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Abstract

Heterogeneous materials can exhibit behaviour under load that cannot be de-

scribed by classical continuum elasticity. Beams in bending can show a relative

stiffening as the beam depth tends to zero, a size effect. Size effects are recog-

nised in higher order continuum elastic theories such as micropolar elasticity. The

drawback of higher order theories is the requirement of addition constitutive rela-

tions and associated properties that are often difficult to establish experimentally.

Furthermore the finite element method, of great benefit in classical elasticity, has

shown limitations when applied to micropolar elasticity. The determination of

additional constitutive properties and the numerical modelling of micropolar elas-

ticity is discussed in the context of two model heterogeneous materials.

The first model material was created by drilling holes in an aluminium bar in a

regular pattern, with the hole axis normal to the plane of bending. Bending tests

show that a size effect is present. These results are compared against a model

of the detailed beam geometries in the finite element package ANSYS, which

confirms the size effect. Constitutive properties are extracted from the ANSYS

results in a new iterative procedure using approximate numerical solutions from

a newly developed control volume finite element. This iterative procedure is then

used to obtain constitutive properties from the second model material tested as

diametrically loaded acrylic rings, with a material size scale equal to a quarter of

that of the perforated aluminium beams.

Despite difficulties, associated with the anisotropic nature of the model materials,

micropolar elasticity will be shown to be capable of modelling the size effects

identified in these model materials.

1



Chapter 1

Introduction

Considering Scale

It is clear from observing any material that, from a sufficiently far distance, it

can appear as of one phase, a homogeneous continuum. On magnifying the ma-

terial, however, it can be seen that it is in fact made up of a number of phases.

This scale effect is dependent upon the material. For example, steel would re-

quire to be magnified to a micro metre level to notice the different constituent

phases of its microstructure, whereas the microstructure of polymeric foam can

be seen with the naked eye. All materials are heterogeneous but it depends upon

the scale at which they are observed whether this is significant. As scale has

an effect upon what is observed so has it upon the deformation of the material

under load. At a macroscopic level steel is classed as being homogenous and thus

the deformation can be described by classical continuum elasticity. On a micro-

scopic level, however, the deformation becomes dependent upon the individual

responses of the phases and their interactions. In many respects the macroscopic

response, characterised by a classical continuum, is an averaging of the micro-

scopic response, but when the overall deformation is occurring on a scale similar

to that of the microstructure then a different approach to classical elasticity may

be required. This has become an engineering challenge due to the increased use

of heterogeneous materials in structural applications [1]. For example, polymeric

and metallic foams, particularly as part of sandwich panels, are now being used
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more extensively in both automotive and aerospace applications because of the

weight saving they afford [1]. It is an active research area to find constitutive

models that can describe the elastic response of these materials as they are often

endowed with enhanced mechanical behaviour, which are termed size effects [2]

due the dependence of this behaviour upon the size of the material domain.

Generalised Elastic Continua

Classical elasticity [3] is a local theory; the forces acting upon an individual

point depend only upon its location. Non local theories take note of effects

neighbouring that point and how these affect the forces acting upon it. Therefore

the deformation of an individual element is now dependant upon its location

and neighbourhood. Intrinsic length scales link the two effects. As the problem

domain approaches the length scale the non local effect will increase. Conversely

as the domain expands away from the length scale the local effects dominate and

a local continuum approach is sufficient.

In elasticity non-local effects can be expressed within a continuum by gener-

alised elasticity, or non-local elasticity, of which there are two different classes;

higher grade and higher order [2]. Higher grade theories incorporate higher or

additional derivatives of the displacement vector whereas higher order theories

include additional microstructural degrees of freedom. Couple stress theory [4] is

an example of a higher grade theory. An example of a higher order theory is the

linear micropolar theory [5]. Linear micropolar theory is endowed with only one

additional degree of freedom, a micro rotation, and is therefore the least complex

of the higher order theories.

As with many of the generalised elastic theories these two different approaches

are linked. If the additional micro rotation of micropolar elasticity is no longer

kinematically distinct, equalling the macro rotation, then we have couple stress

theory. There are numerous other generalised theories with greater complexity

than couple stress or micropolar elasticity. The historical development of gener-

alised theories has been discussed at length in the literature and the reader can

be directed to [2, 6–8], and references therein for an overview.
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This work is concerned with the simplest of the higher order theories, micropolar

elasticity. An additional independent micro rotation is present in the formulation,

enabling the complimentary shear stress requirement of classical elasticity to be

relaxed. Additional couple stresses balance the differential element. The couple

stresses have an intrinsic length scale associated with them. Endowed with this

additional degree of freedom micropolar elasticity predicts elastic behaviour that

is not predicted by classical elasticity. For example the dispersion of stress waves,

a dependence of stress concentration factors upon discontinuity size and a size

stiffening of smaller samples in bending and torsion are all predicted. The pre-

diction of these additional material behaviours led to research into experimental

identification of these size effects and the determination of the additional con-

stitutive properties associated with the theory. To date this has proved to be a

challenging task.

1.1 Experimental Methods in Micropolar

Elasticity

“...experiments with micropolar constants require much precision and elaborate

instrumentation, since we are faced with the measurements of microscopic-level

quantities ... At this range, many other physical phenomenon begin to interfere

with observation, introducing distortions and errors.” Eringen 1999 [7]

Since the development of non-local theories there have been attempts to identify

if the size effects, noted by the theories, exist in real materials. Initial attempts to

identify size effects in heterogeneous materials did not prove fruitful [9]. Indeed it

is recognised as a difficult task [7], see quote above, as any experiment is trying to

identify microscopic level interactions via the macroscopic response of a material

under load. Gauthier and Jahsman [10] were the first researchers to separate and

devise an experimental procedure to identify all six of the micropolar material

constants. Analytical expressions were developed for the mechanical response
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in tension, torsion and plate bending. If a micropolar material were tested at

reduced sample sizes then the analytic solution predicts that, in torsion and

bending, there would be relative stiffening as the sample size reduces. These size

effects can be used to determine all of the micropolar material constants [10].

To test this procedure a model material was created where aluminium shot was

suspended in an epoxy polymer matrix to 99.5%; it is not stated if this is by

volume or weight [9, 10]. The resulting displacement in the torsion case was

measured using both holographic interferometry and precision dial gauges. The

torsion results proved inconclusive with a large scatter in the data and if any

conclusion could be drawn it suggested that a reduction in stiffness was present,

not the increase that might have been expected. This was attributed to the

friction in the testing equipment and material inhomogeneity. Dynamic tests are

a suggested alternative and in a later publication these tests show some presence

of micropolar behaviour [10] but are unable to extract all micropolar material

properties. Theoretical work conducted by Bigoni [11] may shed some light upon

why Gauthier and Jahsman did not find size effects in the model material that

was created. Through a homogenisation procedure Bigoni shows that, in a two

phase composite, the inclusion must be less stiff than the matrix material before

the material will behave in a micropolar manner. This is the opposite of the

model material that Gauthier and Jahnsman manufactured. Although no size

effects were found using the static test these did form the foundation for future

work under the name of “the method of size effects”.

Lakes is the most prolific researcher in the field of experimental determination

of micropolar material properties. In his extensive review [12] he makes note of

the state of the art, as of fifteen years ago, discussing the merits and drawbacks

of various approaches. The salient details mentioned are: the technique that

was adopted, in which materials size effects were discovered, whether micropolar

elasticity is indeed an adequate model, how the preparation of sample affects size

effects and what comment his work has attracted. These will now be discussed.

Lakes advanced Gauthier and Jahsman’s work in the method of size effects by

developing a magnetic torque and bending rig that could transmit the required

loads without friction. Displacement was measured using a holographic inter-

ferometer. Employing both a non contact loading and measurement technique
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reduced the parasitic error, due to instrument friction [13]. Analytical solutions

for the bending [14] and torsion of circular cylinders were used to identify the

micropolar moduli. Although size effects were identified in torsion of polymeric

foam, the bending of smaller samples identified a departure from micropolar elas-

ticity. Lakes proposed that this could be due to additional degrees of freedom in

the microstructure. Micromorphic elasticity [7], a more generalised microstruc-

ture elasticity theory, may have provided a better correlation to the experimental

data. In further work [15], size effects are identified in dense polyurethane foam

but not in syntactic foams. It is thought that in the syntactic foam the inclusion

is stiffer than the matrix. This confirms Bigoni’s hypothesis [11] as consequently

the material behaves in a nearly classical manner. Micropolar moduli are also

identified in compact bone [16]. Comment is passed by Eringen [7] about the

measured coupling number being too high which would imply a near zero shear

modulus.

Later work by Anderson and Lakes [17], analysing the size effects in closed cell

polymethacrylimide, identified that surface damage during sample preparation

can cause size softening rather than size stiffening. A surface damage model

is incorporated into the analytic solutions for bending and torsion of circular

cylinders. Surface damage effects are due to half open voids being present at the

boundary of the material. The half open voids are less able to carry the load

than the fully enclosed voids. As the size of the boundary increases with respect

to the overall cross section of the material it is possible that an anti micropolar

effect is present. Careful sample preparation can mitigate this error. There is

an apparent trade off between testing a material at smaller sample sizes, where

the size effect will be more pronounced and distinguishable from the systematic

error of the testing procedure, and testing at such a small scale that the surface

damage of the material becomes significant with respect to the overall material

response.

Further to the method of size effects and dynamic tests, Lakes presented a field

method for qualitatively determining the correct continuum model that the ma-

terial exhibits. Analysis of the strain field on the surface of a rectangular section

under torsion is presented in [18]. It was found that at the edge of the rectangu-

lar section the shear stress was non zero, indicating that non classical material
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behaviour is present. A screening method using a holographic image to follow

the motion of a small edge crack in a rectangular beam under torsion is presented

in [19]. A moving crack would be indicative of a micropolar material.

Since the review of Lakes, further work has identified size effects, in the shear

modulus and damping of bovine plexiform bone [20], using Lakes torsion tech-

nique. Beuchner’s work suggests that an understanding of size effects will inform

upon the understanding of the scaling laws of bones, identified in larger animals,

and geological structures. McFarland [21] returned to Gauthier and Jahsman’s

work to retrieve the, yet unused, analytical solution for the bending of microp-

olar plates to identify size effects in micro electro mechanical systems (MEMS).

A polypropylene micro cantilever beam, end loaded by a nanoindenter, showed

a size stiffening up to four times greater than that predicted by classical beam

theory. This work only allowed the determination of the characteristic length of

bending but this is sufficient to gain a displacement field for a slender micropolar

beam.

As can be seen size effects have been identified in a wide variety of materials in-

cluding micro mechanical beams, biomaterials and polymeric foams, which have

impact upon many fields of engineering. An adequate approach is therefore re-

quired to both determine the constitutive properties of heterogeneous materials

and apply them to the analysis of these materials in engineering design.

1.2 Numerical Methods in Micropolar

Elasticity

“...bring the topic of microelastic continua from one of abstraction to that of

reality...” Goldberg 1974 [22]

The finite element method (FEM), of great popularity in the field of computa-

tional structural mechanics, was first turned to micropolar elasticity by Baluch,
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Goldberg and Koh [23]. They formulated a bi-linear triangular element with lin-

ear displacement and linear micro rotation fields. Although no numerical results

are presented they note that their purpose is to bring micropolar elasticity and

its associated micro continuum models from “ one of abstraction to that of real-

ity”. The nature of micro continuum theories is complex and therefore very few

analytical solutions exist. Goldberg [22], in a later work states that the finite

element method is used “in order to alleviate the inherent complexity” involved

in solving the system of governing equations. His later work presents an FEM

for the bending of micropolar plates using a 3 noded triangular element with 15

degrees of freedom; transverse displacement, rotation and micro rotation.

Nakamura, Benedict and Lakes [24] present another bi-linear triangular element

for orthotropic micropolar elasticity. Results are shown for the estimation of stress

concentration factors of a circular hole in an infinite plate, for which an analytical

solution exists. The model is capable of identifying the size effect, although there

is an error in the computed value that appears to be dependent upon the coupling

number; the larger the value of the coupling number, which is a constitutive

property governing the antisymmetry of the shear stresses in micropolar elasticity,

the greater the error. This issue is identified in other works [25, 26]. In a later

work Nakamura and Lakes [27] present a finite element analysis package called

MIRACS (Micro rotation and couple stress) which is used to investigate Saint-

Venant end effects in micropolar elastic materials. A 3 node constant strain

triangular element, a 4 node isoparametric element and an 8 node isoparametric

element make up the package. Further plane elements have been published [25,

28–30]. The quadratic element of Providas and Kattis [25] is the most accurate

plane finite element to date. In [25], a patch test is presented to better assess the

published element. Wheel [26] departs from the standard finite element procedure

to publish a constant strain planar control volume method. This method shows

enhanced performance in the patch test of Providas and Kattis; returning the

exact stress states for each test, which the finite element formulations were unable

to.

The first three dimensional element to be developed was by Huang et al [31]; a

Wilson’s non-compatibility brick element with 6 nodal degrees of freedom and

8 nodes. An interesting investigation of the role of various constitutive prop-
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erties upon the computed displacement to the exact solution of a beam with a

non kinematically distinct micro rotation, i.e. couple stress beam, is presented.

Large errors are reported for certain material properties used. There appears to

be no discussion as to whether the author believes that this is due to numerical

inaccuracy in the finite element solution or if it is not converging to the solution

because the FEM is displaying behaviour that the beam solution is unable to

display due to its couple stress assumptions. Their results show that as κ, a

micropolar elastic constant, increases then the solution will converge to the ana-

lytical, couple stress solution. In the definition of the coupling number, N , as κ

tends to infinity, N tends to 1. If N = 1 the shear stresses are fully antisymmetric

and thus the problem is that of couple stress theory; hence the convergence to

the exact solution. Branke et. al. [32] presents a three dimensional element for

micropolar elasticity, with the couple stress assumption. It is used to simulate

four point bending of a textile-reinforced composite and material parameters are

determined by homogenisation. Numerical homogenisation of material properties

offers an alternative to physical experiments [33,34].

Goldberg’s work was presented to motivate the use of the FEM in the engineering

analysis of materials with a microstructure but identified a debate about the

correct use of constitutive properties which experiments can shed light upon.

Indeed these conclusions are the same today. There is still discussion in the

literature about the correct constitutive properties to use and most presented

work to date has yet to find a useful application where experiments and numerical

work tie up to showcase a useful analysis technique for materials with micro

structure. It is the aim of this work to strive towards this goal.

1.3 Research Aims

Size effects have been identified previously in real materials but is micropolar elas-

ticity really an adequate model to quantify this? Previous work has shown that

it is difficult to distinguish size effects from experimental errors. In addition to

this bespoke testing equipment is often required. To date no work has conducted

the experimental determination of constitutive properties and the development of
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numerical models to assist in this. Both these aspects are essential if micropolar

elasticity is to be used in computational engineering analysis and design. What

is discussed in this work is a designed model heterogeneous material that will be

examined to see if micropolar elasticity can describe its deformation. In addition

numerical techniques will be developed that will be used to assess if micropolar

elasticity can be used as an appropriate analysis tool and, for the first time, used

in the identification of the constitutive properties. This will be the first compar-

ison between a real material, experimentally tested to determine the constitutive

properties, and a numerical solution to micropolar elastic problems.

Due to the inherent complexity of heterogeneous materials and micropolar elas-

ticity only one and two dimensional problems are considered. There is, however,

much to be considered in these cases that will impact upon any future work

moving into full three dimensional representations. Beginning with the general

linear theory of micropolar elasticity, this will be reduced in complexity to look

at first the bending of slender micropolar beams and secondly the bending of

deep micropolar beams. Solutions to these problems, by analytical and numer-

ical methods, are compared against experimental responses of a model material

under three point bending at various spans using the method of size effects. In

addition to the method of size effects, limited by available analytical solutions, it

is proposed that advances in the computational modelling of micropolar materi-

als can bring about an inverse method for identifying the constitutive properties.

This utilises a newly developed linear strain micropolar control volume element

which iteratively finds the correct constitutive properties from experimental test-

ing data. Further to this, the new iterative search procedure will be used to

fit constitutive properties to the, experimentally determined, stiffness of diamet-

rically loaded heterogeneous rings. These rings are made of a different model

material.

This thesis sets out the mathematics of linear micropolar elasticity and the pro-

gression to plane stress and plane strain problems, followed by the formulation

for a slender micropolar beam and a thin walled micropolar ring. With the so-

lution of a slender beam in place, the creation of the model material and its

testing as a slender beam will be discussed. After this, a return will be made

to the plane stress and plane strain formulations when a linear strain micropolar
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control volume finite element will be formulated. This will then be used in the

analysis of deep beams, based upon the constitutive properties gained from the

slender beams, and used to identify a further constitutive property. Finally, to

prove the method assembled in the analysis of thick beams, micropolar constitu-

tive properties from diametrically loaded ring samples will be determined. This

work therefore shows a useful application of micropolar elasticity as an analysis

tool to predict the deformations of heterogeneous materials in bending.
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Chapter 2

Micropolar Elasticity

Micropolar elasticity is one of the higher order non-local theories of Eringen [7]. It

is endowed with an additional micro rotation vector that removes the restriction

upon classical elasticity that the shear stresses are symmetric. It is a general

model and will converge to both classical elasticity and couple stress theory. The

three dimensional stress tensors of linear micropolar elasticity are introduced

and the constitutive properties are discussed. Following this, and reducing the

complexity, four special cases of linear micropolar elasticity are considered; the

two dimensional formulations of plane stress and plane strain, the one dimensional

formulation for a slender beam and the one dimensional formulation for a thin

walled ring, these being the focus of the research in this thesis.

2.1 Generalised Linear Micropolar Elasticity

Linear micropolar elasticity takes into account the deformation of the microstruc-

ture by introducing a length scale dependent couple stress, m, and an additional

degree of freedom, the micro rotation φ. For a linear elastic isotropic micropolar

material the force stress tensor, τij, and couple stress tensor, mij, respectively

are [5],
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τij = λεkkδij + (2µ∗ + κ) εij + κeijk (θk − φk) (2.1)

mij = αφk,kδij + βφi,j + γφj,i (2.2)

The repeated indices denote summation over the range (i, j, k = 1, 2, 3), δij is the

Kronecker delta and eijk is the permutation tensor. These are defined in the

following way:

δij =







1, if i = j

0, if i 6= j
(2.3)

eijk =



















+1, if ijk is an even permutation of (1, 2, 3)

−1, if ijk is an odd permutation of (1, 2, 3)

0, otherwise

(2.4)

An index followed by a comma represents a partial differentiation with respect to

the coordinate system. τ is the force stress tensor, m is the couple stress tensor,

θ is the macro rotation, φ is the micro rotation and λ, µm, κ, α, β, γ are six elastic

constants. µ∗ is the micropolar shear modulus. This is related to the observed

shear modulus µ by,

µ = µ∗ +
κ

2
(2.5)

The macro rotation and strain tensor respectively are,

θi =
1

2
eijkuk,j (2.6)

εij =
1

2
(ui,j + uj,i) (2.7)

where u is the displacement vector. The six elastic constants can be expressed in

terms of seven engineering constants [12]:

Em =
(2µ∗ + κ) (3λ + 2µ∗ + κ)

(2λ + 2µ∗ + κ)
(2.8)
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Gm = µ∗ +
κ

2
(2.9)

νm =
λ

(2λ + 2µ∗ + κ)
(2.10)

l2t =
(β + γ)

(2µ∗ + κ)
(2.11)

l2b =
γ

2 (2µ∗ + κ)
(2.12)

N2 =
κ

2 (µ∗ + κ)
(2.13)

Ψ =
(β + γ)

(α + β + γ)
(2.14)

where Em is the micropolar Young’s modulus, Gm the observed micropolar shear

modulus, νm the micropolar Poisson’s ratio, lt the characteristic length of tor-

sion, lb the characteristic length of bending, N the coupling number and Ψ the

polar ratio. The micropolar equivalents of the classic elastic constants inform the

behaviour in much the same way as in the classical theory. The characteristic

lengths of torsion and bending dictate the length scale of the size effects. The

coupling number controls the antisymmetry of the shear stresses. The polar ratio

is equivalent to Poisson’s ratio but with respect to the micro rotation. The mi-

cropolar theory contains two limits. If α, β, γ and κ are set to zero, the solid will

behave in a classical manner. Alternatively if the coupling number N is set to 1

then the material will behave as in couple stress theory, where the micro rotation

is no longer kinematically distinct from the macro rotation.

2.2 Two Dimensional Formulations

Reducing the complexity of the general form of linear micropolar elasticity pro-

duces two dimensional formulations for plane stress and plane strain [27]. The

static equilibrium equations for the balance of stress and couple stress, see figure

2.1, are respectively;
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Figure 2.1: Micropolar differential stress element

τij,i + pj = 0 (2.15)

mi3,i + eij3τij + q3 = 0 (2.16)

where the repeated indices denote summation over the range (i, j = 1, 2). pj are

body forces per unit volume and q3 represents a body couple per unit volume.

Expanding the equilibrium equations for Cartesian coordinates, (i, j = x, y) and

setting the free index 3 to z gives;

τxx,x + τyx,y + px = 0 (2.17)

τyy,y + τxy,y + py = 0 (2.18)

mxz,x + myz,y + τxy − τyx + qz = 0 (2.19)

The linear constitutive equations can be expressed as,
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Figure 2.2: Deformation of stress element due to antisymmetric, τa, and sym-
metric, τs, shear stresses

τij = λεkkδij + (µ∗ + κ) εij + µ∗εji (2.20)

mij = αφk,kδij + βφi,j + γφj,i (2.21)

where the repeated indices denote summation over the range (i, j, k = 1, 2, 3).

Introducing a modified strain displacement relationship where,

εij = ui,j + eijkφk (2.22)

which expanded for Cartesian coordinates (i, j, k = x, y, z) gives,













εxx

εyy

εyx

εxy













=













u,x

v,y

u,y + φz

v,x − φz













(2.23)

where u and v are the displacement components of the x and y directions re-

spectively. The displacement gradients u,y, v,x are associated with the symmetric
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component of the shear stresses, τs, while the micro rotation φz is due to the

antisymmetric component of the shear stresses, τa, see figure 2.2. The constitu-

tive equations are now modified to account for the specific assumptions present

in both the plane stress and plane strain theory.

2.2.1 Plane Strain

In plane strain it is assumed that the z component of strain is zero as in the

classical case. In addition for micropolar elasticity the micro rotation is assumed

to be zero about the x and y directions. Therefore εzz = εxz = εyz = εzx = εzy = 0

and φx = φy = 0. This gives rise to the modified constitutive equations, expressed

in expanded matrix form in the Cartesian coordinates for force stress,













τxx

τyy

τyx

τxy













=













λ + 2µ∗ + κ λ 0 0

λ λ + 2µ∗ + κ 0 0

0 0 µ∗ + κ µ∗

0 0 µ∗ µ∗ + κ

























εxx

εyy

εyx

εxy













(2.24)

and couple stress,

[

mxz

myz

]

=

[

γ 0

0 γ

][

φz,x

φz,y

]

(2.25)

These can be reformulated in term of the engineering material constants Em, vm,

lb and N from equations (2.8),(2.10),(2.12) and (2.13) respectively as,













τxx

τyy

τyx

τxy













=
Em

(1 + νm)















(1−νm)
(1−2νm)

νm

(1−2νm)
0 0

νm

(1−2νm)
(1−νm)
(1−2νm)

0 0

0 0 1
2(1−N2)

(1−2N2)
2(1−N2)

0 0
(1−2N2)
2(1−N2)

1
2(1−N2)



























εxx

εyy

εyx

εxy













(2.26)
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[

mxz

myz

]

=

[

2Eml2
b

(1+νm)
0

0
2Eml2

b

(1+νm)

][

φz,x

φz,y

]

(2.27)

An alternative relationship between the shear stresses and the shear strains can

be formulated by introducing a new constitutive parameter, the coupling factor,

a, where,

N2 =
a

1 + a
(2.28)

Then expressing the shear modulus Gm as

Gm =
Em

2 (1 + νm)
(2.29)

allows the shear stresses to be related to the shear strains in the simpler form,

[

τyx

τxy

]

= Gm

[

1 + a 1 − a

1 − a 1 + a

][

εyx

εxy

]

(2.30)

2.2.2 Plane Stress

In plane stress theory it is assumed that the stress in the z direction is zero and

again it is assumed that the micro rotations about the x and y axes are zero.

Therefore τzz = τxz = τyz = τzx = τzy = 0 and φx = φy = 0. As the assumptions

with respect to the couple stress are unchanged between plane stress and plane

strain the constitutive relationships are unchanged from equations (2.25) and

(2.27). However the modified force stress constitutive relationships are,













τxx

τyy

τyx

τxy













=













(2µ∗+κ)(2λ+2µ∗+κ)
λ+2µ∗+κ

λ(2µ∗+κ)
λ+2µ∗+κ

0 0
λ(2µ∗+κ)
λ+2µ∗+κ

(2µ∗+κ)(2λ+2µ∗+κ)
λ+2µ∗+κ

0 0

0 0 µ∗ + κ µ∗

0 0 µ∗ µ∗ + κ

























εxx

εyy

εyx

εxy













(2.31)
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and again expressed in terms of the engineering constants,













τxx

τyy

τyx

τxy













=
Em

(1 − ν2
m)















1 νm 0 0

νm 1 0 0

0 0 (1−νm)
2(1−N2)

(1−νm)(1−2N2)
2(1−N2)

0 0
(1−νm)(1−2N2)

2(1−N2)
(1−νm)
2(1−N2)



























εxx

εyy

εyx

εxy













(2.32)

2.3 One Dimensional Formulations

In generalised linear micropolar elasticity the micro rotation is kinematically dis-

tinct from the macro rotation but a simplification can be made for slender beams

and rings where the micro rotation equals the macro rotation [35]. This special

case is often referred to as couple stress theory in the literature.

2.3.1 Slender Beam

The derivation for the moment curvature relationships for a slender micropolar

beam and the maximum vertical displacement under three point bending follows.

The radius of curvature, R, of a beam under pure bending, being bent through a

small angle is,

1

R
=

dθ

dx
=

dφz

dx
= −

d2v

dx2
(2.33)

Considering only the in plane couple stress, mxz and direct stress τxx

mxz = γ
dφz

dx
(2.34)

τxx =
Efmy

R
(2.35)

where Efm is a micropolar flexural modulus. Taking the internal resisting moment

equal to any externally applied moment, M , see figure 2.3,
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Figure 2.3: Stress acting upon a one dimensional micropolar beam

M =

∫

A

(yτxx + mxz)dA (2.36)

Substituting for

mxz =
γ

R
(2.37)

and

τxx =
Efmy

R
(2.38)

,

M =
1

R

∫

A

(y2Efm + γ)dA (2.39)

Completing the integration where the second moment of area, I is,

I =

∫

A

y2dA (2.40)

and area, A is
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Figure 2.4: Model beam subjected to three point bending

A =

∫

A

dA (2.41)

and substituting for
1

R
= −

d2v

dx2
(2.42)

the moment curvature relationship is,

d2v

dx2
= −

M

EfmI + γA
(2.43)

From the moment curvature relationship the maximum displacement, vmax for a

micropolar beam under three point bending, figure 2.4, is,

vmax =
WL3

48(EfmI + γA)
(2.44)

where W is the central applied load, L is the length of the beam, Efm is the

micropolar flexural modulus, I is the second moment of area, γ is a length scale

dependent micropolar constant and A is the cross-sectional area. This can be
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rearranged to express the stiffness, K in terms of the beam depth d, where the

stiffness is the applied load W divided by the maximum displacement vmax.

For a rectangular cross section, the substitutions for the second moment of area,

I, and area, A, are,

I =
bd3

12
(2.45)

A = bd (2.46)

where b is the breadth and d is the depth. The stiffness K is,

K = 4Efmb

(

d

L

)3
(

1 +

[

lb
d

]2
)

(2.47)

where lb (m) is the characteristic length in bending for a rectangular cross section,

lb =

√

12γ

Efm

(2.48)

For a classically elastic beam the equation for determining the maximum deflec-

tion of a beam under three point bending loading is

vmax =
WL3

48EfmI
(2.49)

therefore the stiffness is

K = 4Efmb

(

d

L

)3

(2.50)

From this, it can be seen that in equation (2.47) the expression outside the bracket

is that of the classical beam equation and inside is the term associated with the

micropolar stiffening. It can also be seen that as the depth of the beam increases

the significance of the characteristic length reduces and the solution converges to

the equation for a classically elastic beam.
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Figure 2.5: Model ring subject to diametrically opposing point loads

2.3.2 Thin Walled Ring

The derivation for the vertical displacement in a thin walled ring with diamet-

rically opposing point loads follows. The derivation will differ from that of the

slender beam and begins by defining the elastic strain energy, U , in the thin

micropolar ring of radius, R, as

U =
1

2

∫ π
2

0

M2

(EfmI + γA)
Rdθ (2.51)

This equation is a modification of the strain energy function derived in [35] and

the other symbols have the same meaning as in the slender beam derivation.

Summing the moments about a cut made at angle θ away from the applied load

W , see figure 2.5, gives the total moment as

M = WR sin θ − Mo (2.52)

From Castigliano’s theorem the vertical displacement, v, at the load point can
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be gained from,

v =
∂U

∂W
=

1

(EfmI + γA)

∫ π
2

0

M
∂M

∂W
Rdθ (2.53)

Making substitutions for M, equation 2.52, and

∂M

∂W
= R sin θ (2.54)

The vertical displacement can be expressed as

v =
R2

(EfmI + γA)

(π

4
WR − Mo

)

(2.55)

To find the unknown resultant moment Mo, the macro rotation mo of the ring is

derived, again by Castigliano’s theorem, as

mo =
∂U

∂Mo

=
1

(EfmI + γA)

∫ π
2

0

M
∂M

∂Mo

Rdθ (2.56)

Again making the substitution for M and letting

∂M

∂Mo

= −1 (2.57)

The macro rotation is

mo =
R

(EfmI + γA)

(

−WR +
π

2
Mo

)

(2.58)

Assuming that there is no macro rotation, owing to symmetry where the load is

applied then

Mo =
2

π
WR (2.59)
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Making the substitution for Mo into equation 2.55 gives the vertical displacement

at the load point as

v =
WR3

(EfmI + γA)

(

π2 − 8

4π

)

(2.60)

This equation can be rearranged to gain an expression for the stiffness K of the

thin walled ring

K =
πEfmb

3 (π2 − 8)

(

d

R

)3
(

1 +

[

lb
d

]2
)

(2.61)

where b is the breadth of the ring, d is the depth of the ring wall and lb is the

characteristic length in bending as defined in equation 2.48. Similar to the slender

beam formulation, the stiffness of a classically elastic thin walled ring is outside

the brackets of equation 2.61 and the bracketed term governs the length scale

dependent component of the stiffness.

2.4 Conclusion

In this chapter the constitutive, equilibrium and kinematic equations of the gen-

eral linear theory of micropolar elasticity have been laid out. This was followed

by the presentation of plane stress and strain micropolar elasticity which will

be used in chapter 4 to derive a linear strain control volume finite element for

micropolar elasticity. Further to this two, one dimensional derivations were pre-

sented. The first was for determining the stiffness of slender micropolar beams,

loaded in three point bending. This will be used in the next chapter to assess if a

model heterogeneous material is displaying a size dependent stiffening consistent

with micropolar elasticity. Further to this it will be used in chapter 5 to aid in the

determination of the micropolar plane stress constitutive properties from experi-

mental data gained from three point bending of heterogeneous beams of different

aspect ratios. Finally using the approach set out in chapter 5 the second one di-
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mensional derivation, that of a thin walled ring, will be used to obtain micropolar

plane stress constitutive properties from rings of different aspect ratios.
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Chapter 3

Model Material - Slender Beam

With the mathematical approach set out in the previous chapter for the defor-

mation of a slender micropolar beam, a heterogeneous material that exhibits a

size effect in bending is required. This will enable constitutive properties to be

determined, using the method of size effects, and the deformation predicted by

numerical procedure. In an attempt to avoid experimental difficulties associated

with real heterogeneous materials an idealised model material, that is designed

to mitigate errors and produce a noticeable size effect, is required.

Three factors, that will inform upon the design of the model material, have been

identified in the literature. The first is the stiffness of the inclusions in the matrix

material. Previous experimental work with a model material had used inclusions

that were stiffer than the matrix material [10], and found no conclusive size effect.

Recent theoretical work, however, on homogenisation procedures in micropolar

elasticity has identified that the inclusion needs to be less stiff than the matrix

material [11], and relatively dilute within the matrix. Therefore a material with

compliant inclusions is sought. The second is the size of the inclusions with

respect to the overall test sample size. If the inclusions are too small then any

micropolar material response will be masked by systemic errors inherent in the

test procedure [12]. If the inclusions, however, are too large, in comparison to

the overall sample size, then local loading effects may become significant. The

material would be better modelled as a classical continuum with all the discrete
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Figure 3.1: Diagram of hole pitch with horizontal pitch P1 and vertical pitch P2

detail present, as a micropolar continuum assumption would break down. The

third issue is sample preparation [17], mitigating any potential anti size effect.

This can be achieved by having minimal surface damage around the boundary of

the test sample, ideally with no broken voids on the boundary.

In addition to these desirable material attributes a suitable testing procedure is

also required. As stated above, systematic errors in the testing procedure can

mask any size effect. In previous work low friction force application and non

contact measurement techniques have been employed to mitigate this. It was,

however, a desire of this work to use standard materials testing equipment to

allow easy reproduction of these tests in the future.

The model material was chosen to be an aluminium matrix with circular voids.

The aluminium was alloy 6082 T6 with an elastic modulus of 70GPa. Standard

aluminium bar stock of sizes 12.7, 25.4, 38.1 and 50.8 mm depth and a common

breadth of 12.7 mm was used. Holes were drilled through the breadth in a regu-

lar hexagonal pattern. The void pattern is designed in such a way that no voids

intersect the boundary of the top and bottom edges of the bar. Two pitch sizes

were made to experimentally determine how this might influence the size effect

28



Figure 3.2: Photograph of HMD test pieces

in bending. A lower mass density (LMD) and higher mass density (HMD) set

of sample were made by maintaining the same void radius and vertical packing

while the horizontal pitch was altered. Figure 3.1 shows the void pitch measure-

ments and table 3.1 gives dimensions for the sizes of the void pitches. This model

material is anisotropic due to the hexagonal packing and different horizontal and

vertical pitches. The length of the test samples where such that they could be

tested at an aspect ratio of approximately 10:1, (length:depth). This allows a

slender beam assumption to be made, meaning that the dominant mode of defor-

mations is due to bending and any shear deformation is minimised. A size effect

in bending can be identified by varying the depth of a beam while maintaining

the same aspect ratio of length relative to depth. If the beams were behaving in

a classical manner then the stiffness of the sample should remain constant. For

a micropolar material, however, the stiffness should increase with a reduction in

depth. This is demonstrated mathematically in section 2.3.1. To this end test

pieces of four different depths were manufactured for each density, dimensions of

which can be seen in table 3.2. The four HMD test pieces can be seen in figure

3.2.
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Table 3.1: Hole radius, r, horizontal, P1, and vertical pitch, P2, for model ma-
terial, see figure 3.1

Beam r(mm) P1(mm) P2(mm)

HMD 3.5 16 12.7
LMD 3.5 9 12.7

Table 3.2: Beam dimensions for HMD and LMD test pieces

Beam Breadth(mm) Depth(mm) Length(mm)

B1 12.7 12.7 150
B2 12.7 25.4 280
B3 12.7 38.1 400
B4 12.7 50.8 530

3.1 Experimental Procedure

The test pieces were loaded in three point bending in a Zwick 2061 materials

testing machine with a 50kN load cell. The advantage of testing in three point

bending is that, when loaded, the two supports at either end of the beam are

driven by the testing rig cross head. This means that the maximum displacement,

which will be at the supports, as the central point remains fixed, can easily

be obtained from the crosshead displacement output. Testing in a cantilever

configuration would have also given the same displacement output, however, it is

difficult to enforce the built in boundary condition experimentally.

In each case, the aspect ratio remained constant for each depth tested. The

support points were located horizontally midway between adjacent voids. This

restriction on load positioning resulted in the LMD and HMD tests being carried

out at slightly different aspect ratios. The stiffness of the sample was determined

by incrementally loading the sample in the linear elastic region and recording the

cross head displacement and applied load, see figure 3.3 (a) for a photograph of

the experimental setup. The tensile testing machine output an ASCII data file

which was imported into Microsoft Excel where a plot of load against crosshead

displacement was made. In some tests the data was cropped to remove any non-

linearity that was associated with the initial load being taken up by the beam.
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(a) (b) 

Figure 3.3: (a) LMD B1 in three point bending with cross head measurement only
(b) HMD B1 in three point bending with independent central defection reading from
extensometer

The stiffness was calculated by fitting a straight line to the resulting linear load

displacement curve; the gradient of that line yielding the stiffness, see figure 3.4.

This was repeated for a second set of test pieces and the results presented are an

average of the stiffness values obtained.

To complement this experimental work, a finite element analysis of each test

was performed using models capturing all the geometric details of the samples;

details of which can be seen in section 3.2. A comparison of the measured and

predicted stiffnesses found that they did not initially agree so the experiments

were repeated using an independent reading of the central deflection of the test

sample using an extensometer clamped to the test rig, see figure 3.3 (b). While

this improved the measured results they were still in error with those obtained by

FEA. Again the test pieces where loaded, however, this time the deflection of the

supports was also measured. For the larger test sample the support base flexed

quite considerably causing the supports to displace vertically. Therefore two

deformations were taking place during the loading. The first was the bending of

the test pieces and secondly the flexure of the support base, see figure 3.5. When
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Figure 3.4: Test data plot from Microsoft Excel showing load displacement curve
for HMD B1 10 with fitted straigh line and equation of straight line shown with
gradient highlighted in box
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Figure 3.5: Diagram showing relative crosshead and rig flexure displacements for
three point bending experimental procedure
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the rig flexed the cross head would displace without any corresponding bending

of the beam therefore this vertical displacement requires to be subtracted in order

to get a true reading of the central deflection of the beam. If this subtraction

is not performed this leads to an underestimation of the stiffness, particularly at

larger spans where the flexure is greater. This is evident in the results. Once

this vertical displacement was subtracted from the central deflection of the test

sample then the measured stiffness values were in good agreement with those of

the finite element analysis. The corrected and uncorrected results can be seen in

figures 3.6 and 3.7 for slender HMD and LMD beams respectively.
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Figure 3.6: Stiffness against 1/depth2 for HMD beams at L/d = 10.08. Compar-
ing discrete detail ANSYS, experimental results and experimental results corrected
for test rig flexure against classical solution

3.2 Detailed Finite Element Analysis

The complementary finite element analysis was carried out in the commercial

package ANSYS [36]. The definition of the beam geometry follows the sequence

of steps set out in the flow diagram of figure 3.8 and the input files for each
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Figure 3.7: Stiffness against 1/depth2 for LMD beams at L/d = 9.92. Comparing
discrete detail ANSYS, experimental results and experimental results corrected for
test rig flexure against classical solution

geometry can be seen in appendix D. To begin with, the vertical and horizontal

void pitches and the void radius were defined as parametric inputs. Next, using

these parameters, an area bounded by half the horizontal and vertical pitches

with a quarter void at one corner was created. This area was then meshed and

reflected about the x and y axis in order to make a unit cell; an area bounded

by the horizontal and vertical pitch with the circular void at the centre. Finally

the unit cell was duplicated and arrayed to form the complete beam geometry. A

schematic representation of this can be seen in figure 3.9. The process to create

the complete beam geometry was automated by the AGEN command of ANSYS

ADPL within a DO loop. Using this approach created duplicate keypoints and

nodes that were coincident but unconnected. These had to be merged first before

the loads and boundary conditions were applied.

It must be noted that although a line of symmetry exists, at the mid point of a

beam under three point bending, it was decided to model the full beam geometry

to avoid errors, if any, that could arise in prescribing a symmetry boundary

condition through the voids. Modelling the full geometry did not increase the
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Figure 3.8: Flow chart showing the sequence of steps used to create the detailed
finite element beam geometry
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Figure 3.9: Array of unit cells and half unit cells to create detailed beam geometry

computation time to an inconvenient level.

With the geometry defined the nodal displacement boundary conditions were

applied, to represent the supports, with the left end node constrained in both the

horizontal and vertical directions and the right end node constrained only in the

vertical direction. The load was applied as a point nodal load on the top edge of

the beam at mid span. A value of stiffness from the beam analysis was gained by

taking an average of the vertical displacement of the nodes at the mid span and

dividing by the applied load.

Looking more closely at the mesh, different mesh distributions are required for

the HMD and LMD test pieces. This is due the different pitch sizes. In order

to check that the model was converging to a solution, as the number of nodes

was increased, a parameter was introduced into the input file to refine the mesh

parametrically. This parameter is termed “refine” in the input files and dictates

the relative number of element divisions along the lines defining the perimeter of

the quarter cell. Convergence of the central displacement upon mesh refinement

for the HMD and LMD sample of one unit cell depth is shown in figures 3.10

and 3.11 respectively. Both figures contain a comparison between a four node

quadrilateral element in plane stress, ANSYS element 182, and an eight node

quadrilateral element in plane stress, ANSYS element 183. It can be seen that

element 183 has superior convergence and therefore it is selected and a refinement
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Figure 3.10: Convergence of absolute central deflection against number of nodes
for HMD B1 10 geometery, comparing ANSYS elements 182 and 183
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for LMD B1 10 geometery, comparing ANSYS elements 182 and 183
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Figure 3.12: Quarter mesh for HMD discrete detail finite element model. Mesh
refinement parameter refine= 1, 378 nodes

factor of refine= 1 (7136 total nodes or 378 nodes per quarter cell) and refine=

0.5 (10512 total nodes or 62 nodes per quarter cell) is selected for the HMD and

LMD models respectively. The large difference in the number of nodes per quarter

mesh between the HMD and LMD models is due to an attempt to keep the global

number of nodes similar. The LMD model, however, has a greater number of

global nodes to ensure that there is the same number of nodes vertically through

the centre of the unit cell as the HMD model. This was to ensure that the same

number of vertical nodes in both the HMD and LMD models described the stress

variation in the vertical direction as this would be of greater significance, than

that in the horizontal, for bending problems. The meshes of the quarter unit cells

can be seen in figure 3.12 for the HMD model and figure 3.13 for the LMD model

.
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Figure 3.13: Quarter mesh used in LMD discrete detail finite element model.
Mesh refinement parameter refine= 0.5, 62 nodes

3.3 Results

The experimental and detailed finite element results, for the HMD beams, can

be seen in figure 3.6 and table 3.3 and, for the LMD beams, in figure 3.7 and

table 3.3. The tabulated results show the corrected experimental stiffness values.

Agreement between the HMD corrected experimental results and the HMD AN-

SYS results are good although with a slight departure for the shallower beams,

approx 2.4%. The significant correction that occurs when the flexure of the sup-

ports is removed can be seen for the beams with greater depth. The correlation

is much the same for the LMD beams, however, a larger mismatch for the B 2

beam sample with a 6.4% departure is noted. Although there is scatter present

in the experimental results it is clear that there is size dependent stiffening for

this model material.

From the observed size dependent stiffening, micropolar constitutive properties

have been determined. Fitting a straight line to the data allows the micropolar
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Table 3.3: Beam test geometry and corrected stiffness results,K, for HMD and LMD test pieces

Beam Depth (mm) Length (mm) L/d KExp (N/m) KANSY S (N/m)

HMD B1 10 12.7 128 10.08 2.832e6 2.903e6
HMD B2 10 25.4 256 10.08 2.147e6 2.195e6
HMD B3 10 38.1 384 10.08 2.038e6 2.043e6
HMD B4 10 50.8 512 10.08 1.964e6 1.982e6

Beam Depth (mm) Length (mm) L/d KExp (N/m) KANSY S (N/m)

LMD B1 10 12.7 126 9.92 2.725e6 2.671e6
LMD B2 10 25.4 252 9.92 1.863e6 1.983e6
LMD B3 10 38.1 378 9.92 1.824e6 1.838e6
LMD B4 10 50.8 504 9.92 1.702e6 1.780e6
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Table 3.4: Constitutive properties for HMD slender beams. Flexural modulus
Efm, couple modulus γ and characterisitc length of bending lb

Em (N/m2) γ (N) lb (mm)

EXP 3.871e10 2.469e5 8.75
ANSYS 3.900e10 2.629e5 8.99

Table 3.5: Constitutive properties for LMD slender beams. Flexural modulus
Efm, couple modulus γ and characterisitc length of bending lb

Em (N/m2) γ (N) lb (mm)

EXP 3.148e10 2.745e5 10.23
ANSYS 3.310e10 2.416e5 9.36

flexural modulus, Efm, and characteristic length of bending, lb, to be found.

Rearranging equation 2.47 in the form

K =

(

4l2bEfmb

(

d

L

)3
)[

(

1

d

)2
]

+ 4Efmb

(

d

L

)3

(3.1)

enables Efm to be determined from the intercept and lb from the gradient when

the sample stiffness is plotted as a function of the reciprocal of the beam depth

squared,
(

1
d2

)

, as in figure 3.6. The constitutive properties are shown in tables

3.4 and 3.5.

It has been proposed that the characteristic length should be of the same order

as the microstructure [12] and it is promising that, for the model materials, both

HMD and LMD, the characteristic length is of the same order as the microstruc-

ture. There is an increase in the characteristic length from the HMD to LMD

samples, by 4% in the ANSYS and 17% in the experimental. The vertical pitch

and radius remains constant between the two samples, however the horizontal

pitch is smaller for the LMD sample thus increasing the scale of the heterogene-

ity with respect to the beam length. This would suggest that the characteristic

length should increase, which is seen. The flexural modulus reduces between

HMD and LMD by 15% in the ANSYS and 19% in the experimental. This is

expected as there is 18.5% less matrix material between the HMD and LMD
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sample.

The flexural modulus values obtained from the bending tests are compared against

Young’s modulus values obtained from simulated tensile tests carried out in AN-

SYS. Due to the anisotropic nature of the model material the Young’s modulus

was calculated in two orthoginal directions corresponding to the transverse and

longitudinal directions of the beams. The Young’s modulus converged, on increas-

ing numbers of unit cells, for the HMD material to 4.05e10 N/m2 and 4.20e10

N/m2 in the transverse and longitudinal directions respectively. For the LMD

material the orthogonal Young’s moduli were 2.64e10 N/m2 and 3.58e10 N/m2 in

the transverse and longitudinal directions respectively. Comparing these moduli

with those from the bending test it is encouraging to note that the flexural modu-

lus is similar to the along length modulus. This is expected as the modulus along

the length would be the modulus that would be expected to have the greatest

role in beam bending, particularly at a slender aspect ratio. In both cases the

error is similar, approximately an 8% difference. This simple test of the Young’s

modulus in orthogonal directions highlights the level of anisotropy in each model

material with the greatest variation in the LMD materials. This will be shown

to be significant in later chapters.

With a method for determining the micropolar material properties, flexural mod-

ulus, Efm, and characteristic length of bending, lb, in place a micropolar slender

beam finite element formulation was embarked upon to enable the future mod-

elling of complex lattice structures and space frames comprised of slender beams.

3.4 One Dimensional Beam Finite Element

A four degree of freedom, 2 noded, straight beam element is set up, see figure

3.14 , in a similar manner to a standard Euler beam element [37]. The degrees

of freedom are the transverse displacement, v, and rotation, θ, at each node.

The rotation is assumed to remain small therefore θ ≈ dv
dx

. The four degrees of

freedom d are interpolated along the beam with cubic shape functions N to gain
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Figure 3.14: Beam element

the transverse displacement.

v = [N] {d} (3.2)

Expanded;

v =
[ (

1 − 3x2

L2 + 2x3

L3

) (

x − 2x2

L2 + x3

L3

) (

3x2

L2 − 2x3

L3

) (

2x2

L2 − x3

L3

) ]




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



v1

θ1

v2

θ2













(3.3)

The curvature of the beam element is v,xx = [B] {d}, where

B =
d2

dx2
N =

[

(

− 6
L2 + 12x

L3

) (

− 4
L

+ 6x
L2

) (

6
L2 −

12x
L3

) (

− 2
L

+ 6x
L2

)

]

(3.4)

The element stiffness matrix is expressed in the form,

k =

∫ L

0

BT (EfmI + γA)Bdx (3.5)
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Table 3.6: Tip displacement for finite element micropolar beam compared against
exact analytical solution for an end moment and a point load

v
d
lb

=1

FE (m) v
d
lb

=1

exact(m) v
d
lb

=25

FE (m) v
d
lb

=25

exact (m)

End Moment 0.00003 0.00003 5.99042e-05 5.99042e-05
Point Load 0.00002 0.00002 3.99361e-05 3.99361e-05

k =
EfmI + γA

L3
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

12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2













(3.6)

where Efm is the micropolar flexural modulus, I is the second moment of area,

γ is the couple stress modulus, A is the cross sectional area and L is the length

of the beam element. The global stiffness matrix is assembled and solved in the

standard finite element manner,

[K] {d} = {P} (3.7)

where {P} is the vector of externally applied forces and moments.

3.4.1 Validation

A cantilever beam of length, L = 1m, depth, d = 0.1m and breadth, b = 0.1m

was loaded by an end moment of 100Nm, an end point load of 100N and a uni-

formly distributed load of 100N/m consecutively. For the material properties,

the micropolar flexural modulus, Efm, was 100GPa, while two ratios of depth

to characteristic length of bending d/lb were chosen, d/lb = 1 and 25. The tip

displacement was compared against that of the slender micropolar beam theory

derived in section 2.3.1. For the end moment and point load cases the tip dis-

placement is prediced exactly by one element and is insensitive to the value of

characterisitc length, shown in table 3.6. For a uniformly distributed load the

transverse displacement is no longer fully described by the element shape func-

tions therefore the convergence to the exact solution of the tip displacement, with
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Figure 3.15: Tip displacement convergence to couple stress beam theory for can-
tilever beam at various depth to characteristic length ratios

increasing number of elements, can be checked. The convergence is shown in fig-

ure 3.15. It can be seen that convergence to the analytical solution is achieved to

within 0.5% for 8 elements and the convergence is unaffected by the d/lb ratio.

3.4.2 Slender Beam Comparison

Using the material properties determined from the slender beam sample of the

model material, it is possible to replicate the size stiffening, shown by the model

material beams. This can be seen in figure 3.16, from the experimental data,

and figure 3.17, from the detailed ANSYS model. As expected, it has replicated

the size stiffening faithfully. This set of results, provided by the new beam finite

element, is obtained in a reduced computation time when compared against the

detailed finite element. When the time taken to input the detailed geometry is

considered along side the computation time, then the time savings that could

be achieved, if a micropolar continuum is chosen as the modelling route, rather

than a classical continuum is quite considerable. To highlight this a computation

time comparison was carried out on a PC with an Intel® Atom™ N270 1.60GHz
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Figure 3.16: Stiffness result from Micropolar Beam element (EXPBeamE) for
a given load (100N). Plotted against stiffness from the experimental procedure
(EXP).
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Figure 3.17: Stiffness result from Micropolar Beam element (ANSYSBeamE)
for a given load (100N). Plotted against displacements gained from the ANSYS
procedure (ANSYS).
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processor with 1GB of RAM. The detailed finite element solution for all the

HMD beams was computed in 233.8 seconds using ANSYS [36]. The new beam

finite element computed the same displacement results in just 0.3 seconds using

MATLAB [38]. The only drawback is that the material parameters, which are

required to define the length scale of the micro structure, have to be determined

experimentally. An understanding of which aspect of the microstructure informs

the characteristic length may reduce the necessity to do this.

3.5 Conclusion

The use of a slender beam has identified that a size effect does exist in this model

material and the micropolar flexural modulus and characteristic length of bending

has been identified from this data using an analytical solution for the bending

of slender micropolar beams. A slender micropolar beam finite element model

has then been developed to allow the analysis of more complex space frame and

lattice structures than can be achieved otherwise.

So far the model material has been shown to exhibit a size dependent stiffening

for slender beam samples. This, however, does not identify if the model material

is truly micropolar; the analytical slender beam solution is equivalent to couple

stress theory. To distinguish between micropolar and couple stress theory the

coupling number N requires to be identified. If the model material obeys cou-

ple stress elasticity then the coupling number would equal 1. Any other value

between 0 and 1 would indicate that it is micropolar. This coupling number is

identifiable in loading modes where shear is present. To date the identification of

material properties by the method of size effects has been restricted to cases were

an analytical solution exists. Typically the coupling number has been identified

from torsion tests [12]; for the model material samples presented here this is not

practicable. It is proposed that the beam samples can be tested at shorter spans

thus introducing more transverse shear into the samples which would allow the

coupling number to be identified. As an analytical solution is not easily achieved

for this loading case, it is suggested that an approximate solution, obtained from

a numerical procedure, can be used to identify the coupling number using exper-
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imental data that is obtained from testing at shorter spans. A plane linear strain

micropolar element is chosen as the preferred route as the constitutive relation-

ships are readily available in the literature [27] and a linear strain formulation

will capture the bending deformation more efficiently. The control volume finite

element method will be used as it has been shown to have better performance over

the equivalent finite element [26]. Seeking a plane micropolar element will also

demonstrate numerical modelling at a different level of complexity. This will be

the first time that a micropolar numerical procedure has been compared against

experimental test results for the purpose of identifying constitutive properties. In

the following chapter, a linear strain control volume finite element is compared

against an equivalent finite element and constant strain formulation.
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Chapter 4

Control Volume Finite Element

Method

The finite element method (FEM) is the leading analysis technique in the field

of computational structural mechanics. This is due, in part, to its versatility

in accurately representing complex geometries. Control volume (CV) methods,

allowing the same versatility with complex geometries, have been developed for

both computational fluid mechanics and structural analysis applications [39–42].

In particular the control volume finite element method (CVFEM) is constructed

upon the same mesh as the finite element discretisation. There are two types

of CVFEM; a cell centred method and a vertex centred method. Recently a

vertex centred CVFEM has been shown to provide better convergence, than the

equivalent FEM, for a plane triangular element with both rotation and transla-

tion degrees of freedom [43]. The CVFEM has found favour with plate bending

problems where both the cell centred [44] and vertex centred methods [45] have

shown to be locking free for thick and thin Mindlin plates. It has also shown an in-

creased accuracy over the FEM for micropolar elasticity [26]. Noting the promise

of the CVFEM this was selected as the method of choice to develop a two dimen-

sional linear strain micropolar element to gain an enhanced formulation better

suited for beam bending. Before embarking upon the new formulation, however, a

framework was developed within MATLAB [46], utilising symbolic mathematics,

to allow a direct comparison of the FEM and CVFEM. The discrete Kirchhoff
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triangular (DKT) element was chosen due to the readily available moment cur-

vature relations, already presented in the literature [47], and the previous work

presented with relation to Mindlin plate elements demonstrated that the CVFEM

method has an aptitude for plate bending problems. A brief outline of the ele-

ment formulation will follow. For further detail of the CV-DKT formulation and

results see appendix A.

4.1 Discrete Kirchhoff Triangular Element

The DKT element is based upon Mindlin plate theory but has discrete Kirchhoff

constraints, that is transverse shear is zero, applied at each node, giving rise to

an element that converges to the thin Kirchhoff plates solution. The solution

convergence of the control volume DKT is compared against the existing finite

element DKT to evaluate the performance of the new procedure. Both the FE-

DKT and CV-DKT formulations were build upon the same moment curvature

matrix and both were solved in a quadrature free routine in order to have the

best comparison of the numerical procedures. The CVFEM differs from the FEM

by introducing a dual mesh of interconnecting control volumes over a standard

triangular finite element mesh. The element stress resultants are then integrated

around the control volume faces and equilibrium is imposed on the control vol-

ume. The resulting equilibrium equations then relate the control volume centre

unknown displacements to those at the neighbouring centres, in a manner equiv-

alent to the relationships between the nodal displacements characteric of the FE

method. A quadrature free implementation is achieved using the symbolic math-

ematics toolbox of MATLAB [46] which is built upon the Maple kernel. Symbolic

integration (SI) is carried out in both the FE-DKT (A.20) and CV-DKT (A.27)

codes to obtain the element stiffness matrix. The advantage of using symbolics is

that an explicit solution to the stiffness matrix is achieved. The symbolic toolbox

is capable of integrating the moment curvature matrix in a relatively quick time,

with the solution extractable to form conventional code, see appendix B.1 for the

code. This was validated by comparing the solution to the FE-DKT element stiff-

ness matrix against the explicit FORTRAN code of Jeychandrabose et al. [48].
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Both methods gave an identical solution. Results from the quadrature free FE-

DKT and CV-DKT elements were compared against the SHELL63 element of

ANSYS, a quadratic element composed of four DKT elements [49] where three

point quadrature is employed in evaluating the stiffness matrix.

The CV-DKT has a proper rank to its stiffness matrix and passes the patch test

for states of pure bending and twist. Convergence tests of maximum displace-

ment against increasing discretisation, for various loading types and boundary

conditions, were used to asses the performance of the CV-DKT element against

the FE-DKT, quadrature free DKT, and the quadrature based ANSYS-DKT.

For a uniform pressure load the convergence to the exact solution is more rapid

than in the FE equivalents. For a point load case it is noted that the CV-DKT

method predicts the central displacement as accurately as the quadrature free

FE formulation at a given mesh refinement. Further results and discussions of

boundary conditions can be found in appendix A.

With a framework developed, which utilises symbolic integration, the formulation

of a six node triangular element, for plane micropolar elasticity, is now considered.

4.2 Micropolar Linear Strain Triangular

Element

A quadratic displacement, linear strain, triangular micropolar plane stress/strain

control volume finite element (CV-MPLST) has been developed. It is a 6 noded,

18 degrees of freedom element. The formulation of the CV-MPLST begins with

a straight edged triangle with 3 vertex and 3 midside nodes, figure 4.1. The

displacements in the x direction u, y direction v, and micro rotation φz are

interpolated over the element with a complete quadratic polynomial from the

nodal degrees of freedom, ui, vi and φzi where i = 1 : 6 refer to the element

nodes.

u =
∑6

i=1 N iui v =
∑6

i=1 N ivi φz =
∑6

i=1 N iφzi (4.1)
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Figure 4.1: Six node quadratic displacement triangular element

The superscript i indicates position within the array. The shape functions N i are

functions of the natural area coordinates (δ, ξ, η). The natural area coordinates

are related to the element vertex coordinates, (x1, x2, x3) and (y1, y2, y3), and

global coordinate (x, y) by

x = δx1 + ξx2 + ηx3

y = δy1 + ξy2 + ηy3

(4.2)

Vector [N] of shape functions is

[N] =
[

δ (2δ − 1) ξ (2ξ − 1) η (2η − 1) 4δξ 4ξη 4ηδ
]

(4.3)

The displacement vector {d} is

{d} =
[

ui vi φzi

]T

for i = 1 : 6 (4.4)

The unknown element displacements and micro rotations are related to the nodal

degrees of freedom by
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= [N] {d} (4.5)

The strain vector {ε} is related to the element displacements by

{ε} =




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(4.6)

and the stress vector {τ} is related to the strain vector by

{τ} =























τxx

τyy
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







= [D] {ε} (4.7)

where D refers to the constitutive matrix defined in section 2.2 with the inclusion

of the constitutive properties for the micro rotation. For example in the plane

stress case;

[D] =























λ + 2µ∗ + κ λ 0 0 0 0

λ λ + 2µ∗ + κ 0 0 0 0

0 0 µ∗ + κ µ∗ 0 0

0 0 µ∗ µ∗ + κ 0 0

0 0 0 0 γ 0

0 0 0 0 0 γ























(4.8)

Differentiating the shape functions with respect to the spatial coordinates,
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[

N,x

N,y

]

=
1

2A

[

y23N,δ + y31N,ξ + y12N,η

−x23N,δ − x31N,ξ − x12N,η

]

(4.9)

where yij = yi − yj, i = 1, 2, 3 represents the vertex node numbers and (xi, yi)

are the vertex node coordinates. A is the area of the triangular element. The

derivatives of the shape functions with respect to the area coordinates are

N,δ =
[

4δ − 1 0 0 4ξ 0 4η
]

(4.10)

N,ξ =
[

0 4ξ − 1 0 4δ 4η 0
]

(4.11)

N,η =
[

0 0 4η − 1 0 4ξ 4δ
]

(4.12)

These are used in the formulation of the strain displacement matrix [B] which

relates the unknown nodal degrees of freedom to the element strain vector {ε}

{ε} = [B]







ui

vi

φzi


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
for i = 1 : 6 where [B] =
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(4.13)

It can now be said that the element stress resultants are related to the unknown

nodal displacements by

{τ} = [D] [B] {d} (4.14)

Now that the element stress displacement relationships have been defined the

formulation of the CVFEM will depart from that of the standard finite element

procedure.
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Figure 4.2: Dual control volume mesh constructed around the vertices of a six
node triangular finite element mesh

Finite Element Stiffness Matrix

If, however, the formulation had been continued in the standard finite element

manner the stiffness matrix is calculated thus,

kFEM = 2A

∫ 1

0

∫ 1−η

0

BTDbBdξdη (4.15)

In the comparison, that is made later between the FEM and CVFEM formulations

of the element, this equation (4.15) is obtain by symbolic integration using the

Maple kernel of MATLAB as in the DKT element.

4.2.1 Control Volume Formulation

A dual mesh of interconnecting control volumes is set up on the finite element

mesh. Each control volume is centred upon a node of the element, see figure 4.2.

The control volumes are constructed on an element by element basis as shown

in figure 4.3. Table 4.1 shows the coordinates of the control volume nodes as
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Table 4.1: Vertex coordinates, in triangular area coordinates, for the intercon-
necting control volume (CV) of a six node triangular element shown in figure 4.3

CV vertex δ ξ η

a 3/4 1/4 0
b 1/4 3/4 0
c 0 3/4 1/4
d 0 1/4 3/4
e 1/4 0 3/4
f 3/4 0 1/4
g 3/5 1/5 1/5
h 1/5 3/5 1/5
g 1/5 1/5 3/5
h 1/3 1/3 1/3
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Figure 4.3: Sign convension for dual mesh on a single finite element mesh
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represented by the area coordinates of the triangular element, although other

coordinates can be used.

The equilibrium equations, section 2.2 and equations (2.17), (2.18) and (2.19), are

setup for each control volume where the stress resultants acting upon the bound-

aries of the control volume are equilibrated against any body loadings imposed

upon the control volume,

n
∑

i=1

F i
x + pxAv = 0 (4.16)

n
∑

i=1

F i
y + pyAv = 0 (4.17)

n
∑

i=1

M i
z + qzAv = 0 (4.18)

where F i
x and F i

y are components of the force resultants acting upon control

volume face i, M i
z is the couple resultant, Av is the area of the control volume and

n is the number of control volume faces around the finite element vertex or midside

node that the control volume is centred on. The force and couple resultants are

computed by integrating the functions of the stress variations within the finite

element along each control volume face, figure 4.4. As each control volume face lies

entirely within a given element, this is performed without storing any information

relating to CV connectivity and is done on an element by element basis, giving

a stiffness matrix for each triangular element. This allows the global stiffness

matrix to be assembled in an identical manner to the finite element method. The

discrete equilibrium equations for one control volume face are,

Fmn
x =

∫

τxx cos θmndr +

∫

τyx sin θmndr (4.19)

Fmn
y =

∫

τyy sin θmndr +

∫

τxy cos θmndr (4.20)

Mmn
zi =

∫

mxz cos θmndr+

∫

myz sin θmndr+

∫

x
′

τxy cos θmndr−

∫

y
′

τyx sin θmndr

(4.21)
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Figure 4.4: Element stress resultants working on the face of the control volume

where

cos θmn = −ymn

lmn
xmn = xm − xn

sin θmn = xmn

lmn
ymn = ym − yn

lmn = (x2
mn + y2

mn)
1

2

(4.22)

and m and n denote the vertices of the control volume face, figure 4.4. Moment

arm functions x
′

and y
′

are the distances from the vertex or midside node i of the

finite element, that the control volume is centred upon, and the control volume

face:

x
′

= xe − xi

y
′

= ye − yi

(4.23)

where (xi, yi) are the coordinates of the finite element node that the control

volume is centred upon and (xe, ye) are functions of the area coordinates that

relate any point within the element to the vertex nodes of the corresponding
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element.
xe = δx1 + ξx2 + ηx3

ye = δy1 + ξy2 + ηy3

(4.24)

This becomes useful when the integration of the stress and couple stress resul-

tants, equations (4.19), (4.20) and (4.21), is changed from the local line coordinate

dr into an integration with the area coordinates of the triangular element. The

integration in one of the area coordinates is dependent upon the CV face and

thus each face has a different set of rules governing the integration of the stress

resultants. As an example, consider the face lying between the CV vertices of a

and g with length lga. The following substitutions are required,

ξ = 1
3
δ

δ = 3
4
(1 − η)

(4.25)

These are substituted into the strain displacement matrix [B], equation (4.13),

and the element coordinates xe ye, equation (4.24). This is to constrain the

integration so that it is performed along the control volume face. A full list of

these substitutions and the limits of the integration for each face is given in table

4.2. For this particular case the equilibrium equations become,

Fga
x = 5lga cos θga

∫ 1

5

0

τxxdη + 5lga sin θga

∫ 1

5

0

τyxdη (4.26)

Fga
y = 5lga sin θga

∫ 1

5

0

τyydη + 5lga cos θga

∫ 1

5

0

τxydη (4.27)

Mga
z1 = 5lga cos θga

∫ 1

5

0

mxzdη + 5lga sin θga

∫ 1

5

0

myzdη

+5lga cos θga

∫ 1

5

0

(xe − x1) τxydη − 5lga sin θga

∫ 1

5

0

(ye − y1) τyxdη

(4.28)

These integrations are repeated for each individual CV face, performing the nec-

essary substitutions. This will give three row vectors, Fx, Fy and Mz, for each

CV face that relates the internal actions to the unknown nodal degrees of free-

dom. These are calculated for each CV face in an element and assembled to form

the element stiffness matrix, k, thus

59



Table 4.2: Substitutions for the equilibrium equation integrals and stress displacement relationships

Direction of Integration Integral Substitutions Area Coordinate Substitutions

from a to g
∫

dr = 5lga

∫ 1

5

0
dη letting ξ = 1

3
δ and δ = 3

4
(1 − η)

from b to h
∫

dr = 5lhb

∫ 1

5

0
dη letting δ = 1

3
ξ and ξ = 3

4
(1 − η)

from j to i
∫

dr = 15
4
lji
∫

3

5

1

3

dη letting δ = ξ and ξ = 1
2
(1 − η)

from e to i
∫

dr = 5lie
∫ 1

5

0
dξ letting δ = 1

3
η and η = 3

4
(1 − ξ)

from f to g
∫

dr = 5lgf

∫ 1

5

0
dξ letting η = 1

3
δ and δ = 3

4
(1 − ξ)

from j to h
∫

dr = 15
4
ljh
∫

3

5

1

3

dξ letting δ = η and η = 1
2
(1 − ξ)

from c to h
∫

dr = 5lhc

∫ 1

5

0
dδ letting η = 1

3
ξ and ξ = 3

4
(1 − δ)

from d to i
∫

dr = 5lid
∫ 1

5

0
dδ letting ξ = 1

3
η and η = 3

4
(1 − δ)

from j to g
∫

dr = 15
4
ljg
∫

3

5

1

3

dδ letting ξ = η and η = 1
2
(1 − δ)
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= {P} (4.29)

where {P} is the vector of applied forces and moments. An explicit code for

carrying out this assembly of the stiffness matrix, in MATLAB using the sym-

bolic mathematics tool box, can be seen in appendix B.2. Now that the element

stiffness matrix has been formulated the procedure returns to that of the stan-

dard finite element method. The global stiffness matrix is assembled, boundary

conditions applied and the solution found in the usual way. The stress recovery

routine is also the same as the finite element method.

4.2.2 Validation

The element is validated using the patch tests [25] to test the accuracy for simple

stress states and the stress concentration problem [26], for which an analytical

solution exists, to ascertain how the element accuracy performs with changing

length scale and coupling factors. In the validations, comparisons are made to a
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Figure 4.5: Mesh for micropolar element patch test, lengths in (mm)

constant strain control volume element, CV-MPCST, from [26]. Reference is also

be made to finite element formulations based upon the same strain displacement

relationships as their equivalent linear and constant strain control volume ele-

ments. For the finite elements, the determination of the element stiffness matrix

is the same as in [23] and symbolic integration of equation 4.15 is employed, as

in the formulation of the DKT, so as to eliminate quadrature.

Patch Test

The mesh of elements shown in figure 4.5 is loaded under three different loading

conditions. For each loading conditions there is a known displacement and stress

field that should be gained, a summary of which can be seen in table 4.3. The

internal vertex nodal coordinates and constitutive properties can be found in ta-

ble 4.4. The plane strain formulation was used. Midside nodes are equal distance

along the finite element edge. The first patch is for a uniform direct stress with

symmetric shear. In the second test the direct stress remains uniform whereas

the shear stress is now antisymmetric and a body couple is applied. The final

test has constant direct stresses and body forces, linearly varying body couples
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Table 4.3: Body and boundary loadings and displacement field solutions for mi-
cropolar element patch test.

Patch 1

Load:px = py = q, τxx = τyy = 4, τxy = τyx = 1.5, mx = my = 0

Solution:u = 10−3
[

x + 1
2
y
]

, v = 10−3 [x + y], φ = 1
4
10−3

Patch 2

Load:px = py, q = 1, τxx = τyy = 4, τxy = 1, τyx = 2, mx = my = 0

Solution:u = 10−3
[

x + 1
2
y
]

, v = 10−3 [x + y], φ = 10−3
[

1
4

+ 1
4α

]

, α = 0.5

Patch 3
Load:px = py = 1, q = 2 [x − y], τxx = τyy = 4, τxy = 1.5 − [x − y],

τyx = 1.5 + [x − y], mx = −my = 2l2

α
, α = 0.5

Solution:u = 10−3
[

x + 1
2
y
]

, v = 10−3 [x + y], φ = 10−3
[

1
4

+ 1
2α

(x − y)
]

Table 4.4: Vertex coordinates and constitutive properties for micropolar element
patch test

node x(mm) y(mm)

1 0.04 0.02
2 0.18 0.03
3 0.16 0.08
4 0.08 0.08
P 0.0933 0.06

Gm =1.0e9N/m2

νm = 0.25
l = 0.1mm
a = 0.5
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Table 4.5: Results for displacement and micro rotation at node 2. Stress and
couple stress at point P in the patch test mesh under loading cases 1 and 2

Test u (103) v (103) φ (103) τxx τyy mx

1 0.19500 0.21000 0.25000 4.00000 1.49999 −3.0e − 15
Exact 0.19500 0.21000 0.25000 4.00000 1.50000 0

2 0.20999 0.11999 0.24999 3.99999 0.99999 −3.7e − 9
Exact 0.21000 0.12000 0.25000 4.00000 1.00000 0

Table 4.6: Results for displacement and micro rotation at node 2. Stress and
couple stress at point P in the patch test mesh under loading case 3. Results shown
against exact solution for linear strain control volume CV-MPLST and constant
strain control volume CV-MPCST

Code u (103) v (103) φ (103) τxx τyy mx

CV-MPCST 0.19500 0.21000 0.40000 4.00000 1.46666 0.04000
CV-MPLST 0.19499 0.20999 0.39999 3.99999 1.46669 0.03999

Exact 0.19500 0.21000 0.40000 4.00000 1.46666 0.04000

CV-MPLST
(inc. direct τ) 0.19499 0.20999 0.39999 3.99999 1.46669 0.03999

and linearly varying antisymmetric shear. The control volume passes the first

two tests, table 4.5, and results for the final test are shown in table 4.6 where a

comparison is made between the linear strain control volume, CV-MPLST from

this work, and the constant strain control volume, CV-MPCST, which has been

shown to out perform the equivalent, constant and linear strain, finite element

formulations [26]. As can be seen, the CV-MPLST does not reproduce the an-

alytical solution as accurately as the CV-MPCST formulation; this is put down

to rounding errors. There is also a difference in the formulation from the linear

strain to the constant strain. The constant strain formulation wrongly includes

moments contributed by the direct stresses τxx and τyy in the moment equilib-

rium equation. As these are not included in the equilibrium equation (2.16) for

a micropolar material, these were omitted in the CV-MPLST formulation. To

check the validity of this assumption, however, the direct stresses are included in

one run of patch test 3, with the additional loads made on the boundary. These

additional loads are required to keep the boundary control volumes in rotational
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Figure 4.6: Stress concentration mesh 8x15x4 r = 0.864mm. Quarter plate edge
lengths are 16.2mm x 16.2mm.

equilibrium as the applied direct stresses introduce an out of balance moment. It

can be seen that the patch test results are the same.

Stress Concentration Problem

A common test to check the accuracy of a micropolar code is to check it against

one of the few analytical solutions available; that of the stress concentration

factor of maximum circumferential stress around a circular hole in an infinite

plate [7]. For the purposes of the analysis, the plate considered will be finite

but the hole radius will be small in comparison to the width of the plate. A

comparison is made between the constant strain control volume, linear strain

control volume, constant strain finite element and linear strain finite element all

for the same mesh. A quarter of the plate is modelled with symmetry boundary

conditions, see figure 4.6. The results presented here are different from those given

in the published literature. This is because it is difficult to determine the element

distributions given in the different publications. This is important as the stress

concentration values are mesh sensitive. Therefore to gain a better understanding
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Table 4.7: Stress concentration factors for maximum circumferential stress at
circular hole by the constant strain control volume, CV-MPCST, linear strain
control volume, CV-MPLST, constant strain finite element, FE-MPCST, and lin-
ear strain finite element, FE-MPLST. Hole radius 0.216mm, Gm =1.0e9N/m2,
νm = 0.3 and (A): r

l = 1.063 (B): r
l = 10.63. Mesh is 8x22x4 elements.

(A)
a Exact CV-MPCST CV-MPLST FE-MPCST FE-MPLST

0.0 3.000 2.871 (4.3) 3.040 (1.3) 2.871 (4.3) 3.047 (1.6)
0.0667 2.849 2.758 (3.2) 2.888 (1.4) 2.757 (3.2) 2.893 (1.5)
0.3333 2.555 2.520 (1.4) 2.589 (1.3) 2.518 (1.4) 2.591 (1.4)
1.2857 2.287 2.276 (0.5) 2.315 (1.2) 2.272 (0.7) 2.316 (1.3)
4.2632 2.158 2.111 (2.2) 2.184 (1.2) 2.103 (2.5) 2.185 (1.3)

(B)
a Exact CV-MPCST CV-MPLST FE-MPCST FE-MPLST

0.0 3.000 2.871 (4.3) 3.040 (1.3) 2.871 (4.3) 3.047 (1.6)
0.0667 2.956 2.849 (3.6) 2.995 (1.3) 2.837 (4.0) 3.002 (1.6)
0.3333 2.935 2.830 (3.6) 2.978 (1.5) 2.808 (4.3) 2.985 (1.7)
1.2857 2.927 2.789 (4.7) 2.986 (2.0) 2.745 (6.2) 2.993 (2.3)
4.2632 2.923 2.684 (8.2) 3.020 (3.3) 2.594 (11.3) 3.027 (3.6)

of the accuracy of the competing methods the same element distribution should

ideally be used.

The first test compares how the accuracy of the solution is affected by changing

the level of coupling between the shear strains, governed by the coupling factor,

a. This is carried out for two ratios of hole radius r and characteristic length l.

As the radius is fixed for both (A) and (B) cases, see table 4.7, then only the

characteristic length is changed. It can be seen in (A), when the characteristic

length is almost equal to the radius, that CV-MPLST has a more consistent

error compared to CV-MPCST. CV-MPCST is more accurate for middle values of

coupling factor, a, where as CV-MPLST is a better accuracy for the classical case

(a=0) and approaching the couple stress case (a→ ∞). This pattern is repeated

for the finite element formulations however these are marginally less accurate

than the equivalent control volume formulation. On reducing the characteristic

length, case (B), the error for large coupling factors is greater. This is particularly

prominent for the constant strain formulations.
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Table 4.8: Stress concentration factors for maximum circumferential stress at
circular hole by the constant strain control volume, CV-MPCST, linear strain
control volume, CV-MPLST, constant strain finite element, FE-MPCST, and lin-
ear strain finite element, FE-MPLST. Hole radius 0.864mm, Gm =1.0e9N/m2,
νm = 0.3 and a = 0.3333. Mesh is 8x15x4 elements.

r
l

Exact CV-MPCST CV-MPLST FE-MPCST FE-MPLST

1.0 2.549 2.518 (1.2) 2.589 (1.6) 2.516 (1.3) 2.588 (1.5)
2.0 2.641 2.603 (1.5) 2.685 (1.7) 2.595 (1.7) 2.684 (1.6)
3.0 2.719 2.674 (1.6) 2.766 (1.7) 2.662 (2.1) 2.765 (1.7)
4.0 2.779 2.730 (1.7) 2.829 (1.8) 2.712 (2.4) 2.827 (1.7)
6.0 2.857 2.806 (1.8) 2.912 (1.9) 2.778 (2.8) 2.909 (1.8)
8.0 2.902 2.851 (1.8) 2.961 (2.0) 2.815 (3.0) 2.956 (1.9)
10.0 2.929 2.879 (1.7) 2.991 (2.1) 2.837 (3.2) 2.985 (1.9)

The other case considered is that of a larger hole within the same finite plate. The

coupling factor is kept constant and the characteristic length reduced, see table

4.8. It can be seen for this hole radius the CV-MPLST is less accurate at predict-

ing the stress concentration factor compared to the CV-MPCST. Indeed for this

case, it is performing less favourably than the CV-MPCST. It is proposed that

the finite nature of the plate, compared to the size of the larger hole, is affecting

the linear strain element more than the constant strain element. It is of interest

that this conclusion is not borne out in the finite element formulations where the

reverse is observed. Nevertheless, when a comparison is made between the two

quadratic formulations, CV-MPLST and FE-MPLST, the solution accuracy is

broadly similar with the FE-MPLST, at most 0.2% more accurate.

Beam Bending

With the primary focus of this work being concerned with beam bending, the

convergence of CV-MPCST, CV-MPLST and FE-MPLST to micropolar slender

beam theory, figure 4.7, and solution time, figure 4.8, were compared using the

constitutive properties from ANSYS HMD and beam dimensions for HMD B 1.

Using these constitutive properties, Efm = 3.900e10 N/m2 and lb = 8.99 mm and

beam dimensions, L = 128 mm and d = 12.7 mm, means that lb ≈ d which will
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Figure 4.9: Unit beam mesh

give a micropolar response. The beam mesh used is of the form shown in figure

4.9, where the horizontal and vertical nodal coordinates are scaled by the length

and depth of the beam respectively. To replicate the three point bending loading

condition the beam was modelled as a cantilever with half the length and half

the applied load of the corresponding beam in three point bending. The built in

boundary condition of the cantilever is necessary to enforce a zero micro rotation

boundary condition that is required at the midspan of the beam under three point

bending. In order to get the corresponding stiffness, the maximum displacement

should be divided by twice the load applied to the cantilever. CV-MPLST has

greater convergence of maximum displacement on increasing number of nodes and

a reduced solution time when compared to CV-MPCST. Comparing the FE and

CV linear strain formulations there is no appreciable difference in convergence

or solution time; the same matix solver, MATLAB “\” was used in both cases.

Neither formulation converges to the slender beam solution due to the use of

N = 0.9 and not N = 1. If N = 1 were used it would lead to indeterminate shear

stresses. Using N = 0.9, however, does show that the accuracy of the element is

close to that of the slender beam analytical solution, predicting an increased tip

displacement as would be expected.
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4.3 Conclusion

Based upon the results shown the CV-MPLST is chosen as the formulation to be

used in the determination of the coupling number. Although it has no appreciable

advantage over the FE-MPLST in bending problems, it does show an increased

accuracy for the stress concentration problem, particularly over a wide range of

coupling factors. As the numerical procedure will be used for determining the

coupling number, CV-MPLST is chosen.
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Chapter 5

Model Material - Deep Beam

A linear strain micropolar control volume finite element, CV-MPLST, has been

developed. The CV-MPLST element will now be used to ascertain the coupling

number allowing a distinction to be made between couple stress and micropolar

elasticity. As already stated; if the model material obeys couple stress elasticity

then the coupling number would equal 1. Any other value between 0 and 1 would

indicate that it is micropolar. To this effect the model material beam test pieces

were loaded again in three point bending at shorter spans. The lower aspect ratios

introduce transverse shear into the test samples and as shear stress is related to

the shear strain by the coupling number, in a micropolar material, this should

allow the coupling number to be identified.

The figures that follow detail the classical lower bound limit N = 0 and the upper

bound corresponding to N = 0.9 that approximates the couple stress limit. These

are calculated using the CV-MPLST in plane stress, as in the ANSYS model,

and constitutive properties from the slender beam ANSYS results (table 3.4); a

Poisson’s ratio of 0.3 is assumed. It is not possible to include results for N = 1

as the numerical solution becomes unstable as it approaches the couple stress

limit because it leads to indeterminate shear stresses. If the model material was

micropolar the stiffness results should lie between these bounds. The beams were

tested at two reduced aspect ratios, these being approximately 75% and 50% of

the slender beams. Sample plots with a range of N values, based upon the HMD
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Figure 5.1: Stiffness against 1/depth2 at L/d = 7.56 for various coupling num-
bers with material properties from slender HMD beams
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Figure 5.2: Stiffness against 1/depth2 at L/d = 5.04 for various coupling num-
bers with material properties from slender HMD beams
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slender beam constitutive properties are shown for both of the lower aspect ratios

in figures 5.1 and 5.2. These demonstrate the sensitivity of the stiffness variation

to the value of N . Clearly as N reduces the variation departs from the linear

couple stress case and tends towards the classical case as N vanishes.

5.1 Experimental Results

The shorter beam samples were tested in a similar manner to the slender beams.

Again the three point bending rig flexure was subtracted from the experimental

stiffness results and a detailed finite element analysis was carried out in ANSYS.

As in the slender beams, the aspect ratios are not exact integer values because a

consistent load position midway between voids is maintained. Table 5.1 shows the

beam dimensions and stiffness results from the experiments and detailed ANSYS

model for the HMD test pieces and table 5.2 for the LMD test pieces. The results

are also depicted in figures 5.3 and 5.4 for the HMD and figures 5.5 and 5.6 for

the LMD materials. All reported stiffness values are from displacement results

corrected for test rig flexure.

Excellent agreement is shown between the corrected and ANSYS results for HMD

at L/d = 7.56, figure 5.3. It can be seen that there is a departure from linearity

and the solution sits between the classical and couple stress solutions, as would

be expected for a genuinely micropolar material. The departure from linearity

becomes more noticeable still in HMD at L/d = 5.04, figure 5.4. At this span,

however, there is less agreement between the ANSYS model and corrected ex-

perimental results. While the plots vary similarly the data are not coincident

and there is an offset from the anticipated range between the bounds determined

using the constitutive properties from the slender beam tests. A noticeable error

is, again, seen for LMD at L/d = 8.50 between ANSYS and the corrected exper-

imental results, figure 5.5. This is also true for LMD at L/d = 5.67, figure 5.6

with the same departure from the expected range of results set by the coupling

number.

There are two phenomena in these results that merit discussion; the lack of agree-
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Table 5.1: Beam test geometry and corrected stiffness results, K, for deep HMD test pieces

Beam Depth (mm) Length (mm) L/d KExp (N/m) KAnsys (N/m)

HMD B1 7 12.7 96 7.56 6.423e6 6.441e6
HMD B2 7 25.4 192 7.56 4.986e6 5.018e6
HMD B3 7 38.1 288 7.56 4.621e6 4.706e6
HMD B4 7 50.8 384 7.56 4.423e6 4.557e6

HMD B1 5 12.7 64 5.04 1.683e7 1.826e7
HMD B2 5 25.4 128 5.04 1.356e7 1.522e7
HMD B3 5 38.1 192 5.04 1.313e7 1.459e7
HMD B4 5 50.8 256 5.04 1.260e7 1.400e7
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Table 5.2: Beam test geometry and corrected stiffness results, K, for deep LMD test pieces

Beam Depth (mm) Length (mm) L/d KExp (N/m) KAnsys (N/m)

LMD B1 7 12.7 108 8.50 3.891e6 4.012e6
LMD B2 7 25.4 216 8.50 2.709e6 3.043e6
LMD B3 7 38.1 324 8.50 2.756e6 2.833e6
LMD B4 7 50.8 432 8.50 2.813e6 2.742e6

LMD B1 5 12.7 72 5.67 8.715e6 1.083e7
LMD B2 5 25.4 144 5.67 7.357e6 8.837e6
LMD B3 5 38.1 216 5.67 7.765e6 8.372e6
LMD B4 5 50.8 288 5.67 7.499e6 8.066e6
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Figure 5.3: Stiffness against 1/depth2 for HMD beams at L/d = 7.56. Comparing
discrete detail ANSYS and experimental results corrected for test rig flexure against
classical solution
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discrete detail ANSYS and experimental results corrected for test rig flexure against
classical solution
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Figure 5.5: Stiffness against 1/depth2 for LMD beams at L/d = 8.50. Comparing
discrete detail ANSYS and experimental results corrected for test rig flexure against
classical solution
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Figure 5.6: Stiffness against 1/depth2 for LMD beams at L/d = 5.67. Comparing
discrete detail ANSYS and experimental results corrected for test rig flexure against
classical solution
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ment between the ANSYS and corrected experimental results and the departure

from the expected range of results based upon the plane stress micropolar numer-

ical solutions for the bending problems. It is possible that the lack of agreement

between the ANSYS and corrected experiments, particularly at the shorter spans

may be due to local plastic deformation, of the beam test pieces, at the supports;

this was evident on examination. If this were the case then the larger depths

would be in better agreement, with the ANSYS model, than that of the smaller

depths. This is indeed born out in the LMD results but not in the HMD. The

LMD test pieces have less matrix material and therefore a greater local defor-

mation around each void may account for this difference between the HMD and

LMD.

There is a departure from the expected range for shorter spans which is greater

in the lower density material. Based upon the slender beam work, it would

appear that the intercept with the vertical axis is not consistent between the

different spans implying that there is apparently a size dependent variation in

the flexural modulus. This is, however, not predicted in micropolar elasticity

as the flexural modulus is size independent. It is possible that, at the shortest

span, the number of voids to overall geometry size is too small to rely upon

a micropolar continuum description. Alternatively, using the flexural modulus

as the isotropic Young’s modulus, in the plane stress formulation, may not be

approriate. As previously highlighted the material is anisotropic and therefore

the isotropic assumptions made in the plane stress formulation may not hold for

this material. The orthotropic Young’s modulus, for both materials, is reduced in

the through depth direction. With increasing transverse shear in the shorter spans

this change in modulus would have a greater effect. This reduction in modulus is

greatest for the LMD material which would explain the greater departure from

the expected behaviour at lower density.

These results do, however, show that the material is not behaving in a couple

stress manner as the nonlinear shape of the plots imply that the coupling number

clearly lies between 0 and 1. With test data at shorter spans, from both the

detailed ANSYS and experimental results, the CV-MPLST will now be used in

an iterative search procedure to find the coupling number for this model material.
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5.2 Iterative Constitutive Code

The iterative determination of constitutive properties is classed as an inverse

problem, where the response of the material is known but the nessesary input

parameters, constitutive properties or boundary conditions, to gain the known

response are themselves unknown. The applications and types of inverse proce-

dures is broad. They have been used in solid mechanics, in nondestructive testing

to identify cracks in materials and determining buckling loads [50]. The finite ele-

ment method has been used in inverse procedures to identify material constitutive

properties using experimental data from minature dumb-bell test specimens [51]

and small scale punch tests [52].

The intention of this inverse approach is to take the experimental stiffness data

for all three different spans and compare them against solutions gained from

the CV-MPLST code using estimated constitutive properties particularly the

coupling number, N . Based upon a measure of fit between these two solutions,

the constitutive properties are updated, in an iterative procedure, until a desired

agreement is reached. What will follow is an example of this procedure when

applied to the HMD ANSYS experimental results. The HMD ANSYS results are

used as they are the most consistent data, lying within the bounds of micropolar

elasticity at all spans.

5.2.1 Procedure

The iterative procedure has been developed in MATLAB and has been created

to be generic for any set of stiffness data as long as the span and depths are

defined. This code can be seen in appendix C. Initially, a straight line regression

is fitted to the stiffness data at L/d = 10.08 to gain an initial estimate of the

micropolar flexural modulus Efm and couple modulus γ. This is identical to the

procedure used in chapter 3 for the slender beams. In this analysis, the Poisson’s

ratio is set to 0.3. Next, using the stiffness data at L/d = 5.04, an iterative loop

is begun to determine the coupling number N . This is carried out by first taking

an initial guess for N and calculating the numerical stiffness solutions produced
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Figure 5.7: Unit mesh used for HMD L/d=10.08

by the CV-MPLST code at this span using the initial constitutive data. This

stiffness data will be termed the model stiffness data. The mesh used in this

analysis is of the form shown schematically in figure 5.7, 20 x 4 (length x depth)

elements at L/d = 10.07, 15 x 4 elements at L/d = 7.56 and 10 x 4 elements

at L/d = 5.04. Due to the varying depths, at different spans, the actual nodal

coordinates were gained by appropriately scaling an array of normalised nodal

coordinates, with divisions varying from 0 to 1 as seen in figure 5.7, by the depth

for the vertical coordinates and by the length for the horizontal coordinates. The

number of elements used is based upon the convergence tests in chapter 4. For

each span the number of elements along the length is reduced. This is to ensure

that a similar element aspect ratio is maintained for all the spans.

Once the initial model stiffness data has been determined this can be compared

against the ANSYS data to gain a measure of how well the two sets of data fit.

This is done by calculating the coefficient of multiple determination, R2. The

coefficient of multiple determination is a ratio of the sum of the squared residual
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errors SSerr and the sum of the squared total errors SStot [53] which is defined as

R2 = 1 −
SSerr

SStot

(5.1)

where the sum of the squared residual errors are

SSerr =
∑

(KA − KM)2 (5.2)

and the sum of the squared total errors are

SStot =
∑

(

KA − K̄A

)2
(5.3)

where KA is the ANSYS stiffness data, KM is the model stiffness data and K̄A

is the mean of the ANSYS experimental stiffness data. The sets of data are said

to be the same when R2 equals 1. A target value for R2 is predefined which will

be slightly less than 1 and if this is not reached then a new guess for N will be

made using the following update rule. The update rule is

Di+1 =

[

1

n

n
∑

i=1

KA

KM

]

Di (5.4)

where D is the constitutive property to be changed, KA and KM have the same

meaning as above, n is the number of data points (in this case corresponding to

the four depths) and subscript i denotes the current constitutive value and i + 1

denotes the updated constitutive property. This procedure is repeated and after

repeated iterations the R2 value should converge to 1. This is repeated until R2

is greater than or equal to the target, in this case R2
target = 0.99, or R2 begins

to diverge away from 1 which would indicate that the correlation between the

model data and the ANSYS data is reducing. Applying this iterative procedure

for N to the stiffness data for L/d = 5.04 the right hand graph shown in figure

5.8 is gained. The iterative loop is broken at R2 = 0.93 as the solution began to

diverge, returning N = 0.112. It can be seen that there is reasonable agreement

for this aspect ratio as expected since this was the data to which the fit was

being applied. When, however, this value of N is used to determine the stiffness

variation for the two longer spans the fit to the ANSYS data is less satisfactory
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Figure 5.8: Best fit solutions for HMD samples based upon the ANSYS results
at the three different spans after the first iteration to find the coupling number N
using L/d = 5.04, R2 = 0.93 at this span

as shown in the left and central graphs of figure 5.8.

An update of the couple modulus γ is therefore required to bring about a better

fit for L/d = 10.08 and L/d = 7.56. This is required since at L/d = 10.08

some shear deformation is actually occurring implying that the initial straight

line fit, assuming a slender beam, is slightly incorrect and would not give the

precise couple modulus. The same iterative procedure is now repeated to find

a value of γ that offers a good correlation at L/d = 10.08. A flow diagram of

this full iterative procedure is shown in figure 5.9. Again the target is defined as

R2 = 0.99 and in this case it is reached. The updated results now show a good

agreement for L/d = 10.08 and L/d = 7.56, figure 5.10. The fit, however, at

L/d = 5.04 is now slightly reduced, figure 5.10. It is clear from these results that

it is not possible to get an exact fit for all the spans using the same constitutive

properties, suggesting that this material is not adequately described by isotropic

plane stress micropolar elasticity. Nevertheless an excellent correlation is gained

for the L/d = 7.56 results without using them in the iterative procedure. This

would indicate that the progression from L/d = 10.08 to L/d = 7.56 is properly
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Figure 5.9: Flow chart showing iterative process to find the best fit material
parameters for the HMD model material
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Figure 5.10: Best fit solutions for HMD samples based upon the ANSYS results
at the three different spans after the second iteration to find the couple modulus γ
using L/d = 10.08, R2 = 0.99 at this span

described by micropolar elasticity. The final constitutive data obtained for the

HMD ANSYS results are therefore Efm = 3.9e10N/m2, N = 0.112, γ = 3.339e5N

and therefore lb = 10.14mm.

The only constitutive property, used in this analysis, which has not been deter-

mined directly for this material from experimental tests, is Poisson’s ratio. To

ensure that any mismatch between the calculated values and the experimental

value is not due to the assumption of a Poisson’s ratio value of vm = 0.3, a pa-

rameter study of how changing Poisson’s ratio would change the solution value at

each span was carried out. Poisson’s ratio was changed by ± 15% and the change

in stiffness calculated. This can be seen for the three spans in figure 5.11. The

results are normalised against the stiffness gained at each span with vm = 0.3.

The greatest variation in stiffness is at the shorter spans. This change, however,

is only 0.6 % at its greatest. This would not account for the larger departure

seen in fitting the model material data. To further check, Poisson’s ratio was

calculated from a simulated tensile test in ANSYS. It was estimated at 0.33 for

both orthoginal directions which is within the ± 15% considered.
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Figure 5.11: Variation of stiffness for ± 15% Poisson’s ratio for different spans
HMD

It is clear that this model material does exhibit a size effect in bending and that

it can be described by a micropolar material model at certain spans and void

configurations. There is, however, additional material behaviour, particularly

at shorter spans, that suggests that micropolar elasticity cannot fully describe

the deformation. Whether this observed behaviour indicates experimental error,

numerical error or is due to material anisotropy is unclear.

In the following chapter, the same iterative procedure set out in this chapter will

be used to determine the constitutive properties from model heterogenous thick

and thin walled diametrically loaded rings. These rings are made from a different

material and have an underlying structure that is four times smaller than the

beams tested in this chapter. They do, however, show similar trends as seen for

the aluminium model material tested in three point bending.

85



Chapter 6

Model Material - Diametrically

Loaded Ring

This chapter presents the determination of plane stress micropolar constitutive

properties, flexural modulus, characteristic length and coupling number, from

thin and thick walled diametrically loaded rings. Ring samples can have an

advantage over rectangular beams as many natural materials have microstructures

arranged in radial patterns. For example the growth rings and sap channels

of balsa wood or the structure of human bone. From the outset it should be

noted that the experimental results used in this chapter were not obtained by the

author. Limited attention, therefore, will be given over to explaining the design

and execution of the experiment. The constitutive properties obtained, however,

are of significance as they show similar trends to that of the model aluminium

beams.

Ring test pieces of mean radius R and wall depth d, see figure 6.1, were machined

from 6 mm thick Altuglas® acrylic sheet. The acrylic sheet has a flexural modulus

at 23◦C of 3.25 GPa and a Poisson’s ratio of 0.39 at 20◦C [54]. Two different

ring aspect ratios, R/d, were manufactured. The first aspect ratio was R/d = 8

and the second was R/d = 4. At each aspect ratio there were four different wall

depths. This led to eight different sized ring samples. The voids are arranged in

a hexagonal pattern, similar to that of the beams in the previous chapters. The
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Figure 6.1: Model ring of radius R and depth d with radial void distribution
dimensions of pitch n, pitch radius rn, initial offset angle θni and offset angle θn

specific positioning of the circular voids, of radius r=0.79275 mm, is controlled by

the radial pitch number n; this being the number of voids through depth, and is

specific for each of the eight ring samples. At each pitch number, a pitch radius

rn defines the distance from the centroid of the ring to the centre of the void.

Also defined are two angles. The first gives the initial offset angle θni from the

horizontal axis to the centre of the first void. The second angle defines the offset

angle θn between adjacent voids. These dimensions are shown in table 6.1 for all

eight ring samples.

The model rings were loaded diametrically in tension, within the elastic region,

and the resulting force displacement curves are used to obtain the ring stiffnesses.

These stiffness can be seen in table 6.2. It is clear from table 6.2 that there is

a size dependent stiffening. Diametrically loaded rings are similar to straight

beams in bending, in that if they were behaving in a classically elastic manner

the stiffnesses would have remained constant as the aspect ratio is constant.
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Table 6.1: Geometric data for ring samples

Ring No. Radius, Depth, R/d Pitch Pitch Initial Offset Offset Angle,
R (mm) d (mm) Number, n Radius rn (mm) Angle, θni (degrees) θn (degrees)

1 12.7 3.175 4 1 12.7 0 18

2 25.4 3.175 8 1 25.4 0 9

3 25.4 6.35 4 1 23.8125 0 9
2 26.9875 4.5 9

4 50.8 6.35 8 1 49.2125 0 4.5
2 52.3875 2.25 4.5

5 38.1 9.525 4 1 34.925 0 6
2 38.1 3 6
3 41.275 0 6

6 76.2 9.525 8 1 73.025 0 3
2 76.2 1.5 3
3 79.375 0 3

7 63.5 15.875 4 1 57.15 0 3.6
2 60.325 1.8 3.6
3 63.5 0 3.6
4 66.675 1.8 3.6
5 69.85 0 3.6

8 127 15.875 8 1 120.65 0 1.8
2 123.825 0.9 1.8
3 127 0 1.8
4 130.175 0.9 1.8
5 133.35 0 1.8
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Table 6.2: Experimental stiffness results,K, for ring samples at two aspect ratios;
R/d = 8 and R/d = 4

Depth (mm) KR/d=8 (N/m) KR/d=4 (N/m)

3.175 16.248e3 107.880e3
6.350 13.719e3 90.600e3
9.525 12.399e3 82.634e3
15.875 11.664e3 82.619e3

6.1 Constitutive Properties

The iterative search procedure is now used to fit the micropolar constitutive

properties to this experimental data in order to discover the flexural modulus Efm,

characteristic length of bending lb and the coupling number N . To gain an initial

estimate of the flexural modulus and the characteristic length, the analytical

solution for a thin walled ring, see section 2.3.2, is used to fit a straight line to the

experimental data for R/d = 8. The iterative procedure is now begun following

the flow process set out in figure 6.3 with a target coefficient of determination

of R2
target = 0.99. The final constitutive properties are Efm = 1.82e9N/m2,

N = 0.08, γ = 834.64N, lb = 2.345mm. A Poisson’s ratio of 0.39 was assumed. A

plot of the experimental results compared against the best fit stiffnesses gained

from the iterative procedure can be seen in figure 6.2 . It is immediately clear,

once again, that the search procedure is unable to fit plane stress micropolar

elastic behaviour exactly to both the ring aspect ratios. This corroborates the

suspicion of the previous chapter, that the anisotropic natures of these model

materials are not being captured correctly, particularly at smaller aspect ratios,

by plane stress isotropic micropolar elasticity. This work does, however, show

some interesting similarities between the constitutive properties obtained from

the rings and the rectangular beams.
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Figure 6.2: Best fit solution for ring samples based upon experimental stiffness
results

6.2 Discussion

Comparing the constitutive properties gained for the HMD ANSYS data and the

experimental rings show remarkable similarities considering the differences in ge-

ometry and the fact that the ANSYS data is an idealisation while the ring results

are obtained from experiment. Geometrically the ring samples are approximately

four times smaller than the rectangular beams and the elastic modulus of the

matrix material is twenty times smaller in the acrylic rings. Although the rings

are at a different scale to the rectangular beams, the relative hole pattern is very

similar. This results in three similarities that are noteworthy. The first is the

similarity of coupling number. For the HMD beam samples a coupling number of

N = 0.11 was obtained and a coupling number of N = 0.08 was obtained for the

rings. Secondly the ratio of matrix modulus to micropolar flexural modulus is

very similar. In both the rectangular beams and the rings, the micropolar flexural

modulus is approximately 56% of the matrix modulus. This is to be expected

as a similar proportion of material is removed, in a geometrically similar man-

ner, in both cases. Thirdly and most significantly the ratio of the void radius to
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the characteristic length is almost identical. In both cases the radius is approxi-

mately 34% of the characteristic length. These similarities are important as the

trends are preserved for a similar hole pattern but at a different scale and matrix

material properties. They are also gained through testing different geometries

under different loading conditions. This consistency implies that the micropolar

material properties are intrinsic for a given microstructure.

This chapter has shown that although different testing geometries and matrix

materials are used consistent constitutive properties are obtained. This highlights

the applicability of micropolar elasticity, particularly at larger aspect ratios, in

capturing size effects in bending.
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Figure 6.3: Flow chart showing iterative process to find the best fit material
parameters from the model ring experimental results
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Chapter 7

Summary and Conclusions

A model material has been created that shows distinctive size stiffening when

tested in three point bending. Constitutive properties namely, micropolar flex-

ural modulus and characteristic length of bending, have been identified that are

logical; the characteristic length is of the same order as the microstructure and the

flexural modulus is reduced below that of the matrix material. A slender microp-

olar beam finite element, whose solution convergence is insensitive to variations

in characteristic length, is able to replicate the slender beam deformation using

the constitutive properties already identified thus allowing its use in analysing

more complex space frame structures. A plane stress and plane strain micropolar

control volume finite element has been developed that has equivalent or better

accuracy over its equivalent finite element. The formulation is based upon a code

frame work developed for a control volume finite element discrete Kirchhoff plate

bending element that utilises the symbolic mathematics kernel of MATLAB to

determine the element stiffness matrix in a quadrature free routine. The use of

quadrature free elements allows an accurate and direct comparison between the

competing finite element and control volume methods. The increased geometric

versatility of the plane stress CVFEM enables its use in predicting the defor-

mation of deep micropolar beams in bending using the constitutive properties

gained from the slender beams. The development of the CVFEM has allowed

the sensitivity of the size stiffening effect upon the coupling number, in thicker

beams, to be quantified. Subsequently this is used in an iterative procedure that
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allows the inverse identification of the coupling number and the update of the

characteristic length for the HMD material. Applying the procedure, however,

to the LMD material to identify the coupling number has not been possible be-

cause of inconsistency in the experimental data. The most likely cause of which

is material anisotropy and its incompatibility with the isotropic material model.

The inverse procedure has also been used to fit material data to ring samples,

at a different scale to the model aluminium beams. This again showed that ma-

terial anisotropy is an issue but it did, however, show that there is consistency

to the micropolar material properties obtained that is unaffected by changes to

geometry, bulk material properties and scale.

Real Materials

Ultimately it should be the goal of any work with heterogeneous materials mod-

elling to be able to accurately replicate the deformation of a real material with

random inclusions. Real materials, however, offer additional challenges over and

above those of model materials. These challenges are associated with the exper-

imental determination of the constitutive properties. Some heterogeneous mate-

rials have large void volume fractions and therefore less matrix material. This

means that the ability to carry load is reduced and thus these materials require

to be tested at relatively low loads. In addition, the voids tend to be smaller than

those in the model material used here. These two features mean that standard

materials testing equipment is not well suited to testing these materials as small

load cells and an increased accuracy of displacement measurement is required.

Often at this scale the micro size effects are small and may be masked by fric-

tions and local loading effects in the testing procedures as already noted in the

literature [12]. Further to this, surface damage, which occurs when the samples

are machined, will artificially reduce the materials ability to carry load. Both

these effects have been noted in the literature before but should be highlighted

as an issue. Custom testing equipment can be manufactured that is sensitive

enough to detect the size effects however the effect of surface damage is not so

easily rectified. A greater understanding of the relationship between microstruc-

tural geometry and size effects would be of great benefit when apply generalised
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models to heterogeneous materials and the study of model materials can help in

this.

Future Work

In this work the use of a model material has offered some unique opportunities

over a real material. It has given the opportunity to test at a larger scale, mag-

nifying the size effect so that it can be identified, without doubt, on standard

mechanical testing equipment. With the model material’s simplified microstruc-

ture it has been possible to simulate it in full geometric detail in ANSYS. This has

allowed a validation of the experiments and opened up future work. Indeed the

agreement between the HMD ANSYS models and the experiments is sufficiently

good to allow future studies using ANSYS alone. These studies can shed light

upon: the role of material anisotropy, the relationship between microstructural

geometery and constitutive properties, the role of surface damage and at what

scales generalised elastic models are applicable.

An understanding of the microstructure’s role upon the constitutive properties

would be very informative in the understanding of heterogeneous materials. In-

vestigations into void volume fraction, void packing arrangements, including ma-

terial anisotropy, and void compliance could allow the development of empirical

rules that explain how the alteration of the above parameters change the consti-

tutive properties. First and foremost this could extend the understanding of the

characteristic length beyond the loose definition that it should be in the order

of the microstructure and exposing voids at the surface of a model material will

be beneficial to the understanding of surface damage effects in real materials. It

could be envisaged that a model material be made that has an engineered mi-

crostructure, controlling void size and distribution during manufacture, to deliver

enhanced structural properties.

It is also clear from this work that a micropolar continuum is not applicable

in all cases. It has been proposed that the lack of agreement between numeri-

cal solutions and experimental results is due to material anisotropy, however, an

additional phenomenon may be at work. With a heterogeneous material there
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will be transitions, at certain length scales, between continuum models. The

first transition is from classical to generalised elastic behaviour. This change

is described in generalised continua by the length scale constitutive parameter.

There is, however, another transition. Micropolar elasticity predicts a stiffness

approaching infinity as the geometric size is reduced; this, however, is unphys-

ical. This is demonstrated in the current work as the smallest beam geometry,

one hole through thickness, is the smallest beam that would preserve the detail of

the microstructure and therefore it represents an upper bound for the micropolar

bending stiffness. This demonstrates a geometric limit to the micropolar descrip-

tion of this model material. Local effects, introduced by loading and boundary

conditions may also affect where this limit exists. Model material simulations

would shed light upon this.

Concluding Remarks

Returning to the specific question of this thesis: ‘is a micropolar elastic con-

tinuum a feasible modelling approach in computational structural mechanics to

capture the deformation of a heterogeneous material?’, it is clear from this work

that it is capable of capturing the size effect in the model material; however, its

applicability breaks down for smaller aspect ratios. Further work is required to

define its limits.

Heterogeneous materials have many beneficial structural properties, however,

quantifying and replicating this in generalised elastic models is difficult. The

real difficulty lies where, in trying to observe and quantify the phenomena, it

is being obscured: the chosen testing procedure may damage the material in

preparation and therefore render the test erroneous or the test itself may have

inaccuracies that mask or add to the material deformation. Conversely, the test

procedure may be sound but the chosen generalised elastic theory is not endowed

with enough degrees of freedom to properly describe the material response; as

might be the case for the model material presented here. In any likelihood it will

be a combination of all these factors and it will be up to individual judgment as

to whether an adequate description has been gained from a generalised elastic

model.
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Appendix A

Discrete Kirchhoff Triangular

Element

A.1 Mindlin Plate Bending Theory

A.1.1 Deformations

According to Mindlin plate theory a straight line normal to the midsurface of

the plate, in an undeformed configuration, figure A.1 (a) , is assumed to remain

straight when the plate is loaded but not necessarily normal to the midsurface, as

shown in figure A.1 (b). This allows for transverse shear deformation of the plate.

This deformation is due to the rotations θx and θy of lines that are normal to the

midsurface of the undeformed plate. Thus the strain-displacement relationships

for small angles of rotation are

u = −zθx

v = −zθy

ǫx = −zθx,x

ǫy = −zθy,y

γxy = −z(θx,y + θy,x)

γyz = w,y − θy

γzx = w,x − θx

(A.1)

and therefore the bending strains ǫb are related to curvatures thus
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Figure A.1: Differential plate element undeformed (a) and deformed plate(b)

ǫb =











ǫx

ǫy

γxy











= −z











θx,x

θy,y

θx,y + θy,x











(A.2)

A.1.2 Moment Curvature Relations

The curvature vector χ is given by

χ =











θx,x

θy,y

θx,y + θy,x











(A.3)

while the bending moments per unit length are related to the curvature vector

by

M = Dχ (A.4)
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where M is the bending moment vector

M =











Mx

My

Mxy











(A.5)

D is the constitutive matrix

D =
Eh3

12(1 − ν2)







1 ν 0

ν 1 0

0 0 1−ν
2






(A.6)

and E is Young’s modulus, ν is Poisson’s ratio and h is the plate thickness.

A.1.3 Equilibrium

The equilibrium equations for the plate midsurface are

Tx,x + Ty,y = −pA

Mx,x + Mxy,y − Tx = 0

Mxy,x + My,y − Ty = 0

(A.7)

where T are shear forces per unit length and p is a transverse distributed load

per unit area acting on the midsurface of area A.

A.2 DKT Element

The formulation of the DKT element begins with a straight edged triangle with

3 vertex and 3 midside nodes, figure A.2 (a). The rotations θx and θy within the

element are interpolated using a complete polynomial for the nodal degrees of

freedom, θxi and θyi where i = 1, 6 refer to the element nodes.

θx =
∑

Niθxi θy =
∑

Niθyi (A.8)
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Figure A.2: Transition to the DKT element. (a) 6 noded Mindlin element with
the triangular area coordinates δ, ξ and η. (b) 3 noded DKT element with vertex
node degrees of freedom (wi, w,xi w,yi)

The shape functions Ni(ξ, η) for the quadratic interpolations, where δ = (1−ξ−η),

are
N1 = 2(1 − ξ − η)(1

2
− ξ − η)

N2 = ξ(2η − 1)

N3 = η(2ξ − 1)

N4 = 4ξη

N5 = 4η(1 − ξ − η)

N6 = 4ξ(1 − ξ − η)

(A.9)

ξ and η being the usual natural coordinates of the element [55]. The transverse

displacement along the element sides are prescribed by a cubic function in the

edge tangent coordinate s, giving the edge tangent slope as:

w,sk
= −

3

2lij
wi −

1

4
w,si

+
3

2lij
wj +

1

4
w,sj

(A.10)

where k denotes the midside node of the element edge that connects nodes i and

j and is of length lij.
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An element with nine degrees of freedom, figure A.2 (b), is sought where the

rotations θx and θy are expressed in terms of the vertex node degrees of freedom,

wi, w,xi and w,yi. For the triangular element, the full displacement vector is

d = ⌊wi w,yi − w,xi⌋
T for i = 1, 2, 3 (A.11)

This is achieved by applying the following constraints.

1. Transverse shear strains γyz and γzx vanish at the vertex nodes. From (A.1)

θxi = w,xi and θyi = w,yi for i = 1, 2, 3 (A.12)

2. Transverse shear strain γsz vanishes at the mid side nodes

θsk = w,sk for k = 4, 5, 6 (A.13)

3. Normal rotations vary linearly along the element edge in the edge normal

coordinate n

θnk =
1

2
(w,ni + w,nj) for k = 4, 5, 6 (A.14)

where k denotes the midside node of the element side connecting nodes i

and j.

On applying the discrete Kirchhoff constraints the vectors Hx and Hy are ob-

tained as new shape functions relating element rotations, θx and θy, to the desired

element displacement vector (A.11) [55].

θx = HT
x (ξ, η)d

θy = HT
y (ξ, η)d

(A.15)

From equations (A.3) and (A.15) the moment curvature transformation matrix

B can be obtained

χ = Bd (A.16)
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where B is

B(ξ, η) =
1

2A







y31H
T
x,ξ + y12H

T
x,η

−x31H
T
y,ξ − x12H

T
y,η

−x31H
T
x,ξ − x12H

T
x,η + y31H

T
y,ξ + y12H

T
y,η






(A.17)

In the control volume based method, the shear forces acting per unit length

are also required in order to impose the proper equilibrium conditions upon the

control volume. The shear forces are obtained directly from the derivative of the

bending moments (A.7)

T =

[

Tx

Ty

]

=
1

2A

[

y31Mx,ξ + y12Mx,η − x31Mxy,ξ − x12Mxy,η

y31Mxy,ξ + y12Mxy,η − x31My,ξ − x12My,η

]

(A.18)

where










Mx

My

Mxy











= DBd (A.19)

A.3 Element Stiffness Matrix

Both the FE and CVFE methods are founded upon the same moment curvature

relationships, but the formulations differ with regards to the element stiffness

matrix. In the FE-DKT element, the stiffness matrix is derived using the principle

of minimum potential energy (A.20). The CV-DKT differs from this because the

stiffness matrix is composed of a set of discrete equilibrium equations.

A.3.1 Finite Element Method

In the finite element method, the stiffness matrix for the DKT element is

kFEM = 2A

∫ 1

0

∫ 1−η

0

BTDbBdξdη (A.20)

102



This equation (A.20) was symbolically integrated using the Maple kernel of

MATLAB [46]. To obtain a comparison with a commercially available code the

SHELL63 element of ANSYS was chosen. This is a quadratic element composed

of 4 DKT elements [49] and 3 point quadrature is employed in evaluating the

stiffness matrix.

A.3.2 Control Volume Finite Element Method

A dual mesh of interconnecting control volumes is set up, with each control

volume centred upon a node of the finite element mesh, see figure A.3(a). The

P 

(a) 

dr 

Mysinθdr 

Mxcosθdr 

Mxysinθdr 

Mxycosθdr 

(b) 

θ 

Txcosθdr 

Tysinθdr 
i 

Figure A.3: (a) Control volume dual mesh centred on finite element node P (b)
Equilibrium of forces acting upon a differential line dr along the control volume
face

control volume faces are constructed by connecting a point midway along the finite

element mesh edge to the centre of area of that corresponding finite element.

The stress resultants per unit length from equations (A.18) and (A.19), are inte-

grated along each face of the control volume with respect to the line coordinate

r, anti-clockwise around the CV node, figure A.3(b). This integration gives rise
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to the stress resultants acting on each face. For a face i these are Ti
z, Mi

x and

Mi
y, representing the total transverse force and total moments about the x and y

coordinates respectively. Equations (A.21), (A.22) and (A.23) are thus functions

to determine the internal actions upon each face of the control volume.

Transverse Force:

Ti
z =

∫

Txcosθdr +

∫

Tysinθdr (A.21)

Total Moment about the x-axis:

Mi
x =

∫

Mysinθdr +

∫

Mxycosθdr−

∫

(yr − yi) (Txcosθdr + Tysinθdr) (A.22)

Total Moment about the y-axis:

Mi
y =

∫

Mxcosθdr+

∫

Mxysinθdr−

∫

(xr − xi) (Txcosθdr + Tysinθdr) (A.23)

where (xr, yr) are the coordinates of the moment arm along the differential line

and (xi, yi) are the coordinates of the centre of the control volume.

As the moment curvature matrix is a function of the area coordinates a substitu-

tion of the line coordinate r for the area coordinates of the corresponding elements

is made. Thus the integration of the stress resultants per unit length becomes an

integration in the area coordinates, see figure A.4 (a). The substitution for each

face of the control volume, within an element, is different and follows the rules

set out in table A.1.

A substitution of area coordinates within the moment curvature relations is also

required to perform each integration. These are based upon the geometry of the

control volume face. For example in figure A.4 (b) if an integration was carried

out between c and o, ξ and δ are equal to each other and due to the relationship

that δ + η + ξ = 1 it follows that η = 1/2(1 − ξ). Table A.1 summarises these

substitutions.

Equilibrium is imposed on the control volume by summing all the internal actions

on each face for the control volume. The equilibrium equations can be expressed
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Table A.1: Substitutions for the discrete equation integrals and moment curvature matrix

Direction of Integration Integral Substitutions Area Coordinate Substitutions
in Moment Curvature Matrix, B

from c to o
∫

dr =
∫ 1/3

0
3Locdη letting ξ = 1/2(1 − η)

from b to o
∫

dr =
∫ 1/3

0
3Lobdξ letting η = 1/2(1 − ξ)

from a to o
∫

dr =
∫ 1/3

0
3Loadδ letting η = ξ and η = 1/2(1 − δ)
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Figure A.4: (a) Element coordinate systems: global Cartesian, line and area.
Element and control volume node labelling convention (b) Specific area coordinates
relating to element and control volume nodes

as:

n
∑

i=1

Ti
z + TE

z = 0 (A.24)

n
∑

i=1

Mi
x + ME

x = 0 (A.25)

n
∑

i=1

Mi
y + ME

y = 0 (A.26)

where TE
z , ME

x and ME
y are any externally applied forces or moments on the

control volume and n is the number of faces of a volume. This is carried out

for each element in the mesh and assembled into the global stiffness matrix in a

manner analogous to the standard finite element procedure [37].
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





−TE
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−ME
x

−ME
y








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(A.27)

A.4 Boundary Conditions and Solution

The presented method is now equivalent to that of a finite element procedure

with the structural equations in the form

[K]{d} = {P} (A.28)

where {d} is the vector of nodal displacements, {P} is the vector of externally

applied force and moments and [K] is the stiffness matrix (A.27). The load vector

can now be modified to include applied loads and the appropriate boundary

constraints applied to the stiffness matrix as in the finite element method. The

stiffness matrix can then be solved by either a direct or iterative solution strategy.

In the presented work, the MATLAB matrix left division routine was used.

A.5 Results

The presented method has a proper rank to its stiffness matrix and passes the

patch test for states of pure bending and twist, table A.2. The convergence of

maximum displacement against the analytical solution [56], with an increasing

number of elements, n (figure A.5), along the plate edge, was compared against

existing FE method with no quadrature and that of the commercial code ANSYS

for various loading and boundary conditions. The boundary conditions used were

simply supported and clamped. In both simply supported and clamped boundary

cases, two conditions exist; hard and soft. For a simply supported boundary the

hard condition is w = θn = 0 and soft is w = 0. For a clamped boundary the

hard condition is w = θn = θs = 0 and soft is w = θs = 0, where w is the lateral

displacement and θs and θn are rotations at the boundary about the tangent s
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a 

b 

n 

Figure A.5: Triangular mesh of 2x2 square plate of dimensions a and b

and the normal n respectively.

A.5.1 Patch Test

A patch of 4 elements of dimensions a = 20m, b = 20m and h = 0.1m (figure A.6)

with Young’s Modulus, E = 1e3N/m2 and Poisson’s Ratio, ν = 0.3 was loaded

in pure bending. The loading was:

Node 1 - Mx = 10N/m,My = −10N/m

Node 2 - Mx = 10N/m,My = 10N/m, w = 0

Node 3 - Mx = −10N/m,My = 10N/m, w = 0

Node 4 - Mx = −10N/m,My = −10N/m, w = 0

The same patch of elements where loaded for pure twist. The loading was:

Node 1 - Mx = 10N/m,My = −10N/m

Node 2 - Mx = −10N/m,My = −10N/m, w = 0

Node 3 - Mx = −10N/m,My = 10N/m, w = 0

Node 4 - Mx = 10N/m,My = 10N/m, w = 0
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Figure A.6: Patch test mesh

For a state of pure bending and twist the CV-DKT element passed the patch test

as shown in table A.2, displaying a state of pure bending and twist exactly.

A.5.2 Uniformly Distributed Load (UDL)

A square plate of dimensions a = b = L = 1m and L/h = 20 with Young’s Modu-

lus, E = 1e7N/m2 and Poisson’s Ratio, ν = 0.3 was loaded by a uniform pressure

of 10N/m2. For hard(figure A.7) and soft(figure A.8) clamped and hard (fig-

ure A.9) simply supported boundary conditions the CV method converges more

rapidly, as the mesh is refined, than the equivalent FEM and ANSYS elements.

The method, however, appears to converge to a value slightly greater then the

exact solution in the soft (figure A.10) simply supported case.

A.5.3 Centrally Applied Load

The same plate was loaded by a centrally applied point load of 1N. For hard

(figure A.11) and soft (figure A.12) clamped plates the method predicts the central
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Table A.2: Patch test results for a state of pure bending and twist, where wn is the transverse displacement of node n
and Mx, My and Mxy are the x bending moments, y bending moments and twisting moments respectively. Moments were
calculated at the element centroids.

w1 (m) w5 (m) Mx (N/m) My (N/m) Mxy (N/m)
Bending Element 1 - - 1.00000 0.99999 6.94e-16

Element 2 - - 1.00000 1.00000 8.24e-17
Element 3 - - 1.00000 1.00000 1.47e-16
Element 4 - - 0.99999 1.00000 5.18e-16

Displacement 0.00000 0.70875 - - -
Exact 0.00000 0.70875 1.00 1.00 0.00

Twist Element 1 - - 8.98e-17 -3.64e-15 1.00000
Element 2 - - -4.57e-17 2.59e-16 1.00000
Element 3 - - -5.52e-16 -4.90e-16 1.00000
Element 4 - - -5.35e-16 -1.76e-16 1.00000

Displacement -6.23999 -0.97499 - - -
Exact - - 0.00 0.00 1.00
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displacement as accurately as the existing quadrature free FE formulation at a

given level of mesh refinement. For the hard (figure A.13) simply supported case

convergence is to the analytical solution but again for the soft (figure A.14) simply

supported case convergence to a value above the analytical solution is observed.

A.5.4 Boundary Conditions

The boundary conditions appear to affect the convergence of the solution. For

both soft and hard clamped boundaries the convergence to the analytical solution

is good. When considering the simply supported case, there is a question about

whether there is indeed two boundary condition types, soft (figures A.10 and

A.14) and hard (figures A.9 and A.13), as in the finite element formulation. The

hard case, on increasing discretisation does converge to the exact value. The

soft case does not appear to converge properly to the analytical solution. On

further investigation of the soft simple support boundary condition it is noted

that the rotation about the normal, θn, does not converge to zero, on increasing

discretisation (figure A.15), as shown in finite element (figure A.16). In the hard

simple supported case this is prescribed and thus satisfied automatically. As the

hard case is that of the classical simply supported boundary condition [37] it

is suggested that only the hard case be used, as the soft boundary condition is

under constrained for the CVFEM formulation.

A.6 Conclusion

A control volume based finite element method is shown here for the prediction

of bending deformations in thin plates. The method is a direct equivalent to the

existing discrete Kirchhoff triangular element and displays equivalent or better

displacement convergence under various loads and boundary conditions. The

method is quadrature free, utilising the symbolic integration tools of the Maple

kernel of MATLAB.
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Figure A.7: Central deflection convergence to thin plate theory. Hard clamped
with uniform load, a/b = 1 and h = 0.05

0 1 2 3 4 5 6 7 8 9 10
0.95

1

1.05

1.1

1.15

1.2

1.25

n/L

N
or

m
al

is
ed

 W
m

ax

 

 

Theory
CVFEM 
FEM 
ANSYS 

Figure A.8: Central deflection convergence to thin plate theory. Soft clamped
with uniform load, a/b = 1 and h = 0.05
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Figure A.9: Central deflection convergence to thin plate theory. Hard simply
supported with uniform load, a/b = 1 and h = 0.05
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Figure A.10: Central deflection convergence to thin plate theory. Soft simply
supported with uniform load, a/b = 1 and h = 0.05
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Figure A.11: Central deflection convergence to thin plate theory. Hard clamped
with central point load, a/b = 1 and h = 0.05
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Figure A.12: Central deflection convergence to thin plate theory. Soft clamped
with central point load, a/b = 1 and h = 0.05
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Figure A.13: Central deflection convergence to thin plate theory. Hard simply
supported with central point load, a/b = 1 and h = 0.05
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Figure A.14: Central deflection convergence to thin plate theory. Soft simply
supported with central point load, a/b = 1 and h = 0.05
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Figure A.15: Convergence of rotation about the normal along plate boundary for
CVFEM. Soft simply supported with central point load, a/b = 1 and h = 0.05
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Figure A.16: Convergence of rotation about the normal along plate boundary for
FEM. Soft simply supported with central point load, a/b = 1 and h = 0.05
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Appendix B

MATLAB Control Volume Finite

Element Codes

B.1 CV-DKT

1 %Author: A J Beveridge

2 %Created: 2008 −09−22

3 %For: To create element stiffness matrix for

4 %control volume discete Kirchhoff triangular

5 %element

6

7 close all

8 clear all

9 clc

10

11 syms x23 x31 x12 y23 y31 y12 %predefine symbolic variable

12 syms D11 D12 D21 D22 D33

13

14 Db=[D11 D12 0 %define constitutive matrix

15 D21 D22 0 %eqn.(A.6)

16 0 0 D33];

17

18 A=x31* y12−x12 * y31; %calculate 2 x element area
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19

20 syms L1 L2 L3 %define area coordinates

21

22 N=[2 * (1 −L2−L3) * ((1/2) −L2−L3), %quadratic shape functions

23 L2* (2 * L2−1), %eqn.(A.9)

24 L3* (2 * L3−1),

25 4* L2* L3,

26 4* L3* (1 −L2−L3),

27 4* L2* (1 −L2−L3)];

28

29

30 l23=x23ˆ2+y23ˆ2; %calculate element edge lengths

31 l31=x31ˆ2+y31ˆ2;

32 l12=x12ˆ2+y12ˆ2;

33

34 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

35 %Discrete kirchhoff constraints

36 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

37

38 a4=−x23/l23;

39 a5=−x31/l31;

40 a6=−x12/l12;

41

42 b4=(3/4) * x23 * y23/l23;

43 b5=(3/4) * x31 * y31/l31;

44 b6=(3/4) * x12 * y12/l12;

45

46 c4=((1/4) * x23ˆ2 −(1/2) * y23ˆ2)/l23;

47 c5=((1/4) * x31ˆ2 −(1/2) * y31ˆ2)/l31;

48 c6=((1/4) * x12ˆ2 −(1/2) * y12ˆ2)/l12;

49

50 d4=−y23/l23;

51 d5=−y31/l31;

52 d6=−y12/l12;

53

54 e4=((1/4) * y23ˆ2 −(1/2) * x23ˆ2)/l23;

55 e5=((1/4) * y31ˆ2 −(1/2) * x31ˆ2)/l31;

56 e6=((1/4) * y12ˆ2 −(1/2) * x12ˆ2)/l12;

57

58
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59 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

60 %New shape functions eqn.(A.15)

61 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

62 Hx=[1.5 * (a6 * N(6) −a5* N(5)),

63 b5* N(5)+b6 * N(6),

64 N(1) −c5 * N(5) −c6 * N(6),

65 1.5 * (a4 * N(4) −a6* N(6)),

66 b6* N(6)+b4 * N(4),

67 N(2) −c6 * N(6) −c4 * N(4),

68 1.5 * (a5 * N(5) −a4* N(4)),

69 b4* N(4)+b5 * N(5),

70 N(3) −c4 * N(4) −c5 * N(5)];

71

72 Hy=[1.5 * (d6 * N(6) −d5* N(5)),

73 −N(1)+e5 * N(5)+e6 * N(6),

74 −b5* N(5) −b6* N(6),

75 1.5 * (d4 * N(4) −d6* N(6)),

76 −N(2)+e6 * N(6)+e4 * N(4),

77 −b6* N(6) −b4* N(4),

78 1.5 * (d5 * N(5) −d4* N(4)),

79 −N(3)+e4 * N(4)+e5 * N(5),

80 −b4* N(4) −b5* N(5)];

81

82 Hx=simple(Hx); %This step optimises the

83 Hy=simple(Hy); %symbolic output

84 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

85 %Differenciate new shape functions with respect to the

86 %area coordinates

87 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

88 dHxL2=diff(Hx,L2);

89 dHxL3=diff(Hx,L3);

90 dHyL2=diff(Hy,L2);

91 dHyL3=diff(Hy,L3);

92

93 dHxL2=simple(dHxL2);

94 dHxL3=simple(dHxL3);

95 dHyL2=simple(dHyL2);

96 dHyL3=simple(dHyL3);

97

98 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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99 %Calculate moment curvature matrix eqn.(A.17)

100 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

101 B=(1/A) * [(y31 * dHxL2.')+(y12 * dHxL3.'),

102 (−x31 * dHyL2.')+( −x12 * dHyL3.'),

103 (−x31 * dHxL2.')+( −x12 * dHxL3.')+(y31 * dHyL2.')+(y12 * dHyL3.')];

104

105 Bb=simple(B);

106 Mb=Db* Bb; %Calculate bending stresses

107

108 Mx=Mb(1,:);

109 My=Mb(2,:);

110 Mxy=Mb(3,:);

111 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

112 %Calculate shear stresses eqn.(A.18)

113 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

114 dtxL2=diff(Mx,L2);

115 dtxL3=diff(Mx,L3);

116 dtyL2=diff(My,L2);

117 dtyL3=diff(My,L3);

118 dtxyL2=diff(Mxy,L2);

119 dtxyL3=diff(Mxy,L3);

120

121 T=(1/A) * [(y31 * dtxL2)+(y12 * dtxL3)+( −x31 * dtxyL2)+( −x12 * dtxyL3),

122 (y31 * dtxyL2)+(y12 * dtxyL3)+( −x31 * dtyL2)+( −x12 * dtyL3)];

123

124 Bqd=T;

125 Bdd=Db* Bb;

126 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

127 %Control volume geometry

128 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

129 syms x1 x2 x3 y1 y2 y3 %nodal coordinates

130 x=[x1;x2;x3];

131 y=[y1;y2;y3];

132 syms Loa Lob Loc %CV face lengths

133 syms COSoa SINoa COSob SINob COSoc SINoc

134 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

135 %Moment arm functions

136 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

137 X=(x1 * (1 −L2−L3))+(x2 * L2)+(x3 * L3);

138 Y=(y1 * (1 −L2−L3))+(y2 * L2)+(y3 * L3);
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139 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

140 %Shear integrals, eqn.(A.21) substitutions in table A.1

141 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

142 Bqq=subs(Bqd,L2,(1/2) * (1 −L3),0); %substitute area coordinates

143 %integrate stress resultants

144 Qoc=(3 * Loc * COSoc* int(Bqq(1,:),L3,0,1/3))

145 +(3 * Loc * SINoc * int(Bqq(2,:),L3,0,1/3));

146 clear Bqq

147 Bqq=subs(Bqd,L3,(1/2) * (1 −L2),0);

148 Qob=(3 * Lob* COSob* int(Bqq(1,:),L2,0,1/3))

149 +(3 * Lob* SINob * int(Bqq(2,:),L2,0,1/3));

150 clear Bqq

151 Bq1=subs(Bqd,L3,L2,0);

152 Bqq=subs(Bq1,L2,(1/2) * (1 −L1),0);

153 Qoa=(3 * Loa* COSoa* int(Bqq(1,:),L1,0,1/3))

154 +(3 * Loa* SINoa * int(Bqq(2,:),L1,0,1/3));

155 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

156 %Moment integrals eqns.(A.22) and (A.23)

157 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

158 B=subs(Bdd,L2,(1/2) * (1 −L3),0);

159 Mocx=(3 * Loc * COSoc* int(B(1,:),L3,0,1/3))

160 +(3 * Loc * SINoc * int(B(3,:),L3,0,1/3));

161 Mocy=(3 * Loc * SINoc * int(B(2,:),L3,0,1/3))

162 +(3 * Loc * COSoc* int(B(3,:),L3,0,1/3));

163 clear B

164 B=subs(Bdd,L3,(1/2) * (1 −L2),0);

165 Mobx=(3 * Lob* COSob* int(B(1,:),L2,0,1/3))

166 +(3 * Lob* SINob * int(B(3,:),L2,0,1/3));

167 Moby=(3 * Lob* SINob * int(B(2,:),L2,0,1/3))

168 +(3 * Lob* COSob* int(B(3,:),L2,0,1/3));

169 clear B

170 B1=subs(Bdd,L3,L2,0);

171 B=subs(B1,L2,(1/2) * (1 −L1),0);

172 Moax=(3 * Loa* COSoa* int(B(1,:),L1,0,1/3))

173 +(3 * Loa* SINoa * int(B(3,:),L1,0,1/3));

174 Moay=(3 * Loa* SINoa * int(B(2,:),L1,0,1/3))

175 +(3 * Loa* COSoa* int(B(3,:),L1,0,1/3));

176 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

177 %Shear moment integrals eqns.(A.22) and (A.23)

178 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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179 clear Bqq

180 Xs=subs(X,L2,(1/2) * (1 −L3),0);

181 Ys=subs(Y,L2,(1/2) * (1 −L3),0);

182 Bqq=subs(Bqd,L2,(1/2) * (1 −L3),0);

183 MQocxi=((3 * Loc * COSoc* int((Xs −x1) * Bqq(1,:),L3,0,1/3))

184 +(3 * Loc * SINoc * int((Xs −x1) * Bqq(2,:),L3,0,1/3)));

185 MQocyi=((3 * Loc * COSoc* int((Ys −y1) * Bqq(1,:),L3,0,1/3))

186 +(3 * Loc * SINoc * int((Ys −y1) * Bqq(2,:),L3,0,1/3)));

187 MQocxj=(3 * Loc * COSoc* int((Xs −x2) * Bqq(1,:),L3,0,1/3))

188 +(3 * Loc * SINoc * int((Xs −x2) * Bqq(2,:),L3,0,1/3));

189 MQocyj=(3 * Loc * COSoc* int((Ys −y2) * Bqq(1,:),L3,0,1/3))

190 +(3 * Loc * SINoc * int((Ys −y2) * Bqq(2,:),L3,0,1/3));

191 clear Xs

192 clear Ys

193 clear Bqq

194 Xs=subs(X,L3,(1/2) * (1 −L2),0);

195 Ys=subs(Y,L3,(1/2) * (1 −L2),0);

196 Bqq=subs(Bqd,L3,(1/2) * (1 −L2),0);

197 MQobxi=(3 * Lob* COSob* int((Xs −x1) * Bqq(1,:),L2,0,1/3))

198 +(3 * Lob* SINob * int((Xs −x1) * Bqq(2,:),L2,0,1/3));

199 MQobyi=(3 * Lob* COSob* int((Ys −y1) * Bqq(1,:),L2,0,1/3))

200 +(3 * Lob* SINob * int((Ys −y1) * Bqq(2,:),L2,0,1/3));

201 MQobxk=((3 * Lob* COSob* int((Xs −x3) * Bqq(1,:),L2,0,1/3))

202 +(3 * Lob* SINob * int((Xs −x3) * Bqq(2,:),L2,0,1/3)));

203 MQobyk=((3 * Lob* COSob* int((Ys −y3) * Bqq(1,:),L2,0,1/3))

204 +(3 * Lob* SINob * int((Ys −y3) * Bqq(2,:),L2,0,1/3)));

205 clear Xs

206 clear Ys

207 clear Bqq

208 Xs1=subs(X,L3,L2,0);

209 Xs=subs(Xs1,L2,(1/2) * (1 −L1),0);

210 Ys1=subs(Y,L3,L2,0);

211 Ys=subs(Ys1,L2,(1/2) * (1 −L1),0);

212 Bq1=subs(Bqd,L3,L2,0);

213 Bqq=subs(Bq1,L2,(1/2) * (1 −L1),0);

214 MQoaxj=((3 * Loa* COSoa* int((Xs −x2) * Bqq(1,:),L1,0,1/3))

215 +(3 * Loa* SINoa * int((Xs −x2) * Bqq(2,:),L1,0,1/3)));

216 MQoayj=((3 * Loa* COSoa* int((Ys −y2) * Bqq(1,:),L1,0,1/3))

217 +(3 * Loa* SINoa * int((Ys −y2) * Bqq(2,:),L1,0,1/3)));

218 MQoaxk=(3 * Loa* COSoa* int((Xs −x3) * Bqq(1,:),L1,0,1/3))
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219 +(3 * Loa* SINoa * int((Xs −x3) * Bqq(2,:),L1,0,1/3));

220 MQoayk=(3 * Loa* COSoa* int((Ys −y3) * Bqq(1,:),L1,0,1/3))

221 +(3 * Loa* SINoa * int((Ys −y3) * Bqq(2,:),L1,0,1/3));

222 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

223 %Assemble global stiffness matrix from CV equilibrium eqn. (A.27)

224 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

225 %NODE i;

226 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

227 %Equilibrium in Z direction

228 k(1,:)= −(Qoc−Qob);

229 %Equilibrium in moments in X direction

230 k(3,:)= −((Mocx −MQocxi) −(Mobx−MQobxi));

231 %Equilibrium in moments in Y direction

232 k(2,:)=((Mocy −MQocyi) −(Moby−MQobyi));

233 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

234 %NODE j;

235 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

236 %Equilibrium in Z direction

237 k(4,:)= −(Qoa−Qoc);

238 %Equilibrium in moments in X direction

239 k(6,:)= −((Moax −MQoaxj) −(Mocx−MQocxj));

240 %Equilibrium in moments in Y direction

241 k(5,:)=((Moay −MQoayj) −(Mocy−MQocyj));

242 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

243 %NODE k;

244 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

245 %Equilibrium in Z direction

246 k(7,:)= −(Qob−Qoa);

247 %Equilibrium in moments in X direction

248 k(9,:)= −((Mobx −MQobxk)−(Moax−MQoaxk));

249 %Equilibrium in moments in Y direction

250 k(8,:)=((Moby −MQobyk)−(Moay−MQoayk));

B.2 CV-MPLST

1 %Author: A J Beveridge

2 %Created: 2010 −04−23
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3 %For: To create element stiffness matrix for

4 %linear strain micropolar control volume

5 %finite element CV −MPLST

6

7 close all

8 clear all

9 clc

10

11 syms x23 x31 x12 y23 y31 y12

12 syms D11 D12 D21 D22 D33 D34 D43 D44 D55 D66

13

14 D=[D11 D12 0 0 0 0 %define constitutive matrix

15 D21 D22 0 0 0 0 %eqn.(4.8)

16 0 0 D33 D34 0 0

17 0 0 D43 D44 0 0

18 0 0 0 0 D55 0

19 0 0 0 0 0 D66];

20

21 A=x31* y12−x12 * y31; %%calculate 2 x element area

22

23 syms L1 L2 L3

24

25 N=[L1 * (2 * L1−1) %quadratic shape functions

26 L2* (2 * L2−1) %eqn.(4.3)

27 L3* (2 * L3−1)

28 4* L1* L2

29 4* L2* L3

30 4* L3* L1];

31 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

32 %Differentiate shape functions

33 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

34 dNxL1=diff(N,L1);

35 dNxL2=diff(N,L2);

36 dNxL3=diff(N,L3);

37 dNyL1=diff(N,L1);

38 dNyL2=diff(N,L2);

39 dNyL3=diff(N,L3);

40

41 dNxL1=simple(dNxL1);

42 dNxL2=simple(dNxL2);
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43 dNxL3=simple(dNxL3);

44 dNyL1=simple(dNyL1);

45 dNyL2=simple(dNyL2);

46 dNyL3=simple(dNyL3);

47

48 dNx=(1/A) * (y23 * dNxL1+y31 * dNxL2+y12 * dNxL3);

49 dNy=(1/A) * ( −x23 * dNyL1−x31 * dNyL2−x12 * dNyL3);

50 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

51 %Define strain displacement matrix B and assemble

52 %from shape functions eqn.(4.13)

53 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

54 B=sym(zeros(6,18));

55

56 for n=1:6

57 B(1,(3 * n−2))=dNx(n);

58 B(2,(3 * n−1))=dNy(n);

59 B(3,(3 * n−2))=dNy(n);

60 B(3,(3 * n))=N(n);

61 B(4,(3 * n−1))=dNx(n);

62 B(4,(3 * n))= −N(n);

63 B(5,(3 * n))=dNx(n);

64 B(6,(3 * n))=dNy(n);

65 end

66

67 %calculate stress resultants eqn.(4.14)

68 Sr=D* B;

69 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

70 %Define control volume geometry

71 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

72 syms x1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5 y6 %nodal coordinates

73 x=[x1;x2;x3;x4;x5;x6];

74 y=[y1;y2;y3;y4;y5;y6];

75 syms Lga Lhb Lhc Lid Lie Lgf Ljg Ljh Lji %CV face lengths

76 syms COSga SINga COShb SINhb COShc SINhc COSid SINid COSie SI Nie

77 syms COSgf SINgf COSjg SINjg COSjh SINjh COSji SINji

78 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

79 %Moment Arm Functions eqn.(4.24)

80 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

81 X=(x(1) * L1)+(x(2) * L2)+(x(3) * L3);

82 Y=(y(1) * L1)+(y(2) * L2)+(y(3) * L3);
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83 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

84 %Calculate discrete integrals

85 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

86 %Integrating in L3

87 %Line g−a eqns.(4.26, 4.27, 4.28)

88 Srs=subs(Sr,L2,(1/3) * L1,0);

89 Srss=subs(Srs,L1,(3/4) * (1 −L3),0);

90 Xs=subs(X,L2,(1/3) * L1,0);

91 Xss=subs(Xs,L1,(3/4) * (1 −L3),0);

92 Ys=subs(Y,L2,(1/3) * L1,0);

93 Yss=subs(Ys,L1,(3/4) * (1 −L3),0);

94 Fsxga=(5 * Lga* COSga* int(Srss(1,:),L3,0,1/5));

95 Fsyga=(5 * Lga* SINga * int(Srss(2,:),L3,0,1/5));

96 Ftyxga=(5 * Lga* SINga * int(Srss(3,:),L3,0,1/5));

97 Ftxyga=(5 * Lga* COSga* int(Srss(4,:),L3,0,1/5));

98 Mxga=(5 * Lga* COSga* int(Srss(5,:),L3,0,1/5));

99 Myga=(5 * Lga* SINga * int(Srss(6,:),L3,0,1/5));

100 Msxga1=(5 * Lga* SINga * int((Yss −y(1)) * Srss(3,:),L3,0,1/5));

101 Msyga1=(5 * Lga* COSga* int((Xss −x(1)) * Srss(4,:),L3,0,1/5));

102 Msxga4=(5 * Lga* SINga * int((Yss −y(4)) * Srss(3,:),L3,0,1/5));

103 Msyga4=(5 * Lga* COSga* int((Xss −x(4)) * Srss(4,:),L3,0,1/5));

104 clear Srs Srss Xs Xss Ys Yss

105 %Line h−b (continues for all other CV faces see table 4.2

106 %for substitutions)

107 Srs=subs(Sr,L1,(1/3) * L2,0);

108 Srss=subs(Srs,L2,(3/4) * (1 −L3),0);

109 Xs=subs(X,L1,(1/3) * L2,0);

110 Xss=subs(Xs,L2,(3/4) * (1 −L3),0);

111 Ys=subs(Y,L1,(1/3) * L2,0);

112 Yss=subs(Ys,L2,(3/4) * (1 −L3),0);

113 Fsxhb=(5 * Lhb* COShb* int(Srss(1,:),L3,0,1/5));

114 Fsyhb=(5 * Lhb* SINhb * int(Srss(2,:),L3,0,1/5));

115 Ftyxhb=(5 * Lhb* SINhb * int(Srss(3,:),L3,0,1/5));

116 Ftxyhb=(5 * Lhb* COShb* int(Srss(4,:),L3,0,1/5));

117 Mxhb=(5 * Lhb* COShb* int(Srss(5,:),L3,0,1/5));

118 Myhb=(5 * Lhb* SINhb * int(Srss(6,:),L3,0,1/5));

119 Msxhb2=(5 * Lhb* SINhb * int((Yss −y(2)) * Srss(3,:),L3,0,1/5));

120 Msyhb2=(5 * Lhb* COShb* int((Xss −x(2)) * Srss(4,:),L3,0,1/5));

121 Msxhb4=(5 * Lhb* SINhb * int((Yss −y(4)) * Srss(3,:),L3,0,1/5));

122 Msyhb4=(5 * Lhb* COShb* int((Xss −x(4)) * Srss(4,:),L3,0,1/5));
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123 clear Srs Srss Xs Xss Ys Yss

124 %Line j −i

125 Srs=subs(Sr,L1,L2,0);

126 Srss=subs(Srs,L2,((1/2) * (1 −L3)),0);

127 Xs=subs(X,L1,L2,0);

128 Xss=subs(Xs,L2,((1/2) * (1 −L3)),0);

129 Ys=subs(Y,L1,L2,0);

130 Yss=subs(Ys,L2,((1/2) * (1 −L3)),0);

131 Fsxji=((15/4) * Lji * COSji * int(Srss(1,:),L3,1/3,3/5));

132 Fsyji=((15/4) * Lji * SINji * int(Srss(2,:),L3,1/3,3/5));

133 Ftyxji=((15/4) * Lji * SINji * int(Srss(3,:),L3,1/3,3/5));

134 Ftxyji=((15/4) * Lji * COSji * int(Srss(4,:),L3,1/3,3/5));

135 Mxji=((15/4) * Lji * COSji * int(Srss(5,:),L3,1/3,3/5));

136 Myji=((15/4) * Lji * SINji * int(Srss(6,:),L3,1/3,3/5));

137 Msxji5=((15/4) * Lji * SINji * int((Yss −y(5)) * Srss(3,:),L3,1/3,3/5));

138 Msyji5=((15/4) * Lji * COSji * int((Xss −x(5)) * Srss(4,:),L3,1/3,3/5));

139 Msxji6=((15/4) * Lji * SINji * int((Yss −y(6)) * Srss(3,:),L3,1/3,3/5));

140 Msyji6=((15/4) * Lji * COSji * int((Xss −x(6)) * Srss(4,:),L3,1/3,3/5));

141 clear Srs Srss Xs Xss Ys Yss

142 %−−−−−−−−−−−−−−−−−

143 %Integrating in L1

144 %Line h−c

145 Srs=subs(Sr,L3,(1/3) * L2,0);

146 Srss=subs(Srs,L2,(3/4) * (1 −L1),0);

147 Xs=subs(X,L3,(1/3) * L2,0);

148 Xss=subs(Xs,L2,(3/4) * (1 −L1),0);

149 Ys=subs(Y,L3,(1/3) * L2,0);

150 Yss=subs(Ys,L2,(3/4) * (1 −L1),0);

151 Fsxhc=(5 * Lhc * COShc* int(Srss(1,:),L1,0,1/5));

152 Fsyhc=(5 * Lhc * SINhc * int(Srss(2,:),L1,0,1/5));

153 Ftyxhc=(5 * Lhc * SINhc * int(Srss(3,:),L1,0,1/5));

154 Ftxyhc=(5 * Lhc * COShc* int(Srss(4,:),L1,0,1/5));

155 Mxhc=(5 * Lhc * COShc* int(Srss(5,:),L1,0,1/5));

156 Myhc=(5 * Lhc * SINhc * int(Srss(6,:),L1,0,1/5));

157 Msxhc2=(5 * Lhc * SINhc * int((Yss −y(2)) * Srss(3,:),L1,0,1/5));

158 Msyhc2=(5 * Lhc * COShc* int((Xss −x(2)) * Srss(4,:),L1,0,1/5));

159 Msxhc5=(5 * Lhc * SINhc * int((Yss −y(5)) * Srss(3,:),L1,0,1/5));

160 Msyhc5=(5 * Lhc * COShc* int((Xss −x(5)) * Srss(4,:),L1,0,1/5));

161 clear Srs Srss Xs Xss Ys Yss

162 %Line i −d

127



163 Srs=subs(Sr,L2,(1/3) * L3,0);

164 Srss=subs(Srs,L3,(3/4) * (1 −L1),0);

165 Xs=subs(X,L2,(1/3) * L3,0);

166 Xss=subs(Xs,L3,(3/4) * (1 −L1),0);

167 Ys=subs(Y,L2,(1/3) * L3,0);

168 Yss=subs(Ys,L3,(3/4) * (1 −L1),0);

169 Fsxid=(5 * Lid * COSid* int(Srss(1,:),L1,0,1/5));

170 Fsyid=(5 * Lid * SINid * int(Srss(2,:),L1,0,1/5));

171 Ftyxid=(5 * Lid * SINid * int(Srss(3,:),L1,0,1/5));

172 Ftxyid=(5 * Lid * COSid* int(Srss(4,:),L1,0,1/5));

173 Mxid=(5 * Lid * COSid* int(Srss(5,:),L1,0,1/5));

174 Myid=(5 * Lid * SINid * int(Srss(6,:),L1,0,1/5));

175 Msxid3=(5 * Lid * SINid * int((Yss −y(3)) * Srss(3,:),L1,0,1/5));

176 Msyid3=(5 * Lid * COSid* int((Xss −x(3)) * Srss(4,:),L1,0,1/5));

177 Msxid5=(5 * Lid * SINid * int((Yss −y(5)) * Srss(3,:),L1,0,1/5));

178 Msyid5=(5 * Lid * COSid* int((Xss −x(5)) * Srss(4,:),L1,0,1/5));

179 clear Srs Srss Xs Xss Ys Yss

180 %Line j −g

181 Srs=subs(Sr,L2,L3,0);

182 Srss=subs(Srs,L3,((1/2) * (1 −L1)),0);

183 Xs=subs(X,L2,L3,0);

184 Xss=subs(Xs,L3,((1/2) * (1 −L1)),0);

185 Ys=subs(Y,L2,L3,0);

186 Yss=subs(Ys,L3,((1/2) * (1 −L1)),0);

187 Fsxjg=((15/4) * Ljg * COSjg* int(Srss(1,:),L1,1/3,3/5));

188 Fsyjg=((15/4) * Ljg * SINjg * int(Srss(2,:),L1,1/3,3/5));

189 Ftyxjg=((15/4) * Ljg * SINjg * int(Srss(3,:),L1,1/3,3/5));

190 Ftxyjg=((15/4) * Ljg * COSjg* int(Srss(4,:),L1,1/3,3/5));

191 Mxjg=((15/4) * Ljg * COSjg* int(Srss(5,:),L1,1/3,3/5));

192 Myjg=((15/4) * Ljg * SINjg * int(Srss(6,:),L1,1/3,3/5));

193 Msxjg4=((15/4) * Ljg * SINjg * int((Yss −y(4)) * Srss(3,:),L1,1/3,3/5));

194 Msyjg4=((15/4) * Ljg * COSjg* int((Xss −x(4)) * Srss(4,:),L1,1/3,3/5));

195 Msxjg6=((15/4) * Ljg * SINjg * int((Yss −y(6)) * Srss(3,:),L1,1/3,3/5));

196 Msyjg6=((15/4) * Ljg * COSjg* int((Xss −x(6)) * Srss(4,:),L1,1/3,3/5));

197 clear Srs Srss Xs Xss Ys Yss

198 %−−−−−−−−−−−−−−−−−

199 %Integrating in L2

200 %Line i −e

201 Srs=subs(Sr,L1,(1/3) * L3,0);

202 Srss=subs(Srs,L3,(3/4) * (1 −L2),0);
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203 Xs=subs(X,L1,(1/3) * L3,0);

204 Xss=subs(Xs,L3,(3/4) * (1 −L2),0);

205 Ys=subs(Y,L1,(1/3) * L3,0);

206 Yss=subs(Ys,L3,(3/4) * (1 −L2),0);

207 Fsxie=(5 * Lie * COSie* int(Srss(1,:),L2,0,1/5));

208 Fsyie=(5 * Lie * SINie * int(Srss(2,:),L2,0,1/5));

209 Ftyxie=(5 * Lie * SINie * int(Srss(3,:),L2,0,1/5));

210 Ftxyie=(5 * Lie * COSie* int(Srss(4,:),L2,0,1/5));

211 Mxie=(5 * Lie * COSie* int(Srss(5,:),L2,0,1/5));

212 Myie=(5 * Lie * SINie * int(Srss(6,:),L2,0,1/5));

213 Msxie3=(5 * Lie * SINie * int((Yss −y(3)) * Srss(3,:),L2,0,1/5));

214 Msyie3=(5 * Lie * COSie* int((Xss −x(3)) * Srss(4,:),L2,0,1/5));

215 Msxie6=(5 * Lie * SINie * int((Yss −y(6)) * Srss(3,:),L2,0,1/5));

216 Msyie6=(5 * Lie * COSie* int((Xss −x(6)) * Srss(4,:),L2,0,1/5));

217 clear Srs Srss Xs Xss Ys Yss

218 %Line g−f

219 Srs=subs(Sr,L3,(1/3) * L1,0);

220 Srss=subs(Srs,L1,(3/4) * (1 −L2),0);

221 Xs=subs(X,L3,(1/3) * L1,0);

222 Xss=subs(Xs,L1,(3/4) * (1 −L2),0);

223 Ys=subs(Y,L3,(1/3) * L1,0);

224 Yss=subs(Ys,L1,(3/4) * (1 −L2),0);

225 Fsxgf=(5 * Lgf * COSgf* int(Srss(1,:),L2,0,1/5));

226 Fsygf=(5 * Lgf * SINgf * int(Srss(2,:),L2,0,1/5));

227 Ftyxgf=(5 * Lgf * SINgf * int(Srss(3,:),L2,0,1/5));

228 Ftxygf=(5 * Lgf * COSgf* int(Srss(4,:),L2,0,1/5));

229 Mxgf=(5 * Lgf * COSgf* int(Srss(5,:),L2,0,1/5));

230 Mygf=(5 * Lgf * SINgf * int(Srss(6,:),L2,0,1/5));

231 Msxgf1=(5 * Lgf * SINgf * int((Yss −y(1)) * Srss(3,:),L2,0,1/5));

232 Msygf1=(5 * Lgf * COSgf* int((Xss −x(1)) * Srss(4,:),L2,0,1/5));

233 Msxgf6=(5 * Lgf * SINgf * int((Yss −y(6)) * Srss(3,:),L2,0,1/5));

234 Msygf6=(5 * Lgf * COSgf* int((Xss −x(6)) * Srss(4,:),L2,0,1/5));

235 clear Srs Srss Xs Xss Ys Yss

236 %Line j −h

237 Srs=subs(Sr,L1,L3,0);

238 Srss=subs(Srs,L3,((1/2) * (1 −L2)),0);

239 Xs=subs(X,L1,L3,0);

240 Xss=subs(Xs,L3,((1/2) * (1 −L2)),0);

241 Ys=subs(Y,L1,L3,0);

242 Yss=subs(Ys,L3,((1/2) * (1 −L2)),0);
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243 Fsxjh=((15/4) * Ljh * COSjh* int(Srss(1,:),L2,1/3,3/5));

244 Fsyjh=((15/4) * Ljh * SINjh * int(Srss(2,:),L2,1/3,3/5));

245 Ftyxjh=((15/4) * Ljh * SINjh * int(Srss(3,:),L2,1/3,3/5));

246 Ftxyjh=((15/4) * Ljh * COSjh* int(Srss(4,:),L2,1/3,3/5));

247 Mxjh=((15/4) * Ljh * COSjh* int(Srss(5,:),L2,1/3,3/5));

248 Myjh=((15/4) * Ljh * SINjh * int(Srss(6,:),L2,1/3,3/5));

249 Msxjh4=((15/4) * Ljh * SINjh * int((Yss −y(4)) * Srss(3,:),L2,1/3,3/5));

250 Msyjh4=((15/4) * Ljh * COSjh* int((Xss −x(4)) * Srss(4,:),L2,1/3,3/5));

251 Msxjh5=((15/4) * Ljh * SINjh * int((Yss −y(5)) * Srss(3,:),L2,1/3,3/5));

252 Msyjh5=((15/4) * Ljh * COSjh* int((Xss −x(5)) * Srss(4,:),L2,1/3,3/5));

253 clear Srs Srss Xs Xss Ys Yss

254 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

255 %Assemble global stiffness matrix from CV equilibrium equa tions

256 %eqn.(4.29)

257 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

258 %node 1

259 %equilibrium in x stress

260 k(1,:)=( −(Fsxga+Ftyxga)+(Fsxgf+Ftyxgf));

261 %equilibrium in y stress

262 k(2,:)=( −(Fsyga+Ftxyga)+(Fsygf+Ftxygf));

263 %equilibrium of couple stress

264 k(3,:)=( −((Mxga+Myga) −Msxga1+Msyga1)

265 +((Mxgf+Mygf) −Msxgf1+Msygf1));

266 %node 2

267 k(4,:)=( −(Fsxhc+Ftyxhc)+(Fsxhb+Ftyxhb));

268 k(5,:)=( −(Fsyhc+Ftxyhc)+(Fsyhb+Ftxyhb));

269 k(6,:)=( −((Mxhc+Myhc) −Msxhc2+Msyhc2)

270 +((Mxhb+Myhb) −Msxhb2+Msyhb2));

271 %node 3

272 k(7,:)=( −(Fsxie+Ftyxie)+(Fsxid+Ftyxid));

273 k(8,:)=( −(Fsyie+Ftxyie)+(Fsyid+Ftxyid));

274 k(9,:)=( −((Mxie+Myie) −Msxie3+Msyie3)

275 +((Mxid+Myid) −Msxid3+Msyid3));

276 %node 4

277 k(10,:)=( −((Fsxhb+Ftyxhb)+(Fsxjh+Ftyxjh))

278 +((Fsxjg+Ftyxjg)+(Fsxga+Ftyxga)));

279 k(11,:)=( −((Fsyhb+Ftxyhb)+(Fsyjh+Ftxyjh))

280 +((Fsyjg+Ftxyjg)+(Fsyga+Ftxyga)));

281 k(12,:)=( −((Mxhb+Myhb) −Msxhb4+Msyhb4) −((Mxjh+Myjh) −Msxjh4+Msyjh4)

282 +((Mxjg+Myjg) −Msxjg4+Msyjg4)+((Mxga+Myga) −Msxga4+Msyga4));
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283 %node 5

284 k(13,:)=( −((Fsxid+Ftyxid)+(Fsxji+Ftyxji))

285 +((Fsxjh+Ftyxjh)+(Fsxhc+Ftyxhc)));

286 k(14,:)=( −((Fsyid+Ftxyid)+(Fsyji+Ftxyji))

287 +((Fsyjh+Ftxyjh)+(Fsyhc+Ftxyhc)));

288 k(15,:)=( −((Mxid+Myid) −Msxid5+Msyid5) −((Mxji+Myji) −Msxji5+Msyji5)

289 +((Mxjh+Myjh) −Msxjh5+Msyjh5)+((Mxhc+Myhc) −Msxhc5+Msyhc5));

290 %node 6

291 k(16,:)=( −((Fsxgf+Ftyxgf)+(Fsxjg+Ftyxjg))

292 +((Fsxji+Ftyxji)+(Fsxie+Ftyxie)));

293 k(17,:)=( −((Fsygf+Ftxygf)+(Fsyjg+Ftxyjg))

294 +((Fsyji+Ftxyji)+(Fsyie+Ftxyie)));

295 k(18,:)=( −((Mxgf+Mygf) −Msxgf6+Msygf6) −((Mxjg+Myjg) −Msxjg6+Msyjg6)

296 +((Mxji+Myji) −Msxji6+Msyji6)+((Mxie+Myie) −Msxie6+Msyie6));
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Appendix C

MATLAB Iterative Constitutive

Code

C.1 MicropolarBeamREGbeta Code

1 %MicropolarBeamREGbeta

2 %Author: A J Beveridge

3 %Created: 2010 −03−01

4 %Modified: 2010 −05−28

5 %For: To pick the correct consitutive properties to fit

6 %experimental data with a plane micropolar model.

7

8 clc

9 close all

10 clear all

11

12 CON=0.99; %target value of coefficient of multiple determination

13

14 ANSYSk=[2902642.537 6440910.148 18255016.34 %HMD ANSYS data

15 2195098.345 5018438.961 15222982.09

16 2043225.003 4705825.946 14587940.23

17 1982382.113 4556734.854 13998064.82];

18
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19 depth=[0.0127;0.0254;0.0381;0.0508];

20 b=0.0127;

21 span=[10.08;7.56;5.04];

22 L h=[10;7;5];

23 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

24 %Initial guess of Em and gamma from straight line fit

25 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

26 STIFF10=ANSYSk(:,1);

27 iGuess=polyfit(1./depth.ˆ2,STIFF10,1);

28 Em=iGuess(2)/(4 * b* (1/span(1))ˆ3); %eqn.(3.1)

29 lb=sqrt(iGuess(1)/(4 * b* Em* (1/span(1)ˆ3))); %eqn.(3.1)

30 gamma=(lbˆ2 * Em)/12; %eqn.(2.45)

31 N=0.25;

32 vm=0.3;

33 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

34 %Loop i for N using L/h=5.04

35 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

36 %calculate initial results from guessed material properti es

37 for i=1:length(depth)

38 d=depth(i)

39 L=(span(3) * d)/2;

40 Lh=L h(3);

41 %function containing CVFEM solution procedure

42 [CVFEMstif]=CVFEMsolution(L,d,b,Em,vm,gamma,N,Lh);

43 f(i)=CVFEMstif;

44 y(i)=ANSYSk(i,3);

45 end

46 %calculate coefficient of multiple determination

47 ymean=(1/length(y)) * sum(y);

48 err=(y −f).ˆ2;

49 tot=(y −ymean).ˆ2;

50 SSerr=sum(err); %eqn.(5.2)

51 SStot=sum(tot); %eqn.(5.3)

52 R2i=1 −(SSerr/SStot); %eqn.(5.1)

53 R2im=R2i;

54 %begin loop to optimise material property

55 while R2i <CON

56 for i=1:length(depth)

57 d=depth(i)

58 L=(span(3) * d)/2;

133



59 Lh=L h(3);

60 [CVFEMstif]=CVFEMsolution(L,d,b,Em,vm,gamma,N,Lh);

61 f(i)=CVFEMstif;

62 y(i)=ANSYSk(i,3);

63 end

64 ymean=(1/length(y)) * sum(y);

65 res=(y −f);

66 err=(y −f).ˆ2;

67 tot=(y −ymean).ˆ2;

68 SSerr=sum(err);

69 SStot=sum(tot);

70 R2i=1 −(SSerr/SStot)

71 if R2im>R2i

72 Nm=N

73 break %break loop if R2 diverges from previous iteration

74 end

75 R2im=R2i

76 Nm=N

77 %update guess of the coupling number

78 N=(1/length(y)) * sum((y./f)) * Nm; %eqn.(5.4)

79 end

80 R2i=R2im;

81 N=Nm;

82 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

83 %Loop j for gamma using L/d=10.08

84 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

85 for i=1:length(depth)

86 d=depth(i)

87 L=(span(1) * d)/2;

88 Lh=L h(1);

89 [CVFEMstif]=CVFEMsolution(L,d,b,Em,vm,gamma,N,Lh);

90 f(i)=CVFEMstif;

91 y(i)=ANSYSk(i,1);

92 end

93 ymean=(1/length(y)) * sum(y);

94 err=(y −f).ˆ2;

95 tot=(y −ymean).ˆ2;

96 SSerr=sum(err);

97 SStot=sum(tot);

98 R2j=1 −(SSerr/SStot);
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99 R2jm=R2j;

100 while R2j <CON

101 for i=1:length(depth)

102 d=depth(i)

103 L=(span(1) * d)/2;

104 Lh=L h(1);

105 [CVFEMstif]=CVFEMsolution(L,d,b,Em,vm,gamma,N,Lh);

106 f(i)=CVFEMstif;

107 y(i)=ANSYSk(i,1);

108 end

109 ymean=(1/length(y)) * sum(y);

110 res=(y −f);

111 err=(y −f).ˆ2;

112 tot=(y −ymean).ˆ2;

113 SSerr=sum(err);

114 SStot=sum(tot);

115 R2j=1 −(SSerr/SStot)

116 if R2jm>R2j

117 break

118 end

119 R2jm=R2j

120 gammac=gamma

121 gamma=(1/length(y)) * sum((y./f)) * gammac;

122 end

123 R2j=R2jm;

124 gamma=gammac;
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Appendix D

Ansys Discrete Detail Input Files

D.1 HMD Geometry Input B1

1 fini

2 /clear

3 /prep7

4

5 NCx=8

6

7 ES=1

8 refine=1

9

10 pi=3.141592654

11 L1=0.016

12 L2=0.0127

13 r1=0.0035

14 r2=(1+(ES/10)) * r1

15 r3=(1+(ES/10)) * r2

16

17 et,1,183

18 keyopt,1,3,3

19 real,1

20 R,,0.0127

21
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22 mp,ex,1,70.0E9

23 mp,prxy,1,0.3

24

25 k,,

26 k,,L1/2

27 k,,L1/2,L2/2

28 k,,,L2/2

29 k,,(L1/2) −(L1/2)/(10),

30 k,,(L1/2) −(L1/2)/(10),L2/2

31 k,,,(L2/2) −(L1/2)/(20)

32 k,,L1/2,(L2/2) −(L1/2)/(20)

33 k,,(L1/2) −(L1/2)/10,(L2/2) −(L1/2)/(20)

34

35 CIRCLE,1,r1,,,90,2

36 CIRCLE,1,r2,,,90,2

37

38 a,12,15,14,11,12

39 a,11,14,13,10,11

40 a,15,7,9,14,15

41 a,14,9,5,13,14

42 a,7,4,6,9,7

43 a,9,6,3,8,9

44 a,9,8,2,5,9

45

46 lesize,12,,,4 * refine

47 lesize,8,,,4 * refine

48 lesize,10,,,4 * refine

49 lesize,1,,,9 * refine

50 lesize,2,,,9 * refine

51 lesize,3,,,9 * refine

52 lesize,4,,,9 * refine

53 lesize,5,,,1 * refine

54 lesize,6,,,1 * refine

55 lesize,7,,,1 * refine

56 lesize,9,,,9 * refine

57 lesize,11,,,9 * refine

58 lesize,13,,,1 * refine

59 lesize,14,,,9 * refine

60 lesize,11,,,9 * refine

61 lesize,15,,,1 * refine
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62 lesize,16,,,1 * refine

63 lesize,17,,,1 * refine

64 lesize,18,,,1 * refine

65 lesize,19,,,9 * refine

66 lesize,20,,,1 * refine

67

68 mshkey,1

69 amesh,all

70

71 ARSYM,Y,all

72 ARSYM,X,all

73

74 * DO,X,1,NCx

75 AGEN,2,1,28,,X * L1,,,,0

76 * ENDDO

77

78 AGEN,2,1,14,, −(L1),

79

80 asel,all

81

82 NUMMRG,all,10E −6

83 NUMCMP,all

D.2 LMD Geometry Input B1

1 fini

2 /clear

3 /prep7

4

5 NCx=16

6 NCy=1

7

8 ES=1

9 refine=0.5

10

11 pi=3.141592654

12 L1=0.009
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13 L2=0.0127

14 r1=0.0035

15 r2=(1+(ES/10)) * r1

16 r3=(1+(ES/10)) * r2

17

18

19 et,1,183

20 keyopt,1,3,3

21 real,1

22 R,,0.0127

23

24 mp,ex,1,70E9

25 mp,prxy,1,0.3

26

27 k,,

28 k,,L1/2

29 k,,L1/2,L2/2

30 k,,,L2/2

31 k,,,(L2/2) −(L1/2)/(2.5)

32 k,,L1/2,(L2/2) −(L1/2)/(2.5)

33

34 CIRCLE,1,r1,,,90,2

35 CIRCLE,1,r2,,,90,2

36

37 a,8,9,12,11,8

38 a,7,8,11,10,7

39 a,11,12,5,6,11

40 a,10,11,6,2,10

41 a,5,4,3,6,5

42

43 lesize,14,,,10 * refine

44 lesize,9,,,10 * refine

45 lesize,4,,,10 * refine

46 lesize,2,,,10 * refine

47 lesize,1,,,10 * refine

48 lesize,3,,,10 * refine

49 lesize,11,,,10 * refine

50 lesize,7,,,1 * refine

51 lesize,6,,,1 * refine

52 lesize,5,,,1 * refine
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53 lesize,12,,,4 * refine

54 lesize,10,,,4 * refine

55 lesize,8,,,4 * refine

56 lesize,13,,,5 * refine

57 lesize,15,,,5 * refine

58

59 mshkey,1

60 amesh,all

61

62 ARSYM,Y,all

63 ARSYM,X,all

64

65 * DO,X,1,NCx

66 AGEN,2,1,20,,X * L1,,,,0

67 * ENDDO

68

69 AGEN,2,1,10,, −(L1),

70

71 asel,all

72

73 NUMMRG,all,10E −6

74 NUMCMP,all
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