fault with 10 p.u. resistance 

is applied at bus 18 (a) generator at bus 31, (b) generator at bus 32, (c) generator at 

bus 37, and (d) generator at bus 30, (rotor angle of generator at bus 39 is the 

reference)  
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From Figure 5.17, the swing curves from the reduced system whose values of 

parameters of the external equivalent generators are from the first scheme of the 

modified technique (case2) are slightly better than those from the second scheme of 

the modified technique (cases3-5). However, the plots from both schemes show well 

agreement with those from the original system. This confirms that these values of 

parameters are acceptable and suitable to be the values of the parameters of 

equivalent generators of the reduced system in Figure 5.12. 

 

Also from Figure 5.17, it can be seen that the swing curves from the reduced system 

using values of parameters from the technique that require a full system simulation 

(case1) is closer to the swing curves from the original system than those from the 

reduced systems using values of parameters from the modified identification 

technique (case2 and cases3-5). This shows that the values of parameters obtained 

from the modified parameter identification technique are less suitable than those 

obtained from the parameter identification technique that requires a full system 

simulation. The main reason that the modified parameter identification technique 

gives less suitable values of parameters is because the inputs to the external 

equivalent dynamic model (input/output formulation) during the parameter 

identification process are not quite correct. The correct inputs should be the voltages 

at boundaries recorded from the simulation of the reduced system (i.e. the internal 

part and the external equivalent) rather than those from the simulation of the original 

system (i.e. the internal part and the external part) of Figure 5.13. However, such 

reduced system does not happen beforehand, at least the parameter of the external 

part is about to be identified. Therefore, this is impractical. 

 

Considering the calculating times (see Table 5.2), the modified identification 

technique show a big improvement. The total calculating times for the modified 

parameter identification of three equivalent generators are 20.44 seconds and 22.11 

seconds for the first scheme and the second scheme, respectively. These calculating 

times are much shorter, compared to 197.90 seconds of the technique that require a 

full system simulation. The main reason of this big improvement for the modified 

parameter identification technique is that the largest computational expense is for the 
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sets of external equivalent generator equations only, in contrast to the previous 

identification technique where equations of all internal generators (normally 

represented in great details) and equivalent generators must be included. Moreover, 

with the second scheme of the modified parameter identification, the amount of time 

could be reduced to only 8.22 seconds if the three sets of parameters are identified in 

parallel on three different computers. 

 

5.5 Conclusion 

 

The modified parameter identification technique that requires no full system 

simulation has been developed. This technique could be implemented by two 

schemes. The first scheme is to identify parameters of all generators together at the 

same time while the second scheme is to separately identify an individual set of 

parameters for each equivalent generator.  

 

The essence of the technique is the re-formulation of dynamics of the external part as 

the input-output dynamic model. By using this model formulation, the major 

calculation expense during each step of parameter adjustment is reduced because 

only the simulation of the input-output dynamic model is required for calculating 

value of the error criterion. This reduction greatly improves the computational time 

of the whole parameter identification process and saves memory needed for model 

storage during the identification process. However, the drawback of this technique is 

impractical to obtain the voltages at boundaries of the reduced system to be used as 

the inputs for the simulation of the external equivalent model and the nearest one 

recorded from the boundaries of the original system must be instead used. 

 

The modified parameter identification technique and its performance (i.e. accuracy 

and usage time) have been studied and evaluated with the IEEE39 bus system. The 

results show the feasibility and good performance of this technique for both schemes 

of implementation. 
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CHAPTER 6 

 

STUDY OF REDUCED SYSTEM 

 

6.1 Introduction 

 

The aim of this chapter is to describe the tests and to present the evaluation results of 

the proposed identification-based dynamic equivalent. This proposed equivalencing 

method is a combination of the parametric identification of dynamic equivalent and 

the modified parameter identification technique presented earlier in the previous two 

chapters; and, it could be summarised into the five steps below: 

 

Step1: Identification of coherent generators based-on the node-weighted graph 

(chapter 3); 

Step2: Aggregation of the coherent generator buses (chapter 4); 

Step3: Reduction of the transmission network (chapter 4); 

Step4: Attachment of the generator dynamic equation (chapter 4); 

Step5: Parameter identification of the equivalent generator dynamic models (chapter 

5). 

 

The main objectives of the tests in this chapter are (a) to examine the validity of the 

proposed equivalent by a study of a complete system (i.e. internal part and external 

part) under various conditions, (b) to examine the reliability of the proposed 

equivalent by a comparison of complete system study formed by other equivalents, 

and (c) to examine the construction time by a comparison with the procedure that 

requires a complete system simulation. The tests were conducted on a medium size 

system (IEEE39 bus system) and a large size system (IEEE118 bus system). 

  

This chapter is organised in four parts. The first part describes the procedure of tests. 

The second part presents the case study of IEEE39 bus system; and, the case study of 

IEEE118 bus system is presented in the third part. The details for each case study 

include the description of the system, the testing scenarios, the results and the 

discussions. Finally, the chapter is concluded in the last part. 
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6.2  Procedure of the Tests 

 

To evaluate the performance of the proposed identification-based dynamic 

equivalent, three major tests, namely a test of validity, a test of reliability, and a test 

of construction time, are introduced in this section. All tests were conducted on 

MATLAB [1]. 

 

A) Test of validity 

 

Once an external part is reduced it is necessary to test its accuracy. In this thesis it is 

termed as the validity of the equivalent. As the external part has been reduced to 

equivalent, the testing of validity is concentrated on the internal network. It is done 

by comparing the rotor angles of all internal generators before and after the reduction 

process. Therefore, the validity of equivalent here is an ability of the equivalent to 

form a reduced system (i.e. an internal part and an equivalent) which can reproduce 

an acceptable accuracy of responses of the internal part (i.e. the rotor angles of the 

internal generators) under each particular disturbance. A bus-fault is the only 

disturbance being studied. Accordingly, the accuracy measure, defined in eqn. (6.1), 

adapted from [2] is used in this chapter to quantify the accuracy of the reduced 

system under each fault location.    

 
 

   tolerance
thjfaultat

original
i)t(

reduced
i)t(

Gi
max

I

δδδ <

−

−

∈

 ,        max0 tt ≤≤         (6.1) 

 

 

where GI is a set of internal generators ;and, reduced

it)(δ  and original

it)(δ  are the rotor 

angles at time t of i-th generators of the reduced system and of the original system, 

respectively. At the j-th bus, the equivalent is valid if the accuracy measure is less 

than a pre-defined tolerance ( toleranceδ ). Based on this accuracy measure, the test 

procedures are as follows: 

 

1. Perform a transient stability simulation of the original system and record 

rotor angles of all internal generators. 

2. Perform a transient stability simulation of the reduced system and record 

rotor angles of all internal generators. 
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3. Compute the accuracy measure of the reduced system by using eqn. (6.1) 

and check the value with the pre-defined tolerance if the reduced system 

is valid. 

 

Throughout this chapter, maxt of 2.5 seconds is used in accordance with the time 

periods of recorded responses for parameter identification.   

 

B) Test of reliability 

The reliability of equivalent is the validity of the equivalent under various working 

conditions (e.g. different kind of fault and different location of fault). The more 

conditions the equivalent is valid, the more reliable equivalent is. The test of 

reliability is basically a repetitive validity test for all fault locations within the 

internal part. The test procedures are as follows: 

 

1. Perform the validity test for all fault locations within the internal part. 

2. Record the number of testing conditions for which the reduced system is 

valid and use this number as the reliability measure. 

 

C) Test of construction time 

The construction process of the equivalent involves five main steps as mentioned in 

the beginning of this chapter. However, in this thesis, the first four steps are not fully 

automated hence making it difficult to measure. Therefore, only the time usage 

during the parameter identification step (the fifth step) is considered here for an 

evaluation. The time will be recorded at the start of the parameter identification until 

the end of process when termination criterion is satisfied. 

 

6.3 Case study 1: IEEE39 bus system 

 

There are two studies presented in this section which are a reliability study and an 

order of equivalent generator dynamic model study. The former is to evaluate the 

reliability of the proposed equivalent in comparison with the traditional 

identification-based equivalent (i.e. a fictitious generator attached to each boundary 
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bus).The latter is to evaluate the validity of the proposed equivalent when different 

orders of the equivalent generator dynamic model are used.  

 

6.3.1 Case study 1.1: Reliability study 

6.3.1.1 Description of the test system and the testing scenarios 

 

The IEEE39 bus system contains 39 buses, 46 branches, and 10 generators. The 

single line diagram of the system and the system data are given in Appendix B1. The 

generator is represented by the fourth order dynamic model. All the system data were 

originally from [3] except the resistances of the generators which are from [4]. 

However, to keep this study simple, only the second order of generator dynamic 

model with two parameters (i.e. d'X   and H) is used in this study for both the original 

model and the reduced model. The internal part and the external part of the system 

are defined according to Figure 6.1. The boundary buses are bus 16 and bus 26, 

respectively. 

 

 

Figure 6.1 Test system for the case study 1.1  
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In order to assess the reliability, the reliability measure (described in the previous 

section) of the proposed equivalent and of the traditional identification-based 

equivalent are calculated and compared. The assessment is conducted for two 

scenarios of the proposed equivalent as follows.  

 

Scenario 1: The proposed equivalent is constructed based on to the tight coherent 

groups 

Scenario 2: The proposed equivalent is constructed based on to the loose coherent 

groups 

 

6.3.1.2 Test results and discussions 

 

The groups of coherent generators are identified from the node-weighted graph 

model by using the applied epsilon decomposition technique. The result of the 

identified coherent groups for different values of epsilon is summarised in Figure 6.2 

by using contour lines. 

 

Figure 6.2 Coherent generators of the case study 1.1 for different values of epsilon 
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From Figure 6.2, a value on the contour line indicates the minimum value of epsilon. 

The generators contained in each contour are the coherent generators identified by 

using any values of epsilon which is greater than the value indicated on that contour 

line. For example, the group of generators2 and 3, the group of generators 4 and 5, 

the group of generators 6 and 7, and the group of generators 8 and 10 are the groups 

of coherent generators identified with the epsilon values greater than 0.5 units.  

 

In this case study, the groups identified with the epsilon values greater than 0.5 units 

are considered as the tight coherent groups while the groups identified with the 

epsilon values greater than 0.3 units are considered as the loose coherent groups. 

These cause the external parts for the first scenario equivalent and the second 

scenario equivalent having three and two equivalent generators, respectively.  Table 

6.1 summarises the equivalent generators associated with the groups of coherent 

generators for both scenarios. 

 

Table 6.1 Equivalent generators for the first and the second scenarios 

Scenario 
Equivalent 

generator 1 

Equivalent  

generator 2 

Equivalent 

generator 3 

1 G9 ( G6 - G7 ) ( G4 – G5 ) 

2 G9 ( G4 - G5 - G6 - G7 ) - 

 

 

After the aggregation of the coherent generator buses and the reduction of the 

external transmission network (using PowerWorld software [5] with a default 

setting), the single-line diagrams (see Tables A1.1-A1.4 for their parameters) of the 

reduced systems formed by the equivalents according to the scenario 1 and the 

scenario 2 are obtained as shown in Figures 6.3 (a) and (b), respectively.  
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(a) 

 

 

 

(b) 

 

Figure 6.3 Single-line diagrams of the reduced systems for the case study 1.1: (a) 

based on tight coherent groups; and (b) based on loose coherent groups. 
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For the traditional identification-based equivalent, two fictitious generators are 

attached at bus 16 and bus 26 (see Figure 6.4), respectively. The static operating 

condition of the internal system is preserved by setting the complex power injection 

at the boundaries (bus 16 and 26) equal to the values calculated by the power flow of 

the original system [2]. The comparisons of the power flow results for these single-

line diagram (power flow model) to that of the original are given in Tables A1.10-

A1.12.  

 

 

 

Figure 6.4 Single-line diagram of the reduced system based on two fictitious 

generators for the case study 1.1. 

 

According to the single-line diagrams, five dynamic reduced systems (see Table 6-2) 

are actually constructed for a comparison of their reliability. The identified values of 

the parameters for each reduced system are given in Tables A1.5-A1.6. These 

parameters were identified based on an intentional small fault (a fault with 10 p.u. 

resistance) applied at bus 18 without remove. 
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Table 6.2 Details of the reduced systems for the case study 1.1 

 
Reduced System External Equivalent Parameter identification 

A -Two fictitious generators -Full system simulation (Chapter 4) 

B 

-Two equivalent generators  

-Equivalent transmission lines 

-Equivalent Shunt 

 (scenario1) 

-Without full system simulation 

  (Chapter 5) 

C 

-Three equivalent generators  

-Equivalent transmission lines 

-Equivalent Shunt 

 (scenario2) 

-Without full system simulation 

  (Chapter 5) 

D 

-Two equivalent generators  

-Equivalent transmission lines 

-Equivalent Shunt 

 (scenario1) 

-Full system simulation 

  (Chapter 4) 

E 

-Three equivalent generators  

-Equivalent transmission lines 

-Equivalent Shunt 

(scenario2) 

-Full system simulation 

 (Chapter 4) 

 

 

 

The reliability test was conducted on these reduced systems by applying two kinds of 

faults (a small fault and a large fault) in rotation of all 26 internal buses (including 

the boundary buses). The small fault is a fault with 10 p.u. resistance which is 

applied at 0.1 second without a clearance. The large fault is a solid fault which is 

applied at 0.1 second and cleared at 0.2 second. The numerical values of the 

maximum angle difference are given in Table A1.13. 

 

The performance of the reduced systems could be assessed by a comparison of the 

testing conditions (i.e. locations of fault) for which the reduced systems are valid at 

specific acceptable level of accuracy. For example, at accuracy < 0.02 degree for the 

small fault and at accuracy < 2 degree for the large fault, the testing conditions for 

which the reduced systems are valid and invalid can be illustrated by a check and 

cross marks on the internal part of each reduced system, respectively (see Figures 

6.5-6.9). 
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(a) 

 

 

(b) 

 

Figure 6.5 Reduced system A showing the testing condition (locations of buses) for 

which the reduced system is valid by the checking mark and invalid by the cross 

mark; (a) for the small fault with the accuracy <0.02 degree and (b) for the large fault 

with accuracy < 2 degree 
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(a) 

 

 

(b) 

 

Figure 6.6 Reduced system B showing the testing condition (locations of buses) for 

which the reduced system is valid by the checking mark and invalid by the cross 

mark; (a) for the small fault with the accuracy <0.02 degree and (b) for the large fault 

with accuracy < 2 degree 
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(a) 

 

 

(b) 

 

Figure 6.7 Reduced system C showing the testing condition (locations of buses) for 

which the reduced system is valid by the checking mark and invalid by the cross 

mark; (a) for the small fault with the accuracy <0.02 degree and (b) for the large fault 

with accuracy < 2 degree 
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(a) 

 

 

(b) 

 

Figure 6.8 Reduced system D showing the testing condition (locations of buses) for 

which the reduced system is valid by the checking mark and invalid by the cross 

mark; (a) for the small fault with the accuracy <0.02 degree and (b) for the large fault 

with accuracy < 2 degree 
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(a) 

 

 

(b) 

 

Figure 6.9 Reduced system E showing the testing condition (locations of buses) for 

which the reduced system is valid by the checking mark and invalid by the cross 

mark; (a) for the small fault with the accuracy <0.02 degree and (b) for the large fault 

with accuracy < 2 degree  
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For the small fault with accuracy < 0.02 degree, the numbers of testing conditions for 

which the reduced systems A, B, C, D, and E are valid are fifteen, three, nine, four, 

and twenty-four respectively. Although the numbers of testing conditions for which 

the reduced systems B, C, and D (which are constructed by the proposed 

equivalencing method) are less than that of the reduced system A, the equivalents B, 

C, and D are still acceptable to represent the external part but at lower accuracy level 

(e.g. accuracy < 0.03 degree). This can be seen from the simulation of the swing 

curves of the internal generators at testing condition for which the reduced systems 

(B, C, and D) are invalid, such as at bus 27 (as shown in Figures 6.11-6.13). The 

swing curves obtained from the simulation of these reduced systems (B, C, and D) 

are still similar to the swing curves of the original system. The swing curves of 

internal generators obtained from the simulation of the reduced systems A and E are 

also given in Figure 6.10 and 6.14, respectively, to confirm their validity at accuracy 

level < 0.02 degree. 

 

 

 

Figure 6.10 Rotor angles of the internal generators from the original system and the 

reduced system A when the small fault is applied at bus 27 showing the values and 

the positions of the maximum difference occurred for; (a) generator 2, (b) generator 

3, (c) generator 8, and (d) generator 10. 
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Figure 6.11 Rotor angles of the internal generators from the original system and the 

reduced system B when the small fault is applied at bus 27 showing the values and 

the positions of the maximum difference occurred for; (a) generator 2, (b) generator 

3, (c) generator 8, and (d) generator 10. 

 

 

 

Figure 6.12 Rotor angles of the internal generators from the original system and the 

reduced system C when the small fault is applied at bus 27 showing the values and 

the positions of the maximum difference occurred for; (a) generator 2, (b) generator 

3, (c) generator 8, and (d) generator 10. 
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Figure 6.13 Rotor angles of the internal generators from the original system and the 

reduced system D when the small fault is applied at bus 27 showing the values and 

the positions of the maximum difference occurred for; (a) generator 2, (b) generator 

3, (c) generator 8, and (d) generator 10. 

 

 

 

Figure 6.14 Rotor angles of the internal generators from the original system and the 

reduced system E when the small fault is applied at bus 27 showing the values and 

the positions of the maximum difference occurred for; (a) generator 2, (b) generator 

3, (c) generator 8, and (d) generator 10. 
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For the large fault with accuracy < 2 degree, the numbers of testing conditions for 

which the reduced systems A, B, C, D, and E are valid are zero, zero, four, three, and 

twelve respectively. Although the reduced system B which is constructed from the 

proposed equivalencing method has none of acceptable testing condition as well as 

the reduced system A, at the same unacceptable testing condition such as a solid fault 

at bus 27 (see Figures 6.5(b) and 6.6(b)), the swing curves of the internal generators 

of the reduced system B (Figure6.16) is quite similar to those of the original system 

compared to that of the reduced system A (Figure 6.15). The swing curves of internal 

generators obtained from the reduced systems C and D (Figures 6.17 and 6.18) are 

also similar to those of the original system for this testing condition (the solid fault at 

bus 27) even though it is the testing condition for which the reduced systems C and 

D are invalid. This indicates that the reduced system A may not suitable to represent 

the external part of the system. By contrast, it also confirms that the proposed 

equivalencing method provides more reliable dynamic equivalent. 

 

 

 

Figure 6.15 Rotor angles of the internal generators from the original system and the 

reduced system A when the large fault is applied at bus 27 showing the values and 

the positions of the maximum difference occurred for; (a) generator 2, (b) generator 

3, (c) generator 8, and (d) generator 10. 
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Figure 6.16 Rotor angles of the internal generators from the original system and the 

reduced system B when the large fault is applied at bus 27 showing the values and 

the positions of the maximum difference occurred for; (a) generator 2, (b) generator 

3, (c) generator 8, and (d) generator 10. 

 

 

 

Figure 6.17 Rotor angles of the internal generators from the original system and the 

reduced system C when the large fault is applied at bus 27 showing the values and 

the positions of the maximum difference occurred for; (a) generator 2, (b) generator 

3, (c) generator 8, and (d) generator 10. 
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Figure 6.18 Rotor angles of the internal generators from the original system and the 

reduced system D when the large fault is applied at bus 27 showing the values and 

the positions of the maximum difference occurred for; (a) generator 2, (b) generator 

3, (c) generator 8, and (d) generator 10. 

 

Apart from the evaluation at the specific level of accuracy, the results in Table A1.13 

can be presented by bar charts for the performance evaluation of the reduced systems 

over different levels of accuracy, as shown in Figures 6.19 and Figure 6.20. 

 

 

Figure 6.19 Number of testing condition for which the reduced systems A, B, C, D 

and E of the case study 1.1 (small fault) are valid for different level of accuracy.   
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Figure 6.20 Number of testing condition for which the reduced systems A, B, C, D 

and E of the case study 1.1 (large fault) are valid for different level of accuracy.  

 

 

The bar charts in Figure 6.19 and Figure 6.20 show the number of testing condition 

for which the reduced systems are valid over different levels of accuracy for the 

small and the large faults, respectively. As can be seen from the bar charts, the 

number of testing condition for which the reduced system A (based on two fictitious 

generators) is valid does not come in the last for only the small fault case when the 

accuracy less than 0.04 degrees. However, it is not the best. By contrast, there is no 

testing condition for which the reduced system A is valid when the large fault is 

considered. This is totally different from the case of the proposed equivalents (B, C, 

D, and E). Even thought the loose coherent groups are used, its reduced systems (B 

and D) still have the valid conditions for the large fault case. This indicates that the 

proposed equivalent is more reliable than the traditional identification-based dynamic 

equivalent. 

 

Among the reduced systems based on the proposed equivalents, the reduced system 

C (or E) constructed by using the identified tight coherent groups have a better 

performance than the reduced system B (or D) constructed by using the identified 

loose coherent groups. This can be seen by a comparison between the bar chart of the 

reduced system C (or E) and the bar of the reduced system B (or D). However, the 

comparison may not be straightforward for the large fault after the accuracy greater 
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than 3 degrees are considered. For example, in Figure 6.20, the number of testing 

condition for which the reduced system D is valid becomes a bit higher than that of 

the reduced system E. This is because there are three large angle differences 

occurring at buses 15, 16, and 17, respectively, for the reduced system E (as shown 

in Figure 6.21). However, in overall, the level of validity for each testing condition 

of the reduced system E is considerably better than that of the reduced system D. 

 

 

 

Figure 6.21 Highest rotor angle differences of the reduced systems D and E of case 

study 1.1(large fault).  

 

 

Concerning the method of parameter identification, the equivalent (B or C) whose 

parameters are identified by the method with a full system simulation has reliability 

better than the equivalent (D or E) whose parameters are identified by the method 

without a full system simulation. This can be seen by a comparison between the bar 

charts of the reduced system B (or C) and D (or E) in Figure 6.19 and Figure 6.20. 

As discussed in Chapter 5, the inputs to the external equivalent are not quite correct 

for the parameter identification without a full system simulation. Moreover, a 

number of data points actually used during the parameter identification process of the 

method without a full system simulation is much less than the case of the method 

with a full system simulation, even thought they are used the same set of the 

recorded data. This is because the method with a full system simulation fits the 

simulated responses from the reduced model to every individual point of the 
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recorded data, but the method without a full system simulation does fit to the 

resultant data from a summation of the recorded data (which represents the outputs 

from the external part). These reasons may cause the identified parameters from the 

method without a full system simulation less efficient than the identified parameters 

from the method with a full system simulation. However, its usage time during the 

parameter identification is much less (as shown in Tables A1.5-A1.9). 
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6.3.2 Case study 1.2: Generator model order study 

6.3.2.1 Description of the test system and the testing scenarios 

 

The test system in this case study is IEEE39 bus system as described in the section 

6.3.1.1., except that all generator models (both internal generators and external 

generators) are resumed to the full details (the fourth order model). In this study, the 

validity of the reduced system when the equivalent generators are modelled by 

different model orders is examined. The testing scenarios for the generator model 

order study are as follows: 

 

Scenario 1: the external equivalent generators are represented by the fourth order 

generator dynamic model. 

Scenario 2: the external equivalent generators are represented by the third order 

generator dynamic model. 

Scenario 3:  the external equivalent generators are represented by the second order 

generator dynamic model. 

 

The parameters of generator according to each model order are given in Table 6.3. 

The models and their parameters are based on Power System Analysis Toolbox 

(PSAT) [6] which is the main program for performing the dynamic simulation (i.e. 

transient stability) in this thesis. 

 

Table 6.3 Set of parameters for different model order 

Parameter /  Model order 4 3 2 

Leakage reactance ( lX ) x x x 

Armature resistance ( ar ) x x x 

d-axis synchronous reactance ( dX ) x x  

d-axis transient reactance ( d'X ) x x x 

d-axis open circuit transient time constant ( do'T ) x x  

q-axis synchronous reactance ( qX ) x x  

q-axis transient reactance ( q'X ) x   

q-axis open circuit transient time constant ( qo'T ) x   

Inertia constant ( H ) x x x 

Damping coefficient ( D ) x x x 
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6.3.2.2 Test results and discussions 

 

The equivalent model based on the tight coherent groups of the case study 1.1 

(Figure 6.3 (a)) is only considered here. The parameters of three equivalent 

generators are identified according to three different scenarios mentioned above. 

However, the parameter identification that requires a full system simulation is only 

employed for this case study since our developed code of parameter identification 

without a full system simulation is currently available for a classical model of 

generator with two parameters (i.e. X’d and H). The identified values of the 

parameters are given in Tables A2.1-A2.3. 

 

The validity test as mentioned in Section 6.2 was conduced on three reduced systems 

by applying two kinds of faults (a small fault and a large fault) under all 26 internal 

buses (including the boundary buses). The small fault is a fault with 10 p.u. 

resistance which is applied at 0.1 second without a clearance. The large fault is a 

solid fault which is applied at 0.1 second and cleared at 0.2 second.  The results are 

presented in Figure 6.22 and Figure 6.23 for the case of the small fault and the case 

of the large fault, respectively. The numerical values of the maximum angle 

difference are given in Tables A2.4. 

 

From Figure 6.22 and Figure 6.23, it is found that the reduced systems based on the 

third order and the fourth order equivalent generator models, respectively, yield 

almost similar level of accuracy, while the accuracy of the reduced system based on 

the second order equivalent generator model is considerably less than those of the 

two reduced systems. Also, this comparable performance of using the fourth and the 

third order equivalent generator models could be seen in the results of the reliability 

test (Figure 6.24 and Figure 6.25). This suggests the third order equivalent generator 

model would be the suitable choice for equivalencing the system of this case study, 

when the complexity and the performance of the reduced system are needed to be 

tradeoff. 
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Figure 6.22 Highest rotor angle differences of three reduced systems of case study 

1.2 (small fault).  

 

 

 

Figure 6.23 Highest rotor angle differences of three reduced systems of case study 

1.2 (large fault). 
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Figure 6.24 Number of testing condition for which the three reduced systems of case 

study 1.2 (small fault) are valid for different level of accuracy.  

 

 

Figure 6.25 Number of testing condition for which the three reduced systems of case 

study 1.2 (large fault) are valid for different accuracy.  
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The cost function sensitivity analysis (mentioned in section 4.2.1 of Chapter 4) was 

also conducted to study the selection of the suitable model order. For this study, eqn. 

(4.7) was chosen as the cost function for testing of the sensitivity. The values of the 

parameters of generators were perturbed about their initial values one by one; and, 

the value of the cost function was recorded at the same time. The plots of the cost 

function against the values of the perturbed parameters for each model order are 

given in Appendix A2. These plots show whether the cost function is sensitive to all 

parameters in the chosen model order or not. For example, in case of using the fourth 

order model, there are nine insensitivities noticed from the plot. These insensitivity 

(Figure A2.1) occur when either d-axis open circuit transient time constant ( do'T ) or 

q-axis open circuit transient time constant ( qo'T ) of each equivalent generator are 

perturbed. Therefore, the fourth order of generator model may not suitable (over 

parameters). From the results in Appendix A2 (Figures A2.1, A2.2, and A2.3), the 

perturbed parameters when insensitivity of the cost function is noticed for three 

different orders of equivalent generator dynamic model could be summarised in 

Table 6.4 below. 

 

Table 6.4 Perturbed parameters when insensitivity of the cost function is noticed for 

three different orders of equivalent generator dynamic model 

 

Model order 4 3 2 

Parameter / Equivalent generator 1 2 3 1 2 3 1 2 3 

Leakage reactance ( lX )          

Armature resistance ( ar )          

d-axis synchronous reactance ( dX )          

d-axis transient reactance ( d'X )          

d-axis open circuit transient time constant 

( do'T ) 
x x x x x x    

q-axis synchronous reactance ( qX )          

q-axis transient reactance ( q'X )          

q-axis open circuit transient time constant 

( qo'T ) x x x       

Inertia constant ( H )          

Damping coefficient ( D ) x x x x x x x x x 
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From Table 6.4, the second order equivalent generator model has the least number of 

the parameters causing the insensitivity to the cost function; therefore, it should be 

the best choice according to the suggestion from [7].  However, the validity (Figures 

6.22 and 6.23) test and the reliability test (Figures 6.24 and 6.25) reveal that the 

performance of using the second order equivalent generator model is worst when 

compared with the performance of using the third and the forth order equivalent 

generator models. Hence, the criterion of choosing the suitable model order by using 

the model order having the least (or none) parameters causing the insensitivity to the 

cost function would not be practical in this case.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



182 

6.4 Case study 2: IEEE118 bus system 

 

The objectives of this case study are twofolds. The first objective is to examine the 

performances (i.e. validity, reliability, and construction time) of the proposed 

equivalent on a large system. The second objective is to examine predictability in the 

performances of the proposed equivalent when an operating condition and topology 

of the system have changed. 

 

6.4.1 Description of the test system and the testing scenarios 

 

The IEEE118 bus system contains 118 buses, 180 branches, and 20 generators. The 

generator is represented by a classical dynamic model with two parameters ( d'X   and 

H). The single line diagram of the system and the system data are adapted from [8] 

and [5]; and they are given in Appendix B2. The internal part and the external part of 

the system are defined according to Figure 6.26. There are two areas of the external 

part. The boundary buses for the first external area are buses 24, 33, 34, and 38; and 

the boundary buses for the second external area are buses 68 and 77. 

 

The first external area contains 35 buses (excluding the boundary buses), 53 

branches, and 7 generators. The second external area contains 36 buses (excluding 

the boundary buses), 55 branches, and 5 generators. The internal area contains 47 

buses (including the boundary buses), 72 branches, and 8 generators.  
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There are three conditions of the system in this study, which are:  

 

The first condition:       a based case (see Appendix B2 for loads and generations),  

 

The second condition:     the base case with 10% loads decreased; and 

 

The third condition:      the base case with the following lines simultaneously opened. 

 -line between bus 17 and bus 30 

 -line between bus 28 and bus 27 

 -line between bus 32 and bus 27 

 -line between bus 90 and bus 89 

 -line between bus 114 and bus 115 

 

The groups of coherent generators for these three system conditions are identified 

from their corresponding node-weighted graph model by using the applied epsilon 

decomposition technique. For the first condition and the second conditions, the 

identified coherent groups are the same, but they are slightly different for the third 

condition of the system. The identified groups for different values of epsilon are 

summarised in Figure 6.27 and Figure 6.28 by using contour lines. The value on the 

contour line indicates the minimum value of epsilon. The generators contained in 

each contour are the coherent generators identified by using any values of epsilon 

which is greater than the value indicated on that contour line. For example, in Figure 

6.18, the group of generators1 and 3, the group of generators 4 and 5, the group of 

generators 6 and 7, the group of generators 16 and 19, and the group of generators 17 

and 18 are the groups of coherent generators identified with the epsilon values 

greater than 0.27 units.  

 

According to these three conditions of the system and their identified coherent 

groups, six scenarios of reduced system have been conducted in this study as shown 

in Table 6.5. For each scenario, the conditions of the system where the three tasks 

(i.e. coherent generator identification, parameter identification, and the reduced 

system test) were performed are defined.  
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Table 6.5 Six scenarios of the reduced system for the case study 2 

scenario 

Coherent generator identification 
Parameter 

identification 

Reduced 

system 

test 

Condition 

of system 
Epsilon area Coherent groups 

Condition  

of system 

Condition  

of system 

A 1 ≥ 0.27 

1 
(G1-G3), (G4-G5),  

(G6-G7), (G2) 
1 1 

2 
(G16-G19), (G17-G18), 

(G20) 

B 1 ≥ 0.20 

1 
(G1-G2-G3),  

(G4-G5-G6-G7) 
1 1 

2 
(G16-G17-G18-G19), 

(G20) 

C 2 ≥ 0.20 

1 
(G1-G2-G3),  

(G4-G5-G6-G7) 
2 2 

2 
(G16-G17-G18-G19), 

(G20) 

D 2 ≥ 0.20 

1 
(G1-G2-G3),  

(G4-G5-G6-G7) 
1 2 

2 
(G16-G17-G18-G19), 

(G20) 

E 3 ≥ 0.20 

1 
(G1-G2-G3),  

(G4-G5), G6, G7 
3 3 

2 
(G16-G17-G19), (G18), 

(G20) 

F 1 ≥ 0.20 

1 
(G1-G2-G3),  

(G4-G5-G6-G7) 
3 3 

2 
(G16-G17-G18-G19), 

(G20) 
 

 

The coherent groups being used for construction of the reduced system are based on 

the results of Figure 6.27 and Figure 6.28 when the thresholds (under the epsilon 

column) are specified. The parameter identification without a full system simulation 

(all at once) is applied for all scenarios. The obtained reduced systems are tested 

under the system condition shown in the last column. 

 

The first two scenarios (A and B) are to examine the performance of the equivalents 

when they are constructed by using the tight coherent groups (epsilon ≥ 0.27) and 

using the loose coherent groups (epsilon ≥ 0.20), respectively  

 

The scenarios C and D are to examine the performance of the equivalents when their 

values of parameters are identified from the first system condition and the second 

system condition, respectively. 
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The scenarios E and F are to examine the performance of the equivalents when they 

are constructed by using the coherent groups identified from the third system 

condition and the first system condition, respectively. 

 

6.4.2 Test results and discussions 

 

The equivalent models and their corresponding reduced systems have been 

constructed according to the scenarios shown in Table 6.5. The parameter 

identification without full system simulation (as mentioned in Chapter 5) is applied 

in this study. For each external area, the parameters ( d'X   and H) of all equivalent 

generators are identified together by fitting the active power responses at boundaries 

from the external part when a persistent fault with 10 p.u. resistances is applied at 

bus 44. The values of the identified parameters are given in Tables A3.1 to A3.5. The 

comparisons of the power flow results of the reduced system for each scenario to that 

of their original are given in Tables A3.6-A3.10. These results show good agreement 

for all scenarios. 

 

The validity test has been conducted for all scenarios by applying two kinds of faults 

(a small fault and a large fault) under all 47 internal buses (including the boundary 

buses). The small fault is a fault with 10 p.u. resistances which is applied at 0.1 

second without a clearance. The large fault is a solid fault which is applied at 0.1 

second and cleared at 0.2 second.  The results are given in Tables A3.11 and A3.12 

for the case of the small fault and the case of the large fault, respectively.  

 

For the scenarios A and B, it is seen that the equivalents based on tight coherent 

groups provide the reduced system having higher accuracy and having higher 

reliability as shown by the bar charts of the highest rotor angle differences (Figures 

6.29 and Figure 6.30) and the bar charts of the number of testing condition for which 

the reduced systems are valid (Figures 6.31 and 6.32), respectively. Considering the 

accuracy when the number of testing condition for which the reduced system is valid 

is more than half of the total testing conditions (i.e. the number of the internal buses), 

the equivalent based on tight coherent groups gives the reduced model having an 

accuracy of 0.03 degree for the small fault and having an accuracy of 1.00 degree for 

the large fault. These show a good performance of the equivalent. In order to extend 
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the number of testing condition for which the reduced system is valid but 

maintaining the same level of the accuracy, another set of parameters may be 

identified by using a different fault location. For the reduced system obtained by 

using the equivalent based on loose coherent group, the accuracy would be 0.09 

degree for the small fault and 3.00 degree for the large fault. This lower accuracy is a 

trade-off for a smaller size of equivalent. For example, seven equivalent generators 

are required for the reduced system of the scenario A; but, only four equivalent 

generators are required for the reduced system of the scenario B.  

  

 

Figure 6.29 Highest rotor angle differences of the reduced systems of the scenarios A 

and B of the case study 2 (small fault).  

 

 

 

Figure 6.30 Highest rotor angle differences of the reduced systems of the scenarios A 

and B of the case study 2 (large fault).  
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Figure 6.31 Number of testing condition for which the reduced systems of the 

scenarios A and B of the case study 2 (small fault) are valid for different level of 

accuracy.  

 

 

 

 

Figure 6.32 Number of testing condition for which the reduced systems of the 

scenarios A and B of the case study 2 (large fault) are valid for different level of 

accuracy. 
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The bar charts of the number of testing condition for which the reduced systems are 

valid over the different level of accuracy from the results of the scenarios C, D, E, 

and F are also plotted in order to provide data for an evaluation. For the scenarios C 

and D, the bar charts (Figures 6.33 and 6.34) show that the reduced system of the 

scenario C (using identified parameters at the second condition) is a bit better than 

the reduced system of the scenario D (using identified parameters from the first 

condition) for the small fault case; but they are comparable for the large fault case. 

Considering the accuracy when the number of testing condition for which the 

reduced system is valid is more than half of the total testing conditions, both reduced 

models have an accuracy of about 0.09 degree for the small (actually 0.08 for 

scenario C) fault and having an accuracy of 3.00 degree for the large fault.  

 

For scenario E and F, in overall, the bar charts (Figures 6.35 and 6.36) show that the 

reduce system of scenario E is a bit better than the reduced system of the scenario F 

for the small fault case; and the reduced system of scenario E is much better for the 

large fault case. Moreover, the accuracy when the number of testing condition for 

which the reduced system E is valid is more than half of the total testing conditions 

for the large fault is 3.00 degree but that of the reduced system F is 4.00 degree.  

 

These would indicate that the same external equivalent could be used with the 

comparable level of accuracy when the condition of the system is changed, if the 

identified coherent groups are the same. However, the re-construction of the 

equivalent would be necessary if the different coherent groups are identified at a new 

system condition.  
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Figure 6.33 Number of testing condition for which the reduced systems of the 

scenarios C and D of the case study 2 (small fault) are valid for different level of 

accuracy.  
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Figure 6.34 Number of testing condition for which the reduced systems of the 

scenarios C and D of the case study 2 (large fault) are valid for different level of 

accuracy.  
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Figure 6.35 Number of testing condition for which the reduced systems of the 

scenarios E and F of the case study 2 (small fault) are valid for different level of 

accuracy.  

 

 

 

 

Figure 6.36 Number of testing condition for which the reduced systems of the 

scenarios E and F of the case study 2 (large fault) are valid for different level of 

accuracy.  
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6.5 Conclusion 

 

The method for construction of identification-based dynamic equivalent developed in 

this thesis is applied to two test systems (IEEE39 bus system and IEEE118 bus 

system). The test results of three studies – namely, the reliability study, the model 

order study, and the large system study, were discussed. Based on the results 

obtained from these studies, it can be concluded as follows: 

 

(a) The proposed equivalencing method can construct the reduced system which 

can accurately reproduce the steady-state behaviour of the internal part (i.e. 

power flow solution) and the dynamic behaviour of the internal part (i.e. the 

rotor angle of the internal generators) for about 2.5 seconds. The 

computational time for the parameter identification could be much reduced 

by using the parameter identification method that does not require a full 

system simulation; but it is a trade-off for the level of accuracy of the reduced 

model.  

 

(b) The reliability of the proposed equivalent is considerably improved when 

compares to that of the traditional identification-based dynamic equivalent, 

which is based on attaching the fictitious generator to each boundary bus. The 

proposed equivalent is valid for various testing conditions per one 

construction. Apart from recorded measurements, the power-flow modelling 

data of the external part is required for the construction of the proposed 

equivalent. 

 

(c) The higher the order of the equivalent generator model, the more the accuracy 

is the resultant reduced model. However, an increase in accuracy is not direct 

in proportion with an increase in model order. 

 

(d) The same equivalent could be used for a new system condition (i.e. a new 

load setting) with a comparable accuracy if the identified coherent groups are 

not changed. This would save an overall computation time for construction of 

the reduced system. 
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CHAPTER 7 

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 

 

 

Although dynamic equivalent have been extensively developed for four decades, the 

needs for future research are still required especially for an inclusion of power 

electronics equipments and for an analysis in online environment. This thesis is 

devoted to the development of dynamic equivalent for online environment which 

calls for the equivalent featuring high reliability but limited modelling data use. In 

addition, the equivalent should be compatible with available commercial power 

system software. This study, therefore, aims to develop the dynamic equivalent based 

on grey-box approach where recorded responses are used together with partial 

modelling data to construct the equivalent. A number of studies and literatures have 

been reviewed and discussed in terms of equivalencing methods and implementation 

schemes aiming for online application. These results in the proposed identification-

based dynamic equivalent consisting of three components: coherent generator 

identification from power flow modelling data, determination of an appropriate 

model structure for the equivalent of the external part from the knowledge of 

coherent generators, and parameter identification of the model structure without a 

complete system simulation. The attractive features of the proposed dynamic 

equivalent are as follows: 

 

(1) The obtained equivalent is physically meaningful and it can be implemented 

directly into commercial power system software as it is modelled by a 

combination of equivalent generators, equivalent transmission lines, and 

equivalent shunts. 
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(2) The validity of the equivalent is more reliable as its model structure is derived 

from the knowledge of coherent generators. In addition, the derivation of the 

model structure has a finite step rather than iterative process by trial and 

error, hence reducing the total usage time for equivalencing process. 

 

(3) The equivalent could be constructed online by using only up-to-date power 

flow modelling data of the entire power system and recorded transient 

responses at the boundaries  

 

(4) The proposed identification-based dynamic equivalent can be employed with 

Coherency-based dynamic equivalent in order to compromise between the 

needs of generator parameters and measurements. 

 

(5) With the parameter identification that requires no complete system 

simulation, the total usage time for eqivalencing process is additionally 

reduced and, therefore, the equivalent could be frequently updated or even 

reconstructed for different operating conditions. 

 
 

In relation to this development, the original contributions of this thesis are in four 

major aspects as mention earlier in Chapter 1. These contributions are: 

 

- Development and verification of a new methodology for coherent generator 

identification based on graph model 

 

- Development and verification of a new methodology for constructing 

identification-based dynamic equivalent based on grey-box approach 

 

- Development and verification of a new methodology for parameter 

identification without full system simulation. 
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- Application of the developed computer programs based on the above 

methodologies to IEEE 39 bus system and IEEE 118 bus system. 

 

The details of each contribution are summarised in the following parts. 

 

Coherent generator identification from the node-weighted graph model is the first 

components of the proposed identification-based dynamic equivalent. It aims to 

provide information for the derivation of the appropriate model structure for the 

equivalent of the external part. The theory of coherency in term of a node-weighted 

graph is employed in order to develop the coherent generator identification from the 

power flow modelling data. The developed coherent generator identification based 

on the graph model consists of three successive steps: collecting power flow 

modelling data and its solution, establishing the node-weighted graph model, and 

identifying groups of strong-intra linked nodes among weak-inter linked nodes. 

According to this developed method, three techniques (i.e. two level of line thickness 

plot, applied weak coupling, and applied epsilon decomposition) to identify of such 

particular groups of nodes have been studied. Various tests have been conducted on 

both artificial system and power systems. The most interesting findings are that: 

 

(a) The node-weighted graph model provides an aid to interpretation as it 

represents dynamic model of power system, in particular a small signal rotor 

angle dynamics, in the way that parameters of generators and of transmission 

network are presented in different components of the graph (i.e. different 

nodes and edges). Therefore it allows making an assumption to identify 

coherent generator by using only power flow modelling data. 
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(b) The coherent groups based on the graph theorem are independent to type of 

disturbance; hence, a reduced model based on them may be valid over a wide 

range of testing conditions. 

 

(c) The developed coherent generator identification based on the graph model 

succeeds to identify the coherent generators, in particular the coherent groups 

that is caused by the structure of strong intra-linked nodes among weak inter-

linked nodes. 

 

With the coherent generator identification based on the graph model, the parametric 

identification of dynamic equivalent using only power flow modelling data and 

recorded response at boundaries has been developed. The developed method consists 

of three fundamental steps: coherent generator identification from power flow 

modelling data, determination of an appropriate model structure for the equivalent of 

the external part from the knowledge of coherent generators, and parameter 

identification of the model structure by fitting the responses of the reduced system 

with the responses of the original system.  

 

The coherency-based aggregation method has been adopted with a minor 

modification (i.e. avoiding the use of parameters of generators) to determine the 

appropriate model structure for the equivalent of the external part after the coherent 

generator are identified from the graph model. Based on this technique, the 

appropriate model structure for the equivalent is represented as a combination of 

equivalent generators, equivalent transmission lines, and equivalent shunts. The 

values of the parameters of the equivalent generators are identified by fitting the 

responses of the reduced model with that of the original system; and the transient 
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responses of the active power flows from the internal part to the boundaries are used 

in this case. The non-linear optimisation is employed in order to keep the 

parameterisation of the model structure preserving the structure of power system 

components. The details of each step were demonstrated with nine bus power system 

and the short performance evaluation was presented. The performance is evaluated 

by a comparison of the responses of the reduced system formed by the proposed 

equivalent with the responses of the original system. In addition, another reduced 

system based on attaching one fictitious generator to each boundary bus is also 

brought to compare. The results show good validity and reliability of the proposed 

equivalent. The attractive features of this developed parametric identification of 

dynamic equivalent cover first four of the five features of our final developed 

identification-based equivalencing method mentioned in the very beginning of this 

chapter. 

 

In addition to the parameter identification based on fitting the responses of the 

reduced system with the responses of the original system, another parameter 

identification method that requires no simulation of a complete system (i.e. internal 

part together with external equivalent) is also developed in thesis. The parameter 

identification method without complete system simulation is based on a re-

formulation of the obtained model structure for the equivalent of the external part as 

the input-output model. According to this input-output formulation of the equivalent, 

one set of recorded responses (voltages at boundaries) is used as the inputs while 

another set (active power flows from the external part to boundaries) is used as the 

original responses for fitting. The fitting of the responses is also based on non-linear 

optimisation technique. Apart from the details of the derivation of the input-output 
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model and the algorithm for the parameter identification, two possibilities of 

implementation, which are the identification of all parameters at once and the 

identification of parameters for each individual equivalent generator, are also 

discussed. The parameter identification method without a complete system 

simulation was tested on IEEE39 bus system to evaluate its performance (i.e. usage 

time and accuracy). The accuracy of the parameters is assessed by both a comparison 

with the calculated parameters from the structure preservation technique and a 

comparison of the swing curves of internal generators of the reduced system using 

the identified parameters with those of the original system. The interesting findings 

are that: 

 

(a) This parameter identification method greatly improves the usage time of the 

whole parameter identification process and saves the memory needed for 

model storage during the identification process when compares with those 

requires from the parameter identification with complete system simulation.  

 

(b) The accuracy of the identified parameters is acceptable for both possibilities 

of implementation.  

 

Based on above developments, a dynamic equivalencing program has been 

constructed and applied to IEEE39 bus system and IEEE118 bus system for 

extensive performance evaluation. The extensive performance evaluation includes 

the reliability study, the model order study, and the large system study. In the first 

study, the reliability of the equivalent is assessed from the number of testing 

condition that its reduced system reproduces swing curves of internal generators with 

acceptable accuracy. Two equivalents are considered in this study, which are the 
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proposed equivalent and the equivalent based on attaching one fictitious generator to 

each boundary bus. In the second study, the validity of the proposed equivalent when 

different orders of generator dynamic model for representing the equivalent 

generator are used is assessed. The third study is a large system study and it was 

conducted on IEEE118 bus system to evaluate the performance of the proposed 

identification-based dynamic equivalencing method over wide range of system 

conditions (i.e. different operating conditions and different topology of network). 

With these extensive tests, the following interesting features are found. 

 

(a) The reduced system based on the proposed identification-based dynamic 

equivalent can accurately maintain the steady-state behaviour of the internal 

part while the dynamic behaviour of the internal part, in particular the swing 

curves of the internal generators, can be well preserved over time duration 

(2.5 seconds) of the tests.  

 

(b) With a compromise between the degree of accuracy and the size of the 

reduced system, the equivalent can be constructed by using either loose or 

strong coherent groups and by using either high or low orders of generator 

dynamic model. 

 

(c) The proposed equivalent has a good validity for various testing conditions, 

such as different fault locations and different operating conditions that the 

coherent groups are not changed; and its reliability is considerably improved 

when compares to that of the identification-based dynamic equivalent based 

on attaching one fictitious generator to each boundary bus. 
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Nonetheless, this study has some limitations relating to the development and 

evaluation stages. In the development stage, the limitations in the developed 

identification-based dynamic equivalent involve the coherent generator identification 

based-on the graph model and the parameter identification without a complete 

system simulation. For the developed coherent generator identification, the 

identifiable groups of coherent generators are only the coherent groups that are 

caused by the structure of strong-intra linked nodes among weak-inter linked nodes. 

It is, therefore, possible that any other stronger coherent groups caused by other 

factors exist and are not identified. However, this specific-identifiability of the 

developed coherent generator identification compromises on the required 

computation power and the required system modelling data.  

 

 

For the developed parameter identification, the technique has the main drawback of 

the impracticality to obtain the correct inputs for the simulation of the external 

model. This is because the correct recorded responses for driving the inputs of 

equivalent model must be the recorded responses from the reduced system; but such 

reduced system does not exist beforehand. In addition, the developed parameter 

identification technique that requires no complete system simulation is limited to 

only classical equivalent generator dynamic model with two parameters ( d'X and H) 

due to time constraint of this study. Further work needs to be done to extend this 

technique for a higher order generator model and to include generating unit controls. 

A future research in the parameter identification regarding the role of intentional 

disturbance to the quality of the identified parameters would be great help in 

providing guidance for practical implementation. 
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In the evaluation stage, the type of fault applied in the studies is only the faults at bus 

and the responses of internal part consider only the swing curves of the internal 

generators. Therefore, the future study could be expanded to other kinds of faults 

(e.g. line removal) and other internal responses (e.g. voltages at bus and power flows 

in transmission line) so that it would provide a better assessment of the effectiveness 

of the reduced system constructed by the proposed method.  In addition, a further 

study investigating the effect of more complex system which includes generating unit 

controls (e.g. excitation system, turbine-governor system, and power system 

stabilizer) would be recommended. 
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APPENDIX A: RESULTS OF CHAPTER 6 

 

A.1 Case study 1.1 

 

Table A1.1 Equivalent transmission lines for the reduced system of case study 1.1 

(scenario 1) 

 

From Bus –To Bus  R (p.u.) X (p.u.) B (p.u.) 

26 – 40 (Geq1) 0.0013 0.0465 0 

16 – 41(Geq3) 0.0013 0.0290 0 

16 – 42 (Geq2) 0 0.0260 0 

 

 

 

Table A1.2 Equivalent shunts for the reduced system of case study 1.1 (scenario 1) 

 

Bus G (p.u.) B (p.u.) 

16 6.385617 3.016970 

26 1.818569 1.643307 

40 2.793009 -0.294296 

41 5.226109 -3.396020 

42 2.347352 -0.960231 

 

 

Table A1.3 Equivalent transmission lines for the reduced system of case study 1.1 

(scenario 2) 

 

From Bus –To Bus  R (p.u.) X (p.u.) B (p.u.) 

16 – 40 (Geq2) 0.7246 0.00031 0.01369 

26 – 38 (Geq1) 0 0.00124 0.04648 

 

 

 

Table A1.4 Equivalent shunts for the reduced system of case study 1.1 (scenario 2) 

 

Bus G (p.u.) B (p.u.) 

16 6.32450 3.13290 

26 1.81870 1.64340 

38 2.7930 1.0000 

40 7.47820 -4.47830 

 

 

 



206 

 

Table A1.5 Identified parameters of the reduced system A of the case study 1.1  

 

Table A1.6 Identified parameters of the reduced system B of the case study 1.1 

 

Table A1.7 Identified parameter of the reduced system C of the case study 1.1 

 

Table A1.8 Identified parameters of the reduced system D of the case study 1.1 

 

Table A1.9 Identified parameters of the reduced system E of the case study 1.1 

Equivalent 

Parameters 

Fictitious Generator1 Fictitious Generator2 

d'X (p.u.) H (kWs/kVA) d'X (p.u.) H (kWs/kVA) 

Initial values 0.050 100.00 0.100 50.00 

Identified values 0.0933 58.8828 0.0317 168.5065 

Computation time 88.25 sec. 

Residual error 0.0012 

Equivalent 

Parameters 

Equivalent Generator1 Equivalent Generator2 

d'X (p.u.) H (kWs/kVA) d'X (p.u.) H (kWs/kVA) 

Initial values 0.050 50.00 0.040 50.00 

Identified values 0.0562 35.0032 0.0152 105.1759 

Computation time 5.73 sec. 37.27 sec. 

Residual error 0.00000055 0.0047 

Equivalent 

Parameters 

Equivalent 

Generator1 

Equivalent 

Generator2 

Equivalent 

Generator3 

d'X (p.u.) H 
(kWs/kVA) d'X (p.u.) H 

(kWs/kVA) d'X (p.u.) H 
(kWs/kVA) 

Initial values 0.050 50.00 0.050 50.00 0.050 50.00 

Identified values 0.0562 35.0032 0.0240 64.2897 0.0557 51.2113 

Computation time 5.73 sec. 8.16 sec. 8.22 sec. 

Residual error 0.00000055 0.00006 0.00035 

Equivalent 

Parameters 

Equivalent Generator1 Equivalent Generator2 

d'X (p.u.) H(kWs/kVA) d'X (p.u.) H(kWs/kVA) 

Initial values 0.050 50.00 0.040 50.00 

Identified values 0.0458 36.4267 0.0151 118.3054 

Computation time 104.40 sec. 

Residual error 0.00077 

Equivalent 

Parameters 

Equivalent 

Generator1 

Equivalent 

Generator2 

Equivalent 

Generator3 

d'X (p.u.) H 
(kWs/kVA) d'X (p.u.) H 

(kWs/kVA) d'X (p.u.) H 
(kWs/kVA) 

Initial values 0.050 50.00 0.050 50.00 0.050 50.00 

Identified values 0.0516 36.9102 0.0142 75.6303 0.0584 43.2374 

Computation time 197.90 sec. 

Residual error 0.00028 
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Table A1.10 Comparison of load flow of the case study 1.1 (the reduced system 

based on the loose coherent groups). 

 

Bus 

Original system voltage Reduced system voltage  

Magnitude 

(p.u.) 

Angle 

(deg.) 

Magnitude 

(p.u.) 

Angle 

(deg.) 

V∆  

(p.u.) 

θ∆  

(p.u.) 

1 1.0474 -8.428 1.0474 -8.4288 0 0.0008 

2 1.0487 -5.7419 1.0487 -5.7426 0 0.0007 

3 1.0302 -8.5867 1.0302 -8.5875 0 0.0008 

4 1.0039 -9.5968 1.0038 -9.5975 0.0001 0.0007 

5 1.0053 -8.6038 1.0053 -8.6044 0 0.0006 

6 1.0077 -7.942 1.0077 -7.9426 0 0.0006 

7 0.997 -10.1159 0.997 -10.1165 0 0.0006 

8 0.996 -10.6073 0.996 -10.6079 0 0.0006 

9 1.0282 -10.3128 1.0282 -10.3135 0 0.0007 

10 1.0172 -5.4182 1.0171 -5.4188 0.0001 0.0006 

11 1.0127 -6.2757 1.0127 -6.2763 0 0.0006 

12 1.0002 -6.2347 1.0001 -6.2353 0.0001 0.0006 

13 1.0143 -6.0884 1.0143 -6.089 0 0.0006 

14 1.0117 -7.646 1.0117 -7.6467 0 0.0007 

15 1.0154 -7.7224 1.0153 -7.7233 0.0001 0.0009 

16 1.0318 -6.1725 1.0317 -6.1733 0.0001 0.0008 

17 1.0336 -7.2874 1.0335 -7.2882 0.0001 0.0008 

18 1.0309 -8.2107 1.0309 -8.2115 0 0.0008 

19 1.0499 -1.0077     

20 0.9912 -1.9996     

21 1.0318 -3.7636     

22 1.0498 0.6873     

23 1.0448 0.4903     

24 1.0373 -6.0521     

25 1.0576 -4.3513 1.0576 -4.352 0 0.0007 

26 1.0521 -5.5137 1.0521 -5.5144 0 0.0007 

27 1.0377 -7.482 1.0377 -7.4828 0 0.0008 

28 1.0501 -2.0019     

29 1.0499 0.7574     

30 1.0475 -3.3221 1.0475 -3.3228 0 0.0007 

31 0.982 0 0.982 0 0 0 

32 0.9831 2.5779 0.9831 2.5774 0 0.0005 

33 0.9972 4.2098     

34 1.0123 3.1901     

35 1.0493 5.649     

36 1.0635 8.3432     

37 1.0278 2.4332 1.0278 2.4325 0 0.0007 

38 1.0265 7.8208     

39 1.03 -10.043 1.03 -10.0438 0 0.0008 
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Table A1.11Comparison of load flow of the case study 1.1(the reduced system based 

on the tight coherent groups). 

 

Bus 

Original system voltage Reduced system voltage  

Magnitude 

(p.u.) 

Angle 

(deg.) 

Magnitude 

(p.u.) 

Angle 

(deg.) 

V∆  

(p.u.) 

θ∆  

(p.u.) 

1 1.0474 -8.428 1.0474 -8.4249 0 0.0031 

2 1.0487 -5.7419 1.0487 -5.7384 0 0.0035 

3 1.0302 -8.5867 1.0302 -8.583 0 0.0037 

4 1.0039 -9.5968 1.0039 -9.5936 0 0.0032 

5 1.0053 -8.6038 1.0053 -8.6012 0 0.0026 

6 1.0077 -7.942 1.0077 -7.9395 0 0.0025 

7 0.997 -10.1159 0.997 -10.1133 0 0.0026 

8 0.996 -10.6073 0.996 -10.6047 0 0.0026 

9 1.0282 -10.3128 1.0282 -10.31 0 0.0028 

10 1.0172 -5.4182 1.0172 -5.4153 0 0.0029 

11 1.0127 -6.2757 1.0127 -6.273 0 0.0027 

12 1.0002 -6.2347 1.0002 -6.2318 0 0.0029 

13 1.0143 -6.0884 1.0143 -6.0853 0 0.0031 

14 1.0117 -7.646 1.0117 -7.6426 0 0.0034 

15 1.0154 -7.7224 1.0154 -7.7178 0 0.0046 

16 1.0318 -6.1725 1.0318 -6.1674 0 0.0051 

17 1.0336 -7.2874 1.0335 -7.2829 0.0001 0.0045 

18 1.0309 -8.2107 1.0309 -8.2065 0 0.0042 

19 1.0499 -1.0077     

20 0.9912 -1.9996     

21 1.0318 -3.7636     

22 1.0498 0.6873     

23 1.0448 0.4903     

24 1.0373 -6.0521     

25 1.0576 -4.3513 1.0575 -4.3474 0.0001 0.0039 

26 1.0521 -5.5137 1.052 -5.51 0.0001 0.0037 

27 1.0377 -7.482 1.0377 -7.4781 0 0.0039 

28 1.0501 -2.0019     

29 1.0499 0.7574     

30 1.0475 -3.3221 1.0475 -3.3186 0 0.0035 

31 0.982 0 0.982 0 0 0 

32 0.9831 2.5779 0.9831 2.5808 0 0.0029 

33 0.9972 4.2098     

34 1.0123 3.1901     

35 1.0493 5.649     

36 1.0635 8.3432     

37 1.0278 2.4332 1.0278 2.4372 0 0.004 

38 1.0265 7.8208     

39 1.03 -10.043 1.03 -10.04 0 0.003 
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Table A1.12 Comparison of load flow of the case study 1.1 (the reduced system 

based on the fictitious generators). 

 

Bus 

Original system voltage Reduced system voltage  

Magnitude 

(p.u.) 

Angle 

(deg.) 

Magnitude 

(p.u.) 

Angle 

(deg.) 

V∆  

(p.u.) 

θ∆  

(p.u.) 

1 1.0474 -8.428 1.0474 -8.4283 0 0.0003 

2 1.0487 -5.7419 1.0487 -5.7423 0 0.0004 

3 1.0302 -8.5867 1.0302 -8.587 0 0.0003 

4 1.0039 -9.5968 1.0039 -9.597 0 0.0002 

5 1.0053 -8.6038 1.0053 -8.604 0 0.0002 

6 1.0077 -7.942 1.0077 -7.9422 0 0.0002 

7 0.997 -10.1159 0.997 -10.116 0 0.0001 

8 0.996 -10.6073 0.996 -10.6075 0 0.0002 

9 1.0282 -10.3128 1.0282 -10.313 0 0.0002 

10 1.0172 -5.4182 1.0172 -5.4185 0 0.0003 

11 1.0127 -6.2757 1.0127 -6.276 0 0.0003 

12 1.0002 -6.2347 1.0002 -6.235 0 0.0003 

13 1.0143 -6.0884 1.0143 -6.0886 0 0.0002 

14 1.0117 -7.646 1.0117 -7.6463 0 0.0003 

15 1.0154 -7.7224 1.0154 -7.7229 0 0.0005 

16 1.0318 -6.1725 1.0318 -6.1731 0 0.0006 

17 1.0336 -7.2874 1.0336 -7.2879 0 0.0005 

18 1.0309 -8.2107 1.0309 -8.2111 0 0.0004 

19 1.0499 -1.0077     

20 0.9912 -1.9996     

21 1.0318 -3.7636     

22 1.0498 0.6873     

23 1.0448 0.4903     

24 1.0373 -6.0521     

25 1.0576 -4.3513 1.0576 -4.3517 0 0.0004 

26 1.0521 -5.5137 1.0521 -5.5143 0 0.0006 

27 1.0377 -7.482 1.0378 -7.4825 -0.0001 0.0005 

28 1.0501 -2.0019     

29 1.0499 0.7574     

30 1.0475 -3.3221 1.0475 -3.3225 0 0.0004 

31 0.982 0 0.982 0 0 0 

32 0.9831 2.5779 0.9831 2.5776 0 0.0003 

33 0.9972 4.2098     

34 1.0123 3.1901     

35 1.0493 5.649     

36 1.0635 8.3432     

37 1.0278 2.4332 1.0278 2.4327 0 0.0005 

38 1.0265 7.8208     

39 1.03 -10.043 1.03 -10.0433 0 0.0003 
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Table A1.13 the highest values of the maximum rotor angle difference of the internal 

generators for the reduced systems A, B, C, D, and E of the case study 1.1 

 

bus 

Highest value of the maximum rotor angle difference (degree) 

Reduced system 

A 

Reduced system 

B 

Reduced system 

C 

Reduced system 

D 

Reduced system 

E 

Small 

fault 

Large 

fault 

Small 

fault 

Large 

fault 

Small 

fault 

Large 

fault 

Small 

fault 

Large 

fault 

Small 

fault 

Large 

fault 

1 0.0089 6.4355 0.009 2.1922 0.0113 1.3606 0.0064 1.5288 0.0092 0.794 

2 0.023 18.1773 0.0322 5.0488 0.0207 3.8892 0.0227 3.5115 0.0158 1.8895 

3 0.015 20.1821 0.0261 5.4103 0.0191 4.6922 0.0208 3.9288 0.0143 2.5456 

4 0.0162 17.5197 0.0252 5.505 0.0181 3.9348 0.021 3.9016 0.0153 2.5368 

5 0.0187 15.3909 0.0271 5.4951 0.0181 3.7333 0.023 3.8312 0.0168 2.4045 

6 0.0206 15.4685 0.0288 5.5667 0.0187 3.7634 0.0245 3.9199 0.0174 2.4299 

7 0.0182 12.415 0.0232 4.8136 0.0165 3.2166 0.0204 3.3891 0.0159 2.0447 

8 0.0182 12.5829 0.0214 4.8921 0.0157 3.2729 0.019 3.4512 0.0153 2.074 

9 0.0102 6.1359 0.0076 2.8221 0.0114 1.5163 0.0066 2.0564 0.0095 1.0308 

10 0.0267 15.4506 0.0349 5.2822 0.0214 3.5772 0.0289 3.6862 0.019 2.3248 

11 0.0243 14.8661 0.0327 5.2181 0.0203 3.5374 0.0272 3.6384 0.0184 2.288 

12 0.0225 7.4273 0.0317 3.0435 0.0201 1.8353 0.0263 2.2494 0.0179 1.2076 

13 0.0225 15.4236 0.0327 5.0755 0.0208 3.5221 0.0269 3.5207 0.0179 2.2981 

14 0.0157 17.934 0.0283 5.3323 0.0195 4.138 0.0231 3.8299 0.0156 2.5957 

15 0.0145 21.7863 0.0285 5.7626 0.0231 6.0894 0.0221 3.9897 0.0127 4.3597 

16 0.0171 31.4681 0.0337 6.586 0.0263 11.3919 0.0254 4.6104 0.0134 9.1208 

17 0.0152 25.7821 0.0273 5.5424 0.0241 6.7425 0.0221 4.0646 0.0128 4.5265 

18 0.014 21.2848 0.0256 5.2038 0.0219 5.3649 0.021 3.7806 0.0131 3.1291 

25 0.0237 16.6657 0.0343 4.771 0.0217 3.5939 0.0241 2.3815 0.0167 1.1716 

26 0.0191 21.0731 0.0413 7.022 0.0271 3.4457 0.0206 3.325 0.0171 1.5357 

27 0.0153 19.6115 0.0288 4.7898 0.0243 4.2321 0.0201 2.7141 0.0141 1.6064 

30 0.0357 9.9049 0.04 3.1815 0.024 2.1544 0.0293 2.1958 0.0183 1.1339 

31 0.0506 7.8203 0.0471 3.9862 0.0261 2.367 0.0401 2.7321 0.0248 1.5065 

32 0.0559 9.5609 0.0521 4.328 0.0285 2.5883 0.0435 3.0816 0.0259 1.6684 

37 0.0487 9.1457 0.0452 3.3012 0.0258 2.0494 0.0301 1.9191 0.0191 0.9037 

39 0.0086 6.904 0.0143 2.3122 0.0215 1.0024 0.009 1.7235 0.0095 0.9966 
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A.2 Case study 1.2 

 

Table A2.1 Identified parameters of the 4-th order equivalent generators 

 

Parameter  
Initial 

values 

Identified values 

Equivalent 

generator 1 

Equivalent 

generator 2 

Equivalent 

generator 3 

Leakage reactance ( lX ), p.u. 0.005 0.0307 0.0220 0.0051 

Armature resistance ( ar ), p.u. 0.005 0.0307 0.0144 0.0055 

d-axis synchronous reactance ( dX ), 

p.u. 
0.050 0.3183 0.1470 0.1587 

d-axis transient reactance ( d'X ), 

p.u. 
0.050 0.0500 0.0346 0.0215 

d-axis open circuit transient time 

constant ( do'T ), p.u. 
5.000 4.6283 5.1815 5.0854 

q-axis synchronous reactance ( qX ), 

p.u. 
0.050 0.2975 0.2148 0.0576 

q-axis transient reactance ( q'X ), 

p.u. 
0.050 0.0306 0.0490 0.0853 

q-axis open circuit transient time 

constant ( qo'T ), p.u. 0.500 0.4841 0.9636 0.7407 

Inertia constant ( H ), kWs/kVA 50.00 49.8646 71.6645 48.9040 

Damping coefficient ( D ), p.u. 0.500 0.6680 0.5911 0.5973 

 

Table A2.2 Identified parameters of the 3-rd order equivalent generators 

 

Parameter  
Initial 

values 

Identified values 

Equivalent 

generator 1 

Equivalent 

generator 2 

Equivalent 

generator 3 

Leakage reactance ( lX ), p.u. 0.005 0.0302 0.0219 0.0103 

Armature resistance ( ar ), p.u. 0.005 0.0331 0.00047 0.0051 

d-axis synchronous reactance ( dX ), 

p.u. 
0.050 0.4764 0.1711 0.0995 

d-axis transient reactance ( d'X ), 

p.u. 
0.050 0.0473 0.0448 0.0197 

d-axis open circuit transient time 

constant ( do'T ), p.u. 
5.000 4.3079 4.8805 4.9285 

q-axis synchronous reactance ( qX ), 

p.u. 
0.050 0.0519 0.0946 0.0858 

Inertia constant ( H ), kWs/kVA 50.00 48.7943 52.3164 52.7267 

Damping coefficient ( D ), p.u. 0.500 0.3474 0.6136 0.5254 
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Table A2.3 Identified parameters of the 2-nd order equivalent generators 

 

Parameter  
Initial 

values 

Identified values 

Equivalent 

generator 1 

Equivalent 

generator 2 

Equivalent 

generator 3 

Leakage reactance ( lX ), p.u. 0.005 0.0110 0.0350 0.0052 

Armature resistance ( ar ), p.u. 0.005 0.0362 0.0014 0.0131 

d-axis transient reactance ( d'X ), 

p.u. 
0.050 0.0505 0.0436 0.0938 

Inertia constant ( H ), kWs/kVA 50.00 47.0053 64.9797 31.6289 

Damping coefficient ( D ), p.u. 0.500 4.9297 2.1847 2.0097 
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Table A2.4 Highest values of the maximum rotor angle difference of the internal 

generators for the reduced system 4
th

 order, 3
rd

 order, and 2
nd

 order of the case study 

1.2 

 
 

Bus 

 
Highest value of the maximum rotor angle difference (degree) 

 
 

Reduced system 4th 
 

Reduced system 3rd Reduced system 2nd 

 
Small fault 

 
Large fault Small fault Large fault Small fault Large fault 

1 0.0099 1.0493 0.0131 1.2831 0.0222 1.8834 

2 0.0149 3.3801 0.0174 3.9843 0.0422 5.6765 

3 0.0148 3.659 0.0145 3.6275 0.0439 7.0366 

4 0.0151 2.5745 0.0143 2.3473 0.0411 5.4488 

5 0.0153 1.8727 0.0148 1.6967 0.04 4.3373 

6 0.0157 1.7971 0.0152 1.6617 0.0409 4.259 

7 0.0145 1.4463 0.0146 1.2708 0.0382 3.4848 

8 0.0141 1.4839 0.0144 1.2961 0.037 3.6176 

9 0.0095 0.6976 0.0125 0.7941 0.0252 2.2311 

10 0.0169 1.8149 0.0165 1.555 0.0436 4.2262 

11 0.0165 1.7305 0.016 1.5154 0.0426 4.0582 

12 0.0163 0.7912 0.0158 0.8086 0.0417 2.2267 

13 0.0165 1.8939 0.0161 1.6553 0.0426 4.3858 

14 0.0157 2.5625 0.0153 2.3874 0.042 5.872 

15 0.0153 4.0407 0.0158 4.8192 0.0459 10.3699 

16 0.0153 7.4384 0.0163 11.8412 0.0489 19.3972 

17 0.015 5.7373 0.0145 6.502 0.0517 11.8399 

18 0.0149 4.1624 0.0143 4.2962 0.0493 8.5253 

25 0.0147 3.2872 0.0174 4.8068 0.0485 5.4834 

26 0.0154 8.1173 0.0195 11.3271 0.0671 7.9858 

27 0.0148 4.5122 0.0165 6.3008 0.0617 6.7845 

30 0.0176 - 0.0206 - 0.0467 - 

31 0.0191 1.8035 0.02 1.8304 0.047 4.1925 

32 0.02 0.9335 0.0204 0.8123 0.049 2.0185 

37 0.016 1.5687 0.0204 2.0509 0.0444 2.6804 

39 0.0092 1.8425 0.0113 2.0592 0.0351 8.766 
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Figure A2.1 Cost function sensitivity of the reduced system based on the second 

order equivalent generator model 

 

 

 

Figure A2.2 Cost function sensitivity of the reduced system based on the third order 

equivalent generator model 
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Figure A2.3 Cost function sensitivity of the reduced system based on the fourth order 

equivalent generator model 
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A.3 Case study 2 

 

Table A3.1 Identified parameters of the external equivalent generators for the 

scenario A 

 

Area 
Computation 

time (sec.) 

Equivalent 

generator 

Coherent 

generators 

Initial values Identified values 

d'X  

(p.u.) 

H 

(kWs/kVA) 
d'X  

(p.u.) 

H 

(kWs/kVA) 

1 12.75  

1 (G1-G3) 0.05 25 0.0418 20.8640 

2 (G4-G5) 0.05 25 0.0616 26.3781 

3 (G6-G7) 0.05 25 0.0626 25.3138 

4 (G2) 0.05 25 0.0501 24.1189 

2 29.58  

1 (G16-G19) 0.05 50 0.0651 25.5852 

2  (G17-G18) 0.05 50 0.0691 43.8646 

3  (G20) 0.01 50 0.0978 23.5781 

 

 

 

Table A3.2 Identified parameters of the external equivalent generators for the 

scenarios B and D 

 

Area 
Computation 

time (sec.) 

Equivalent 

generator 

Coherent 

generators 

Initial values Identified values 

d'X  

(p.u.) 

H 

(kWs/kVA) 
d'X  

(p.u.) 

H 

(kWs/kVA) 

1 13.81 
1 (G1-G2-G3) 0.05 25 0.0455 29.3182 

2 (G4-G5-G6-G7) 0.05 25 0.0615 46.9025 

2 13.88 
1 

(G16-G17-G18-

G19) 
0.10 50 0.1303 52.9579 

2 (G20) 0.05 25 0.0862 28.1599 

 

 

Table A3.3 Identified parameters of the external equivalent generators for the 

scenario C 

 

Area 
Computation 

time (sec.) 

Equivalent 

generator 

Coherent 

generators 

Initial values Identified values 

d'X  

(p.u.) 

H 

(kWs/kVA) 
d'X  

(p.u.) 

H 

(kWs/kVA) 

1 10.23 
1 (G1-G2-G3) 0.05 25 0.0461 28.3679 

2 (G4-G5-G6-G7) 0.05 25 0.0649 44.5425 

2 13.73 
1 

(G16-G17-G18-

G19) 
0.10 50 0.1179 52.4611 

2 (G20) 0.05 25 0.1050 27.7864 
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Table A3.4 Identified parameters of the external equivalent generators for the 

scenario E 

 

Area 
Computation 

time (sec.) 

Equivalent 

generator 

Coherent 

generators 

Initial values Identified values 

d'X  

p.u. 

H 
(kWs/kVA) 

d'X  

p.u. 

H 
(kWs/kVA) 

1 26.55 

1 (G1-G2-G3) 0.05 25 0.0722 32.1784 

2 (G4-G5) 0.05 25 0.0265 24.9833 

3 (G6) 0.05 25 0.0354 16.3166 

4 (G7) 0.05 25 0.1141 17.9194 

2 15.22 

1 (G16-G17-G19) 0.01 50 0.0131 49.6189 

2 (G18) 0.05 25 0.0102 19.2473 

3 (G20) 0.05 25 0.0060 28.6855 

 

 

 

Table A3.5 Identified parameters of the external equivalent generators for the 

scenario F 

 

Area 
Computation 

time (sec.) 

Equivalent 

generator 
Coherent generators 

Initial values Identified values 

d'X  

p.u. 

H 
(kWs/kVA) 

d'X  

p.u. 

H 
(kWs/kVA) 

1 14.30 
1 (G1-G2-G3) 0.05 25 0.0725 40.1203 

2 (G4-G5-G6-G7) 0.05 25 0.0522 45.2289 

2 14.02 
1 (G16-G17-G18-G19) 0.10 50 0.1458 56.9878 

2 (G20) 0.05 25 0.0710 28.5453 
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Table A3.6 Comparison of load flow of the case study 2 (the reduced system based 

on tight coherent groups of the first system condition). 

 

Bus 

Original system voltage Reduced system voltage  

Magnitude 

(p.u.) 

Angle 

(deg.) 

Magnitude 

(p.u.) 

Angle 

(deg.) 

V∆  

(p.u.) 

θ∆  

(p.u.) 

24 0.992 -8.2335 0.9919 -8.2325 0.0001 0.001 

33 0.9716 -18.1272 0.9716 -18.1282 0 0.001 

34 0.986 -17.3372 0.986 -17.3376 0 0.0004 

35 0.9807 -17.7564 0.9807 -17.7567 0 0.0003 

36 0.98 -17.7535 0.98 -17.7539 0 0.0004 

37 0.9921 -16.858 0.9921 -16.8583 0 0.0003 

38 0.9633 -12.0945 0.9633 -12.0947 0 0.0002 

39 0.9708 -19.4704 0.9708 -19.4708 0 0.0004 

40 0.97 -20.1015 0.97 -20.1018 0 0.0003 

41 0.9667 -20.2036 0.9667 -20.2038 0 0.0002 

42 0.985 -17.6661 0.985 -17.6662 0 0.0001 

43 0.9787 -17.5131 0.9787 -17.5133 0 0.0002 

44 0.9853 -15.2186 0.9853 -15.2187 0 0.0001 

45 0.9869 -13.4579 0.9869 -13.4579 0 0 

46 1.005 -10.7198 1.005 -10.7198 0 0 

47 1.0173 -8.5782 1.0173 -8.5782 0 0 

48 1.0206 -9.2626 1.0206 -9.2625 0 0.0001 

49 1.025 -8.2556 1.025 -8.2556 0 0 

50 1.0015 -10.1158 1.0015 -10.1158 0 0 

51 0.9676 -12.4909 0.9676 -12.4909 0 0 

52 0.9576 -13.3713 0.9576 -13.3712 0 0.0001 

53 0.9464 -14.1477 0.9464 -14.1476 0 0.0001 

54 0.955 -13.0903 0.955 -13.0903 0 0 

55 0.952 -13.5063 0.952 -13.5062 0 0.0001 

56 0.9546 -13.2624 0.9546 -13.2623 0 0.0001 

57 0.9713 -12.3124 0.9713 -12.3124 0 0 

58 0.9597 -13.1149 0.9597 -13.1148 0 0.0001 

59 0.985 -10.4092 0.985 -10.4091 0 0.0001 

60 0.9932 -6.9483 0.9932 -6.9482 0 0.0001 

61 0.995 -6.0573 0.995 -6.0572 0 0.0001 

62 0.998 -6.7943 0.998 -6.7942 0 0.0001 

63 0.969 -7.2215 0.969 -7.2213 0 0.0002 

64 0.9839 -5.5593 0.9839 -5.5592 0 0.0001 

65 1.005 -2.5555 1.005 -2.5553 0 0.0002 
66 1.05 -3.3052 1.05 -3.3051 0 0.0001 

67 1.0198 -5.6895 1.0198 -5.6894 0 0.0001 

68 1.0032 -2.6181 1.0032 -2.6178 0 0.0003 

69 1.035 0 1.035 0 0 0 

70 0.984 -7.1097 0.984 -7.1094 0 0.0003 

71 0.9869 -7.4878 0.9868 -7.4874 0.0001 0.0004 

72 0.98 -8.419 0.98 -8.4184 0 0.0006 

73 0.991 -7.6992 0.991 -7.6988 0 0.0004 

74 0.9586 -8.0794 0.9585 -8.079 0.0001 0.0004 

75 0.9682 -6.8289 0.9682 -6.8284 0 0.0005 

76 0.943 -7.8573 0.943 -7.8566 0 0.0007 

77 1.0118 -2.9144 1.0117 -2.9125 0.0001 0.0019 

118 0.9499 -7.7688 0.9499 -7.7683 0 0.0005 



219 

 

Table A3.7 Comparison of load flow of the case study 2 (the reduced system based 

on loose coherent groups of the first system condition). 

 

Bus 

Original system voltage Reduced system voltage  

Magnitude 

(p.u.) 

Angle 

(deg.) 

Magnitude 

(p.u.) 

Angle 

(deg.) 

V∆  

(p.u.) 

θ∆  

(p.u.) 

24 0.992 -8.2335 0.992 -8.2312 0 0.0023 

33 0.9716 -18.1272 0.9716 -18.1244 0 0.0028 

34 0.986 -17.3372 0.986 -17.3354 0 0.0018 

35 0.9807 -17.7564 0.9807 -17.7546 0 0.0018 

36 0.98 -17.7535 0.98 -17.7517 0 0.0018 

37 0.9921 -16.858 0.9921 -16.8562 0 0.0018 

38 0.9633 -12.0945 0.9633 -12.093 0 0.0015 

39 0.9708 -19.4704 0.9708 -19.4687 0 0.0017 

40 0.97 -20.1015 0.97 -20.0998 0 0.0017 

41 0.9667 -20.2036 0.9667 -20.2019 0 0.0017 

42 0.985 -17.6661 0.985 -17.6646 0 0.0015 

43 0.9787 -17.5131 0.9787 -17.5114 0 0.0017 

44 0.9853 -15.2186 0.9853 -15.2173 0 0.0013 

45 0.9869 -13.4579 0.9869 -13.4566 0 0.0013 

46 1.005 -10.7198 1.005 -10.7187 0 0.0011 

47 1.0173 -8.5782 1.0173 -8.5772 0 0.001 

48 1.0206 -9.2626 1.0206 -9.2614 0 0.0012 

49 1.025 -8.2556 1.025 -8.2544 0 0.0012 

50 1.0015 -10.1158 1.0015 -10.1147 0 0.0011 

51 0.9676 -12.4909 0.9676 -12.4897 0 0.0012 

52 0.9576 -13.3713 0.9576 -13.3701 0 0.0012 

53 0.9464 -14.1477 0.9464 -14.1465 0 0.0012 

54 0.955 -13.0903 0.955 -13.0891 0 0.0012 

55 0.952 -13.5063 0.952 -13.505 0 0.0013 

56 0.9546 -13.2624 0.9546 -13.2611 0 0.0013 

57 0.9713 -12.3124 0.9713 -12.3112 0 0.0012 

58 0.9597 -13.1149 0.9597 -13.1137 0 0.0012 

59 0.985 -10.4092 0.985 -10.4079 0 0.0013 

60 0.9932 -6.9483 0.9932 -6.947 0 0.0013 

61 0.995 -6.0573 0.995 -6.056 0 0.0013 

62 0.998 -6.7943 0.998 -6.7931 0 0.0012 

63 0.969 -7.2215 0.969 -7.2202 0 0.0013 

64 0.9839 -5.5593 0.9839 -5.5581 0 0.0012 

65 1.005 -2.5555 1.005 -2.5542 0 0.0013 
66 1.05 -3.3052 1.05 -3.304 0 0.0012 

67 1.0198 -5.6895 1.0198 -5.6882 0 0.0013 

68 1.0032 -2.6181 1.0032 -2.6167 0 0.0014 

69 1.035 0 1.035 0 0 0 

70 0.984 -7.1097 0.984 -7.1091 0 0.0006 

71 0.9869 -7.4878 0.9868 -7.487 0.0001 0.0008 

72 0.98 -8.419 0.98 -8.4175 0 0.0015 

73 0.991 -7.6992 0.991 -7.6984 0 0.0008 

74 0.9586 -8.0794 0.9585 -8.0788 0.0001 0.0006 

75 0.9682 -6.8289 0.9682 -6.8283 0 0.0006 

76 0.943 -7.8573 0.943 -7.8566 0 0.0007 

77 1.0118 -2.9144 1.0117 -2.9128 0.0001 0.0016 

118 0.9499 -7.7688 0.9499 -7.7682 0 0.0006 



220 

 

Table A3.8: Comparison of load flow of the case study 2 at the second system 

condition. 

 

Bus 

Original system voltage Reduced system voltage  

Magnitude 

(p.u.) 

Angle 

(deg.) 

Magnitude 

(p.u.) 

Angle 

(deg.) 

V∆  

(p.u.) 

θ∆  

(p.u.) 

24 0.9977 -0.3542 0.9976 -0.3518 0.0001 0.0024 

33 0.9798 -8.3119 0.9798 -8.3084 0 0.0035 

34 0.9941 -8.4162 0.9941 -8.4138 0 0.0024 

35 0.9894 -8.7914 0.9894 -8.789 0 0.0024 

36 0.9888 -8.7876 0.9888 -8.7853 0 0.0023 

37 0.9994 -8.0008 0.9994 -7.9985 0 0.0023 

38 0.9695 -3.6328 0.9695 -3.631 0 0.0018 

39 0.9741 -10.8278 0.9742 -10.8256 0.0001 0.0022 

40 0.97 -11.6857 0.97 -11.6836 0 0.0021 

41 0.9676 -11.9944 0.9676 -11.9924 0 0.002 

42 0.985 -10.3017 0.985 -10.2999 0 0.0018 

43 0.99 -9.2379 0.99 -9.2358 0 0.0021 

44 0.9974 -8.1708 0.9974 -8.1692 0 0.0016 

45 0.9974 -6.9459 0.9974 -6.9445 0 0.0014 

46 1.0121 -4.8944 1.0121 -4.8932 0 0.0012 

47 1.021 -3.433 1.021 -3.4319 0 0.0011 

48 1.0229 -3.3747 1.0229 -3.3734 0 0.0013 

49 1.025 -2.391 1.025 -2.3897 0 0.0013 

50 1.0041 -4.0213 1.0041 -4.02 0 0.0013 

51 0.974 -6.0908 0.974 -6.0895 0 0.0013 

52 0.9652 -6.8605 0.9652 -6.8592 0 0.0013 

53 0.9548 -7.5085 0.9548 -7.5071 0 0.0014 

54 0.9618 -6.537 0.9618 -6.5357 0 0.0013 

55 0.9588 -6.8855 0.9588 -6.8842 0 0.0013 

56 0.9612 -6.6774 0.9612 -6.6761 0 0.0013 

57 0.9767 -5.9006 0.9767 -5.8993 0 0.0013 

58 0.9666 -6.6051 0.9666 -6.6038 0 0.0013 

59 0.985 -3.9397 0.985 -3.9384 0 0.0013 

60 0.9936 -0.9149 0.9936 -0.9135 0 0.0014 

61 0.995 -0.114 0.995 -0.1127 0 0.0013 

62 0.9989 -0.8061 0.9989 -0.8048 0 0.0013 

63 0.9701 -1.2913 0.9701 -1.2899 0 0.0014 

64 0.9847 0.0769 0.9847 0.0783 0 0.0014 

65 1.005 2.3019 1.005 2.3033 0 0.0014 
66 1.05 2.2031 1.05 2.2044 0 0.0013 

67 1.0211 0.1151 1.0211 0.1164 0 0.0013 

68 1.0016 0.9597 1.0016 0.961 0 0.0013 

69 1.035 0 1.035 0 0 0 

70 0.9942 -4.0008 0.9941 -4.0001 0.0001 0.0007 

71 0.9965 -3.9394 0.9965 -3.9385 0 0.0009 

72 0.9888 -2.7373 0.9888 -2.7357 0 0.0016 

73 1.0003 -4.1264 1.0003 -4.1256 0 0.0008 

74 0.9719 -5.0499 0.9719 -5.0493 0 0.0006 

75 0.9798 -4.0021 0.9798 -4.0014 0 0.0007 

76 0.9558 -4.2218 0.9558 -4.2209 0 0.0009 

77 1.015 1.1099 1.0149 1.1117 0.0001 0.0018 

118 0.9629 -4.5114 0.9629 -4.5107 0 0.0007 
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Table A3.9 Comparison of load flow of the case study 2 at the third system condition 

(the reduced system based on coherent groups identified at the third system 

condition). 

Bus 

Original system voltage Reduced system voltage  

Magnitude 

(p.u.) 

Angle 

(deg.) 

Magnitude 

(p.u.) 

Angle 

(deg.) 

V∆  

(p.u.) 

θ∆  

(p.u.) 

24 0.9728 -11.1156 0.9728 -11.1014 0 0.0142 

33 0.9479 -23.6348 0.9479 -23.6161 0 0.0187 

34 0.9828 -19.2107 0.9829 -19.1954 0.0001 0.0153 

35 0.9783 -19.546 0.9783 -19.5308 0 0.0152 

36 0.9774 -19.5673 0.9774 -19.552 0 0.0153 

37 0.9904 -18.528 0.9905 -18.5128 0.0001 0.0152 

38 0.9682 -12.0914 0.9683 -12.0762 0.0001 0.0152 

39 0.9703 -20.9328 0.9703 -20.9191 0 0.0137 

40 0.97 -21.4399 0.97 -21.4272 0 0.0127 

41 0.9666 -21.435 0.9666 -21.4231 0 0.0119 

42 0.985 -18.6046 0.985 -18.595 0 0.0096 

43 0.9757 -19.0004 0.9757 -18.9878 0 0.0126 

44 0.983 -16.1284 0.983 -16.1197 0 0.0087 

45 0.9852 -14.1559 0.9852 -14.1486 0 0.0073 

46 1.004 -11.2619 1.004 -11.2558 0 0.0061 

47 1.0168 -9.0142 1.0168 -9.009 0 0.0052 

48 1.0204 -9.7577 1.0204 -9.7517 0 0.006 

49 1.025 -8.739 1.025 -8.733 0 0.006 

50 1.0015 -10.5863 1.0015 -10.5804 0 0.0059 

51 0.9676 -12.9454 0.9676 -12.9395 0 0.0059 

52 0.9576 -13.8217 0.9576 -13.8158 0 0.0059 

53 0.9464 -14.587 0.9464 -14.5812 0 0.0058 

54 0.9551 -13.5216 0.9551 -13.5158 0 0.0058 

55 0.952 -13.9321 0.952 -13.9264 0 0.0057 

56 0.9546 -13.6903 0.9546 -13.6845 0 0.0058 

57 0.9713 -12.7587 0.9713 -12.7528 0 0.0059 

58 0.9598 -13.5581 0.9598 -13.5523 0 0.0058 

59 0.985 -10.7919 0.985 -10.7863 0 0.0056 

60 0.9932 -7.3124 0.9932 -7.3069 0 0.0055 

61 0.995 -6.4186 0.995 -6.4131 0 0.0055 

62 0.998 -7.1632 0.998 -7.1576 0 0.0056 

63 0.969 -7.5811 0.969 -7.5756 0 0.0055 

64 0.9839 -5.9063 0.9839 -5.9009 0 0.0054 

65 1.005 -2.8678 1.005 -2.8625 0 0.0053 
66 1.05 -3.7038 1.05 -3.6982 0 0.0056 

67 1.0198 -6.0746 1.0198 -6.069 0 0.0056 

68 1.0032 -2.9163 1.0032 -2.9127 0 0.0036 

69 1.035 0 1.035 0 0 0 

70 0.9774 -7.9259 0.9774 -7.922 0 0.0039 

71 0.979 -8.4831 0.979 -8.4783 0 0.0048 

72 0.9663 -10.3269 0.9662 -10.3176 0.0001 0.0093 

73 0.9832 -8.6978 0.9832 -8.693 0 0.0048 

74 0.9542 -8.7007 0.9542 -8.6979 0 0.0028 

75 0.9647 -7.3768 0.9647 -7.3743 0 0.0025 

76 0.9406 -8.4612 0.9406 -8.4585 0 0.0027 

77 1.0113 -3.5708 1.0113 -3.568 0 0.0028 

118 0.9469 -8.3459 0.9469 -8.3433 0 0.0026 
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Table A3.10 Comparison of load flow of the case study 2 at the third system 

condition (the reduced system based on coherent groups identified at the first system 

condition). 

Bus 

Original system voltage Reduced system voltage  

Magnitude 

(p.u.) 

Angle 

(deg.) 

Magnitude 

(p.u.) 

Angle 

(deg.) 

V∆  

(p.u.) 

θ∆  

(p.u.) 

24 0.9728 -11.1156 0.9728 -11.1101 0 0.0055 

33 0.9479 -23.6348 0.9479 -23.6271 0 0.0077 

34 0.9828 -19.2107 0.9828 -19.2059 0 0.0048 

35 0.9783 -19.546 0.9783 -19.5414 0 0.0046 

36 0.9774 -19.5673 0.9774 -19.5626 0 0.0047 

37 0.9904 -18.528 0.9904 -18.5234 0 0.0046 

38 0.9682 -12.0914 0.9683 -12.0876 0.0001 0.0038 

39 0.9703 -20.9328 0.9703 -20.9286 0 0.0042 

40 0.97 -21.4399 0.97 -21.4361 0 0.0038 

41 0.9666 -21.435 0.9666 -21.4314 0 0.0077 

42 0.985 -18.6046 0.985 -18.6015 0 0.0048 

43 0.9757 -19.0004 0.9757 -18.9964 0 0.0046 

44 0.983 -16.1284 0.983 -16.1255 0 0.0047 

45 0.9852 -14.1559 0.9852 -14.1534 0 0.0046 

46 1.004 -11.2619 1.004 -11.2598 0.0001 0.0038 

47 1.0168 -9.0142 1.0168 -9.0123 0 0.0042 

48 1.0204 -9.7577 1.0204 -9.7555 0 0.0038 

49 1.025 -8.739 1.025 -8.7368 0 0.0036 

50 1.0015 -10.5863 1.0015 -10.5842 0 0.0031 

51 0.9676 -12.9454 0.9676 -12.9432 0 0.004 

52 0.9576 -13.8217 0.9576 -13.8195 0 0.0029 

53 0.9464 -14.587 0.9464 -14.5849 0 0.0025 

54 0.9551 -13.5216 0.9551 -13.5194 0 0.0021 

55 0.952 -13.9321 0.952 -13.93 0 0.0019 

56 0.9546 -13.6903 0.9546 -13.6882 0 0.0022 

57 0.9713 -12.7587 0.9713 -12.7565 0 0.0022 

58 0.9598 -13.5581 0.9598 -13.556 0 0.0021 

59 0.985 -10.7919 0.985 -10.7898 0 0.0022 

60 0.9932 -7.3124 0.9932 -7.3102 0 0.0022 

61 0.995 -6.4186 0.995 -6.4164 0 0.0021 

62 0.998 -7.1632 0.998 -7.161 0 0.0022 

63 0.969 -7.5811 0.969 -7.5789 0 0.0021 

64 0.9839 -5.9063 0.9839 -5.9042 0 0.0021 

65 1.005 -2.8678 1.005 -2.8657 0 0.0022 
66 1.05 -3.7038 1.05 -3.7017 0 0.0021 

67 1.0198 -6.0746 1.0198 -6.0725 0 0.0021 

68 1.0032 -2.9163 1.0032 -2.9143 0 0.0022 

69 1.035 0 1.035 0 0 0.0022 

70 0.9774 -7.9259 0.9774 -7.9242 0 0.0022 

71 0.979 -8.4831 0.979 -8.4811 0 0.0022 

72 0.9663 -10.3269 0.9662 -10.3233 0 0.0021 

73 0.9832 -8.6978 0.9832 -8.6958 0 0.0021 

74 0.9542 -8.7007 0.9542 -8.6993 0 0.0021 

75 0.9647 -7.3768 0.9646 -7.3753 0 0.0021 

76 0.9406 -8.4612 0.9406 -8.4593 0 0.002 

77 1.0113 -3.5708 1.0112 -3.5676 0 0 

118 0.9469 -8.3459 0.9469 -8.3442 0 0.0017 
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Table A3.11 the highest values of the maximum rotor angle difference of the internal 

generators for the reduced systems A, B, C, D, E, and F of the case study 2 (small 

fault). 

Bus 
Highest value of the maximum rotor angle difference (degree) 

A B C D E F 

24 0.02 0.0734 0.0646 0.0915 0.0756 0.1059 

33 0.0282 0.1045 0.1032 0.1096 0.1332 0.1467 

34 0.0211 0.0977 0.0985 0.1091 0.0912 0.1334 

35 0.0206 0.0967 0.0977 0.1081 0.0905 0.132 

36 0.0206 0.0965 0.0975 0.1079 0.0905 0.1317 

37 0.0213 0.0997 0.1005 0.1113 0.0903 0.1362 

38 0.018 0.082 0.0819 0.0908 0.0668 0.109 

39 0.0242 0.1291 0.1296 0.1428 0.0851 0.1762 

40 0.0287 0.1512 0.151 0.1653 0.1013 0.2065 

41 0.0273 0.1469 0.1472 0.1614 0.101 0.1997 

42 0.0255 0.1617 0.1534 0.1608 0.1065 0.1946 

43 0.0147 0.0813 0.0839 0.0945 0.0713 0.1083 

44 0.0097 0.0642 0.0667 0.0781 0.0528 0.0792 

45 0.0104 0.0733 0.0655 0.0724 0.0524 0.0694 

46 0.0112 0.0785 0.0699 0.0773 0.0544 0.0616 

47 0.0113 0.0823 0.0698 0.08 0.0587 0.0549 

48 0.0125 0.0934 0.0841 0.0828 0.0626 0.0758 

49 0.013 0.0978 0.0884 0.0845 0.0654 0.0799 

50 0.012 0.0927 0.0836 0.0806 0.064 0.0743 

51 0.0108 0.0853 0.077 0.075 0.0622 0.0668 

52 0.0104 0.0828 0.0748 0.073 0.0613 0.0644 

53 0.0099 0.0806 0.0727 0.0712 0.0622 0.0616 

54 0.0102 0.0839 0.0755 0.0736 0.0662 0.0631 

55 0.01 0.0833 0.0748 0.073 0.0669 0.0622 

56 0.0101 0.0839 0.0754 0.0735 0.0668 0.0628 

57 0.0107 0.0865 0.0778 0.0757 0.0645 0.0668 

58 0.0104 0.0839 0.0756 0.0737 0.0635 0.0644 

59 0.0104 0.0959 0.0846 0.0805 0.0863 0.0676 

60 0.0109 0.0927 0.0805 0.0814 0.0891 0.0671 

61 0.0112 0.0933 0.081 0.0818 0.0909 0.0679 

62 0.0106 0.0912 0.079 0.0818 0.0859 0.0662 

63 0.0093 0.0789 0.0671 0.0741 0.0751 0.0547 

64 0.0093 0.0801 0.0655 0.0744 0.0713 0.0505 

65 0.0098 0.0774 0.0623 0.0699 0.0454 0.0477 

66 0.0115 0.0937 0.0779 0.088 0.0789 0.0682 

67 0.0104 0.0892 0.0773 0.0843 0.0795 0.0658 

68 0.0133 0.0783 0.0655 0.0715 0.0423 0.0537 

69 0.0207 0.1197 0.1351 0.1374 0.0894 0.1221 

70 0.0176 0.0743 0.0821 0.0845 0.0637 0.0639 

71 0.0179 0.0721 0.0772 0.08 0.0635 0.0604 

72 0.0185 0.0647 0.0525 0.074 0.0653 0.0674 

73 0.0181 0.073 0.0773 0.08 0.0636 0.0599 

74 0.018 0.0815 0.0779 0.08 0.0595 0.0696 

75 0.0185 0.0846 0.0819 0.0833 0.061 0.0787 

76 0.0203 0.0943 0.0866 0.0901 0.0622 0.0852 

77 0.0249 0.1476 0.1376 0.1288 0.091 0.1453 

118 0.0192 0.0886 0.0811 0.0857 0.0596 0.0787 
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Table A3.12 the highest values of the maximum rotor angle difference of the internal 

generators for the reduced systems A, B, C, D, E, and F of the case study 2 (large 

fault). 

Bus 
Highest value of the maximum rotor angle difference (degree) 

A B C D E F 

24 1.8271 2.7748 3.0176 2.7189 3.4553 2.7283 

33 0.4403 3.7959 3.5144 3.3828 1.5046 3.7604 

34 0.8097 6.6736 6.2244 6.0522 3.5915 7.3852 

35 0.5993 4.7575 4.4769 4.3724 2.6247 5.4567 

36 0.6173 4.8833 4.5933 4.4996 2.7376 5.6384 

37 0.912 7.8467 7.2957 7.1042 4.0686 8.3871 

38 1.266 7.3679 6.7365 6.4883 4.9401 8.0035 

39 0.4797 3.3771 3.5085 3.523 1.9832 4.3069 

40 0.486 3.5699 3.4603 3.3515 2.1106 4.0873 

41 0.4494 2.2726 2.588 2.5271 1.8045 3.2479 

42 0.5578 2.3451 2.1109 2.0198 2.9795 3.5794 

43 0.2729 1.2953 1.2531 1.2812 1.1031 1.7187 

44 0.3154 0.5978 0.6209 0.5964 1.0205 0.9616 

45 0.4719 0.9711 0.7045 0.6163 1.241 1.3722 

46 0.5795 1.3246 0.8345 0.758 1.2711 1.8244 

47 1.0045 2.6759 1.6753 1.482 1.735 3.5058 

48 0.7739 2.0085 1.3682 1.2463 1.6773 2.799 

49 2.2613 4.9568 3.1205 3.1116 5.9711 7.2693 

50 0.6149 1.3696 1.0159 0.902 1.3739 2.0314 

51 0.5384 0.8258 0.6867 0.6664 1.3575 1.3206 

52 0.3938 0.6266 0.5732 0.5883 1.0795 0.7972 

53 0.3897 0.7601 0.7608 0.7746 1.2178 0.934 

54 1.0403 1.6228 1.507 1.5284 2.739 2.0352 

55 0.8857 1.391 1.3327 1.3537 2.3788 1.747 

56 1.0488 1.6044 1.4828 1.5039 2.7197 2.0443 

57 0.484 0.7155 0.6207 0.5815 1.19 1.158 

58 0.4958 0.745 0.6436 0.6616 1.2742 1.0795 

59 1.5397 2.355 2.4995 2.2559 3.9372 2.9246 

60 1.4411 1.7797 1.9267 1.5345 2.8388 2.614 

61 1.8321 2.2528 2.5289 2.0199 3.6158 3.1486 

62 1.2837 1.5937 1.6397 1.3062 2.3544 2.6064 

63 1.7056 2.1643 2.3513 2.0061 3.4847 2.7182 

64 2.4544 2.8707 3.1706 2.4886 3.7753 4.5968 

65 5.4946 9.8276 6.453 8.055 5.231 13.05 

66 2.9943 5.4192 3.4421 3.3151 6.1662 7.8445 

67 0.7614 1.2853 1.0259 0.8594 1.2505 1.9154 

68 8.4036 14.3686 - - 9.1135 14.0235 

69 6.5057 11.9593 12.8108 - 11.6316 18.9735 

70 2.216 4.8652 3.835 3.9666 2.794 5.169 

71 1.4994 3.3471 2.6153 2.5425 2.1836 3.6076 

72 0.8311 1.3917 1.1808 1.0031 1.6387 1.6591 

73 0.9944 2.4205 1.8064 1.6736 1.5682 2.6287 

74 2.221 4.9356 3.9581 4.1256 2.1558 5.0602 

75 3.4643 6.8689 5.497 6.982 3.0081 7.0136 

76 2.7305 5.4376 4.403 4.9158 2.2142 5.3142 

77 12.5938 - - - 11.7954 - 

118 2.6887 5.5629 4.4987 5.0096 2.3194 5.5431 
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APPENDIX B: TEST SYSTEMS 

 

B.1 IEEE 39 bus system 

1. Single line diagram of the system 
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2. System data 

 

Table B.1 Bus data and power flow results 

Bus 

No. 

Bus voltage 

Magnitude          angle 

(p.u.)                  (deg.) 

Generation 

Real           Reactive 

(MW)         (MVAR) 

Load 

Real           Reactive 

(MW)        (MVAR) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

1.0474 

1.0487 

1.0302 

1.0039 

1.0053 

1.0077 

0.9970 

0.9960 

1.0282 

1.0172 

1.0127 

1.0002 

1.0143 

1.0117 

1.0154 

1.0318 

1.0336 

1.0309 

1.0499 

0.9912 

1.0318 

1.0498 

1.0448 

1.0373 

1.0576 

1.0521 

1.0377 

1.0501 

1.0499 

1.0475 

0.9820 

0.9831 

0.9972 

1.0123 

1.0493 

1.0635 

1.0278 

1.0265 

1.0300 

-8.4280 

-5.7419 

-8.5867 

-9.5968 

-8.6038 

-7.9420 

-10.1159 

-10.6073 

-10.3128 

-5.4182 

-6.2757 

-6.2347 

-6.0884 

-7.6460 

-7.7224 

-6.1725 

-7.2874 

-8.2107 

-1.0077 

-1.9996 

-3.7636 

0.6873 

0.4903 

-6.0521 

-4.3513 

-5.5137 

-7.4820 

-2.0019 

0.7574 

-3.3221 

0.000 

2.5779 

4.2098 

3.1901 

5.6490 

8.3432 

2.4332 

7.8208 

-10.043 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

250 

520.3221 

650 

632 

508 

650 

560 

540 

830 

1000 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

146.1721 

198.1765 

205.143 

109.9205 

165.7704 

212.4463 

101.1903 

0.4395 

22.8445 

88.2881 

0 

0 

322 

500 

0 

0 

233.8 

522 

0 

0 

0 

7.5 

0 

0 

320 

329 

0 

158 

0 

628 

274 

0 

247 

308.6 

224 

139 

281 

206 

283.5 

0 

9.2 

0 

0 

0 

0 

0 

0 

0 

1104 

0 

0 

2.4 

184 

0 

0 

84 

176 

0 

0 

0 

88 

0 

0 

153 

32.3 

0 

30 

0 

103 

115 

0 

84.6 

-92.2 

47.2 

17 

75.5 

27.6 

26.9 

0 

4.6 

0 

0 

0 

0 

0 

0 

0 

250 
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Table B.2 Line and transformer data 

 

Line 

No. 

Line data Transformer Tap 

From To 
R 

(p.u.) 

X 

(p.u.) 

B 

(p.u.) 
magnitude Angle 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

1 

1 

2 

25 

2 

3 

18 

4 

4 

5 

5 

6 

6 

6 

7 

8 

39 

11 

13 

10 

12 

12 

13 

15 

15 

17 

19 

21 

24 

18 

27 

19 

19 

20 

21 

22 

22 

24 

23 

25 

2 

39 

3 

2 

30 

4 

3 

5 

14 

6 

8 

7 

11 

31 

8 

9 

9 

10 

10 

32 

11 

13 

14 

14 

16 

16 

16 

16 

16 

17 

17 

20 

33 

34 

22 

23 

35 

23 

36 

26 

0.0035 

0.001 

0.0013 

0.007 

0 

0.0013 

0.0011 

0.0008 

0.0008 

0.0002 

0.0008 

0.0006 

0.0007 

0 

0.0004 

0.0023 

0.001 

0.0004 

0.0004 

0 

0.0016 

0.0016 

0.0009 

0.0018 

0.0009 

0.0007 

0.0016 

0.0008 

0.0003 

0.0007 

0.0013 

0.0007 

0.0007 

0.0009 

0.0008 

0.0006 

0 

0.0022 

0.0005 

0.0032 

0.0411 

0.025 

0.0151 

0.0086 

0.0181 

0.0213 

0.0133 

0.0128 

0.0129 

0.0026 

0.0112 

0.0092 

0.0082 

0.025 

0.0046 

0.0363 

0.025 

0.0043 

0.0043 

0.02 

0.0435 

0.0435 

0.0101 

0.0217 

0.0094 

0.0089 

0.0195 

0.0135 

0.0059 

0.0082 

0.0173 

0.0138 

0.0142 

0.018 

0.014 

0.0096 

0.0143 

0.035 

0.0272 

0.0323 

0.6987 

0.75 

0.2572 

0.146 

0 

0.2214 

0.2138 

0.1342 

0.1382 

0.0434 

0.1476 

0.113 

0.1389 

0 

0.078 

0.3804 

1.2 

0.0729 

0.0729 

0 

0 

0 

0.1723 

0.366 

0.171 

0.1342 

0.304 

0.2548 

0.068 

0.1319 

0.3216 

0 

0 

0 

0.2565 

0.1846 

0 

0.361 

0 

0.513 

1 

1 

1 

1 

1.025 

1 

1 

1 

1 

1 

1 

1 

1 

1.07 

1 

1 

1 

1 

1 

1.07 

1.006 

1.006 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1.06 

1.07 

1.009 

1 

1 

1.025 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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Line 

No. 

Line data Transformer Tap 

From To 
R 

(p.u.) 

X 

(p.u.) 

B 

(p.u.) 
magnitude Angle 

41 

42 

43 

44 

45 

46 

25 

27 

28 

29 

28 

29 

37 

26 

26 

26 

29 

38 

0.0006 

0.0014 

0.0043 

0.0057 

0.0014 

0.0008 

0.0232 

0.0147 

0.0474 

0.0625 

0.0151 

0.0156 

0 

0.2396 

0.7802 

1.029 

0.249 

0 

1.025 

1 

1 

1 

1 

1.025 

0 

0 

0 

0 

0 

0 

 

 

Table B.3 Generator data 

 

No. Bus 

 

H 

(sec.) 

 

Ra 

(p.u.) 

X’d 

(p.u.) 

X’q 

(p.u.) 

Xd 

(p.u.) 

Xq 

(p.u.) 

T’do 

(p.u.) 

T’qo 

(p.u.) 

Xl 

(p.u.) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

39 

31 

32 

33 

34 

35 

36 

37 

38 

30 

500 

30.3 

35.8 

28.6 

26.0 

34.8 

26.4 

24.3 

34.5 

42.0 

0.00100 

0.02700 

0.00386 

0.00222 

0.00140 

0.06150 

0.00268 

0.00686 

0.00300 

0.00140 

0.006 

0.0697 

0.0531 

0.0436 

0.132 

0.05 

0.049 

0.057 

0.057 

0.031 

0.008 

0.170 

0.0876 

0.166 

0.166 

0.0814 

0.186 

0.0911 

0.0587 

0.008 

0.02 

0.295 

0.2495 

0.262 

0.67 

0.254 

0.295 

0.290 

0.2106 

0.1 

0.019 

0.282 

0.237 

0.258 

0.62 

0.241 

0.292 

0.280 

0.205 

0.069 

7.0 

6.56 

5.7 

5.69 

5.4 

7.3 

5.66 

6.7 

4.79 

10.2 

0.7 

1.5 

1.5 

1.5 

0.44 

0.4 

1.5 

0.41 

1.96 

0.0 

0.003 

0.035 

0.0304 

0.0295 

0.054 

0.0224 

0.0322 

0.028 

0.0298 

0.0125 
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B.2 IEEE118 bus system 

1. Single line diagram of the system 
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2. System data 

Table B.4 Bus data and power flow results 

Bus 

No. 

Bus voltage 

Magnitude          angle 

(p.u.)                  (deg.) 

Generation 

Real           Reactive 

(MW)         (MVAR) 

Load 

Real           Reactive 

(MW)        (MVAR) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

0.9572 

0.9722 

0.969 

0.998 

1.0021 

0.99 

0.9893 

1.015 

1.0429 

1.05 

0.9851 

0.99 

0.9683 

0.9836 

0.97 

0.984 

0.9952 

0.973 

0.9634 

0.9581 

0.9588 

0.9698 

0.9997 

0.992 

1.05 

1.015 

0.968 

0.9616 

0.9632 

0.9859 

0.967 

0.9637 

0.9716 

0.986 

0.9807 

0.98 

0.9921 

0.9633 

0.9708 

0.97 

-18.2207 

-17.6608 

-17.325 

-13.5944 

-13.1499 

-15.8726 

-16.3159 

-8.134 

-0.8797 

6.7012 

-16.1566 

-16.6722 

-17.5238 

-17.3798 

-17.6495 

-16.9808 

-15.1884 

-17.3681 

-17.8209 

-16.9691 

-15.4019 

-12.8712 

-7.9878 

-8.2335 

-1.0004 

0.7774 

-13.4483 

-15.0845 

-15.9783 

-10.1523 

-15.8264 

-14.0154 

-18.1272 

-17.3372 

-17.7564 

-17.7535 

-16.858 

-12.0945 

-19.4704 

-20.1015 

0 

0 

0 

-9 

0 

0 

0 

0 

0 

450 

0 

85 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

220 

314 

-9 

0 

0 

0 

7 

0 

0 

0 

0 

0 

0 

0 

0 

-46 

0 

0 

0 

-15.5133 

0 

0 

0 

0 

0 

-51.0208 

0 

88.9666 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

49.566 

9.5097 

2.3345 

0 

0 

0 

3.9701 

0 

0 

0 

0 

0 

0 

0 

0 

25.2921 

51 

20 

39 

30 

0 

52 

19 

28 

0 

0 

70 

47 

34 

14 

90 

25 

11 

60 

45 

18 

14 

10 

7 

13 

0 

0 

62 

17 

24 

0 

43 

59 

23 

59 

33 

31 

0 

0 

27 

20 

27 

9 

10 

12 

0 

6.23 

2 

-61.61 

0 

0 

23 

10 

16 

1 

27.29 

10 

3 

8.74 

33 

3 

8 

5 

3 

13.87 

0 

0 

13 

7 

4 

0 

27 

37 

9 

34 

9 

18.73 

0 

0 

11 

23 
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Bus 

No. 

Bus voltage 

Magnitude          angle 

(p.u.)                  (deg.) 

Generation 

Real           Reactive 

(MW)         (MVAR) 

Load 

Real           Reactive 

(MW)        (MVAR) 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

0.9667 

0.985 

0.9787 

0.9853 

0.9869 

1.005 

1.0173 

1.0206 

1.025 

1.0015 

0.9676 

0.9576 

0.9464 

0.955 

0.952 

0.9546 

0.9713 

0.9597 

0.985 

0.9932 

0.995 

0.998 

0.969 

0.9839 

1.005 

1.05 

1.0198 

1.0032 

1.035 

0.984 

0.9869 

0.98 

0.991 

0.9586 

0.9682 

0.943 

1.0118 

1.0085 

1.0131 

1.04 

-20.2036 

-17.6661 

-17.5131 

-15.2186 

-13.4579 

-10.7198 

-8.5782 

-9.2626 

-8.2556 

-10.1158 

-12.4909 

-13.3713 

-14.1477 

-13.0903 

-13.5063 

-13.2624 

-12.3124 

-13.1149 

-10.4092 

-6.9483 

-6.0573 

-6.7943 

-7.2215 

-5.5593 

-2.5555 

-3.3052 

-5.6895 

-2.6181 

0.0000 

-7.1097 

-7.4878 

-8.419 

-7.6992 

-8.0794 

-6.8289 

-7.8573 

-2.9144 

-3.2964 

-3.1619 

-1.3773 

0 

-59 

0 

0 

0 

0 

0 

0 

204 

0 

0 

0 

0 

0 

0 

0 

0 

0 

155 

0 

160 

0 

0 

0 

391 

392 

0 

0 

503.3161 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

477 

0 

21.8542 

0 

0 

0 

0 

0 

0 

108.4161 

0 

0 

0 

0 

0 

0 

0 

0 

0 

83.2454 

0 

-41.7222 

0 

0 

0 

78.7829 

16.8191 

0 

0 

-84.4974 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

126.0545 

37 

37 

18 

16 

53 

9 

34 

20 

87 

17 

17 

18 

23 

65 

63 

84 

12 

12 

277 

78 

0 

77 

0 

0 

0 

39 

28 

0 

0 

66 

0 

12 

6 

68 

47 

68 

61 

71 

39 

130 

10 

23 

7 

8 

22 

15.68 

0 

11 

30 

4 

8 

5 

11 

60.95 

20.89 

26 

3 

3 

113 

3 

0 

13.4 

0 

0 

0 

18 

7 

0 

0 

13.4 

0 

11.16 

-9.63 

33 

11 

35.22 

48 

26 

32 

26 
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Bus 

No. 

Bus voltage 

Magnitude          angle 

(p.u.)                  (deg.) 

Generation 

Real           Reactive 

(MW)         (MVAR) 

Load 

Real           Reactive 

(MW)        (MVAR) 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

0.9967 

1.0000 

0.9939 

0.9852 

0.9883 

0.9887 

1.0149 

0.9891 

1.005 

0.985 

0.9799 

0.9976 

0.9911 

0.994 

0.9853 

0.9981 

1.0142 

1.0235 

1.01 

1.017 

0.9946 

0.9952 

1.0063 

0.9882 

0.9824 

0.9726 

0.952 

0.9766 

0.9746 

0.9729 

0.98 

0.975 

0.993 

0.9605 

0.9604 

1.0049 

0.9738 

0.9499 

-2.1283 

-2.9993 

-2.0636 

0.0755 

1.4421 

0.1011 

0.3772 

4.2017 

8.006 

3.4643 

3.7051 

4.4391 

1.2104 

-1.1403 

-2.2299 

-2.5538 

-2.3153 

-2.7184 

-2.8864 

-1.7275 

0.0231 

2.8682 

-5.3724 

-8.2567 

-9.3476 

-9.5027 

-12.0637 

-10.4011 

-10.7997 

-11.5184 

-9.8755 

-14.6215 

-15.3162 

-14.3395 

-14.3461 

-3.053 

-18.2132 

-7.7688 

0 

0 

0 

0 

0 

0 

0 

0 

607 

-85 

0 

0 

0 

0 

0 

0 

0 

0 

0 

252 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-43 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-18.4437 

44.2937 

0 

0 

0 

0 

0 

0 

0 

0 

0 

77.263 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

41.7395 

0 

0 

0 

0 

0 

0 

0 

54 

20 

11 

24 

21 

-4 

48 

0 

78 

10 

65 

12 

30 

42 

38 

15 

34 

42 

37 

22 

5 

-17 

38 

31 

43 

50 

2 

8 

39 

-36 

25 

6 

8 

22 

184 

20 

33 

0 

5.14 

10 

7 

23 

10 

-9.95 

10 

0 

42 

19.06 

13 

7 

16 

31 

15 

9 

8 

17.57 

18 

15 

3 

-24 

2 

3 

16 

20.68 

1 

3 

38 

1.66 

13 

-34.41 

3 

7 

-50.34 

8 

15 
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Table B.5 Line and Transformer data 

Line 

No. 

Line data Transformer Tap 

From To 
R 

(p.u.) 

X 

(p.u.) 

B 

(p.u.) 
magnitude Angle 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

1 

1 

2 

3 

3 

4 

11 

5 

8 

11 

6 

7 

8 

30 

9 

11 

11 

12 

12 

12 

13 

14 

15 

15 

15 

16 

17 

30 

17 

17 

18 

19 

34 

20 

21 

22 

23 

23 

32 

70 

2 

3 

12 

5 

12 

5 

4 

6 

5 

5 

7 

12 

9 

8 

10 

12 

13 

14 

16 

117 

15 

15 

17 

19 

33 

17 

18 

17 

31 

113 

19 

20 

19 

21 

22 

23 

24 

25 

23 

24 

0.0303 

0.0129 

0.0187 

0.0241 

0.0484 

0.0018 

0.0209 

0.0119 

0 

0.0203 

0.0046 

0.0086 

0.0024 

0.0043 

0.0026 

0.006 

0.0222 

0.0215 

0.0212 

0.0329 

0.0744 

0.0595 

0.0132 

0.012 

0.038 

0.0454 

0.0123 

0 

0.0474 

0.0091 

0.0112 

0.0252 

0.0752 

0.0183 

0.0209 

0.0342 

0.0135 

0.0156 

0.0317 

0.1022 

0.0999 

0.0424 

0.0616 

0.108 

0.16 

0.008 

0.0688 

0.054 

0.0267 

0.0682 

0.0208 

0.034 

0.0305 

0.0504 

0.0322 

0.0196 

0.0731 

0.0707 

0.0834 

0.14 

0.2444 

0.195 

0.0437 

0.0394 

0.1244 

0.1801 

0.0505 

0.0388 

0.1563 

0.0301 

0.0493 

0.117 

0.247 

0.0849 

0.097 

0.159 

0.0492 

0.08 

0.1153 

0.4115 

0.0254 

0.0108 

0.0157 

0.0284 

0.0406 

0.0021 

0.0175 

0.0143 

0 

0.0174 

0.0055 

0.0087 

1.162 

0.514 

1.23 

0.005 

0.0188 

0.0182 

0.0214 

0.0358 

0.0627 

0.0502 

0.0444 

0.0101 

0.0319 

0.0466 

0.013 

0 

0.0399 

0.0077 

0.0114 

0.0298 

0.0632 

0.0216 

0.0246 

0.0404 

0.0498 

0.0864 

0.1173 

0.102 

1 

1 

1 

1 

1 

1 

1 

1 

0.985 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0.96 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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Line 

No. 

Line data Transformer Tap 

From To 
R 

(p.u.) 

X 

(p.u.) 

B 

(p.u.) 
magnitude Angle 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

24 

26 

25 

30 

28 

32 

27 

29 

31 

30 

31 

31 

113 

32 

33 

34 

37 

34 

36 

37 

38 

39 

37 

38 

39 

40 

40 

41 

42 

43 

44 

45 

45 

46 

46 

47 

47 

48 

49 

49 

72 

25 

27 

26 

27 

27 

115 

28 

29 

38 

32 

113 

32 

114 

37 

36 

34 

43 

35 

35 

37 

37 

40 

65 

40 

41 

42 

42 

49 

44 

45 

46 

49 

47 

48 

49 

69 

49 

50 

51 

0.0488 

0 

0.0318 

0.008 

0.0191 

0.0229 

0.0164 

0.0237 

0.0108 

0.0046 

0.0298 

0 

0.0615 

0.0135 

0.0415 

0.0087 

0.0026 

0.0413 

0.0022 

0.011 

0 

0.0321 

0.0593 

0.009 

0.0184 

0.0145 

0.0555 

0.041 

0.0238 

0.0608 

0.0224 

0.04 

0.0684 

0.038 

0.0601 

0.0191 

0.0844 

0.0179 

0.0267 

0.0486 

0.196 

0.0382 

0.163 

0.086 

0.0855 

0.0755 

0.0741 

0.0943 

0.0331 

0.054 

0.0985 

0.1 

0.203 

0.0612 

0.142 

0.0268 

0.0094 

0.1681 

0.0102 

0.0497 

0.0375 

0.106 

0.168 

0.0986 

0.0605 

0.0487 

0.183 

0.135 

0.1077 

0.2454 

0.0901 

0.1356 

0.186 

0.127 

0.189 

0.0625 

0.2778 

0.0505 

0.0752 

0.137 

0.0488 

0 

0.1764 

0.908 

0.0216 

0.0193 

0.0197 

0.0238 

0.0083 

0.422 

0.0251 

0 

0.0518 

0.0163 

0.0366 

0.0057 

0.0098 

0.0423 

0.0027 

0.0132 

0 

0.027 

0.042 

1.046 

0.0155 

0.0122 

0.0466 

0.0344 

0.258 

0.0607 

0.0224 

0.0332 

0.0444 

0.0316 

0.0472 

0.016 

0.0709 

0.0126 

0.0187 

0.0342 

1 

0.96 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0.935 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
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1 
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1 
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1 
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0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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Line 

No. 

Line data Transformer Tap 

From To 
R 

(p.u.) 

X 

(p.u.) 

B 

(p.u.) 
magnitude Angle 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

54 

49 

49 

50 

51 

58 

52 

53 

54 

54 

54 

56 

55 

57 

58 

56 

59 

61 

63 

60 

60 

61 

64 

66 

62 

63 

64 

65 

68 

66 

68 

68 

68 

70 

75 

69 

70 

70 

70 

72 

49 

66 

69 

57 

52 

51 

53 

54 

55 

56 

59 

55 

59 

56 

56 

59 

60 

59 

59 

61 

62 

62 

61 

62 

67 

64 

65 

66 

65 

67 

69 

81 

116 

69 

69 

77 

71 

74 

75 

71 

0.0257 

0.006 

0.0985 

0.0474 

0.0203 

0.0255 

0.0405 

0.0263 

0.0169 

0.0028 

0.0503 

0.0049 

0.0474 

0.0343 

0.0343 

0.0273 

0.0317 

0.0328 

0 

0.0026 

0.0123 

0.0082 

0 

0.0482 

0.0258 

0.0017 

0.0027 

0 

0.0014 

0.0224 

0 

0.0018 

0.0003 

0.03 

0.0405 

0.0309 

0.0088 

0.0401 

0.0428 

0.0446 

0.0966 

0.0306 

0.324 

0.134 

0.0588 

0.0719 

0.1635 

0.122 

0.0707 

0.0096 

0.2293 

0.0151 

0.2158 

0.0966 

0.0966 

0.0823 

0.145 

0.15 

0.0386 

0.0135 

0.0561 

0.0376 

0.0268 

0.218 

0.117 

0.02 

0.0302 

0.037 

0.016 

0.1015 

0.037 

0.0202 

0.004 

0.127 

0.122 

0.101 

0.0355 

0.1323 

0.141 

0.18 

0.2206 

0.0744 

0.0828 

0.0332 

0.014 

0.0179 

0.0406 

0.031 

0.0202 

0.0073 

0.0598 

0.0037 

0.0565 

0.0242 

0.0242 

0.1672 

0.0376 

0.0388 

0 

0.0146 

0.0147 

0.0098 

0 

0.0578 

0.031 

0.216 

0.38 

0 

0.638 

0.0268 

0 

0.808 

0.164 

0.122 

0.124 

0.1038 

0.0088 

0.0337 

0.036 

0.0444 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
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1 

1 
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Line 

No. 

Line data Transformer Tap 

From To 
R 

(p.u.) 

X 

(p.u.) 

B 

(p.u.) 
magnitude Angle 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 
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143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

71 

74 

75 

75 

77 

118 

77 

77 

77 

78 

79 

81 

96 

97 

80 

80 

83 

82 

83 

85 

84 

85 

85 

85 

86 

88 

90 

89 

90 

91 

92 

92 

92 

92 

93 

95 

96 

94 

96 

96 

73 

75 

77 
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76 
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80 

82 

79 

80 

80 

80 

80 

98 

99 
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96 

84 

83 

85 

86 

88 

89 

87 

89 

89 

92 

91 

92 

93 

94 
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94 

94 

94 
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95 

97 

0.0087 
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0.0601 

0.0145 

0.0444 

0.0164 

0.0038 

0.0066 

0.0298 

0.0055 

0.0156 

0 

0.0356 

0.0183 

0.0238 

0.0454 

0.0112 

0.0162 

0.0625 

0.043 

0.0302 

0.035 

0.02 

0.0239 

0.0283 

0.0139 

0.0124 

0.0044 

0.0254 

0.0387 

0.0258 

0.0481 

0.0648 

0.0123 

0.0223 

0.0132 

0.0269 

0.0178 

0.0171 

0.0173 

0.0454 

0.0406 

0.1999 

0.0481 

0.148 

0.0544 

0.0124 

0.0197 

0.0853 

0.0244 

0.0704 

0.037 

0.182 

0.0934 

0.108 

0.206 

0.0366 

0.053 

0.132 

0.148 

0.0641 

0.123 

0.102 

0.173 

0.2074 

0.0712 

0.0484 

0.0218 

0.0836 

0.1272 

0.0848 

0.158 

0.295 

0.0559 

0.0732 

0.0434 

0.0869 

0.058 

0.0547 

0.0885 

0.0118 

0.0103 

0.0498 

0.012 

0.0368 

0.0136 

0.0126 

0.1172 

0.0817 

0.0065 

0.0187 

0 

0.0494 

0.0254 

0.0286 

0.0546 

0.038 

0.0544 

0.0258 

0.0348 

0.0123 

0.0276 

0.0276 

0.047 

0.0445 

0.0193 

0.2116 

0.151 

0.0214 

0.0327 

0.0218 

0.0406 

0.0472 

0.0146 

0.0188 

0.0111 

0.023 

0.0604 

0.0147 

0.024 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0.935 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
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1 
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1 
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1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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Line 

No. 

Line data Transformer Tap 

From To 
R 

(p.u.) 

X 

(p.u.) 

B 

(p.u.) 
magnitude Angle 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

98 

99 

101 

100 

100 

100 

102 

104 

103 

103 

104 

105 

105 

105 

107 

108 

109 

110 

110 

114 

100 

100 

100 

103 

104 

106 

101 

103 

105 

110 

105 

106 

107 

108 

106 

109 

110 

111 

112 

115 

0.0397 

0.018 

0.0277 

0.016 

0.0451 

0.0605 

0.0246 

0.0466 

0.0535 

0.0391 

0.0099 

0.014 

0.053 

0.0261 

0.053 

0.0105 

0.0278 

0.022 

0.0247 

0.0023 

0.179 

0.0813 

0.1262 

0.0525 

0.204 

0.229 

0.112 

0.1584 

0.1625 

0.1813 

0.0378 

0.0547 

0.183 

0.0703 

0.183 

0.0288 

0.0762 

0.0755 

0.064 

0.0104 

0.0476 

0.0216 

0.0328 

0.0536 

0.0541 

0.062 

0.0294 

0.0407 

0.0408 

0.0461 

0.0099 

0.0143 

0.0472 

0.0184 

0.0472 

0.0076 

0.0202 

0.02 

0.062 

0.0028 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

 

 

Table B.6 Shunt capacitor data 

Bus G B (p.u.) 

5 - -0.40 

34 - 0.14 

37 - -0.25 

44 - 0.10 

45 - 0.10 

46 - 0.10 

48 - 0.15 

74 - 0.12 

79 - 0.20 

82 - 0.20 

83 - 0.10 

105 - 0.20 

107 - 0.06 

110 - 0.06 
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Table B.7 Generator data 

No. Bus X’d (p.u.) H (sec.) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

4 

10 

12 

25 

26 

27 

32 

40 

42 

49 

59 

61 

65 

66 

69 

80 

89 

90 

100 

112 

0.0875 

0.0636 

0.1750 

0.1000 

0.0538 

0.0875 

0.0875 

0.0875 

0.0875 

0.1167 

0.1400 

0.1167 

0.0700 

0.0700 

0.0467 

0.0500 

0.0437 

0.0875 

0.0875 

0.0467 

8 

22 

8 

14 

26 

8 

8 

8 

8 

12 

10 

12 

20 

20 

30 

28 

32 

8 

16 

15 
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APPENDIX C: SUPPLEMENT RESULTS 

 

C.1 Rotor angle plot of case study 1.1 

 

The plots in this section show the comparison of the rotor angles of the reduced 

systems of scenarios A (based on two fictitious generators) and B (based on loose 

coherent groups), when the large fault is applied at each internal bus, to the rotor 

angle of the original system. However, the legends on each figure are defined as 

follows: 

 

OG             - Original System 

RD.A         - Reduced system based on loose coherent groups 

RD.B         - Reduced system based on two fictitious generators 
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C.2 Rotor angle plot of case study 1.2 

 

The plots in this section show the comparison between the rotor angle of the original 

system and the rotor angle of the reduced system of each scenarios of case study 1.2, 

when the large fault is applied at each internal bus. The details for each scenarios are 

repeated here. 

 

 

Scenario 1: the external equivalent generators are represented by the fourth order 

generator dynamic model. 

 

Scenario 2: the external equivalent generators are represented by the third order 

generator dynamic model. 

 

Scenario 3:  the external equivalent generators are represented by the second order 

generator dynamic model. 
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Case study 1.2: Scenario 1 
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Case study 1.2: Scenario 2 
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Case study 1.2: Scenario 2 
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Case study 1.2: Scenario 2 
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Case study 1.2: Scenario 2 

 

0 0.5 1 1.5 2 2.5
30

35

40

45

50

55

60

65

time(sec.)

ro
to

r 
a
n
g
le

(D
e
g
.)

rotor angles of generator 2 (solid fault applied at bus17)

4.7947

0 0.5 1 1.5 2 2.5
30

40

50

60

70

time(sec.)

ro
to

r 
a
n
g
le

(D
e
g
.)

rotor angles of generator 3 (solid fault applied at bus17)

3.8364

0 0.5 1 1.5 2 2.5
40

50

60

70

80

time(sec.)

ro
to

r 
a
n
g
le

(D
e
g
.)

rotor angles of generator 8 (solid fault applied at bus17)

6.502

0 0.5 1 1.5 2 2.5
-10

0

10

20

30

time(sec.)

ro
to

r 
a
n
g
le

(D
e
g
.)

rotor angles of generator 10 (solid fault applied at bus17)

4.0996

 

0 0.5 1 1.5 2 2.5
30

35

40

45

50

55

60

time(sec.)

ro
to

r 
a
n
g
le

(D
e
g
.)

rotor angles of generator 2 (solid fault applied at bus18)

2.9915

0 0.5 1 1.5 2 2.5
35

40

45

50

55

60

65

70

time(sec.)

ro
to

r 
a
n
g
le

(D
e
g
.)

rotor angles of generator 3 (solid fault applied at bus18)

2.2216

0 0.5 1 1.5 2 2.5
40

45

50

55

60

65

70

75

time(sec.)

ro
to

r 
a
n
g
le

(D
e
g
.)

rotor angles of generator 8 (solid fault applied at bus18)

4.2962

0 0.5 1 1.5 2 2.5
-10

-5

0

5

10

15

20

25

time(sec.)

ro
to

r 
a
n
g
le

(D
e
g
.)

rotor angles of generator 10 (solid fault applied at bus18)

2.6229

 
 



276 

 

Case study 1.2: Scenario 2 
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Case study 1.2: Scenario 3 
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Case study 1.2: Scenario 3 
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Case study 1.2: Scenario 3 
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C.3 Rotor angle plot of case study 2 

 

The plots in this section show only the comparison between the rotor angle of the 

original system and the rotor angle of the reduced system of each scenarios of case 

study 2, when the large fault is applied at bus 44. The details for each scenario are 

repeated here. 

 

 

Table 6.5 (repeated) Six scenarios of the reduced system for the case study 2 

scenario 

Coherent generator identification 
Parameter 

identification 

Reduced 

system 

test 

Condition 

of system 
Epsilon area Coherent groups 

Condition  

of system 

Condition  

of system 

A 1 ≥ 0.27 

1 
(G1-G3), (G4-G5),  

(G6-G7), (G2) 
1 1 

2 
(G16-G19), (G17-G18), 

(G20) 

B 1 ≥ 0.20 

1 
(G1-G2-G3),  

(G4-G5-G6-G7) 
1 1 

2 
(G16-G17-G18-G19), 

(G20) 

C 2 ≥ 0.20 

1 
(G1-G2-G3),  

(G4-G5-G6-G7) 
2 2 

2 
(G16-G17-G18-G19), 

(G20) 

D 2 ≥ 0.20 

1 
(G1-G2-G3),  

(G4-G5-G6-G7) 
1 2 

2 
(G16-G17-G18-G19), 

(G20) 

E 3 ≥ 0.20 

1 
(G1-G2-G3),  

(G4-G5), G6, G7 
3 3 

2 
(G16-G17-G19), (G18), 

(G20) 

F 1 ≥ 0.20 

1 
(G1-G2-G3),  

(G4-G5-G6-G7) 
3 3 

2 
(G16-G17-G18-G19), 

(G20) 
 

 

 

 

 

 

 

 

 



294 

 

Case study 2: scenario A 
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Case study 2: scenario B 
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Case study 2: scenario C 
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Case study 2: scenario D 
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Case study 2: scenario E 
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Case study 2: scenario F 
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APPENDIX D: EXACT COHERENCY THEOREM 

 
 

 

‘Consider a graph G described by the matrix pair (L, M), having modes (Λ , U), 

where Λ=diag ( nλλ ,,1 K ) and U= [ nuu ,,1 K ]. Let },,{ 1 qq VV K=ν be a q-partition 

of G where each area iV has size in , with nnn q =++L1 . Let X=diag (
qnn 11 ,,

1
K ) be 

the corresponding n×  q partition matrix. Let the aggregate graph ][ qG ν be 

described by the matrix pair (L ][q , M ][q ) given by 

L ][q =X
T
LX=





















−−

−−

−−

qqq

q

q

δξξ

ξδξ

ξξδ

L

MOMM

L

L

21

2221

1121

     M ][q =X
T
MX=

















][

]1[

qM

M

O  

having modes ( CΘ, ), where Θ=diag( qθθ ,,1 K ) and C =[ qcc ,,1 K ] qqR ×∈ . Let 

F={ qθθ ,,1 K } be the chord of frequencies of interest. And let LLL
~ˆ += be the qν -

induced splitting of the Laplacian matrix L. 

Then the graph G is ( qν , F)-coherent if, and only if, 

i

i

i
iM

ML
][

~ δ
= ,                                              i=1,…, q 

and                                  i

ij

nii

ij

njij
iMiM

i

m1M1L

m
][][

~ ξξ
−=−=

321
 ’  

Theorem 5.16, p.114-115, Ayazifar[9] 
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APPENDIX E: SLOW COHERENCY ALGORITHM 

 
 

 

“In the slow coherency algorithm, the user selects the number r of coherent groups. 

Then the eigenvector matrix SV  of the r lowest frequency modes is computed. 

Coherency is determined by comparing the angles between the row vectors iv of SV . 

The machines corresponding to the ‘most’ linearly independent vectors iv  are 

selected as the reference machines. A non-reference machine with the vector jv  is 

then grouped with the reference machine whose iv makes the smallest angle 

with jv .” 

EPRI, p.2-2 [18] 

 

 

“Step1: Choose the number of groups and the slow modes aσ  

 

Step2: Compute a basis matrix SV  of the aσ -eigenspace for a given ordering of the 

state variables. 

 

Step3: Apply Gaussian elimination with complete pivoting to SV  and obtain the set 

of reference states. 

 

Step4: Compute dL  for the set of reference states chosen in step 3. 

 

Step5: Construct the matrix gL  which defines the states in each area” 

  

Chow, p.120 [2] 

 

 

Where  1
12
−= VVLd  

             1V  - the matrix of reference vectors ( iv ) 

             2V  - the matrix of non-reference vectors ( iv ) 

                          gL  is found to minimize gLL −  
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APPENDIX F: TOLERANCE-BASED SLOW COHERENCY 

ALGORITHM 
 

 

In the tolerance-based algorithm, two machines are coherent if the angle made by 

their corresponding iv are less than )(cos 1 γ− . The procedure starts by computing a 

coherency matrix 

 

( ) γ−= ji

T

jiji vvvvCm ),(  

 

Where the tolerance, 1<γ , is selected by the user. Machine i and j are said to be 

coherent if 0),( >jimC . 

 

The key idea in the tolerance-based algorithm is the concept of loose coherent areas 

and tight coherent areas. In a loose coherent area, a machine is coherent to at least 

on other machine. In a tight-coherent area, the coherency of machines is larger, on 

the average, than the tolerance. Unlike the slow coherency algorithm, the number of 

loose or tight areas is not limited to be the same as r, the number of columns in SV . 

The total number of coherent groups found from the algorithm may be several times 

larger than r. 

 

The loose and tight coherent areas are determined using a set of coherency rules. 

The rules are listed in the following. Let mC  be the coherency matrix and αJ  be the 

machines in coherent area α . 

 

1. Machines i and j are coherent if 0),( >jimC . 

2. If machines i and j are coherent and machines j and k are coherent, then 

machines i and k are also coherent. 

3. A loose coherent area is formed by machines that are coherent under Rules 1 

and 2. 

4. Extract a submatrix αmC  from mC for all the machines in a coherent area αJ . 

Under Rule 2, some ),( jiαmC may be negative. 
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5. If all entries of ),( jiαmC are positive, then αJ is a packed area. 

6. If the column sums of ),( jiαmC excluding the diagonal entries are all 

positive, then αJ is a tight coherent area. In a tight coherent area, a machine 

is coherent, on the average, to every other machine in the same area. From 

Rule 5, a packed area is also a tight area. 

7. If any of the column sums of αmC excluding the diagonal entries is negative, 

then αJ should be decomposed into tight areas. 

8. The least coherent machine in a loose-coherent group is the one 

corresponding to the columns of αmC with the smallest off-diagonal sum. 

9. The coherency of an area may be improved by removing the least coherent 

machine from the area and reassigning it to a different area to achieve a 

tighter coherency. 

10. Given two partitions I1 and I2 of a loose-coherent area, the partition I1 is 

tighter than I2 if the sum of the off-diagonal entries of αmC  corresponding to 

I1 is smaller than that of I2. 

 

Based on these coherency rules, the following algorithm for tight coherency is coded 

in DYNRED: 

1. Find the loose coherent area using Rules 1-3. 

2. For each coherent area, 

(a) Use Rule 6 to determine tight area, which requires no further 

decomposition. 

(b) If the area is not tight, decompose the area into tight coherent areas. 

Start by identifying the least coherent machine in the area using Rule 

8 and reassigning it to improve the coherency using Rule 10. Repeat 

the process until no improvement is possible. 

As an illustration of finding the tight coherent areas from the loose coherent areas, 

consider the following example. Let αmC denote a loose coherent area 
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Where positive and negative numbers are denoted by + and - , respectively. Find the 

off-diagonal row sum of each row. Suppose row 1 yields the smallest sum which is 

negative. Then a partition of αmC into 2 areas yields a tighter coherency 

 

 
 

In the next step, for each area, find the least coherent machine, which we assume to 

be machine 2. At this point, there are three possibilities: 

1. Leave machine 2 with the same group, 

2. Let machine 2 form a single-machine area, 

3. Move machine 2 to be coherent with machine 1. 

For each of the possibilities the off-diagonal block sums are computed as illustrated 

in the following expressions 

 
 

 
 

 
 

The off-diagonal block elements to be added are circled. Since the matrix αmC is 

symmetric, the low triangular part need not be added. Of three possibilities, the 

partition with the smallest sum yields the tight coherency. The iterative shifting 

process terminates if the partition does not change further. 

 

EPRI, p.2-3, 2-4, 2-5 [18]. 
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APPENDIX G: ESTABLISHING A-MATRIX OF A LINEARISED 

POWER SYSTEM MODEL 
 

 

A-matrix of a linearised power system model 

 

Step 1:  Perform Power-flow analysis 

Step 2: Calculate the generator internal bus voltages (i.e. magnitude and angle) 

Step 3: Record an admittance matrix (Ybus) and all bus voltages (including the 

generator internal buses). 

Step 4: Convert a PQ-load to a constant admittance and add it to the recorded 

admittance matrix (Ybus). 

Step 5: Build a new admittance matrix of power system including the generator 

internal buses from the recorded admittance matrix and the generator D-axis 

transient reactance. 

Step 6: Eliminate all buses excluding the generator internal bus in the new 

admittance matrix by using Kron reduction. 

Step 7: Build a Laplacian matrix whose entries are calculated according to equation 

(5) in the section 3.3.1 from an imaginary part of the reduced admittance 

matrix and the record voltages. 

Step 8: Build a normalised generator inertia matrix  

Step 9: Calculate A-matrix by multiplying the Laplacian matrix (step 7) by an inverse 

of the normalized generator inertia matrix (step 8). 
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APPENDIX H: ESTABLISHING LAPLACIAN MATRIX FOR A 

GRAPH MODEL OF A POWER SYSTEM 
 

 

Laplacian matrix for a complete graph (i.e. up to the generator internal bus) 

 

Step 1:  Perform Power-flow analysis 

Step 2: Calculate the generator internal bus voltages (i.e. magnitude and angle) 

Step 3: Record an admittance matrix (Ybus) and all bus voltages (including the 

generator internal buses). 

Step 4: Convert a PQ-load to a constant admittance and add it to the recorded 

admittance matrix (Ybus). 

Step 5: Build a new admittance matrix of power system including the generator 

internal buses from the recorded admittance matrix and the generator D-axis 

transient reactance. 

Step 6: Go to step 8 if a full graph is required, otherwise continue step 7  

Step 7: Eliminate all buses excluding the generator internal bus in the new 

admittance matrix by using Kron reduction. 

Step 8: Build a Laplacian matrix whose entries are calculated according to equation 

(5) in the section 3.3.1 from an imaginary part of the latest admittance matrix 

and the record voltages. 

 

 

 

Laplacian matrix for a partial graph (i.e. up to the generator terminal bus) 

 

Step 1:  Perform Power-flow analysis 

Step 2: Record an admittance matrix (Ybus) and all bus voltages (i.e. magnitude and 

angle). 

Step 3: Convert a PQ-load to a constant admittance and add it to the recorded 

admittance matrix (Ybus). 

Step 4: Go to step 6 if a full graph is required, otherwise continue step 5  
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Step 5: Eliminate all buses excluding the generator terminal bus in the admittance 

matrix by using Kron reduction. 

Step 6: Build a Laplacian matrix whose entries are calculated according to equation 

(5) in the section 3.3.1 from an imaginary part of the latest admittance matrix 

and the record voltages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


