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Abstract

Atom interferometry is a precision measurement technique that encodes information
in the phase of atomic wavefunctions, using matter-wave interference to project the
encoded phase information onto some relatively easy-to-measure property at the in-
terferometer output, like the fractional atomic population in a specific momentum or
internal state. Atoms are perturbed by influences to which photons are insensitive,
offering atom interferometers excellent sensitivity and access to physics outwith the
range of conventional optical interferometers. As such, for probing of fundamental
physics such as QED corrections, atoms are an obvious test bed.

The primary focus of this thesis is the construction and development of an atom
interferometer capable of performing single-shot measurements of the fine-structure
constant using a holographic readout technique. This achievement allows the holo-
graphic interferometer an increased data acquisition rate on the order of 700-times that
a conventional configuration.

As an interfering medium we use a Bose-Einstein condensate containing around
∼ 105 87Rb atoms. We coherently manipulate the momentum of these atoms with the
scattering of photons from an optical lattice with fully controllable intensity. We have
developed a numerical toolbox capable of calculating optical-lattice pulse-sequences to
generate arbitrary atom-optical operations such as mirrors, and beam-splitters, experi-
mentally demonstrated with an efficiency of 99.97±0.03 %. We have used these atom-
optics to create experimental atom interferometers with various applications, shown
here in the cases of a magnetic gradiometer and in measurements of recoil frequency.
This latter configuration has been used to perform a measurement of the fine-structure
constant with a fractional uncertainty of 6500 ppm in a single shot, with a clear pathway
to reduce this uncertainty to 2300 ppm per shot, whilst the increased speed of the ho-
lographic interferometer allows a corresponding reduction in uncertainty to 60 ppm
within a twelve hour integration period.
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Chapter 1

Introduction & Background

1.1 Atom interferometry

1.1.1 Optical interferometry
Interferometry is a measurement technique that uses the interference of waves, map-
ping information contained in the phase of those waves to some easy-to-measure out-
put [1]. In the case of optical interferometers, the waves in question are phase-coherent
light, where the interferometer measure a difference in the optical path length of light
within the interferometer [2]. The optical interferometer is a detection method that
has been at the forefront of precision measurement for many years; for example in the
attempt to detect a medium (the ‘lumineferous ether’) through which light travels in
the Michelson-Morley experiment [3], the absence of which contributed to the body of
evidence that inspired the development of Special Relativity [4].

Despite the age of the technology, optical interferometers are still used in an app-
lied sense to detect rotation rates in optical gyroscopes [5,6], where the finite speed of
light allows the gyroscope to change orientation while the light is within the interfe-
rometer optical path [7]. Optical interferometers are still also used in state-of-the-art
fundamental physics: they form the basis of the LIGO observatories [8] that last year
made the first detection of gravitational waves [9], a key prediction of General Relati-
vity [10].

1.1.2 Matter-waves
Wave properties are not exclusive to light: in 1923 Louis de Broglie proposed that
matter could also exhibit a wave-light nature [11], with a wavelength determined by a
particle’s momentum in the relation

λ = h/p , (1.1)
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1.1. ATOM INTERFEROMETRY

where h is the Planck constant, p is the momentum of the particle, and λ is the de
Broglie wavelength: the distance over which the phase of the particle rotates by 2π.
This wave-nature and phase allows for the interference of matter-waves, generating
interference fringes analogous to optical fringes that can be directly imaged in some
atom interferometers [12–14].

1.1.3 Atom-optics
Optical interferometers use optical elements such as mirrors and beam-splitters to co-
herently split incoming light into two (or more) spatially distinct optical paths, al-
lowing one path to interact with some phase-altering event, before overlapping this
measurement light beam with an unperturbed reference beam on a beam-splitter. In
this way the interference of the phases of the measurement and reference beams map
the phase information to the light intensity at the interferometers output ports. Interfe-
rometry with matter-waves, such as atoms, also requires elements that can coherently
manipulate the momentum (or sometimes, internal state) of those particles [15].

1.1.4 Matter-wave interferometry
The earliest matter-wave-optics used the diffraction of particle beams from periodic
nano-structures, with the diffraction of an electron beam from a nickel crystal [15, 16]
in 1927, and the diffraction of He atoms from a LiF crystal lattice in 1930 [15, 17].
Diffraction from fabricated objects was demonstrated with an electron-beam interfe-
rometer in 1952 [18–20], and with neutron interferometers in 1974 [21, 22]. The dif-
fraction of atoms from fabricated objects was demonstrated with a single 20 µm-wide
transmission slit in 1969 [23], and from material transmission-grating with 200 nm-
wide slits in 1988 [24], with the first atom-interferometers using matter-transmission-
gratings being experimentally demonstrated in 1991 [14, 25], and modern fabrication
techniques allowing for gratings constructed of a single atomic layer [26].

The first proposal of a grating made of light came as early as 1933 [27], where an
incoming beam of electrons would be partially coherently scattered from a standing-
wave of light by stimulated Compton-scattering. Whilst the first demonstration of
this effect was not demonstrated with electrons until 2001 [28], the use of such ‘op-
tical gratings’ for atom-interferometry emerged in 1995 [29, 30]. Since then atom
interferometry has grown into a wide range of applications, with interferometers ca-
pable of detecting rotations [31–35], AC Stark shifts [36], prospecting [37], magnetic
fields [38], gravitational accelerations [39–41], leading the way to applied sensors such
as magnetometry, gravimetry, inertial navigation [42], and rotation and inertial force
sensing [34, 43–45].

The technology remains at the forefront of fundamental physics, having been used
to make direct measurements of gravitational field curvature [41], tests of atom and
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neutron neutrality [46], Newton’s gravitational constant [47], the equivalence princi-
ple [48], and the fine-structure constant α [49–54].

1.2 The fine-structure constant

1.2.1 History
The fine-structure constant is a dimensionless fundamental physical constant, which is
generally quoted as its inverse α−1 ≈ 137, where α = e2/4πε0~c. The fine-structure
constant was originally introduced by Sommerfeld in 1916 in an attempt to explain the
‘fine-structure’ in the spectral lines of Hydrogen [55], from which the constant derives
its name.

Whilst the Sommerfeld model was ultimately superseded by the Dirac model [56],
the fine-structure constant remained prominent with the 1947 discovery of splitting of
the 2S1/2 and 2P1/2 spectral lines of Hydrogen [57, 58]. The Lamb shift was explai-
ned by way of vacuum fluctuations [59], in which the fine-structure constant appears.
These vacuum fluctuations contribute to the anomalous gyromagnetic factor of lep-
tons [60], where α appears as a correction term to the mechanical mass (∼ (e2/~c)m0)
(where α = e2/~c in cgs units).

The ubiquitous appearance of α in the 1998 CODATA recommended values of the
fundamental physical constants [61] emphasises the relevance of the constant whene-
ver the electromagnetic interaction is present [62].

In modern physics the fine-structure constant retains its importance (1) as a cor-
nerstone in the redefinition of the SI system of units [63], (2) as a key parameter in
quantum electrodynamics [52, 64, 65], and (3) as a test of the stability of fundamental
constants [66].

1.2.2 In tests of the stability of fundamental constants
Atomic and molecular structure is dominated by the values of the proton-to-electron
mass ratio [67,68] and the fine-structure constant [68,69]. The two values of these two
constants are such that atoms are stable, that heavy elements can form in late-stage
heavy stars, and that carbon chemistry exists [70].

The gross structure of the universe is so strongly coupled to these constants that a
shift in values by a small fraction of a percent would dramatically alter the evolution
of the universe [70]. Whether some as-yet unknown physics constrains these values
to exist within this window, or their values are some co-incidence is an open question
in physics [68]. Aimed at this question, searches are underway to determine the sta-
bility of these constants; experiments aim to, for example, search for drifts in these
fundamental constants in time [68].
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1.2.3 Redefinition of the SI system of units
Within the current definition of the SI system of units many constants are determined
by experiment and so are quoted with some associated uncertainty [71]. Planck’s con-
stant, for example, has been determined using Watt balances to measure the ratio h/M ,
defining a value of h with a prototype mass defined as the kilogram [72–74]. Likewise,
the Ampere is defined by the permeability of vacuum, the Kelvin by the triple-point
temperature of water, and the mole by the molar mass of carbon-12 [63].

The objective of the SI redefinition is to relate the system of units to universal
fundamental constants in nature [63,75,76]. The kilogram will then be defined relative
to Planck’s constant, the ampere to the elementary charge, the Kelvin to the Boltzmann
constant, and the mole to Avogadro’s constant. The values these constants will be
chosen as fixed values of effectively identical magnitude to their current values [63].
In this context the fine-structure constant will become a cornerstone of the SI; since
many of the remaining constants are related by way of α [53], the reliability of its
measurement will be crucial [75, 76].

1.2.4 Measurement of the fine-structure constant
At the time of writing, the ‘best value’ of the fine-structure constant is quoted by
The Committee on Data for Science and Technology (CODATA) [77] in the article
CODATA recommended values of the fundamental physical constants: 2014 [71]. Fi-
gure 1.1 shows the 2014 CODATA [71] comparison of the most precise determinations
of the fine-structure constant from a variety of sources. These sources include those
measuring the von-Klitzing constant (RK [72, 78–83]), the proton gyromagnetic ratio
(Γ′p−90(lo) [84–86]), muonium transition frequencies (∆νMu [87, 88]), the ratio h/mX

by way of atom interferometry for the atomic species X = Cs and Rb [52, 89], and the
anomalous magnetic moment of the electron ae [64, 90].

The most precise determination of the fine structure constant is derived from the
measurement of the anomalous magnetic moment of the electron ae (Harvard-08 [64,
91]), where α appears as a power series in the value of the electron magnetic mo-
ment [65].

The second most precise method to date determines the ratio h/m [89] by recasting
the fine-structure constant in the form

α2 =
2R∞
c

Ar(X)

Ar(e)

h

mX
. (1.2)

Here the Rydberg constant (R∞) is known with a precision of 5× 10−12 [92, 93], the
particle-to-electron-mass-ratio Ar(X)/Ar(e) to 4.4 × 10−10 for 87Rb [52, 94, 95], and
c is defined as 299792458 m s−1 [71]. This makes h/mx the least well known value in
Equation 1.2.
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(α−1 − 137.03)× 105
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Γ′p-90 (lo) KR/VN-98 [84, 85]

∆νMu LAMPF [87, 88]

RK NPL-88 [72, 78]

RK LNE-01 [79, 80]

RK NMI-97 [81]

Γ′p-90 (lo) NIST-89 [86]

RK NIST-97 [82, 83]

h/m (Cs) Stanford-02 [89]

ae U Washington-87 [90]

h/m (Rb) LKB-11 [52]

ae Harvard-08 [64]

Figure 1.1: Figure adapted from [71]. Shown is the CODATA 2014 comparison of the
most precisely determined values of the fine-structure constant from various experi-
mental efforts.

The ratio h/mX is determined by measuring the phase oscillation of an atom X
recoiling from collision with a photon of wavevector k = 2π/λ, where the ‘recoil
frequency’ is defined as ωr = Er/~ = ~k2/2mX. This recoil frequency is measured
by way of atom interferometry (h/m (Rb) LKB-11 [52]), returning a value of α =
0.00115965218113(84) (or 0.62 ppb) [52]. More recent improvements by the Müller
group have reduced this error to 0.25 ppb [96].
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(α−1 − 137.03)× 105

597.85 599.87 599.89 599.91 599.93

597.85 599.87 599.89 599.91 599.93

ae Harvard-08 / QED-10

ae Harvard-08 / QED-14

h/m (Rb) LKB-11 / Ar(e)-10

h/m (Rb) LKB-11 / Ar(e)-14

CODATA-14

CODATA-10

10−9 α−1

Figure 1.2: The CODATA 2014 determination of the fine-structure constant is domi-
nated by the Harvard-08 and LKB-11 results. These two measurements rely on know-
ledge of the ae QED expression and the value of Ar(e), respectively. Shown here are
the determined values of α using the 2010 and 2014 recommended instances of ae and
Ar(e), in comparison with the recommended value of α in each year. Figure adapted
from [71].

The current best value as quoted by CODATA (2014) has an associated uncertainty
δα = 2.3 × 10−10 [71], which is essentially determined from these two experiments
ae and h/mX; the relatively poor precision of the other experimental values renders
their weighting much lower [71]. It is important to note that these determinations
of α are not entirely independent; they both rely on other measurements. Figure 1.2
shows a comparison of the values determined using these two experiments as quoted
in CODATA 2010 [97] and CODATA 2014 [71], where the two experiments’ inferred
α values are shown using the 2010 and 2014 values for the ae QED expression and
value of Ar(e) [71].
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1.3 Thesis Outline
This thesis reports on the progress of our Bose-Einstein condensate (BEC) atom inter-
ferometer: the generation of a BEC, the coherent optical control of the BEC atoms to
generate atom-optical elements, the use of these tools to generate an atom interferome-
ter, and the subsequent development and results of our single-shot holographic atom
interferometer.

I give an overview of the experimental setup in Chapter 2. Since much of the
experiment was constructed before my arrival and is described in detail in the PhD
theses of Aline Dinkelaker [98] and Billy Robertson [99], I restrict this description to a
more functional report on the procedure by which we cool 87Rb atoms to Bose-Einstein
condensation, how we coherently control these BEC atoms within our interferometer
methods, and how we obtain signals from these interferometers.

Our atom-optics are described in Chapter 3. I begin by motivating the choice of our
off-resonant atom-optics, before giving a brief background in the theory and literature
of the physics involved. I then describe the numerical procedure by which we generate
atom-optic pulse sequences, the use of these as a tool for optical-grating calibration,
and the generation and testing of atom-optic operations.

In Chapter 4 I introduce interferometry in more detail, describing the importance
of phase initially using optical interferometry as an example. This is then compared
with a similar description of the operation of atom interferometers. I then describe
the various configurations that our atom interferometer can operate in, using specific
examples of magnetic gradiometry and a measurement of our interferometer recoil
frequency. This recoil frequency measurement is used to find a determination of the
fine-structure constant α.

Chapter 5 introduces the concept of single-shot ‘contrast-interferometry’. After
describing the background theory, I recount the development of the contrast interfero-
meter, with our initial struggle to obtain a contrast signal, then the development of the
experiment until it was capable of performing single-shot measurements. I describe
our first contrast signal, and how we confirmed that this really was the signal we were
looking for. Following is a description of our data extraction method. This begins with
a general description of data-fitting, and the problems that our low-photon-count-data
present. I then describe the solution we found, followed by some example fits to our
experimental data in a second determination of the fine-structure constant.

Chapter 6 contains a number of nuances that are important to consider with the
contrast-interferometer. Here I describe the influence of mean-field interactions in the
contrast interferometry signal which manifests as a frequency chirp. We then move on
to higher-order ‘beat-note’ contrast interferometry. I then describe some advantages
of our measurement technique, combining multiple contrast measurements, and the
Fisher information contained within a single shot.
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Chapter 2

Experimental setup

2.1 Overview
To perform atom interferometry with an 87Rb Bose-Einstein condensate (BEC), we
require a source of atoms in addition to the ability to trap and cool those atoms in
a controlled way to sub-micro-Kelvin temperatures. Laser trapping and cooling of
neutral atoms is now an established and robust technology with more than twenty years
having passed since the first BECs were created [100–103]. Moreover, much of the
apparatus used in our experiment to create a Bose-Einstein Condensate was already
constructed before my arrival. I will therefore forego description of many of the details
of our experimental apparatus, and direct enquiring minds to the PhD theses of Dr.
Aline Dinkelaker [98] (construction of the atom cooling and trapping apparatus) and
of Dr. Billy Robertson [99] (current generation experiment and generation of a BEC).
I will instead provide a brief overview of the experimental procedure focussing only
on details which are later pertinent to our measurement techniques.

Figure 2.1 shows an overview of the experiment optics table, which is effectively
split into three sections: (1) laser beam preparation, (2) atom manipulation, and (3)
contrast signal detection. We generate laser light with the use of Extended-Cavity
Diode Lasers (ECDL) [99], locking the laser frequency to features in a saturated
spectroscopy signal. Various pickoffs are taken from these beams to match our re-
quirements for laser cooling, repumping, imaging, optical pumping, atom-optics, and
the contrast interferometer probe (see Section 5.1.2). Individual beam frequency and
intensity are controlled by way of Acousto-Optical Modulators (AOM), and polari-
sations set with half-wavelength and quarter-wavelength waveplates as required. The
beams are then fibre-coupled to the atom manipulation section, where a 2D Magneto-
Optical Trap (MOT) is used as a bright source of atoms to feed a 3D MOT. The MOT
cooled atoms are then further cooled with forced Radio-Frequency evaporation, and
then cooled further still with a hybrid magnetic and optical-crossed-dipole trap until
Bose-Einstein Condensation. At this time the interferometer is primed and ready for
interferometry.
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2.1.
O
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Cooling & trapping beam preparation

Interferometry beam preparation Interferometry beam mode-matching
Single-photon detection

Atom manipulation

Figure 2.1: An overview of the experimental optics bench. The left side of the table is concerned with preparation of the laser
light used in trapping and cooling (blue) and in atom-optics (red). The right side contains the atomic containment apparatus and
science cell (green), as well as contrast signal measurement (purple). Figure adapted from [99]. Each subsection is shown in
closer detail in Figures 2.3 (Cooling & Trapping preparation), 2.14 (Interferometry beam preparation), 2.16 (Interferometry beam
mode-matching), 2.19 (Atom manipulation & Single-photon detection).
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2.2 Beam preparation

2.2.1 Useful atomic transitions

11.8 MHz

F = 3

F = 2

F = 1

F = 0
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F = 1

5 2S1/2

5 2P3/2

780.241 209 686(13) nm

384.230 484 468 5(62) THz

12 816.549 389 93(21) cm−1

1.589 049 439(58) eV

193.7408(46) MHz

72.9113(32) MHz

229.8518(56) MHz
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2.563 005 979 089 11(4) GHz
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gF = 2/3
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gF = 2/3

(0.93 MHz/G)
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(0.70 MHz/G)
gF = 1/2

(−0.70 MHz/G)
gF = −1/2

87Rb repump

87Rb cooling

Optical Pumping

Imaging

Figure 2.2: An overview of the atomic transitions used in the experiment which are
used to lock our laser. We use the hyperfine states of the 87Rb D2 line transition as the
base for laser cooling and trapping. Figure adapted from [104], and from [98].
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The 87Rb D2 line offers convenient transitions for cooling and trapping, in that laser
diodes of approximately correct frequency are cheap and readily available, and the
precise lasing frequency can be controlled with use of an Extended-Cavity Diode Laser
and associated controller [99]. On this line the hyperfine F = 2 ↔ F ′ = 3 transition
offers a closed cycling transition commonly used for laser cooling of 87Rb ensembles.
Lasers tuned to this F = 2↔ F ′ = 3 transition have some small probability of instead
exciting the F = 2 ↔ F ′ = 2 transition, from which atoms can fall into the F = 1
state. We therefore use a second laser tuned to the F = 1↔ F ′ = 2 to ‘repump’ atoms
back into the cycling transition. These two transitions are shown in Figure 2.2.

2.2.2 Laser preparation optics
Figure 2.3 shows an overview of our laser preparation layout. Our laser beams are
generated by a pair of ECDL, colloquially named ‘Cooling’ and ‘Repump’. Each laser
is frequency locked using Doppler-free saturated spectroscopy in a rubidium vapour
cell, using a MOGLabs MOGBOX laser controller.

Contrary to the naming convention, the ‘Cooling’ laser actually supplies light for
several experimental functions: the beam is fed into several pickoffs which are then
frequency locked with AOMs for laser cooling, absorption imaging, optical pumping,
and the contrast interferometer probe beam (see chapter 5).
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Figure 2.3: Overview of the optics table where cooling and trapping lasers are prepared. Two External-Cavity Diode Lasers are
used to generate the beams for cooling, repumping, imaging, and optical pumping. The ‘cooling laser’ is fed into several pickoffs,
which are then modulated with AOM to the required frequencies. Figure taken from [99].
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2.2.3 Laser frequency locking
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Figure 2.4: Saturated spectroscopy (Black) of a 87Rb vapour cell around the cooling
transition. Light transmitted through the vapour cell is drawn with a solid black line,
with the MOGBox error signal drawn as dashed-red. We lock our laser to the F =
2 → F = 1, 3 crossover feature (Orange dot-dashed line) shown at 0 MHz. The
spectroscopy is performed after the first pass of a double-passed AOM (Figure 2.1),
and so the actual laser frequency is 200 MHz below this lock point (red solid line), from
where we take various pick-offs for the Optical pumping (Green dot-dashed), Cooling
(Blue dot-dashed), and Imaging (Red dot-dashed) beams. The various frequencies of
these pick-offs are adjusted with individual AOMs. Figure adapted from [98].

We frequency-lock each ECDL to a target frequency using the doppler-free satura-
ted spectroscopy features in a rubidium vapour cell. Since the absorption spectra are
dominated by crossover features [105], we instead lock not to the desired transitions
themselves, but rather to some ‘nearby’ crossover feature, and use Acousto-Optical
Modulators (AOM) to shift the light to the desired frequency.

Figure 2.4 shows the spectrum used to lock our ‘Cooling’ laser to the F = 2 →
F ′ = 1, 3 crossover feature. This spectrum is sampled after the first pass of a double-
passed AOM which modifies the laser frequency by +200 MHz, so the frequency at
the laser output is actually −200 MHz below the F = 2 → F ′ = 1, 3 crossover (red,
solid line). From this point, we can then map the frequencies of each pickoff forwards.

Cooling light is sourced from the largest fraction of the laser, picked off into a
Tapered-Amplifier (TA), amplified to roughly 600 mW, and then double-passed through
a +200 MHz AOM up to ∆ = −11.8 MHz below the F = 2→ F ′ = 3 cooling transi-
tion.
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The imaging pick-off is double-passed through a +205.9 MHz AOM to push it up
to resonance with the the F = 2→ F ′ = 3 transition.

The optical pumping pick-off is double-passed through a +72.55 MHz AOM up to
-266.7 MHz below the F = 2 → F ′ = 3 transition, which is resonant with the the
F = 2→ F ′ = 2 transition.

The ‘repump’ laser is used only to source a single function, and as a result has
a rather simpler setup. Here we lock to the F = 1 → F ′ = 1, 2 crossover feature,
and use a single-passed AOM to increase the light frequency by +77.21 MHz to the
F = 1→ F ′ = 2 repump transition frequency.
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Figure 2.5: Saturated spectroscopy of a 87Rb vapour cell around the repump transition.
We lock our repump laser to the F = 1 → F ′ = 1, 2 crossover feature, with an AOM
further down the optical path pushing the beam up by 77 MHz to the F = 1→ F ′ = 2
repump transition frequency.
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2.3 Atomic manipulation

2.3.1 Overview

Low vacuum chamber

High vacuum chamber

Differential pressure valve

87Rb dispenser

3D MOT & Science cell

2D MOT cell

20 litre/s Ion pump

40 litre/s Ion pump

x
zy

Figure 2.6: The atom chamber is split into two sections. Located in the low vacuum
chamber (left), we use a 2D Magneto-Optical Trap (left) as a bright atom source to
feed a 3D MOT located in the high vacuum chamber (right). A differential pumping
valve is located between these sections.

We split the chamber into two sections, shown in Figure 2.6. The ‘low vacuum’ cham-
ber is pumped with a 20 l s−1 ion pump (Agilent Varian VacIon Plus 20 StarCell Ion
Pump) down to a pressure of ≈ 10−7 Torr. Atoms are loaded into this chamber from
an Alvatec enhanced abundance 87Rb dispenser run with a current typically around
2.6 A. The chamber is homebuilt with anti-reflection coated glass from SLS Optics,
and measures approximately 5 cm across in the X ,Y ,Z directions [99]. This glass cell
is home to a 2D MOT, which we use as a bright atom source to feed a 3D MOT.

Separating the two chambers is a differential pumping tube. We use a single reso-
nant ‘push’ beam to kick atoms from the 2D MOT through this pumping tube to the
capture volume of our 3D MOT, located in the ‘high-vacuum’ chamber. This chamber
is pumped down to ≈ 10−11 Torr with a 40 l s−1 ion pump (Agilent Varian VacIon Plus
40 StarCell Ion Pump).
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2.3.2 2D MOT
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Push beam

Figure 2.7: Schematic of the 2D MOT. We use two pairs of anti-Helmholtz coils to
generate a field that is spatially flat along X , but increases linearly with displacement
in the Y ,Z directions. Both cooling and repump beams are retro-reflected to form a
4-beam 2D MOT.

The magnetic component of the 2D MOT is generated by two pairs of anti-Helmholtz
coils. The overlapping quadrupole field gradients ‘add up’ in the Y and Z directions,
and cancel in the X direction. The resulting field increases linearly with some small
displacement from the X-axis, and is spatially flat along the X-axis. The position of
the QP magnetic zero is tuned using two pairs of ‘shim’ coils in Helmholtz configura-
tion, allowing maximum overlap with the Push beam (bottom left), which kicks atoms
through the differential pumping tube.

Our dual cooling and repump lasers are spatially overlapped exiting the optical fibre
from the laser preparation table, and split into two beams which approach the 2D cell
from the -Y and +Z directions. These beams are converted to a circular polarisation
with quarter-wave plates (QWP), and expanded with cylindrical lenses. The beams
pass through the cell orthogonally, and then through a second QWP which converts
to a linear polarisation. They are then retro-reflected, with the QWP converting the
beams to a circular polarisation. These then pass back through the cell. Together, these
form the four cooling and repump beams of a MOT.

A single laser (‘push beam’) resonant with the F = 2 → F ′ = 3 transition kicks
atoms from this 2D MOT through the differential pumping tube to the 3D MOT in the
high-vacuum chamber.
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2.3.3 3D MOT
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Figure 2.8: To the right is our 3D MOT, which is fed with the same overlapped cooling
and repump lasers as the 2D MOT, albeit in a six-beam configuration. A single pair of
anti-Helmholtz coils generate a quadrupole trap.

Our 3D MOT is constructed with the standard ‘6-beam’ geometry, where each beam
contains frequencies for both cooling and repumping, and is converted to circular po-
larisation with a quarter-wave plate before the science chamber.

A single pair of anti-Helmholtz coils generates a quadrupole magnetic field and 3
pairs of Helmholtz coils generate spatially-flat ‘shim’ fields that we use to move the
position of the quadrupole minimum [106]. Around this magnetic minimum we have
a ‘capture volume’ where the magnetic field strength is sufficient to Zeeman-shift the
magnetic sublevels of the 87Rb atoms into resonance with the red-detuned ‘cooling’
beams. This gives us a finite ‘capture’ volume where the combined slowing (optical
molasses) and trapping (magnetic trap) are sufficient to overcome the atoms’ incoming
velocity. In this capture volume we grow a cloud of cooled atoms for a duration ty-
pically around 15 s until approximately 109 atoms are trapped. For the duration the
cooling light is held at -14 MHz, with a 3d MOT quadrupole coil held at 11 G cm−1.

We then compress the MOT for ∼ 5 ms by increasing the 3D MOT quadrupole
field to 16 G cm−1 and detuning the cooling light from -14 MHz to -25 MHz. We then
perform a ‘molasses’ stage by releasing the quadrupole trap for 4 ms.
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2.3.4 Optical pumping

λ/4

By

Figure 2.9: We optically pump atoms into the |F = 2,mF = +2〉 state with a circularly
polarised resonant beam overlapping the 3D MOT position. The bias coils are set to
orient the atomic spins in the +Y direction.

Our MOT lasers cool our atoms, but also introduce a secondary heating mechanism
which limits further cooling to the recoil temperature [103]. To reach colder tempera-
tures, we need to make our atoms trappable with purely magnetic traps. We can do this
by optically pumping the atoms into a weak-magnetic-field-seeking state. We firstly
orient the atoms’ spin into the +Y direction with a 1.6 G spatially flat magnetic field
from the Y-shim Helmholtz coils. We then impart a right-handed circularly polarised
laser beam tuned to the F = 2→ F ′ = 2 transition for a duration of 1.2 ms, pumping
our atoms into the |F = 2,mF = 2〉 state.

We then reload the atoms pumped into the |F = 2,mF = 2〉 state in the quadrupole
trap with a field gradient of 63 G cm−1 over a period of 5 ms, before ramping the trap
field gradient linearly to 100 G cm−1, compressing the atomic cloud.
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2.3.5 Magnetic transport

‘3D MOT’

‘Transport’

‘QP’

By
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Figure 2.10: After optically pumping atoms into the magnetically trappable |F =
2,mF = +2〉 state, we ramp the currents through the three quadrupole coil pairs to
compress the trap, then smoothly move the magnetic minimum over to the optical
dipole trap.

The experiment contains an AC coupled ring-trap, which has not been used in the
work described in this thesis. More information can be found in the PhD Theses of
Dr Aline Dinkelaker [98] and Dr Billy Robertson [99]. The ring trap is designed to
load atoms from the hybrid optical trap and is therefore necessarily located around the
crossed optical dipole trap. The ring trap is also physically too small to surround the
3D MOT. As a result, the optical dipole trap is spatially separated from the 3D MOT
by approximately 10 cm. To cool the atoms further, we need to move them over to the
location of the optical dipole trap, henceforth referred to as the ‘science position’.

The science chamber has three pairs of anti-Helmholtz coils, used to magneti-
cally transport atoms from the 3D MOT to the location of the optical dipole trap
(Section 2.3.7) and atom-optics (Section 2.3.8). By ramping the current through these
coils in tandem, we smoothly move the magnetic field minimum to the science posi-
tion, carrying our cloud of cooled atoms. A small Y-shim bias field of a few Gauss
(≈ 5 G) guides the field minimum around the ring trap.
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2.3.6 Forced RF evaporation

Radio frequency

= 200 G/cmdB
dz

Figure 2.11: We use forced Radio-frequency evaporation to cool our surviving atomic
ensemble down to approximately 30 µK before loading into our hybrid optical trap.

We need to further cool atoms before we can load them into the hybrid optical trap.
With atoms in the science position, we ramp the nearest quadrupole trap current to
around 170 A, where the field gradient dB/dz is at 200 G cm−1. The magnetic suble-
vels in the quadrupole trap are Zeeman-shifted with displacement from the trap centre,
such that greater displacement from the trap centre requires greater energy (and the-
refore temperature). This position-dependent Zeeman shift split the degeneracy in the
trapped |F = 2,mF = +2〉 state and the anti-trapped |F = 2,mF = −2〉 state [103].

We then ramp a Radio-Frequency (RF) current through a small coil over the science
position. These RF photons couple the trapped |F = 2,mF = +2〉 state with the anti-
trapped |F = 2,mF = −2〉, but only at a given ellipsoid around the quadrupole trap
where the RF photons are resonant. As such, the RF field spin-flips atoms which reach
this height in the trap into the untrapped state, removing them (and the energy they
carry) [103].

We ramp this radio-frequency from 16 MHz initially down to 3.75 MHz over 3 s,
reducing the temperature of our RF knife. In doing so we cut into the temperature dis-
tribution of the atomic ensemble in the trap, removing atoms which contain more than
the average atomic energy, reducing the average energy (and therefore temperature) of
the remaining atoms [103].

This ‘forced RF evaporation’ cools our atomic ensemble at the cost of cloud popu-
lation, until we have around 5× 107 atoms at a temperature of ∼ 30 µK [99].
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2.3.7 Hybrid optical trap

f = 200 mm

‘P’ polarisation

‘S’ polarisation

θ ≈ 26◦

θ ≈ 26◦

Figure 2.12: We further cool the atoms using a hybrid magneto-optical dipole
trap [107], relaxing our RF-cooled atoms into the combined magnetic-optical poten-
tial. We generate Bose-Einstein Condensates typically of 1× 105 at 80 % purity with
a thermal-fraction temperature of 50− 100 nK.

To cool to Bose-Einstein Condensation we use a hybrid optical trap, comprising a
crossed dipole trap and magnetic quadrupole trap [107]. Forced RF evaporation cools
the atoms to T ≈ 30 µK, and then the quadrupole trap relaxed and the optical trap
activated.

We use an IPG Ytterbium Fibre laser (YLM-20-LP-SC) as the generator of our op-
tical dipole trap. The 10 W beam is split with a non-polarising beam cube (NPBS) into
two beams of approximately 3 W, which approach the atoms from an angle of ±26◦

relative to the X-axis. These beams are cross polarised so that they don’t generate a
optical grating. Each beam is then focussed with a f = 20 mm lens such that their
waists are≈ 86 µm at their foci. These foci are positioned such that they overlap at the
position of our RF-cooled atoms, creating an optical crossed dipole trap [99].

The total trap potential at this time is a combination of the optically-induced Gaus-
sian potential and a magnetic-gradient potentials (in the Z-direction), which leads to a
Gaussian shaped ‘notch’ potential with a lowered edge on the lower side. The hottest
atoms leak from this lower edge, cooling the ensemble [107].

The optical power is then reduced in an exponential ramp over a period of 4 s
from the initial power of 3 W to approximately 0.3 W, forcibly evaporating the hot-
test atoms. The trap frequencies at this low power range are on the order of ωX,Y,Z =
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30 Hz, 70 Hz, 70 Hz, and we expect a Bose-Einstein Condensation transition tempera-
ture of Tcritical ≈ 100 nK [99].

Our hybrid cooling typically generates a ellipsoidal atom ensemble with approx-
imately 1× 105 atoms in the Bose-Einstein Condensate at around 80 % purity, and a
thermal-fraction component temperature of ∼ 50 nK. The BEC Thomas-Fermi radii
are on the order of 7 µm in the Z,Y directions and 16 µm in the X direction [99].

2.3.8 Interferometry beams
Overview

f = 200 mm

‘S’ polarisation

‘S’ polarisation

θ ≈ 26◦

θ ≈ 26◦

Figure 2.13: We perform our atom-optic operations by modulating an optical grating
which is spatially overlapped with the BEC atoms. We initially align this grossly with
the dipole trap beams, and then use Kapitza-Dirac pulses to fine-tune the alignment of
the beams with the atoms.

Our atom-optics are generated by an optical grating located at the position where the
BEC is formed (i.e. in the crossed dipole trap). To generate this optical grating both
optical grating beams share a common polarisation (linear in the ±Y direction).

There are three major considerations when preparing the optical grating.
(1) Frequency locking: The wavelength of our optical grating is a key parameter

in modelling the atom-optics. As such, we need to prepare the laser frequency used
carefully.

(2) Longitudinal alignment: The off-resonant scattering used by our atom-optics
(see Chapter 3) requires that the phase-fronts be as flat as possible at the atoms’ po-
sition. This creates an optical grating with the least curvature possible. As such, we
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need to optimise the longitudinal position of the beam foci so they overlap with each
other and the atoms.

(3) Transverse alignment: The depth of our optical grating is maximised when the
intensity of both beams overlap at the same position. These beams have a Gaussian
profile, so we can maintain the greatest coupling consistency across our atomic ensem-
ble by using the ‘flattest’ part of our beams’ intensity profile; the centre. As such, we
need to optimise both the transverse alignment of the two beams with the atoms.

Frequency locking
XZ

Bragg Laser
I = 107 mA

Sat. Spec. photodiode

λ/2

λ/2
λ/2

Shutter

Shutter

f = 250 mm
f = 250 mm

C. I. readout beam
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Beam B
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-84 MHz
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Figure 2.14: Figure adapted from [99]. Optics table layout of interferometry beam
preparation. (a) We generate the atom-optics beams (Red lines) with an ECDL locked
to the 85Rb repump transition approximately −4 GHz red detuned from the 87Rb cool-
ing transition. This AOM is used as an intensity control, allowing us to time-modulate
the lattice depth at the atoms. The beam is split into two and fed into two single-mode
optical fibres to clean up the spatial mode. A pickoff of the locked ‘Cooling’ laser light
is used as a probe for the contrast interferometer. This is spatially overlapped with the
‘A’ atom-optic beam with an NPBS, and fibre coupled into interferometry fibre A.

Figure 2.14 shows a schematic of the optics used to control the interferometry beams.
Our atom-optics are sourced from an ECDL locked to the 85Rb repump transition, ap-
proximately−4.5 GHz red-detuned from the 87Rb F = 2→ F ′ = 3 cooling transition
(see Figure 2.15). This light is so far detuned from our 87Rb transitions that the exact
frequency used is not as important as knowing what that frequency is. We choose this
frequency because it represents a convenient feature visible in the vapour cell used to
frequency-lock the laser and is sufficiently detuned to suppress incoherent scattering.

The intensity control of the interferometry beams is done with an Acousto-Optical
Modulator (AOM). Our AOM driver circuit accepts an input RF source (Keysight
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N5138B) at 84 MHz and a DC input ‘control’ voltage. An RF mixer (Minicircuits
ZP-3LH-S+) generates an output signal at the frequency of the RF source and the am-
plitude of the DC input voltage. This output signal is amplified, and used to power
the AOM. We then control the frequency shift of the AOM by choosing the diffraction
order we sample as our output, and the coupling efficiency into that mode by altering
the DC input voltage.

Our output pickoff is taken from the ‘-1’ scattered order, where we find that transfer
function of input light to the -1 order is well approximated by a quadratic function [99].
We therefore see a frequency shift in the interferometer beams of −84 MHz. We mo-
dulate the optical lattice depth by altering the DC input voltage. This is done using the
programmed output of an (Standford Research Systems SRS DS345) arbitrary function
generator (see chapter 3 for more details).

The intensity modulated atom-optics beam is then split with a Non-Polarising
Beam-Splitter (NPBS) and coupled into two single-mode optical fibres. These opti-
cal fibres are used as spatial filters to clean up the interferometry beams transverse
profile.
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Figure 2.15: Saturated spectroscopy of a 87Rb vapour cell around the 85Rb repump
transition. We lock our atom-optics laser near the 85Rb F = 2 → F ′ = 2 repump
transition, with an AOM further down the optical path pushing the beam down by
84 MHz. This light is so far detuned from transitions in 87Rb that we could choose to
lock at any nearby frequency.

The contrast interferometry probe laser (see chapter 5 for more details) is sourced
from a pickoff of the cooling laser light. This is then intensity-controlled with an
AOM and frequency shifted a further −84 MHz to approximately −296 MHz below
the F = 2→ F ′ = 3 transition.
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As with the atom-optics beams, we filter the spatial profile of the probe beam by
coupling it into a single-mode optical fibre. This has the secondary benefit of simpli-
fying later alignment to the two interferometer arms, instead of three interferometer
beams.

Focal position

Âă

Âă

XZ

Shutter 100

Interferometer
Beam A

Interferometer
Beam B

To periscope

100 100

100

Figure 2.16: We allow the interferometry beams to propagate for some distance to
filter out higher spatial frequencies in the beam profile before they enter the alignment
telescopes. These telescopes project the beam foci into the science chamber at an
adjustable position. Note that this schematic is not drawn to scale.

After the interferometry beam fibre output we have approximately 1.7 m propagation
before the beams enter the alignment telescopes. We use this extended path primarily
to filter out high spatial frequencies from our beam shape, so that they’re closer to a
Gaussian profile by the time they enter the telescope.

The telescopes are used to project the interferometry beam foci into the chamber
at the appropriate position. We first performed knife-edge measurements on both be-
ams to determine the q-parameter of the beams before and inside the telescope, and
then projected these forwards using the software ‘Gaussianbeam’ [108] (shown in Fi-
gure 2.17). We can then adjust the telescope lenses (which are mounted on translation
stages) to position the beam focus at the atoms’ position.
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Adjustment telescope
BEC Position

ω0 ≈ 100 µm

Final lens before science chamber

Figure 2.17: A GaussianBeam simulation of our interferometry beam A from the in-
terferometry telescope (Figure 2.16) to the BEC position in the science chamber. Light
propagates from left to right. We can fine-tune the waist size and focal position at the
atoms by adjusting the positions of the second telescope lens and final focussing lens.

Transverse alignment
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Up Periscopes

Interferometry
Beams
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(from below)
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Figure 2.18: The interferometry beams are overlapped with the optical dipole trap be-
ams with beamcubes. We align the interferometry beams with the final mirrors before
these beamcubes.
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We align the transverse positioning of the atom-optics initially using a beam-profiler,
after the dipole laser has been aligned sufficiently well to create a BEC. We position
the camera at two positions, and alternatively adjust the atom-optic periscope mirror
screws to adjust the beam overlap at both camera positions. By alternating positions,
we asymptotically approach co-propagation with the dipole beams.

At this point the atom-optics are sufficiently aligned to allow for off-resonant scat-
tering (see chapter 3 for more details). We then configure a splitting pulse with para-
meters typically on the order of 30 µs duration and 20 Er lattice depth (see Section 3),
which transfers some small fraction (for example 10 %) of the |p=0~k〉 atoms into the
[|p=+2~k〉+|p=−2~k〉] superposition state. If we then adjust the atom-optic lasers,
an improvement in the split fraction implies an increase in optical grating contrast. We
then optimise, reducing the optical lattice laser power as required to maintain a split
fraction under 30 %. This is an important step, since an increase in lattice contrast can
actually reduce the split fraction at higher ‘split power’ (See Figure 3.2).
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2.4 Signal detection

2.4.1 Overview
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Figure 2.19: Overview of signal detection apparatus. Shown here is the 3D MOT pho-
todiode (a), Cooled CCD Camera for absorption imaging (b), Avalanche photodiode
for Contrast interferometry (c), the Single-Photon Counting-Module used in Contrast
interferometry (d), the fibre output for absorption imaging light (e) and the periscope
output for the contrast interferometer probe light (f). Figure adapted from [99].
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2.4.2 3D MOT Fluorescence
Our 3D MOT continuously fluoresces: the incoming cooling light causes atoms to
transfer from the |F = 2〉 to |F ′ = 3〉 state, and as atoms fall back into the |F = 2〉
state a corresponding 780 nm photon is emitted in a random direction. This scatte-
ring rate can be calculated with the transition linewidth Γ, light intensity I , and light
detuning ∆ [103].

γscatter =
Γ

2

I
Isat

1 + I
Isat

+ 4∆2

Γ2

(2.1)

Figure 2.19a shows a photodiode aimed at the 3D MOT atoms. A lens is positioned
in front of this photodiode to focus light from the MOT, increasing the ‘capture area’
of the photodiode. Since we know the solid angle of the photodiode capture lens, we
can calculate a transfer function between the number of fluorescence photons captured
by the photodiode and the number of atoms captured by the 3D MOT. We use this
fluorescence signal to tune our 2D and 3D MOT [99].

The 2D MOT acts as a bright collimated source of atoms for the 3D MOT, so the
optimum tuning for the 2D MOT is whatever gives us the greatest load rate in the 3D
MOT. We optimise the 2D MOT by setting the experiment to cycle a 1 s MOT load,
followed by a 1 s ‘blow-away’ stage. The blow-away stage turns off the quadrupole
magnetic field and shifts the ‘cooling’ laser frequency upwards until it is blue detuned
from the F = 2 → F ′ = 3 transition, anti-trapping atoms. This blow-away empties
the MOT so that we can repeatedly perform 1 s MOT loads for load-rate optimisation.
These two stages together form a cycling sequence where the 3D MOT loads atoms for
1 s, and anti-traps for 1 s. We then adjust the 2D MOT optics alignment and magnetic
shim coil current to maximise the 3D MOT load rate. We typically achieve a 3D MOT
load rate of ∼4×107 atoms s−1.

Whilst the 3D MOT load rate is generally a function of the 2D MOT alignment,
the 3D MOT load saturation is mostly a function of the 3D MOT beam alignment. We
optimise this by loading the 3D MOT continuously until saturation. This saturation
level is typically on the order of 1×109 atoms, occurring some 60 s into MOT loading.
A quicker saturation at a lower atom count is indicative of a reduce capture volume,
usually from a misalignment between the MOT beams and quadrupole trap centre.
We find that approximately 4×108 atoms in the 3D MOT are required to successfully
proceed through the remaining cooling stages to Bose-Einstein condensation.

The 3D MOT shim coils are tuned with a cycling MOT load ↔ Molasses cycle.
The molasses phase ramps the magnetic quadrupole trap off, and detunes the cooling
frequency further into the red from the F = 2 ↔ F ′ = 3 cooling transition. This
causes the atomic cloud to expand slowly (approximately doubling its size in each
direction in approximately 0.2 s). Two video cameras are aimed at the 3D MOT from
the South (Figure 2.19g), and from the East (Figure 2.19h), which track motion in the
X ,Z and Y ,Z planes, respectively. Here we can track the centre of mass of the cloud,
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adjusting the shim currents until the cloud is stationary during the molasses phase.

2.4.3 Absorption imaging
Absorption imaging [109] is performed in three stages. Light resonant with the F =
2 ↔ F ′ = 3 transition (shown in Figure 2.19e) is collimated into a beam with waist
ω ≈ 1.25 cm and shone across the region of our ‘science position’. This light is
absorbed by the atoms, causing a shadow in the transmitted intensity. The light is then
focussed with a f = 10 cm lens in a ‘2f ’ configuration onto a cooled CCD camera
(Andor LUCA, Figure 2.19b), imaging the atoms’ shadow.

The dip in transmitted intensity is proportional to the optical density of the atomic
cloud. We take a ‘probe’ (P) image with the atoms present, a ‘bright field’ (B) image
after the atoms have been scattered by the imaging light, and a ‘dark field’ (D) image
with the imaging light turned off. The optical density (O.D.) is calculated as

O.D. = log

(
P −D
B −D

)
. (2.2)

From this optical density we can calculate the number of atoms per image pixel,
giving us a ‘column density’ [109]. From this we can construct a 2D image of the atom
count per pixel column [98, 99, 109] using the equation

Natoms =
Area under absorption curve
σ0 (|F=2,mF=2〉→|F=3,mF=3〉)

, (2.3)

where σ0 = 6πλ̄2 is the resonant cross-section, which is approximately 2.9×10−13 m2

for the |F = 2,mF = 2〉 → |F = 3,mF = 3〉 transition.
We can use the atomic distribution to infer information about the atomic momen-

tum by projecting atomic motion into a position shift by allowing some time-of-flight
before image capture. This allows us to make determinations of the ensemble’s tem-
perature to optimise the RF evaporation and hybrid optical dipole trap trajectories. It
also allows us to separate the interferometer arms and output ports of a our atomic
‘momentum interferometer’ (see chapter 4).

2.4.4 Contrast interferometry
Contrast interferometry [49,110] shines a probe beam (shown in Figure 2.19f) onto the
interference fringes of a BEC, reflecting a time-oscillating signal into a high-sensitivity
photo-detector (for more details, chapter 5 is dedicated to this phenomenon). We at-
tempted to detect this signal using three different photo-detector methods; (1) an ampli-
fied silicon photodiode, (2) an Avalanche Photodiode (APD), and (3) a Single Photon
Counting Module (SPCM). The first attempt with an amplified silicon photodiode was
unsuccessful because (a) the detector gain was too low, (b) our atomic reflectivity was
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lower at the probe detuning used, and (c) our signal collection optics did not suffi-
ciently filter out background light, but we did observe phase-contrast signals with both
the APD and SPCM setups. More information on the contrast interferometer can be
found in Section 5.

Avalanche Photodiode

Our first successful phase contrast signal detection occured with a C12703-1 Series
Hamamatsu Avalanche Photodiode Module (Figure 2.19c). We aligned the APD by
triggering only the ‘B’ interferometer atom-optic beam, maximising the APD output
signal with the final two mirrors before the APD module, then repeating with ever-
lower beam powers.

We then triggered only the ‘A’ interferometer beam, and closed an adjustable aper-
ture enough to remove the APD response to just the light reflected from the glass cell,
whilst allowing the transmitted light from the ‘B’ arm to pass.

The output signal was transmitted via BNC cable to a Tektronix DPO3034 oscillis-
cope, which sent saved signal traces via USB to our lab computer. Our APD detection
showed a contrast signal dominated by an exponential decay envelope. We discovered
a strong relationship between the power of the probe laser beam and the decay constant
of this envelope. To further extend our signal duration, we needed to reduce the power
of the probe, but that required a more sensitive detector. For this reason we replaced
the APD with a Single-Photon Counting-Module.

Single Photon Counting Module

We used an Excelitas SPCM-AQRH-14-FC Single-Photon Counting-Module (SPCM)
as our photodetector. This module features a dark count rate of∼ 250 s−1, a maximum
stated count rate of 40×106 s−1 and a detection efficiency of∼ 70 % at 780 nm, giving
us a power sensitivity ceiling of 10 pW with an expected noise floor at 70 aW.

To protect the module’s internal amplifier we installed protection shutters (Uni-
blitz LS2T2) into the interferometer arm ‘B’ in the focal-positioning telescope (Fi-
gure 2.17), and shortly before the SPCM fibre input coupling (Figure 2.19d) [99].
These shutters are controlled with a single digital line; the default position has the
interferometer arm open and the SPCM protection shutter closed. Both shutters are
flipped over a 120 µs window after the atom-optics are triggered and before the inter-
ferometer probe is triggered.

The SPCM output is a continuous count of photon detections sent via BNC. This
‘click signal’ is recorded via a National Instrument PCI-6713 interface card, then time-
binned and processed using LabVIEW. Typical bin-widths used in this thesis are 4 µs.
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Chapter 3

Atom-Optics

3.1 Introduction
In analogy with the optical elements of optical interferometers, the construction of an
atom interferometer requires atom-optics to generate interferometer arms (typically,
but not exclusively) by coherently manipulating the momentum of a cloud of ultra-
cold atoms. Most interferometers accomplish this using resonant Raman transitions
which effectively ‘Bragg-reflect’ the atomic wavefunction from a travelling wave of
light [15, 111]. Since the velocity of this travelling wave is a free parameter, mo-
mentum kicks can be repeatedly imparted to a cloud of atoms by altering the relative
detuning between the laser beams generating the lattice. This technique has been used
to successfully impart several hundred recoils, generating interferometers with an ex-
tremely wide momentum separation [53, 112].

These advantages do come with a cost. The use of repeated pulses to impart many
recoils places stringent requirements on pulse operation fidelity; a 99 % efficient ope-
ration performed a hundred times has a combined fidelity of only 37 %. Many experi-
ments utilise ‘blow away’ pulses to remove these spurious atoms, reducing the particle
counts. Given that the shot noise limited error in phase (∆Φ) scales as 1√

N
[113, 114],

this is a problem. In order to avoid disturbing the ‘other’ interferometer arm, atoms
must change internal state before the atom-optics can be applied. This opens the
interferometer up to additional sources of phase-noise, such as Zeeman shifts due
to local spatially-flat magnetic fields. Some experiments compensate with magnetic
shielding [115] at the cost of experimental ‘bulk’, and Complex pulse sequences have
successfully reduced this influence [116] at the cost of reduced interferometer contrast.

Off-resonant scattering is an alternative mechanism [117–119] which has been
successfully used as a basis for atom-optics [49, 110, 120–123]. Here atoms do not
change internal state, so Zeeman-induced shifts from spatially-flat magnetic fields in-
duce no differential phase across interferometer modes. The scattering mechanism
couples to multiple momentum states (compared to Bragg’s single mode coupling),
offering the potential for more complex optical elements such as multiport beam split-
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ters [124, 125] within single complex pulse sequences, without the need for beam de-
tuning ramps.

This comes at the cost of a more complicated system evolution between more mo-
mentum states. It is, for example, impossible to perform a perfect transfer to anot-
her momentum state with a single simple lattice pulse. Nevertheless, some work has
successfully demonstrated that complex pulse sequences can generate high-efficiency
atom beam splitters [121,123,126], and theory has been developed to very successfully
describe the system evolution numerically [119, 121, 123]. In an attempt to generate
atom-optics for contrast interferometry, we have combined these tools to generate a
toolbox for high-fidelity arbitrary-state-targeting atom-optics.

3.2 Experimental setup
A 2D magneto-optical trap (MOT) is used to load a 3D MOT of∼109 87Rb atoms. The
atoms are then transferred to a quadrupole magnetic trap and radio-frequency evapora-
tive cooling is performed resulting in 4×107 atoms at a temperature of 30 µK [98,127].
The quadrupole trap is then relaxed from 200 G/cm to 15 G/cm, and the atoms loaded
into a hybrid crossed optical dipole trap [107, 128] generated by a 1069 nm Ytterbium
fibre laser with approximately 3 W per beam (Figure 3.1, wide blue beams.). Follo-
wing 4 s of optical evaporative cooling during which the optical power in each beam is
ramped exponentially to 0.25 W, we obtain a BEC of ∼105 atoms with >80 % purity
and a thermal-fraction temperature of ∼100 nK [99].

The optical diffraction grating used in the construction of out atom-optics is gene-
rated using light from a single External-Cavity Diode Laser (ECDL), running approx-
imately 4.5 GHz red detuned from the 780.24 nm F=2→ F ’=3 transition on the 87Rb
D2

(
52S1/2 → 52P3/2

)
line. This interferometry laser first passes through an acousto-

optic modulator (AOM) which allows for the control of the optical power, and therefore
intensity, at the BEC position. It is then split and mode-matched with the optical dipole
trapping beams such that their foci overlap at the position of the BEC. This generates
an optical lattice of spatially varying intensity along the X direction as indicated in
Figure 3.1. The ground state energy level of the atoms is reduced in proportion to the
light intensity due to the AC Stark shift, and so they experience a sinusoidal spatially
varying potential landscape. Fine alignment is achieved by steering the interferometry
beams to maximise the splitting of the BEC when a weak lattice is applied.
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Figure 3.1: Experimental setup (a). A BEC of 87Rb is formed using a crossed dipole
laser trap at 1069 nm (blue). Mode-matched with the trap beams are two more be-
ams at 780 nm, vertically polarised. These generate an optical lattice with an effective
wavevector k = (k1 − k2) /2 (b). Atoms can receive 2~kx momentum kicks by trans-
ferring photons from the k1 to k2 beams (or vice-versa) by absorption and stimulated
emission.

3.3 Theory and system modelling
Our atom-optics are constructed using a standing wave of laser light, linearly polarised
vertically. The AC Stark effect induces a periodic energy shift in the ground state of our
atom cloud. Our model of this energy landscape follows that of Gadway et al. [119],
with the Hamiltonian

Ĥ = i~
∂

∂t
= − ~2

2m

∂2

∂x2
+ V0(t) cos2 (kxx) , (3.1)

where kx is the effective wave-vector of our optical lattice, and V0(t) the lattice depth
at time t. The total wave function is considered a superposition of plane matter-waves
with momenta p = 2n~k

ψ (t) =
∑
n

Cn (t) ei2nkxx. (3.2)

If we include (3.1) and (3.2), our solution to the Schrödinger equation becomes an
infinite set of coupled equations which describe the time evolution of the complex
amplitude of each mode

Ċn (t) = −i

[
E

(2)
r n2

~
Cn (t) +

V0(t)

4~

(
Cn−1 (t) + 2Cn (t) + Cn+1 (t)

)]
, (3.3)

where Er(2) = 4~2k2/2m87Rb is the two-photon recoil energy, and the complex am-
plitude Cn = An exp (iΦn) describes the population (Pn = A2

n) and phase (Φn) of
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the nth state with momentum p = 2n~k. A derivation of this expression is shown in
Appendix A.2.

Equation 3.3 shows an interaction between neighbouring modes which scales with
lattice depth. Since the mode amplitudes Cn are complex, the nature of this interaction
is phase-dependent. Together, these two properties of phase-sensitivity and tunable in-
teraction strength allow for the creation of specific operations which coherently trans-
form some input superposition of atomic momentum states into some other superposi-
tion of momentum states. These operations include our required atomic beam-splitters
(|p=0~k〉 → [|p=+2n~k〉+|p=−2n~k〉]), and atomic mirrors (|+2n~k〉↔|−2n~k〉).
The phase-sensitivity alters the behaviour of each operation dependent on the relative
phase between neighbouring modes which spatially overlap during the operation. In
this way our atomic momentum splitters also behave as interferometric ‘closing’ pul-
ses. A numerical simulation of equation (3.3) allows us to predict the behaviour of
the system without losing the complex multi-level dynamics which appear with higher
laser intensities.

We model our atom-optic operations numerically. We represent our stationary BEC
atoms with the complex amplitude array Cn6=0,t=0 = 0, Cn=0,t=0 = 1. We model a
specific pulse sequence using a ‘pulse shape’ function, modifying the time-dependent
lattice depth V0 (t) in response to a set of input pulse parameters. We then numerically
integrate equation (3.3) with the initial state Cn,t=0, generating a series of new state
vectors at required times Cn,t=t1...tf . From these we can extract the relative mode
populations (Pn(t) = |Cn(t)|2) and phases (Φn(t) = arg(Cn(t))). Figure 3.2 shows
the simulated variation in output population as the lattice depth of a 20 µs pulse is
varied, alongside experimental measurements of the same.

Since the splitting mechanism has mirror-symmetrical along the x-direction, all
atom-optic operations are also symmetrical in the absence of symmetry-breaking in-
fluences such as initial atomic velocities or accelerating gradient fields. An operation
which performs the operation |p=0~k〉→[|p=+2n~k〉+|p=−2n~k〉] will output a su-
perposition of states with momentum p = ±2n~k and a common phase. And for ease
of reading this output state is often referred to as |±2n~k〉 in the literature.

3.4 Model testing

3.4.1 Optical lattice calibration
Our laser pulses are controlled by an Acousto-Optical Modulator (AOM), with laser
intensity in the first diffracted order proportional to the square of the input voltage to
the AOM driver circuit. To reliably recreate pulse sequences we need a calibration
method to relate the input voltage to lattice depth at the atoms. The sensitivity of
the system’s evolution to lattice depth makes this possible; a lattice ‘pulse’ of fixed
duration traces out an evolution unique to that lattice depth.

If we measure the system evolution by recording mode population for pulses of
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various AOM voltages and fixed duration, we can overlay the simulated evolution and
linearly scale the x-axes until we find the appropriate calibration factor (S) between
AOM voltage squared (V 2) and lattice depth (L), shown in Figure 3.2. In this way,
we use the atoms to construct a calibration V =

√
L/S, which directly maps our lab

controls to the lattice depth at the atoms.
The BEC was scattered by our optical lattice with pulses of duration 20 µs with

various AOM voltages. At each voltage the experimental sequence was run multiple
times, with one absorption image per run. These absorption images were binned in the
vertical direction to generate multiple integrated line profiles for each AOM voltage.
These were then combined to generate a single integrated line profile at each AOM
voltage with a mean line profile and error band. Thomas-Fermi profiles (equation 3.4)
were fitted to the features in each profile and used to determine atom numbers in each
momentum mode, and a Gaussian fit (equation 3.5), to the remaining pedestal of non-
BEC thermal atoms. The use of a fit function allowed us to link the widths of the BEC
features, so we could extract the unsplit BEC fraction from the surrounding thermal
atoms.

nTF (x) = nbackground + n0 max

(
0,

[
1− (

x− x0

rTF
)2

]2
)
, (3.4)

nThermal(x) = nbackground + n0 exp

(
−−(x− x0)2

2σ2
thermal

)
, (3.5)

The relative populations of each mode were then plotted, and the numerical simula-
tion fitted to the populations by way of a scaling factor between the two x-axes. In this
way, we calibrate our ‘scale rule’ which translates AOM voltage to lattice depth. (Fi-
gure 3.2)
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Figure 3.2: An example fitting of our numerical simulation (curves) to experimental
data (points). Each vertical stack of data points corresponds to the relative mode po-
pulations after switching on an optical lattice for a duration of 20 µs at a given control
voltage into an AOM driver circuit. Multiple absorption images are sampled at each
voltage, with error bars derived from the spread in each population across the sam-
ple. A numerical simulation of equation (3.3) is fitted to this data, and from this we
determine a linear ‘scale rule’ which relates our control voltage to lattice depth at the
atoms. Inset is a sample absorption image obtained when the lattice AOM driver is set
to 1.75 V, corresponding to a ∼ 20 Er Lattice depth.

3.5 Optimising a high-fidelity atom-optic

3.5.1 Designing a first-order beam splitter pulse sequence
We aimed to construct a first-order beam splitter operation to transfer atoms from the
|p=0~k〉 to |p=+2~k〉+|p=−2~k〉 superposition state with high-efficiency. Spurious
momentum states generate additional interferometer ‘arms’, confusing the interfero-
meter fringes with more frequencies and phases. It is therefore important to ensure
that only the interferometer arms required are actually populated. This is commonly
achieved with blow-away pulses in interferometers with different internal states, but is
not easily accomplished here. High-efficiency transfer operations are therefore extre-
mely useful to Kapitza-Dirac based interferometers.

A ‘perfect’ |0~k〉 → [|+2~k〉+|−2~k〉] split operation requires that the Rabi oscil-
lations of the |0~k〉 and [|+4~k〉+|−4~k〉] modes minimise when the |+2~k〉+|−2~k〉
oscillation maximises. In the simpler ‘Bessel’ models [111,117,119], there is no solu-
tion which exactly satisfies these conditions, and so no single constant intensity pulse
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can perform a complete population inversion [119, 121].
In previous work, Wu et al. developed a pulse sequence of two symmetric pulses of

equal and constant lattice depth for identical durations separated by a ‘wait’ period of
zero lattice depth. [121]. Hughes et al. later realised this experimentally with a peak
efficiency of 99.5 % [123], and subsequently enhanced the pulse by filling the central
wait period with a low level light field to force a subtle re-phasing of adjacent mo-
des [126] (This pulse shape is shown in the inset of Figure 3.3). The low level field of
the ‘triple’ pulse maintains coupling between modes, slightly shifting the Rabi oscil-
lations until all three modes’ oscillations coincide. This ‘triple pulse’ had a predicted
efficiency of 99.9933 % [126]. Our optical lattice wavelength differs from that of the
Sackett group [126], so the specific energies and time-scales in equation 3.3 also differ.
This makes it impossible to simply reuse the optimised pulse-parameters.

Our numerical simulation can simulate the outcome of non-trivial pulse sequences,
and so we set out to theoretically construct a pulse of the same shape and parame-
ter space. The symmetrical pulse has two amplitudes and two durations, resulting in a
four-dimensional parameter space. A brute force sweep through this space is computa-
tionally expensive and scales badly as pulse sequences increase in complexity. Instead,
our simulation can be used as the core ‘function’ of an optimisation algorithm, itera-
ting towards the highest fidelity transfers. We determined optimal mode transfer with
the parameters A1 = 6.07 Er, T1 = 26.6 µs, A2 = 0.52 Er, T2 = 45.6 µs, where Er is
the effective recoil energy of our optical lattice, ∼ 2.02 × 10−30 J. A sweep through
the perpendicular planes which intersect at our optimised parameters is shown in Fi-
gure 3.3, where the A1,A2 plane is shown in (a), the T1,T2 plane shown in (b), and an
example pulse shape shown in (c).
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Figure 3.3: Numerical integration of equations to predict population transfer during an
optical pulse sequence into the first order ±2~k momentum states. We found a maxi-
mum transfer at pulse parameters A1 = 6.07 Er, T1 = 26.6 µs, A2 = 0.52 Er, T2 = 45.6 µs.
These plots represent the two perpendicular planes which cross at this point in the four
dimensional parameter space. Inset: The ‘triple-pulse’ [126], simulated in the main
figures. This pulse is similar to that described by Wu et al. [121] in that two symme-
trical pulses of amplitude A1 and duration T1 and separation T2 are fired, except that
the T2 time is ‘filled’ with a low-level light field.

3.5.2 Testing first-order splitting efficiency
The high-efficiency pulse sequence was tested with a Bose-Einstein condensate (BEC)
of ∼ 105 atoms. The system was calibrated as described in section 3.4.1, and the lat-
tice controls set to our numerically optimised |p=0~k〉 → [|p=+2~k〉+|p=−2~k〉] se-
quence; a ‘triple-square pulse’ with parameters A1 = 6.07 Er, T1 = 26.6 µs, A2 = 0.52 Er,
T2 = 45.6 µs.

The same absorption imaging process was then used to measure the relative popu-
lations in each momentum state. An example 50-shot average of the optimised beam
splitter pulse is shown in Figure 3.4, which shows the transfer of atoms from the BEC
to the |+2~k〉+|−2~k〉 state with a fidelity of 99.97 ± 0.03 % (that is, with an average
99.97 ± 0.03 % of our atoms in the desired momentum state). Because the scattering
mechanism imparts a quantised momentum shift, the BEC clouds with |p| = 2~k retain
their spatial shape and expansion rates as they propagate. If we fit the BEC components
with a common Thomas-Fermi width and independent amplitudes, we can therefore
computationally extract the population of atoms in the p = 0~k state from the thermal
pedestal. Our example shown in Figure 3.4 fits an unsplit p = 0~k BEC remnant at
(2.29± 18.46)× 101 atoms, and the combined split |p = +2~k〉+|p = −2~k〉 popula-
tions with (8.70± 0.44)× 104 atoms, giving a transfer efficiency from the initial BEC
at (99.97± 0.03)%.

39



3.5. OPTIMISING A HIGH-FIDELITY ATOM-OPTIC

-500-1000-1500 500 1000 1500
0

5

10

15

20

25
D

at
a

(b
in

ne
d

ab
so

rp
tio

n
im

g.
)

Position [µs]
0

Atoms post-split [mean]
Fit to mean
Standard deviation of data

Figure 3.4: Experimental results of an optimised |p=0~k〉 → [|p=+2~k〉+|p=−2~k〉]
pulse sequence. 50 absorption images were taken, then integrated in the vertical di-
rection to create 50 integrated line profiles. These line profiles were used to generate
a mean line profile with associated standard deviation at each horizontal position. A
fit to this ‘mean±error’ profile allows the digital separation of the thermal background
and BEC. Transfer efficiency is taken as the fraction of atoms in the central narrow
BEC peak transferred to the outer moving modes. We fit a total atom number of
(9.04 ± 0.44) × 104, a thermal background of (3.37 ± 0.40) × 103 [3.73 %], a re-
maining p = 0~k BEC fraction of (2.29 ± 18.46) × 101 [0.03 %], and a transferred
|p=+2~k〉+|p=−2~k〉 fraction of (8.70 ± 0.44) × 104 [96.24 %]. If we assume that
only the BEC atoms have sufficiently narrow momentum width to effectively transfer,
we have a |p=0~k〉 → [|p=+2~k〉+|p=−2~k〉] transfer efficiency of (99.97±0.03) %.

Correlation with theory was examined by performing the optimised pulse sequence,
truncated at some time. This was done at numerous points throughout the duration
of the pulse, and the relative populations compared with theory predictions at each
time. Errors were calculated using shot-to-shot variation in the absorption images,
specifically variation in atom number and cloud width returned by our fitting algorithm.
If the relative population numbers are labelled P−4, P−2, P0, P+2, P+4, Pthermal, then
the fractional mode populations are calculated like

F±2 =
(P−2 + P+2)

(P−4 + P−2 + P0 + P+2 + P+4)
, (3.6)

and the fractional uncertainty of the mth mode δF±2m calculated by taking partial
derivatives of this equation, like

(δF±2)2 =
∑
n

(
∂F±2

∂P2n

δP2n

)2

, (3.7)

where n corresponds to the ‘order’ of the scattered mode with momentum p = 2n~k.
Figure 3.5 shows this comparison, with excellent agreement between theory and ex-
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periment, where the theoretical curves shown are a numerical simulation using the
optimised pulse sequence and zero free parameters. The data shown in Figure 3.4 are
represented here by the final data point occurring at time t = 98.8 µs.
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Figure 3.5: A schematic of the optimised pulse sequence is shown (a,b,c). By ex-
tracting the population and phase from the numerical simulation, the state evolution
during each subsection of the pulse sequence can be calculated. Below this (d) is
a comparison of theoretical and experimental results of the optimised beam splitter
pulse. Solid (dashed, dash-dotted) lines show the optimised evolution of the |0~k〉
([|+2~k〉+|−2~k〉],[|+4~k〉+|−4~k〉]) populations through the pulse sequence. The
bands surrounding each theory line show the spread in population evolution when
subjected to a ±4% variation in laser intensity. Circles (squares, rhombi) show the
experimentally measured populations at each time.
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3.6 Reflection pulse efficiency
If the aforementioned Kapitza-Dirac pulse which transfers atoms from the |0~k〉 to the
|+2~k〉+|−2~k〉 state is an ‘atomic beam-splitter’, then the remaining atom-optical
element required for an atom interferometer is the ‘atomic mirror’. In contrast to
the off-resonant splitter pulses, we accomplish reflection with the use of Blackman
pulses [129]. These possess a far wider frequency width, and therefore couple off-
resonant states less efficiently. Our numerical optimisation predicts a theoretical max-
imum |−2~k〉↔|+2~k〉 transfer efficiency of ∼ 99.9 % with a Blackman pulse of
duration 164 µs and maximum lattice depth 12.2 Er, shown in Figure 3.6.

There are some caveats. It is important to note that our simulation predicts that a
fraction of the |0~k〉mode population is temporarily transferred to the |+2~k〉+|−2~k〉
mode during the pulse. This means that we should expect the | + 2~k〉↔| − 2~k〉 re-
flection pulse to impart a phase shift on any |0~k〉 atoms, but not to beam-split them.
We should expect to see intensity-dependent phase shifts which are not cancelled bet-
ween the stationary |0~k〉 and moving [|+2~k〉+|−2~k〉] interferometer arms.

Additionally, we refer to this Blackman pulse as a mirror here, though it is im-
portant to note that the operation is actually a δp = ±4~k momentum shift, and only
transfers atoms between resonant states if the initial momentum δp ≈ 0. In the case
that some momentum δp is present, we instead perform a |−4~k + δp〉↔|+4~k + δp〉
operation.
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Figure 3.6: Theoretical simulation of the parameter space of our Blackman pulse.
Mapped is the efficiency of the |−2~k〉 → |+2~k〉 transfer. Our optimisation algo-
rithm finds a maximum transfer efficiency of 99.9 % at pulse duration 164 µs, lattice
depth 12.2 Er. Higher transfer efficiencies are located at longer pulse durations, as
might be expected with a resonant transition.
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An atom interferometer can be constructed with only two splitter pulses. The first
pulse creates the interferometer arms, and the second interferes the phase accumula-
ted between the separating (but still partially overlapping) arms. The contrast of this
interferometer drops rapidly as the arms separate. By extending the arm ‘length’ to a
millisecond or so, the contrast is negligible. In this configuration, interference fringes
are dependent almost entirely on a reflection pulse fired in the centre of the interfero-
meter, and so we can use the fringe contrast to estimate the reflection pulse efficiency.

The efficiency of our reflection was tested by performing an interferometer se-
quence: Atoms were split with a single pulse of constant lattice depth ∼ 12 Er and

duration ∼ 10 µs into a superposition of approximately
√

1
4
|−2~k〉 +

√
1
2
|0~k〉 +√

1
4
|+2~k〉. These atoms were allowed to propagate for 700 µs, and a Blackman mir-

ror pulse fired. A closing ‘splitter’ pulse was then fired after some time, and the system
was again allowed to evolve. After 60 ms, the relative mode populations were mea-
sured via absorption imaging. The interferometer ‘closing time’ was varied, and the
evolution of the modes’ relative populations plotted. Figure 3.7 shows these interfero-
meter fringes with a peak contrast of 86 %, placing a lower bound on the mirror pulse
efficiency of 86 %, with similar efficiencies detected with increased time of flight to
separate the reflected and un-reflected modes [99].
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Figure 3.7: Experimental three-arm momentum interferometer. A splitter pulse is con-
figured to push the atoms into a superposition |ψ〉 ≈

√
1/4|−2~k〉 +

√
1/2|0~k〉 +√

1/4|+2~k〉. After 700 µs a Blackman reflection pulse is fired. Some time Ti2 is allo-
wed to pass, and an identical splitter pulse fired to close the interferometer. Five shots
were recorded at each time Ti2, and the fractional population of the |0~k〉 mode deter-
mined. The phase accumulation during the Ti2 period originates in the kinetic energy of
the moving atoms, building up a phase shift of 4ωrecoilt. We sample this phase by firing
a second beam splitter pulse, ‘closing’ the interferometer and projecting the phase into
an oscillation of mode population between the |p=0~k〉 and [|p=+2~k〉+|p=−2~k〉]
modes. The frequency of these fringes is therefore four times the effective lattice recoil
frequency, and can be used to determine the fine structure constant. Here, the contrast
of 86 % implies that our reflection pulse has an efficiency of at least 86 %.
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3.7 Second order atom-optics

3.7.1 Second order atom beam-splitting
A significant advantage of entirely-Bragg based systems (such as the Biraben atom in-
terferometer, which imparts thousands of recoil kicks [50]) is that it is relatively simple
to induce a larger recoil momentum, because the asymmetry of the interferometer al-
lows detuning between the atom-optic beams as a free parameter. This means that the
optical lattice can be swept at any desired speed. The system can then be repeatedly
given 2~k momentum kicks as desired. This in turn leads to a much faster phase accu-
mulation. A significant drawback here is the requirement that the atom-optics target
only one ‘arm’ of the interferometer, since this is typically done with an RF pulse to
transfer a fraction of the atoms into a different internal state. Zeeman shifts from local
spatially-constant magnetic fields introduce additional sources of phase noise, manda-
ting the use of considerable magnetic shielding [115]. Whilst some procedures have
been demonstrated to reduce the duration of these magnetically-sensitive periods, they
do not entirely eliminate the susceptibility and reduce signal-to-noise. [116]

Our system has the advantage that the internal state of our atoms is never chan-
ged, removing sensitivity to such magnetic field ‘offsets’ entirely. Conversely, we lose
the ability to impart repeated momentum kicks by simply sweeping our atom-optic
beam detuning, instead performing transfers in a single operation. Nevertheless, we
need to increase the momentum width of our interferometer arms to make competitive
measurements.

An increase of even a single recoil (n = 2) offers a number of advantages: Firstly,
the increased kinetic energy in the interferometer arms increases the rate of phase
accumulation, giving us four times the phase for a given interrogation time. Secondly,
the phase-contrast interferometer uses an evolving cloud of BEC atoms as a mirror for
a readout beam. Since every reflected photon imparts a momentum kick onto an atom
in this cloud, every successful photon ‘bounce’ reduces the reflectivity of the cloud, so
the readout signal decays over time, effectively limiting our readout to a finite number
of photons. A four-fold increase in fringe frequency will give us four times as many
fringes in our signal. Thirdly, we then also have four times as many zero crossings in
our fringe signal for our fitting algorithm.

The first-order splitter pulse uses the differing phase oscillation rates of our diffe-
rent modes to simultaneously suppress the population in the |0~k〉 and |±4~k〉 modes,
forcing all atoms into the |±2~k〉 mode. If we can accomplish the same feat by sup-
pressing the population of the |0~k〉, |±2~k〉 and |±6~k〉 modes, we will have created
a second-order atomic beam splitter, with twice the momentum shift at |±4~k〉.
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Figure 3.8: Numerical simulation of an optimised |0~k〉→[|+4~k〉+|−4~k〉] beam
splitter pulse sequence. The colour scale represents relative fraction of atoms which
end up in the target [|+4~k〉+|−4~k〉] state. These two plots represent the perpendicu-
lar 2D sweeps in parameter space, crossing at the optimal point located at A1 = 23.7 Er,
T1 = 53.3 µs, A2 = 3.59 Er, T2 = 39.0 µs.

Figure 3.8 shows a scan of the |0~k〉→[|+4~k〉+|−4~k〉] parameter space surroun-
ding a point of high transfer efficiency. The transfer of atoms to the [|+4~k〉+|−4~k〉]
state requires that atoms are ‘funnelled’ through the intermediate [|+2~k〉+|−2~k〉]
state. The increased path increases the system dynamics’ complexity considerably
(Figure 3.9). The difficulty here comes from the relative phase velocities of the diffe-
rent modes; whilst the [+2~k〉+|−2~k〉] splitter pulse uses the phases of each mode
to suppress two modes, here we suppress three. Instead of a direct transfer, we must
allow atoms to ‘slosh’ back and forth between modes, until the phases align such that
a minimum in the |0~k〉 and [|+2~k〉+|−2~k〉] occurs simultaneously.

A secondary result of the more complex dynamics is that the ‘islands’ of high
transfer efficiency are smaller in parameter space, so the tolerance for error in laser
intensity and pulse timing / shape is significantly smaller. We found that whilst a shot-
to-shot laser intensity variation of < ±10% is sufficient to maintain a > 98% transfer
to [|+2~k〉+|−2~k〉] efficiency, that tolerance drops to < 1% when transferring to
[|+4~k〉+|−4~k〉].

Additionally, it can be seen that whilst the use of a mid-pulse low level light field
is not strictly necessary in the [|+2~k〉+|−2~k〉] case, it is essential to reach a high-
efficiency transfer to [|+4~k〉+|−4~k〉].
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Figure 3.9: The testing of a second-order beam splitter pulse. Here we attempt to
push atoms entirely into the [|+4~k〉+|−4~k〉] superposition state, using destructive
interference to suppress the population in other modes. We compare the theoretical
prediction of our numerically optimised pulse with experimental data. Theory cur-
ves for the |0~k〉 (|+2~k〉+|−2~k〉,[|+4~k〉+|−4~k〉]) modes are depicted by the so-
lid (dashed, dash-dotted) lines, with surrounding bands representing the variation in
population due to a ±4 % range in laser intensity. Experimental data for the |0~k〉
([|+2~k〉+|−2~k〉],[|+4~k〉+|−4~k〉]) modes are shown as circles (squares, rhombi).
Each data point represents the mean relative population across ten experimental runs.
The standard deviation of each individual mode’s population (calculated by conside-
ring the uncertainty in the height and width of fit as shown in Figure 3.4) is propagated
through the calculations used to determine relative populations to set error bars.

3.7.2 Second order atom mirrors
As with the first-order case, we need mirrors capable of reflecting atomic wave-packets
with high efficiency so that we can maintain interference contrast when our inter-
ferometer ’arm length’ is greater than a few hundred microseconds. The optimal
|−4~k〉→|+4~k〉 transfer with a Blackman pulse is found with an amplitude of A1 =
43.2 Er and duration T1 = 131.6 µs.
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Figure 3.10: Numerical simulation of the parameter space of a Blackman pulse, this
time targeting a |−4~k〉→|+4~k〉 momentum transfer. Inset here is the fraction of
atoms in the |+4~k〉 momentum state after the pulse, without consideration for the
influence of the pulse on stationary atoms. We generate a ‘fitness’ score for each pa-
rameter set by numerically simulating the pulse sequence’s |0~k〉→[|+2~k〉+|−2~k〉]
fidelity, and subtracting it from the [|−4~k〉↔|+4~k〉] operation efficiency. In this way
we generate a pulse which offers the optimum interferometry reflection pulse. Whilst
the point of maximum reflection occurs at A1 = 43.2 Er, T1 = 131.6 µs, the marginally
less efficient point at A1 = 40.1 Er, T1 = 162 µs results in negligible disturbance of the
stationary atoms, and so was chosen over the other.

Unlike the first order case, where the optimal [|−2~k〉→|+2~k〉] pulse also hap-
pens to not alter the momentum of the |0~k〉 packet, the second order reflection requires
that we find a compromise. To find a pulse which optimises the reflection efficiency
of the [|−4~k〉+|+4~k〉] atoms (Figure 3.10, inset) whilst minimising the influence
on |0~k〉 atoms, the numerical simulation was expanded to simulate the pulse effect
on both the [|−4~k〉+|+4~k〉] and |0~k〉 states, and a fitness function created which
included both output states in a new ‘goodness’ metric (Figure 3.10, main). This en-
hanced optimisation generated a ‘compromise’ pulse with parameters A1 = 40.1 Er,
T1 = 162 µs. This new pulse has a theoretical [|−4~k〉→|+4~k〉] transfer efficiency of
99.6 %, whilst transferring only 0.3 % of the |0~k〉 atoms to other states.
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3.8 Targeted operations

3.8.1 Four-port quatter
A major advantage of this mechanism is the ability to target arbitrary population sta-
tes, creating the atom-optical analogues of multi-port beam splitters (1 beam into 2
out), tritters (1 beam into 3 out), quatters (1 beam into 4 out), etc. In Section 6.3
we discuss our desire for an atom-optic beam-quatter that performs the operation
|0~k〉 → 1

2
(|−4~k〉+|−2~k〉+|+2~k〉+|+4~k〉). We numerically found a candidate

triple-rectangular pulse with parameters A1 = 17.5 Er, T1 = 15.3 µs, A2 = 8.2 Er,
T2 = 20.0 µs. An example binned absorption image of this pulse sequence captured
experimentally is shown in Figure 3.11, where we find a population transfer efficiency
of P (0~k) = 3.4± 0.7 %, P (±2~k) = 54.2± 1.6 %, P (±4~k) = 42.4± 1.5 %.
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Figure 3.11: A binned absorption image of an experimental four-port beam-
quatter operation that splits an incoming |0~k〉 packet into a superposition
1
2

(|−4~k〉+|−2~k〉+|+2~k〉+|+4~k〉). The experimental sequence was performed
ten times, capturing ten absorption images. Some time of flight has been allowed to
project the different momentum states within the atomic wavefunction into spatially-
separated clouds. The solid black line represents the mean binned atomic density, and
the surrounding shaded area represents the density encapsulated by ± one standard
deviation. The dashed red line corresponds to a fit of five Thomas-Fermi profiles, used
to extract atomic population within each momentum state.
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Chapter 4

Atom Interferometry

4.1 Introduction
Atom interferometry exploits the wave-nature of atoms to perform precision measure-
ment by mapping something difficult to measure (atomic phase) to something relati-
vely easy to measure (like the number of atoms in a cloud). As an interfering medium,
atoms exhibit some significant differences to photons, such as sensitivity to AC and
DC electric and magnetic fields, gravitational fields, and strong sensitivity to inertial
forces [15]. In addition, the low velocity of ultra-cold atoms in the laboratory frame
of reference increases interaction times in a small volume. A classic example of this
enhanced interaction duration is in Sagnac interferometry, where the reduced parti-
cle velocity increases the angle of rotation the interferometer undergoes whilst each
particle is within the system, increasing sensitivity-per-particle [33, 99].

It is for these reasons that atom interferometry has been proposed as a tool for ap-
plied physics such as gravitational sensing [41], prospecting [37], gravitational wave
astronomy [130], rotational sensing [33, 115], and for inertial navigation [42]. The
mechanism, however, also offers a window into fundamental physics, such as measu-
rement of Newton’s gravitational constant G [47], the equivalence principle [48], and
the fine-structure constant α [50–53].

Our ability to generate atom-optical elements with arbitrary output states allows for
the construction of multiple interferometer geometries with various numbers of arms.
Broadly speaking, we can build interferometers to perform homodyne measurements,
in which two arms of initially-equal momenta have their phase differentially shifted by
some field, such that information about that field is encoded in the resulting interfero-
meter phase shift. Alternatively, we can perform a heterodyne measurement by buil-
ding an interferometer with arms of different momenta, where the difference in energy
between arms leads to a measurement of interferometer recoil frequency [49, 110].
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4.2 Optical interferometry

4.2.1 Optical phase
The key principle in all interferometry is that of phase. Figure 4.1 shows a beam of
light incident on an optical interferometer. Here the wave has been drawn frozen in
time, where the waveform represents the cosine of the light phase at each position in
space.

The light wave undergoes reflection when it encounters a sudden shift in refractive
index at the boundary of each optic it encounters. It is important to note that this
reflection obtains a π phase shift only if the refractive index transitions from a low-to-
high value. Layered dielectric optical elements rely on this principle to enhance their
reflectivity: each low-to-high refractive index boundary is separated by a λ/2 optical
path length difference, and halfway (in terms of optical path length; the difference
in refractive index ensures that this point is not spatially halfway) between these in-
terfaces occurs the high-to-low interface. Whilst the reflections from the low-to-high
interfaces all acquire a π phase shift and therefore constructively interfere, the reflecti-
ons from the high-to-low interfaces do not, and so their spatially-dislocated wavefronts
also interfere constructively with those from the other interfaces.

If such a dielectric element is illuminated from the reverse side, the low-to-high
and high-to-low boundaries exchange places in the optical path length, and the phase
of the reflection is altered by π. Beam cubes are commonly constructed of two right-
angled glass prisms, where one of the joined faces has been coated in some dielectric
coating [131], and so exhibit the same ‘face-selectivity’ in terms of reflection phase.

For our hypothetical interferometer in Figure 4.1, this means the light obtains a π
phase shift when it encounters each mirror, but only obtains a π phase shift if it is
reflected after entering the ‘front’ face of a beam-cube (marked with a dot).

Counting up the phase shifts along all arms, we see that the upper (red) arm gains
π phase during reflection from the first beam cube (a), π phase from reflection from
the mirror (c), and 0 phase as it reflects to both outputs (A) and (B) from the last beam
cube (d). Likewise, the lower (blue) arm gains 0 phase as it passes through the first
beam cube, π phase as it reflects from the first mirror (b), and 0 phase as it passes
through the last beam cube (d) to output (B), but gains π phase as it reflects from the
last beam cube (d) to output (A).

Suppose that we have some input light wave of intensity Iin = |Ein(t)|2, with
frequency ω = 2πf , and a well-defined phase φ = ωt into our interferometer. This
wave is split by the first beam splitter (a) into two arms (upper ‘u’, and lower ‘l’), one of
which acquires some additional phase ∆φ. A second beam splitter (d) is encountered
by both arms, each of which is again split into two output ports (A and B), giving us

51



4.2. OPTICAL INTERFEROMETRY

four output terms,
EAu(t) = Ein(t)

1√
4
eiωt+∆φ+π+π ,

EAl(t) = Ein(t)
1√
4
eiωt+π+π ,

EBu(t) = Ein(t)
1√
4
eiωt+∆φ+π+π ,

EBl(t) = Ein(t)
1√
4
eiωt+π ,

(4.1)

where the light intensity output at the ports A and B are the squares of the superpositi-
ons of the respective E-fields, so at port A we have the light intensity

IA(t) = |EAu(t) + EAl(t)|2

... =
∣∣∣Ein

1√
4

(
eiωt + ei(ωt+∆φ)

)∣∣∣2
... = Ein(t)

2 1
4

(
ei(ωt−ωt) + ei(ωt−ωt−∆φ) + ei(ωt−ωt+∆φ) + ei(ωt+∆φ−ωt−∆φ)

)
... = Ein(t)

2 1
2

(
1 + ei∆φ+e−i∆φ

2

)
... = Ein(t)

2 1
2

(
1 + cos (∆φ)

)
... = Ein(t)

2 cos2
(

∆φ
2

)
,

(4.2)
and likewise at port B our output looks like

IB(t) = |EBu(t) + EBl(t)|2

... =
∣∣∣Ein(t)

1√
4

(
eiωt + ei(ωt+∆φ+π)

)∣∣∣2
... = Ein(t)

2 1
4

(
ei0 + ei(ωt−ωt−∆φ−π) + ei(ωt−ωt+∆φ+π) + ei0

)
... = Ein(t)

2 1
2

(
1 + ei∆φeiπ+e−i∆φe−iπ

2

)
... = Ein(t)

2 1
2

(
1− cos (∆φ)

)
... = Ein(t)

2 sin2
(

∆φ
2

)
, (4.3)

where the total output intensity Itotal(t) = IA(t) + IB(t) = Iin(t). We can therefore
model the output probabilities per photon of the interferometer with a pair of waves
P (A) = cos2(∆φ/2), P (B) = sin2(∆φ/2), again with P (total) = P (A) + P (B) =
P (in) = 1. With no interferometer bias, this reduces to P (A) = 1, P (B) = 0, and all
light leaves the interferometer via the right-side port.

Measurements are performed by introducing a differential phase shift ∆φ between
the two interferometer arms. This could be a small shift in the optical path length of
the upper arm, or some material of a different refractive index, for example. This phase
shift alters the interference at the output ports, mapping the phase shift to a shift in the
balance of light intensity at the output ports.

The sensitivity of a measurement therefore depends on the ability to resolve chan-
ges in the light intensity at the output, which is greatest where some shift in interfero-
meter phase maps to the largest change in output population, i.e. when dP (A)/dφ is
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maximised. The gradient is maximised when the output at both ports is equal, corre-
sponding to a differential phase of π/2. For this reason interferometers are often biased
with a π/2 phase shift, such that any perturbation due to measurement ∆φ results in
the greatest shift in light intensity at the output ports.

+π

+π

+π

+π

+0

(a) (b)

(c)

(d)

+0

+0

+0

∆φ

P (A) = cos2 (∆φ/2)

φtotal = 2π + ∆φ
φtotal = π

φtotal = 2π
φtotal = 2π + ∆φ

+∆φ

P (B) = sin2 (∆φ/2)

Figure 4.1: An example light-based Mach-Zehnder interferometer. An incoming wave
is coherently split into two beams by a non-polarising beamsplitter (NPBS) (a), ope-
ning the interferometer into two spatially separated arms. This first partial reflection
occurs when the refractive index along the beam path rises from a low to a higher value,
resulting in a π phase shift in the reflected arm. Both arms accumulate another π phase
shift when reflected by mirrors (b) and (c). A second NPBS closes the interferometer,
crucially imparting a π phase shift only to the lower arm’s reflection which enters the
‘front’ face of the beam-cube, leading to an overall ‘phase-slip’ between the interfero-
meter arms of π. This induces a complementarity between the output ports A and B,
where completely constructive interference at port A necessarily implies completely
destructive interference at port B. Small differential phase shifts in the interferometer
arms are then mapped to the output populations P (A) and P (B), mapping the light’s
phase information to output intensity.

4.2.2 Sagnac interferometry
Figure 4.2 shows an optical Mach-Zehnder interferometer used as a rotation sensor.
This implementation is known as a Sagnac interferometer [132]. Here, the finite speed
of light allows the orientation of the interferometer to change between the moment
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that light encounters the first beam-splitter and the moment that it hits the second. This
change in orientation acts as an effective differential shift in the optical path length
of each interferometer arm. If the arc that the beam-splitters circumscribe during a
rotation is plotted as a circle, the speed of their motion is given by vrot = Ωrotr, where
r is the radius of the interferometer ring and Ωrot the rotation rate of the interferometer
in radians per second.

The phase shift of the Sagnac interferometer is determined by the projection of the
rotation rate into a displacement of the closing beam-splitter when the light reaches
that point in the interferometer. The phase shift is therefore determined by the path
that the light takes in the interferometer. If the light is guided along a circular path
(for example, by an optical fibre as is the case in optical ring-gyroscopes) the time
delay between light hitting the first and second beam splitter is determined by the half-
circumference of this circle, t = πr/c, where c is the speed of light.

The effective shift in the path length of one arm is then given by the position shift
of the closing beam-splitter during this time delay, δx = vrott = Ωrotπr

2/c. The phase
shift in one arm is just this spatial shift in units of the light wavelength,

δφ = 2π
δx

λ
= 2π

Ωrot · (πr2)

λc
=

2π

λc
A ·Ωrot, (4.4)

where A is the area enclosed by the circle circumscribed by the interferometer’s optical
path.

If we instead consider the ‘square’ optical path geometry shown in Figure 4.2, we
need to address some subtleties. In the limit Ωrot → 0 rad s−1, the path length from the
first beam-splitter to the first mirror is

√
2r, and from there to the closing beam-splitter

also
√

2r, giving us a delay time along the optical path of t = 2
√

2r/c. The subtlety
here is that the motion of the beam-splitters and mirrors during a rotation is not co-
linear with the direction of the light propagation, but at an angle of 45◦. We therefore
see a change in path length as the projection of the movement of each element along
the optical path, such that δx = vrott/

√
2 = 2Ωrotr

2/c. As with the circular optical
geometry above, our phase shift in one interferometer arm is therefore

δφ = 2π
δx

λ
= 2π

Ωrot · (2r2)

λc
=

2π

λc
A ·Ωrot, (4.5)

where A is now the area of the square enclosed by the optical path, |A| = 2r2.
Since any rotation causes an equal and opposite spatial-shift in the interferometer

arms, any such +δφ shift in one arm necessarily induces a−δφ shift in the other. With
a total phase shift of ∆φ = +δφ − −δφ = 2δφ, our rotation-induced phase shift is
therefore

∆φ =
4π

λc
A ·Ωrot, (4.6)
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known as the Sagnac phase [15,132]. This configuration gives us a rotation sensitivity

∂φ

∂Ωrot
=

4πA

λc
, (4.7)

which offers two simple methods by which the phase shift from a given rotation rate
can be enhanced by modifying the A term. This |A| = πr2 term is derived from the
optical path difference in the interferometer, which can be increased either by (1) in-
creasing the number of times each particle passes around the loop so that |A| = Nπr2

for a linear scaling φ ∼ N [133], and (2) increasing the radius of the interferometer so
that |A| = π(r = rold + δr)2 for a quadratic scaling φ ∼ r2.

Ωrott

A

Figure 4.2: The Sagnac interferometer uses the finite travel-time of the interfering
medium in its arms to generate a rotation-dependent phase-shift at the output ports.
An incoming coherent light beam is split into two interferometer arms. Whilst the
light travels along paths towards outputs A and B, the interferometer rotates, slightly
shortening the arm A and lengthening arm B, generating a differential phase shift at
the closing beam cube. The compact geometry allows for the interferometer arms to
‘wrap’ around the paths many times, increasing the enclosed area and the resulting
rotation-induced phase-shift.
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4.3 Atom interferometers

4.3.1 Enhanced sensitivity
The enhanced interaction mentioned in Section 4.1 is derived from this sensitivity
Sagnac interferometers have to particle wavelength [33, 99, 134]. A more general ex-
pression for the Sagnac phase is in terms of particle energy E

φSagnac =
4π

hc2
EA ·Ωrot , (4.8)

which we can use to determine a phase shift for a Sagnac atom interferometer

φatom =
2matom

~
A ·Ωrot . (4.9)

Our experimental apparatus uses 87Rb atoms with a velocity on the order of 10 mm/s
and a mass of 1.4× 10−25 kg [104], giving us an energy-per-atom of 8.0× 10−30 J, with
cooling lasers targetting the D2 line at 780 nm. If we somewhat arbitrarily use these
values to compare Sagnac phase sensitivity with equations 4.4 and 4.9, we can estimate
an enhancement factor

∆φatom

∆φphoton
=

2matom

~
λphotonc

4π
= 5.1× 1010 , (4.10)

when using an atom Sagnac interferometer over an optical Sagnac interferometer. It is
important to note that this enhancement is per particle, and that it is typically far easier
to increase photon flux than it is atom flux [99]. Our experiment typically generates a
Bose-Einstein condensate of 2.0× 105 atoms with an experimental cycle time of 30 s,
giving a particle flux of 17× 103 atoms s−1 [98, 99]. A corresponding photon flux at
780 nm is obtained with only 4.2 aW of laser power. For comparison, the sensitivity of
the Sagnac interferometer with respect to particle number scales as

∂φ

∂N
∝
√
N . (4.11)

To generate a comparable interferometer sensitivity, we require something on the order
of 2.0× 105 × (5.1× 1010)2 = 1.0× 1032 photons over each 30 s cycle, for a photon
rate of 3.3× 1030 s−1. With a wavelength of 780 nm, each photon has an energy of

Ephot = hc/λ = 6.63×10−34 J s×3.00×108 m s−1/780 nm = 2.55×10−19 J . (4.12)

This implies a required laser power of 0.85 TW to match the sensitivity of our BEC
cycle through photon number alone. A real experiment would more likely make up
only part of the sensitivity with particle number, and rely on increasing the enclosed
interferometer area by increasing the radius r (δφ ∝ r2) and by guiding the photons
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around the interferometer path N times before recombining (δφ ∝ N ).

4.3.2 Phase shifts
Whilst the first atom interferometers used material gratings as diffractive optics [15]
and some recent experiments rely on matter-matter boundary effects [135], most mo-
dern atom interferometers make use of optical gratings [15]. As with optical inter-
ferometers, these atom-optics impart phase shifts in the atoms they interact with. In
the case of Bragg interferometers the atom-optic lasers are detuned such that they are
two-photon resonant between a state with zero momentum |1, p = 0~k〉 of an atom,
and a second state with momentum |2, p = +2~k〉 of the same atom.

The transfer of the atomic wavefunction between the two states using a pulsed
optical grating is controlled with two parameters; the pulse duration t, and the two-
photon Rabi frequency Ω. The analysis of [136] shows that the complex amplitudes of
the two modes are well approximated by a two level system, given by[

c1(p = 0~k, t)
c2(p = 2~k, t)

]
=

[
Λc −iΛse

−iφL

−iΛ∗seiφL Λc

] [
c1(p = 0~k, t0)
c2(p = 2~k, t0)

]
, (4.13)

where Λc = cos(|Ω|t/2) and Λs = (Ω/|Ω|) sin(|Ω|t/2). The value of |Ω|t determines
the phase of our Rabi oscillation between the two states,

Λπ/2 =
1√
2

[
1 −ie−iφL

−ieiφL 1

]
, Λπ =

[
0 −ie−iφL

−ieiφL 0

]
. (4.14)

It is from this that the ‘π’ and ‘π/2’ pulse derive their name, with the π/2 pulse being
a ‘beam-splitter’ Rabi oscillation that performs the transition

|1, p = 0~k〉 → 1√
2

(
|1, p = 0~k〉+ e−iπ/2e−iφL|2, p = 2~k〉

)
,

|2, p = 2~k〉 → 1√
2

(
e−iπ/2e+iφL|1, p = 0~k〉+ |2, p = 2~k〉

)
,

(4.15)

and the π pulse acting as a mirror that performs the transitions

|1, p〉 →e−iπ/2e−iφL|2, p+ 2~k〉,
|2, p+ 2~k〉 →e−iπ/2e+iφL|1, p〉 .

(4.16)

It can be seen from these equations that each interaction imparts a π/2 phase shift to
the interacting atomic mode.

Figure 4.3 shows a Mach-Zehnder atom interferometer constructed from three opti-
cal grating pulses in a π/2, π, π/2 configuration. Drawn alongside each interferometer
arm (red upper u and blue lower d) are the contributions to the phase as the atoms
travel to the output ports (upper 2, and lower 1). If we sum these phase contributions
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along the four possible paths the atoms can travel, we obtain the phases

φ2u = +φA − π/2− φB − π/2 + φC − π/2 + 4ωrT1

= +φA − φB + φC − 3π/2 + 4ωrT1

φ2l = 0 + φB − π/2 + 0 + 4ωrT2

= +φB − π/2 + 4ωrT2

φ1u = +φA − π/2− φB − π/2 + 0 + 4ωrT1

= +φA − φB − π + 4ωrT1

φ1l = 0 + φB − π/2− φC − π/2 + 4ωrT2

= +φB − φC − π + 4ωrT2 ,

(4.17)

where the phase φij is the phase accumulated by an atom that followed arm j and output
port i. These phases are analogous to those of the optical interferometer we considered
in equation 4.1. As in that example, the probability of a particle (in this case an atom)
exiting the interferometer at a given port is determined by the interference of these
phase terms at each output,

φ2 = φ2u − φ2l = (φA − φB + φC − 3π/2 + 4ωrT1)− (φB − π/2 + 4ωrT2)
= (φA − 2φB + φC + 4ωr(T1 − T2)− π)

φ1 = φ1u − φ1l = (φA − φB − π + 4ωrT1)− (φB − φC − π + 4ωrT2)
= (φA − 2φB + φC + 4ωr(T1 − T2)) .

(4.18)
If the interferometer timings T1 and T2 are equal the 4ωrT terms cancel, and the output
port probabilities go to

P (1) = cos2
(
φA − 2φB + φC

)
,

P (2) = cos2
(
φA − 2φB + φC − π

)
= sin2

(
φA − 2φB + φC

)
,

(4.19)

resulting in a pair of conjugate output ports where the output population depends on
the phase of the optical grating during pulses A, B and C.
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Figure 4.3: An example Mach-Zehnder atom interferometer. Here the interfering me-
dium is an atomic ensemble, and the interferometer ‘arms’ are comprised of the states
|1, p = 0~k〉 and |2, p = +2~k〉 in a two-level atomic system. The ‘beam-splitter’ and
‘mirror’ optics are formed from optical gratings, where the counter-propagating lasers
are detuned such that the optical lattice moves at a velocity v = ~k/m, causing atoms
to Bragg diffract between the |1, p = 0~k〉 and |2, p = +2~k〉 states.

We could then rotate the interferometer during an experimental sequence to per-
form a Sagnac rotation measurement where the inertia of the atoms causes their po-
sition in the final optical pulse to change, altering the output interferometer phase.
The slower motion of the atoms allows the interferometer to rotate more during the
sequence, increasing the shift in optical path length and therefore accumulated phase.

4.4 Interferometer geometry
The tunable off-resonant atom-optics described in Chapter 3 allows for the creation of
interferometers with various geometries. Our interferometers have been symmetrical
in momentum around the laboratory frame of reference, because our atom-optic beams
share a common frequency, but a detuning of the atom-optic lasers would allow for
asymmetrical momentum distributions.
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4.4.1 Two-arm interferometry
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Figure 4.4: The use of off-resonant composite pulses described in Section 3.5 allows
us to generate a ‘two-arm’ atom interferometer like that shown in Figure 4.3, but with
no change in internal state. Here both arms spend equal times moving, so the output is
independent of recoil phase regardless of interferometer timings.

We can approximate the interferometer described in Figure 4.3 using the beam-splitter
|0~k〉→[|+2~k〉+|−2~k〉] atom-optics described in Figure 3.5. Figure 4.4 shows this
‘two-arm’ geometry. Here both interferometer arms are travelling during times T1 and
T2, so the accumulating

∫
4ωrecoil dt phase is common to all arms and rejected at the

interferometer output.
We use a Blackman pulse [129] to perform a reflection of the [|+2~k〉+|−2~k〉]

momentum states to re-overlap the atomic packets at time T = T1 + T2. This interfe-
rometer configuration has the advantage that there is no change in the internal state of
the atoms, so Zeeman-induced phase shifts from homogenous magnetic fields are sub-
ject to common-mode rejection at the output. We therefore have less need of magnetic
shielding, which has been crucial in Bragg-based experiments [33, 115].

Without an applied phase-shift, we naively calculate a complete return of atoms to
the |0~k〉 mode after the third interferometer pulse. Figure 4.5 shows the experimental
output of an unbiased interferometer, where we instead observe a slow decay from a
P (0~k) ≈ 1 result at short durations to P (0~k) ≈ 0.3 after 3 ms. With a Thomas-
Fermi radius in the X-direction rTFX ≈ 15 µm and a wavepacket velocity of vX ≈
10 mm s−1, we expect the [|+2~k〉+|−2~k〉] clouds to spatially separate after a time
t ≈ 1.5 ms.
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Figure 4.5: Experimental off-resonant two-arm Mach-Zehnder interferometer with no
external fields applied. Each point represents at fractional population of the |0~k〉
momentum state after a two-arm interferometer with no applied gradient field, for a
given total interferometer duration (from the beginning of the first pulse to the end of
the last). The error bars around each point are the standard deviation of five experi-
mental runs. In principle this interferometer configuration should return a fractional
population P(0~k) = 1 at all times.

4.4.2 Three-arm interferometry
If we define the ‘geometry’ of our interferometer to mean the composition of momen-
tum states included in it, i.e. ‘a two-arm interferometer with states [|+2~k〉+|−2~k〉]’,
then we can alter this geometry by changing the pulse sequence we use to open and
close the interferometer. This change in geometry might be as simple as switching to
an increased momentum separation using a |0~k〉 → [|+4~k〉+|−4~k〉] pulse as des-
cribed in Section 3.7, or might involve changing the number of momentum components
we include in the interferometer.

For our atom-optics, the experimentally-simplest such geometry involves using a
single, short pulse to split our atoms in a |0~k〉→C±|+2~k〉+C0|0~k〉+C±|−2~k〉
‘beam-tritter’ [125, 137] operation. Again, there is no change in the internal state of
the atoms, and therefore common-mode rejection of Zeeman phase shifts induced by
spatially flat magnetic fields. Here the outer arms’ velocity causes them to accumulate
a 4ωrecoilt phase, but the central |0~k〉 arm does not.
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Figure 4.6: We generate a ‘three-arm’ off-resonant interferometer geometry
using a simpler pulse sequence. The first pulse (shown in Figure 4.12) will
act as a ‘beam-tritter’ [125], pushing the atoms into a superposition |ψ〉 =
C±|+2~k〉+C0|0~k〉+C±|−2~k〉. Here, only the moving |+2~k〉+|−2~k〉 arms ex-
perience a recoil phase, and so the interferometer phase (in the absence of gradient
fields) becomes a heterodyne frequency measurement.

4.5 Homodyne interferometry

4.5.1 Background
The optical interferometer shown in Figure 4.1 is an example of homodyne interfero-
metry. Here we take a single laser beam at a reference frequency, and split it along the
two arms of the interferometer. Measurement is performed by encoding information
in one arm of the interferometer, whilst the other arm represents a reference oscillation
with no encoded information. The measurement is taken by interfering this ‘null’ arm
with that containing phase information. In this instance homodyne refers to the fact
that the ‘detection’ and ‘reference’ beams share a common frequency.

In contrast, a heterodyne interferometer intentionally alters the frequency between
the detection and reference arms, fdet and fref, projecting the measurement into new
frequencies fdet + fref and fdet − fref, known as heterodynes.

The interferometer described in Section 4.4.1 splits an initially stationary cloud of
atoms into two counter-propagating momentum states with equal speed, and therefore
equal kinetic energy. As a result, the phases of these modes evolve at an equal rate in
the absence of other influences.
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This measurement with different modes of identical frequency is an example of
homodyne (same frequency) detection. Since the output of the interferometer is de-
termine by the relative phase of these modes, our interferometer has common mode
rejection of the ‘kinetic’ frequency. Measurements not rejected are those which per-
turb the relative phase of the modes, such as the phase shifts induced by gravitational
fields, magnetic fields, or van der Waals interactions [135].

Since our interferometer uses 87Rb atoms in the |F = 2,mF = 2〉 state, a brief
magnetic gradient of duration ∆t will cause a shift in the potential at the atoms pro-
portional to their displacement,

UB(x) = −mFgFµB
dB
dx

x . (4.20)

Each arm therefore obtains a proportional phase shift

∆φpotential = mFgFµB
dB
dx

x
∆t

~
, (4.21)

and the interferometer output can be used as a measurement of the magnetic gradient
of the pulse.

Importantly, the application of a potential gradient will necessarily induce an acce-
leration into the interferometer atoms,

aB = F/m = −dUB
dx

/m = −mFgFµB
dB
dx

/m . (4.22)

This shift in velocity alters the balance of the arms’ 4ωrecoilt terms, introducing a per-
sistent frequency component to the interferometer phase, φkinetic(t). In addition, the
induced motion of the atoms causes the location where they overlap as the interfero-
meter close to shift. This shift in position is accompanied by a shift in the phase of the
optical grating, introducing an additional ‘laser phase’ shift, φlaser.

4.5.2 Gradiometry
In the special case where the interferometer is time-symmetrical (T1 = T2) and a time-
uniform potential gradient (such as a magnetic or gravitational field) is applied across
the interferometer splitting axis, the kinetic and potential phases are exactly equal and
opposite, φkinetic(T1 + T2) + φpotential(T1 + T2) = 0 [138].

The remaining laser phase φlaser is linearly proportional to the spatial shift in the
centre-of-mass of the atoms as a result of the applied gradient [138]. If the gradient
is constant in time, the laser phase can be calculated with Newtonian equations of
motion, where the acceleration aB (equation 4.22) is applied for the total interferometer
duration T = T1 + T2,

∆x =
1

2
aBT

2, (4.23)
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and the laser phase is just the spatial shift in units of the optical grating period λgrating,

∆φlaser = 2π
∆x

λgrating
=

1

2
kgratingaBT

2. (4.24)
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Figure 4.7: A current-carrying coil induces a magnetic gradient field d|B|/dx that
accelerates atoms in our interferometer. This acceleration over the period T1 + T2

curves the atomic trajectories (red and blue traces) changing the local laser phase when
they recombine in the closing interferometer pulse.

Figure 4.7 shows a schematic of the interferometer, where an initial beam-splitter
pulseA splits the atoms into the |+2~k〉+|−2~k〉momentum states, a Blackman pulse
B performs a |−(2+δ)~k〉↔|+(2−δ)~k〉 reflection, and a second beam-splitter pulse
C closes the interferometer. With no applied accelerating fields, this recombination
occurs when the atoms are in the same position where the initial split occurred. These
atomic trajectories are drawn in dashed lines.

The phase of the optical grating is determined by the relative positions of the optical
elements in the atom-optic laser path, and so the spatial-phase of the optical grating
(i.e. where the nodes and anti-nodes are located spatially) should be the same for all
interferometer pulses. In practice these optical elements may move (due to acoustic
noise, for example) during the pulse sequence, altering the optical phase between the
first and last pulses.

We can apply a magnetic gradient field by passing an electric current through a
coil located near the interferometer atoms. When this magnetic gradient is applied
across the interferometer axis the interferometer atoms experience a potential U(x)
and corresponding acceleration a(x), which alters the velocity of the atoms during
the interferometer, altering the accumulating recoil phase. Appendix A.3 shows that

64



4.5. HOMODYNE INTERFEROMETRY

these phase contributions exactly cancel when the interferometer timing is symmetrical
(T1 = T2). The remaining phase contribution is that of the laser phase; the induced
velocity moves the interferometer closing position by ∆x, which introduces a phase
shift in the optical grating of φlaser = φC−φA = (2π∆x)/(λgrating) (see equation 4.24).
Here we are using the optical lattice which closed the interferometer to measure how
far the field gradient has moved the atoms’ centre of mass during the interferometer
duration.

4.5.3 Experimental gradiometer
Gradient coil calibration

The source of our magnetic gradient field is a single copper coil of four turns with
radius 12.7 mm located such that the atoms are approximately 15 mm axially from the
centre of the coil. We induce a gradient field by sending an electric current through the
coil. To confirm that our gradiometer works correctly, we need an independent way of
calibrating our gradient field dB

dx as a function of coil current I .
Since the gradient field exerts a force on our atoms, we can image the atoms’

position when we apply some current through the coil, and calculate the acceleration
required to achieve that displacement. We allow the atoms with initial velocity va = 0
to fall freely while we send some current I through the gradient coil for a time T1. This
gradient potential causes the atoms to accelerate until a velocity vb = aB(x)T1. We then
switch off the gradient coil, and allow the accumulated velocity to project into a larger
spatial separation ∆x = xC − xA for a time T2, when we perform absorption imaging.
A schematic of this trajectory is shown in Figure 4.8.
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Figure 4.8: Classical method of calibration of our magnetic gradient coil. We position
a copper coil with 4 turns and a radius of 12.7 mm approximately 15 mm from the
atoms. When then allow the atoms to freely fall whilst sending some electric current I
the coil for a time T1, inducing a gradient potential across the atoms. We then turn the
current off, and allow the accumulated velocity to project into a larger spatial shift. We
can then calculate the acceleration required to generate that spatial shift, and extract
the magnetic gradient applied at that current.

We begin by re-arranging the spatial shift of the atoms due to our applied gradient
to make the acceleration the subject,

aB(x) =
∆x(

1
2
T 2

1 + T1T2

) , (4.25)

and from here convert this acceleration into a magnetic gradient in the x direction using
equation 4.22,

dB
dx

= − m87Rb

mFgFµB

∆x(
1
2
T 2

1 + T1T2

) . (4.26)

Equation 4.26 therefore gives us a way of relating the shift in position of atoms to
some applied magnetic gradient in the x direction.
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Figure 4.9: Calibration of our magnetic gradient coil. Here we send various currents
through our gradient coil for a time T1 during free fall, and then turn the coil off for a
further time of flight T2. We then perform absorption imaging, and fit the falling atomic
cloud, obtaining a spatial position at the end of each time of flight. Using equation 4.26
we convert the spatial displacement of the atomic cloud into the magnetic gradient
required to perform the observed atomic shift in position. This gives us a calibration
curve between the coil current and resulting magnetic gradient.

We build our calibration curve by allowing a BEC to fall under gravity whilst sen-
ding some current through our gradient coil, taking an absorption image after the time
of flight T1 +T2. Using equation 4.26 we calculate the magnetic field gradient required
to generate the shift in the atoms position, and plot this against the coil current applied
in each instance in Figure 4.9. A linear fit returns a gradient of

dBx

dx
/I = 0.88 G cm−1 A−1 . (4.27)

Interestingly, whilst we see a strong linear relationship between atomic accelera-
tion and applied coil current from ∼ 1 A and above, this linear fit crosses 0 G cm−1 at
0.42 A. The mapping we have performed to extract a field gradient assumes that all
positional shift is linearly proportional to an applied magnetic field (because time is
fixed for all samples in equation 4.25). As a result we can also view the dB/dx y-axis
in Figure 4.9 as a measure of position. The atoms have a position of x ≈ 0 ± 1 µm at
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I = 0 A and I = 0.6 A, and a position x ≈ −4 ± 2 µm at I = 0.3 A. This is consis-
tent with a small ambient magnetic gradient field with a gradient pointing towards our
gradient coil.

There is a very subtle point to be made here; when we send a current through our
gradient coil the weak-field seeking |F = 2,mF = 2〉 atoms move away from our
coil because the centre of the coil is where the strongest magnetic field is located. If
we reverse the polarity of the current through that coil, the atoms still move in the
same direction, away from the coil centre. The atoms re-orientate their spins with
the magnetic field, such that away from the coil is always lower potential. With this
in mind, the behaviour of our motion in Figure 4.9 makes sense; a small magnetic
field with a gradient opposing that generated our coil will still push atoms away from
our coil, except when the gradient field from the coil cancels to generate a spatially-
uniform magnetic field. We would then naively expect to find an ambient magnetic
field gradient of magnitude dB/dx ≈ 0.37 G cm−1. An additional complication is the
addition of our magnetic ‘shim’ coils, used to compensate for the Earth’s magnetic pull
on our quadrupole trap minima and to provide a quantisation axis for our atomic spin.
These concepts have been examined more thoroughly in our previous work, where we
did indeed find a combination of stray magnetic and non-magnetic accelerating forces
in our interferometer [139].

The interferometer

The above calibration method took the acceleration imparted by a magnetic gradient,
and projected this acceleration into a shift in position. Interferometers can perform the
same task by using their optical gratings as a ruler against which they measure this
gradient-induced-acceleration.

Figure 4.10a shows a simplified schematic of the operation of an optical lattice
on the phase of a BEC during an atom interferometer sequence, drawn at various ti-
mes. For simplicity this schematic uses a simplified splitter pulse, and not the tuned
|0~k〉↔[|+2~k〉+|−2~k〉] pulse our experimental gradiometer does.

In Figure 4.10(b) we see the initial conditions of the system at T = t0. Our optical
lattice has a phase locked with the x0 position, and our BEC has a uniform phase. We
then apply our optical lattice for some time until T = t1, in Figure 4.10(c). The pre-
sence of a spatially-modulated light field has induced an AC Stark shift in the atomic
states of our BEC atoms. This AC Stark shift is proportional to the intensity of the
light, and so the energy shift is greater where the light field is more intense. Our BEC
which had a uniform phase (dashed line) has therefore accumulated more phase in the
high-intensity locations than the low intensity locations (solid black line). In reality the
density of our BEC is also modulated during our atom-optic pulses, but for simplicity
this is not shown here.

After the first splitter pulse we have some free evolution during which a magnetic
field gradient can induce an acceleration in the atoms until the second closing pulse
at time T = t2. Let’s examine the cases where the atoms remain in place without
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moving ∆x = 0, and where the atoms move exactly one half optical grating period
∆x = λgrating/2.
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Figure 4.10: A simplified schematic of the AC Stark shifts in an atom interferometer
used as a gradiometer. An overview of the interferometer through time is displayed on
top, with a gradient field applied (solid lines) and with no field applied (dashed lines)
(a). The optical grating light intensity is drawn in red, phase locked to the x0 position.
Figures are drawn for times (b) before the first splitter pulse, (c) during the first splitter
pulse, (d) during the closing pulse with no position shift, and (e) during the closing
pulse with a ∆x = λgrating/2 position shift. The arrows indicate the maximum shift
in BEC phase during each optical grating pulse, with dashed black lines showing the
BEC phase at the beginning of each pulse, and solid black lines the phase at the end of
each pulse.

If the atoms remain in place, as shown in Figure 4.10(d), the optical grating remains
in phase with the previous atomic phase shift. As such the AC Stark shift from this
second pulse is spatially in phase with the previous one. The regions of our BEC
which previously accumulated most phase accumulate more, and the regions which
previously accumulated no additional phase again accumulate none. This second pulse
has essentially increased the effect of the opening splitter pulse.
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If the atoms obtain a ∆x = λgrating/2 positional shift, shown in Figure 4.10(e), there
is now a π mis-match between the spatial phases of the optical grating and previously-
induced BEC phase. The closing splitter pulse which now advance the phase most in
positions where the previous was previously untouched, and will least adjust the phase
in regions where it was previously advanced most. The end-result of the pulse is to
regain our original uniform BEC phase.

The superposition of momentum states after the closing pulse is determined by
the phase (and density) distribution across the BEC. The uniform phase BEC in Fi-
gure 4.10(e) corresponds to a condensate with all its amplitude in the |0~k〉 state. Con-
versely, the corrugated phase BEC in Figure 4.10(d) corresponds to some superposition
of the [|+2~k〉+|−2~k〉] and |0~k〉 states. Again, it is important to remember that the
optical grating similarly modulates the density distribution of the BEC.

The interferometer here has effectively used the optical grating as a ruler, first im-
printing the optical grating’s ‘reference’ phase and density modulation onto our BEC,
and then after some time has compared this imprinted BEC phase with the optical re-
ference phase. The resulting output phase (and density) distribution determines the
relative fractions of each momentum state in the superposition, which we then mea-
sure by way of absorption imaging after some evolution time to spatially separate the
momentum states.

Our experimental gradiometer functions by the same principle, albeit with more
complex pulse splitter pulse sequences. The experimental results of our magnetic gra-
diometer is shown in Figure 4.11. Here the interferometer was configured with two
arms in the [|+2~k〉+|−2~k〉] states, with an evolution time T1 = T2 = 100 µs on
either side of a central reflection pulse. The magnetic gradient was applied 40 ms be-
fore the opening splitter pulse, and remained on until after the closing splitter pulse.
This gives a total interferometer duration of 98.8 µs + 100.0 µs + 164.0 µs + 100.0 µs +
98.8 µs = 561.6 µs.

As with our gradient coil calibration, we are measuring the spatial shift of the atoms
induced by some accelerating force, except that instead of projecting the acceleration
onto a displacement several hundred micrometres in size, we are using the optical
grating to measure displacements on the scale of tens to hundreds of nanometers.

We observe a population change in the interferometer |0~k〉 output port which is
modulated with the applied gradient field. To this data we fit a cosine with an expo-
nential decay (Red, solid line). For comparison, alongside this is the cosine of optical
grating phase at the position we expect the atoms to be (blue dash-dotted line), given
the calibration curve shown in Figure 4.9. The same optical phase curve is drawn again
(green dashed line) with the envelope parameters extracted from the fit.

We see a modulation of the population in our P (p = 0~k) output port with a rate
similar to our prediction from the coil calibration. We also see a phase shift δφ ≈
0.18 π rad. If the 0.37 G cm−1 stray field we mentioned in the coil calibration is real,
we would expect this to generate an acceleration of 0.24 m s−1, projected over our ∼
550 µs interferometer duration into a spatial shift of δx ≈ 36 nm, corresponding to
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an optical grating phase shift of δφ ≈ 0.17 π rad, which is consistent between both
measurements.

We also observe a decay in the interferometer contrast as the field gradient is in-
creased. Since the applied gradient accelerates the atoms, the position of the atoms
during the closing pulse is not fixed, but rather changes over the ∼ 100 µs closing
pulse. Since the closing pulse compares the optical reference phase against the BEC
phase, this swept phase ‘washes out’ the phase during the closing pulse as the current
coil is increased.

The coil calibration suggests that our gradient field is around 9 G cm−1 when our
coil current is at I ≈ 11 A (at the upper end of our interferometer data where the
contrast has reduced significantly). This gradient field generates an acceleration of ap-
proximately 5.5 m s−1, such that during the closing pulse at T ≈ 500 µs, our atoms are
moving at around 2.5 mm s−1. During our ∼ 100 µs closing pulse our atoms therefore
move 250 nm, causing a phase slip between the BEC and optical reference phase of
approximately 1.1 π rad. We interpret the reduction in contrast of the gradiometer here
as being most likely caused by this phase-slip.
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Figure 4.11: Experimental output of the first-order two-arm magnetic gradiometer. The
interferometer is in a two-arm [|+2~k〉+|−2~k〉] configuration, and the interferometer
output recorded for various gradient coil currents (black filled circles represent the
mean fractional P (0~k) population, where errorbars are the standard deviation of the
sampled values). To this we fit a cosine wave with an exponential decay. The blue sine
wave is a representation of the interferometer phase we should expect given our coil
calibration (Figure 4.9). The green decaying sine is the same expected phase with an
envelope matching the red fit.
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4.6 Heterodyne interferometry

4.6.1 Theory & Background
The simplest interferometer we can create is that of a square beam-splitter pulse which
‘opens’ the interferometer, followed after some time T by a second beam-splitter pulse
which ‘closes’ the interferometer. This is essentially a ‘two-pulse’ atom-optic beam-
splitter [121], except that the wait time between pulses is swept in duration.

The evolution of this short interferometer is visualised on the Bloch sphere in Fi-
gure 4.12, with an example pulse sequence shown in Figure 4.12a, and the numerically
simulated output of that example sequence shown in Figure 4.12b. The first pulse (1)
causes the Bloch vector (red arrow) to rotate around the axis of the Rabi vector (blue ar-
row), pushing the atoms into a superposition |ψ〉 = 1√

2

(
|0~k〉+eiφ[|+2~k〉+|−2~k〉]

)
,

when the optical grating is switched off. Since the different momentum states have
different energies, the relative phase between them oscillates in time, causing a preces-
sion of the Bloch vector around the equator of the sphere for some ‘wait’ time T (2).
The third pulse (3) then applies the same Rabi vector again, mapping the accumulated
phase to some final population.
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Figure 4.12: An example three-arm first-order momentum interferometer shot for
a given time T . The first interferometer pulse (1) rotates the state vector (red)
around the Rabi (blue) vector from an initial |0~k〉 state to a superposition |ψ〉 =

1√
2

(
|0~k〉+ eiφ[|+2~k〉+|−2~k〉]

)
. The different energies of these modes then cause

a phase-rotation to occur during a wait time (drawn here at T = 25 µs, as an example),
generating a phase slip φ ≈ π/2. A final ‘closing’ pulse performs another rotation,
mapping this π/2 phase to a fractional population Pp=0~k ≈ 0.5.
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Since the interferometer sequence maps the phase accumulation to a population,
we can measure the evolution of this phase by repeating the interferometer measure-
ment with varying T times. We should then see a periodic modulation in the output
fractional population of the |0~k〉 and [|+2~k〉+|−2~k〉] modes. The phase of the in-
terferometer evolves in proportion to the difference in kinetic energy of the momentum
states involved, so we can calculate the interference frequency we should expect to see,

ω =
p2

2m87Rb~
=

(2~k)2

2m87Rb~
=

4~ (7.24× 106 m−1)
2

2× 86.9× 1.66× 10−27 kg
= 2π × 12.2 kHz. (4.28)

A simulated interferometer fringe is shown in Figure 4.13, where the 82 µs period
corresponds to a frequency of 12.2 kHz, and the fringe contrast is predicted at approx-
imately 100 %. The simulation includes all momentum states between |−12~k〉 and
|+12~k〉, and small populations within these states slightly reduce the population in
the |0~k〉 state. A second initially-confusing result is that the zero-momentum popu-
lation at T = 0 is not P (0~k) = 1. This is because T = 0 does not correlate to an
initial state, but rather zero separation time between the two beam-splitter pulses. Each
beam-splitter pulse has a duration of 26.6 µs, over which time some phase accumulates.
This is analogous to the deviation from ‘thin’ lens approximations in optics.
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Figure 4.13: Numerical simulated interference fringes of the three-arm momentum
interferometer. Here, the wait time T is swept from 0 µs to 100 µs, and the fractional
populations P (0~k) (solid black line) and the P (|+2~k〉+|−2~k〉) (dashed red line)
plotted as a function of the interferometer delay time T . We see an oscillation with
nearly 100 % contrast and a period of approximately 82 µs.
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4.6.2 Experimental realisation
We configured our interferometer with the same parameters as those used in our simu-
lation. The optical grating was pulsed with a depth of 6.07 Er and duration 26.6 µs to
open the interferometer, a pulse separation time T where the optical grating is switched
off, and a second identical pulse fired to close the interferometer.

The atoms were then allowed a period of free flight, mapping the momenta to spa-
tial positions, before an absorption image is taken. Five shots are recorded at each
evolution time, and the resulting atomic distributions fitted with Thomas-Fermi profi-
les to extract the atomic population of each mode. These are converted to fractional
populations, and a mean and estimate of standard deviation of measurement taken at
each time. The resulting data are shown in Figure 4.14

The interferometer fringes were fit with a model comprising a cosine with decaying
envelope,

P =
(
A cos(2πffringesx+ φ)− yd

)
exp

(
−(x− t0)2

(2σ2)

)
+ yo + yd , (4.29)

where A is the cosine amplitude, f the cosine frequency, φ the cosine phase offset,
yd the envelope decay ‘zero’ level, t0 the central time of the envelope, σ the envelope
width, and y0 the signal’s overall vertical offset. The interferometer contrast at T =
0 µs is 98± 1.6 %, before the different momentum modes significantly spatially sepa-
rate, and before mean field effects induce phase-shifts which ‘wash-out’ the contrast
fringes [140].

The Levernberg-Marquardt fit returns the parameters A = 0.490 ± 0.008, ffringes =
12295 ± 30 Hz, φ = 0.094 ± 0.014 rad. This frequency results in a signal period of

1
12300 Hz

= 81.3 µs. This phase offset leads to first maximum at 0.094 rad
2π rad

× 1
12230 Hz

=
1.22 ± 0.18 µs. Since our interferometer arms use two photon recoils per arm, the
kinetic energy of these moving atoms is four times that of a single recoil. Our single-
photon-recoil frequency is therefore ωrecoil = 2πffringes/4 = 2π × 3.058 kHz.

This experimental sequence is based on the same parameters that generated the
simulation shown in Figure 4.13. Our fitted experimental frequency of 12300± 30 Hz
gives us a period of 81.3 ± 0.2 µs, inconsistent with the simulated 82.0 µs signal. The
fitted time offset to the first maximum of 1.22 ± 0.18 µs is also inconsistent with the
simulated time offset of 4 µs. These discrepancies can both be most simply explained
by our poor knowledge of our interferometer beam angle; a small shift in the optical
lattice wavelength will change the momentum imparted per photon recoil, altering the
energy transferred per interaction and therefore the interferometer frequency. If the
relative energies between neighbouring momentum states changes, the speed at which
their relative interactions occur also changes.

In addition to the timing, we observe a decaying envelope in our interferometer
contrast. Our short interferometer has no reflection pulse, and so the atoms do separate
spatially as the pulse separation time increases. With fewer atoms spatially overlapping
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Figure 4.14: Experimental interferometer fringes from the ‘split→ wait→ split’ inter-
ferometer sequence described in Figure 4.13. Five measurements were taken at each
time index, with mean counts plotted as black circles above, and the standard deviation
as error bars. A Levenberg-Marquardt algorithm is used to fit a model to the data, with
a cosine modulated by an exponential decay.

4.6.3 Fine structure constant
Having measured the recoil frequency ωrecoil, we can make a determination of the
fine-structure constant using our atom-optics beam parameters for wavelength λeff =
2λgrating and wave-vector keff = kgrating/2, where the ‘eff’ subscript implies that we
mean the projection of either atom-optic beam along the interferometer x-axis. Since
our interferometer frequency comes from the energy differential in the moving and
non-moving arms, we have

ωrecoil = E/~ =
1

~
~2k2

eff

2m
=

πh

mλ2
eff
. (4.30)

We can re-arrange this equation so:

h

m
= ωrecoil

4π

k2
eff

= ωrecoil
λ2

eff

π
, (4.31)

thus placing our interferometer fringe into the class of ‘h/m’ measurements [50, 110].
These measurements of h/m can be used to evaluate α [50],

α2 =
2R∞
c

m87Rb

me

h

m87Rb
. (4.32)

Combining equations 4.30, 4.31, and 4.32 and using the known constants listed in
Appendix A.1, we obtain expressions for the fine-structure constant as a function of
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recoil frequency and atom-optic beam parameters,

α2 =
2R∞
c

m87Rb

me

4πωrecoil

k2
=

2R∞
c

m87Rb

me

ωrecoilλ
2
eff

π
. (4.33)

Our optical grating is formed from lasers 4.5 GHz red detuned from the 780 nm
F = 2 → F ′ = 3 transition on the 87Rb D2 (52S1/2 → 52P3/2) line at an angle of
26.0±0.5◦ (see Section 2.3.8), so we have an optical grating wavelength of λgrating =

780 nm
2 cos(26◦)

= 434 nm. Likewise, the projection of our laser light along the interferometer
x-axis is increased by a factor of cos(26◦) such that λeff = 868 nm, and the wavevector
of that light reduce by the same cos(26◦),

keff =
2π

λeff
=

2π

868 nm
= 7.24× 10−7 m−1 . (4.34)

If we assume that the only significant uncertainties are in our measured frequency
ωrecoil and the interferometer beam angle θ, the uncertainty in our α2 measurement is

(
δα2
)2

=

(
∂α2

∂θ
δθ

)2

+

(
∂α2

∂ωrecoil
δωrecoil

)2

, (4.35)

where the partial derivatives are

∂α2

∂ωrecoil
=

2R∞
πc

m87Rb

me

λ2
laser

cos2(θ)
, (4.36)

∂α2

∂θ
=

4R∞
πc

m87Rb

me
λ2

laser ωrecoil
tan(θ)

cos2(θ)
. (4.37)

With an measured interferometer beam angle θ ≈ 26◦ ± 0.5◦, our example fringes
generate a value α−1 = 136.74 ± 0.86 (6300 ppm). Whilst this value is consistent
with the current best measurement of α from CODATA [71] (α−1 = 137.035999139),
the uncertainty is significantly larger. The dominant contribution to our uncertainty in
equation 4.35 is the interferometer beam angle.

Clearly, we can’t use the interferometer as an α measurement until the interfero-
meter beam angle θ is not the most poorly-defined variable in the system. The con-
ceptually simplest and most ‘correct’ solution to this problem is to reduce the angle
itself to zero. As θ approaches zero, so does the gradient d cos(θ)/dθ and therefore
also the sensitivity of α to the interferometer beam angle. If we were to suppose for
the moment that the interferometer angle θ = 0± 0.5◦, our error falls to δα−1 = 0.24
(1700 ppm).

One major advantage of a θ = 0◦ configuration is that beam angle gets easier
to measure. Currently we measure the beam angle by trilaterating the positions that
the interferometry beams hit the mirrors on each side of the science chamber. A pair
of counter-propagating beams could instead by defined by a pair of apertures centred
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on one beam, where any deviation of the ‘other’ beam can be directly measured in
the surface of the apertures. Such an experimental setup with beam paths defined by
apertures mounted in translation stages has been successfully used to measure and im-
plement interferometer beam angles [141]. In our case, a simpler method would be to
spatially-mode match counter-propagating beams into optical fibres mounted on either
side of our science chamber. For more details on how we measured θ see Section 4.7.

It is also important to note that the frequency uncertainty is determined by the
Levenberg-Marquardt fitting algorithm. This algorithm numerically calculates uncer-
tainties using the input errors, but does so assuming that the fitted model and parame-
ters are correct. From our measurement shown in Figure 4.14, the fitted model only
passes through 5 out of 20 points, indicating that the model chosen is under-fitting the
data. Here each time index is calculated with the mean and standard deviation of 5
experimental cycles (there is nothing special about our choice of 5 cycles here, other
than that the uncertainty in atom counting over 5 cycles has previously shown to be
consistent with more cycles and takes less time).

The data at each time interval was captured sequentially, taking approximately 5
minutes for acquisition at each interferometer time. The most likely explanation for
the seeming underestimation of the error bars is an additional source of phase noise
which occurs at a frequency too low to be detected in a single data run at a given
interferometer time, but which does alter the recorded phase over the∼ 2 hours that the
overall fringe is recorded. The correct way to fix this would be to ‘shuffle’ the order in
which we take data, such that slow drifts over time would be as equally present within
the measurements at a single time index as they were over the whole run. Nevertheless,
the fit algorithm is most likely underestimating the uncertainty in the fitted frequency.

4.7 Interferometer beam angle

4.7.1 How do we measure the beam angle?
We determined the interferometer beam angle by firstly locating points of intersection
between each beam and the nearest optical element before and after the science cham-
ber. Each of these four positions were measured relative to a set of three markers
screwed into the optical table in a common base-line. We then determined the position
of these four points using the principle of trilateration, shown in Figure 4.15.
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Figure 4.15: We can trilaterate the position of any point relative to three co-linear
markers by measuring the distance from each of those markers to that point.

With the three markers (A,B,C) positions being co-linear, we can determine the
position of any point (P(x,y)) using the distances to the three markers, where

d =
r2
A − r2

C + 2xBCxAB + x2
AB + x2

BC

2xBC + 2xAB
, (4.38)

and
y =

√
r2
A − d2 . (4.39)
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Marker ‘C’ Marker ‘B’ Marker ‘A’

SW Beam 1

SW Beam 2
SE Beam 2

SE Beam 1

Figure 4.16: We calculated our interferometer beam angle by trilaterating the position
that each beam intersects with the nearest optical elements to the science chamber.
The interferometer beams are drawn in blue. Shown in red and orange are the me-
asurements required to obtain the trajectory of the South-East interferometer beam,
which we then use to determine the relative angle to the marker baseline in the X, Y
plane. We then performed a similar second set of six measurements to determine the
South-West beam parameters.

Figure 4.16 shows the beam interesction points chosen, which were the final lenses
before the science chamber, and the first mirror after the chamber for the South-West
beam and the beam-dump for the South-East beam. The markers were screwed into
the optics table near the interferometer setup, to ensure that they were very closely
co-linear in position.

The actual position of the beam intersection was determined using an IR-sensitive
laser viewing card and an IR-sensitive night-vision camera. The distance of these posi-
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tion to each marker was then measure with a measuring tape to the nearest millimetre.
Uncertainty in this process were mainly derived from (1) the finite thickness of the mar-
ker posts: measurements were taken from the point of laser intersection with a metal
tape ruler to the tangent on either side of each marker rod, and (2) the laser intersection
points existing on the surface of optical elements: we could not physically push the
tape onto the optical elements for fear of damage, and so would align vertically above
the point of intersection. We would then attempt to hold the tape ruler horizontally
(using a liquid-bubble spirit level), and read off the distance to the marker’s tangent
surfaces.

We then trilatered co-ordinates for each intersection point, and used the tangent
of the X, Y separation between each pair to infer an angle in the X, Y plane relative
to our marker baseline. Uncertainties were calculated by performing each distance
measurement and calculating mean with standard deviation of the measurements, and
propagating these through equations 4.38 and 4.39 as the upper and lower bounds.
It is from this calculation that we derive the θ = 26◦ ± 0.5◦ beam angle listed in
Section 4.6.3.

4.7.2 How do we fix it?
Experiments with non-colinear optical grating beams have been performed, using vari-
ous techniques to determine the beam angle [141]. Here the optical path is determined
using adjustable apertures mounted to translation stages. In this way the position of
each intersection point can be (a) arbitrarily determined by re-locating the mount to
some other location along the beam path and (b) the positions of each intersection can
be measured to far greater precision than our ±1 mm.

A conceptually simpler (but more time-consuming) solution is to alter the interfe-
rometer beam angle to 0◦, as suggested in Section 4.6.3. The cosine sensitivity to small
perturbations around θ = 0 is zero, and so we can dramatically reduce uncertainties
from θ by altering our interferometer geometry to some counter-propagating lattice.
This change in the effective laser wavevector keff = 2π cos(θ)

780 nm
would alter the frequency

we detect, raising it from approximately 24.6 kHz to roughly 30 kHz, increasing our
phase gradient dφ/dt and inducing a secondary reduction in uncertainty.
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Chapter 5

Contrast Interferometry

5.1 Background and Theory

5.1.1 Motivation
The Contrast Interferometer was first demonstrated by Gupta et al. in 2002 [111]. Here,
off-resonant scattering splits a BEC of sodium atoms into a superposition of three mo-
mentum states: |ψ〉 =

(
1√
2
|0~k〉+ 1√

4
eiφ[|+2~k〉+|−2~k〉]

)
. The moving states are

reflected after some time T , and the wave packets allowed to evolve until they overlap
at time 2T . Rather than closing the interferometer with a second ‘beam-splitter’ pulse,
the evolving recoil phase is encoded in the contrast of the matter-wave fringes [111],
and these fringes are read by shining a single laser along one of the beam-splitting
laser’s wavevector, with the reflected signal modulated in time with the recoil phase.
This allows for pseudo-non-destructive measurements that persist for many oscillati-
ons, allowing for single-shot measurements of the fine-structure constant.

This offers us some significant benefits. Firstly, our interferometer technique listed
in the previous chapter uses a ‘closing’ interferometer pulse to project the interfero-
meter phase into a modulation of momentum states, where data is then captured using
absorption imaging (henceforth referred to as a ‘momentum interferometer’). This is a
time-consuming process. A typical momentum interferometer fringe in our lab might
consist of 50 data points, each of which has been generated from 5 (for example) me-
asurements. Since our existing momentum interferometer has an experimental cycle
time of around 30 s, a single fringe measurement lasts at least 2 hours of continuous
measurement time. To perform a precision measurement, we want to increase the avai-
lable statistics on the measurement by performing that measurement repeatedly [113].
Single-shot measurements would allow our experiment a vastly reduced data acquisi-
tion time, whilst increasing the number of times the interference phase is sampled per
measurement. A corresponding measurement with our contrast interferometer typi-
cally samples the interferometer phase at 150 evolution times in a single experimental
run, generating an entire interferometer fringe in around 30 seconds; a speed-up of
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around 700 times.
Secondly, an experimental run of several hours creates a tremendous bandwidth

range over which our experiment is sensitive to noise. If the total measurement time
across a fringe is reduced from several hours to a few hundred microseconds many
of these noise sources are frozen out, effectively giving the experiment frequency-
dependent rejection to noise sources like temperature variation, laser intensity noise,
vibrations in optical elements at acoustic frequencies. These single-shot measurements
could be thought of as the correlated measurement of many phases, each of which
offers additional information on the others.

Thirdly, the nature of the measurement is different. Typical interferometers don’t
measure phase at various evolution times, but will instead repeatedly measure phase
at a single time chosen to maximise the gradient of phase with respect to the measu-
rement parameter in question. In this way the maximum information is taken in each
experimental run. This only works, if the ‘correct’ phase is already approximately
known. In such a scheme small drifts in amplitude, background level, frequency and
phase all appear as shifts in the output interferometer population. A measurement like
contrast interferometry which samples interferometer phase many times in a single ex-
perimental run separates all of these effects out, allowing measurement of phase to be
unambiguous.

5.1.2 Theory and concepts
The key concept involved in the contrast interferometer is that of holography. A ho-
logram is created by shining a coherent light source through a beam splitter, genera-
ting two phase-matched beams. One of these beams is used as an unperturbed phase-
reference, and other ‘measurement beam’ allowed to interact with some target. The
influence that the target has on a flat-phase beam is light is now imprinted in the dif-
ference in phase between the measurement and reference laser beams. If the measu-
rement and reference beams are then recombined, interference fringes are generated
according to the mixing phases of the reference and measurement. If the fringes are
generated in some photo-reactive substance, these fringes can be ‘fixed’ in the medium,
encoding the target’s phase information [2]. These embedded interference fringes are
a hologram.

If we then illuminate the hologram with light that has the reference beam’s unper-
turbed phase, the hologram diffracts part of that incoming beam into the now-missing
measurement beam, recreating the phase of the light that had interacted with the now-
absent target. Looking into this medium, we can see the target in the diffracted light
as though it were still present, because the hologram has effectively remodulated the
light as though it had reflected from the target [2].

In the case of a contrast interferometer, the target we measure against the reference
beam is not an object we reflect light from, but rather another laser beam - in this case
one of the lasers used in our atom-optics.
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Atom-optics work because the optical grating used to manipulate the atoms im-
prints a spatial and phase grating into the atomic cloud [142]. Particular states can
be targeted by recreating the atomic fringe pattern that you would see if those target
momentum states were overlapping. This process is made more complicated by the
fact that the atomic ensemble evolves whilst our atom-optics are being applied; in our
∼100 µs long ‘|0~k〉→[|+2~k〉+|−2~k〉]’ beam-splitter operation, the phase, energy
and position of the atoms alter significantly. We rely on our numerical simulation to
plot an evolution trajectory that results in the state we desire.

Since those fringe patterns have been created by interfering the wavefronts from a
coherent light source, the atomic cloud’s fringe pattern can acts a a hologram. Light
sent along one of the wavevectors used to make the hologram (k1) will be diffracted
into the ‘missing’ wavevector (k2) [2]. Unlike the hologram fixed into a medium that
is held at a fixed phase, the hologram in our BEC is continuously evolving in time
according to the energies of the encoded momentum states.

The interference fringes in our hologram naturally only appear when the modes
in the hologram are spatially overlapping. Since the atoms in the hologram are free
to move and have been encoded with various momenta, our hologram only exists at
certain times during an interferometer sequence. Figure 5.1 shows a schematic of
the spatial extent of our BEC atoms during an interferometer sequence. Our BEC is
split into multiple momenta with a beam-splitter pulse, and the atoms are allowed to
spatially separate for a time Tsep, when a reflection pulse is triggered. The atoms then
converge, re-overlapping at a time 2Tsep. This gives us two periods in time in which
the atoms are overlapping, and therefore two periods in time during which our BEC
hologram exists. If required, we could generate additional re-imaging of our hologram
by adding more reflection pulses at multiples of Tsep.

Viable probe times

Po
si

tio
n
x

Time T

Tsep Tsep

Figure 5.1: A schematic of the contrast interferometer. Shown are the trajectories
of our BEC atoms during the interferometer, in the momentum states |0~k〉 (black
dashed), |+2~k〉 (red dashed), |−2~k〉 (blue dashed). Also drawn are the physical
extents of the BEC in each mode, where interference fringes are present when all
three modes spatially overlap. Our atoms overlap spatially only around the time of the
beam-splitter pulse, spatially separating until a reflection pulse are a time Tsep, before
converging at a time 2Tsep.
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In Figure 5.1 we have two periods at which we could successfully probe our con-
trast interferometer. These are immediately after the beam-splitter pulse (henceforth
referred to as a ‘short’ contrast interferometer), and during the re-imaging of the ho-
logram after a reflection pulse at 2Tsep (a ‘long’ contrast interferometer). There are
advantages and disadvantages to both short and long contrast interferometers.

The long interferometer has the advantage that all atom-optics pulses have already
been applied before the time of maximum overlap, so there is no issue of shutter-
switching time that limits when we can begin probing. The total duration of the ho-
logram is also longer, since we can access the times before and after the maximum
spatial overlap of the different BEC modes. The longer duration between the initial
beam-splitter pulse and readout of the hologram also allows a greater accumulation of
phase, in principle increasing sensitivity to effects which scale with T . In comparison
the short interferometer forbids us access to times before the maximum overlap, times
during the beam-splitter pulse, and for a ∼ 120 µs period after the beams-splitter pulse
while our SPCM protection shutter system is switching. If our aim is only to measure
the recoil frequency, the short interferometer offers less time for interactions to distort
the hologram.

Figure 5.2a shows a schematic of the short contrast interferometer. An initially
stationary BEC is illuminated by two lasers beams with wave-vectors k1 and k2.
This coherently splits the condensate into a superposition of three momentum sta-
tes, |ψ〉 =

(
C0|p = 0~k〉+ eiE/~C±2

[
1√
2

(
|p = +2~k〉+ |p = −2~k〉

)])
, that form a

matter-wave interference fringe.
Our BEC hologram could be considered as an example of a distributed Bragg-

reflector, where periodic modulation of the condensate’s refractive index generates
multiple reflective surfaces that coherently amplify the reflected light wave, where the
reflective surfaces are separated by half the probe light’s wavelength. The refractive
index of the BEC η scales with its density n (η − 1 ∝ n),

η = 1 +
σ0nλ

4π

[
i

1 + δ2
− δ

1 + δ2

]
, (5.1)

where σ0 = 6πλ̄2 is the resonant cross section of a two-level atom, n is the density
of the BEC, λ the wavelength of the probe light, and δ ≡ (ω − ω0)/(Γ/2) is the
detuning of the probe light in half linewidths [109]. We should therefore expect to
see Bragg-scattering from the hologram when the condensate has a modulation in its
density with a spatial period of half the probe laser’s wavelength. Our probe laser is
projected along the X-axis at an angle of approximately 26◦, giving us an effective
probe wavelength of λeff = 780.24 nm/ cos(26◦) = 868 nm, and an optical grating
wavelength of λlattice = 780.24 nm/2 cos(26◦) = 434 nm.

Figure 5.2b shows the interference fringe, frozen at a time of maximum contrast.
The incoming probe laser wavefronts (along k2) coincide with the spatial periodicity
of the condensate’s density, generating a Bragg reflection along the wave-vector k1.
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+2~k0~k−2~k

87Rb BEC

k2k1

(a) (b)Hologram

Probe beam
λ = 780 nm

λmatter-wave = 434 nm

Read outHologram

k2

k1

θ ≈ ±26◦

Figure 5.2: Generation of the contrast interferometer signal in the short
contrast interferometer configuration. (a) If a beam-splitter pulse is
used to coherently split a stationary BEC into a superposition |ψ〉 =(√

1/2|0~k〉+ eiE/~
√

1/4|+2~k〉+ eiE/~
√

1/4|−2~k〉
)

, the evolving interfe-
rence fringes are necessarily also a hologram which encodes the wavevectors k1 and
k2. (b) The contrast signal is the outgoing diffraction of a single incoming laser along
one of these wavevectors. The recoil phase of the hologram’s interference fringe is
encoded in the intensity of this diffracted beam. A photon counting device placed in
the path of this wavevector can then measure the interferometer phase continuously.

As mentioned above, the BEC atoms are not fixed in position and have an evol-
ving phase, so the matter-wave interference fringes in the condensate evolve over time,
altering the spatial density distribution of the condensate. The nature of the interfe-
rence fringes are determined by the momenta (and relative phase) of the atoms com-
prising the condensate. If the atoms are in a superposition state (C0|p = 0~k〉 +
eiφC±2[ 1√

2
(|p = ±2~k〉 + |p = ±2~k〉)]), then the hologram evolves according to

the difference in energy between the states. Since this energy difference is due to the
recoil momentum from a photon-atom interaction, this is known as a recoil frequency;
ωrecoil = p2/2m~ = 4~k2/2m. For our 87Rb atom and 434 nm optical grating, this
recoil frequency is approximately 12.3 kHz.

Since the interference of these different momentum states is phase-dependent, and
the phase of the moving p = ±2~k modes evolve at the rate dφ

dt
= E

~ , the hologram
generated also evolves cyclically with frequency E

~ , which is for us ω = (2~k)2/2m ≈
2π · 12.3 kHz. The resulting interference pattern evolving through time appears like
a Talbot carpet [143] with a finite number of input wave-vectors. A two-dimensional
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Gross-Pitaevskii equation (GPE) simulation of this evolution is shown in Figure 5.3a.
Here, T = 0 µs corresponds to the moment at which the beam-splitter pulse ends and
free evolution begins. The first 26.5 µs of evolution from T = −26.5 µs → T = 0 µs
show the imprinting of a density grating into the condensate.

X Position [nm]

Si
m

ul
at

io
n

tim
e

[µ
s]

-800 -400 0 400 800

-20

0

20

40

60

80
0.000

0.005

0.010

0.015

0.020

0.025

(a) (b) X Position [nm]
-800 -400 0 400 800

D
en

si
ty

λ
2

λ
4

λ
2

λ
4

λ
2

T
=8

2
µs

T
=6

4
µs

T
=4

1
µs

T
=2

5
µs

T
=0

µs

4
ω

re
co

il
os

ci
lla

tio
n

Optical grating pulse

Figure 5.3: A 2D GPE simulation of the BEC during the opening of a contrast inter-
ferometer. (a) An optical grating pulse acts as a beamsplitter, pushing the atoms into
a superposition of the |p=0~k〉 and [|p=+2~k〉+p=−2~k〉] states with approximately
equal population. The kinetic energy of the [|p=+2~k〉+p=−2~k〉] states cause an os-
cillation in the relative phase between the moving and stationary modes, generating a
time-oscillation in the interference fringe which appears as a Talbot carpet which ima-
ges the optical diffraction grating periodically in time. Since the atomic momentum
distribution has only three modes, we only see the matter-wave re-image the optical
grating at both the Talbot period and at half the Talbot period.

The atomic cloud contains only the ground (|p = 0~k〉) and first excited state
(|p=+2~k〉+|p=−2~k〉), so the Talbot carpet contains only the first and second wave-
vectors, such that the matter-wave re-images the optical grating at both the Tablot
period and half this distance [143]. With our experimental parameters we have a Talbot
period of

T =
1

f
=
h

E
= h

2m

(2~k)2
≈ 81 µs, (5.2)
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over which we complete a cycle where the atomic grating re-images the optical grating
with spatial wavelength λeffective/2 = 434 nm. At half this time, we have a density
grating with identical spatial wavelength, but a phase shift of π. At each 1

4
T and 3

4
T

time, we have a frequency-doubled density grating with spatial period λeffective/4 =
217 nm. This oscillation sequence is shown in Figure 5.3b.

In terms of our atomic hologram, this means that whilst our hologram oscillates at
a frequency of ωhologram ≈ 12.3 kHz and period 81.3 µs, the reflectivity of our hologram
undergoes two oscillations. We should therefore expect to see a contrast signal with
frequency ωcontrast ≈ 24.6 kHz and period 40.7 µs.

5.2 Experimental realisation

5.2.1 First detection and confirmation of a contrast signal
The development of our contrast interferometer was not a quick or easy process; around
a year passed between our first observation of momentum interferometer fringes and
the appearance of a contrast interferometer signal. In retrospect I think this is mainly
because we had preconceptions about what the signal would look like when we found
it. We had anticipated a reflected beam with an obvious sinusoidal modulation, because
that is how the data has been presented in previous literature. In fact the probe and
detection method we were using did not return such an obvious contrast signal until
we addressed weaknesses in the techniques used.

For example, our initial attempts used one of our atom-optic lasers as the probe
beam, with a simple Silicon BPX65 photodiode circuit as a photon-detector. We
thought this was sensible, since our atom-optics were already necessarily aligned with
the BEC atoms. However, our atom-optic lasers are tuned with an intensity and fre-
quency detuning appropriate to that task. The refractive index of a BEC is sensitive
to the detuning of the incident light (see equation 5.1) [109], but our atom-optics are
detuned approximately 4.5 GHz from the D2 line (around 800 linewidths). The probe
frequency we eventually settled on had a detuning at around 295 MHz (around 50 line-
widths). Comparing these two detunings using equation 5.1, we see that the refractive
index modulation (η − 1) of the condensate at our atom-optics frequency is some 50
million times smaller than at our current probe frequency. The reflected intensity was,
to put it mildly, significantly lower the sensitivity of our BPX65 photodiode.

We realised this sensitivity of the refractive index to light frequency when perfor-
ming some reflectivity calculations. Our first adjustment was a modification to our
optics setup, pulling a new probe laser from the ‘cooling’ MOT laser (see Section 2.3
and Figure 2.2.2). This new probe was controlled with an AOM, and mode matched
with the atom-optics beam (see Section 2.3.8). The second adjustment was the replace-
ment of our silicon BPX65 photodiode with a C12703-1 Series Hamamatsu Avalanche
Photodiode Module (APD).

It was with these adjustments in place that we saw the first signal from our contrast
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interferometer. At this time the interferometer was in the ‘long’ configuration, with
the contrast interferometer probe taking the place of the usual closing beam-splitter
pulse. The signal we observed was not the 24.6 kHz sinusoidal modulation we were
expecting. Instead, we saw a brief ‘bump’ in light captured by our APD when the
contrast sequence was triggered, shown in Figure 5.4a.
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Figure 5.4: The first confirmation of a contrast interferometer signal. Drawn here is the
probe control signal (grey lines), raw APD voltage (blue lines), and low-pass filtered
APD voltage (red lines). (a) When the complete interferometer sequence has been fired
and a set of matter-wave fringes generated, we observe a distinct increase in reflected
light. (b) The absence of the same feature when a BEC alone is present suggests that
the signal observed in (a) is not fluorescence. (c) Likewise, the absence of light in the
absence of atoms indicates that the signal observed in (a) is also not a stray reflection
of the probe beam from some optical element of the science chamber.

To determine whether the bump shown in Figure 5.4a was indeed a contrast signal
and not fluorescence or leakage light, the sequence was run with some modifications to
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compare. Figure 5.4b shows the captured light without any atom-optics applied, such
that a BEC is created and the readout probe fired, but there is no interference fringe
present (i.e. A BEC with no interference fringes). We see a low level light value above
the background over the whole duration of the probe, but no spike in output as shown
when fringes are present. Figure 5.4c shows the captured light when the MOT beams
are blocked (i.e. when no atoms are present). Here we see no obvious extra light due
to the pulse. From this we infer that reflections from the science chamber and optics
are not the source of the detected signal in Figure 5.4a.

Figure 5.5 shows an absorption image captured at the end of this interferometer
sequence, with the contrast probe active (red dashed line) and disabled (black solid
line). A time of flight has projected the different momenta into spatially separated
clouds. To this data we have fitted Gaussian envelopes to extract the relative atomic
populations of each momentum state.
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Figure 5.5: (a) An absorption image captured at the end of the experimental sequence,
with the contrast probe laser (red dashed line) and without (black solid line). Time of
flight has projected the various momentum states into spatially separated clouds. (b)
We extract the population in each momentum state by fitting Gaussian envelopes to
each cloud. That we see a population transfer between the momentum states implies
the presence of discrete δp = +2~k momentum kicks, confirming the existence of
coherent scattering of the probe beam.

Incoherent scattering here induces two momentum kicks per scattering event; one
in the direction of the probe beam along k2 from the absorption of a photon, and one
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from the spontaneous re-emission of a photon in a random direction. The presence of
significant incoherent scattering should ‘wash out’ the discrete spatial localisation of
the atomic clouds, generating a raised pedestal of atoms in the absorption image.

Coherent scattering of the probe laser also imparts two momentum kicks per scat-
tering event; one in the direction of the probe beam along k2 from the absorption of
a photon, and one opposite the wave-vector k1 from the stimulated re-emission of a
photon into the Bragg-reflected mode. The presence of significant coherent scattering
should induce discrete δp = 2~k momentum kicks, transferring atomic population
between the atomic clouds whilst retaining the localisation of atoms in those discrete
clouds.

The expected magnitude of the incoherent scattering component can be calculated.
The intensity of our readout beam is given by

Iprobe =
13.5× 10−6W

π(100× 10−6)2
= 42.9 mW/cm2, (5.3)

and the incoherent scattering [103] given by

γsc = 2π × 6.06× 106 Hz× 42.9/2.5

1 + 42.9/2.5 + 4(46)2
= 38.5× 103 s−1, (5.4)

so for our 20 µs probe pulse each atom scatters 0.77 photons, and we should therefore
expect our initial atom count of 12.4× 104 atoms to fall to 2.7× 104, which is what
we find experimentally.

The pedestal shown in Figure 5.5 is approximately 1600 µm wide (and vertically
binned), and is approximately triangle shaped with a with a binned-column-density of
approximately 0 at x = −800 µm and approximately 0.2 at x = +800 µm. From this
we can naively calculate the number of atoms in the pedestal at

Npedestal =
Area under absorption curve
σ0 (|F=2,mF=2〉→|F=3,mF=3〉)

≈ 1600× 10−6 m2 × 0.5× 0.2

2.9× 10−13 m−2 = 8.8×104 ,

(5.5)
for a population in the pedestal of approximately 9 × 104 atoms. From this we infer
that the atoms ‘missing’ from our discrete momentum clouds are those which have
been incoherently scattered into the atomic pedestal.

Our contrast interferometer relies on the coherent scattering of our probe beam
from the BEC, so what we want to see in our absorption data is this discrete transfer of
atoms between the spatially localised clouds, ideally with no pedestal of atoms between
those discrete modes. In reality we see both of these effects, but most importantly the
discrete population transfer is clearly visible in the P (−2~k) mode at -400 µs. The
three P ([−2, 0,+2]~k) peaks have been generated with nearly equal probability, but
the P (−2~k) peak has lost around a third of its fractional population after the probe.

Taken together with the detected photon signal in Figure 5.4, we felt confident that
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we had indeed observed a contrast interferometer signal. However, we expected some
periodic oscillation with a period of ∼ 40 µs. Averaging of the filtered APD signal
revealed something consistent with a very small second hump around∼ 40 µs after the
first obvious hump. The key to this behaviour was the realisation that the scattering
process we were using to extract the contrast signal was also destroying the hologram
as we were probing it.

5.2.2 Contrast signal decay and probe intensity
Our hologram is generated when the three momentum states |−2~k〉, |0~k〉, |+2~k〉
spatially overlap. If we were to remove atoms from one of these modes, the interfe-
rence fringes we read lose contrast, which in turn reduces the reflectivity of the holo-
gram. Since the reflection of probe photons reduces the population in the P (−2~k)
mode, as is shown in Figure 5.5, we should expect an exponential decay of the contrast
signal as this mode is depleted, with a time constant inversely proportional to the po-
wer of the probe laser. Our first adjustment at this time was a reduction in the intensity
of our probe light (to around 1.5 µW, from ∼ 10 µW), which yielded data such as that
shown in Figure 5.6a, containing four clear oscillations at a frequency of ∼ 24 kHz,
modulated by an exponential decay with a time constant on the order of 100 µs.

We reasoned that if our probe light was destroying the hologram, we should be
able to influence the rate of the exponential decay in our contrast signal by altering
the probe’s duty cycle. In this way we could perhaps extend the useful duration of
the signal whilst retaining its amplitude. Figure 5.6 shows an examination of this
effect. Our signal decay constant with a full duty cycle is 66 µs. When we halved
the duty cycle we observed a two-fold increase in decay constant to 132 µs, shown in
Figure 5.6b. The strength of this correlation implied that the probe-induced reduction
in hologram contrast was the dominant loss mechanism in the contrast signal.
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Figure 5.6: A comparison of contrast interferometer decay constants with the probe
intensity set to a (a) 100 % and (b) 50 % duty cycle. The probe control is drawn in
grey, the raw APD voltage in blue, and the fitted contrast envelope in dot-dashed black
lines. We observe a decay constant of 66 µs with the 100 % duty cycle, and 132 µs with
the 50 % duty cycle. The maximum bandwidth of the APD was ∼ 100 kHz, which is
why the light-modulations within the half-duty-cycle signal appears as a sine-wave. A
relatively large background light level (∼ 3 nW) has been subtracted in processing.

5.2.3 Detection with a Single-Photon Counting Module
Whilst we now had access to around six usable periods from our contrast interfero-
meter, we were still relying on the averaging of data from the APD. Since part of the
attraction of contrast interferometry is the enhanced data acquisition rate, we wanted
to be able to detect weaker reflection signals. This would allow us to (1) further re-
duce the probe intensity to extend the duration of the contrast signal further, and (2)
to enable access to single-shot measurements. To this end we installed an Excelitas
SPCM-AQRH-14-FC fibre-coupled Single-Photon Counting Module (SPCM), which
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is described in Section 2.4.
Using the SPCM we were able to reduce our probe intensity by around a hund-

red times to ∼ 15 nW (this was done by placing an ND filter into the probe optical
path). An example of the data captured from a long contrast interferometer is shown
in Figure 5.7.
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Figure 5.7: A Single-Photon Counting Module (SPCM) was used to reduce the requi-
red probe intensity, dramatically increasing signal quality. The recoil-induced atom
loss no longer dominates, and we observe an envelope function. This interferometer
was configured with a split → reflect time T1 = 1000 µs, and reflect → probe time
T2 = 400 µs. A peak photon count of 30 photons in a 4 µs bin, gives us an approximate
peak signal of 2 pW.

Figure 5.7 shows a contrast signal with a peak photon count of 30. Given that the
energy of a photon at our 780 nm probe wavelength is given by

Ephoton = hf = h
c

λ
= 6.63× 10−34 J s× 3.00× 108 m s

780 nm
= 2.55× 10−19 J, (5.6)

we can determine the peak power of our typical contrast signal as

Pcontrast = 30 photons× 2.55× 10−19 J× photon÷ 4 µs = 1.91 pW. (5.7)

Assuming equal hologram reflectivity as that shown in Figure 5.6, this reduction in
probe intensity of ∼ 100× should increase photon-recoil-induced decay constant to
several milliseconds, effectively removing the photon-recoil associated signal decay as
a dominant factor in the measured signal. This allows us to see the underlying envelope
of the contrast signal without our probe light destroying the hologram as we probe it.
In addition, we now had the photo-sensitivity to perform single-shot measurements.
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5.3 Extracting information from single-shot data

5.3.1 Numerical Model Fitting
A typical method of extracting information about a parameter from some set of data
is model fitting. Here we generate some mathematical model that takes a series of in-
put parameters (including the one we want information about) that aims to match the
data we see. We construct some sort of metric that quantifies how well the model mat-
ches the data (a goodness-of-fit) parameter, and we try to minimise this goodness-of-fit
parameter numerically by altering the model’s input parameters. When the fitting algo-
rithm finds a minimum of the goodness-of-fit, the corresponding model parameters are
considered to be the best estimate of those parameters in the data. Typically the error
bars accompanying the data are then processed numerically to estimate the uncertainty
in those fitted parameters.

A very common goodness-of-fit parameter is the χ2 [144], which takes the form

χ2 =
1

n

n∑
i=1

(yi − u(xi))
2

α2
i

, (5.8)

where in a set of discrete data n samples long, yi is the observed data value at the ith
index, and u(xi) is the value our model returns at the ith index, and αi is the uncertainty
associated with the ith measurement.

A fitting algorithm will typically require a set of initial ‘guess’ parameters p0 from
which the algorithm starts. The algorithm then calculates the χ2 and attempts to nume-
rically determine how to alter these parameters in order to reduce χ2. It then repeatedly
performs the same calculations over N iterations. A very naive way to accomplish this
χ2 minimisation is to reduce the derivatives dχ2/dp to zero. One of the simplest nume-
rical methods for this is the Newton-Raphson method (see equation 5.17) [144]. If we
numerically calculate the derivative of our model with respect to our input parameters,
we can then use this Newton method to reduce those derivatives to zero. When the
derivatives have fallen below some acceptable tolerance, we say that the algorithm has
converged on a fit. We then have a set of fit parameters, a numerically calculated set of
uncertainties on each parameter, and the χ2 value of this converged fit.

Given that we expect uncertainties in our measured data, we should also expect
that the model will not exactly touch all of our measured data points. If the error
bars we have measured are the 1σ confidence intervals for each data point, we should
expect that ∼ 68 % of the error bars cross the fitted model (because in the other 32 %
of instances, the ‘true’ data value lies outside the error bars). The χ2 goodness-of-fit
quantifies this aspect of our fit; if the χ2 � 1, it implies that the model does not follow
our data closely enough, because the model implies that too many of the ‘true’ values
of our data lie outwith our measured error bars. Conversely, if the χ2 < 1, it implies
that our model is following our data more closely than we should expect statistically,
because too few of the ‘true’ data values lie outside our measured error bars. A χ2
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of 1 corresponds to a balance between these scenarios, where the distribution of data
around the fitted model satisfies the statistics of our randomly sample noise in the data.

5.3.2 Data dominated by Poisson noise
Our data presents us with a pair of problems that we must address before we can use a
fitting algorithm to extract information from our contrast interferometer signal. Firstly,
our data is an array of single shot measurements. This means that we have no measured
statistics with which we can estimate the uncertainties in each photon count. Related
to this is our second problem; that our contrast signal typically contains counts ranging
from zero to a few tens of photons. In this regime Poisson statistics dominate the
counting of photons from a given ‘true’ number.

The above statements may initially appear to be contradictory. If we know that
the counting of photons is dominated by Poisson statistics, how can we not know the
uncertainties on our measurements? The distinction is this: if λ photons are incident
on our photodetector, the Poisson distribution tells us the probabilities of measuring k
photons in that photo-detector. Our contrast signal is not an array of photon numbers,
but an array of photon measurements. That is, we have the k, but not the λ. There is
a subtle point to be made here; if I measure 0 photons in some experiment, there is
a non-zero probability that there was actually 1 photon present. If I instead measure
1 photon, there cannot have been 0 photons present. At these low counts the Poisson
distribution is significantly different from the uncertainties we should expect in our
data.

What we need to do is use the Poisson distribution to generate a new distribution
that does tell us the probability of the photon number λ, given that we have measured
k. Essentially this is a Bayes’ Theorem problem [144], where the Poisson distribution
gives us P (k|λ) (The probability of measuring k, given that λ has occurred), and we
want to use this to ‘invert’ the Poisson distribution into the new distribution P (λ|k)
(The probability that λ occurred, given that we measured k),

P (λ|k) =
P (k|λ)P (λ)

P (k)
. (5.9)

The second problem we have is in finding a goodness-of-fit parameter for our fitting
algorithm. The χ2 definition in equation 5.8 has a term of the form (yi− u(xi))

2. This
means that the χ2 makes no distinction between a data-point being above or below the
fitted model curve. Given that the Poisson distribution is asymmetrical, it is reasona-
ble to assume that the ‘Bayesian inverted’ distribution that describes the uncertainties
around our contrast signal photon counts is also asymmetrical. The symmetrical nature
of the χ2 renders it incapable of respecting the asymmetry of uncertainties of our pho-
ton counts, and thus an inappropriate goodness-of-fit parameter in this instance [145].

We then need to find an appropriate goodness-of-fit parameter, and a fitting algo-
rithm compatible with our data. For this we can use a ‘log likelihood’ estimator [146],
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to which we can apply a Newton method.

5.3.3 Inferring error bars from single-shot photon-counts
What we want to do is infer confidence bands on what the true photon count proba-
bly is, given that we have a single measurement of it. A similar problem is examined
in [147] using a binomial distribution. The argument here is that the since the pro-
bability of a given measurement x of some quality given a ‘true’ distribution with
parameters n, p is

P (x|n, p) =

(
n

x

)
px (1− p)n−x , (5.10)

we can build up a graph of the confidence bounds for obtaining a measurement x from
the distribution over nmeasurements, shown in Figure 5.8. Since all possible outcomes
are contained in this space, the entire system is normalised. We can then flip the axes,
and read the confidence bounds for the ‘true’ parameter p given the measurement x.

Figure 5.8: Taken from [147]. Here p is the fractional probability of some property
like a coin being marked ‘heads’, where we observe x heads in our sample of ten coins.
The figure is ‘constructed’ sideways, generating the confidence bounds for measuring
a sample x of the true distribution p, mapping the entire probability space to the interior
of the square bounds.
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If we have a sample of ten coins which can either be marked ‘heads’ or ‘tails’, then
x is the fraction of our sampled coins which are heads (for example). We can use this
sample x to predict the fraction of all coins that are heads p. This process is known as
fiducial confidence estimation.

If our contrast signal is dominated by photon shot noise, the statistics we need to
consider are Poisson,

P (k|λ) =
exp (−λ)λk

k!
, (5.11)

where P (k|λ) is the probability of measuring k photons if λ photons are present. We
can accomplish the same ‘probability inversion’ for the Poisson distribution by genera-
ting confidence bounds for every possible photon number λ up to some arbitrary value
above our measurement maximum of 100 photons.

For each possible photon mean number, we generate a Poisson distribution with
the mean as parameter λ , and generate a cumulative probability distribution for me-
asuring k photons. We then interpolate this cumulative distribution to find where the
required confidence intervals lie, as shown in Figure 5.9a. These are plotted horizon-
tally for each mean in Figure 5.9b (open circles). We read the figure by interpolating
each bounded region to find the points directly above and below our measurement (re-
spectively closed circles, and black squares). These represent the confidence bands
that our mean lies within, given a photon measurement.

We can see in Figure 5.9 that unlike the binomial case, our Poisson mapping has
no upper bound: it doesn’t include every possible outcome. It is nevertheless still valid
because it is lower bounded; we can generate the distributions up beyond some arbi-
trary cut-off, and have all the relevant cumulative probability be mapped out. That is,
we know our distribution, so we know that the bulk of probability density is clustered
around the mean, and the unmapped ‘high’ end is left outside our region of interest. If
we require some specific confidence bound, for example 99 %, we can extend our pro-
bability map until that confidence level is within the map boundaries. The unmapped
region is then outwidth the confidence interval of interest. This is only valid because
we assert that the distribution is known.

Usefully, our data tells us what this maximum count is likely to be. For example,
the data shown in Figure 5.10 has a maximum photon count of k = 30. If we generate
Poisson distributions with every λ up to 50, we have mapped out 99.5 % of the possible
true photon counts that result in a measurement of k = 30. If our maximum photon
count was k = 2, we can see from Figure 5.9 that we would need to calculate up to
λ = 11 to incorporate the 3σ cumulative probability bounds.
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Figure 5.9: Top: Confidence bands for a Poisson distribution with mean number of
11 photons. We generate a cumulative probability distribution, and read off measured
photon values where the cumulative probability reaches a given tolerance. Bottom:
These values are plotted horizontally, generating an envelope in which we are confi-
dence that one (black), two (blue), or three (red) sigma of measurements will lie. We
then read the confidence bands for a given measurement by interpolating these bounds
to a given measured sample number and reading vertically.

Figure 5.9 shows an example of the distribution inversion algorithm centred on
the value λ = 11. Figure 5.9a shows the Poisson distribution for this λ as the black
stepped line. The corresponding cumulative Poisson distribution is shown as the red
stepped line. The red interpolated line under this is the interpolated cumulative Pois-
son distribution. We generate confidence bounds on measuring k photons by checking
the photon counts where the interpolated cumulative distribution crosses various pro-
bability levels. The mean k always lies where the cumulative distribution crosses
P = 0.5. Likewise, the ±1σ intervals lie where the cumulative distribution crosses
P = 0.5± 0.341.

These confidence bounds are plotted in Figure 5.9b, horizontally. That is, for a
given λ we calculate the corresponding mean k with confidence intervals σ. We then
plot that k ± σ along the x-axis at a position λ up the y-axis. We continue this process
for increasing λ values, until the left-most confidence interval crosses the maximum
photon count we measure.
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At this point we have mapped out all of the possible λ and k combinations relevant
to our data set up to the confidence interval we earlier selected (as in Figure 5.9b).
In this map of probability space, the distribution P (k|λ) (the Poisson distribution)
represents the sub-space horizontally where y = λ. The distribution that we want
(P (λ|k)) is the subspace vertically where x = k.

We then write the total probability map to a look-up-table for later processing.
Since this algorithm takes only a few minutes to run, and we need only do it once, the
actual look up table was written to a maximum of λ = 250, which turned out to be
several times higher than any of our contrast data required.

Figure 5.10 shows the SPCM data from Figure 5.7 with error bars generated with
the above method. Each error bar represents the 1σ confidence interval for the ‘true’
photon number in each bin, given the measured count. We can see that the uncertain-
ties are distinctly asymmetrical at low photon counts, but tend towards symmetrical
distributions as the count increases.
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Figure 5.10: A single-shot SPCM contrast signal with errors. The ‘inverted’ uncer-
tainty distribution shown in Figure 5.9 has been used to generate 1σ confidence inter-
vals for the value of the true photon count given the measured count. The fit is the
result of a χ2 minimisation routine, and is included as a guide to the eye (discussed in
Section 5.3.1). Inset are some example errors, which are highly asymmetrical at low
photon counts.

5.3.4 Maximum Likelihood fitting for data dominated by Poisson
noise

The definition of the χ2 includes a term of the form 1
n

∑n
i (yi − u(xi))

2 (see equa-
tion 5.8), where yi is the ith data point and u(xi) is the value of a model at the ith
data point. This definition is symmetrical; it returns an identical value regardless of
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whether the data point in question is above or below the model. An alternative metric
which can respect asymmetrical uncertainty distributions is the ‘likelihood estimate’,
in an optimisation process that is generally referred to as ‘Maximum Likelihood Esti-
mation’ (MLE) [146].

One such analysis designed specifically for handling Poisson uncertainties is des-
cribed in [146], where the authors fit a Gaussian model to data of the wavelength of
photons Thomson scattered from a plasma to obtain information about the plasma’s
temperature. We can apply the same approach to our data. We have a model of the
‘true’ photon number u(x, a1, . . . , aM) that we want to fit to our data points yi(xi),
where xi are our times at each index i, a1 . . . aM are our M parameters, and yi the
values of our data points. The Poisson distribution is given by

Pi =
exp[−u(xi)]u(xi)

yi(xi)

yi(xi)!
, (5.12)

so the probability of a specific measurement of N samples is given by

P =
N∏
i=1

exp[−u(xi)]u(xi)
yi(xi)

yi(xi)!
. (5.13)

The point of maximum likelihood corresponds to a set of parameters that generate
a mean which is most likely to result in our measurement. This occurs when the partial
derivatives of equation 5.13 are zero. The calculation of the partial derivatives of the
product in equation 5.13 are numerically expensive, so we can instead take the log of
equation 5.13 to convert the product into a sum, and instead take the derivative of that
function. We can then attempt to set the ‘log likelihood’ to zero:

Lj =
∂

∂aj
(lnP ) =

N∑
i=1

∂u(xi)

∂aj

(
1− yi

u(xi)

)
= 0 , (5.14)

where this minimisation method is known as Maximum Likelihood Estimation (MLE).
In our case we model our data with a cosine wave with a Gaussian envelope

u(x) = a1 exp

(
−(x− a3)

(2a2
2)

)
∆x

2
[cos (2πa4x + a5) + 1] , (5.15)

where the parameters are envelope amplitude (a1), envelope width (a2), envelope cen-
tre (a3), cosine frequency (a4), and cosine phase offset (a5), and ∆x is our measure-
ment bin width.

We obtain our likelihood functions by passing equation 5.15 through equation 5.14,
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obtaining

L1 =
N∑

i=1

(u(xi)− yi)

L2 =
N∑

i=1

(u(xi)− yi)
(xi − a3)2

a3
2

L3 =
N∑

i=1

(u(xi)− yi)
(xi − a3)

a2
2

L4 = −
N∑

i=1

(u(xi)− yi) sin (2πa4xi + a5) 2πxi

L5 = −
N∑

i=1

(u(xi)− yi) sin (2πa4xi + a5) .

(5.16)

We then use a Raphson-Newton secant-method (see Equation 5.19) to find the roots
of Equations 5.16 by starting from set of initial guess parameters a0, then calculating
the gradient of L = (Lj=1 . . . Lj=M), and following the gradient descent to a local
minimum.

In one dimension, we can find the root of a function f(x) by iterating from an
initial x0 using the Newton-Raphson method [144], by iterating

xn+1 = xn − f(x)/
df(x)

dx
. (5.17)

We generalise this to our M -equation, M -parameter system using the Jacobian

J [L(a)] =

[
∂L

∂a1

. . .
∂L

∂aM

]
=


∂L1

∂a1
. . . ∂L1

∂aM... . . . ...
∂LM
∂a1

. . . ∂LM
∂aM

 , (5.18)

which we estimate numerically [148]. This results in an M dimensional Raphson-
Newton algorithm like

an+1 = an − αJ [L(an)]−1L(an) . (5.19)

By iterating this process from a suitable initial guess a0, we converge on a solution
an which represents the parameters of the model which is the most likely to have
generated our measurements yi.

In practice, the gradient descent is less efficient and less stable than more elo-
quent ‘derivative-based’ algorithms like the Gauss-Newton or Levenberg-Marquardt,
but many of these alternatives require a scalar ‘goodness-of-fit’ parameter. We could
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recreate this, but in doing so we would have to combine the M number of LM terms in
some arbitrary fashion, most likely shifting the ‘optimal’ fit point. Instead, we stabilise
the gradient descent with a damping parameter α (see equation 5.19). This damping
parameter is set to some constant base value (50 is typical for real data), and divided
by the χ2 at each fit iteration,

an+1 = an −
(
α

χ2
n

)
J [L(an)]−1L(an) , (5.20)

where the χ2 has been defined as

χ2 =
N∑
i

(
yi − ui

σi(+) + σi(−)

)2

, (5.21)

and σi(+) and σi(−) are confidence bounds upwards and downwards respectively for
the ith data point.
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Figure 5.11: Output of the MLE fit algorithm when applied to the data shown in Fi-
gure 5.10. The calculation of the uncertainty in fitted parameters is performed by
shifting each data-point up and downwards slightly, and refitting to determine ∂a/∂yi,
and combining as shown in equation(5.22). The red trace marks the best fit, i.e. the
one that minimises L in equation 5.14.

Once an optimal fit is found, we calculate errors by numerically calculating the
gradient daj/dyi for every data point yi, by shifting each yi slightly and refitting a for
each shift. The shift in each case is one photon upwards and downwards, except when
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the measurement is zero. For zero counts we take the gradient of the secant between
the ‘zero’ and ‘one’ photon calculations. We then combine these to calculate the total
estimated variance in each parameter, σ2

a

σ2
a =

N∑
i=1

σ2
yi

(
∂a

∂yi

)2

, (5.22)

where σ2
yi

is the uncertainty around the value of our fitted model at each time index.
Since the uncertainty distribution of the model is given by the Poisson distribution,
σ2
yi

= yi. This procedure returns the fit parameters for our SPCM data set as

a1(Amplitude) = 6.300, (σ1 = 0.251) [Photons/µs]

a2(Envelope Width) = 127.063, (σ2 = 3.242) [µs]

a3(Envelope Centre) = −13.652, (σ3 = 4.163) [µs]

a4(Frequency) = 24.295, (σ4 = 0.083) [kHz]

a5(Phase offset) = 0.171, (σ5 = 0.005) [rad] .

With the fit algorithm returning fit parameters with associated uncertainties, we
wanted to test the fitting with a range of data. In principle we could have taken a
range of data experimentally with various parameter settings, such as temporal bin
size and probe intensities, but this would have been time-consuming. Instead we could
test the algorithm by simulating the output of our contrast interferometer. This has
some significant benefits: (1) Because we were generating the data, we knew the ‘true’
photon counts in our data before shot noise was added, (2) we could generate simulated
data much more quickly than we could capture it experimentally, and (3) we could alter
the parameters of the simulated data much more easily than we could experimentally.

We generated data first by deciding on a set of model parameters consistent with
our experimental contrast signal. We would modify these parameters slightly with
some random factor, and from these perturbed parameters we would generate an array
of photon counts, like our contrast signal but with no photon shot noise. From this
array we would generate a set of simulated contrast signals with random shot noise
derived from the Poisson distribution. These sets of data would then be fitted one by
one, and the resulting fit parameters, uncertainties, and uncertainties collated.

We had two simulated controls for altering the simulated data. Once was a pre-
multiplier on the intensity of the contrast signal (before shot noise was added), and one
was the temporal bin width. Using these controls we generated two different sets of fit
results.

Figure 5.12a shows the first simulated data fitting run, where the total intensity of
the contrast signal remained the same, but we altered the bin-width of the signal. Here
the total number of photons in each contrast signal remained nearly constant across all
simulated data.

Figure 5.12b shows the second simulated data run, where the total intensity of the
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contrast signal was scaled inversely to the temporal bin-width, such that the number of
bins changed, but the photon count per bin remained nearly constant. In this configu-
ration the number of photons increased with the number of bins across the sample.

We should expect that our fit uncertainties should scale with the total photon count
n as 1/

√
n. Our fit algorithm recreates this behaviour in both cases.
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Figure 5.12: Variation in fit error estimation as a function of bin width and total photon
count. Multiple data sets were created, and the fit algorithm run on each to return
a set of fit parameters, and associated fit uncertainties. (a) The total photon count
during each data set is held constant, but the bin width is varied, such that the total
photon count across the entire measurement is constant. (b) The total photon count
was modified so that the photon count per bin was constant. This caused an increase
in photon count linear with the number of bins in the signal.

104



5.4. CONTRAST MEASUREMENT OF α

5.4 Contrast measurement of α

5.4.1 Interferometer configuration
We performed a measurement of the fine structure constant α in Section 4.6.3, where
we used a ‘short’ three-arm interferometer geometry. To recap, the short geometry
omits the reflection pulse, instead opening and closing the interferometer with identical
splitter pulses separated by a delay time Tdelay, shown in Figure 5.13. We observe the
evolving phase as this delay time varies, where the frequency of the oscillation is tied to
the fine structure constant. We can perform the same α measurement with the contrast
interferometer in the same ‘short’ configuration. Figure 5.13 shows a comparison in
the pulse sequences between the short momentum interferometer and short contrast
interferometer.

Common to both techniques is an opening (1) pulse of 26.6 µs duration and 6.07 Er

lattice depth, drawn in black. The pulse corresponds to a laser power of approximately
20 µW per beam, and an intensity at the atoms of ∼180 mW cm−2 per beam. This
pulse splits the initially stationary cloud of BEC atoms into a superposition of the
|−2~k〉, |0~k〉, |+2~k〉 momentum states with respective probabilities Pp ≈ (1

4
, 1

2
, 1

4
).

Whilst the momentum interferometer uses a delayed closing pulse (2, red), the
contrast interferometer instead uses a single, sustained, probe pulse (drawn in blue (3))
on the order of 10 nW and intensity 0.088 mW cm−2 at the atoms. Whilst the splitter
pulses are comprised of two beams which form an optical grating, this probe consists
of a single laser beam. The use of shutters to change this configuration requires a
120 µs delay after the splitter pulse before the probe can be triggered.
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Figure 5.13: Comparison of the interferometer sequences for the momentum and
phase-contrast interferometers. Whilst the opening splitter pulse (1) is common to
both techniques, the contrast interferometer uses a continuous weak probe beam (3) to
probe the evolving matter-wave.
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5.4.2 Extracting α information from contrast interferometer data

Time [µs]

Ph
ot

on
co

un
t[

4
µs

bi
n]

700600500400300200
0

5

10

15

20

25

30

35

40

45

50

Figure 5.14: An example of single-shot data from the short contrast interferometer.
Here photons from a probe laser are reflected from the evolving matter-wave into a
Single Photon Counting Module (SPCM), with the detected photon counts shown here
as black points. Error bars are calculated as described in Section 5.3.3. The data is fit
with our Poisson-sensitive algorithm, where the fit model is a cosine with a Gaussian
envelope.

While the contrast interferometer probe is active, photons are Bragg-scattered into
our SPCM, shown above in Figure 5.14 as black points. The error bars have been
calculated as the fiducial confidence bounds described in Section 5.3.3.

To this data we fit the model,

u(x) = a1 exp

(
−(x− a3)

(2a2
2)

)
∆x

2

[
cos
(
2πa4x + 2πa6x

2 + a5

)
+ 1
]
, (5.23)

where a sixth parameter a6 has been added to the model. This parameter is the coeffi-
cient for a linear frequency chirp, which will be discussed in Section 6.2. From this fit
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we extract the parameter values,

a1(Amplitude) = +24.21, (σ1 = 1.93) [Photons/µs]

a2(Envelope Width) = +428.7, (σ2 = 10.2) [µs]

a3(Envelope Centre) = −523.0, (σ3 = 21.7) [µs]

a4(Frequency) = +24730, (σ4 = 80) [Hz]

a5(Phase offset) = −0.450, (σ5 = 0.068) [rad]

a6(Frequency chirp) = −0.031, (σ6 = 0.12) [Hz/ µs] .

We use the same method as shown in Section 4.6.3, using the fitted frequency
to obtain an α measurement for this single experimental run, with the exception that
our CI returns frequencies twice that of the MI. Here we obtain α−1 = 136.74 ± 0.88
(6500 ppm). Once again the majority of this error comes from the uncertainty δθ ≈
0.5◦. If we assume that the angle uncertainty is zero, we obtain an uncertainty δα−1 =
0.32 (2300 ppm).

Comparing the contrast interferometer (CI) measurement here to the momentum
interferometer (MI) measurement in Section 4.6.3, we can see that the experimental
uncertainties are of the same order of magnitude. Despite this, the CI retains a few ad-
vantages: most obviously, the above measurement uses 146 data points to measure the
fine structure constant in a 30 second acquisition period. If we attempt the same mea-
surement with the MI, we accomplish the same in a∼ 6 hour period (146 data points×
5 experimental runs per data point× 30 seconds per experimental run = 6 hours 5 mi-
nutes). The CI measurement is approximately 720 times faster in this instance, so we
should expect a

√
720 ≈ 27-fold reduction in uncertainties from contrast interferome-

try over the MI over an equal time-period, bringing our CI uncertainty down to δα−1

= 0.011 (85 ppm). At this level of precision and with a 30 s experimental cycle time,
we could expect to reduce our uncertainty to 11 ppm within a month of integration
(assuming a data acquisition duration of 12 uninterrupted hour per day).

Additionally, the fact that our CI performs single-shot measurements renders the
technique insensitive to sources of phase noise operating at a frequency lower than our
data acquisition rate. If a single measurement occurs over a time period of approxima-
tely 500µs, then noise of a frequency of 2 kHz will appear as a single oscillation across
our fringes. Lower frequency noise would appear as common vertical offset across all
data points. In comparison, to appropriately understand the noise distribution in our MI
measurement requires an increase in the number of samples taken (from 5 currently),
further increasing data acquisition time.
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Chapter 6

Advanced techniques

6.1 Introduction
We described in Chapter 5 the principle of operation of a single-shot atom interferome-
ter with a holographic readout technique, that we then used to perform a measurement
of the fine structure constant. The description glossed over some caveats when ex-
tracting information from the data. such as the aforementioned frequency chirps. This
chapter aims to elaborate on these, and investigate some methods of improving our
interferometer.

6.2 Mean field effects

6.2.1 Introduction and background
The 87Rb atoms we use have a positive scattering length [149], so in low energy col-
lisions the atoms experience a mutually repulsive distance-dependent potential [103].
This manifests as a density-dependent energy interaction-potential within the BEC.

Our BEC is created in an optical dipole trap, which balances the interaction poten-
tial with a trapping potential. The BEC forms in the ground state and ‘fills’ the trapping
potential up to the chemical potential µ, such that the interaction potential and trapping
potential remain balanced. Since the BEC is in an eigenstate of the total potential, the
system remains time-invariant, which leads to a uniform phase across the condensate.
Figure 6.1(a,b,c,d) shows such a condensate within an optical dipole potential. The
condensate has ‘filled’ the trapping potential up to the chemical potential, expanding
in space up to the Thomas-Fermi radius rTF (Figure 6.1a,b). Figure 6.1c shows the
spatially uniform total potential g|ψ(x, t)|2 + u(x, t). Since this potential is uniform,
the phase of the BEC also remains spatially-uniform throughout its extents.

Figure 6.1(e,f,g,h) shows the same condensate some time after the dipole trap has
been released. Here the trapping potential and interaction potentials are no longer
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balanced, such that the total potential along the condensate is no longer uniform (Fi-
gure 6.1g). The non-uniform potential induces a non-uniform phase shift throughout
the condensate, proportional to the atomic density (Figure 6.1h). The gradient of this
phase with respect to position induces motion in the condensate. That is, whilst the
density profile of the BEC determines the profile of the phase evolution, the spatial
gradient of the phase profile causes the BEC to move.

The de Broglie matter wave is determined by the relation λdB = h/p, where λdB in
this instance is the spatial period under which the phase of our atomic wave-function
varies by 2π. We therefore have

p(x, t) =
h

2π

dφ(x, t)

dx
, (6.1)

such that the momentum of our BEC atoms is proportional to their local phase gradient.
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Figure 6.1: A description of our BEC before and after the dipole trap is switched off.
On the left (a,b,c,d) are shown the dipole trap potential u(x) (black), BEC density n(x)
(red), total potential g|ψ|2 + u(x) (green), and phase φ(x, t) whilst the condensate is
held in the optical trap. On the right (e,f,g,h) are the same, shown some short time after
the optical dipole trap has been released.
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The sign of the momentum induced is dependent on the interaction potential: in our
case the 87Rb atoms experience a repulsive interaction potential, and so the momentum
vectors point outwards, away from the highest density. If the density profile of the BEC
is parabolic (assuming a Thomas-Fermi approximation), then the spatial-gradient of
the density profile is linear with displacement from the BEC centre of mass (because
d

dx(1−x2) = −2x). The spatial gradient of the phase profile is therefore also linear, and
as a result the momentum of BEC atoms is linearly proportional to their displacement
from the BEC centre of mass: our BEC expands, but retains the shape of its profile.

As the BEC expands its density necessarily decreases, lowering the average den-
sity. Since the rate at which the BEC acquires phase is proportional to its density,
the phase accumulation rate also decreases as the BEC expands. The consequence of
the above mechanisms together (see equation 6.2) is that when our BEC is released
from a trapping potential, it rapidly acquires a density-dependent phase that induces
an expansion in the condensate. Together we have{

dφ(x,t)
dt = 1

~

[
g|ψ(x, t)|2 + u(x, t)

]
p(x, t) = h

2π
dφ(x,t)

dx

, (6.2)

where g = 4π~2as/m and as is the scattering length (98 Bohr Radii, for 87Rb). As
the condensate expands the density lowers, and so the interaction potential weakens
reducing the acceleration of the expansion.

These physics have been examined in the work of Castin et al. [150], where the
authors model this interaction-induced BEC expansion for an ellipsoidal condensate
generated in a trapping potential with trap frequencies ω1 = ω2 ≡ ω⊥ � ω3 ≡ ωz.
Their model is expressed with the equations

d2

dτ 2
λ⊥ =

1

λ3
⊥λz

d2

dτ 2
λz =

ε2

λ2
⊥λ

2
z

, (6.3)

where τ = ω⊥t is the dimensionless scaled time, ε = ωz(0)/ω⊥(0)� 1, and λ⊥(t) =
R⊥(t)/R⊥(0) and λz(t) = Rz(t)/Rz(0) are the dimensionless scaling parameters of
the Thomas-Fermi radii in the axial (z) and radial (⊥) directions.

Previous work has established that the trap frequencies of our optical dipole trap
when our BEC is formed are on the order of ωx,y,z ≈ (35 Hz, 74 Hz, 76 Hz) [99]. If we
approximate this with the Castin equations as a cigar-shaped BEC with trap frequencies
ω⊥,x = (75 Hz, 35 Hz), we obtain the BEC expansion trajectories shown in Figure 6.2.

In this approximation our interferometer axis (referred to previously as the x-
direction) lies along the axial direction. Looking at our predicted axial trajectory in
Figure 6.2, we see that at t = 0 s the expansion rate is v0 = 0 mm s−1. The curvature
of the trajectory is greatest here (corresponding to the greatest acceleration), due to the
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relatively high density of the condensate. The acceleration is lower with increasing
time due to the decreasing density, but as time increases more velocity has accumula-
ted.
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Figure 6.2: The Thomas-Fermi radii of our Bose-Einstein Condensate from the mo-
ment we release our trapping potential at T = 0 ms, modelled using the work of Cas-
tin et al. [150] using Equations 6.3. The velocity of the Thomas Fermi radius is given
by the gradient with respect to time, marked at t = 0 ms (red) and t = 3 ms (blue).

We have two regions of interest, then. At long times the interaction-induced acce-
lerating expansion has mostly expired, but the condensate has acquired an expansion
velocity that persists forever. At short times interactions are at their strongest, acce-
lerating the BEC expansion, but insufficient time has passed for this acceleration to
project into an expansion speed. Our contrast interferometer generates a superposition
of momentum states from a BEC, and maps the evolving phase of that superposition
to extract information about the atom-photon recoil energy. Given that the interaction
induced phase shifts alters the phase and momentum of our BEC, it is crucial that we
investigate the effect interactions have on our interferometer.

Figure 6.3 shows an examination of the contrast interferometer running in both of
the above regimes. The left and right sides describe the BEC density (red) and phase
(blue) throughout time (shown vertically, evolving downwards). On both sides we start
with a BEC held in an optical dipole trap at time T1. Each subfigure left and right show
corresponding snapshots of the BEC at times T1, T2, and T3.

On the left (Figure 6.3a,b,c,d) the dipole trap is held on until the time T2. At this
‘release time’ the condensate still has a spatially-uniform phase. Almost immediately
atom-optics are applied, imprinting a phase and density modulation on the conden-
sate. The evolution of the atomic-wavefunction is now dominated entirely by this new
density and phase profile.

On the right (Figure 6.3e,f,g,h) the dipole trap is turned off at time T1, and a period
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of free evolution occurs. During this time tonly the interaction potential exists, and so
the BEC accumulates a phase chirp profile that matches its density profile. When the
atom-optics are triggered at time T2, some phase chirp (and therefore also a momen-
tum distribution) has already accumulated in the BEC. This chirp is inherited by the
matter-wave fringes generated by the atom-optics. As was the case with our BEC in
Figure 6.1, the matter-wave fringes now have a momentum distribution that is linearly
proportional to their displacement from the centre of mass.
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Dipole 1 - turn off
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After evolve time
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(a)

(b)

(c)

(d) (h)

(g)

(f)

(e)

Time

Apply atom-optics

After evolve time

T1

T2

T3

Free evolution

Dipole 1 - hold in trap
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Figure 6.3: A schematic of our BEC density (red trace) and phase (blue trace) throug-
hout the contrast interferometer. On both sides a BEC is formed in an optical dipole
trap. On the left (a,b,c,d) this trap is held on until a time T2, immediately before atom-
optics are triggered. On the right (e,f,g,h) the dipole is released at T1, allowing some
evolution time before the atom-optics are triggered. The phase induced by the untrap-
ped evolution time on the right induces a phase-chirp across the condensate, which is
inherited by the matter-wave fringes through the rest of the experiment.

When we allow a phase chirp to accumulate in the BEC, the interference fringes
inherit the expansion rate of the BEC at the time the atom-optics are applied. This me-
ans that the matter-wave interference pattern imprinted on the condensate also expands
as time progresses.
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Figure 6.4: An ‘inherited’ phase chirp from the interaction potential induces motion
in the matter-wave fringes during an interferometer run. (a) If we perform our beam-
splitter pulse when the condensate is already expanding, the outer ‘notches’ inherit
momentum from the expanding condensate in the form of a phase chirp across the
notch. (b) The expansion then alters the spatial period of the matter-wave grating,
altering the encoded wavevector.

This expansion of the matter-wave fringe has an important effect on the contrast
interferometer: the spatial period of the matter wave λm.w. encodes the momentum
exchange ∆p and corresponding 2-photon recoil energy E(2)

recoil in our atom-light inte-
raction, {

∆p = 2~k = 2~ 2π
λm.w.

E
(2)
recoil = (2~k)2

2m
= 2~2

m
4π2

λ2
m.w.

. (6.4)

If the wavelength of the matter-wave increases, the encoded momentum and energy
both decrease. A zoom-in of Figure 6.3(g,h) is shown in Figure 6.4, where the BEC
has been released for some time before the atom-optics have been applied at time
t = T2. The phase accumulated has been inherited by the matter-wave fringes, giving
the fringes an expansion speed (a). After some time at t = T3, the fringe period has
increased to approximately 1.4 λgrating (b).

An alternative picture of this mechanism might be that our atom-optics generate a
superposition of three momentum states: A |0~k〉 state with a spatially uniform phase,
and a pair of [|+2~k〉+|−2~k〉] states with phase chirps across each wave-packet with
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a linear gradient. If we add on this interaction-induced phase chirp, we cause all three
clouds to expand. With each momentum wave-packet expanding, the relative velocities
at the position of maximum cloud overlap changes with time. For example: at the
moment of maximum overlap the centre of mass of all three clouds overlap, and so the
relative velocities match our |−2~k〉, |0~k〉, |+2~k〉 momentum states. At some later
time, the trailing edges of the clouds are overlapping. Since the clouds are expanding
and moving apart, the trailing edges are moving more slowly than their centres. As
these trailing edges overlap, their de Broglie wavelengths are larger, and their phase
rotation rate dφ(t)/dt is slower in comparison to their centres.

We should therefore see a gradual reduction in the oscillation rate of our hologram
as the clouds separate if those clouds are expanding, and this reduction in frequency
should happen at a rate proportional to their expansion. We can use the Castin [150]
model of our Thomas-Fermi radius (shown in Figure 6.2) to predict the frequency
chirp we should expect to see in our contrast interferometer for a given expansion time
between dipole release and atom-optics.

For a given duration Texpansion of free expansion between the dipole trap release
and triggering of atom-optics, we can use Figure 6.2 data as a lookup table for the
Thomas Fermi radius of our condensate in the axial (x) direction RTF(T ). We then
divide RTF(T ) by λgrating = 434 nm to determine how many interference fringes we
generate across our condensate as we apply the splitter pulse. We then calculate the
expansion rate of the condensate using the gradient dRTF/dt at the time we apply the
splitter pulse. Using this gradient we expand our matter-wave fringe as time evolves,
calculating the spatial wavelength of the hologram over time. From this spatial wave-
length we can calculate the modification to our contrast interferometer frequency using
equations 6.4.

If we perform the same calculation for a variety of expansion times Texpansion, we
can map out a prediction of the frequency encoded in our contrast signal, and from this
calculate the corresponding frequency chirp we expect to see. Figure 6.5 shows such a
map. On the x-axis here is the delay time between the optical dipole trap release and
triggering of atom-optics, and the on the y-axis is the evolution time after the triggering
of atom-optics.

We can read the map by choosing a free expansion time along the x-axis, and
following the evolution vertically. For example, suppose our contrast interferometer
sequence switches off the optical dipole trap at t = 0 ms, and atom-optics are applied
at t = 2 ms. We can predict the frequency of the contrast signal from Figure 6.5(a) by
moving to Texpansion = 2 ms on the x-axis, where y = 0 ms corresponds to the instant
that the atom-optics are applied. Here we see that our CI frequency begins at our
expected 24.6 kHz, but decreases to approximately 23.2 kHz after 500 µs of contrast
readout time. Figure 6.5(b) shows the corresponding frequency chirp, which begins
at approximately df/dt ≈ −2.25 Hz µs−1 and decreases to approximately df/dt ≈
−2.0 Hz µs−1 after 500 µs of contrast readout time.
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Figure 6.5: The predicted contrast signal frequency (a) and frequency chirp (b),
numerically generated by the Castin BEC expansion model described in equati-
ons 6.3 [150, 151]. The x-axis represents the time delay between the release of our
optical dipole potential and the activation of our atom-optics beam-splitter pulse: that
is, the free flight time during which the BEC acquires a density-dependent phase pro-
file. The y-axis represents the evolution time after the beam-splitter has been applied.

There is an important caveat here. This analysis assumes that the interaction-
induced acceleration ends at the moment the beam-splitter pulse is applied. We instead
calculate the velocity of the Thomas-Fermi radius at the moment of the atom-optics
pulse, and project that velocity forwards in time. This drawn in Figure 6.2, where the
expansion profile at t = 3 ms now follows the blue ballistic trajectory, rather than the
black accelerating one.

In Figure 5.3 we see that our example atom-optics pulse has a duration of approxi-
mately 26 µs, and that at the end of this pulse we have altered the spatial density profile
of the BEC with a spatial modulation of period λgrating, where the low density occurs at
x = 0 nm. We also see that this wave oscillates in time, such that a λgrating matter-wave
re-images at t ≈ 41 µs, but with the spatial phase offset by π such that the density is
then high at x = 0 nm. The interaction-induced phase shift within the BEC should then
be greatest at the positions of highest density, and therefore also alternate spatially by
π as the matter-wave re-images spatially in and out of phase with the optical grating.

Taken together, we see that (1) the Thomas-Fermi density distribution that ge-
nerated a position-dependent phase-gradient across the BEC has been altered by the
application of atom-optics, and (2) the subsequent interaction-induced phase-shift al-
ternates in position such that it (to some extent) time-averages to a spatially-uniform
phase shift. The extent to which this time-averaging occurs depends on the specific
density-evolution of the BEC after the atom-optics have been applied. We should the-
refore expect that the linearity of the frequency chirp we see during the CI will depend
on the specific beam-splitter pulse used to generate the BEC momentum states. In the
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limit that the phase-shift is spatially-uniform, would would indeed see a halt to the
expansion acceleration.

6.2.2 Observation of frequency chirp in GPE simulation
To test the above hypothesis in a controlled environment, we configured our 2D GPE
simulation [152, 153] with an interaction term tuned such that the expansion of our
simulated 2D condensate was similar to that of our simulation shown in Figure 6.2. We
then programmed the simulation to allow some free BEC expansion time, and then a
single beam-splitter pulse to begin the contrast interferometer. The complex amplitude
of the BEC was recorded at time intervals after the split, and converted into a density
grid. This gave us a series of samples at regular time intervals, where each sample
described the density distribution of the BEC during the contrast interferometer.

To be clear: our simulation gave us the complex amplitude of the BEC wavefunction
within a two-dimensional simulation space (x, y) over a range of times t. We then
calculated the density P (x, y, t) = |ψ(x, y, t)|2, and binned this along the y-axis
to result in a one-dimensional binned density along the x-axis for each time index,
n(x, t) =

∑
y P (x, y, t).

For every time sample, we calculated the spatial autocorrelation in the x-direction
by multiplying the binned density with itself offset by some spatial displacement δx,

C(δx, t) =
∑
i

n(xi, t)× n(xi + δx, t) . (6.5)

This outputs a one-dimensional array of values that correspond to the magnitude of
our density distribution in the spatial period δx at a given time t. That is, if our spatial
density has a distinct wavelength of λgrating, we would expect to see a peak in C(δx, t)
around δx = λgrating.

This autocorrelation method was chosen over a Fast Fourier Transform (FFT) algo-
rithm because the latter attempts to decompose the signal into the relative fractions of
sine waves in the density. For example, if our spatial density were composed of delta
functions spaced λgrating apart we might have a reasonable Bragg-reflector for our probe
laser, but the FFT would return a multitude of frequencies. The spatial autocorrelation
is a clearer metric for our purpose in this instance.

We use the autocorrelation described above at each time step in our 2D GPE simu-
lation, to convert the simulated wavefunction ψ(x, y, t) into a spatial autocorrelation
C(δx, t). We would then extract the value of S(t) ≡ C([δx = λgrating], t), giving
us an array S(t) that approximates how much of our simulated density distribution is
in a λgrating spatial period as a function of time. A slight complication here is that a
density distribution with a spatial period of λgrating/2 will also return a large value of
C([λgrating], t). As a result we redefine S(t) = C([λgrating], t)−C([λgrating/2], t). In this
way we suppress the sensitivity of S(t) to higher spatial frequencies.

The black line trace in Figure 6.6 shows an example of the spatial autocorrelation
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S(t). To this we fit (red trace) the model

y =
A

2

[
1 + cos

(
2πf [t− to] + 2πc[t− to]2 + φo

)
− yo1

]
× ...

...× exp

(
− [t− to]2

[2σ2]

)
+ yo1 + yo2 , (6.6)

where A is the amplitude of the signal oscillation, to is the centre of the Gaussian
envelope, φo is the oscillation phase offset, σ the Gaussian envelope width, yo1 and yo2

vertical offsets, and most importantly f is the frequency (at t = 0) of the CI signal,
and c is the associated linear frequency chirp.

Figure 6.6 shows an example simulation of S(t) where the BEC has had a free
expansion time of 5 ms between the optical dipole trap release and a beam-splitter
pulse. The fit returns a fitted frequency chirp c ≈ 2 Hz µs−1.

Fitted freq: 24.27± 0.44 [kHz]
Fitted chirp: −2.16± 0.14 [Hz µs−1]
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Figure 6.6: Spatial autocorrelation analysis of a 2D GPE simulation configured to re-
semble our BEC experiment with a 5 ms free expansion time. We see a fitted frequency
chirp of −2.16± 0.14 Hz µs−1.

We repeated this process for a selection of free expansion times, comparing the fit-
ted 2D GPE frequency chirps (red points) with those we expect from equations 6.3
(black solid line) in Figure 6.7. Qualitatively we see a similar ‘scooped’ pattern
emerge, with a steep increase in frequency chirp magnitude from 0 ms to around 4.5 ms
followed by a slow return. The differences between the Castin expansion model and
2D GPE simulation were not entirely unexpected: firstly, the 2D GPE was tuned to
give similar increases in Thomas-Fermi radius to the expansion model, but has fewer
dimensions for the density to expand into, so we should expect the interaction energy
to scale with density differently. Secondly, the expansion model here quotes the initial
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TEvolution = 0ms frequency chirp, which is a good approximation for low expansion
times (see the left-hand side of Figure 6.5(b)), but breaks down as TExpansion increases.
Since our simulated contrast signals begin at 200 µs and continue for around 700 µs, a
better comparison here might be to also plot the Castin model with TEvolution = 0.5ms,
and 0.5ms, performing an approximate integration to compare the two models.
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Figure 6.7: Comparison of the numerical frequency chirp calculation from the Castin
BEC expansion (solid black line), and the 2D GPE simulation (red points).

6.2.3 Observation of frequency chirp in Contrast data
With our ability to detect an interaction-induced frequency chirp seeming plausible,
we needed to alter our data analysis algorithm. We extended our Poisson fitting model
(section 5.3.4) to include a frequency chirp by adjusting our model and likelihood
functions. We can rewrite our previous model to match the frequency chirp shown in
equation 6.6 by including an additional parameter a6, corresponding to a linear change
in frequency

u(x) = a1 exp

(
−(x− a3)

(2a2
2)

)
∆x

2

[
cos
(
2πa4x + 2πa6x

2 + a5

)
+ 1
]
. (6.7)
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We pass this model through Equation 5.14 to obtain our array of probability likelihood
expressions

L =



N∑
i=1

(
u(xi)− yi

)
N∑

i=1

(
u(xi)− yi

)(xi − a3)2

a3
2

N∑
i=1

(
u(xi)− yi

)(xi − a3)

a2
2

−
N∑

i=1

(
u(xi)− yi

)
sin
(
2πa4xi + 2πa6x

2
i + a5

)
2πxi

−
N∑

i=1

(
u(xi)− yi

)
sin
(
2πa4xi + 2πa6x

2
i + a5

)
−

N∑
i=1

(
u(xi)− yi

)
sin
(
2πa4xi + 2πa6x

2
i + a5

)
2πx2

i



= 0 , (6.8)

where the sixth term a6 corresponds to our frequency chirp parameter.
Experimentally, the contrast interferometer was set in a ‘long’ configuration (see

Section 5) with typical parameters: In this instance with 2 ms free expansion time be-
fore the first split, the first wait time set to 750 µs, and the second to approximately
500 µs. The resulting photon-count data are shown in Figure 6.8. Errors were calcula-
ted using the same method as described in section 5.3.4. The fitting algorithm returns
the parameters with errors,

[Env amp] a1 =+8.750 (σ = 0.080) [0.91%] [Photons/µs] ,
[Env width] a2 =+135.0 (σ = 0.9) [0.63%] [µs] ,
[Env centre] a3 =−56.46 (σ = 1.01) [1.80%] [µs] ,

[Cosine Freq] a4 =+24570 (σ = 22) [0.09%] [Hz] ,
[Phase offset] a5 =+0.429 (σ = 0.015) [3.49%] [rad] ,

[Freq chirp] a6 =−2.335 (σ = 0.052) [2.23%] [Hz/µs] .

where the uncertainty σ is the standard error, and corresponding percentage errors have
been given as a more convenient fractional uncertainty.

From our Castin model (Figure 6.7) we expect a frequency chirp of approximately
-2.3 Hz µs−1 at 2 ms expansion time, if we are correct in our assumption that at the
moment of the splitter pulse we ‘freeze’ our interaction-induced accelerating expansion
into a ballistic expansion.

This is a striking match, given the naivety of our expansion-chirp model. The fitted
frequency chirp is 45 times larger than our estimated uncertainty σ = 0.052 Hz/µs, but
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lies within one σ of the predicted value. This is a strong indicator that (1) a frequency
chirp exists within the contrast interferometer signal, and (2) our model is effective in
predicting the magnitude of this chirp. From this we infer that our expansion-chirp
model is an approach worthy of further development.
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Figure 6.8: Our contrast interferometer signal with 2 ms free expansion time before
the opening splitter pulse. The red line is a fit of our model described in equation 6.7,
which returns a fitted frequency chirp of −2.335 (σ = 0.052) [Hz/µs] around a central
frequency of +24570 (σ = 22) [Hz].

For comparison, we see approximately zero (−0.03±0.12 Hz µs−1) frequency chirp
for our contrast interferometer when no expansion time is present before the first split-
ter pulse (Figure 5.14).

This frequency chirp is of obvious importance to our measurement of the fine struc-
ture constant; the frequency measurement that we obtain is now a function of the ex-
pansion time we allow before applying our first interferometer pulse, and the frequency
that we obtain is dependent on when we start and end our photon measurement. Since
our model of the phenomenon predicts that our interferometer frequency should be
‘correct’ at the moment of the interferometer opening, a naive compensation would be
to ‘project’ the frequency back to this moment linearly using the fitted chirp.

Testing the linearity of the chirp experimentally is difficult: our short CI configu-
ration rapidly loses contrast over a period of ∼ 500 µs, and our long CI configuration
introduces additional effects from the reflection pulse used. In addition, the experimen-
tal interferometer has additional delay times for shuttering of the atom-optics beams
that reduces our ability to examine low evolution times. In comparison our 2D GPE si-
mulation has fewer restrictions, and can be probed in the short and long configurations
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within the same simulation run.
The linearity tests were conducted with the 2D GPE, configured with TExpansion =

3 ms between the optical dipole trap release and first beam-splitter pulse, and a Black-
man reflection pulse centred 750 µs after the beam-splitter pulse end. This sequence is
shown in Figure 6.9.

The BEC autocorrelation was examined over the entire duration of the simulated
interferometer, from t = 0 ms to t ≈ 2 ms. Rather than fitting the entire signal at once
to determine a single frequency chirp, the autocorrelation signal S(t) was sampled over
a 200 µs sub-region (approximately five periods of our contrast signal), and a frequency
extracted for that sample. This 200 µs region was then swept over the interferometer
duration, sampling the simulated frequency as a function of interferometer evolution
time, shown in Figure 6.9 as the black line in the lower graph.
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Figure 6.9: Linearity of frequency chirp in 2D GPE. Black solid lines refer to the local
fitted frequency in a five-period subsample as a function of time. The blue dot-dashed
lines are a linear frequency chirp fitted to the black frequency lines. Our simulation
shows a linear frequency chirp of approximately -3 Hz µs−1 following the opening split-
ter pulse in the contrast interferometer. After the reflection we see that the contrast
frequency has been increased by the reflection, and that whilst an overall linear trend
in the frequency is dominant, there are additional features.

We see a very nearly linear frequency chirp of approximately -3 Hz µs−1 (dot-
dashed blue trace) before the reflection pulse, with a similar (though less linear) fre-
quency chirp afterwards. This linear approximation does project backwards in time to
our expected 24.6 kHz contrast signal at the end of the beam-splitter pulse. From this
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we infer that the linear approximation is probably valid for a CI in the short configura-
tion for comparable TExpansion times.

Whilst this appears valid for the ‘short’ reflectionless contrast interferometer, we
need to take care with the longer split→ reflect→ probe configuration. Our reflection
is not truly a reflection of the p = ±2~k modes, but rather a δp = ∓4~k momentum
kick. If the momentum of our interferometer arms has slowed from ±2~k to ±(2 −
ε)~k, we will see the momentum after the reflection of ∓(2 + ε)~k. We see this in
our 2D GPE simulation in Figure 6.9 as the ±1.9 kHz frequency offsets in the contrast
signal at equal ±260 µs offsets on either side of the reflection pulse.

This means that whilst we expect to see a reduced interferometer frequency due
to ballistic BEC expansion, this reduction in frequency should manifest as an increase
in frequency after the reflection. Our 2D GPE simulation recreates this behaviour
when we include a reflection pulse. Interestingly, since the frequency chirp before
and after the reflection pulse are both approximately linear and of similar magnitude,
we see the contrast frequency return to our expected 24.6 kHz at a time 2T . From
this we infer that the valid measurement times are at t = 0 and t = 2T . The previous
measurements by Jamison et al. [54,110] probably minimised the effect of interaction-
induced expansion effects by measuring the interferometer phase at t = 2T .
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6.3 Higher-order scattering

6.3.1 Motivation
In section 4.5.2 we used our atom interferometer to measure acceleration induced by
a magnetic field gradient. Essentially we used an optical grating as a spatial ruler
by converting the spatially-varying optical phase of the grating to the phase of the
interferometer’s output ports. The measurement precision δx is ultimately limited by
the periodicity of the ruler we use; if we half our optical grating wavelength the phase
gradient dφ/dx doubles, and our uncertainty, δx = δφ dx/dφ, halves.

Our phase-contrast measurement of the fine structure constant (section 5.4.2) uses
the matter-wave’s time-evolution as a ‘temporal ruler’ to measure the oscillation pe-
riod, with the measurement uncertainty δt = δφ dt/dφ. To match the current state-of-
the-art uncertainties of δα−1 ≈ 1 × 10−9, we would need to measure our ∼24.6 kHz
signal to a precision of 24.6 µHz.

The state of the art measurements commonly obtain their tremendous precision by
increasing the frequency that they measure; the Biraben group experiment induces 900
scattering events [50] increasing the interferometer frequency by increasing the energy
in the system. Such a feat with our interferometer with a ±900 × 2~k momentum
separation would yield a (0.81) million-fold increase in interferometer frequency to
20 GHz, with a significantly more feasible required measurement resolution of 20 Hz.

6.3.2 Viability of the second order Contrast signal
Since we can generate atom-optics with arbitrary output states, we can in principle
generate interferometer geometries with greater momentum separation. One might
then think the simplest enhancement for our contrast interferometer is to develop a
beam-tritter pulse like our existing p=(−2, 0,+2)~k momenta, but with an increased
momentum in the moving modes such as p=(−4, 0,+4)~k.

Unfortunately, whilst such a pulse would indeed generate a matter-wave that oscil-
lates four times faster than our first-order interferometer, the matter-wave grating does
not satisfy the Bragg condition for our probe laser into our detection system.

With an interferometer beam-angle θ ≈ 26◦, our λlaser = 780 nm generates an
optical lattice of wavelength λgrating = 780 nm

2 cos(26◦)
= 434 nm. Our 780 nm projected

along the optical grating axis at 26◦ gives us an ‘effective’ probe wavelength of λeff =
868 nm. Let us use this ‘λeff’ as a standard unit of measurement for the discussion that
follows.

Our first-order (p=(−2, 0,+2)~k) phase-contrast interferometer generates a matter-
wave grating with a periodicity of λeff/2. This λeff/2 matter-wave has a rotating phase
that interferes with the flat phase of the 0~k mode, such that the density wave oscillates
between λeff/2 and λeff/4 configurations (see Figure 5.3). Whilst the λeff/2 configura-
tion satisfies the Bragg condition for our probe laser, the λeff/4 does not [142]. This is
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why we see a periodic modulation in the light Bragg-scattered from our matter-wave
at a frequency of 8 ωrecoil, as explained in Section 5.1.2.

If we simply increase the momentum in our moving interferometer arms to a
p=(−4, 0,+4)~k configuration, we instead see an oscillation between λeff/4 and λeff/8
spatial periods in the matter wave, neither of which scatter into the collection mode of
our detector. What we require is a combination of momenta which will periodically
generate a λeff/2 spatial period in our atom condensate.

6.3.3 Holographic ‘beat’ measurements
Our solution to the problem was to think of the [|+2~k〉+|−2~k〉] superposition state
as the foundation for our Bragg-reflection. This configuration of momenta gene-
rate a continuous λeff/2 matter-wave, continuously Bragg-scattering our interferometer
probe into the SPCM collection mode. Our previous CI added a 0~k into the superpo-
sition, beating the ω = 2π · 0 Hz phase against the ω = 2π · 12.3 Hz phase of the±2~k
mode to generate a 12.3 Hz modulation of the reflectivity of the matter-wave.

We can replace the 0~k mode with some other momentum mode, altering the fre-
quency that we beat with the ±2~k modes. For example, a four-arm interferometer
with the momentum modes p = (−4,−2,+2,+4)~k should generate an evolving
matter wave with some λeff/2 component at a higher frequency. Like the first-order
contrast interferometer, the oscillation rate of this matter-wave is taken from the diffe-
rence in the input modes. Since the energy of each mode is proportional to the square
of the momentum and the phase-contrast interferometer has two reflective phases per
cycle, the first order |p|=2~k modes oscillate with at (2×22 = 8)ωrecoil, and the second
order |p|=4~k modes oscillate at (2 × 42 = 32)ωrecoil. A measurement which beats
these two modes should generate some matter-wave that oscillates at the difference in
frequencies, 24ωrecoil.

To test this hypothesis we configured a 2D GPE simulation which applied the
(−4,−2,+2,+4)~k pulse sequence described in section 3.8.1 to a BEC with approxi-
mately the same spatial dimensions and interaction strength to that used in our experi-
ment (see Section 6.2.2). We then looked at snapshots of the matter-wave’s evolution
through time, plotted in Figure 6.10. Here we see the matter-wave plotted as a Talbot
carpet in time, showing a periodic re-imaging of the optical grating with higher fre-
quency harmonics. As hoped, we see a λeff/2 matter-wave grating which oscillates at
24ωrecoil.

Comparing this second order evolution in Figure 6.10 to the first-order CI shown
in Figure 5.3, we can see that both matter-waves re-image with a period of approxima-
tely 82 µs, and both have additional re-imaging in and out-of-phase periods at higher
frequencies. In the case of our first-order CI this occurs an additional time once per os-
cillation at half the Talbot time of 82 µs, for a two-fold increase in oscillation frequency
over the base 12.3 kHz matter-wave frequency to 24.6 kHz. In the case of the second-
order signal, we see an additional 5 re-imaging times, for a total six-fold increase in
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frequency to approximately 73.8 kHz. We also see that the second-order interferometer
generates a more complex spatial density profile across the BEC with narrower, taller
density peaks, and features with a λgrating/4 periodicity.
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Figure 6.10: (a) The Talbot carpet of a p=(+4,+2,−2,−4) ~k contrast interferometer.
Here the |p|=2~k modes generate a continuous λ/2 grating which would continuously
reflect a probe beam. The |p|=4~k modes interfere with this grating, generating a ho-
logram which reflects at a frequency of 24ωrecoil ≈ 73 kHz, with an oscillation period
of approximately 13.7 µs (b).

In principle, this technique should be extendible to higher momentum states, if
those momentum states are integer multiples of 2~k. If we are able to generate a
four-port atom-optic that splits our atoms into an equal superposition of the states with
momentum |p|=2~k and |p|=n~k, we should expect a signal frequency of (n2 − 1)×
4ωrecoil.
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6.3.4 Experimental realisation
The pulse-optimisation method described in chapter 3 was used to generate a pulse
sequence (section 3.8.1) that would output the state

|ψ〉 =
1

2
|−4~k〉+

1

2
|−2~k〉+

1

2
|+2~k〉+

1

2
|+4~k〉 , (6.9)

using the pulse parameters A1 = 17.5 Er, T1 = 15.3 µs, A2 = 8.2 Er, T2 = 20.0 µs.
We then configured the experiment with a phase-contrast interferometer sequence

as shown in Figure 5.13, except that that single ‘opening’ pulse was replaced with the
four-port beam-quatter above. In anticipation of the increased signal frequency we
raised the sample rate of our single-photon counting-module to 1 MHz.

The resulting data are shown in Figure 6.11. The experiment was run ten times,
with the photon counts for each run shown as light grey crosses. The mean of each
time-bin is drawn as a black dot, with error bars calculated as the standard deviation
of the measurements per bin. A blue sinusoidal overlay is drawn in dashed-blue as a
guide at 78 kHz.
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Figure 6.11: The experimental realisation of the ‘beat-note’ contrast interferometer
shown in Figure 6.10. Grey crosses show the SPCM counts in each of ten separate
experimental runs. The dots are the mean value in each time bin, and the error bars
the standard deviation of those ten values per bin. The dashed blue line is a cosine
model with an exponential decay, with parameters set by hand as a guide to the data.
Here we see a reproducible periodic oscillation in every single shot with a frequency
of approximately 78 kHz.

What we see in Figure 6.11 is a periodic modulation of the reflected light. This
shows that we can indeed use a beat-note measurement technique to incorporate higher
frequency components into our contrast signal whilst still scattering probe photons
into our collection mode. This modulation does appear to predominantly contain two
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frequencies as we expected: we see clusters of three peaks, repeated. The first cluster
can be seen with peaks at times 186 µs, 196 µs, and 206 µs, with the amplitude of the
third peak significantly smaller then the previous two peaks.

Even so, there are some surprising aspects to the data collected. Firstly, the first
peak within each cluster contains a single bin with a large spike in detected photons.
These spikes can be observed at times 187 µs, 225 µs, 263 µs, 301 µs and contain around
twice the number of detected photons as each of their nearest neighbours do. Even the
lowest individual shots show photon counts around 50 % higher than the nearest neig-
hbour averages. The data shown in Figure 6.11 represents ten repeated shots, but the
same features were visible in fifty consecutive shots over an experimental run las-
ting around 30 minutes. Secondly, these clusters repeat with a period of around 38 µs
corresponding to a 26.3 kHz frequency component, which is 6.9 % faster than our ex-
pected 24.6 kHz frequency component. The sub-features within each three-peak clus-
ter appear to oscillate at approximately 78 kHz, which is 5.7 % faster than the expected
73.8 kHz contribution from our 24ωrecoil term.

Interestingly, our 2D GPE simulation recreates neither the narrow photon spikes
nor the oscillation frequency we observe experimentally. Figure 6.11 shows features
which oscillate with around 42 µs and 14 µs periodicity, corresponding to frequencies
of approximately 25 kHz and 73 kHz as expected. Figure 6.13 shows a simulation
of our contrast signal that shows no sign of the narrow spike features we see in Fi-
gure 6.11. One feature that is recreated by the 2D GPE simulation is the varying am-
plitudes of the sub-features within each repeated cluster. The amplitude of the second
and third peaks varied noticeably during the data run, starting from the data shown
in Figure 6.11, and ending with almost no photons in the third hump. Likewise, the
amplitude of the second and third oscillations vary with the ratio h/m, as shown in
Figure 6.13.

To compare this data, we configured our 2D GPE simulation to perform the same
interferometer sequence as in Section 6.3.3. The simulation was configured to run over
only the first ∼ 200 µs, generating a 2D map of complex amplitudes for the atomic
ensemble at each time interval ψ(x, y, t). As with the autocorrelation analysis, each
of these complex amplitude maps was converted into a density n(x, y, t), and used to
generate a refractive index map at each time interval η(x, y, t) = 1 + αn(x, y, t) (see
equation 5.1), where α is a pre-factor tweaked during testing to enable a detectable
reflection amplitude. To simulate the reflection of our probe laser from this matter-
wave, we used a Finite-Difference Time-Domain (FDTD) simulation [154] using Yee’s
method [155]. Yee’s method is a technique for simulating the propagation of Electro-
Magnetic (EM) fields through a medium [155]. The simulation software used generates
an EM wave driver that generates a driven perturbation in the simulation space’s E and
H fields, updating these in a leapfrog manner [154, 155].

The refractive index maps η(x, y, t) were used by the FDTD simulation to simu-
late the Bragg-reflection of our contrast probe beam from the matter-wave hologram
for each time index t. For each GPE time index we simulated 300 fs of light-field
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propagation time, such that emitted light could reach the detection region of the simu-
lation space after reflecting from the hologram. At the end of the simulation, we would
sum over the magnitude of the reflected wave’s |H| field to quantify the reflected light
field. Figure 6.12 shows the last frame of a 300 fs FDTD simulation of our contrast
interferometer.
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Figure 6.12: We simulate our Contrast signal by way of a Finite-Difference Time-
Domain (FDTD) method, where an electromagnetic ‘driver’ creates EM waves that
encounter a structure with modulated refractive index. This structure is determined
by the density of our 2D GPE BEC simulation. We then sample the average reflected
wave amplitude after 300 fs, repeating the FDTD simulatyion for each GPE evolution
time-step.

We ran this simulation multiple times with slightly different values of h/m to better
understand the sensitivity of the system as an α measurement. These data are plotted
in Figure 6.13. What we found was that unlike our first-order interferometer, the am-
plitude of the ‘between’ peaks altered as h/m changed. This is most likely caused
by the shift in effective amplitude of our atom-optics pulse as h/m changes. This is
a subtle point. The phase of our momentum states changes significantly during our
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atom-optic pulses. We rely on this effect to perform state targeting: since the inte-
raction terms in equation 3.3 are phase sensitive, we can use the phase-evolution of
the different modes to plot a trajectory to a target state. When we alter the ratio h/m,
the energies associated with each momentum state change, and as a result so do their
phase oscillation rates. Essentially, when we alter h/m we ‘detune’ out atom-optics
such that they no longer quite target the states we intended. This shift alters the output
populations of our atom-optics slightly, altering the balance of |p|=2~k and |p|=4~k
populations. This perturbation is sufficient to alter the time-evolution of the hologram,
modifying the reflected signal. Whilst this behaviour will, at least in principle, increase
the information ‘about’ h/m in our data, at the time of writing we do not have a model
capable of extracting this information.

Whilst we hoped to obtain a signal similar to our first-order CI except faster, the
second-order CI shows some interesting and unexpected behaviour. The response of
the signal to variations in h/m offers the possibility of increased information content
if a suitable model could be found. The experimental data shown in Figure 6.11 shows
behaviour that is not explained by our current understanding of the system. The sharp
peaks, aside from being as-yet unexplained, offer the potential for very sharp timing
features for the extraction of a frequency from the contrast signal. A future examination
of these should aim to resolve the shape and width of these features for potential use
as a frequency signal.
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Figure 6.13: A 2D GPE simulation of the ‘beat-note’ contrast interferometer signal.
Here we have varied the value of h/m from the expected value (black line) by ±1 %
(blue and red lines, respectively).
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6.4 Combining multiple measurements

6.4.1 Motivation and background
Whilst our contrast interferometer is capable of performing measurements several
hundred times quicker than our conventional momentum interferometer (section 5.4.2),
this doesn’t aid us unless we can combine multiple experimental runs to enhance our
measurement.

The Contrast Interferometer (CI) by Jamison et al. [54] determined ∂φrecoil/∂t by
performing many CI measurements at various interferometer durations, where T is
the split → reflect time, then probing the atomic hologram and observing the phase
at the time t = 2T . The recoil frequency can then be calculated trivially as ωrecoil =
1
2
∂φrecoil/∂T . Unlike our α measurement detailed in section 5.4.2, the measurement

here is one of a unique phase per ‘shot’.
The advantage of the CI in a phase measurement remains; we do not take a single

amplitude as our only data, but instead read phase from our fitted curve. By rapidly
performing many measurements of phase we freeze out many sources of phase noise
per shot, and because we observe our data to be well represented by the Poisson distri-
bution [99], we can appropriately consider the noise sources we haven’t frozen out.

Some precision interferometers have enhanced precision by altering the counting
they do; in the work of Hume et al. [156], rather than count atoms Natom directly the
authors count the number of fluorescence photons Nphoton scattered from the atomic
cloud as the atoms are trapped. Here their measurement statistics are still limited
with the phase uncertainty δφ ∝ 1/

√
N as with many atom interferometers, but since

Nphoton � Natom, they are able to bring their uncertainty δNatom < 1 [156].
Typically, the data from an interferometer is two-dimensional, in so far as it returns

a one-dimensional value y(x) (such as atomic population or light intensity, for exam-
ple) as a function of some control parameter x (such as time, or rotation rate). This
y(x) data generally undergoes a sinusoidal modulation as the x co-ordinate is varied.
In the absence of noise each y(x) value can be mapped to an infinite number of phases
φ(x) + 2nπ, and π − φ(x) + 2nπ, where (n ∈ Z). By folding this infinite range
of phase into the range 0 ≤ φ(x) < 2π, we can reduce this mapping such that each
phase maps to one of two possible phases. We can determine which of these phases
our measurement lies on by varying x slightly and determining the sign of dy(x)/dx.
We could then choose whatever x gives us the greatest sensitivity (generally where
dy(x)/dx is maximised), and repeatedly record y(x), for N total measurements. Here
our uncertainty scales as δφ ∝ 1/

√
N .

The above procedure reduces the number of contributing parameters down to just
the phase φ(x), removing the need to consider the y(x) modulation amplitude, back-
ground level offsets, etc. The trouble here occurs when additional noise is present
beyond our counting statistics: since noise manifests as variation in the y(x) value, we
inadvertently map this extra noise into phase. With all measurement of phase at a single
x value, we can only assume that all y(x) shifts we see are caused by some change in
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the phase. In practice we would observe that our repeated measurements of y(x) con-
verge on some varying range greater than we would expect from our sensitivity, and
this extraneous noise would place a lower bound on our best possible measurement
resolution of phase.

In comparison, the CI performs a composite measurement; each individual shot
rapidly captures M sequential measurements of phase. This composite measurement
helps to separate out the different contributions to phase because we measure an oscil-
lation and not a single value. Noise sources which introduce a background level shift
or an amplitude change do not hinder our ability to estimate the phase φ(x), providing
those noise sources are of a sufficiently low frequency. This frequency is determined
by the rate and duration of our M sequential measurements: if our signal captures
photons in 4 µs bins and lasts for a total of 500 µs, then a photon-count error with a
maximum frequency component of 50 Hz would appear as a common shift to all M
photon counts, and could be distinguished from the phase-induced modulation.

From Figure 5.12 we see that our uncertainty in phase scales as δφ ∝ 1/
√
M . In

addition, our ability to estimate these parameters also scales with repeated N experi-
mental runs as δφ ∝ 1/

√
N . Together, we expect our uncertainty over N repeated

experimental cycles to scale as

δφ ∼ 1√
NM

. (6.10)

An alternative phrasing of this statement is that our measurement uncertainty is still
ultimately limited by the number of photons that are used in our measurement, but the
nature of our measurement technique introduces correlations into the noise that allow
us to distinguish some noise sources from uncertainties in our phase.

6.4.2 Fisher information
The Fisher Information is a metric used in parameter estimation to quantify how much
information about some parameter is contained in some data. If we have a set of data
x, which can be used to estimate the parameter θ with the estimator f(x; θ), the Fisher
Information is defined as

I(θ) ≡
∫ (

∂

∂θ
log f(x; θ)

)2

f(x; θ) dx . (6.11)

The Fisher Information is then commonly used to determine the minimum possible
variance in an estimate of θ obtainable from the data x, using the Cramér-Rao Lower
Bound (CRLB) [157]

Var(θ) ≥ 1

I(θ)
. (6.12)
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Together the Fisher Information and Cramér-Rao bound are commonly used to design
or bias interferometry experiments such that they are most sensitive to a parameter that
we wish to estimate [157]. Our recoil frequency CI measurement consists of discrete
photon counts rather than a continuous variable, and so we can transform equation 6.11
into

I(fr) =
∑

i

[
∂

∂fr
log
(
u(fr, ti)

)∣∣∣fr

]
=
∑

i

1

u(fr, ti)

[
∂u(fr, ti)

∂fr

∣∣∣fr

]2

, (6.13)

where fr is our measured recoil frequency, and our fitted model u(fr, ti) outputs a
photon count for each time index ti.

We can then use the Fisher Information of our model to determine the minimum
possible uncertainty in frequency that our model (section 5.4.2) offers us. Here we fit
our CI data with the model

u(t) =
A

2
exp

(
−(t− t0)2

2τ 2

)
∆t
(

cos(2πfrt+ 2πct2 + φ) + 1
)
, (6.14)

which describes a sinusoidal modulation with a Gaussian envelope. Here A represents
our maximum signal amplitude, t0 is the time-centre of our Gaussian envelope, τ is the
time-width of the Gaussian envelope, fr is the frequency of the sinusoidal modulation
at time t = 0, c is the linear frequency chirp as a function of time , and φ is a phase of
the sinusoidal modulation at time t = 0. Passing this through equation 6.13 we obtain
an expression for the Fisher Information in our contrast signal,

I (fr) = (2πt)2 A

2
exp

(
−(t− t20)

2τ 2

)
∆t sin2

(
1

2

[
2πfrt+ 2πct2 + φ

])
. (6.15)

Here u(t) can be thought of as the probability of measuring photons as a function of
time over the duration of the contrast signal. In this respect the result in equation 6.15
is somewhat surprising: we would naively expect the sensitivity s(t) of the model to
be given by the square of the gradient of the probability,

s(t) = P 2∆t2 sin2
( [

2πfrt+ 2πct2 + φ
] )

(2πt)2 , (6.16)

with P = A
2

exp
(
− (t−t0)2

2τ2

)
. Instead we see that the Fisher Information modulates at

half the expected frequency,

I (fr) = P∆t sin2

(
1

2

[
2πfrt+ 2πct2 + φ

])
(2πt)2 . (6.17)

This is caused by the nature of the Fisher Information calculation in equation 6.13:
we calculate the square of the derivative of our probability, and divide by the value
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of our probability at each time. In this sense we can look at the Fisher Information
as a measure of the fractional sensitivity of our probability: how much the value at a
given time index changes as a fraction of its unperturbed value, summed over all time
indices. For example, a shift in u(t) of +1 photon is fractionally small when u(t) is
large, but tends to infinity as u(t) approaches zero. As a result, our Fisher Information
is highest when the contrast signal is near zero, because at these times a given change
in photon count has the largest relative shift in the overall photon count.

It has been postulated that a model of our contrast signal photon count that includes
a ‘photon-shot-noise’ term will offer a more complete modelling of the Fisher Infor-
mation in the contrast interferometer signal [158]. As is, our model assumes that it can
predict the photon count with sub-photon precision and no uncertainty. Figure 6.14a
shows a plot of the fitted model, with parameters taken from our fitted recoil frequency
measured in section 5.4.2. The corresponding Fisher Information is shown below in
Figure 6.14b.
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Figure 6.14: Fisher information of our contrast signal model. (a) As our input we re-
use the model (equation 6.14) fitted to our CI measurement of recoil frequency from
section 5.4.2, with the fitted parameters. We then pass this model through equation 6.13
to obtain the corresponding Fisher Information (b).

Despite the limitations of the analysis, we can use the Fisher Information of our
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model (equation 6.15) to place a lower bound on the uncertainty our fitting algorithm
can obtain, as a test of the procedure. The Fisher Information of independent me-
asurements adds linearly [157], so we can gain an estimate of our minimum uncer-
tainty by summing I (frecoil) and using the Cramér-Rao bound. Here we obtain a total
Fisher Information of I (frecoil) = 0.034 Hz−2, which implies Var(frecoil) = 291 Hz2

and σFI(frecoil) = 17.1 Hz. From this we infer that our fitting procedure (that returns
σMeasured(frecoil) = 80 Hz, see Section 5.3.4) is not claiming a precision beyond the
maximum information the model offers.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions
The primary result of the work contained within this thesis is the construction of an
atom interferometer capable of single-shot measurements of the fine-structure con-
stant using a holographic readout technique. This method enhances our measurements
of recoil frequency by rapidly performing many sequential measurements of interfero-
meter phase, allowing the separation of frequency from other noise sources that would
confuse the data from a more traditional interferometer.

We have developed an atom-optics toolbox using off-resonant two-photon scatte-
ring capable of generating arbitrary superpositions of target momentum states with
high transfer efficiency: experimentally shown as 99.97± 0.03 % in the case of a two-
arm |0~k〉 → [|+2~k〉+|−2~k〉] beam-splitter pulse sequence. We have used these
tunable atom-optics to generate different atom-interferometers capable of measuring
gradient fields, and recoil frequency.

In Section 5.4.2 we have demonstrated a contrast-interferometer capable of measu-
ring entire interference fringes in a single shot. This is approximately 700 times faster
than the data acquisition rate of our interferometer in the standard configuration that
uses a closing beam-splitter pulse to project the interferometer phase into momentum
populations.

This contrast interferometer is capable of determining the fine structure constant
with an uncertainty α−1 = 136.74 ± 0.88 (6500 ppm) in a single experimental cycle
of 30 s duration, where most of this uncertainty can be attributed to uncertainty in
the angles of our interferometer atom-optic beams. If we alter the geometry of our
interferometry beams, we calculate that we can obtain a precision of δα−1 = 0.32
(2300 ppm) in a single shot, and can integrate to 60 ppm over a period of around 12
hours, or to 10 ppm in around one months of continuous integration. In comparison,
the previously quoted α uncertainty with this experiment is α−1 = 137± 5 [99].

Whilst the best feasible precision from this experiment is currently around 4 or-
ders of magnitude below the current state-of-the-art, we can increase the precision of
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our measurement by increasing the momentum width that separates our interferometer
arms. We have successfully demonstrated a contrast interferometer signal with a hig-
her frequency using a beat-note measurement of the first and second (n = 2) excited
momentum states. This can, in principle, be extended to higher momentum states for
an n2 − 1 scaling of recoil frequency with scattering mode n.

We have discovered the existence of interaction-induced frequency chirps within
our experimental contrast interferometer signal, and have constructed a model that
predicts this frequency chirp with excellent agreement. In Section 6.2 we experimen-
tally detect a frequency chirp of (df/dt)experiment = −2.335 ± 0.052 Hz µs−1, with a
predicted (df/dt)predict − 2.3 Hz µs−1. This behaviour may present a new method for
the examination of mean-field effects in BECs.

7.2 Future Work

7.2.1 Interferometer beam angle
The single largest source of error in our measurements of the fine-structure constant
is the angle θ between our atom-optic laser beams. Whilst physically time-intensive,
it is conceptually simple to alter the geometry of these beams on our optics table until
they are counter-propagating. We can fine-tune the alignment of these beams by fibre-
coupling each interferometer arm into each other, reducing the angle to nearly zero.
Since our uncertainty associated with our beam angle is proportional to d cos(θ)/dθ =
− sin(θ), this will reduce the uncertainty from our beam angle far below that from
our recoil frequency measurement, effectively removing that noise source from our
uncertainty calculations, and improving our overall knowledge of the interferometer
parameters

7.2.2 Data analysis
We have developed a data-analysis algorithm capable of fitting models to our data
whilst respecting the asymmetrical uncertainties of our photon-counting. Whilst this
algorithm returns fit parameters from single shot data, we do not yet have a good
method to combine multiple measurements. Our analysis of the Fisher Information
(FI) within our fitted model appears to confirm that our fitting algorithm is not claiming
a precision beyond the CRLB, but our FI calculation does not yet take account of
quantised photon counts in our data or the Poisson distribution around the fitted model.
As such it does not consider the contribution of noise we would expect in our data.
Further investigation should be taken to include this aspect of our data in a better
mathematical model of our interferometer output.

A secondary investigation should compare the Quantum Fisher Information (QFI)
and Classical Fisher Information (CFI) of our 2D GPE simulation with the CFI of the
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contrast signal, as a test of the validity of the contrast CFI calculation, and to potentially
quantify advantages of the CI over the MI.

7.2.3 Beam-splitters
Our BEC hologram partially reflects an incoming laser beam, that is, it is effectively
an asymmetrical beam-splitter for light. Previous work has shown that such optical
elements can display unintuitive behaviour [159]. If we introduce a strong beam such
that shot noise is no longer significant, we may be able to learn something about beam-
splitters by examining the weakly reflected photons. The fact that we can generate
BEC holograms with tunable density-distributions [142] may allow us to conduct some
unique experiments investigating the behaviour of beam-splitters .

7.2.4 Higher-order scattering
Our experimental higher-frequency contrast signals display behaviour that does not
agree with our 2D GPE simulations of the system, instead showing features with a
temporal width of δt ≤ 1 µs, and a photon count approximately twice neighbouring
bins. Our data was captured with a 1 µs bin width, so we as-yet have no knowledge of
the shape of these features. We also do not understand the processes which generate
such sharp spikes in photon count.

Spikes in photon count with a very narrow time-width may represent an attractive
feature for the measurement of recoil frequency. The counting frequency of our SPCM
module is significantly higher than the 100 kHz frequency tested, and if our aim is to
measure only a few tens of microseconds, we can afford to increase the intensity of our
probe beam to compensate for a smaller bin-width. A more rigorous investigation of
these features at a higher time-resolution should be performed.

7.2.5 Mean-field chirp
Whilst our model predicts the frequency-chirp observed in our experimentally acquired
data, our data is somewhat sparse. This is in part a result of the shuttering mechanism
used to protect our SPCM from our atom-optic pulses: we have a minimum 120 µs
delay where we close a shutter to extinguish leakage from our atom-optics and open
a shutter to expose the SPCM [99]. This renders the first 120 µs of our short contrast
signal unobservable. The duration of our short contrast signal reduces with increased
BEC expansion time, and so we rapidly run out of available fringes to fit our model to,
which renders fitting difficult. A replacement of these shutter mechanisms would incre-
ase the time-range of our observable short interferometer. Data could then be captured
to map out the frequency chirp experimentally in the short and long configurations, for
a more complete comparison with our model.
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Appendix A

A.1 Useful physical constants
We use equation 1.2 to determine the fine-structure constant α,

α2 =
2R∞
c

m87Rb

me

h

m87Rb
,

where our recoil frequency measurement is used to determine h/m. The remaining
physics constants are the Rydberg constant R∞, electron mass me, rubidium-87 mass
m87Rb, speed of light in a vacuum c, and the unified atomic mass unit u. The values for
these physical constants used in the calculations with associated uncertainties in this
thesis are shown in Table A.1.

Table A.1: Physical constants
Constant Numerical value Fractional uncert. Source
R∞ 10973731.568508(65) m−1 5.9× 10−12 [92, 93]
me 9.10938356(11)× 10−31 kg 1.2× 10−8 [71]
m87Rb 86.909180520(15) u 1.7× 10−10 [71, 94, 95]
c 299792458 m s−1 Exact [71]
u 1.44316060(11)× 10−25 kg 1.2× 10−8 [71]

A.2 Analytical theory for off-resonant scattering
Start off by assuming that the Hamiltonian of our atoms in an optical lattice takes the
form:

Ĥ = − ~
2m

∂2

∂z2
+ V0 cos2 (kz) , (A.1)
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where V0 is the lattice potential depth, and k the effective wave vector of the lattice. If
we construct our modes as a superposition of plane waves:

ψ (t) =
∑
n

Cn (t) ei2nkz , (A.2)

we can substitute (1) and (2) into the time-dependent Schrödinger equation to describe
the evolution of each mode through time:

i~
∂

∂t

∑
n

Cn (t) ei2nkz = − ~2

2m

∂2

∂z2

∑
n

Cn (t) ei2nkz + V0 cos2 (kz)
∑
n

Cn (t) ei2nkz

(A.3)
We have an infinite set of coupled equations here, so let’s use the orthogonality of the
plane wave exponentials to extract a single mode. Multiply through by an exponential
of the same form with a negative sign of a single mode ’m’, and take the integral over
all space,

× e−i2mkz →
∫ +∞

−∞
dz , (A.4)

i~
∂

∂t

∫ +∞

−∞

∑
n

Cn (t) ei2nkze−i2mkzdz = · · · (A.5)

· · · − ~2

2m

∫ +∞

−∞
e−i2mkz

∂2

∂z2

∑
n

Cn (t) ei2nkzdz + · · ·

· · ·+ V0

∫ +∞

−∞
cos2 (kz)

∑
n

Cn (t) ei2nkze−i2mkzdz . (A.6)

The derivative of a sum is the same as the sum of the derivatives, so we can take the
middle term’s double z derivative inside the sum over all n:

i~
∂

∂t

∫ +∞

−∞

∑
n

Cn (t) ei2nkze−i2mkzdz = · · · (A.7)

· · · − ~2

2m

∫ +∞

−∞

∑
n

Cn (t) (i2nk)2 ei2nkze−i2mkzdz + · · ·

· · ·+ V0

∫ +∞

−∞
cos2 (kz)

∑
n

Cn (t) ei2nkze−i2mkzdz . (A.8)

Since eiz = cos(z) + i sin(z), the real part of the integrand is cosine-like, and the
imaginary part sine-like. An integral over all space of an odd function like a sine is
zero, and the integral of the cosine-like part from 0 to +∞ is equal to that from −∞
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to 0. So to make the integrals easier, let’s instead do:∫ +∞

−∞
ei2nkze−i2mkzdz → 2

∫ +∞

0

ei2nkze−i2mkzdz , (A.9)

i~
∂

∂t
2

∫ +∞

0

∑
n

Cn (t) ei2nkze−i2mkzdz = · · · (A.10)

· · · − ~2

2m
2

∫ +∞

0

∑
n

Cn (t) (i2nk)2 ei2nkze−i2mkzdz + · · ·

· · ·+ 2V0

∫ +∞

0

cos2 (kz)
∑
n

Cn (t) ei2nkze−i2mkzdz . (A.11)

We now have three integrals. From the left to the right:∫ +∞

0

∑
n

Cn (t) ei2nkze−i2mkzdz . (A.12)

The exponentials are periodic in z, so as we integrate to further towards infinity the
integral is increasingly dominated by the average value of the function over each pe-
riod, making our upper limit effectively an integer number of periods. If we define
this upper limit as lim

j→+∞
jλ where j is an integer and λ the period, and transform to

dimensionless variables to make the integral easier:

z̄ =
z

λ
, dz = z̄λ , (A.13)

we can use the orthogonality condition on complex exponentials:∫ j

0

ei2nz̄e−i2mz̄λdz̄ = jλδn,m , (A.14)

which sets all integrals to zero except when n = m. The only term that survives in our
infinite series of n terms is n = m.∫ j

0

∑
n

Cn (t) ei2nz̄e−i2mz̄λdz̄ = jλCm (t) . (A.15)

The integral kills off all the remaining z term, so we don’t need to worry about chan-
ging variables back.
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The same thing happens with the second (middle) integral, so what we get is:∫ +∞

0

∑
n

Cn (t) (i2nk)2 ei2nkze−i2mkzdz = jλCm (t) (i2mk)2 . (A.16)

The third (right) integral is a bit more interesting because of that cos2 (kz) term,
and we need to treat it slightly differently.∫ +∞

0

cos2 (kz)
∑
n

Cn (t) ei2nkze−i2mkzdz . (A.17)

The trick is to use the cosine as the orthogonality check function, and combine the
exponentials into a single term:∫ +∞

0

∑
n

Cn (t) ei2(n−m)kz cos2 (kz) dz . (A.18)

Do the same variable change again in z:∫ j

0

∑
n

Cn (t) cos2 (2πz̄) ei2(n−m)2πz̄jλdz̄ . (A.19)

Now when n = m, the exponential term becomes 1, and we’re left with the integral:∫ j

0

Cm (t) cos2 (2πz̄) dz̄ =
1

2
jλCm (t) . (A.20)

When n = m± 1, the exponentials form a cosine sine pair:∫ j

0

(t) cos2 (2πz̄) (cos (±2× 2πz̄) + i sin (±2× 2πz̄)) jλdz̄ . (A.21)

If we multiply out the sine and cosine terms, the sine half of the integral is an odd
function, so that side goes to zero. Of the remaining terms, the second remain cosine
has twice the frequency of the first, so it looks like another cos2 when n = m± 1:∫ j

0

Cn=m±1 (t) cos2 (2πz̄) cos(2× 2πz̄)jλdz̄ = · · ·

· · · =
∫ j

0

Cn=m±1 (t)
[
2 cos4 (2πz̄)− cos2 (2πz̄)

]
jλdz̄ = · · ·

· · · = Cn=m±1 (t) jλ

[
3

4
− 1

2

]
=

1

4
jλCn=m±1 (t) . (A.22)

141



A.3. ATOM GRADIOMETER THEORY

Plug these all back into the big equation and you get:

i~
∂

∂t
jλCm (t) = − ~2

2m
(i2mk)2 jλCm (t) + ...

...+ V0

(
1

4
jλCm−1 (t) +

1

2
jλCm (t) +

1

4
jλCm+1 (t)

)
. (A.23)

Cancel the j, λ and tidy up, and rename the index m to n.

Ċn (t) = −i
[
Er(2)n2

~
Cn (t) +

V0

4~

(
Cn−1 (t) + 2Cn (t) + Cn+1 (t)

)]
. (A.24)

[If the infinity held in j bothers you, notice that you can take the upper limit as some
non-infinite number of integer periods jλ, see that every term picks up a single mul-
tiplication of j when you change variables, and then divide through by j before you
perform any integrals. Then take the limit as j tends to infinity (making the periodic
assumption hold), and then perform the integrals (which return delta functions because
the integral is effectively over an integer number of periods)].

A.3 Atom Gradiometer Theory
If our interferometer is configured such that the excites modes are only the±2~k state,
and the pulse sequence is symmetrical in time such that the ‘opening time’ (T1) and
‘closing time’ (T2) are identical, the interferometer phase is determined entirely by the
movement of the atoms in the optical grating [138], leading to a T 2 phase shift due to
some potential gradient (such as a gravitational or magnetic gradient). Our derivation
follows the method presented in [138]:

We have an initial velocity of v0. To this we apply a p = ±2~k splitter pulse. After
a time T1, we apply a reflection pulse, and after an identical time T2 = T1, we apply an
identical splitter pulse to that at t = 0. We can then calculate the equations of motion
for our atoms through time.

Within each interferometer arm we have two energy contributions. If we have a
two-arm interferometer with upper arm A and lower arm B, where arms are separated
by ∆p = 4~k, the first contribution is the velocity of the atoms, V0 = ~keff/m, where
keff is the wave-vector of the optical grating. The second is the magnetic potential
which generates an acceleration ma = −µBmfgf

∂B
∂z
z(t).

We then have a set of state vectors at the time of each pulse.

vA(t1) = vB(t1) = 0,

zA(t1) = zB(t1) = z0,
(A.25)
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vA(t2) = +v0 − at2,
vB(t2) = −v0 − at2,

zA(t2) = +z0 + v0t2 −
1

2
at22,

zA(t2) = +z0 − v0t2 −
1

2
at22,

(A.26)

vA(t3) = −v0 − at2 − at3,
vB(t3) = +v0 − at2 − at3,

zA(t3) = +z0 + v0t2 −
1

2
at22 − v0t3 −

1

2
at23,

zA(t3) = +z0 − v0t2 −
1

2
at22 + v0t3 −

1

2
at23,

(A.27)

We then get our Lagrangian:

L =
1

2
mv2 − µBmfgf

∂B

∂z
z(t)

=
1

2
mv2 −maz(t)

(A.28)

The phase is determined with the classical action along each path:

∆ΦPath =
(
SBcl − SAcl

)
/~ (A.29)

where the action is given by

Scl =

∫ tf

ti

dtL[path] (A.30)

We then have

LA(t2) =
1

2
mv(t2)2 −maz(t2)

=
1

2
m(+v0 − at2)2 −ma(+z0 + v0t2 −

1

2
at22)

=
1

2
mv2

0 −mv0at2 +
1

2
ma2t22 −maz0 −mav0t2 +

1

2
ma2t22

=
1

2
mv2

0 − 2mv0at2 +ma2t22 −maz0

(A.31)
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LB(t2) =
1

2
mv(t2)2 −maz(t2)

=
1

2
m(−v0 − at2)2 −ma(+z0 − v0t2 −

1

2
at22)

=
1

2
mv2

0 +mv0at2 +
1

2
ma2t22 −maz0 +mav0t2 +

1

2
ma2t22

=
1

2
mv2

0 + 2mv0at2 +ma2t22 −maz0

(A.32)

We then get the action along each path as

SAcl(t2) =

∫ t2

t1

dt
1

2
mv2

0 − 2mv0a(t2 − t1) +ma2(t2 − t1)2 −maz0

=
1

2
mv2

0(t2 − t1)−mv0a(t2 − t1)2 +
1

3
ma2(t2 − t1)3 −maz0(t2 − t1)

(A.33)

SBcl (t2) =

∫ t2

t1

dt
1

2
mv2

0 + 2mv0a(t2 − t1) +ma2(t2 − t1)2 −maz0

=
1

2
mv2

0(t2 − t1) +mv0a(t2 − t1)2 +
1

3
ma2(t2 − t1)3 −maz0(t2 − t1)

(A.34)

Similarly, for the second half of the interferometer from t2 → t3,

LA(t3) =
1

2
m
[
vA (t3 − t2)

]2 −ma [zA (t3 − t2)
]

=
1

2
m [−v0 − a (t2 − t1)− a (t3 − t2)]2 − · · ·

· · · −ma
[
+z0 + v0t2 −

1

2
at22 − v0t3 −

1

2
at23

]
=

1

2
mv2

0 + 2mv0a (t3 − t2) +ma2 (t3 − t2)2 + · · ·

· · ·+ma2 (t2 − t1)2 +ma2 (t3 − t2) (t2 − t1)−maz0

(A.35)

LB(t3) =
1

2
m
[
vA (t3 − t2)

]2 −ma [zA (t3 − t2)
]

=
1

2
m [+v0 − a (t2 − t1)− a (t3 − t2)]2 − · · ·

· · · −ma
[
+z0 − v0t2 −

1

2
at22 + v0t3 −

1

2
at23

]
=

1

2
mv2

0 − 2mv0a (t3 − t2) +ma2 (t3 − t2)2 + · · ·

· · ·+ma2 (t2 − t1)2 +ma2 (t3 − t2) (t2 − t1)−maz0

(A.36)
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SAcl(t3) =

∫ t2

t1

dt
1

2
mv2

0 + 2mv0a (t3 − t2) +ma2 (t3 − t2)2 · · ·

· · ·+ma (t2 − t1)2 +ma (t3 − t2) (t2 − t1)−maz0

=
1

2
mv2

0 (t3 − t2) +mv0a (t3 − t2)2 +
1

3
ma2 (t3 − t2)3 + · · ·

· · ·+ma (t2 − t1)2 (t3 − t2) + · · ·

· · ·+ 1

2
ma (t3 − t2)2 (t2 − t1)−maz0

(A.37)

SBcl (t3) =

∫ t2

t1

dt
1

2
mv2

0 − 2mv0a (t3 − t2) +ma2 (t3 − t2)2 · · ·

· · ·+ma (t2 − t1)2 +ma (t3 − t2) (t2 − t1)−maz0

=
1

2
mv2

0 (t3 − t2)−mv0a (t3 − t2)2 +
1

3
ma2 (t3 − t2)3 + · · ·

· · ·+ma (t2 − t1)2 (t3 − t2) + · · ·

· · ·+ 1

2
ma (t3 − t2)2 (t2 − t1)−maz0

(A.38)

We then get

Scl (t2 − t1) = · · ·

· · · =
[

1

2
mv2

0(t2 − t1)−mv0a(t2 − t1)2 +
1

3
ma2(t2 − t1)3 −maz0(t2 − t1)

]
− · · ·

· · · −
[

1

2
mv2

0(t2 − t1) +mv0a(t2 − t1)2 +
1

3
ma2(t2 − t1)3 −maz0(t2 − t1)

]
= − 2mv0a(t2 − t1)2

(A.39)
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and

Scl (t3 − t2) = · · ·

· · ·
[1

2
mv2

0 (t3 − t2) +mv0a (t3 − t2)2 +
1

3
ma2 (t3 − t2)3 + · · ·

· · ·+ma (t2 − t1)2 (t3 − t2) + · · ·

· · ·+ 1

2
ma (t3 − t2)2 (t2 − t1)−maz0

]
− · · ·

· · · −
[1

2
mv2

0 (t3 − t2)−mv0a (t3 − t2)2 +
1

3
ma2 (t3 − t2)3 + · · ·

· · ·+ma (t2 − t1)2 (t3 − t2) + · · ·

· · ·+ 1

2
ma (t3 − t2)2 (t2 − t1)−maz0

]
= + 2mv0a(t3 − t2)2

(A.40)

Our phase along the interferometer is then

∆Φ = Scl (t2 − t1) + Scl (t3 − t2)

=
(
−2mv0a(t2 − t1)2 + 2mv0a(t3 − t2)2

)
= 0, (if (t3 − t2) = (t2 − t1))

(A.41)
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