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Abstract

The aim of this PhD study is to provide model-based optimisation approaches for sys-

tem energy performance improvement and evaluation, and such approaches can solve

many energy performance related problems, for example, they are able to optimise

conveyor belt system energy performance, avoid ramp rate violation problem in the

periodic implementation of dynamic economic dispatch solutions, reduce the number

of voltage sensors in photovoltaic (PV) fault diagnosis, improve PV maximum pow-

er generation through rearranging PV modules, and also measure and verify energy

savings. For this purpose, three objectives are set in this study: i) To summarise ex-

isting model-based optimisation approaches for energy system modelling; ii) To apply

obtained modelling methodologies in energy performance optimisation; and iii) To ap-

ply obtained modelling methodologies in energy performance evaluation. In order to

achieve these objectives, the relevant theoretical preparations on model-based optimisa-

tion approaches for energy modelling are developed and then applied in these practical

energy problems. This thesis presents my contributions on modelling methodologies

for energy performance optimisation, applications of these modelling methods in in-

dustrial energy systems, power generation dispatch, PV array fault diagnosis, and PV

array power generation maximisation through rearrangement. Mathematical models

are derived for energy system performance evaluation, optimal control models are in-

troduced to minimise measurement and verification cost, and physical modelling and

data regression modelling methodologies are also applied in practical measurement and

verification projects on air conditioner intelligent switch control and heat pump water

heaters. Weakness of these obtained results are analysed, and future work is presented

too.
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Model-Based Optimisation Approaches for System Energy
Performance Improvement and Evaluation

–A Critical Appraisal

Jiangfeng Zhang
Department of Electronic and Electrical Engineering,

University of Strathclyde

Abstract This is a critical appraisal for my PhD project Model-Based Optimisation Approaches for
System Energy Performance Improvement and Evaluation. The aim of this PhD study is to provide
model-based optimisation approaches for system energy performance improvement and evaluation,
and such approaches can solve many energy performance related problems, for example, they are able
to optimise conveyor belt system energy performance, avoid ramp rate violation problem in the peri-
odic implementation of dynamic economic dispatch solutions, reduce the number of voltage sensors
in photovoltaic (PV) fault diagnosis, improve PV maximum power generation through rearranging
PV modules, and also measure and verify energy savings. For this purpose, three objectives are set
in this study: i) To summarise existing model-based optimisation approaches for energy system mod-
elling; ii) To apply obtained modelling methodologies in energy performance optimisation; and iii) To
apply obtained modelling methodologies in energy performance evaluation. In order to achieve these
objectives, the relevant theoretical preparations on model-based optimisation approaches for energy
modelling are developed and then applied in these practical energy problems. This critical appraisal
briefly reviews my contributions on modelling methodologies for energy performance optimisation,
applications of these modelling methods in industrial energy systems, power generation dispatch, PV
array fault diagnosis, and PV array power generation maximisation through rearrangement. Mathe-
matical models are derived for energy performance evaluation, optimal control models are introduced
to minimise measurement and verification cost, and physical modelling and data regression modelling
methodologies are also applied in practical measurement and verification projects on air condition-
er intelligent switch control and heat pump water heaters. Weakness of these obtained results are
analysed, and future work is presented too.

Keywords: Energy Systems, Optimisation, Measurement and Verification, Model Predictive
Control

1 Overview

I would like to apply for the Doctorate Degree by Publication under the project title Model-Based
Optimisation Approaches for System Energy Performance Improvement and Evaluation.

The completion of this thesis is supported by my key contributions in the following 10 publications
(8 journal papers, 1 book chapter and 1 confidential industrial guideline, [K1]-[K10]), which are
further supported by my contributions in 11 supporting publications (7 journal papers [S1]-[S7] and
4 book chapters [S8-S11]). My contributions in the 10 key publications are major, and the supporting
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publications are those work where I contribute mostly on mathematical modelling. Recently updated
Google scholar citations are also provided (accessed on 10/09/2018).

This PhD work focuses on model-based optimisation modelling approaches for energy performance
and evaluation. Key contents include theoretical contributions on model-based energy optimisation
modelling methodologies ([K1, K2]), the application of modelling methodologies in the conveyor belt
system at a colliery ([K3]), electric power dispatch ([K4]), photovoltaic (PV) system fault diagnosis
and maximum power improvement ([K5, K6, K7]), and practical applications of system modelling
methodologies in real world measurement and verification projects ([K8, K9, K10]). Supporting
publications [S1]-[S11] are also provided to support the above-mentioned key contributions.

List of Key Publications

[K1] X Xia and J Zhang, Operation efficiency optimisation modelling and application of model pre-
dictive control, IEEE/CAA Journal of Automatica Sinica, 2015, 2(2), pp.166-172. Google Scholar
Citations: 11

[K2] J Zhang and X Xia, A model predictive control approach to the periodic implementation of the
solutions of the optimal dynamic resource allocation problem, Automatica, vol.47, 2011, pp. 358-
362. Google Scholar Citations: 55

[K3] A Middelberg, J Zhang and X Xia, An optimal control model for load shifting-with application
in the energy management of a colliery, Applied Energy, vol. 86, 2009, pp. 1266-1273. Google
Scholar Citations: 128

[K4] X Xia, J Zhang and A Elaiw, An application of model predictive control to the dynamic eco-
nomic dispatch of power generation, Control Engineering Practice, vol. 19, no. 6, 2011, pp. 638-648.
Google Scholar Citations:: 97

[K5] Y Hu, J Zhang, W Cao, J Wu, G Tian, S Finney and J Kirtley, Online two-section PV array fault
diagnosis with optimized voltage sensor locations, IEEE Transactions on Industrial Electronics, vol.
62, 2015, pp. 7237 - 7246. Google Scholar Citations: 31

[K6] Y Hu, J Zhang, J Wu, W Cao, G Tian and J Kirtley, Efficiency improvement of non-uniformly-
aged PV arrays, IEEE Transactions on Power Electronics, vol. 32, Feb 2017, pp. 1124-1137. Google
Scholar Citations: 8

[K7] Y Hu, J Zhang, P Li, D Yu and L Jiang, Non-uniform aged modules reconfiguration for large
scale PV array, IEEE Transactions on Device and Materials Reliability, vol. 17, 2017, pp. 560-569.
Google Scholar Citations: 2

[K8] X Xia and J Zhang, Mathematical description for the measurement and verification of energy
efficiency improvement, Applied Energy, vol. 111, 2013, pp. 247-256. Google Scholar Citations: 62

[K9] J Zhang and X Xia, Air Conditioner Intelligent Switch Control in Commercial Buildings, Chap-
ter 1, Energy Efficiency Measurement & Verification Practices–Demystifying M&V through South
African Case Studies (X Xia and J Zhang eds.), Media in Africa, Pretoria, October 2012.

[K10] J Zhang, Measurement and Verification Guideline Residential Heat Pump Rebate Programme,
ESKOM Report PM/M&V/UP-10/11-054, 2012 (Confidential).
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[S1] H Tazvinga, X Xia and J Zhang, Minimum cost solution of photovoltaic-diesel-battery hybrid
power systems for remote consumers, Solar Energy, 96 (2013) 292-299. Google Scholar Citations:
106

[S2] N Wang, J Zhang and X Xia, Energy consumption of air conditioners at different temperature set
points, Energy and Buildings, vol.65, 2013, pp. 412-418. Google Scholar Citations: 36
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The remaining sections are highlighted below. In Section 2, an introduction is provided to discuss the
relevant background and objectives of this study. In Section 3, contributions on model-based system
modelling methodologies to optimise energy performance are reviewed. Section 4 discusses contri-
butions on the application of the modelling methodologies developed in Section 3 to industrial energy
systems and electric power dispatch. Section 5 is on the application of the modelling methodologies
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in PV systems. Section 6 provides the application of modelling methodologies in energy performance
evaluation. Conclusions are made in Section 7.

2 Introduction

This section provides a brief introduction to the background, aims, objectives, and targeted problems
of this PhD study.

2.1 Background

Energy system modelling provides important methods to generate a range of insight and analysis on
the supply and demand of energy [1]. There are many existing model-based optimisation modelling
methodologies in literature which are successfully applied to solve many energy performance prob-
lems. For example, linear programming approach is applied in the development of a powerful energy
and environmental policy analysis software MARKAL to facilitate long term economic analysis of
different energy related systems at country level [2, 3]. This MARKAL tool is also applied to analyse
the minimum discounted cost configurations for the Australian liquid-fuel production over the period
1980-2020 [4]. A multi-objective linear dynamic programming model is formulated in [5] to analyse
the renewable energy policy for biogas synthesis in a state of India. Linear regression model is devel-
oped in [6] to estimate the end-use energy demand of a rural household at Nepal. Linear programming
is also applied to set time-of-day tariff for a power distribution utility in [7]. Linear integer program-
ming models are applied in [8] to minimise the electricity cost of an industrial plant by scheduling
the load to satisfy process, storage and production constraints. Mixed-integer nonlinear programming
models are applied in [9] to optimally schedule building energy systems for the operational cost sav-
ing purpose. Fuzzy logic is introduced in [10, 11] and [12] to solve the load shifting problem of
electric water heating and the energy management of a domestic photovoltaic panel, respectively. An
artificial neural network regression model is used in [13] for a petrochemical plant. Integer program-
ming is applied in [14] and [15] for mid-term management of a thermal and electricity supply system
of an industrial consumer and the peak-load management of a steel plant, respectively. General appli-
cations of multi-level stochastic programming approaches in electricity market are summarised in a
monograph [16]. A multi-follower bi-level stochastic programming model is derived in [17] to solve
the 24-hour power and energy management problem for a microgrid equipped with a combined heat
and power system.

The above-mentioned energy system modelling methodologies play an extremely important role to
optimise energy performance, and they have been applied in many scenarios to achieve various targets.
However, there are still many potential places to further explore these modelling approaches in energy
systems. For example, there are many energy system optimisation problems from industrial plants,
power generation plants, commercial and residential buildings which have not been studied.

In order to explore further the applications of these model-based energy system modelling method-
ologies, this PhD project is particularly interested in applying these methodologies to the energy
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performance optimisation and evaluation of some systems which are discussed in the following sub-
section.

2.2 Aims and objectives of the work

The aim of this PhD study is to provide model-based optimisation approaches for energy performance
improvement and evaluation. As mentioned in the previous subsection, such model-based optimisa-
tion approaches can solve many energy related performance and evaluation problems. A particular
interest of this study is to develop new modelling methods and then apply these modelling approaches
to optimise conveyor belt system energy performance, avoid ramp rate violation problem in the peri-
odic implementation of dynamic economic dispatch solutions, reduce the number of voltage sensors
in photovoltaic (PV) fault diagnosis, improve PV maximum power generation through rearranging
PV modules, and also measure and verify energy savings.

Therefore, the following three objectives are identified in this study.
i) To summarise existing model-based optimisation approaches for energy system modelling;
ii) To apply obtained modelling methodologies in energy performance optimisation; and
iii) To apply obtained modelling methodologies in energy performance evaluation.

The first objective will include the study of existing model-based optimisation approaches, and then
summarise them into concisely stated methodologies which are easily applicable to solve the targeted
energy performance optimisation and evaluation problems. New modelling methodologies will al-
so be developed during the study of existing methodologies. The obtained modelling methods will
involve different approaches from linear programming, nonlinear programming, optimal control and
model predictive control.

The second objective will include the application of the above obtained modelling methodologies to
the energy performance optimisation of many practical scenarios, such as the energy cost minimisa-
tion of conveyor belt systems at a colliery, dynamic economic dispatch of electric power generation,
PV system fault diagnosis, and aged PV system maximum power generation. Optimisation objective
functions can be built following the direct needs of investigated systems, while optimisation con-
straints are more difficult to be formulated since physical processes and system dynamics need to be
sufficiently understood in order to apply the obtained modelling methods.

The third objective will need the development of tailor-made modelling methodologies for the per-
formance evaluation of energy systems, although the general modelling methods developed for ener-
gy performance optimisation will still be applicable to performance evaluation. After obtaining the
tailor-made modelling methods for evaluation purpose, then these evaluation methods will be applied
to practical energy systems, such as air conditioner intelligent switch and residential heat pump water
heater.
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2.3 Targeted problems to be studied

Targeted problems to be studied will include the optimisation of conveyor belt system at a colliery,
the ramp rate violation problem in the periodic implementation of dynamic economic power dispatch
solutions, a low cost PV fault diagnosis method based on voltage sensors, maximum power generation
optimisation for aged PV arrays through PV module rearrangement, and the savings quantification
for practical energy measurement and verification projects–motivations to study these objects will be
explained in later sections. For this purpose, the relevant theoretical preparations on model-based
system modelling methodologies are developed and then applied to these practical energy-related
problems.

This is to say, this PhD project studies both theoretical modelling methodologies and their practical
applications. On the theoretical part, energy system operation modelling problem is formulated as an
optimisation problem subject to constraints formulated in terms of logic correlations, mass balance,
energy balance, process and service correlations, and variable boundaries in [K1]; a model predictive
control (MPC) method for a large class of energy optimisation problems is developed in [K2], where
the corresponding convergence and robustness of the MPC algorithm are proved. On the practical
application part, the developed model predictive control methods are applied to dynamic economic
dispatch in [K4] to avoid ramp rate violations during periodic implementations of the power dispatch
solutions. The modelling methodologies in [K1] and [K2] are also applied in supporting documents
where I contributed on the key modelling part during the supervision of postgraduate student projects.
For instance, these methodologies are applied to minimise the operational cost of a photovoltaic-
diesel-battery hybrid system at a rural residential home in [S1], to estimate the energy savings from
the temperature set point adjustment for air conditioners in [S2], to schedule home appliances for
demand response in [S3], to determine the optimal building energy efficiency investment plan in [S4],
to optimally size and schedule water pumping systems in [S5], and to minimise energy cost at a
water purification plant by MPC approaches in [18]. The developed methods have also been applied
by other researchers, for instance, the MPC approaches are applied in [19] to determine the energy
dispatch strategy for a hybrid residential energy system, and in [20] to minimise the operational cost
of conveyor belts.

The modelling methodologies developed in [K1] are applied in [K3] to minimise the energy con-
sumption and energy cost of conveyor belt systems at a colliery, where the cumulative active energy
costs are reduced by up to 49% during 5 weekdays in a high-demand season. This conveyor belt sys-
tem energy optimisation study was further continued by other researchers in [21] and [22] to improve
the relevant energy efficiency. The energy optimisation methods in [K1] are also applied to solve
other types of energy problems, for example, it is applied in [S1] to minimise the operational cost
of a photovoltaic-diesel-battery hybrid system at a rural residential home, and the logic and service
correlation models in [K1] are also applied in [S3] to schedule residential loads. The modelling ideas
are further applied in [K5, K6, K7] to identify faulty or poorly performed modules in PV arrays, and
then optimally rearrange the PV modules to increase the maximum power output of the PV array.
The energy optimisation modelling ideas developed in [K1] are also tailor-made in the performance
evaluation of energy systems in [K8], where energy savings measurement and verification (M&V)
process is mathematically modelled, and the M&V plan is characterised by an optimal control model
to minimise M&V cost. This M&V plan optimal control modelling method has been applied in [S6]
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and [S7] to save metering cost for large scale lighting retrofit M&V projects. The M&V modelling
methods, such as physical and data regression models, are practically implemented in an air condi-
tioner intelligent switch control project in [K9], and also applied in designing the M&V guideline for
heat pump rollout programme in [K10] which is further practically implemented by 6 M&V teams
contracted by ESKOM in South Africa. The guideline [K10] was also implemented by my own group,
and the relevant results are published in [S9].

Besides the above mentioned applications of the energy optimisation modelling methods in [K1], I
also apply these methods in identifying the energy savings for air conditioners from set point adjust-
ment [S2], building energy efficiency investment optimal decision-making [S4], and water pumping
system efficiency improvement [S5]. I apply further the modelling ideas and methodologies from
[K1] and [K8] to the practical M&V for building energy baseline identification [S8], savings from
installing efficient air conditioning systems for industrial plants [S10], and the savings identification
from the food refrigeration system energy efficiency improvement at supermarkets [S11].

Further detailed critical appraisal on my above publications are given in the following sections.

3 New Modelling Methodologies to Improve Energy Performance

My contribution on new modelling methodologies to improve energy performance includes publi-
cations [K1] and [K2], where [K1] is about building general models for energy system operational
process, and [K2] is on the application of the MPC approach in load management. The main pur-
pose of this section is to summarise existing modelling procedures and methodologies to help the
performance optimisation and evaluation for practical energy systems.

3.1 Modelling methodologies for energy performance

On the energy performance optimisation modelling part, [K1] summarises the modelling target as
an optimal control problem which is also discretised as an optimisation problem, then it classifies
the corresponding model constraints in terms of mass balance, energy balance, boundary constraints,
process and service correlations, etc., and in particular, it proposes a new type of constraints–logic
correlation constraints. Logic correlations refer to logic relationships between energy system control
variables, for example, the residential home energy system control system must ensure that the tumble
drier can only be switched on after the washing machine has completed its job. Details of such a logic
correlation modelling is given below (see [K1]).

Assume that an electrical energy system consists ofN components, each of them can be independent-
ly controlled as on or off. Whenever the i-th component is switched on, its power consumption will
be its rated power Pi kW for i = 1, 2, · · · , N1, and be any value between 0 and its rated power Pi kW
for i = N1 + 1, N1 + 2, · · · , N , where N1 ≤ N . The first N1 components have only simple on/off
status and include examples such as electric water heaters, electric kettles, and incandescent lights,
while the last N − N1 components have variant powers and examples can be motors controlled by
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variable speed drives. Let ui(t) represent the on/off status variable and is defined as follows:

ui(t)


= 1, if the i-th component is on and 1 ≤ i ≤ N1

= 0, if the i-th component is off and 1 ≤ i ≤ N1

∈ [0, 1], if N1 + 1 ≤ i ≤ N

For simplicity, I write the logic correlation models in [K1] only for the following example scenarios
at two different time instants ta and tb.

(i) If ui(ta) is in the switched on status, then uj(tb) must be in the off status. To find out a mathematical
equivalent expression for this constraint, the following sign function is introduced. Let sgn(x) be 1
if x > 0; 0 if x = 0; and -1 if x < 0. Noting the fact that ui(ta) and uj(tb) are nonnegative, then it
follows that this constraint is equivalent to:

(sgn(ui(ta)) + 1)(sgn(uj(tb)) + 2) 6= 6. (1)

A prominent benefit to use sign function to obtain the above constraint is that this type of constraint
covers the case when i or j is greater than N1, that is, it allows the components to have constant
power or variable power. An example for this type of requirement can be that a piece of equipment is
powered either by the grid, or by a distributed generation system, but cannot be powered by the two at
the same time. Then the connection status of the main grid to the equipment at time t corresponds to
u1(t), while the connecting status of the distributed generation system at time t corresponds to u2(t).
The following constraints are derived:

(sgn(u1(t)) + 1)(sgn(u2(t)) + 2) 6= 6, for all t.

(ii) If ui(ta) is in the switched on status, then uj(tb) must be in the on status. This constraint is
equivalent to the following inequality.

(sgn(ui(ta)) + 1)(sgn(uj(tb)) + 2) 6= 4. (2)

An example for this case is that at a residential home, when people switched on the TV at the lounge
in the evening, they must have switched on the light in the lounge first. That is, when the status of the
TV at time ta is on, then the status of the light must already be on at ta.

(iii) If ui(ta) is in the switched off status, then uj(tb) must be in the on status. This constraint is
equivalent to:

(sgn(ui(ta)) + 1)(sgn(uj(tb)) + 2) 6= 2. (3)

(iv) If ui(ta) is in the switched off status, then uj(tb) must be in the off status. This constraint is
equivalent to:

(sgn(ui(ta)) + 1)(sgn(uj(tb)) + 2) 6= 3. (4)

In practice, the logic correlations can be presented in other ways than the above example scenarios,
and we need to write the corresponding mathematical models according to exact requirements in the
practical scenarios. Even in exactly the same scenarios as above, the above obtained mathematical
models are not unique and we can use many different approaches to obtain different models repre-
senting the same logic correlations. These points have not been fully explored in [K1] and are thus
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discussed here. Indeed, the above mathematical models are put into inequalities of the form A 6= B,
which often need to be converted into equivalent forms like (A−B)2 > 0.

Weakness in the above logic correlation models mainly lies in the presence of nonlinearity, that is,
multiplications and the sign functions appear in these inequalities. Further research needs to be done
to improve the above models, and in some special situations, other researchers introduce additional
variables to avoid the presence of nonlinear constraints, for instance an additional variable is in-
troduced in [23] to remove the absolute value of a variable. However, these logic correlations are
often related to switching functions, and the obtained energy optimisation problems are thus inte-
ger or mixed integer programming problems. Any simplified representation to remove nonlinearity
and obtain integer or mixed integer linear programming problem will only help researchers to use
directly some optimisation software tools, e.g., GAMS, but would not help to reduce computational
complexity generally as linear integer programming problems are still NP hard.

Nevertheless, the above obtained integer or mixed integer nonlinear programming problems can still
be solved by existing software tools like the GA function in Matlab.

Besides the above logic correlation constraints, there is also the process and service correlation con-
straints which are difficult to be summarised by a general formula to cover all situations. This kind
of process and service correlations cover many special requirements for specific process and services,
for instance, a piece of equipment must be switched on for a minimum duration of certain time peri-
od. As an example, I applied this kind of constraints in deriving the following appliance continuous
operation requirement for residential demand response in [S3]:

ei−(Ni−1)∑
t=di

uopti,t · u
opt
i,t+1 · u

opt
i,t+2 · · ·u

opt
i,t+Ni−1 ≥ 1, (5)

where uopti,t represents the optimal switching on/off status of appliance i at time t, and the above
constraint means that appliance imust be switched on at least once during the considered time periods,
and whenever this appliance is switched on, it must be kept switching on for at least a continuous
period of Ni sampling time intervals.

Besides deriving the above (5), I applied further the modelling methodologies to derive all the other
objective functions and constraints in [S3]. I also applied these modelling methodologies to derive
the quadratic optimisation model for the PV-diesel-battery hybrid energy system in [S1], the air con-
ditioner energy consumption model in [S2], the building energy efficiency investment model in [S4],
the pump efficiency model in [S5], and the crusher energy consumption model in [24].

It is important to note that the intention of [K1] is to provide a summary of existing model-based
system modelling methodologies to facilitate energy system management, and there are scenarios
that we need to develop other specific modelling methods to cater for special needs. With the help of
the modelling methods in [K1], we are able to solve many energy problems, as to be demonstrated in
later part of this critical appraisal. Therefore, the first objective of this study on summarising existing
optimisation modelling approaches is partially achieved.
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3.2 Model predictive control for load management

Besides the above energy modelling methodologies developed in [K1], I noted also the importance
to apply MPC approaches to improve energy performance control, and proved the corresponding
convergence and robustness of MPC algorithms to solve a large class of load management problem in
[K2].

In many industrial energy systems, the load profile at working days within a week typically does not
change much. In other words, the daily load profile is roughly periodic with a period of 24 hours,
for example, the pumping system load profile at water pump stations, the overall load profile at a
food packaging plant, etc., have very stable repetitive patterns. For these kind of energy systems,
it is possible to implement optimal solutions obtained over a 24 hour moving horizon by the MPC
approach. This kind of MPC approach will have the benefit of closed loop controllers, therefore, it is
able to feed back real time system changes to the controller, which makes the control solutions able
to adapt to real time changes and robust against disturbances and noises. However, all such benefits
of MPC will require convergence of the implemented solutions in MPC iteration loops. Therefore, it
is the main intention of [K2] to prove the relevant convergence and robustness of the MPC algorithm
for energy performance improvement, where it is also called a class of dynamic resource allocation
problem in [K2].

Since the mathematics, and in particular the mathematical notations and definitions, in [K2] is quite
complicated, these mathematical details are omitted here and the discussions in this subsection focus
mainly on its key ideas. The MPC algorithm discussed in [K2] for energy systems is similar to all
other types of nonlinear MPC algorithms: it needs to solve an optimisation problem at each iteration
step. This optimisation problem is assumed to be a convex optimisation problem, which is possible
in many load management problems. This implies that the problem under consideration can be non-
linear, provided it is convex. Usually for a nonlinear MPC algorithm, it is challenging to prove its
convergence and robustness. To resolve this difficulty, [K2] applies the convergence and robustness
results from convex optimisation, that is, the iteration steps in MPC are proved to correspond to a fea-
sible solution algorithm in convex optimisation, and then traditional theory from convex optimisation
is applied to prove convergence and robustness. To be more specific, an extended convex optimisation
problem is defined, which is called the perfection of optimal dynamic resource allocation problem.
Then it is found that each optimisation problem solved in the MPC iteration steps correspond to a
special optimisation problem obtained by restricting the extended convex optimisation problem to
certain region (i.e., through substituting part of its optimisation variables by known constants). Then
a one-to-one correspondence is found between the MPC iteration loops of Algorithm 1′ in [K2] and
the gradient based iteration loops for convex optimisation. By a theorem from convex optimisation
(Theorem 3.4.3 of [25]), Theorem 1 in [K2] shows the convergence of Algorithm 2 to the global
optimisation solution of the convex optimisation problem, from which Theorem 2 shows that the M-
PC Algorithm 1′ converges to the global solution of the extended convex optimisation problem (i.e.
the perfection of optimal dynamic resource allocation problem). Following the same approach, the
bound of system disturbance is provided in Corollary 1, under which the MPC Algorithm 1′ solution
is robust (i.e. the solutions will lie within expected error bounds).

The key contributions in [K2] lie in that it will secure the convergence and robustness performance to
apply MPC approaches in many energy system performance optimisation problems. Although [K2]
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requires certain periodic conditions of system dynamics (e.g. the load), the corresponding robustness
results actually relax this requirement, therefore, convergence and robustness of MPC are guaranteed
for those practical energy problems if the load changes slightly over different periods. A water pump-
ing system example is also provided in [K2] to illustrate the application of MPC in practical energy
systems. A more involved example from dynamic economic dispatch will be discussed later (see also
[K4]).

The weakness of [K2] lies in the following two aspects: the first is that the energy system under
consideration must be a convex optimisation problem in the corresponding MPC algorithm, and the
second is that the robustness bound will restrict the applicability of the MPC algorithm in terms of
convergence and robustness. In practice, many MPC algorithms are applied to solve energy problems
without considering convergence and robustness performances, and these energy problems may not
satisfy the relevant convex or robustness boundary conditions. One possible way to resolve the convex
requirement in proving the convergence of an MPC algorithm might be to check the possibility of
relaxing the nonconvex optimisation problem in MPC iterations into a convex problem. It is noted
that this kind of convex relaxation techniques has been successfully developed for optimal power flow
in [26] and [27] in 2014, and it is also applied in distribution radial networks in [28] in 2015. It is
therefore worthy investigating convexification of energy performance improvement problems so as
to prove the corresponding convergence and robustness for the MPC algorithm. The second issue on
robustness bound comes from the fact that this bound will relax the requirement of periodic condition,
e.g., the periodic property of the load, therefore, we expect such a bound to be as big as possible so
as to accommodate large variations of non-periodic loads. Potential ways to resolve this second
issue could be using approaches other than convex optimisation, for example, Lipschitz optimisation
might be a potential solution. I will try this in future studies. Nevertheless, the new MPC approach
developed in [K2] enriches the modelling methodologies for energy performance optimisation, and
the first objective on summarising existing model-based optimisation approaches is achieved.

3.3 Section conclusions

In this section, existing energy performance modelling methodologies are summarised in [K1] as an
optimisation problem along with constraints from logic correlations, mass balance, energy balance,
process and service correlations, and variable boundaries. Then the MPC approach to a large class
of load management problems is presented together with the proof of the convergence and robust-
ness of the MPC algorithm. Practical applications of these modelling methodologies will be shown
in later sections. Therefore, the first objective of this PhD thesis on summarising existing model-
based optimisation approaches has been successfully achieved, and the obtained logic correlations
and the proofs of convergence and robustness for MPC algorithm provide also helpful guidance in the
application of existing modelling methodologies.
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4 Application of Modelling Methodologies in Industrial Energy
Systems and Electric Power Dispatch

The modelling methodologies published in [K1] and [K2] are indeed developed gradually and are
summarised from some of my previous research projects. After the publication of [K1] and [K2],
the methodologies therein are further applied by myself and also other researchers in energy system
performance optimisation. In this section, the relevant applications are studied in the conveyor belt
system load management of a colliery ([K3]) and the electric power dispatch of generators ([K4]).
The reason to choose the conveyor belt system at a colliery as a case study is that mining industry
is one of the main contributors to the South African economy (The candidate was working in South
Africa while these papers were wrote), and also mining system is typically very complicated, this
case study will provide a very good example to show how we start from a complicated real world
energy problem, prioritise key objectives to be studied, and eventually build an energy optimisation
model to reduce energy cost. The reason to choose dynamic economic power dispatch as a case study
is that this is a classical problem in electric power systems and has attracted the attention of many
researchers for dozens of years. In practice, there is still the need to investigate this in the South
African context since the main South African electricity generation company ESKOM periodically
implements dynamic economic dispatch solutions and encounters the ramp rate violation problem
which they actually left to the Automatic Generation Control to manage at machine’s level. Therefore,
this electric power dispatch problem will provide a very good example to illustrate the MPC approach
developed in [K2].

4.1 Application of modelling methodologies in conveyor belt load management

As an example, let us consider the paper [K3] where I applied the modelling methodologies in [K1]
to the conveyor belt system load management problem for a colliery.

In [K3], the primary target is to reduce energy cost at a South African colliery, where similar studies
prior [K3] on conveyor belt system load management was still lacking. For this purpose, I developed
an optimal control model (this part was firstly published in my conference paper [29] and formally
appeared in journal version in [K3], then it is also included in [K1]) for general load management
problem:

min J =
∫ tf
t0

∑n
i=1 Pi(t)ui(t)p(t)dt,

g(u(t), t) ≤ 0,
(6)

where J represents the total electricity cost of a general energy system consisting of n modules,
Pi(t) is the power consumption of the i-th module at time t, [t0, tf ] is the control period, u(t) =
(u1(t), u2(t), · · · , un(t)) is the switching status function, p(t) is the electricity price, and g(u(t), t) is
a vector function representing the relevant nonlinear constraints. The above problem (6) is an opti-
mal control problem. The general methods for solving the optimal control problems (6) are usually
based on Pontryagin’s Maximum Principle or its variations, see, for example, references in [30], [31],
[32] and [33]. These methods often depend on some smooth conditions and the solutions of some
differential equations which restrict their applications in practical problems.

12



Therefore, it is reasonable to discretise the optimal control problem to obtain an ordinary optimisation
problem, where the optimal solution is not a time-varying function but a fixed point. Before applying
the discretisation process, two implementation details are worthy to note. The first is that the time
interval of the optimal control problem should be divided as many as possible so that the resulted
ordinary optimisation problem is a close approximation of the optimal control problem, the second is
that when the number of divided sub-intervals increases, the number of variables in the optimisation
problem increases, and the computational complexity increases accordingly. Therefore, this kind of
discretisation idea is applicable only if the total number of obtained variables is not too big so that
computer algorithms can solve it quickly.

Now (6) can be discritised as follows. Divide the time interval [t0, tf ] intoN sub-intervals so that each
subinterval has the length Ts :=

tf−t0
N

. Then the optimal control problem (6) can be approximated by

min J =
∑n

i=1

∑N
j=1 P

j
i u

j
ip
jTs,

s.t. g(u1, u2, · · · , uN) ≤ 0,
(7)

where P j
i = Pi((j − 1)Ts), u

j
i = ui((j − 1)Ts), pj = p((j − 1)Ts), and uj = (uj1, · · · , ujn)T . This is

an ordinary optimisation problem with nN number of variables {uji : 1 ≤ i ≤ n, 1 ≤ j ≤ N}. (Note:
A typo in [K3] about the arguments of g is corrected.) Therefore, various solution algorithms from
linear and nonlinear programming can be employed to solve this simplified problem.

The above modelling methods are applied in the energy management of a South African colliery.
This colliery has a very complicated energy system. The whole plant has two identical Dense Media
Separation (DMS) plant modules which are responsible for processing the ore materials from an open
cast mine. The ore material from the mine is delivered to the colliery by train, and is dumped in rail
bins before being transported to either the run-of-mine stockpile or directly to the DMS feed bin by
the upstream group of conveyor belt system (called Group D in [K3], see also the system process flow
chart in [K3]). After passing through the DMS plant modules, the processed material follows one of
four paths according to the size and quality of the material:

• Discarded material is transported to the Discard Silo, mDS , via the N10 and N11 conveyor
belts;

• Export quality coal is transported to the Product Stockpile, mPRS , via the P10 conveyor belt;

• Coal classified as inland product is transported to the inland stockpile, mINS , via the P15 and
P16 conveyor belts; and

• Product material that falls within the PEAS category sizes is transported to the PEAS silo,
mPEAS , via the P14 conveyor belt.

From the product silo, the export quality coal is either stacked on the product stockpile or transported,
via the Q10 overland conveyor belt, to the Rapid Loading Terminal (RLT) silo. The RLT silo is used
as a central base for loading the trains that transport export quality coal to the Y terminal. The trains
are named RBCT trains, and the mass of the coal in an RBCT train at time t is denoted by mRBCT (t).
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Solving the load management problem for this colliery at plant wide level is challenging due to the
complicated process flows indicated above. For this purpose, I consider to prioritise certain subsys-
tems to simplify the study–this is indeed a popular technique in the scoping study of energy audit. I
first focus on the conveyor belt energy consumptions, as these are the major electric power consump-
tion equipment at the plant. A general energy audit is done to analyse historical energy consumptions
of each system components by using one years’ power consumption data at this colliery. It is quite
interesting to find that the downstream Q-group conveyor belt system makes the largest percentage
(26%) contribution to the overall power consumption of all the conveyor belts at the colliery. The Q-
group conveyor belts are also most suitable for load shifting energy management because this system
can be isolated to be controlled independently from the rest of the colliery.

Then the above discretised optimal control model is applied to the Q-group conveyor belts to obtain
the objective function and constraints. It is worth mentioning that the constraints are mainly obtained
through the mass balance modelling method mentioned in [K1]. For example, one constraint obtained
from the mass balance requirement is the following one, where the meanings of notations can be found
in [K3].

mRLT (tt0) + Ts

(tt1−Ts)∑
ti=tt0

rQ10_MAX · uQ10(ti)− Ts
(tt1−Ts)∑
ti=tt0

rQ13_MAX · uQ13(ti) ≥ mRLT_THR,

By solving the above obtained optimisation problem, the obtained solution can reduce the cumulative
active energy costs by up to 49% during five week days in a high-demand season. The percentage
of total amount of energy used during peak time is also reduced from 25% to 8%. This case study
shows the potential of using optimal control as a starting point for developing controllers to facilitate
both load shifting and process optimisation. Furthermore, the ease with which approximated optimal
solutions can be obtained by discretising these problems as ordinary optimisation problems is conve-
nient for some other practical problems such as the load shifting in pumping processes and irrigation
on farms etc.

The main weakness of [K3] lies in that we focus only on Q-group conveyor belts, while the mining
industry has more and more interest in plant-wide energy management solutions, in particular the
application of renewable energy in mining systems. There are also many other aspects which can
help to improve the study of the conveyor belt system in [K3]. For example, other researchers from
our same group have continued this conveyor belt system study, conveyor belt power consumption
is analysed, and the conveyor belt load control under variable speed drive and time-of-use electricity
tariff are studied in [21] and [22]. For further studies, I intend to develop a software tool on plant-wide
load management for mineral processing energy systems so as to integrate my previous mining system
component studies. For the moment, I have supervised group members to complete the studies on the
load shifting of the rock winder systems at a deep gold mine [34], deep mine jaw crushing energy
efficiency [24], energy minimisation of the cyclone circuits of a colliery beneficiary plant through
pumping storage [35], and medium density control in coal washing cyclone circuits [36]. A plant-
wide load management system incorporating solar or wind energy sources will be a very attractive
topic in countries where mining industry makes a significant contribution to the economy, for instance,
Australia and South Africa.

To summarise, energy performance optimisation modelling methods, such as mass balance mod-
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elling, optimal control, and nonlinear programming, are successfully applied in [K3] for the energy
optimisation of the conveyor belt system at a colliery, thus the second objective on the application of
performance optimisation modelling methodologies is partially achieved.

4.2 Application of MPC in dynamic economic dispatch of electric power

Now consider the application of the previously mentioned MPC algorithm in [K2]. An illustrative
example is provided in [K4], where dynamic economic dispatch (DED) for electric power generation
dispatch is studied under this MPC approach. Motivation of this DED study lies in the fact that
existing studies on DED focus mainly on the power dispatch over a 24-hour period and there are no
discussions on how this solution is to be implemented. In practice, a simply repeated implementation
of this 24-hour solution may still have the ramp rate violation problem, although ramp rate violation
is avoided within the 24 hour period. This is because that such an violation might happen at switch
stages, i.e., between the power generated at the 24-th hour and the 25-th hour (i.e. the 1-st hour if the
24-hour solution is repeatedly implemented). Such a ramp rate violation has been show by examples
in Figs. 2 and 3 in [K4], where the solutions are taken from standard examples on a 10 generation unit
system over a 24 hour period. In South Africa, the main electricity supplier ESKOM also encounters
the ramp rate violation problem which is left to the Automatic Generation Control to take care at
the machine level. Therefore, the main target of [K4] is to solve this ramp rate violation problem
by using the MPC approach developed in [K2]. Furthermore, the MPC approach needs to solve less
number of optimisation variables than the original DED problem, thus computational complexity is
reduced. Another interesting fact discovered in [K4] is that there are two different types of models
for the dynamic economic power dispatch problem which were believed to be the same but actually
not. Indeed, the dynamic dispatch problem of power generation is first considered in the early 1970’s
in an optimal control system framework [38]. Since then there are actually two formulations to solve
optimal power dispatch problem with ramp rate constraints: the optimal control dynamic dispatch
(OCDD) [38, 39] formulation based on control system models, and the DED [40, 41] formulation
based on global optimisation. Both are useful for the dispatch problem over a fixed time horizon, and
they were treated as equivalent formulations in literature. Indeed, the two are different as shown by
the example in Fig. 1 of [K4]. Both formulations suffer from the same technical deficiency of ramp
rate violation during the periodic implementation of the optimal solutions. In the proposed MPC
approach for DED, the MPC algorithm from [K2] is applied to achieve the corresponding convergence
and robustness of the MPC solutions. That is, the following Extended DED (EDED) problem (i.e. the
perfection of the corresponding DED problem) is introduced so that the MPC solutions will converge
to the solution determined by this EDED problem.

Problem: Extended DED Given n,N , DRi, URi, Pmin
i , Pmax

i , 1 ≤ i ≤ n, and Dk, 1 ≤ k ≤ N ,
solve the following minimisation problem:

min C(P k
i : 1 ≤ i ≤ n, 1 ≤ k ≤ N)

=
∑N

k=1

∑n
i=1[Ci(P

k
i ) +Ri(P

k
i )]

subject to (P k
i : 1 ≤ i ≤ n, 1 ≤ k ≤ N) ∈ ΩEDED,

(8)

where n is the number of generators, T is the time duration of each sampling time interval, N is the
total number of sampling time intervals under consideration, P k

i is the power generation of the i-th

15



generator at the k-th time interval, DRi and URi are the ramp down and ramp up rates respectively,
Pmin
i is the minimum power of the i-th generator, Pmax

i is the maximum power of the i-th generator,
Dk is the demand at time k, Ci(P k

i ) is the generation cost,Ri(P
k
i ) is the ramping cost, and the feasible

domain ΩEDED is defined to be the set of (P k
i : 1 ≤ i ≤ n, 1 ≤ k ≤ N) satisfying∑n

i=1 P
k
i = Dk,

−DRi · T ≤ P j+1
i − P j

i ≤ URi · T,
−DRi · T ≤ P 1

i − PN
i ≤ URi · T,

Pmin
i ≤ P k

i ≤ Pmax
i ,

(1 ≤ i ≤ n, 1 ≤ j ≤ N − 1, 1 ≤ k ≤ N).

Compared to traditional DED constraints on ramp rate, the above EDED has one additional constraint
−DRi · T ≤ P 1

i −PN
i ≤ URi · T which requires the power difference between the first time interval

and the last time interval will not exceed the ramp rates. This constraint will avoid the ramp rate
violation in case this EDED solution would be implemented periodically. However, with the MPC
approach, this additional constraint is not needed, and in each MPC iteration loop, a revised OCDD
problem with a reduced number of variables is solved, and the solutions from the MPC iterations are
proved to converge to the solution of the above EDED.

From the robustness result from [K2], the following kind of disturbance Twm+1
i during solution im-

plementation is considered:

P̄m+2
i = P̄m+1

i + T ūm+1
i |m + Twm+1

i . (9)

where wm+1
i is a disturbance vector satisfying ||wm+1

i || < e, e is a positive constant, P̄m+1
i is the pow-

er of the i-th generator at the (m+ 1)-th interation step, and T is the constant sampling time interval.
It is concluded from [K2] that the corresponding MPC is robust under the above disturbance. In a
remark of [K4], it is also noted that the above disturbance is quite general and can cover disturbance
from forecasted demand, which allows the robustness results to be applied to more practical DED
problems.

Case studies to verify the convergence and robustness of the MPC algorithm are undertaken using
standard examples of a 6 unit system from [42] and a 10 unit system from [43]. It is important to
note that the MPC approach to DED in [K4] does not contradict with any existing DED or OCDD
methods. These existing DED and OCDD methods provide various optimisation solution methods
to find the optimal dispatch over a fixed time horizon; while the MPC method in [K4] provides
a periodic implementation framework and does not specify any particular optimisation method to
solve the dispatch problem over a fixed time period. Furthermore, the MPC approach is in fact a
very general philosophy: calculating an optimisation problem over a fixed period, implementing the
solution only at the beginning part of this fixed period, recalculating the optimisation problem over a
new time horizon, and repeating these steps. Following this idea, it is possible to incorporate these
existing solution methods for DED and OCDD into this MPC framework.

Weakness of [K4] lies mainly on the following aspects. Firstly, the DED model considered in [K4]
includes only basic constraints such as load balance and ramp rates, while more involved constraints
such as line flow thermal limit, range of voltage, etc., are ignored. Including these security constraints
will need to solve the nonlinear AC power flow problem, which will make the computation much more
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demanding. Intelligent computing techniques, for example, granular computing in [44], or the convex
relaxation approach for power flow with line constraints in [26, 27], can be applied to improve the
results in [K4]. Secondly, the case studies in [K4] are provided for smaller scale systems (e.g., 6 units
or 10 units), a real power generation system together with complicated transmission system will be
needed to verify the proposed MPC approach. Thirdly, recent development of distributed renewable
generation and demand response in smart grid has not been considered in [K4], and the corresponding
problem formulation can be improved by considering these new applications.

In summary, the MPC approach for the DED problem provides a closed-loop power dispatch solution
which can optimise the solution according to system dynamic changes, avoid ramp rate violations, and
also reduce the computational complexity. Thus the power dispatch problem targeted in the second
objective of this thesis is solved.

4.3 Section conclusions

In this section, the modelling methodologies developed in [K1] are applied in a practical energy
system-the conveyor belt system at a colliery, and the obtained solution has been shown to reduce
the cumulative active energy costs by up to 49% during five week days in a high-demand season
(see [K3]). The MPC method developed in [K2] is applied in the DED problem to avoid ramp rate
violations during the periodic implementation of the power dispatch solutions (see [K4]). These case
studies demonstrate that the modelling methods developed in [K1] and [K2] are applicable to real
world scenarios. Thus the second objective of this thesis on the application of modelling method-
ologies in energy performance optimisation has been partially achieved. In the next section, more
applications in PV systems will be studied to fully achieve the second objective.

5 Application of Modelling Methodologies in PV System Perfor-
mance Improvement

In this section, model-based energy system modelling methodologies are applied to PV systems to
reduce the cost of fault diagnosis and improve maximum power output. These results are published in
[K5], [K6] and [K7]. The reason to study PV systems is because that the previous section studies only
the application of modelling methodologies in traditional energy systems, e.g. conveyor belt systems
and thermal plant power generation dispatch, while more and more renewable energy systems are
now connected to the power grid, and there is a need to study the applications of possible modelling
methodologies in renewable energy systems. Since solar PV system is one of the major renewable
energy resources, it is selected to show how model-based energy system modelling methodologies are
applied to solar PV research.
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5.1 Modelling in PV fault diagnosis

In [K5], a new two-section PV array fault diagnosis method is proposed by optimising voltage sensor
locations, where the terminology ‘fault’ covers both permanent fault (e.g. open circuit, short cir-
cuit and device aging) and temporary fault (such as dust, leaves, bird droppings and shadows). The
mathematical modelling methods applied here is mainly to represent those physical properties of PV
systems by mathematical functions, and then analyse the corresponding power generation capacity
and process correlations. Fault diagnosis is very important in the maintenance of PV plant. Existing
popular fault diagnosis technologies include thermal cameras ([45, 46, 47]), earth capacitance mea-
surements (ECMs) [48], and time-domain reflectometry (TDR) [49]. In the thermal camera method,
a gradual change in the thermal image of a PV module (e.g., due to device aging) poses a technical
challenge [50], and high system costs also limit the wide application of thermal cameras. The ECM
can locate the disconnection of PV strings, whereas the TDR technology can predict the degradation
of a PV array. However, both the ECM and the TDR can only operate offline [48, 49]. In practice,
online diagnosis methods are highly desired, which can take measurements while the tested device
is in operation. To improve this, other online fault detection and reconfiguration methods are devel-
oped in [51, 52, 53, 54, 55]. However, its success depends on three conditions as follows: 1) a large
number of relays are used; 2) the health state of all PV modules should be monitored; and 3) the high
computing resource of the controller is required to calculate complex optimal arrangements. These
increase the system cost and the control complexity. Therefore, [K5] proposes a low-cost and online
fault diagnosis method with optimised voltage sensor locations that can effectively locate faulty PV
strings and faulty modules.

In [K5], a p × s PV array consists of p strings connected in parallel, with each string consists of s
PV modules connected in series. Voltage sensors are installed to monitor voltage differences across
different places of the PV array. Following the current-voltage properties of the PV array and the
corresponding power calculation models, a general sensor placement procedure is developed as fol-
lows, where voltage sensors are put between two nodes, and a node refers to the interface between
two adjacent PV modules.

• All the nodes should be covered by voltage sensors.

• A sensor can only connect to one node in a string.

• Voltage sensor nodes cover different isoelectric points from different strings.

• If p or s is an even number, then each node is connected to and only to one sensor. If both p and
s are odd, then there is one and only one node to be connected to two different sensors, whereas
each of the remaining nodes is connected to one sensor.

With the measurement of the voltage sensors, a two-section fault diagnosis method is then proposed.
That is, the fault diagnosis is conducted at both the low voltage section and high voltage section on
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the I-V curve of the PV array, and the following three steps will be conducted.

i) Locating a healthy PV string, i.e. a string with all modules healthy;
ii) Locating faulty PV modules in the low voltage diagnosis section; and
iii) Locating faulty PV modules in the high voltage diagnosis section.

In each diagnosis step, detailed criterion is proposed to assist the identification of healthy strings or
faulty modules. For a 3× 3 PV array, tables are given to list voltage characteristics of all the possible
combinations of fault modules. Both simulation and experiment are done for the 3 × 3 PV array to
verify the proposed methodology. These results show that the proposed diagnosis methodology work
efficiently for the 3× 3 PV array.

Compared with existing methods in literature, [K5] has made the following improvements. First,
string current sensors are removed, and the number of voltage sensors is also reduced by optimising
the location of voltage sensors. Second, an online two-section fault diagnosis method is developed to
locate faulty PV modules. Finally, the state-of-health information can also be used for the Maximum
Power Point Tracking (MPPT) and the PV array dynamic reconfiguration.

Weakness of [K5] is mainly that the methodology will become more and more complicated for large
scale PV arrays. The voltage characteristics are given for a 3× 3 PV array only in [K5], for large size
PV arrays, obtaining similar voltage characteristic tables will be difficult, and indeed unnecessary
since it will contain too many items to be verified. Therefore, a computer based algorithm needs
to be developed to automatically calculate the corresponding voltage characteristics and identify the
location of faulty modules. With the fault monitoring results from [K5], the PV modules can be
rearranged to improve the maximum power output as to be introduced in the next subsection.

To conclude, mathematical modelling approaches are applied in [K5] to minimise the number of
voltage sensors for the PV fault diagnosis problem, thus the target on PV diagnosis of the second
objective in this PhD project is achieved.

5.2 Modelling methodologies to improve the maximum power of nonuniformly
aged PV arrays through module rearrangement

Different PV modules of a PV array may have different aging conditions, and thus their power output
performance will be different. Assume that these different aging conditions are monitored, e.g. by
the method in [K5] or any others, then model-based optimisation approaches are applied in [K6] and
[K7] to characterise this kind of nonuniformly aged PV arrays, and the maximum power of the overall
PV array is maximised by rearranging the PV modules. A mathematical expression calculating the
maximum power under all possible PV module rearrangement is presented in a proposition of [K6].
Note that although the PV modules are allowed to have different power output performance in [K6],
it is assumed that all PV cells within any same PV module will have the same aging condition, and
thus perform the same in terms of power generation. In [K7], this assumption is relaxed and each PV
module is divided into 3 sub-modules, and the 3 sub-modules within a same PV module are allowed
to have different aging conditions, and thus different power generation capacities. For the relaxed
situation in [K7], a mathematical expression calculating the maximum power under rearrangement
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cannot be derived, however, a nonlinear constrained integer programming problem is formulated to
search the optimal rearrangement plan for particularly large scale PV arrays. Therefore, the optimisa-
tion model obtained in [K7] provides a convincing illustration of applying the optimisation modelling
approaches in [K1] and [K3].

For aged PV systems, usually there are two solutions to improve the PV power output efficiency. The
first one is to use global maximum power point tracking (GMPPT) strategy to pursue high energy
conversion efficiency. Although GMPPT can improve the PV array output efficiency under fault
conditions compared to traditional MPPT, there are still power generation capacities not being fully
developed. In order to fully explore PV array generation capacity under fault or aging conditions,
the second solution is proposed, which employs on-site PV array reconfiguration to improve PV array
efficiency. There are some existing studies on on-site PV array reconfiguration, for example, reference
[56] proposed a classical optimisation algorithm for a reconfigurable total cross-tied (RTCT) array,
and a branch and bound algorithm is applied for a 6×4 PV array which still needs much computational
efforts. Tabular search method was developed in [57] and tested for a small scale PV array (24 PV
modules), it is almost impossible to use this method for large PV arrays due to its computational
complexity. For a 3× 2 PV array, [58] reduced the searching space by fixing the number of modules
per row, while paper [59] developed an exhaustive searching algorithm in a 3 × 2 PV array. In
order to speed up the configuration selection process, paper [60] developed a sorting algorithm based
on the best-worst paradigm and applied this method to a 3 × 3 array. Reference [61] proposes a
genetic algorithm to solve the rearrangement problem, however it does not provide a mathematically
explicit formulation and thus restricts the application of other optimisation algorithms. To summarise,
existing approaches for PV reconfiguration are either limited to small size PV systems, or algorithm
specific and does not allow applications of other optimisation algorithms. Furthermore, none of the
existing studies can provide any simple mathematical expression to calculate the maximum power
under reconfiguration for the case where the PV cells inside a same PV module have the same aging
conditions.

The above mentioned problems are solved in [K6] and [K7]. In [K6], first principle modelling tech-
nique is applied to derive the relations of maximum power output, current and voltage at each PV
module and string. Then the following proposition is proved to calculate the maximum power for a
p× s PV array (i.e. p strings, and each string has s PV modules).

Proposition Assume that all the PV cells within any same PV module have the same aging conditions,
and the maximum short circuit currents of the ps PV modules are arranged from big to small as
follows.

β1 ≥ β2 ≥ · · · ≥ βps.

Then the maximum power output of this PV array under module rearrangement is:

max{Pmax
1 , Pmax

2 , · · · , Pmax
s }, (10)

where Pmax
1 , Pmax

2 , · · · , Pmax
s are determined by the following:

Pmax
1 = (β1 + β2 + β3 + · · ·+ βp−1 + βp)Vmodule,
Pmax
2 = 2(β2 + β4 + β6 + · · ·+ β2(p−1) + β2p)Vmodule,

...
...

Pmax
s−1 = (s− 1)(β(s−1) + β2(s−1) + β3(s−1) + · · ·+ β(p−1)(s−1) + βp(s−1))Vmodule,
Pmax
s = s(βs + β2s + β3s + · · ·+ β(p−1)s + βps)Vmodule,
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and Vmodule is the maximum power point voltage supplied by a single PV module.

Following the above Proposition, a PV module rearrangement algorithm is developed in [K6] to
achieve the maximum power calculated in (10). Simulation for a 5 × 10 PV array shows that the
maximum power can be improved by 14.28%. Experiment on a 3× 3 PV array illustrates further that
the maximum power output can be improved by 13.5%.

In [K7], the uniform aging assumption within each PV module is relaxed in the way that each mod-
ule is modelled by a series connection of 3 sub-modules, and these sub-modules can have different
aging conditions. Although these 3 sub-modules inside a same PV module can have different aging
conditions, they still physically locate in the same module and cannot be decomposed during the PV
reconfiguration. That is, the reconfiguration can only rearrange each PV module, but cannot rearrange
each sub-modules. This would imply that conclusions from the above Proposition in [K6] cannot be
applied anymore, and we need to find a new method to calculate the maximum power output under
the rearrangement of PV modules. For this purpose, the following optimisation model is formulated
to calculate the maximum power.

Denote the original locations of the psmodules in the p×s PV array by the integer vector (1, 2, 3, · · · ,
ps), where the first s components (1, 2, · · · , s) in this vector represents the locations of the s modules
in the first string, the second s components (s + 1, s + 2, · · · , 2s) represents the locations of the
modules in the second string, and similarly, the last s components ((p−1)s+1, (p−1)s+2, · · · , ps)
represents the locations of the modules in the p-th string. By this convention, any rearrangement of
the original PV array will correspond to a permutation of the vector (1, 2, 3, · · · , ps). Thus we can
define the optimisation variable x = (x1, x2, · · · , xps) to be a ps dimensional integer vector which is a
permutation of (1, 2, 3, · · · , ps), and the first s components of x will correspond to the new locations
of the smodules of the first string after a rearrangement, the second s components of xwill correspond
to the new locations of the s modules of the second string, and the last s components of x correspond
to the new locations of the s modules of the p-th string after the rearrangement. Then the maximum
power under re-arrangement is calculated by the following nonlinear integer programming problem.

max Pmax(x)
subject to: xi ∈ {1, 2, · · · , ps}, i = 1, 2, · · · , ps

Π1≤i<j≤ps (xi − xj)2 ≥ 1,

where Pmax(x) is calculated by

Pmax(x) = max{P 1
m, P

2
m, · · · , P 3s

m },

and P j
m is the maximum power genreated by the PV array when there are only j sub-modules gener-

ating electricity in each PV string, j = 1, · · · , 3s. Assume that the maximum short circuit currents of
all the 3s sub-modules in the i-th PV string are arranged from big to small as

δi1 ≥ δi2 ≥ δi3 ≥ · · · ≥i3s−1≥ δi3s,

then the maximum power P j
m mentioned above is calculated by:

P j
m = j(δj1 + δ2j + · · ·+ δp−1j + δpj )Vmodule/3.
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After obtaining the above mathematical representations of the rearrangement optimisation problem,
any possible optimisation algorithm can be applied. For convenience, Matlab built-in genetic al-
gorithm function is applied in the simulations. For randomly generated aging conditions, the above
rearrangement optimisation can improve 6.33%-8.96% maximum power for a 20×10 PV array under
20 random tests. For a much larger 125×20 PV array, simulations have been studied for 15 randomly
generated aging conditions. It has been observed that the power improvement through re-arrangement
is from 7.58% to 10.93%, and the corresponding average computing time for these tests is 3.925 sec-
onds by using the Matlab GA function on a computer with Intel (R) Core (TM) i7-3540M CPU
3.00GHz, 8G RAM. Note that the above nonlinear integer programming problem is NP hard, and the
number of potential rearrangement choices, which equals (250020 )(248020 ) · · · (4020)(2020)/(125!), is extremely
large (calculating this number will cause memory overflow for Matlab), therefore, the computing time
of 3.925 seconds is quite satisfactory.

To summarise, the reconfiguration methods in [K6] provide an explicit mathematical expression to
calculate the maximum power under rearrangement for PV arrays ignoring the different aging condi-
tions of PV cells within any same PV module, while the optimisation model in [K7] can calculate the
maximum power under arrangement for PV arrays with differently aged submodules. Experiments
and simulations show the effectiveness of these reconfiguration methods.

Weakness of the reconfiguration results in [K6] lies in that different aging performance of PV cells
within a same PV module is ignored. This has been improved in [K7] where it is assumed that each PV
module is a series connection of 3 sub-modules, and these sub-modules are allowed to have different
aging conditions. Even though, this is still a strong assumption compared to real scenarios. A real
world PV module may have many aging situations, and different cells within the same module may
display different characteristics, thus a simple series connection of 3 sub-modules would not be able
to fully characterise real world aging conditions. More complicated connection structures of more
sub-modules can be considered to improve the accuracy of the PV model, and detection of such aging
conditions might need more advanced fault monitoring systems. The optimisation model in [K7] can
be further revised to cater for the need of more complicated models of PV modules.

Note that the PV power maximisation in [K6] and [K7] is obtained through model-based optimisation
approaches, therefore, the target on PV maximum power generation of the second objective in this
PhD study is achieved.

5.3 Section conclusions

In this section, model-based optimisation approaches are applied to investigate PV fault diagnosis
problem and the rearrangement problem for aged PV systems. A cost saving two-section online fault
diagnosis process is proposed to optimally determine the locations of voltage sensors and identify
locations of faulty modules. Then for those PV arrays, where PV cells within any same PV module
are assumed to have the same aging conditions, an explicit mathematical expression is derived to
calculate the maximum power under all possible PV module rearrangements. For PV arrays where
each PV module is further divided into 3 sub-modules and different sub-modules may have different
aging conditions, a nonlinear integer programming problem is formulated to determine the optimal
PV module rearrangement. Simulations and experiments are carried out to verify the effectiveness
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of these obtained results. Since aging phenomenon happens gradually, the developed rearrangement
technique can be implemented offline during scheduled maintenances (e.g., once a few years or even
longer). It can be combined together with other online maximum power point tracking and reconfig-
uration techniques for real time shadowing to improve the overall power generation efficiency. The
results in this section shows that the optimisation models in [K1] and [K3] can be applied in PV
systems to maximise power generation, and the mathematical models for PV power output and mini-
mum number of voltage sensors can be applied to achieve a low cost PV fault diagnosis method. Note
that the previous Section 4 has discussed the applications of modelling methodologies to optimise
industrial energy systems and power dispatch, and this section presented the relevant applications
in PV systems, therefore, the second objective of this PhD project on the applications of modelling
methodologies in energy performance optimisation has been fully achieved.

6 Application of Modelling Methodologies in Energy Performance
Evaluation

In this section, modelling methodologies will be applied in the performance evaluation of energy
systems, which is also called measurement and verification (M&V). The target of M&V is to evaluate
if an energy project has achieved its savings target, and the models built in this section are targeted
to calculate such savings, therefore, M&V itself does not provide energy or energy cost savings, and
it only provides reasonably calculated savings information to the relevant stakeholders. This section
will briefly introduce publications [K8], [K9] and [K10]. In [K8], the M&V process is first modelled
mathematically, and then the M&V plan is formulated as an optimal control model to save M&V cost.
It is noted that this M&V cost saving is for the M&V process only, and is not directly related to the
energy cost savings of the energy project being measured and verified. The optimal control approach
for M&V plan obtained in [K8], which is indeed an application of the optimal control models in [K1]
and [k3], is further applied in [S6] and [S7] to minimise the metering cost for United Nation’s Clean
Development Mechanism lighting projects, where I formulated the optimisation models. I apply also
these mathematical modelling methods, such as the physical models and data regression models in
[K8], to more than 100 practical M&V projects. For instance, I completed the M&V for the energy
savings from the installation of air conditioner intelligent switch control units in 123 office buildings
of ESKOM, the results are submitted in a series of reports to ESKOM, and a brief project summary
is published as a book chapter (see [K9]) in a book I co-edited [62]. I also developed the M&V
guideline in [K10] for the quantification of energy savings from the installation of 65,586 heat pump
water heaters throughout South Africa, where the classification and regression analysis methods are
applied to calculate the energy savings, and an Excel Application is also developed and distributed
to 6 ESKOM contracted universities for practical implementation. As an example, this guideline and
the corresponding Excel Application were applied to the M&V of the ESKOM Northern Distribution
Region, where I supervised a team member to deliver the corresponding metering, modelling, data
analysis and reporting, and the results are also published as a chapter of the above mentioned book
(see [S9]). Other practical implementations of the M&V modelling methods are provided in the
supporting documents, such as the M&V for building energy performance ([S8]), industrial plant air
conditioning systems ([S10]) and supermarket food refrigeration energy efficiency ([S11]).
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6.1 Mathematical modelling for M&V process

Note that the modelling methodologies in [K1] and [K2] are developed to characterise general energy
system performance, and they may not be very efficient in measuring and verifying the performance
of energy systems, therefore, tailor-made M&V modelling methodologies are developed in [K8] and
are reviewed in this subsection.

Motivations for the study in [K8] are given as follows. Since there are many energy efficiency projects
initiated to achieve various energy saving targets for the purpose of energy security and emission re-
duction, the performance of these energy projects needs to be measured and verified, and in many
countries such an M&V activity is guided by the International Performance Measurement and Verifi-
cation Protocol (IPMVP) [63]. There are also some other energy saving M&V guidelines which are
essentially similar to IPMVP, and these guidelines include, but are not limited to, the M&V Guideline
for the Federal Energy Management Programme [64]; the M&V Guideline of the American Society
of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) [65]; and the South African
M&V guideline for Demand Side Management Projects [66]. Researchers have put more attention in
applying these M&V guidelines in practical energy projects. For instance, [67] discusses the M&V
method for a motor sequencing control of a conveyor belt system, [68] gives a general method for cal-
culating plant-wide industrial energy savings, [69] and [70] propose a bottom-up approach to energy
saving calculations, [71], [72], [73], [74] and [75] study the uncertainties in M&V, [76] consider-
s the Louisiana home energy rebate offer programme, [77] proposes general guidelines for energy
modelling in M&V, and [78] provides the M&V strategies for energy savings certificates.

In M&V, the most challenging part is to find out a proper M&V plan so as to quantify the relevant
power and energy savings accurately at the least cost. The competitive targets of accurate savings
quantification and minimum M&V cost need to be properly balanced. In many existing practical
M&V projects, the savings accuracy is often not discussed due to its complicated nature and the
lack of proper mathematical models. Therefore, [K8] presents a mathematical description of the
M&V process to solve this problem. Note that the mathematical models in [K8], [K9] and [K10] are
designed according to ESKOM M&V Guideline [66] on power and energy savings calculation, where
its concept of ‘power’ is not instantaneous power, but indeed ‘energy’ as it is calculated by taking
average values of real power consumption per half hour ([79] allows integrating for 30 min, 15 min,
5 min or 1 min for different storage durations, and in practice most of projects use 30 min integration
period to save longer period of data), although it is required to measure and verify the load profile
(power vs time curve, see Appendix F Example of an M&V Plan, Page F12, in the Fifth Version,
Revision 3, of ESKOM M&V Guideline [66], note also late versions of ESKOM M&V Guidelines do
not have appendices for samples of M&V plan or any other M&V reports due to commercial reasons).
Starting from energy system modelling, [K8] introduces mathematical models for baseline function,
exogenous factor function, M&V baseline, and the target of M&V problem. Physical models, data
models, and stochastic models are provided in [K8] to model the M&V problems and calculate energy
savings. With the help of these concepts and also the concept of optimal control, the following optimal
M&V plan problem is formulated to minimise the modelling approximation errors in identifying pre-
implementation baseline and the post-implementation performance, and also the M&V cost.
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

min
∫ t1
t0
|f(xB(t), pB(t))−G(xα(t), pB(t))|dt,

min
∫ tf
t2
|g(xA(t), pA(t))−H(xα(t), pA(t))|dt,

min Cα(xα, tf )
s.t. |f(xB(t), pB(t))−G(xα(t), pB(t))| < ε, t ∈ [t0, t1],

|g(xA(t), pA(t))−H(xα(t), pA(t))| < ε, t ∈ [t2, tf ],
Ξ(xα(t), pB(t)) = 0, t ∈ [t0, t1],
Ω(xα(t), pA(t)) = 0, t ∈ [t2, tf ],
Cα(tf ) := Cα(xα, tf ) < U,

(11)

where t is time, [t0, t1] is the baseline time period, [t2, tf ] is the post-implementation period, pA and
pB are parameters, xA and xB are state variables, xα = (xi1 , xi2 , · · · , xik) represents state variables
to be measured, f is the baseline power consumption function, g is the post-implementation power
consumption function, G and H are optimal control functions to be identified so as to approximate f
and g respectively, Cα is the M&V cost function, Ξ and Ω define the constraints that xα satisfies, U is
the upper bound for available M&V budget, and ε is an acceptable error bound. The first minimisation
objective in (11) is to minimise the approximation errors of G to the baseline function f over the pre-
implementation period [t0, t1], the second objective is to minimise the approximation errors of H to
the actual performance function g over the post-implementation period [t2, tf ], and the last objective
is to minimise the M&V cost.

This optimal control model is successfully applied to the M&V of a large scale lighting retrofit project
in [S6] and [S7], where I formulated the optimisation models to minimise the metering cost while
satisfying the 90% confidence and 10% precision requirement of the United Nation’s Clean Develop-
ment Mechanism projects. The difference between [S6] and [S7] is that [S6] does not consider the
life decay of lighting bulbs, while [S7] considers this.

The weakness of [K8] mainly lies in the lack of a practical M&V example, and it would be much
improved if any similar example like those in [S6] or [S7] would be included. Other aspects to
improve [K8] is to reduce some mathematical descriptions and add more examples, particularly any
practical example using stochastic modelling approaches to identify the optimal M&V plan.

In summary, tailor-made M&V evaluation models are built in [K8] to efficiently evaluate the perfor-
mance of energy savings projects. The third objective on the application of modelling methodologies
in performance evaluation is therefore partially achieved.

6.2 Modelling in practical M&V projects

In this subsection, several practical M&V projects I conducted are reviewed to illustrate the appli-
cation of M&V modelling methodologies, in particular the physical modelling and data regression
modelling methods in [K8]. This includes mainly the M&V projects on the air conditioner intelligent
switch control in commercial buildings [K9], and the mass rollout of heat pump water heaters [K10].

In [K9], 1,743 intelligent switch air conditioner control units on split air condition units are installed
in 2011 for 123 office buildings of ESKOM northern region. The targeted power saving is 0.5 MW
during the period 07:00 am to 17:00 pm each day, and the expected energy saving is 1.8 GWh per an-
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num. In order to quantify these claimed savings, I first conducted an energy audit for these buildings.
It is found that these buildings have a wide range of floor sizes and power consumption levels. The
floor area ranges from 60 m2 to 15,800 m2, and the average power consumption of air conditioners in
each building ranges from 2.1 kW to 566 kW in summer and from 2.3 kW to 663 kW in winter. These
buildings also perform different functions, some are general offices, some are for technical support,
and some are for client consulting services. To control the M&V cost within the available budget, the
metering design plan should minimise the metering cost while at the same time maintain necessary
accuracy. For this project, it will cost too much if all the air conditioners in each building are placed
with power meters. It is therefore necessary to classify these buildings in terms of size, function and
power consumption levels into a few groups, and then take samples at metering points from each
group. Following this idea, the 123 buildings are classified into 4 groups in terms of both the floor
area size and the number of air conditioner units, then each group is further divided into 3 subgroups
in terms of functionalities: general office, technical support, and client consulting. 2 to 5 meters are
installed at each of these 12 subgroups, and the exact number of meters depends on the population
size of a particular subgroup.

After collecting metering data from pre-implementation and post-implementation of the intelligent
switches, linear regression is applied to analyse impact of outdoor dry bulb temperature, working
day/weekends, hours of day, and heating/cooling load to the corresponding energy savings. From the
assessment the averaged power saving is 0.6013 MW, 0.4876 MW, and 0.3386 MW during the period
07:00 am to 17:00 pm in weekday, Saturday, and Sunday, respectively. The overall average power
saving is 0.5475 MW, and the estimated annual energy saving is 1.998 GWh. Therefore, the targeted
power saving of 0.5 MW has been achieved successfully at the reporting period.

In [K10], an M&V guideline is provided for the savings quantification of the rollout of 65,586 heat
pump water heaters during November 2010 to March 2013 in South Africa. These heat pumps will
replace existing electric water heater geysers for mainly residential customers, lodges, and B&B (Bed
and Breakfast). There are two categories of heat pumps, Category 1 is the low priced 100 to 300 litres
domestic heat pumps, while Category 2 is the high priced 300 to 500 litres domestic heat pumps.
Input electric power to the first category is between 0.8 kW to 1 kW, while the corresponding same
volume electric water heater (i.e. without heat pump) is usually between 3 kW to 4 kW. The input
electric power of the second category is around 1.7 kW as contrast to the input electric power from 4
kW to 6 kW of electric water heater with the same volume.

It is noted that ESKOM has conducted extensive research on water heater load profile through its
Residential Load Management (RLM) project [80], and this RLM classifies water heater load in terms
of costal area and inland area, therefore, this heat pump project classifies the heat pump load into four
groups: inland category 1 heat pump, costal category 1 heat pump, inland category 2 heat pump,
and costal category 2 heat pump. The baseline load will be identified through the corresponding
RLM project and be built in an Excel Application toolkit. Meters are installed at selected sample
heat pumps from each group to collect the performance of heat pumps and minimise metering cost.
Coefficients of performance (COP) of heat pumps will be used to calculate the equivalent thermal
energy, and also the energy savings.

After providing the above technical details in [K10], I also lead the development of the above-
mentioned Excel Application to implement the corresponding heat pump M&V. The guideline [K10]

26



and the corresponding Excel tool are implemented by 6 ESKOM contracted universities, and as part
of these contracted university M&V teams, I implemented them for the performance of 382 installed
heat pumps in ESKOM Norther Distribution Region (see [S9]). The initial target for these heat pumps
is the power reduction of 157.68 kW, while the average actual power reduction at weekday evening
peak is 67.6 kW. The targeted monthly energy consumption saving is 39.15 MWh, while the verified
energy consumption saving is 39.61 MWh for these 382 heat pumps.

Weakness in [K9] and [K10] is that many technical details are included in the corresponding technical
reports and Excel Application toolkit, such as details of baseline data, regression analysis, etc., and
it is copyright protected by ESKOM due to commercial reasons. Each M&V project needs to deliver
a series of report, starting from scoping report, then baseline report, M&V plan report, performance
assessment report, and multiple performance tracking reports at different time periods. [K10] provides
only an overview of the heap pump project, and these detailed reports are unable to be released to the
public because of commercial reasons.

In addition to the above heat pump project, I also implemented the M&V modelling methodologies,
e.g. regression modelling to calculate savings in terms of sampled metering data, temperature, etc.,
for other projects, such as the building project in [S8], air conditioner project in [S10] and food re-
frigeration in [S11]. The main purpose of [S8] is to obtain building energy consumption baseline for
further energy efficiency improvement. The baseline is obtained for more than 100 ESKOM Northern
Region office buildings following questionnaires, energy bills, metered data, and the regression anal-
ysis of temperature, floor size, etc. The purpose of [S10] is to measure and verify the expected target
of a 2.5 kW reduction in power use and a 1.70 MWh annual reduction in energy use by replacing
existing air conditioners with more energy efficient ones in the office building of an industrial plant.
Temperature data are applied to calculate its impact to energy savings. In [S11], food refrigeration
system energy efficiency at a supermarket company are considered. This is a pilot project at 8 stores
of the company, and it is later on rolled out to all other hundreds of branch stores of the company.
The project includes installations of electronic expansion valves, variable speed drives, anti-sweat
heater controller, automatic night blinds, and ventilation controls. Temperature information has been
used to analyse its impact to power and energy savings. The averaged power saving actually achieved
is 0.4417 MW, 0.4385 MW, and 0.4288 MW in weekday, Saturday, and Sunday, respectively. The
targeted power saving of 0.383 MW has been achieved successfully during the reporting period.

Therefore, the M&V modelling methodologies are successfully applied in many practical energy
evaluation projects, which achieves the performance evaluation objective of this PhD study.

6.3 Section conclusions

In this section, modelling methodologies are applied in M&V. Key contributions include the derivation
of the optimal control model to minimise M&V cost in [K8], the practical implementation of physical
modelling and data regression modelling methods in air conditioner intelligent switches for office
buildings in [K9] and the mass rollout of domestic heat pumps in [K10]. The optimal control model
in [K8] is further applied to large scale lighting projects in [S6] and [S7], and the heat pump M&V
guideline in [K10] is also implemented in [S9]. More practical applications on M&V modelling
methods are also reported, such as building baselines in [S8], air conditioner replacement in [S10],

27



and food refrigeration systems in [S11]. Therefore, the third objective of this PhD study on the
applications of modelling methodologies in energy performance evaluation has been successfully
achieved.

7 Conclusions

This PhD work discusses applications of model-based optimisation approaches for energy perfor-
mance optimisation and evaluation. The main contributions consist of the following three parts, which
are summarised in key publications [K1]-[K10].

i) Theoretical contribution on energy performance modelling:

• Optimal control model and its equivalent discritisation as an optimisation problem are applied
to energy performance improvement problems ([K1, K3, [29]]);

• The above obtained optimal control or optimisation problem is subject to constraints obtained
from logic correlations, mass balance, energy balance, process and service correlations, and
boundary constraints ([K1]);

• The above logic correlation is a new concept and has important applications in describing logic
constraints such as two events cannot happen at the same time or one event must happen after
another, more practical applications are illustrated in [S3]; and

• Model predictive control is proposed for a class of load management problems, and the conver-
gence and robustness are proved in [K2] and further validated by dynamic economic dispatch
examples in [K4].

ii) Application of the obtained modelling methodologies in energy performance optimisation:

• Mass balance, process and service correlations amongst other modelling methods are applied
to solve the conveyor belt load management problem at a colliery for operational cost minimi-
sation ([K3]), where the cumulative active energy costs are reduced by up to 49% during 5
weekdays in a high-demand season;

• Model predictive control approach is applied to dynamic economic dispatch problem to solve
the ramp rate violation problem during the periodic implementation of the power dispatch so-
lutions ([K4]);

• Process and service correlations, logic correlations and other energy modelling methods are
applied in many other energy problems, such as those in [S1]-[S5];

• A two-section PV fault online diagnosis process is proposed to minimise the number of voltage
sensors ([K5]);
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• Mathematical models are built for the maximum power output of aged PV arrays, and a math-
ematical expression is derived to calculate the maximum power under PV module rearrange-
ment when PV cells inside any same PV module are assumed to have the same aging conditions
([K6]); and

• An optimisation model is presented to calculate the optimal module reconfiguration and the
corresponding maximum power output of aged PV arrays where each PV module may have
three differently aged submodules ([K7]).

iii) Applications of the obtained modelling methodologies in energy performance evaluation:

• Mathematical models are developed for energy performance measurement and verification, and
in particular, an optimal control model is presented to minimise measurement and verification
cost ([K8]); this optimal control model is applied in large scale efficient lighting projects in [S6]
and [S7] for metering cost minimisation in the United Nations’ Clean Development Mechanism
projects;

• Physical models and data regression models from [K8] are applied in practical energy mea-
surement and verification projects for the installation of 1,743 air conditioner intelligent switch
control units in 123 office buildings ([K9]) and the rollout of 65,586 heat pumps in South Africa
([K10, S9]); and

• Similar modelling methods are also applied in building energy baseline, air conditioner replace-
ment, and food refrigeration systems in supporting documents of [S8, S10, S11].

From the above listed contributions, the expected objectives on summarising existing model-based
optimisation approaches for energy system modelling, and applying the obtained modelling method-
ologies to energy performance optimisation and evaluation are achieved.

I have had some further work to improve and extend the above obtained results. For example, the
colliery conveyor belt load management results in [K3] are extended to other parts of mining plants
by the modelling methods in [K1, K2, K3], and rock winder systems are studied in [34], crushing
process is studied in [24], medium density control for coal washing dense medium cyclone circuits is
studied in [36]. The DED problems investigated in [K4] is studied by intelligent computing approach
in [81], and it is also combined with modern smart grid technologies and other energy sources in
[82, 83]. The modelling methodologies used in [K8, K9, K10] are applied to deliver more than 100
practical measurement and verification projects during 2009-2013.

As mentioned in the reviews of the weakness of each publications in [K1]-[K10], there are a lot of
other further work to be done to improve and expand this PhD study. For example, the modelling
methodologies developed in [K1] can be much improved by providing linearised constraints to sim-
plify representations and computations, and there are some possible approaches to strengthen results
from [K2]-[K8], such as the convexification approach to extend the applicability of the MPC approach
in [K2], plant-wide energy optimisation to improve the limited scope of [K3], inclusion of demand
response and distributed renewable generation in the study of DED in [K4], voltage characteristics
for large scale PV array diagnosis (see [K5]), development of a better optimisation model to cater for
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the different aging conditions of each cells within a PV module during PV array rearrangement (see
[K6, K7]), and further applications of the optimal control models in [K8] for M&V cost minimisation.
Besides working on these problems, I am also working on the application of stochastic programming
approaches in energy performance optimisation and evaluation.
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