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Abstract

We consider Yip’s formulation of the Ericksen model for an elastic bar on an elastic

foundation [63] which leads to the Euler-Lagrange equation for the functional

E(u) =

∫ 1

0
(γ u2

xx +W (ux) + αu2) dx, x ∈ (0, 1),

with double Dirichlet boundary conditions. Here the potential W (p) = (|p| − 1)2), is

not differentiable at p = 0.

We define and prove existence and uniqueness of periodic solutions with any number

n ≥ 0 of internal zeroes for all α, γ > 0 and discuss the existence of non-periodic

solutions.

The Euler-Lagrange equation contains conditions that make it difficult to track, and

then dropping one of them we obtain a weak formulation for this reduced problem,

which we then prove it has a unique solution. Next, we use a combination of two

numerical methods, namely the Finite Elements Method (FEM) to approximate the

model and the Derivative Free Optimization (DFO) to find the location of the jump.
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5.4 Basis of Ṽh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Exact symmetric solution when α = 93, γ = 0.05. . . . . . . . . . . . . . 121

5.6 Numerical solution with α = 93, γ = 0.05 and N = 10. . . . . . . . . . 122

5.7 Numerical solution with α = 93, γ = 0.05 and N = 40. . . . . . . . . . . 122

5.8 Numerical solution with α = 93, γ = 0.05 and N = 100. . . . . . . . . . 123

5.9 Numerical solution with α = 93, γ = 0.05 and N = 1000. . . . . . . . . . 123

x



List of Figures

5.10 Log-log plot of the error estimate of the energy u for α = 93, γ = 0.05

and c = 0.5. The x-axis represents log(N) while the y-axis represents

log |E − Eh|. Notice the linear pattern. . . . . . . . . . . . . . . . . . . . 125

5.11 Log-log plot of the error estimate of the energy u for α = 93, γ = 0.05

and c = 0.5. The x-axis represents log(N) while the y-axis represents
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Chapter 1

Introduction

1.1 Solid Solid Phase transitions

Our work is motivated by the study of solid-solid transformations. Those transforma-

tions occur when we have transition from one solid state to a different solid state [16].

As an example, ice has 18 different known solid states that range from amorphous

ice, all the way up to what is known as square ice [15]. Some of these transition can

be viewed graphically in the following Log-lin pressure-temperature phase diagram of

water:

Figure 1.1: Log-lin pressure-temperature phase diagram of water [15].
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1.2 Microstructures

Traditionally, a microstructure is any structure between the macroscopic scale (i.e.

objects big enough to observe with naked eye) and the atomic scale (i.e the size that

even microscopes fail to detect) [48].

According to Müller [48], microstructures are important since they affect the way ma-

terial behaves in the macroscopic world. Thus scientists are incentivized to build model

that both describe them properly and predict their behaviour.

In particular, one may use variational models which when optimized highly resemble

certain configurations of the microstructures. Examples of such models appear in solid-

solid phase transformations of elastic material, usually alloys (see Figure 1.2). [48].

When it heats up, iron undergoes phase alteration in the sequence α → β → γ → δ.

Iron’s stable phase at ambient temperature is called α iron. Iron converts to the β

phase when it heats to 790◦C. Furthermore, when iron heats to 910◦C, it converts to γ

iron. At 1400◦C, iron achieves the final solid-state change on heating, namely, γ → δ.

There is a close association between the γ → α change on temperature reduction and

what is known as martensitic transformation. [49]

More specifically, we are interested in a group of solid-solid phase trasformations known

by the name of Martensitic transformations (named after Adolf Martens), where the

structure of material (lattice) changes suddenly at certain temperature levels. In partic-

ular, we can identify two extreme phases. The phase associated with high temperature

is called Austenite while the phase associated with low-temperature is called Martem-

site [7, 20].

Mathematically, these two different phases are associated with the two different “bot-

toms” of the double well potential. In other words, as the strain oscillates from −1

to +1, the equilibrium states do as well and we transition between the two phases

described above (Martensite to Austenite and vice versa).

The microstructure features of the martensitic phase transformation can be observed
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in pictures like the one following in Figure 1.2

Figure 1.2: Martensitic microstructure (Chu and James, University of Minnesota) [48].

1.3 One dimensional Non-Linear Elasticity

Let us consider a piece of material that undergoes a certain deformation. More formally,

if Ω represents the location (domain) of all particles in the reference (non-deformed)

configuration, the deformation can be thought of as a smooth mapping R : Ω→ R3 [52].

For each x ∈ Ω we let the displacement of x be u(x) = R(x)−x, i.e. the vector change

of a particle originally in position x, after the deformation. Here, we are interested in

one dimensional domain, like 1-dimensional rods, and in particular Ω = [0, 1]. There,

the amount of deformation applied to a point x ∈ Ω is measured by the strain ε, which

is the percentage of change with respect to the initial location [43].

ε =
du

dx
= ux. (1.3.1)

Next, we define the stress σ, which is generally thought of as the amount of force applied

per unit area, as a function of strain. Namely:

σ(x) = σ(ε(x)) = σ(ux(x)),
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where σ is generally a non-linear smooth function [41]. For simplicity, we will often

write: σ = σ(ε).

Figure 1.3: Linear vs. non-linear stress-strain relationship.

We know from physics that we have an equation of motion. Starting with Newton’s

Second Law:

Ftot = ma, (1.3.2)

where, Ftot are all forces applied to a particle, a is acceleration of the particle and m is

mass of the particle. Let us concentrate in a small region of a rod. Let b be the average

force per unit volume. Using (1.3.2), we get the 1-dimensional equation of motion [43]:

dσ

dx
+ b = ρ a. (1.3.3)

where ρ is the density of the material and it is connected to the mass m via the formula

dm = ρ dv (with dv being the infinitesimal volume of the object).

Now, if we let a = 0 (still object) and σ = σ(ux), we get the Navier’s first equation of

motion:
d

dx
(σ(ux)) + b = 0.

In practice, the body force b is usually negligible, so we can assume b ≈ 0. This leads
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to the first formulation of the problem, namely [43]:

d

dx
(σ(ux) = 0 (1.3.4)

which turns out to be the Euler Lagrange equation of the following functional

E(ux) =

1∫
0

W (ux) dx. (1.3.5)

To see this, start by defining stress via the following relation:

σ(ux) = W ′(ux). (1.3.6)

From there, consider the Euler-Lagrange equation of (1.3.5) which is given by:

∂W (ux)

∂u
− d

dx

∂W (ux)

∂ux
= 0

⇒ d

dx
W ′(ux) = [W ′(ux)]x = 0

⇒σ(ux)x = 0.

On top of the above two main formulations of the problem (1.3.5) and (1.3.4), we have a

third one, namely the variational formulation. Starting with (1.3.4) and multiplying it

on both sides by an arbitrary smooth function v : [0, 1]→ R satisfying v(0) = v(1) = 0

σ(ux)x v(x) = 0.

By taking the integral and using integration by parts we get

1∫
0

σ(ux) v′(x) dx = 0 for all smooth v : [0, 1]→ R. (1.3.7)

5
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1.3.1 Dynamic Version

The three formulations above are all time invariant. We can include time in our model

by allowing

a =
d2u

dt2
= utt (i)

in the Navier’s equation (1.3.3).

(σ′(ux))uxx = ρ a. (ii)

By (i) and (ii) we get the time dependent version of our first formulation above

(σ′(ux))uxx = ρ utt. (1.3.8)

1.3.2 Boundary conditions

Naturally, all of the PDE’s described above are subject to boundary conditions, those

depend on the context and restrictions of our model. For example we can have

� Dirchlet boundary conditions (time invariant): u(0) = u(1) = 0

� Dirchlet boundary conditions (time dependent):

 u(0, t) = u(1, t) = 0 ∀ 0 ≤ t ≤ T

u(x, 0) = u(x, T ) = 0 ∀ 0 ≤ x ≤ 1

For more detailed analysis see [5], [50].

1.4 Ericksen’s Model

Ericksen was the first one to study equilibria on a non-linear elastic bar attached to

an elastic foundation. In his original paper [32] in 1975 Ericksen viewed the bar as a
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one-dimensional solid on the interval [0, 1]. The function u : [0, 1] → R represents the

displacement of the bar at the point x ∈ [0, 1], and the study of equilibria reduces to

the following problem:

minimize E(ux) =

1∫
0

W (ux) dx, (1.4.1)

subject to

u(0) = 0 , u(1) = β

where β is the total strain imposed on the bar and W (ux) is the free energy density or

the double-well potential function with two minima/zeroes at ux = ±1.

If W (ux) is convex, the above problem has a unique solution, which would make for an

unsatisfactory model as it would not account for phase transitions in solids. In order

to resolve this issue, Ericksen proposed a non-convex energy density function, given by:

W (ux) =
1

4
[(ux)2 − 1]2. (1.4.2)

a b

Figure 1.5: (a) energy density; (b) stress

Ericksen proved that for every −1 6 β 6 1, the minimization problem above has
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multiple solutions. In particular, u which alternates between the states ux = ±1 is a

solution [13,55,59].

1.5 Further work on Ericksen’s Model

Later on, Ball et.al. [4] in 1991 using Young’s prior work in 1980 [64], Added the term

αu2. That is, α models the stiffness of the material namely the resistance of the bar

to change when subjected to external influences [6,59]. More specifically, we assume a

linear relationship between the displacement and the force F associated with stiffness

(Hook’s Law):

F (u) = αu. (1.5.1)

We then know that the potential energy (PE) due to stiffness is given by:

PE =

u∫
0

F (s)ds =

u∫
0

α s ds =
1

2
αu2.

Adding the above potential energy (elastic foundation) to the energy functional model

produces [60]:

E(ux) =

1∫
0

[W (ux) + αu2] dx. (1.5.2)

Here, u(x) is the lateral displacement of the bar and α measures how strongly the bar

is welded to the foundation [40]. In other words, the introduction of the αu2 term

allows for the strain (ux) to be near the bottom of the wells only if the displacements

u(x) are small which requires fine oscillations [55].

Unfortunately, the above model does not fully capture the essence of the microstructure

either as in that case E(u) produces minimizing sequences of displacement functions

with increasingly faster oscillations between ux ≈ ±1. The idea is that such displace-
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ments try to achieve ux = ±1 and u ≈ 0 simultaneously. This results in a sawtooth

pattern in which the states ux = ±1 show up at a ratio of approximately 1 : 1. At the

limit infimum of the functional over such minimizing sequence is zero. In other words,

we can construct an infinite family of functions ui(x) each of which smoothly oscillates

i times from (ui)x(x) = 1 to (ui)x(x) = −1. So we can create an infinite sequence of ui

so that each ui has an increasing number of oscillations around zero while E(ui) gets

closer and closer to zero without reaching it [47,59,61].

Figure 1.6: Examples of patterns of oscillations

Note: when α = 1, (1.5.2) is called ”tacking problem” and known from the time of

Bolza and Young [9,48].

1.5.1 Müller’s problem

To resolve this issue of increasing the number of oscillations, Müller [47] in 1993 pro-

posed the inclusion of the surface energy density γu2
xx that penalizes oscillations (i.e.

abrupt changes in ux). This leads to the following model:

minimize E(ux) =

1∫
0

[γu2
xx + (W (ux)) + αu2] dx (1.5.3)

9



CHAPTER ONE

where

W (ux) = (u2
x − 1)2.

The main result of Müller’s paper is the following theorem:

Theorem 1. For a small enough γ and fixed α = 1, a global minimizer is always

periodic.

Moreover, Müller formulated a conjecture about local minimizers.

Conjecture 2. All Local minimizers of E2 are periodic.

where

E2 =
1

2

1∫
0

[u2
t + γu2

xx + 2W (ux) +
α

2
u2] dx.

1.5.2 Grinfeld and Lord’s work

Later on in 2008 Grinfeld and Lord [40] used bifurcation analysis to give evidence for

Müller’s Conjecture 2. In particular they studied the symmetry of the local minimizers

of E2 and described in detail the structure of the primary branch connections.

Moreover, Grinfeld and Lord formulated a conjecture for Müller’s problem based on

numerical observations.

Conjecture 3. If α > k2π2, there are no equilibria with less than k−1 internal zeroes.

Conjecture 3 says that if α is sufficiently large (α > k2π2 where k is an integer) then

the Euler Lagrange equation has no solution with less than (k − 1) internal zeros. In

particular, when α is large, then there should not be any solution with no internal

zeros.

1.5.3 Yip’s work

A few years earlier in 2006, Yip [63] considered (1.5.3) but with W (ux) = (|ux| − 1)2

which has a discontinuous first derivative (see Figure 1.8).
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a b

Figure 1.8: (a) energy density W (P ) = (|P | − 1)2; (b) stress

The functional above (1.5.3) yields the following Euler-Lagrange equation which can

be solved explicitly:

γ uxxxx − uxx + αu = 0 (1.5.4)

where the above is defined in the intervals where ux 6= 0. At the points c1, c2, ..., cn

where ux = 0 and ux changes signs, we have a jump condition for uxxx. We say that

u ∈ Z if all the above are true and u ∈ C2 [0, 1].

Yip [63] considered solutions of (1.5.3) in the following sense:

Definition 1.5.1. A function u ∈ Z is called a solution of (1.5.4) if the following hold

for all i:

γ uxxxx − uxx + αu = 0 on (ci, ci+1); (1.5.5)

ux(ci) = 0 and ux ≥ 0 (or ux ≤ 0) for all x ∈ (ci, ci+1); (1.5.6)

[γuxxx](ci)(= [
1

2
W
′
(ux)](ci)) = −2sgn∗(uxx(ci)); (1.5.7)

ux(0) = ux(1) = 0, γuxxx(0) = −sgn∗(uxx(0)), γuxxx(1) = sgn∗(uxx(1)). (1.5.8)
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Where the bracket notation [f ](x) = f(x+)− f(x−), and the star notation

2sgn∗(uxx(ci)) = sgn(ux(c+
i ))− sgn(ux(c−i )).

The main result of Yip’s paper is the following theorem [63]:

Theorem 4. For a small enough γ and fixed α = 1, all local minimizers are always

periodic.

1.6 Other relevant work

As we already saw, the phase transitions of solid solid transformations reveal a fine

layered microstructure. Starting with Ericksen in 1975, scientists have tried to the-

oretically model such phenomena and made considerable progress for more than 40

years [37].

As mentioned earlier, the standard approach in the literature is to find minimizers

of an energy functional, modeled by non-convex elastic strain energy which usually

represnted by some form of a double well potential. In his pivotal work Ericksen [32]

showed the existence of non-unique minimizers in the case of a 1-dimensional elastic

bar with a non-monotone stress-strain relation [37].

Ball et.al. [4] proposed a time dependent process as a candidate for modelling mi-

crostructures dynamically:

utt = (W ′(ux) + β utx))x − αu (1.6.1)

with Dirichlet boundary conditions u(0, t) = u(1, t) = 0 and W ′(ux) = 1
4(ux − 1)2.

Friesecke and Mcleod [36] proved that (1.6.1) has an uncountable family of steady

states that are unstable but locally asymptotically stable.

Truskinovsky and Zanzotto [59] attempted to regularize Ericksen’s model, essentially by

adding both a surface energy term (scaled with a constant α) and an elastic foundation
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term (scaled with a constant β) due to the loading device, in order to resolve the issue

of the global minimum producing an arbitrary number of discontinuities in strain. They

also used W (z) = (| z | −1)2 as their double well potential. Also, Kohn and Müller

worked on a two-dimensional model [44,45].

Last but not least, Ren and Truskinovsky [55] were able to construct a simple one-

dimensional model to account for formation and growth of globally stable finite scale

microstructure. They achieved it by adding the usual surface energy and the oscillation-

forcing (foundation) terms (to Ericksen’s original energy functional) with the exception

that the foundation term is non-local and has a negative definite kernel. Also Ren

and Wei [56, 57] considered non-local versions of the foundation term while Brandon

and Rogers [9] considered a non-local regularization of the problem (non-local surface

energy).

1.7 The Finite Element Method

Many of the problems described above have an equivalent variational formulation, which

in its simplest form looks like the following: Find u ∈ [0, 1]→ R satisfying the bound-

ary conditions s.t:

1∫
0

σ(ux) v′(x) dx = 0 for all smooth v : [0, 1]→ R

(see section (1.2) for more details).

Ideally, we would like to have exact solutions under all circumstances, as well as closed

from formulas to describe them. Unfortunately, this is not always feasible and not all

models like the above one are easy to be solved analytically. Whether we are dealing

with the inevitable complexity of the model or the innate difficulty of the problem

itself. An example of the former would be the direct correlation between calculations

and the lap number, where the lap number is the number of intervals of monotonicity,

(as the lap number increase, so do the calculations) while an example of the latter is

13
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the fact that we have no prior knowledge of the location of the jump. To circumvent

these issues people have resorted to several numerical methods such as Finite Elements

Method (FEM) to solve the problem.

However, even those numerical approaches have several issues to overcome. Efficiency

is one of them, since the finite element method approaches used to model simple mi-

crostructers require a lot of unknowns [48]. In addition to that the computational

challenges of minimization in a non-convex setting are not only significant but also can

not be resolved by resorting to their corresponding analytical result [14].

Historically, the Finite Element Method was developed in 1942 by Richard L. Courant

who included it in his paper on variational methods [27]. Despite the fact, that the

method was not used for almost two decades after that [53], it was revived again by

engineers in the late 50’s as a way of approximating solutions to equations in structural

engineering. Over the next couple of decades the method was studied extensively by

mathematicians who realized that it is a great general technique for finding numerical

solutions to PDE’s. Since then it has been established itself as a stable method for

these types of problems [42].

Authors have made considerable progress on the FEM. In particular, more relevant to

our work, the first finite element approach to the one-dimensional setting was done by

Collins, Kinderlehrer and Luskin who noticed in [23] that variational problems which

involve double well potentials do not have a minimizer. Instead, they have minimizing

sequences which can have oscillations.

Since the above problems show up in certain classes of solid crystals, they gave a rigorous

justification for the use of numerical methods to model these behaviors. Collins and

Luskin continued to use numerical methods to approximate these models, this time to

estimate the error [24] as did Chipot who investigated the patterns of the minimizing

sequences as well [17].

Chipot and Collins, also used further numerical methods to analyze the minimizing

sequences and to estimate the deformation as it approximates a measure [18]. Moreover,
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Gremaud estimated the rate of convergence of the approximated gradient deformation,

again using a finite element method [39]. Last but not least, Chipot, Collins and

Kinderlehrer used piecewise linear elements to approximate the continuous version of

a problem that involves multiple wells [19].

1.8 Mixed Finite Element Methods

In our work, we use use many of the ideas presented above, tailored to suit the needs

of our specific problem. In particular, we are dealing with a fourth order PDE, which

can be rewritten as an appropriate system of two second order differential equations

which we then proceed to solve using numerical methods. This process is known as the

mixed element method.

To illustrate how this method works we give en example of e much simpler problem,

namely the Poisson’s equation.

Say we are interested in solving −∆u = f in some space Ω with boundary conditions

u = 0 on ∂Ω (where ∆ is the Laplace operator).

We can reduce the order of the above equation, by considering the following equivalent

system 
σ = ∇u

−∇ · σ = f in Ω

u = 0 on ∂Ω.

(1.8.1)

(1.8.2)

(1.8.3)

Now, in order to get a weak formulation (see Section 2.4) we multiply (1.8.1) and (1.8.2)

by the test functions τ (vector-valued) and v (scalar) and integrate over Ω. Finally we

use integration by parts (and the boundary condition) to get the following:

∫
Ω

σ · τ dx+

∫
Ω

u(∇ · τ) dx = 0 ∀ τ. (1.8.4)
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Similarly, but without integration by parts we get:

∫
Ω

(∇ · σ) v dx = −
∫
Ω

f v dx ∀ v. (1.8.5)

This leads to the following system: namely, find a pair (σ, u) that satisfies (1.8.4) and

(1.8.5) where the test functions τ, v range over appropriate spaces. For more details

and examples one can consult [1, 8, 33].

Notice that we did not integrate the second equation by parts. This is in order to

obtain a symmetric bilinear form. In other words, if we add the two equations together

we get a bilinear form acting on the trial and test functions (σ, u) and (τ, v) which is

symmetric: Find (σ, u) such that

B((σ, u), (τ, v)) :=

∫
Ω

σ · τ dx+

∫
Ω

u(∇ · τ) dx+

∫
Ω

(∇ · τ) v dx = −
∫
Ω

f v dx ∀ (τ, v).

The literature of the Mixed Finite Element Method is large and authors have made a

tremendous amount of work since the seventies. For example, one can consult [3,11,12,

34], and for more recent references [2, 38, 58, 62]. However, we will not give a detailed

description of Mixed Finite Element Methods because, as can be seen later, the bilinear

form associated to our problem is elliptic. This gives a freedom to choose any Finite

Element spaces for our variables, contrary to most Mixed methods where the Finite

Element spaces for all the variables need to be correctly balanced in order to be able

to prove stability and convergence.

1.9 Thesis outline

The thesis is organised as follows. Chapter 2 introduces our mathematical background

and the framework which we will employ. Chapters 3, 4 and 5 contain the major

research ideas of the thesis. In summary we study a specific energy functional based on

Ericksen’s model [32] for an elastic bar which is attached to an elastic foundation. The
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formula includes Müller’s term which penalizes oscillations. As for of the double-well

potential, we use Yip’s selection, namely W (p) = (|p| − 1)2 in order to make explicit

calculations. We allow for a stiffness parameter α > 0 which will help us better study

bifurcations and thus answer a conjecture first posed by Grinfeld and Lord.

In Chapter 3 we show the existence and uniqueness of both periodic and non-periodic

solutions for positive α > 0 and small γ > 0. We consider separate cases depending

on how many times the displacement function u changes monotonicity. In particular,

we solve the problem explicitly, when u changes monotonicity once or twice. On top

of that, we provide a recursive formula for the energy functional E(un) of the more

complex periodic solutions un, as a function of the simplest periodic solution u1. We

conclude all of the above, by summarizing our findings in a single but descriptive graph.

In chapter 4, we use ideas from functional analysis, in order to find some convenient

weak formulations which are equivalent to our corresponding Euler-Lagrange equation,

which we then show that can be solved uniquely. One important result in this chapter is

that this unique solution still exists even if we restrict ourselves to appropriate solution

subspaces, by using the Finite Element Method approach. We can then show that both

weak formulations have unique solutions within those subspaces for any given mesh.

More importantly, we give an error estimate which guarantees that the unique solution

of the subspace can be arbitrary close to the unique solution of the original space, as

we refine the mesh.

Chapter 5 uses Chapter 4 as a foundational setup and it introduces the specific numer-

ical methods used in this thesis. In particular, we show that two well known methods,

namely the Finite Element Method and the Derivative-Free Optimization method, can

be used in combination with one another in order to produce arbitrarily good approx-

imations to the exact solution of the EL equation. The accuracy of these calculations

was verified by comparing them the results produced by these two methods (FEM and

DFO) to those given by MAPLE from the exact solutions. Lastly, the chapter would

not be complete without the presence of several numerical plots of these approximations

as well as tables of their corresponding energies for progressively finer mesh.

17



Chapter 2

Mathematical Background

2.1 Calculus of Variations

The core of our work is based on Calculus of Variations (CoV), the field of mathemat-

ics that tries to understand how small changes (aka variations or perturbations) in a

function, which acts as an input of certain functional, affect the mentioned functional.

Here, a functional is simply a mapping from a class of functions to the real numbers.

That is, a functional takes a function as an input and produces a real number as an

output. Typically, and in our case too, functionals are expressed as definite integrals

that utilize various orders of derivatives. For example, in our work we use the following

functional:

E(u) =

1∫
0

[γu2
xx +W (ux) + αu2] dx.

The goal of calculus of variation is mainly to optimize (maximize or minimize) the

functional using concepts such as the Euler-Lagrange equation ( [29], [28]).

Remark 1. All theorems and results in this chapter are provided with references but

without proofs.
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2.2 Euler Lagrange equation

The Euler Lagrange equation is a partial differential equation whose solutions are the

candidate functions for which the functional is optimized. In particular, to find a

function that extremizes the functional

I(u) =

x2∫
x1

L(x, u(x), ux(x))dx,

we have the following theorem

Theorem 5. The function u = u(x) that extremizes the functional I necessarily satis-

fies the Euler-Lagrange equation on [x1, x2]:

∂L

∂u
− d

dx
(
∂L

∂ux
) = 0.

Proof. See [46], Theorem 1.

As an example, the Euler-Lagrange equation can be used to prove that the shortest

distance between two points on a Euclidean plane is a straight line. Let,

L(u) =
√

1 + u′2 ,

where u ∈ C∞, u : R→ R. Then the Euler-Lagrange equation will be

�
��
∂L

∂u
− d

dx

(
u′√

1 + u′2

)
= 0,

which means the inside is a constant function: u′√
1+u′2

= C1. Solving for u′, we also

get u′ = C2 (constant) and hence y = Cx+D (straight line).

In general if

I(u) =

x2∫
x1

L(x, u(x), ux(x), uxx(x), uxxx(x), .....)dx,
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then the Euler Lagrange equation will be

∂L

∂u
− d

dx

(
∂L

∂ux

)
+

d2

dx2

(
∂L

∂uxx

)
− d3

dx3

(
∂L

∂uxxx

)
+ ....... = 0.

In our case we only deal with derivatives up to second order so the Euler Lagrange

equation is given by

∂L

∂u
− d

dx

(
∂L

∂ux

)
+

d2

dx2

(
∂L

∂uxx

)
= 0.

Next we present a more involved example, which is also the main topic of our work.

Start with the Euler-Lagrange equation

∂L

∂u
− d

dx

(
∂L

∂ux

)
+

d2

dx2

(
∂L

∂uxx

)
= 0,

where L = L(x, u, ux, uxx) = γ u2
xx(x) +W (ux) + αu2.

Calculating all partial derivatives of L, we get

∂L

∂u
= 2αu ,

d

dx

∂L

∂ux
= W ′′(ux)uxx and

d2

dx2

∂L

∂uxx
= 2 γ uxxxx.

Putting it all together we get :

αu− W ′′

2
(ux)uxx + γ uxxxx = 0. (2.2.1)

Definition 2.2.1. We say that the functional E(u) has a minimum at u = u0 with a

functional space V, if its first variation ∂E(u) = 0 at u = u0 and its second variation

∂2E(u) = 0 is strongly positive at u = u0 (that is ∂2E(u) ≥ k‖u‖2 for some k > 0 and

all u ∈ V). We say that u0 is a local minimizer of E(u).

We can also weaken the above definition by introducing the notion of weak local mini-

mizers.

Definition 2.2.2. A function u0 ∈ V is called a V-local minimizer of E, if there is a

σ > 0 such that E(u0) ≤ E(u) for all u ∈ V with 0 < ‖u− u0‖ < σ.
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Definition 2.2.3. We say that u0 ∈ V is a global minimizer of E(u) if E(u0) ≤ E(u)

for all u ∈ V.

Remark 2. A necessary (but not sufficient) condition for a local extremum u0, is that

it satisfies the Euler-Lagrange equation. This means that investigating the solutions of

the EL reveals the possible candidates. Note that, like in regular calculus, a critical

point (solution the the Euler-Lagrange equation), may be either a (local) minimum, a

(local) maximum or even a saddle point. In our context a (local) maximum would be

a critical point u with strongly negative second variation, while a saddle point will be a

critical point u which is neither (local) minimum or maximum.

2.3 The Fredholm Alternative

In our work, we will also need the following theorem from Linear algebra.

Theorem 6. Let A ∈ Rn×m, x ∈ Rm×1, b ∈ Rn×1, y ∈ Rn×1. The linear system

Ax = b has a solution x if and only if yT b = 0 for all y such that y ∈ ker(AT ) and

AT y = 0.

Proof. See [51], Theorem 5.45.

As an example let A =


1 2

0 1

2 4

 , b =


4

1

8

 .

Now we need to know if there is x =

 x1

x2

 such that Ax = b? Towards that, we use

Theorem 6 as follows:

AT y = 0⇒

 1 0 2

2 1 4



y1

y2

y3

 =

 0

0

 ,

21



CHAPTER TWO

a simple calculation gives us y =


−2

0

1

 y3 ∈ ker(AT ). We want yT b = 0. A

direct calculation shows that yT b =
[
−2y3 0 y3

]


4

1

8

 = 0. Since yT b = 0, the

Fredholm alternative condition is satisfied and thus Ax = b has a unique solution x.

2.4 Functional analysis

In this section, we introduce the framework in which our problem can be formulated.

We will need a generalization of the classical derivative, known as the weak derivative.

To set up the stage, we need the following definitions which can be found among the

following references, [10, 26,30].

Let us recall the following definitions

Definition 2.4.1. Let V be a real vector space and L : V → R. We say that L is linear

if

L(αu+ β v) = αL(u) + β L(v) ∀u, v ∈ V,∀α, β ∈ R.

Definition 2.4.2. Let V be a vector space and A : V × V → R. We say that A is

bilinear if

A(αu1 + β u2, v) = αA(u1, v) + β A(u2, v) ∀u1, u2 ∈ V,∀α, β ∈ R.

A(u, α v1 + β v2) = αA(u, v1) + β A(u, v2) ∀ v1, v2 ∈ V,∀α, β ∈ R.

We are also interested in a specific form of a bilinear function called inner product,

traditionally denoted by (., .).

Definition 2.4.3. We say that the bilinear function (., .) : V × V → R is an inner
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product if it is symmetric and positive definite. I.e.

(u, v) = (v, u) ∀u, v ∈ V

(u, u) > 0 ∀u ∈ V withu 6= 0.

The inner product naturally gives rise to the norm, typically denoted by ‖.‖.

Definition 2.4.4. Let V be a real vector space. If (., .) is an inner product on V × V

we define ‖.‖ : V → R as follows:

‖u‖ =
√

(u, u) ∀u ∈ V.

Then, ‖.‖ is a norm in V.

We should also mention an important relationship between the inner product and the

norm:

Lemma 1. (Cauchy-Schwarz inequality). Let V be a vector space, (., .) be an inner

product on V and ‖.‖ be the associated norm. We have

|〈u, v〉| ≤ ‖u‖ · ‖v‖ ∀u, v ∈ V.

Proof. See [65], Proposition 2.

We are finally ready to define Hilbert spaces, one of the most common types of spaces

used in this work.

Definition 2.4.5. Let H be a vector space with inner product (., .) and associated norm

‖.‖. We say H is Hilbert if H is complete, that is if ‖un−um‖ → 0 as m,n→∞, there

exists u ∈ H such that ‖un − u‖ → 0.

Since we are mostly interested in a particular type of Hilbert spaces, namely Sobolev

spaces, we will introduce first the idea of distributions which are fundamental in their

description.
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Definition 2.4.6. The support of a function φ : R→ R defined as

supp(φ) = {x ∈ R : φ(x) 6= 0}.

Definition 2.4.7. The space of compactly supported infinitely smooth functions is de-

fined as follows:

D(a, b) = {φ ∈ C∞(a, b), supp(φ) is compact and supp(φ) ⊆ (a, b)}.

Definition 2.4.8 (distributions). The space of distribution over (a,b) is defined as

follows

D′(a, b) = {T : D(a, b)→ R, T is a linear and continuous}.

Remark 3. 〈., .〉(a,b) will denote the duality pairing between D′(a, b) and D(a, b). This

is, whenever f and g are regular enough we have

〈f, g〉(a,b) =

a∫
b

f(x) g(x) dx.

Definition 2.4.9. For a distribution u ∈ D′(a, b), we say v ∈ D′(a, b) is its weak

derivative if

〈u, ϕ′〉(a,b) = −〈v, ϕ〉(a,b),

for all ϕ ∈ D(a, b).

2.4.1 Examples of Hilbert spaces

The following are all real Hilbert spaces:

� L2(0, 1) = {f : (0, 1)→ R :
1∫
0

f2(x)dx <∞}.

Its inner product is defined as

(f, g) =

1∫
0

f(x) g(x) dx.
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� H1(a, b) = {v ∈ L2(a, b) : v′ ∈ L2(a, b)}

where the inner product is defined as

(f, g)H1 =

b∫
a

f(x)g(x)dx+

b∫
a

f ′(x)g′(x)dx.

� H2(a, b) = {v ∈ L2(a, b) : v′, v′′ ∈ L2(a, b)}

where the inner product is defined as

(f, g)H2 =

b∫
a

f(x)g(x)dx+

b∫
a

f ′(x)g′(x)dx+

b∫
a

f ′′(x)g′′(x)dx.

� H1
0 (a, b) = {v ∈ H1(a, b) : v(a) = v(b) = 0}

where the inner product is defined as

(f, g)H1
0

=

b∫
a

f ′(x)g′(x)dx.

We will also make use of the following result, (known as Sobolev’s embedding theorem)

which states that all functions in H1
0 are continuous:

Theorem 7. (Sobolev’s embedding theorem). H1
0 (a, b) ⊂ C0[a, b] and there exists

a constant C > 0 such that

‖u‖C0 ≤ C‖u‖H1
0
.

Proof. See [10], Theorem 8.8.

Also,

Theorem 8. (Poincaré Inequality). There exists C > 0 such that

‖v‖L2(a,b) ≤ C |v|H1
0 (a,b) ∀ v ∈ H1

0 (a, b).

Proof. See [10], Theorem 8.13.
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2.5 The Galerkin Method

The Finite Element Methods used in this work are a special case of what is known

as the Galerkin method, which is a way of finding numerical approximations to the

following problem on a Hilbert space V : Find u ∈ V such that

A(u, v) = f(v) ∀v ∈ V,

where A(u, v) is a bilinear form and f is a bounded linear functional on V .

In particular, Galerkin contribution was to change the (infinite dimensional) solution

space V , by finding a finite dimensional subspace Vh ⊂ V of dimension h and solve the

approximate problem: Find uh ∈ Vh such that

A(uh, vh) = f(vh) ∀vh ∈ Vh.

The above allows us to numerically approximate the solution to the original problem.

The key idea behind this method, is what is known as Galerkin orthogonality which

means that the error term εh = uh−u is orthogonal to the subspace Vh. In other words

A(εh, vh) = A(uh − u, vh) = A(uh, vh)−A(u, vh) = f(vh)− f(vh) = 0.

It is well established that the Lax-Milgram theorem is one of the basic components of

the method, since it can produce uniquness of solutions to the (weak formulations) of

the Euler Lagrange equation. Moreover, Cea’s lemma provides us with an error estimate

between the actual solution and the approximation produced by the FEM [22,33].

Theorem 9 (Lax-Milgram theorem). Let H be a vector space with inner product (., .)

and associated norm ‖.‖. Let also L : H→ R be linear and A : H×H→ R be bilinear

with :

1. ∃ γ > 0 s.t. |A(u, v)| ≤ γ ‖u‖ · ‖v‖ ∀u, v ∈ H (continuity of A).

2. ∃α > 0 s.t. A(u, u) ≥ α ‖u‖2 ∀u ∈ H (ellipticity of A).
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3. ∃β > 0 s.t. |L(u)| ≤ λ ‖u‖ ∀u ∈ H (continuity of L).

Then there exists a unique u ∈ H s.t. A(u, v) = L(v) ∀ v ∈ H.

Proof. See [22], Theorem 198.

Lemma 2 (Cea’s lemma). Let H be a vector space with inner product (., .) and as-

sociated norm ‖.‖. Let also L : H → R be linear and A : H × H → R be bilinear.

Finally, let Hh be a finite dimensional subspace of H. Moreover, let u is such that

A(u, v) = L(v) ∀ v ∈ H and uh is such that A(uh, vh) = L(vh) ∀ vh ∈ Hh.

Then ‖u − uh‖H ≤ γ
α ‖u − vh‖H ∀ vh ∈ Hh, where α, γ are the constant given by 1.

and 2. of the Lax-Milgram.

Proof. See [22], Lemma 201.

2.6 Formulation of a Finite Element Method

Suppose we are interested in solving the following problem, for f ∈ L2(0, 1), which is

called the Poisson problem.

−u′′(x) = f(x) in (0, 1),

u(0) = u(1) = 0. (S).

The above problem (S) is equivalent to solving:

Find u ∈ H1
0 (0, 1) s.t

(u′, v′) = (f, v) ∀ v ∈ H1
0 (0, 1). (W )

Since f ∈ L2(0, 1), then u′′ exists and is continuous. For more details of the proof

see [42].
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The above equivalence is important, because we can now solve (W ) instead of (S). We

divide the interval [0, 1] as follows

0 = x0 < x1 < x2 < ......... < xN−1 < xN = 1

with h = 1
N = (xk − xk−1) for k = 1, . . . , N . This is, we divide [0, 1] into equidistant

points. Over this partition we define a basis function for the space of continuous,

piecewise linear functions. Let

Vh = {v ∈ H1
0 (0, 1), v is linear on each [xi−1, xi]}.

The main idea of the FEM is to find an approximation solution of the form v(x) =
N∑
i=1

ξiϕi(x),

where

ϕi(xj) =

 1 j = i

0 otherwise

is a continuous, piece-wise linear function and ξi’s are constants to be determined. To

determine the constants we will write a MATLAB code.

Figure 2.1: Basis of ϕi

The finite element method reads as follow: Find uh ∈ Vh s.t

(u′h, v
′
h) = (fh, vh) ∀ vh ∈ Vh. (F ).

We will show that (F ) can be written as a linear system. We look for approximation

28



CHAPTER TWO

for uh in the form

uh(x) =

N∑
i=1

ξi ϕi(x).

As a result, by using bilinearity we can express all inner products of the form (u′n, ϕ
′
m)

as a linear combination of the products of the form (ϕ′i, ϕ
′
m). By repeating this process

for every m ∈ {1, 2, ...N} we can write F as the following matrix equation AX = b,

where

A =



(ϕ′1, ϕ
′
1) (ϕ′1, ϕ

′
2) . . . . . . (ϕ′1, ϕ

′
N )

(ϕ′2, ϕ
′
1) (ϕ′2, ϕ

′
2) . . . . . . (ϕ′2, ϕ

′
1)

...
...

...
...

...

(ϕ′N , ϕ
′
1) (ϕ′N , ϕ

′
2) . . . . . . (ϕ′N , ϕ

′
N )


, b =



b1

b2

...

bN


=



(f, ϕ1)

(f, ϕ2)

...

(f, ϕN )


,

where we know all the entries of A and b. The method concludes by calculating the

coefficient X = [ζ1, ζ2, ..., ζN ]T ∈ RN , which is the unknown in our system, and thus

the value we are solving for.

Notice that the matrix A is sparse (most entries of the matrix are zero). More precisely:

(ϕ′i, ϕ
′
m) =



2
h i = m,

−1
h | i−m |= 1,

0 otherwise.

For example, with m = 5 we have

1

h



2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 2





ξ1

ξ2

ξ3

ξ4

ξ5


=



b1

b2

b3

b4

b5


.

As we will see in Chapter 4, any solution produced by the FEM approximates the exact

solution within a small error. Coupled with the fact that the algorithm itself boils down

to a Gauss-Jordan elimination, we have ourselves a method which is both accurate and

29



CHAPTER TWO

computationally efficient. For more details see [21,33,42].
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Chapter 3

Stationary Solutions in Yip’s

Formulation of the Regularized

Ericksen’s Bar Model

3.1 Introduction

In what follows we will study a specific energy functional of Ericksen’s model [32] for an

elastic bar which is attached to an elastic foundation. We include Müller’s term of the

surface energy density component γ u2
xx that penalizes oscillations. Also, we include

Yip’s selection of the double-well potential W (p) = (|p| − 1)2 in order to make explicit

calculations. Last but not least, in our context we allow for a stiffness parameter α > 0

which will help us better study bifurcations and thus ultimately answer a conjecture

first posed by Grinfeld and Lord.

All in all we will work on the following functional:

E(u) =

1∫
0

[γ u2
xx +W (ux) + αu2] dx, (3.1.1)
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where u : [0, 1] → R can be thought of as the displacement function (see Section 1.3).

We will also be assuming Dirichlet boundary conditions, namely u(0) = u(1) = 0 and

uxx(0) = uxx(1) = 0.

With that context in mind, Grinfeld and Lord’s conjecture becomes:

Conjecture 10. For the above formulation, for large α, there are no solutions without

internal zeroes.

This chapter analyzes the existence and uniqueness of periodic and non-periodic solu-

tions for different values of the parameters α > 0 and γ > 0. We consider separate

cases depending on how many times the displacement function u changes monotonicity.

In particular, we solve the problem explicitly, when u changes monotonicity once or

twice, and also give recursive formulas for E(u) when u is more complex. Finally, we

conclude the chapter with a pictorial summary of our finding.

3.2 The Euler Lagrange Equation

The Euler-Lagrange equation of our functional is given by:

∂L

∂u
− d

dx

∂L

∂ux
+

d2

dx2

∂L

∂uxx
= 0,

where L = L(x, u, ux, uxx) = γ u2
xx(x) +W (ux) + αu2.

Calculating all partial derivatives of L, we get:

∂L

∂u
= αu ,

d

dx

∂L

∂ux
= W ′′(ux)uxx and

d2

dx2

∂L

∂uxx
= γ uxxxx.

Putting it all together we get :

αu− W ′′

2
(ux)uxx + γ uxxxx = 0, (3.2.1)

since W (ux) = (|ux| − 1)2, we have W ′′(ux) = 2, except for when ux = 0 (in which
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case we have a “jump”). In the interval of monotonicity, the Euler Lagrange equation

becomes

γ uxxxx − uxx + αu = 0. (3.2.2)

In other words, the above is only valid in the intervals where ux 6= 0 and thus W ′′ = 2,

while at the points c1, c2, ...., cn where ux = 0 and change signs, we have a jump

condition for uxxx. More formally, we have the following definition (due to [63]) for the

space on the functions that satisfy these properties.

Definition 3.2.1. A function u is said to belong to class Z if u ∈ C2 ([0, 1]) and [0, 1]

can be partitioned into a finite number of intervals {[ci, ci+1] : i = 0, 1...N−1} for some

positive integer N and ci’s : 0 = c0 < c1 < ... < cN−1 < cN = 1 such that

1. u is monotone (ux ≥ 0 or ux ≤ 0) in each of the segment (ci, ci+1) and the sign

of ux alternates between adjacent segments, i.e. ux changes sign across the ci’s;

2. the zeros of ux are isolated. In particular, ux is not identically zero in any interval.

The Euler Lagrange equation above (3.2.2) is linear, which means that its general

solution depends on its characteristic polynomial

γ r4 − r2 + α = 0.

It is easy to see the solutions of the above polynomial are given by:

±

√
1 +
√

1− 4αγ

2γ

def
= ±Λ, ±

√
1−
√

1− 4αγ

2γ

def
= ±λ.

This means that within the intervals where u maintains monotonicity the solution u(x)

of the Euler Lagrange equation should have one of the following 3 forms depending on

the relationship between α and γ.
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� Case 1: 1− 4αγ > 0 :

u(x) = AeΛx + B e−Λx + C eλx + De−λx.

� Case 2: 1− 4αγ = 0 : (Then Λ = λ = d =
√

1
2 γ )

u(x) = Aed x + B xed x + C e−d x + Dxe−d x.

� Case 3: 1− 4αγ < 0 :

u(x) = Aet x cos(ω x) + B et x sin(ω x) + C e−t x cos(ω x) + De−t x sin(ω x),

where

t =

√√
4αγ + 1

4γ
, ω =

√√
4αγ − 1

4γ
.

We calculate t, ω as follows: we know that the 4 roots of the characteristic polynomial,

r4 − r2

γ + α
γ = 0 are r = ± t ± ω i. Hence

0 = (r − t− ωi)(r + t− ωi)(r − t+ ωi)(r + t+ ωi) = r4 − r2

γ
+
α

γ
.

Therefore,

[r2 − (t+ iω)2][r2 − (t− iω)2] = r4 − r2

γ
+
α

γ
,

r4 − r2[2t2 − 2ω2] + (t2 + ω2)2 = r4 − r2

γ
+
α

γ
,

and hence

t2 − ω2 =
1

γ
, t2 + ω2 =

√
α

γ
.

Adding the two equations above together, we get:

2 t2 =
1

γ
+

√
α

γ
⇒ t =

√√
4αγ + 1

4γ
,
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and subtracting them we get:

2ω2 =

√
α

γ
− 1

γ
⇒ ω =

√√
4αγ − 1

4γ
.

We define solutions of (3.2.2) using a modification of a definition used by Yip [63] to

account for our imposed Dirichlet Boundary conditions, namely:

Definition 3.2.2. A function u ∈ Z is called a solution of (3.2.2) if the following hold

for all i:

γ uxxxx − uxx + αu = 0 on (ci, ci+1) for i = 0, 1, ...n; (3.2.3)

ux(ci) = 0 and ux ≥ 0 (or ux ≤ 0) for all x ∈ (ci, ci+1); (3.2.4)

[γuxxx](ci)(= [
1

2
W
′
(ux)](ci)) = −2sgn∗(uxx(ci)); (3.2.5)

u(0) = u(1) = 0, γuxx(0) = γuxx(1) = 0. (3.2.6)

Where we are using the same bracket notation for jump as in Yip [63], namely,

[f ](x) = f(x+)− f(x−).

We are also using the star notation [63], 2sgn∗(uxx(ci)) = sgn(ux(c+
i )) − sgn(ux(c−i )).

Here,

γ [uxxx(c+
1 )− uxxx(c−1 )] = −2sgn∗(uxx(ci))

= −(sgn(ux(c+
1 ))− sgn(ux(c−1 ))) = −(−1− 1) = 2.

The reason why the second equality on (3.2.5) is true, is as follows:

we observe that after we integrate both sides of the Euler Lagrange equation (3.2.1) we

get

γuxxx =
W ′(ux)

2
−
∫ x

0
αu(y) dy + C. (3.2.7)
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Using the bracket notation, we obtain:

[γuxxx] =
W ′(ux)(c)

2
+

∫ c+1

0
u(y)dy + C − W ′(ux)(c)

2
−
∫ c−1

0
u(y)dy − C,

=
1

2
W
′
(ux)(c+

1 )− 1

2
W
′
(ux)(c−1 ) (= [

1

2
W
′
(ux)(c)]),

since W ′(ux) = 2(|ux| − 1),

1

2
2[ux(c+

1 ) + 1]− 1

2
2[ux(c−1 )− 1] = ux(c+

1 ) + 1− ux(c−1 ) + 1.

Now by (3.2.4) and by continuity of ux,

sgn(ux(c−1 ))− sgn(ux(c+
1 )) = −(sgn(ux(c+

1 ))− sgn(ux(c−1 ))) = −2sgn∗(uxx(c1)).

Next we will define periodic solutions.

3.3 Periodic solutions

Definition 3.3.1. Let f : [0, 1] → R be a continuous function. We define the lap

number of f, as the number of intervals of monotonicity of f.

For example: function with lap number 2 is first increasing and then decreasing, or the

other way around.

Figure 3.1: Example of a function with lap 2.
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Now, going back to equation (3.2.2), we see that in the simplest case we have only a

single jump in uxxx. This means that 0 = c0 < c1 < c2 = 1 and thus any such solution

would be of lap of 2.

We now define three levels of periodicity. We start with the classic definition.

Definition 3.3.2. A function f : R→ R is said to be P1-periodic if ∃T > 0 such that

∀x, x+ T ∈ R f(x+ T ) = f(x).

Remark 4. If f(0) = f(1) then for T = 1 we have that f(0 + T ) = f(0 + 1) =

f(1) = f(0), and thus f is P1-periodic. In particular, if f(0) = f(1) = 0, f is

P1-periodic.

Next we work inside P1 and allow for oscillations to occur.

Definition 3.3.3. A function f : [0, 1] → R is said to be P2-periodic if ∃n > 1 and

∃F : [0, 1]→ R with F (0) = F (1) = 0, F > 0 or F < 0 on (0, 1) s.t.

f(x) = Oscn F (x) ∀x ∈ [0, 1],

where

f(x) = Oscn F (x) =



F (nx) x ∈ [0, 1
n ],

−F (n(x− 1
n)) x ∈ [ 1

n ,
2
n ],

...

(−1)n−1 F (n(x− n−1
n )) x ∈ [n−1

n , 1].

Remark 5. An F like the one in the definition (3.3.3) (i.e. F (0) = F (1) = 0, F > 0

or F < 0 on (0, 1)) acts as a building block for solutions for higher lap number (see

Section 3.3.2 for more details).

Lastly, we give a definition of periodicity that also involves symmetry.

Definition 3.3.4. A function f : [0, 1] → R is said to be P3-periodic (symmetric)

if ∃n > 1 and ∃F : [0, 1] → R with F (0) = F (1) = 0, F > 0 or F < 0 on
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(0, 1), F (x) = F (1− x) ∀x ∈ [0, 1] such that

f(x) = Oscn F (x) ∀x ∈ [0, 1],

where Oscn F (x) is defined exactly as in Definition 3.3.3.

Remark 6. An F like the one in the Definition (3.3.4) (i.e. F (0) = F (1) = 0, F > 0

or F < 0 on (0, 1), F (x) = F (1 − x) ∀x ∈ [0, 1] is a symmetric building block for

symmetric solutions for higher lap number.

Remark 7. P3 ⊂ P2 ⊂ P1.

No internal zero (P3) One internal zero (P3)

Two internal zeroes (P3) No internal zero (P2)

Figure 3.3: Examples of periodic solutions

Let k ≥ 1. We denote by uk a symmetric periodic solutions with k − 1 internal zeros.
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3.3.1 Existence of u1 symmetric solutions

Let u1,α,γ(x) be the solution of the Euler-Lagrange equation with lap number 2. We

have the following Theorem.

Theorem 11. For all γ > 0 and α > 0 there exists a unique (up to sign) symmetric

solution u1,α,γ(x).

Proof. First, assume case1, namely 1− 4αγ > 0:

We have 9 equations in total that describe a u ∈ Z with lap 2. Namely, four equations

from the boundary conditions u(0) = u(1) = 0, uxx(0) = uxx(1) = 0, four equations due

to continuity conditions u(c−1 ) = u(c+
1 ), uxx(c−1 ) = uxx(c+

1 ), ux(c−1 ) = 0, ux(c+
1 ) = 0,

and finally we have one equation due to the jump uxxx(c+
1 )− uxxx(c−1 ) = 2

γ .

By our work on Section 3.2, we also know that there should be two “segments” of

solutions, one for x < c1 and one for x > c1. More precisely:


A1 e

Λx + A2 e
−Λx + A3 e

λx + A4 e
−λx on [0, c1),

A5 e
Λx + A6 e

−Λx + A7 e
λx + A8 e

−λx on (c1, 1].

This leads to 9 unknowns total, 4 from the first segment and 4 from the second segment.

We also have an additional unknown c1 for the location of the jump which we will treat

as a constant, until we figure out its precise value and replace it into the equations.

This naturally leads to a 9 × 8 Matrix M where each row represents the exponential

terms next to the unknown coefficients Ai. In other words we have a matrix equation

M X = B where X = [A1, A2, ...A8]T and B = [ 2
γ , 0, ..., 0]T . In particular, each

restriction corresponds to an equation, as seen by the following calculations:

� uxxx(c+)− uxxx(c−) = 2
γ ⇔ A1Λ3eΛ c −A2Λ3e−Λ c +A3λ

3eλ c −A4λ
3e−λ c −A5Λ3eΛ c +A6Λ3e−Λ c −A7λ

3eλ c +A8λ
3e−λ c = 2

γ .

� uxx(c−)− uxx(c+) = 0⇔ A1Λ2eΛ c +A2Λ2e−Λ c +A3λ
2eλ c +A4λ

2e−λ c −A5Λ2eΛ c −A6Λ2e−Λ c −A7λ
2eλ c −A8λ

2e−λ c = 0.

� ux(c−)− ux(c+) = 0⇔ A1eΛ c +A2e−Λ c +A3eλ c +A4e−λ c −A5eΛ c −A6e−Λ c −A7eλ c −A8e−λ c = 0.
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� u(1) = 0⇔ A5eΛ +A6e−Λ +A7eλ +A8e−λ = 0.

� uxx(1) = 0⇔ A5Λ2eΛ +A6Λ2e−Λ +A7λ
2eλ +A8λ

2e−λ = 0.

� ux(c+) = 0⇔ A5Λ eΛ cA6 − Λ e−Λ c +A7λ eλ cA8 − λ e−λ c = 0.

� ux(c−) = 0⇔ A1Λ eΛ cA2 − Λ e−Λ c +A3λ eλ cA4 − λ e−λ c = 0.

� uxx(0) = 0⇔ A1Λ2 +A2Λ2 +A3λ
2 +A4λ

2 = 0.

� u(0) = 0⇔ A1 +A2 +A3 +A4 = 0.

By the Fredholm Alternative (see Section 2.3), we know that the equation MX = B

has a solution iff B ⊥ N (MT ) (This means, X is a solution for MX = B iff for all

y ∈ R9 s.t. MT y = 0 we have yTB = 0). Using the Fredholm alternative approach, all

we have to do is find a basis for the kernel of MT and make sure it is perpendicular to

the vector B. This will yield an equation (having c1 as the only unknown) which can

then solve for c1.

Luckily we have a few things working in our favor to simplify our calculations: The

vector B is mostly zero except for one entry ( 2
γ ), the nullspace of the (MT ) has dimen-

sion 1 (i.e. is small) and notice also that each object (matrix, vector) is a function of

c1. Now we can use MAPLE for all the calculations, see Appendix A.5.

The 9 conditions give us the following 9 equations which they can be neatly represented

as the equation M X = B where X = [A1, A2, ...A8]T , B = [ 2
γ , 0, ..., 0]T and the matrix

M is given by:

M =



Λ3eΛ c −Λ3e−Λ c λ3eλ c −λ3e−λ c −Λ3eΛ c Λ3e−Λ c −λ3eλ c λ3e−λ c

Λ2eΛ c Λ2e−Λ c λ2eλ c λ2e−λ c −Λ2eΛ c −Λ2e−Λ c −λ2eλ c −λ2e−λ c

eΛ c e−Λ c eλ c e−λ c −eΛ c −e−Λ c −eλ c −e−λ c

0 0 0 0 eΛ e−Λ eλ e−λ

0 0 0 0 Λ2eΛ Λ2e−Λ λ2eλ λ2e−λ

0 0 0 0 Λ eΛ c −Λ e−Λ c λ eλ c −λ e−λ c

Λ eΛ c −Λ e−Λ c λ eλ c −λ e−λ c 0 0 0 0

Λ2 Λ2 λ2 λ2 0 0 0 0

1 1 1 1 0 0 0 0



.

Maple shows that the nullspace of MT is one-dimensional for all c1, as shown by its
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reduced row echelon form depicted below, which only has 1 row of zeroes.



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0



.

A basis for the null space N (MT ) is given by y = [y1, y2, y3, y4, y5, y6, y7, y8, 1]T ∈ R9

, where y1 = F
D , with

F =


e(2 c−1)Λ−λ − e(2 c−1)λ−Λ − e−2 Λ c+Λ−λ + e(2 c−1)λ+Λ

+e−2 cλ−Λ+λ − e(2 c−1)Λ+λ − e−2 cλ+Λ+λ + e−2 Λ c+Λ+λ,

and

D =


2 Λ(Λ e(c−1)λ−Λ − Λ e(c−1)λ+Λ + Λ e−cλ−Λ+λ − Λ e−cλ+Λ+λ

+λ e(c−1)Λ+λ − λ e(c−1)Λ−λ + λ e−cΛ+Λ+λ − λ e−cΛ+Λ−λ).

Note: As the following calculation illustrates the other values of y (namely yi for i ≥ 2)

do not matter since they are multiplied by the zeroes of the vector B.

By Fredholm Alternative we want that < Y,B >= 0, which means

< [y1, y2, y3, y4, y5, y6, y7, y8, y9], [
2

γ
, 0, 0, 0, 0, 0, 0, 0, 0] >= 0,

and thus

y1 ·
2

γ
= 0⇒ F

D
· 2

γ
= 0⇒ 2F

γD
= 0⇒ F = 0.
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α = 1 and γ = 0.1 α = 15 and γ = 0.01

Figure 3.5: Location of the jump for different values of α and γ.

Remark 8. We can rewrite F (c) as term of the sinh function

F (c) = sinh[(2c− 1)λ] sinh(Λ)− sinh[(2c− 1)Λ] sinh(λ) = 0. (3.3.1)

First of all, we observe that F (0) = F (1) = F (1
2) = 0. We will show that these are the

only possible roots regardless of α and γ (provided that 1− 4αγ > 0).

For simplicity, let a = 2c− 1. Then we notice that F (c) > 0 if and only if

sinh[(a)Λ] sinh(λ)− sinh[(a)λ] sinh(Λ) ≥ 0,

dividing by [sinh(λ) sinh(Λ)], we get

sinh(aΛ)

sinh(Λ)
≥ sinh(aλ)

sinh(λ)
.

Let

Fa(x) =
sinh(a x)

sinh(x)
,

since λ 6 Λ it is enough to show that Fa(x) is increasing.

We need a proposition as proved in [54]:
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Proposition 1. [54] Suppose that f(a+) = g(a+) = 0 or f(a−) = g(a−) = 0. (Then

g is non-zero and does not change sign on (a, b), since g′ is so.)

(1) If f ′

g′ is increasing on (a, b) then (fg )′ > 0 on (a, b).

(2) If f ′

g′ is decreasing on (a, b) then (fg )′ < 0 on (a, b).

Now, using the above proposition, it is enough to show that f ′

g′ is increasing where

f(x) = sinh(ax) and g(x) = sinh(x). Notice that:

� f and g are differentiable on (0, 1),

� g′ = cosh(x) = ex+e−x

2 > 0 on (0, 1),

� f(0+) = g(0+) = 0.

We will now show that f ′

g′ is monotonic on (0, 1). Let ha = f ′

g′ , where

 f ′ = [sinh(ax)]′ = a cosh(a x)

g′ = [sinh(x)]′ = cosh(x)
, −1 < a < 1.

So,

ha(x) =
a cosh(a x)

cosh(x)
=
a ( e

a x+e−a x

2 )
ex+e−x

2

= a
ea x + e−a x

ex + e−x
.

Our goal is to show that ha(x) is monotonic on (0, 1) by showing that h′a(x) > 0 or

h′a(x) < 0. Towards that goal we have the following calculations:

h′a(x) = a
(ea x + e−a x)′(ex + e−x)− (ea x + e−a x)(ex + e−x)′

(ex + e−x)2
,

=
a [(1− a)[e−x(a+1) − ex(a+1)] + (a+ 1)[e−x(1−a) − ex(1−a)]

(ex + e−x)2
,

which is negative since x ≥ 0, 1 + a ≥ 0, 1− a ≥ 0 and ex is increasing.

� If 0 < a < 1 , we have h′a < 0 which means ha = f ′

g′ is decreasing, then by

Proposition 1 we know that (fg )′ < 0, so Fa = f
g is decreasing. We conclude that

Fa(Λ) < Fa(λ).
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� Similarly, if −1 < a < 1, then h′a > 0 which means ha = f ′

g′ is increasing. By

Proposition 1 we know that (fg )′ > 0 and thus, Fa = f
g is increasing. We conclude

that Fa(Λ) > Fa(λ).

Hence the only time that F (c) = 0 is exactly when Fa(Λ) = Fa(λ) which happens when

a = 0, so that c = 1
2 , or a = ±1. We proved that F (0) = F (1) = F (1

2) = 0 are the only

possible roots regardless of α and γ.

For case 2 when 1 − 4αγ = 0: The 9 conditions give us 9 equations which they can

be represented in the following matrix equation M X = B where X = [A1, A2, ...A8]T ,

B = [ 2
γ , 0, ....0]T and

M =



−d3edc −3 d2edc − cd3edc d3e−dc −3 d2e−dc + cd3e−dc d3edc 3 d2edc + cd3edc −d3e−dc 3 d2e−dc − cd3e−dc

d2 2 d d2 −2 d 0 0 0 0

dedc edc + cdedc −de−dc e−dc − cde−dc 0 0 0 0

0 0 0 0 ed ed e−d e−d

0 0 0 0 d2ed 2 ded + d2ed d2e−d −2 de−d + d2e−d

0 0 0 0 dedc edc + cdedc −de−dc e−dc − cde−dc

edc cedc e−dc ce−dc −edc −cedc −e−dc −ce−dc

d2edc 2 dedc + cd2edc d2e−dc −2 de−dc + cd2e−dc −d2edc −2 dedc − cd2edc −d2e−dc 2 de−dc − cd2e−dc

1 0 1 0 0 0 0 0



.

A similar approach to what we did above leads to the following equations when 1− 4αγ = 0 :

F2(c) = (c− 1) sinh (2dc)− c sinh (2d (c− 1)) = 0.

So we have that F2(c) = 0 iff c = 0, 1
2 or 1.

Now for F3(c) when 1 − 4αγ < 0: We can calculate F3 either through the Fredholm

Alternative or by using F1(c) directly. Specifically, we know that Λ = t + iω, and

λ = t− iω. We also know Euler’s identity:

eiθ = cos (θ) + i sin (θ) ⇒ e2 iω c = cos (2ω c) + i sin (2ω c) .
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We can use the above and replace the values of Λ and λ in F1(c). After some straight-

forward algebra and a few convenient cancellations we get:

F3(c) = 2i [e2t(c−1) sin(2ωc)− e−2t(c−1) sin(2ωc) + e2ct sin(2ω(c− 1))− e−2ct sin(2ω(c− 1))] = 0,

= sin(2ωc)[e2t(c−1) − e−2t(c−1)]− sin(2ω(c− 1))[e2 ct − e−2ct] = 0,

= sin(2ωc) sinh(2t(c− 1))− sin(2ω(c− 1)) sinh(2tc) = 0.

For the third case we have other roots that lead to non-symmetric solutions. These

alternative locations for the jump occur for for certain pairs of (α, γ). Of course, it is

still true regardless of α and γ that F3(1
2) = 0, so we always have a symmetric solution.

We investigate these non-symmetric solutions in section (3.3.3) below.

Remark 9 (Justification of symmetric solution when c = 1
2). For

For u to be symmetric at c = 1
2 , we need u(1

2 − x) = u(1
2 + x) ∀x ∈ [0, 1

2 ], which is the

same as:

A1e
Λ( 1

2
−x) +A2e

−Λ( 1
2
−x) +A3e

λ( 1
2
−x) +A4e

−λ( 1
2
−x) = A5e

Λ( 1
2

+x) +A6e
−Λ( 1

2
+x) +A7e

λ( 1
2

+x) +A8e
−λ( 1

2
+x),

A2 e
−Λ

2 eΛx +A1 e
Λ
2 e−Λx +A4 e

−λ
2 eλx +A3 e

λ
2 e−λx = A5 e

−Λ
2 eΛx +A6 e

Λ
2 e−Λx +A7 e

−λ
2 eλx +A8 e

λ
2 e−λx.

Since the above is true for all x ∈ [0, 1
2 ], it holds if and only if

1. A2 e
−Λ

2 = A5 e
Λ
2 ⇒ A2

A5
= eΛ.

2. A1 e
Λ
2 = A6 e

−Λ
2 ⇒ A2

A5
= eΛ.

3. A4 e
−λ

2 = A7 e
λ
2 ⇒ A4

A7
= eλ.

4. A3 e
λ
2 = A8 e

−λ
2 ⇒ A3

A8
= eλ.

The calculation above yields a necessary and sufficient condition for u to be symmetric

around c = 1
2 . In other words, u is symmetric if and only if the 4 ratios described

above are satisfied. A quick calculation (using MAPLE, see Appendix A.5) shows that

this is indeed the case, i.e. the 4 ratios are satisfied. We conclude that the solution is

symmetric and only symmetric at c = 1
2 .

Remark 10. Conjecture 10 says that if α is sufficiently large (α > k2π2 where k is an

integer) then the EL has no solution with less than (k− 1) internal zero. In particular,
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when α is large, all solutions have internal zeros. But the theorem above contradicts

that fact, since we know that there should be a solution without internal zeroes regardless

of how large α is. This disproves conjecture 10 and shows that the Müller problem [47]

and the Yip problem [63] are very different.

Now let us go back to case 1 where 1− 4αγ > 0. we have shown that c = 1
2 is always

a solution to (3.3.1) which in turn means that there is always a solution to the Euler

Lagrange equation that has a jump at c = 1
2 . In particular we can plug in this value of

c to the matrix M from above and get:



−Λ3eΛ/2 Λ3e−Λ/2 −λ3eλ/2 λ3e−λ/2 Λ3eΛ/2 −Λ3e−Λ/2 λ3eλ/2 −λ3e−λ/2

1 1 1 1 0 0 0 0

Λ2 Λ2 λ2 λ2 0 0 0 0

Λ eΛ/2 −Λ e−Λ/2 λ eλ/2 −λ e−λ/2 0 0 0 0

0 0 0 0 eΛ e−Λ eλ e−λ

0 0 0 0 Λ2eΛ Λ2e−Λ λ2eλ λ2e−λ

0 0 0 0 Λ eΛ/2 −Λ e−Λ/2 λ eλ/2 −λ e−λ/2

Λ2eΛ/2 Λ2e−Λ/2 λ2eλ/2 λ2e−λ/2 −Λ2eΛ/2 −Λ2e−Λ/2 −λ2eλ/2 −λ2e−λ/2

eΛ/2 e−Λ/2 eλ/2 e−λ/2 −eΛ/2 −e−Λ/2 −eλ/2 −e−λ/2



.

From there, we can useMX = B and solve forX, whereX = [x1, x2, x3, x4, x5, x6, x7, x8]T .

For example, for α = 10 and γ = 0.01 we have

X(10, 0.01) =



−0.0012342496

0.0012342496

0.0693587456

−0.0693587452

0.0000001001

−15.2161800696

−0.0024161742

1.9910135560



,
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which gives us the following graph

Figure 3.6: Example of a symmetric solution where α = 10 and γ = 0.01.

Remark 11. Notice that the solution u in Figure 3.6, has no internal zeroes. This

is relevant, because as we will see in the next sections we can use that solution as a

“building block” to create more solutions with higher lap number and internal zeroes.

3.3.2 Existence of uk (periodic) solutions, k > 1

Let α > 0, γ > 0. Now that we have a solution u1,α,γ of the Euler-Lagrange equation

with lap number 2, we can use it to construct more complex solutions to the Euler-

Lagrange equation with higher lap numbers.

It turns out that we can use u1 as a building block (and in a unique way) to formulate

solutions of higher order. In particular, we can scale and construct multiple copies of

u1 for different values of the parameters α and γ.
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Let un,α,γ(x) be the following expression:

un,α,γ =
1

n

n−1∑
k=0

(−1)k u1,α′,γ′ (n(x− k

n
))χ[ k

n
, k+1
n

], (3.3.2)

where α′ = f(α, n), γ′ = g(γ, n) and u1,α′,γ′ is a solution of the Euler-Lagrange equation

of lap 2 and parameters α′, γ′.

The expression above is the unique solution of lap number n+1 (n−1 internal zeroes).

We therefore have the following Theorem.

Theorem 12. Let α > 0 and γ > 0, α′ = α
n2 , γ

′ = γ n2. For those values un,α,γ(x) is

the unique (up to reflection) periodic solution to the Euler-Lagrange equation of n− 1

internal zeroes (lap number n+ 1).

Proof. Let γ > 0 and α > 0, α′ = α
n2 , γ

′ = γ n2. We will show that the un,α,γ defined

above (3.3.2) is the unique periodic solution we are looking for. By construction, un,α,γ

is periodic. We will show the following:

� un,α,γ defined above is a solution of the Euler-Lagrange equation (3.2.2).

� un,α,γ satisfies the boundary conditions u(0) = u(1) = 0, uxx(0) = uxx(1) = 0.

� un,α,γ satisfies the jump condition uxxx(c+
1 )− uxxx(c−1 ) = 2

γ .

� un,α,γ clearly satisfies the other conditions too (u(c−1 ) = u(c+
1 ), uxx(c−1 ) = uxx(c+

1 ),

ux(c−1 ) = 0, ux(c+
1 ) = 0).

� un,α,γ is unique (i.e. there are no other periodic solution of the Euler-Lagrange

equation).

First we show that (3.3.2) is a solution of the Euler-Lagrange equation. Towards that,

let x ∈ [0, 1]. There exists k < n such that x ∈ [ kn ,
k+1
n ]. By its definition, un,α,γ

satisfies the Euler-Lagrange equation if and only if:

γ [(−1)ku1,α′,γ′ (n(x−k
n

))]xxxx−[(−1)ku1,α′,γ′ (n(x−k
n

))]xx+α (−1)k u1,α′,γ′ (n(x−k
n

)) = 0,
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���
(−1)k γ n4 [u1,α′,γ′ ]xxxx (n(x− k

n
))−���

(−1)k n2 [u1,α′,γ′ ]xx (n(x− k

n
)) +���

(−1)k αu1,α′,γ′ (n(x− k

n
)) = 0.

(3.3.3)

For convenience, let’s do the following change of variables. Let

y = n(x− k

n
). (3.3.4)

But we know k
n < x < k+1

n which means 0 < x − k
n < 1

n and using (3.3.4) we get

0 < y < 1. Now we can rewrite (3.3.3) as

γ n4 [u1,α′,γ′ ]xxxx(y)− n2 [u1,α′,γ′ ]xx(y) + αu1,α′,γ′(y) = 0 ∀y ∈ [0, 1],

dividing by n2 we get

γ n2 [u1,α′,γ′ ]xxxx(y)− [u1,α′,γ′ ]xx(y) +
α

n2
u1,α′,γ′(y) = 0.

Since we know that α′ = α
n2 and γ′ = γ n2, the above becomes

γ′ [u1,α′,γ′ ]xxxx(y)− [u1,α′,γ′ ]xx(y) + α′u1,α′,γ′(y) = 0 (y ∈ (0, 1)),

which is of course a true statement since u1,α′,γ′ is a solution to the Euler-Lagrange

equation with parameters α′, γ′.

Next, we will show that un,α,γ satisfies the jump condition, namely

[un,α,γ ]xxx =
2

γ
,

applying that into (3.3.2) and using the chain rule and the fact that u1 satisfies the

jump condition, we get

n2 2

γ n2
=

2

γ
⇔ n2 2

γ′
=

2

γ
⇔ γ′ = γn2,

which is a true statement. Thus the jump condition holds too.
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Thirdly, we show that un,α,γ satisfies the boundary conditions. Clearly,

un,α,γ(0)
(k=0)

=
1

n
(−1)0u1,α′,γ′(n(0− 0

n
)) =

1

n
(−1)0

�����u1,α′,γ′(0) = 0,

(because u1,α′,γ′ satisfies the boundary conditions). Similarly,

un,α,γ(1) =
(k=n−1)

=
1

n
(−1)n−1u1,α′,γ′(n(1− n− 1

n
)) =

1

n
(−1)n−1

�����u1,α′,γ′(1) = 0.

For notational simplicity let u = un,α,γ , v = u1,α′,γ′ . We have

uxx(0)
(k=0)

=
1

n
(−1)0 n2 vxx(n(0− 0

n
)) = n����vxx(0) = 0.

We also have

uxx(1)
(k=n−1)

=
1

n
(−1)n−1 n2 vxx(n(1− n− 1

n
)) = n (−1)n−1

����vxx(1) = 0.

Moreover, we need to prove that uxx( 1
n) = 0. Let v be a periodic solution. We know

that v is odd around x = 1
n which means

v(
1

n
+ ε) = −v(

1

n
− ε),

using Taylor expansion, we get

v(
1

n
) + ε vx(

1

n
) +

ε2

2
vxx(

1

n
) + · · · = −(v(

1

n
)− ε vx(

1

n
) +

ε2

2
vxx(

1

n
) . . . ),

after a few convenient cancellations we arrive at:

ε2 vxx(
1

n
) +

2ε4

4!
vxxxx(

1

n
) + ... = 0.

Since the above is a polynomial expression of ε > 0 (and true for all ε > 0) , we conclude

that:

vxx(
1

n
) = vxxxx(

1

n
) = · · · = 0.

50



CHAPTER THREE

In particular vxx( 1
n) = 0.

Also, by construction and since u1,α′,γ′ is a solution, un,α,γ satisfies all the continuity

conditions.

Lastly, we prove uniqueness. Towards that, let u1
n,α,γ and u2

n,α,γ be two periodic solu-

tions with n− 1 internal zeroes. That is

u1
n,α,γ =

1

n

n−1∑
k=0

(−1)ku1(n(x− k

n
))χ[ k

n
, k+1
n

],

u2
n,α,γ =

1

n

n−1∑
k=0

(−1)ku2(n(x− k

n
))χ[ k

n
, k+1
n

].

where u1 and u2 are two symmetric functions of no internal zeroes.

By the work above we know that u1 = u1
1,α′,γ′ , u

2 = u2
1,α′,γ′ are solutions of the Euler-

Lagrange equation for α′ = α
n2 and γ′ = γn2. However, by Theorem 11 (uniqueness

of solution of lap number 2 for a fixed pair(α′, γ′)) we must have u1 = u2. Thus,

u1
n,α,γ = u2

n,α,γ which completes the proof of uniqueness.

Remark 12. The proof above states that a periodic solution un,α,γ is uniquely deter-

mined by the solution u1, α
n2 ,γn

2. It should be clear that the converse is also true, namely

given u1,α,γ be the periodic solution of lap 2, un,αn2, γ
n2

is the unique periodic solution

of lap n+ 1 for α′ = αn2 and γ′ = γ
n2 .

In other words, there is 1− 1 correspondence between u1,α1,γ1 and un,α2,γ2 with

(α2, γ2) = (α1n
2, γ1

n2 ) ( or equivalently (α1, γ1) = (α2
n2 , γ2n

2)). This correspondence com-

bined with the fact that every periodic solution can be written as un,α,γ (for appropriate,

α > 0, γ > 0 and n ∈ N) provides us with a complete characterization of all periodic

solutions.

Below, we present some concrete examples. For instance, let α = 1 and γ = 0.1. We

can calculate the location of the jump c = 0.5. Then, u1,α,γ = u1,1,0.1 = u1 is given by
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the following two segments:

ul1(x) =

 −0.09300746171 e2.978755335x + 0.09300746171 e−2.978755335x

+0.5313995522 e1.061610406x − 0.5313995522 e−1.061610406x
, 0 ≤ x ≤ 0.5,

ur2(x) =

 0.004729996162 e2.978755335x − 1.828836151 e−2.978755335x

−0.1838102153 e1.061610406x + 1.536288311 e−1.061610406x.
, 0.5 ≤ x ≤ 1.

Figure 3.7: Symmetric solution of lap 2 where α = 1, γ = 0.1.

We can also calculate u1, 1
22 ,0.1(22) in a similar way. This will be important for the calcu-

lation of u2,1,0.1 which depends on u1, 1
4
,0.4. In particular, for α = 1, γ = 0.1, α′ = α

22 ,

γ′ = γ 22, we have:

u2,α,γ =
1

2

[
u1,α′,γ′(2x)χ[0, 1

2
] − u1,α′,γ′ [2(x− 1

2
)]χ[ 1

2
,1]

]
,

and its graph is given by:
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Figure 3.8: Periodic solution of lap 3, u2,1,0.1

Similarly, u3, u4, u5 and u6 are given by the following expressions and graphs.

u3,α,γ = 1
3

[
u1,α′,γ′(3x)χ[0, 1

3
] − u1,α′,γ′ [3(x− 1

3)]χ[ 1
3
, 2
3

] + u1,α′,γ′ [3(x− 2
3)]χ[ 2

3
,1]

]
,

u4,α,γ =
1

4

[
u1,α′,γ′(4x)χ[0, 1

4
]−u1,α′,γ′ [4(x−1

4
)]χ[ 1

4
, 2
4

]+u1,α′,γ′ [4(x−2

4
)]χ[ 2

4
, 3
4

]−u1,α′,γ′ [4(x−3

4
)]χ[ 3

4
,1]

]
.

u3 u4

Figure 3.10: Example of finding u3 and u4 where α = 1, γ = 0.1.
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u5,α,γ = 1
5

[
u1,α′,γ′(5x)χ[0, 1

5
] − u1,α′,γ′ [5(x− 1

5)]χ[ 1
5
, 2
5

] + u1,α′,γ′ [5(x− 2
5)]χ[ 2

5
, 3
5

] − u1,α′,γ′ [5(x− 3
5)]χ[ 3

5
, 4
5

] + u1,α′,γ′ [5(x− 4
5)]χ[ 4

5
,1]

]
,

u6,α,γ = 1
6

[
u1,α′,γ′(6x)χ[0, 1

6
] − u1,α′,γ′ [6(x− 1

6)]χ[ 1
6
, 2
6

] + u1,α′,γ′ [6(x− 2
6)]χ[ 2

6
, 3
6

] − u1,α′,γ′ [6(x− 3
6)]χ[ 3

6
, 4
6

] + u1,α′,γ′ [6(x− 4
6)]χ[ 4

6
, 5
6

] − u1,α′,γ′ [6(x− 5
6)]χ[ 5

6
,1]

]
.

u5 u6

Figure 3.12: Example of finding u5 and u6 where α = 1, γ = 0.1.

3.3.3 Existence of u1 non-symmetric solutions

Now let’s go back to case 3 from Section 3.2 Namely, when 1 − 4αγ < 0. In section

3.3 we found that

F3(c) = sin(2ωc) sinh(2t (c− 1))− sin (2ω (c− 1)) sinh (2tc) = 0. (3.3.5)

We already know that F3(0) = F3(1
2) = F3(1) = 0, but for certain pairs of (α, γ) we have

F3(c) = 0 where c 6= 0, c 6= 1
2 , c 6= 1. For example when α = 190, γ = 0.1, we have

three solutions. One is a symmetric solution at c1 = 0.5 and two are non-symmetric

solutions where c2 = 0.3623549804 and c3 = 0.6376450198 (see figures below).
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Figure 3.13: Location of jumps where α = 190 and γ = 0.1.

u(c2) u(c3)

Figure 3.15: Example of a non-symmetric solution of lap 2 when α = 190, γ = 0.1. and
c1 = 0.5, c2 = 0.36, c3 = 0.63

In the example above, notice that c2 + c1 = 1. This is not a coincidence. In fact,

F3(1 − x) = −F3(x) which means that if x = c a root of F3, so is x = 1 − c.

(F3(c) = 0 ⇔ F3(1− c) = −F3(c) = 0). To see this let

F3(c) = sin(2ω(1− x)) sinh(2t (1− x− 1))− sin (2ω (1− x− 1)) sinh (2t(1− x)),

= sin(2ω(1− x)) sinh(−2t x)− sin (−2ω x) sinh (2t(1− x)),

= sin(2ω(x− 1)) sinh(2t x)− sin (2ω x) sinh (2t(x− 1)),

= −F3(x).

Moreover, if F3(c) = F3(1−c) = 0 (c 6= 0, c 6= 1, c 6= 1
2 ) then the corresponding solution

with jumps at x1 = c, x2 = 1− c are symmetric to one another.
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In particular, if u and v are such a pair of non-symmetric solutions, it can be easily

shown that, u(1−x) = v(x) ∀x ∈ [0, 1] which means that the solutions are reflections

of one another around the line x = 1
2 .

Below are more examples with different values of α and γ:

α = 67 and γ = 0.02 α = 67 and γ = 0.02

α = 90 and γ = 0.04 α = 90 and γ = 0.04

Figure 3.18: Example of symmetric and non-symmetric solutions of lap 2 for 1−4αγ < 0. On
the left we have the plot of F3(c) while on the right we have the solutions u of the Euler-Lagrange
equation that correspond to each c with F3(c).
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Figure 3.20: Example of symmetric and non-symmetric solutions of lap 2 for 1−4αγ < 0. On
the left we have the plot of F3(c) while on the right we have the solutions u of the Euler-Lagrange
equation that correspond to each c with F3(c), where α = 139 and γ = 0.1.

AS we can see from Figures 3.18-3.20, the closer the other two roots are at 1
2 the

“flatter” the F3 at c = 1
2 . In other words, to find the bifurcation curve, we would need

to calculate the exact values of α and γ for which F ′3(1
2) = 0.

More generally, to find any bifurcation curve on the (α, 1
γ ) plane, we need to solve the

following equation F ′3(c) = 0.

F ′3(c) = 2ω cos (2ω c) sinh (2 t (c− 1)) + 2 sin (2ω c) t cosh (2 t (c− 1))

− 2ω cos (2ω (c− 1)) sinh (2 ct)− 2 sin (2ω (c− 1)) t cosh (2 ct) .

Note that the α and γ for which F ′3(1
2) = 0 do not form a continuous graph on the

(α, 1
γ ). Instead they form several connected curves the lowest of which is given in the

following graph, Figure 3.21. These bifurcation curves represent the critical values of

the (α, 1
γ ) pair which form a threshold between 2k−1 and 2k+ 1 solutions of the Euler

Lagrange equation. In particular, the lowest of those curve (k = 1) represents the

bifurcation from 1 to 3 solutions respectively.
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Figure 3.21: Bifurcation curve (k = 1). This is lowest connected component of F ′3( 1
2 ) = 0.

Since k = 1, we go from 1 to 3 solutions. In particular, below the bifurcation curve we have 1
solution and above the curve we have (at least) 3 solutions.

Remark 13. Figure 3.21 illustrates that the bifurcation curve, tends to the “north-

east”. More formally, we make the conjecture that if α → ∞ then 1
γ → 0 (on the

bottom) and 1
γ →∞ (on the top).

3.4 Calculating the Energy

In the previous section we constructed periodic solutions with lap number n+ 1, n > 1

(un,α,γ), explicitly from solutions of lap number 2 (u1,α′,γ′) where α′ = α
n2 and γ′ = n2γ,

which we used as building blocks. Since we are interested in minimizers of the energy

functional, it would be useful to express the energy of higher lap periodic solutions as a

function of the energy of symmetric solutions with lap 2 (see Definitions 3.3.2 - 3.3.4).
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Moreover, since non-symmetric solutions are reflection to one another, they must have

the same energy. This is confirmed by a simple change of variable.

However, the main question is, which of these solutions are the minimizers (local or

global) to our original energy functional. We can address that question as follows. First,

we need to decide on the parameters α and γ. From there, we can utilize the energy

formula (and its corresponding reduction to lap 2 solutions) to calculate the energies

of all symmetric-periodic solutions for those parameters. Finally, we can separately

calculate the energy of the non-symmetric solutions directly and compare them to the

energies of the symmetric ones. The solution with the smallest energy will be our

minimizer.

We start this sections with an important Lemma that provides us with a formula for

the energy of periodic solutions of arbitrary lap number as a function of symmetric

solutions with lap number 2. We finish the section by summarizing the nature of all

minimizers for various parameter values.

The construction in Theorem 12 is very useful because it gives us an explicit relation

between un,α,γ and u1,α′,γ′ . This relation translates to energies. In particular, we have

Lemma 3. Let u1,α′,γ′ be the unique symmetric solution of lap 2. Let un,α,γ be the

unique periodic solution given by (3.3.2). Then

E(un,α,γ) = γ′
1∫

0

(u2
1,α′,γ′)xx(y)dy +

1∫
0

W (u1,α′,γ′)x(y)dy + α′
1∫

0

u2
1,α′,γ′(y)dy,

where α′ = α
n2 and γ′ = n2γ.

Proof. For simplicity let:

ū1 = ū1,α′,γ′(x) =
1

n
u1,γ′,α′(nx).
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We observe that by the chain rule, the n cancels out since

(ū1)x =
n

n
(u1,α′,γ′)x(nx) = (u1,α′,γ′)x(nx),

which means that the W (ux) term does not change. We also have:

(ū1)xx =
n2

n
(u1,α′,γ′)xx(nx) = n(u1,α′,γ′)xx(nx).

Thus a simple change of variables y = nx leads to:

E(un) = nE(ū1) = γ n2

1∫
0

[(u2
1,α′,γ′)xx(y)dy +

1∫
0

W (u1,α′,γ′)x(y)dy +
α

n2

1∫
0

u2
1,α′,γ′(y)dy.

Claim 1.

E(un,α,γ)(x) = nE(ū1).

By (3.3.2) we have that un,α,γ is the sum of n identical (up to reflection) functions with

non-overlapping support. Then

E(un) = E[0, 1
n

](
1

n
u1,α′,γ′(nx)) + E[ 1

n
, 2
n

](
1

n
u1,α′,γ′(nx)) + · · ·+ E[n−1

n
,1](

1

n
u1,α′,γ′(nx)),

=
n−1∑

0

E[ k
n
, k+1
n

](
1

n
u1,α′,γ′(nx)) =

n−1∑
0

E[0, 1
n

](
1

n
u1,α′,γ′(nx)) = nE[0, 1

n
](

1

n
u1,α′,γ′(nx)).

Lemma 1 shows that En,α,γ depends on 3 integrals over u1,α′,γ′ . In particular, let



A = A(n, α, γ) =
1∫
0

(u1,α′,γ′)
2
xx(x) dx =

1∫
0

(u1, α
n2 ,γ n

2)2
xx(x) dx,

B = B(n, α, γ) =
1∫
0

(u1,α′,γ′)
2(x) dx =

1∫
0

(u1, α
n2 ,γ n

2)2(x) dx,

C = C(n, α, γ) =
1∫
0

W (u1,α′,γ′)x(x) dx =
1∫
0

W (u1, α
n2 ,γ n

2)x(x) dx.
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It is clear thatA,B,C ≥ 0. Moreover, we can now write

E(un,α,γ) = γ n2A+
α

n2
B + C. (3.4.1)

For example: for n = 2,

E(u2,α,γ) = 4γ A(2, α, γ) +
α

4
B(2, α, γ) + C(2, α, γ).

Now we will provide an example of how to calculate E(u2,α,γ) using our formula above.

Let’s calculate the energy of u2,α,γ = u2,3,0.04. Since α = 3, γ = 0.04, then we are in

case 1 and where c = 1
2 and u1, α

n2 ,γ n
2 = u1, 3

4
,0.16 is given by the following two segments:

ul1(x) =

 −0.1707370889 e2.319152764x + 0.1707370889 e−2.319152764x

+0.6685576813 e0.9335579537x − 0.6685576813 e−0.9335579537x
, 0 ≤ x ≤ 0.5,

ur2(x) =

 0.01679316765 e2.319152764x − 1.735893672 e−2.319152764x

−0.2628450576 e0.9335579537x + 1.700505146 e−0.9335579537x
, 0.5 ≤ x ≤ 1.

Since we have have a formula to calculate the energy (3.4.1), now we can find all the

integrals A, B and C from Maple.

A =

c∫
0

(ul1,α′,γ′(x))2
xx dx+

1∫
c

(ur1,α′,γ′(x))2
xx dx = 1.17651,

B =

c∫
0

(ul1,α′,γ′(x))2 dx+

1∫
c

(ur1,α′,γ′(x))2 dx = 0.0116542,

C =

c∫
0

(|ul1,α′,γ′(x)| − 1)2 dx+

1∫
c

(|ur1,α′,γ′(x)| − 1)2 dx = 0.490641.

Substituting A,B and C into (3.4.1) , we get

E(u2) = 0.16 (1.17651) +
3

4
(0.0116542) + 0.490641 = 0.68762507.
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Also, in the tables below we calculate and compare energies between symmetric and

non-symmetric solutions of lap number 2 for various pairs of (α, γ). To avoid confusion,

we use the notation usym2 for symmetric solutions and uns2 for non-symmetric solutions.

Whenever non-symmetric solutions do not exist, we indicate it by the use of a omission

bar (−).

α 1
γ usym2 uns2

20 20 0.7502426453 -

30 20 0.8020312120 -

40 20 0.8350022830 -

50 20 0.8578708898 -

60 20 0.8746881896 -

70 20 0.8875933104 -

80 20 0.8978224256 0.8978043655

90 20 0.9061397819 0.9060042690

100 20 0.9130433379 0.9127488553

110 20 0.9188714895 0.9184161969

Table 3.1: Comparing energy for different values of α and for fixed γ = 0.05.

α 1
γ usym2 uns2

10 70 0.5750154659 -

20 70 0.6971554736 -

30 70 0.7608044123 -

40 70 0.8001248766 -

50 70 0.8269823351 -

60 70 0.8465882904 0.8465375704

70 70 0.8615934478 0.8613718782

80 70 0.8734900073 0.8730892445

90 70 0.8831831920 0.8826307680

100 70 0.8912546608 0.8901272498

Table 3.2: Comparing energy for different values of α and for fixed γ = 0.014.

It is worth noting here that Yip in [63] showed that all local minimizers are periodic.

Although, the tables above indicate the existence of non-periodic solutions with lower

energy (than the corresponding periodic ones) this does not contradict Yip’s conclusion

as he only considered cases with α = 1, all of which lie below the first bifurcation curve

and thus u1, is necessarily a local or global minimizer (depending on the value of γ).
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We can summarize these behaviours of the lap 2 solutions in the next section.

3.4.1 Optimizing Energy

Our work above gives us a direct way to calculate the energy of all periodic solutions

(with any amount of internal zeroes) as function of the symmetric solution with no

internal zeroes. Also, we can calculate the energy of the non-symmetric solutions (with

lap 2) directly. Now we will find the periodic solutions which are local/global minimizers

for our functional E.

On the (α, 1
γ ) plane we plot the curve E1,2 corresponding to E(u1) = E(u2), where

u1, u2 are the solutions with no and one internal zeroes respectively. In general, we

calculate Ei,j by solving the equation E(ui) = E(uj) using MAPLE and in particular

curve fitting. More specifically, since we know the energy formula E(ui) = E(ui, α, γ)

for a given i, α, γ, we can incrementally change the values of α and γ until we find

several pairs (α, 1
γ ) for which E(ui) = E(uj). These (finitely many) pairs approximate

the curve (α, 1
γ ) (see Appendix A.7). Also, let F ′3(1

2) = 0 be the bifurcation curve (see

Section 3.3.3).

We make the following observations, see Figure 3.32.

Remark 14. The E1,2 energy curve is always below the bifurcation curve. Moreover:

(i) For a point (α, 1
γ ) below the E1,2 energy curve, u1 is the global minimizer.

(ii) For a point (α, 1
γ ) above the E1,2 energy curve but below the bifurcation curve, u1

is a local but not a global minimizer.

(iii) For a point (α, 1
γ ) above the bifurcation curve, u1 is not a minimizer.

The numerical illustration of the above remark is as follows:

Firstly, MAPLE reveals that E1,2 energy curve is below the first bifurcation curve.

(i) Now, we know that E1,2 is the only place that E1 = E2. That is, the only location

on the (α, 1
γ ) plane that E1−E2 changes sign. With that in mind, we can choose
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any point below the curve and calculate the sign of the quantity E1 − E2. In

particular, we choose (1, 10) and we find that E1 − E2 < 0 and thus E1 < E2.

A similar approach, using higher energy curves E2,3, E3,4, etc shows that for any

point below the E1,2 curve we have that E1 < E2 < E3 < E4, . . . .

Moreover, in that region, u1, u2, u3, u4, are the only solution to the EL equation

and thus the only candidates for the global minimizer. Additionally, the increasing

pattern of the energies lead us to conclude that u1 is a global minimizer.

We make the following conjecture

Conjecture 13. The graphs of Ei,j , j ≥ i are ordered as follows:

Ei′,j′ is above Ei,j if and only if j′ > j or j′ = j and i′ > i.

The picture of the first few curves where pairs of energies are equal is as follows:

Figure 3.22: Curves where the energy of ui is equal to the energy of ui+1 (i = 1, 2).

(ii) A similar point calculation like the one above reveals that above E1,2 curve,
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E1 > E2. But since we are also below the bifurcation curve, only the (periodic)

u1, u2, u3, . . . are the solutions of the EL equation. But since E1 > E2, u1 can

not be a global minimizer.

(iii) Above the bifurcation curve, we also have non-symmetric solutions to the EL

equation. In particular, u1 bifurcates to two non-symmetric solutions w1, w2 such

that E(w1) = E(w2) < E(u1). This means that u1 is no longer a local minimizer.

3.5 Formula for the number of jumps and unkown param-

eters for solution of lap number n ≥ 2

So far we have been working on solutions with lap number 2. However, we are also

interested in solutions of an arbitrary lap number n ≥ 2. In general, any solution

with lap number n, has n − 1 jumps, 0 < c1 < c2 < · · · < cn−1 < 1. Each interval

of monotonicity (ci, ci+1) gives rise to an Euler-Lagrange equation with 4 unknown

coefficients. Thus we have a total of 4n unknown coefficients. Together with the n− 1

unknown locations of the jumps we have a total of p = 5n − 1 unknowns. On the

other hand, each ci gives rise to 4 continuity conditions (one for the regular continuity,

two for the first derivative and one for the second derivative) and one jump condition.

This makes for 5 × (n − 1) = 5n − 5 “interior” conditions. Moreover, we have 4 more

boundary (Dirichlet) conditions for a total of q = 5n − 1 restrictions. This brings the

total amount of restrictions to match the number of unknowns.
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Figure 3.23: Visual for lap number 4 (n = 4).

However, since we do not know the n−1 locations of the jumps ahead of time, we should

split the number of unknowns p into two parts: p1, the 4n unknown coefficients and

p2, the n− 1 unknown locations of the jumps. Clearly, p = p1 + p2 like we saw earlier.

Next, we can define the restriction matrix M ∈ Rq×p1 as a function of the locations of

the jumps, like we did in Section 3.3.1. Following the same process as in section 3.3.1,

we can consider the p1 × q matrix MT and apply the Fredholm alternative, which will

result to an equation of the form F (c1, c2, ..., cn−1) = 0. The latter includes the n − 1

locations of the jumps as unknowns, which we can then solve using MAPLE. After

we do, the p2 locations of the jumps will now be known and thus we can plug them

into the matrix M , which in turn will allow us to calculate the remaining p1 unknown

coefficients via a simple Gauss-Jordan elimination from MX = B (where X is the

vector of p1 coefficients and B is the constant vector of size q obtained by the right

hand side of the q restrictions. I.e B is mostly zeroes, except for the jump conditions

which is ± 2
γ ).

In the general case of lap n > 2 we can write M as an upper triangular block matrix
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that has the following form:

M(n) =



M1 ∗ ∗ ∗

0 M2 ∗ ∗

. . .

0 0 . . . Mn−1

L


.

In particular, we have

M1 =



1 1 1 1

Λ2 Λ2 λ2 λ2

Λ eΛ c1 −Λ e−Λ c1 λ eλ c1 −λ e−λ c1

Λ3eΛ c1 −Λ3e−Λ c1 λ3eλ c1 −λ3e−λ c1


∈ R4×4,

Mi+1 =



Λ eΛ ci −Λ e−Λ ci λ eλ ci −λ e−λ ci

Λ eΛ ci+1 −Λ e−Λ ci+1 λ eλ ci+1 −λ e−λ ci+1

eΛ ci+1 e−Λ ci+1 eλ ci+1 e−λ ci+1

Λ2eΛ ci+1 Λ2e−Λ ci+1 λ2eλ ci+1 λ2e−λ ci+1


∈ R4×4

∀ 1 ≤ i ≤ n− 3
,

and

Mn−1 =



Λ eΛ cn−2 −Λ e−Λ cn−2 λ eλ cn−2 −λ e−λ cn−2 0 0 0 0

Λ eΛ cn−1 −Λ e−Λ cn−1 λ eλ cn−1 −λ e−λ cn−1 0 0 0 0

eΛ cn−1 e−Λ cn−1 eλ cn−1 e−λ cn−1 −eΛ cn−1 −e−Λ cn−1 −eλ cn−1 −e−λ cn−1

Λ2eΛ cn−1 Λ2e−Λ cn−1 λ2eλ cn−1 λ2e−λ cn−1 −Λ2eΛ cn−1 −Λ2e−Λ cn−1 −λ2eλ cn−1 −λ2e−λ cn−1

Λ3eΛ cn−1 −Λ3e−Λ cn−1 λ3eλ c2 −λ3e−λ c2 −Λ3eΛ c2 Λ3e−Λ cn−1 −λ3eλ cn−1 λ3e−λ cn−1

0 0 0 0 Λ eΛ cn−1 −Λ e−Λ cn−1 λ eλ cn−1 −λ e−λ cn−1

0 0 0 0 eΛ e−Λ eλ e−λ

0 0 0 0 Λ2eΛ Λ2e−Λ λ2eλ λ2e−λ



∈ R8×8.

Finally, L ∈ R(n−1)×(5n−1) is the matrix of the “leftover” rows.
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As an example, the full matrix corresponding to lap 4 is given by:



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Λ2 Λ2 λ2 λ2 0 0 0 0 0 0 0 0 0 0 0 0

Λ eΛ c1 −Λ e−Λ c1 λ eλ c1 −λ e−λ c1 0 0 0 0 0 0 0 0 0 0 0 0

Λ3eΛ c1 −Λ3e−Λ c1 λ3eλ c1 −λ3e−λ c1 −Λ3eΛ c1 Λ3e−Λ c1 −λ3eλ c1 λ3e−λ c1 0 0 0 0 0 0 0 0

0 0 0 0 Λ eΛ c1 −Λ e−Λ c1 λ eλ c1 −λ e−λ c1 0 0 0 0 0 0 0 0

0 0 0 0 Λ eΛ c2 −Λ e−Λ c2 λ eλ c2 −λ e−λ c2 0 0 0 0 0 0 0 0

0 0 0 0 eΛ c2 e−Λ c2 eλ c2 e−λ c2 −eΛ c2 −e−Λ c2 −eλ c2 −e−λ c2 0 0 0 0

0 0 0 0 Λ2eΛ c2 Λ2e−Λ c2 λ2eλ c2 λ2e−λ c2 −Λ2eΛ c2 −Λ2e−Λ c2 −λ2eλ c2 −λ2e−λ c2 0 0 0 0

0 0 0 0 0 0 0 0 Λ eΛ c2 −Λ e−Λ c2 λ eλ c2 −λ e−λ c2 0 0 0 0

0 0 0 0 0 0 0 0 Λ eΛ c3 −Λ e−Λ c3 λ eλ c3 −λ e−λ c3 0 0 0 0

0 0 0 0 0 0 0 0 eΛ c3 e−Λ c3 eλ c3 e−λ c3 −eΛ c3 −e−Λ c3 −eλ c3 −e−λ c3

0 0 0 0 0 0 0 0 Λ2eΛ c3 Λ2e−Λ c3 λ2eλ c3 λ2e−λ c3 −Λ2eΛ c3 −Λ2e−Λ c3 −λ2eλ c3 −λ2e−λ c3

0 0 0 0 0 0 0 0 Λ3eΛ c3 −Λ3e−Λ c3 λ3eλ c3 −λ3e−λ c3 −Λ3eΛ c3 Λ3e−Λ c3 −λ3eλ c3 λ3e−λ c3

0 0 0 0 0 0 0 0 0 0 0 0 Λ eΛ c3 −Λ e−Λ c3 λ eλ c3 −λ e−λ c3

0 0 0 0 0 0 0 0 0 0 0 0 eΛ e−Λ eλ e−λ

0 0 0 0 0 0 0 0 0 0 0 0 Λ2eΛ Λ2e−Λ eλ e−λ

0 0 0 0 Λ3eΛ c2 −Λ3e−Λ c2 λ3eλ c2 −λ3e−λ c2 −Λ3eΛ c2 Λ3e−Λ c2 −λ3eλ c2 λ3e−λ c2 0 0 0 0

Λ2eΛ c1 Λ2e−Λ c1 λ2eλ c1 λ2e−λ c1 −Λ2eΛ c1 −Λ2e−Λ c1 −λ2eλ c1 −λ2e−λ c1 0 0 0 0 0 0 0 0

eΛ c1 e−Λ c1 eλ c1 e−λ c1 −eΛ c1 −e−Λ c1 −eλ c1 −e−λ c1 0 0 0 0 0 0 0 0



Let the above M(n) be the standard representation of matrix M with lap n. We have

the following useful theorem:

Theorem 14. Let M ∈ R(5n−1)×4n be the matrix corresponding to lap n such that

MX = B. We have that rank(M) = 4n and dim (N (MT )) = n− 1.

Proof. First we can write M in the standard form M(n) (rearranging rows if necessary).

Since M(n) is an upper triangular block matrix, we know that

rank(M) = rank(M(n)) =
n−1∑
i=1

rank(Mi).

A simple Gauss-Jordan elimination shows that:


rank(M1) = 4,

rank(Mi+1) = 4,∀ 1 ≤ i ≤ n− 3,

rank(Mn−1) = 8,
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Thus rank(M) =
n−1∑
i=1

rank(Mi) = (n− 2)× 4 + 8 = 4n.

We also know rank(MT ) = rank(M) = 4n. By the rank-nullity theorem

dim(N (MT )) = 5n− 1− rank(MT ) = n− 1.

In what follows, we show how this process works for lap number 3.

3.5.1 Periodic and Non Periodic Solutions with Lap

number 3

For lap number 3 we have p1 = 4× 3 = 12 coefficient unknowns (A1, . . . , A12),

p2 = 3 − 1 = 2 unknown locations of the jumps (c1, c2) and q = (5 × 3) − 1 = 14

total restrictions (4 × 2 continuity restrictions, 2 jump restrictions and 4 boundary

conditions) which are the following:



u1(0) = 0, u1,x(c−1 ) = 0, u1,xx(0) = 0, u2,x(c1) = 0,

u2,x(c2) = 0, u3,x(c2) = 0, u3(1) = 0, u3,xx(1) = 0,

u1(c1) = u2(c1), u1,xx(c1) = u2,xx(c1), u2(c2) = u3(c2), u2,xx(c2) = u3,xx(c2),

u1,xxx(c+
1 )− u2,xxx(c−1 ) = 2

γ , u2,xxx(c+
2 )− u3,xxx(c−2 ) = −2

γ ,

where ui is the ith segment of the Euler-Lagrange equation, i = 1, 2, 3.

First, let us work on the case 1 , namely the one where the parameters satisfy the

inequality 1− 4αγ > 0. Following the procedure we described above, we start by only

considering the p1 = 12 coefficient unknowns as well as all the q = 14 restrictions.

This gives rise to a 14 × 12 matrix M , whose rows are determined by the 14 restric-

tion conditions and B is the constant vector of size 14 obtained by the right hand

side of the 14 restrictions. In other words MX = B where X = [A1, A2, . . . A12]T ,
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B = [ 2
γ ,
−2
γ , 0, . . . , 0]T and M is given by the following:

M =



1 1 1 1 0 0 0 0 0 0 0 0

Λ2 Λ2 λ2 λ2 0 0 0 0 0 0 0 0

Λ eΛ c1 −Λ e−Λ c1 λ eλ c1 −λ e−λ c1 0 0 0 0 0 0 0 0

Λ3eΛ c1 −Λ3e−Λ c1 λ3eλ c1 −λ3e−λ c1 −Λ3eΛ c1 Λ3e−Λ c1 −λ3eλ c1 λ3e−λ c1 0 0 0 0

0 0 0 0 Λ eΛ c1 −Λ e−Λ c1 λ eλ c1 −λ e−λ c1 0 0 0 0

0 0 0 0 Λ eΛ c2 −Λ e−Λ c2 λ eλ c2 −λ e−λ c2 0 0 0 0

0 0 0 0 eΛ c2 e−Λ c2 eλ c2 e−λ c2 −eΛ c2 −e−Λ c2 −eλ c2 −e−λ c2

0 0 0 0 Λ2eΛ c2 Λ2e−Λ c2 λ2eλ c2 λ2e−λ c2 −Λ2eΛ c2 −Λ2e−Λ c2 −λ2eλ c2 −λ2e−λ c2

0 0 0 0 Λ3eΛ c2 −Λ3e−Λ c2 λ3eλ c2 −λ3e−λ c2 −Λ3eΛ c2 Λ3e−Λ c2 −λ3eλ c2 λ3e−λ c2

0 0 0 0 0 0 0 0 Λ eΛ c2 −Λ e−Λ c2 λ eλ c2 −λ e−λ c2

0 0 0 0 0 0 0 0 eΛ e−Λ eλ e−λ

0 0 0 0 0 0 0 0 Λ2eΛ Λ2e−Λ λ2eλ λ2e−λ

Λ2eΛ c1 Λ2e−Λ c1 λ2eλ c1 λ2e−λ c1 −Λ2eΛ c1 −Λ2e−Λ c1 −λ2eλ c1 −λ2e−λ c1 0 0 0 0

eΛ c1 e−Λ c1 eλ c1 e−λ c1 −eΛ c1 −e−Λ c1 −eλ c1 −e−λ c1 0 0 0 0



For example u1(0) = 0 leads to the equation: A1 +A2 +A3 +A4 = 0 and thus the row

of M is [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0].

Maple shows that the nullspace of MT is two-dimensional (see Appendix A.6), since

its reduced row echelon form is full rank(12) (also see Theorem 14). This means that

we can find two vectors yl = [a1, a2, . . . , a14]T and y2 = [a′1, a
′
2, . . . , a

′
14]T in N (NT ).

By the Fredholm alternative (see Section 2.3) we have 〈y1, B〉 = 〈y2, B〉 = 0. Since

B = [ 2
γ ,
−2
γ , 0, . . . , 0], we have that:

a1(
2

γ
)− a2(

2

γ
) = 0

a′1(
2

γ
)− a′2(

2

γ
) = 0


a1 − a2 = 0.

a′1 − a′2 = 0.

Since each a1, a2, a
′
1 and a′2 are functions of the jumps c1 and c2, we can solve the above

system to find the jumps, see Appendix A.6. Symbolically, we can express the system

above as follows: 
F1(c1, c2) = 0,

F2(c1, c2) = 0.
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However, here we do present a few explicit graphical examples of their curves. We

start with some fixed values of the parameter pair (α, γ) and then we plot the F1, F2

curves on the (c1, c2) plane. Of course, the locations where these two curves intersect

are exactly the solutions to our system and thus the locations of the jumps c1 and c2.

Naturally, each of these intersections (jump pair) gives rise to a unique solution to the

Euler-Lagrange equation. To illustrate the connection we add an extra plot (on the

(x, u) plane) with the solutions that correspond to the intersections.

Figure 3.24: Solution Plots for α = 2, γ = 0.01. On the left we have the plots of F1 and F2 and
their 3 intersections. On the right we have the 3 corresponding solutions to these intersections.
Notice the intersection at ( 1

4 ,
3
4 ) on the left, which gives rise to a p3 periodic solution on the

right (middle graph).

Figure 3.25: Solution Plots for α = 1, γ = 0.1. Here we only have 1 intersection on the left
and thus only a single corresponding solution to the EL equation on the right, namely the p3
periodic one.

So far, we only talked about solutions when 1−4αγ > 0. The process for the other two

cases (namely,1−4αγ < 0, 1−4αγ = 0) is identical, with the only difference being the

change in λ and Λ. This will effect the numerical values of M (but not its structure)
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as well as the expressions of F1 and F2. Below are a few sample solutions in the case

1− 4αγ < 0:

Figure 3.26: Solution Plots for α = 6, γ = 0.1. Here we only have 1 intersection on the
left and thus only a single corresponding solution to the EL equation on the right, namely the
periodic one.

Figure 3.27: Solution Plots for α = 40, γ = 0.1. On the left we have the plots of F1 and F2 and
their 3 intersections. On the right we have the 3 corresponding solutions to these intersections.
Notice the intersection at ( 1

4 ,
3
4 ) on the left, which gives rise to a periodic solution on the right

(middle graph).

3.5.2 Bifurcation

Next we investigate the first three bifurcation curves in the (α, 1
γ ) plane. In other

words, we want to understand how the change of parameters effects the total numbers

of solutions to the Euler-Lagrange equation (3.2.2). We approximated all other these
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bifurcation curves by estimating the “thresholds” where we go from a lower to a higher

number of solutions using MAPLE and straightforward curve-fitting. In particular, for

various values of α we let γ change incrementally until we observe an increase in the

number of solutions to the Euler Lagrange equation. This yields several “bifurcation”

points (α, 1
γ ) which we can then connect to each other to get the approximation to the

bifurcation curve , see Appendix A.6.

The first few bifurcations can be shown in Figure 3.33. We observed two main types

of pitchfork bifurcations, those that give rise to two new non-periodic solutions (see p1

and p2 in Figure 3.33) and those that give rise to two new non-symmetric solutions (see

s1 in Figure 3.33).

Notably, the first bifurcation p1 (i.e. the first time we observe more solutions than just

the periodic one) is of the first type. Namely, it gives rise to the first non-periodic

solutions. In other words, below the curve p1 we only have a unique (necessarily

periodic) solution while above p1 we have more than 1 solutions.

The other interesting bifurcation curve is s1 , namely the first time we observe non-

symmetric solutions. In other words, below s1 we only have symmetric solutions while

above s1 non-symmetric solutions appear.

To illustrate this progression, we selected a point within two regions and plotted all

solutions, as illustrated below.
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Periodic solution

Non-periodic Non-symmetric periodic

Non-periodic

Figure 3.29: Solution plots for α = 440 and γ = 0.02. On the top left we have the plots
F1 and F2 and their 7 intersections. The other 4 plots correspond to these intersections. The
first plot is the symmetric that correspond to ( 1

4 ,
3
4 ). The second and third plots represent the

two pairs of non-periodic solutions. The fourth plot represents the two pairs of non-symmetric
solutions (Each part of the pair is symmetric to the other part).
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Figure 3.31: Solution plots for α = 362 and γ = 0.02. On the top left we have the plots F1

and F2 and their 5 intersections. The other 3 plots correspond to these intersections. The first
plot is the symmetric that correspond to ( 1

4 ,
3
4 ). The second and third plots represents the two

pairs of non-periodic solutions. (Each part of the pair is symmetric to the other part).

In conclusion, we have shown that the solutions to the EL follow a nice progression

from periodic to non-periodic to non-symmetric, adding arbitrarily more as α and 1
γ go

to infinity. We conjecture that these bifurcation curves continue to appear indefinitely.

Whether or not this is indeed the case is an open question at this point.

3.6 Conclusion

In this work, we started with Grinfeld and Lord’s conjecture for Müller’s problem. We

then reformulated it to match Yip’s problem (see Conjecture 10). Our main results can
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be summarized as follows:

We started with an energy functional that matches Yip’s formulation and Müller’s

boundary conditions (see Definition (3.2.2)). The functional naturally gives rise to an

Euler-Lagrange equation which we then proceed to solve.

It turns out that given initial parameters α, γ, there is a unique symmetric solution of

lap 2 (See Theorem 11). Moreover, every other symmetric solution can be expressed

using solutions of lap 2 (See Theorem 12).

Theorem 11 and Theorem 12 were enough to disprove the conjecture, and show that

Müller’s problem and Yip’s problem are very different, because the latter framework

guarantees the existence of solutions of lap number 2 (for each α and γ) which in turn

guarantees the existence of solutions with no internal zeroes.

We also showed that non-symmetric solutions exist and they come in pairs which are

symmetric with one another. Next, we identified bifurcation curves (for solution with

lap 2) and particularly the locus of pitchfork bifurcation.

Furthermore, we evaluated the energies at each solution and also found a formula to

calculate energies of higher lap number from a lap number 2.

We can summarize most our work (for solution of lap 2) in Figure 3.32, where the Γ

is the curve 1 − 4αγ = 0 (see Section 3.2). Above the bifurcation curve, we have

3 solutions (of lap 2) two of which are non-symmetric. Below the E1,2 curve, u1 is a

global minimizer. Above the bifurcation curve, u1 is not a minimizer and between the

E1,2 and the bifurcation curve,u1 is a local minimizer.
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Figure 3.32: (α, 1γ ) plot of E1,2 curve and the first bifurcation curve of lap 2.

Furthermore, we used MAPLE to investigate the bifurcation diagrams of solutions of

lap 3. We can summarize our work (of lap 3) in the following picture.

Figure 3.33: Three bifurcation curves of lap 3.
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Our research revealed two types of bifurcation curves, one that gives rise to a fresh

pair of non-periodic solutions (p-curves) and one that gives rise to a fresh pair of non-

symmetric solutions (s1-curve).

The first bifurcation curve p1 (i.e. the first time we observe more solutions than just the

periodic one) is of the first type. Namely, it gives rise to the first non-periodic solutions.

In other words, below the curve p1 we only have a unique (necessarily periodic) solution

while above p1 we have more than 1 solutions.

The other interesting bifurcation curve is s1, namely the first time we observe non-

symmetric solutions. In other words, below s1 we only have symmetric solutions while

above s1 non-symmetric solutions appear (see Section 3.5.1).

Finally, for Figures 3.32 and 3.33, we make the conjecture that if α → ∞ then 1
γ → 0

(on the bottom) and 1
γ →∞ (on the top). More formally, we can parametrize the curve

r using a parameter τ . That is, we can write r(τ) = (α(τ), γ(τ)). Moreover we have

α(τ) → ∞ whenever τ → ±∞ while we also have that γ(τ) → 0 whenever τ → −∞

and γ(τ)→∞ whenever τ →∞.
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Weak formulations for the Euler

Lagrange equation

4.1 Introduction

In order to establish the minimizers of the original functional (3.1.1), we would first

need to solve the corresponding Euler-Lagrange equation (3.2.2). Ideally, we would

like to find closed form theoretical solutions (i.e. exact solutions) but since this is not

always possible, we resort to a numerical approximation instead.

The reason why exact solution is not always feasible is due to the fact that we are

dealing with the innate difficulty of a very complicated model. For instance, there is

a direct correlation between the amount of calculations and the lap number. As the

lap number increases, so do the calculations. In particular, we can depend on software

like MAPLE so long the lap number remains low. Otherwise, if we have several jumps

the theoretical calculation are virtually impossible to work out even with the help of

MAPLE. Similarly, the calculations become sometimes impossible when the parameters

(α, γ) depend on x. Another conceptual issue we are facing is that we have no a priori

knowledge for the location of the jump(s) which means that the domain of our function

is adjustable and not a priori defined which means that the intervals of monotonicity
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vary and not specified until we know the value of c. As we will see later in Chapter

5, this issue will be tackled as follows: we first present a numerical method for a fixed

(known) location of the jump c, and this is then coupled to an optimisation method

that seeks the location of the jump c. Hence, it is a good idea to explore numerical

methods.

In particular, we will be working with lap number 2 which is the simplest case. How-

ever, before we move to concrete numerical models, we will first establish the theoretical

background behind them. The goal of this chapter is to present an equivalent (weak)

formulation of the corresponding Euler-Lagrange equation, and the proof of its solv-

ability. This will work as our foundational setup for the specific numerical methods we

will use later.

An added benefit of these methods is that they allow us to find solutions in more

generalized models (for example, when α depends on x). These are settings where no

theoretical framework for solving the ODEs explicitly on a domain of monotonicity is

known.

4.2 Preliminaries

The Euler Lagrange equation for lap number 2 is given by: Find u such that

γ uxxxx − uxx + αu = 0 in (0, c) ∪ (c, 1) (4.2.1)

with double Dirichlet boundary conditions, 4 continuity conditions, and one jump con-

dition: 

u(0) = u(1) = 0, uxx(0) = uxx(1) = 0,

u(c−) = u(c+), uxx(c−) = uxx(c+),

ux(c−) = 0, ux(c+) = 0,

uxxx(c+)− uxxx(c−) =
2

γ
.

(4.2.2)
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As we already saw in Chapter 3, (4.2.1) and (4.2.2) lead to a system of 9 equations

and 9 unknowns, c being one of them. This can be tackled directly using the Fredholm

Alternative method.

A different approach is to establish an equivalence of the above system with a weak

formulation. This latter formulation which can be solved using numerical methods, such

as the Finite Element Method, would function as a convenient alternative to the Euler-

Lagrange equation. Since the two formulation are equivalent, an approximation of the

solution to the weak formulation will also be an approximation of the Euler-Lagrange

equation.

Our first hurdle to overcome is that the definition of such formulation requires prior

knowledge of c (the location of the jump), which means we need to fix it a priori.

Naturally, by fixing c we are reducing the number of unknowns to 8 while we still have

9 constraints. This means that for all but the correct value of c, we would have a

singular system and no solutions. To rectify this issue and restore the balance, we can

choose to remove one of the restrictions. That way our system will always have a unique

solution (as we show in Lemma 4 and Lemma 6). Of course, that solution may or may

not satisfy the condition we have omitted. However, when it does, we know that the

initial choice for c was the correct one, as it would now satisfy all of 9 restrictions (not

just 8 of them).

For example, we may choose to drop the continuity condition for u, namely u(c−) = u(c+).

In this case, then for each value of c the Finite Element Method would produce a differ-

ent numerical approximation for u, which will likely have a discontinuity at c. We are

next left with the question of finding the location of c. For this, we use an optimiza-

tion method called Derivative-Free Optimization (DFO). The outcomes of this process

will provide an approximate location of the jump, and an approximation of u which is

continuous at jump. That way we can guarantee that the produced numerical approx-

imation u (derived by FEM) will also be continuous at c, for the reasons we described

above. In principle, there is nothing special about dropping this specific condition (i.e.

continuity of u at c) and we may elect to drop any of the 3 continuity conditions or even
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the jump condition. As a matter of fact, dropping the u′(c−) = u′(c+) = 0 condition,

leads to a simpler theoretical model as the solution space will be significantly simplified.

In this chapter, we will consider omitting two conditions (one at a time), namely

u(c−) = u(c+) and u′(c−) = u′(c+) = 0, as well as the corresponding equivalence

of the resulting, less restricted, Euler-Lagrange equation with a weak formulation. In

each case, we will show that the weak formulation has a solution which is unique.

Finally, we will show how such a solution can be found numerically using the Finite

Element Method, and we will precisely estimate its error from the corresponding exact

solution of the Euler Lagrange equation.

4.3 A weak formulation for the Euler Lagrange equation

omitting continuity at c

In this section we will drop the continuity condition u(c−) = u(c+) from (4.2.2). Then,

introducing w = u′′ as an extra unknown, the Euler-Lagrange equation (4.2.1) can be

written as the following system of a second order ordinary differential equations

w − u′′ = 0

γ w′′ − w + αu = 0

 on x ∈ (0, c) ∪ (c, 1) : (4.3.1)

with the following conditions:

� Dirchlet boundary conditions: u(0) = u(1) = w(0) = w(1) = 0,

� three continuity conditions: w(c−) = w(c+), u′(c−) = 0, u′(c+) = 0,

� one jump condition: w′(c+)− w′(c−) = 2
γ .

We will look for a solution pair (u,w) ∈ (
∼
V ,H1

0 (0, 1)) of the above system (4.3.1) and

its subsequent 8 restrictions, where (see Definitions 2.4.7-2.4.8 and Subsection 2.4.1)

H1
0 (0, 1) = {v ∈ H1(0, 1) : v(0) = v(1) = 0},
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∼
V = {v : v |(0,c)∈ H1(0, c), v |(c,1) H

1(c, 1), v(0) = v(1) = 0}.

Remark 15. � 〈., .〉(a,b) will denote the duality pairing between D′(a, b) and D(a, b).

This is, whenever f and g are regular enough we have

〈f, g〉(a,b) =

a∫
b

f(x) g(x) dx.

� All derivatives in this chapter are considered in the distributional sense (i.e. in

the weak sense). For example, for w ∈ D′(a, b) we define w′ ∈ D′(a, b) as

〈w′, φ〉(a,b) = −〈w, φ′〉(a,b) ∀φ ∈ D(a, b).

We can extend this to Dj w, the jth derivative, as

〈Dj w, φ〉(a,b) = (−1)j〈w, φj〉(a,b) ∀φ ∈ D(a, b).

The next result gives a weak formulation for the system (4.3.1).

Lemma 4. We consider the following two systems of equations:

(S1)



u′′ = w on (0, c) ∪ (c, 1) (S1a)

γ w′′ − w + αu = 0 on (0, c) ∪ (c, 1) (S1b)

u(0) = u(1) = 0, w(0) = w(1) = 0,

w(c−) = w(c+),

ux(c−) = 0, ux(c+) = 0,

w′(c+)− w′(c−) = 2
γ ,
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and: Find u ∈
∼
V and w ∈ H1

0 (0, 1) such that

(S2)


1∫
0

w(x)v(x) dx+
1∫
0

u′(x)v′(x) dx = 0 ∀ v ∈
∼
V , (S2a)

γ
1∫
0

w′(x)z′ (x) dx+
1∫
0

w(x)z(x) dx− α
1∫
0

u(x)z(x) dx = 2 z(c) ∀ z ∈ H1
0 (0, 1). (S2b)

Under the above definitions the systems S1 and S2 are equivalent, this is, the pair (u,w)

solves S1 if and only if (u,w) solves S2.

Remark 16. The arguments given in this proof are standard in the Finite Element

literature. In particular, they have been adapted from [42] or [33].

Proof. First, we will show that S1 ⇒ S2. From (S1a) we get that, since w ∈ L2(0, 1),

u′′ ∈ L2(0, c) and u′′ ∈ L2(c, 1). We multiply then (S1a) by v ∈
∼
V , integrate over (0, c)

and (c, 1), and add the resulting equations to get:

⇒
1∫

0

w v −
c∫

0

u′′ v −
1∫
c

u′′ v = 0.

Proceeding as in ( [10], pp. 225−226), that is, applying Green’s formula ( [10], p. 296)

we get

1∫
0

w(x) v(x) dx+

c∫
0

u′(x) v′(x) dx−

[
u′(x) v(x)

]c
0

+

1∫
c

u′(x) v′(x) dx−

[
u′(x) v(x)

]1

c

= 0.
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Using the boundary conditions and u′(c−) = u′(c+) = 0, we get

1∫
0

w(x) v(x) dx+

c∫
0

u′(x) v′(x) dx−

[
�

���u′(c−) v(c−)− u′(0)���v(0)

]

+

1∫
c

u′(x) v′(x) dx−

[
u′(1)���v(1)−�

���u′(c+) v(c+)

]
= 0

⇒
1∫

0

w(x) v(x) dx+

c∫
0

u′(x) v′(x) dx+

1∫
c

u′(x) v′(x) dx = 0

⇒
1∫

0

w(x) v(x) +

1∫
0

u′(x) v′(x) dx = 0,

so, u and w satisfy

1∫
0

w(x)v(x) dx+

1∫
0

u′(x)v′(x) dx = 0 ∀ v ∈
∼
V ,

which is (S2a).

For (S1b) we proceed in a similar way. We multiply (S1b) by z ∈ H1
0 (0, 1) and integrate

over (0, 1) to get

1∫
0

w′′(x)z(x) dx−
1∫

0

w(x)z(x) dx+ α

1∫
0

u(x)z(x) dx = 0. (4.3.2)

The only term that need attention is the first one. Proceeding as before we get

1∫
0

w′′(x)z(x) dx =

∫ c−

0
w′′(x)z(x) dx+

∫ 1

c+
w′′(x)z(x) dx

= −
∫ c−

0
w′(x)z′(x) dx+

[
w′(x) z(x)

]c−
0

−
∫ 1

c+
w′(x)z′(x) dx+

[
w′(x) z(x)

]1

c+

.
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Hence

1∫
0

w′′(x) z(x) dx =−
∫ c

0
w′(x) z′(x) dx+

[
w′(c−) z(c−)− w′(0)���z(0)

]

−
∫ 1

c
w′(x) z′(x) dx+

[
w′(1)���z(1)− w′(c+) z(c+)

]
,

= −
∫ c

0
w′(x)z′(x)dx−

∫ 1

c
w′(x)z′(x)dx+

[
w′(c−) z(c)− w′(c+) z(c)

]
, (4.3.3)

where we have used that z(c−) = z(c+) = z(c), (since H1
0 ⊆ C0(0, 1), see [10]). Finally,

using the jump condition w′(c+)− w′(c−) = 2
γ , (4.3.3) becomes

1∫
0

w′′(x) z(x) dx = −
∫ c

0
w′(x) z′(x) dx−

∫ 1

c
w′(x) z′(x) dx− 2

γ
z(c)

= −
∫ 1

0
w′(x)z′(x) dx− 2

γ
z(c). (4.3.4)

So, replacing (4.3.4) in (4.3.2) we arrive at the following equation for w:

γ

1∫
0

w′(x)z′ (x) dx+

1∫
0

w(x)z(x) dx− α
1∫

0

u(x)z(x) dx = 2 z(c) ∀ z ∈ H1
0 (0, 1),

(4.3.5)

which is (S2b).

Thus, (S2) is a weak formulation for (S1), and any solution of (S1) solves (S2).

Next we will show that S2 ⇒ S1.
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Let (u,w) be a solution of (S2). Then, for all z1 ∈ H1
0 (0, c) we consider the function

∼
Z =


z1 in (0, c)

0 in (c, 1).

,

then
∼
Z ∈ H1

0 (0, 1). For (S2b) we have

∫ 1

0
(γ w′(x)

∼
Z ′(x) + w(x)

∼
Z(x)− αu(x)

∼
Z(x)) dx = 0

⇒
∫ c

0
γ w′(x) z′1(x) dx+ w(x) z1(x) dx− αu(x) z1(x) dx = 0, (4.3.6)

for all z1 ∈ H1
0 (0, c). Next, since

∫ c

0
w′(x)φ′(x) dx = −〈w′′, φ〉(0,c) ∀φ ∈ D(0, c),

(4.3.6) implies

〈−γ w′′ + w − αu, φ〉(0,c) = 0,

for all φ ∈ D(0, c). Thus

−γ w′′ + w − αu in D′(0, c).

But, w − αu ∈ L2(0, c), and then

w′′ =
1

γ
(w − αu) ∈ L2(0, c),

which implies that w ∈ H2(0, c).

Proceeding in exactly the same way we get

w′′ =
1

γ
(w − αu) ∈ L2(c, 1)
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which implies that w ∈ H2(c, 1), and also

−γ w′′ + w − αu = 0 in (0, c) and (c, 1),

which shows that (u,w) solves (S1b). Now, since w ∈ H1
0 (0, 1), then w ∈ C0(0, 1) (using

the Sobolev’s embedding theorem (see [10], Theorem 8.8), and then w(c−) = w(c+).

We next verify the jump condition. Since we can take any z ∈ H1
0 (0, 1), let z ∈ H1

0 (0, 1)

such that z(c) = 1. By (S2b) we have

γ

1∫
0

w′(x)z′ (x) dx+

1∫
0

w(x)z(x) dx− α
1∫

0

u(x)z(x) dx = 2 z(c) ∀ z ∈ H1
0 (0, 1).

Let us work inside
1∫
0

w′(x)z′ (x) dx:

c∫
0

w′(x) z′(x) dx = −
c∫

0

w′′(x) z(x) dx+ w′(c−) z(c),

where we used integration by parts. Similarly,

1∫
c

w′(x) z′(x) dx = −
1∫
c

w′′(x) z(x) dx+ w′(c+) z(c).

Then
1∫

0

w′(x)z′ (x) dx =

1∫
0

w′′(x) z(x) dx+ (w′(c+)− w′(c−)) z(c).

Substituting into (S2b) we arrive at

γ

[ 1∫
0

w′′(x) z(x) dx+(w′(c+)−w′(c−)) z(c)

]
+

1∫
0

w(x) z(x) dx−α
1∫

0

u(x) z(x) dx = 2z(c),
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and

1∫
0

(γ w′′(x)− w(x) + αu(x)) z(x) dx+ γ

[
w′(c+)− w′(c−)

]
z(c) = 2 z(c). (4.3.7)

Therefore, since w′′ − w + α = 0 in (0, c) ∪ (c, 1), and z(c) = 1, (4.3.7) implies

[
w′(c+)− w′(c−)

]
=

2

γ
.

So far we recovered the boundary conditions, the jump condition and the continuity

of the second derivative. It only remains to show that (u,w) satisfies (S1a). Let

v ∈ H1
0 (0, c) and define

∼
v =


v in (0, c)

0 in
∼
V .

⇒ ∼
v ∈ H1

0 (0, 1)

Then, since (u,w) solves (S2a) we get

1∫
0

u′(x)
∼
v
′
(x) + w(x)

∼
v(x) dx = 0

⇒
c∫

0

u′(x) v′(x) + w(x)v(x) dx = 0 ∀ v ∈ H1
0 (0, c),

and then

〈 − u′′, φ〉(0,c) + 〈w, φ〉(0,c)

= 〈u′, φ′〉(0,c) + 〈w, φ〉(0,c) = 0 ∀φ ∈ D(0, c).

Thus,

u′′ − w = 0 in D′(0, c)
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which, again, implies that u′′ ∈ L2(0, c), and

u′′ − w = 0 a.e. in (0, c).

Analogously we can show that

u′′ − w = 0 a.e. in (c, 1).

The only remaining condition to satisfy is u′(c−) = u′(c+) = 0. First, since u ∈ H2(0, c)

and u ∈ H2(c, 1), then u′(c−) and u′(c+) are well-defined. Let v̂ ∈
∼
V s.t. v̂ |(c,1) = 0,

v̂(c−) = 1. Then, from (S2a) we get

c∫
0

w(x)v̂(x) dx−
c∫

0

u′(x)v̂′(x) dx = 0

and then, integrating by parts

c∫
0

(w(x)− u′′(x))v̂(x) + u′(c−)v̂(1) = 0

But w − u′′ = 0 a.e. in (0, c) and v̂(1) = 1, and we thus conclude that u′(c−) = 0.

In a completely analogous way we see that u′(c+) = 0.

Remark 17. The weak form (S2) appears as a result of introducing the extra variable

w = u′′ into the problem. This process of replacing a high order differential equation by

a system of low order equations leads to a particular class of Finite Element Methods,

namely Mixed Finite Element Methods. Examples of such methods can be found in [33],

or the very extensive review [8].

We will not give a detailed description of Mixed Finite Element Methods because, as

we will show in the next section, the bilinear form associated to (S2) is elliptic. This

gives a freedom to choose any Finite Element spaces for u and w, contrary to most

Mixed methods where the Finite Element spaces for all the variables need to be correctly
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balanced.

Lemma 4 allows us to find a solution to the (less restricted) Euler-Lagrange equation

(S1), indirectly by finding a solution to the weak formulation (S2) instead, provided

that such a solution exists. As we will see next, not only such a solution always exists

and it is a unique, but also we can directly apply numerical methods to approximate

it, namely the Finite Element method (FEM).

4.3.1 The Existence and Uniqueness of the Weak Formulation (S2)

Next, we prove the existence and uniqueness of solution of the weak formulation de-

scribed above. First, let us recall the following important definition.

�

∼
V = {v : v |(0,c)∈ H1(0, c), v |(c,1) H

1(c, 1), v(0) = v(1) = 0},

provided with an inner product defined by

〈f, g〉∼
V

=

c∫
0

f ′(x)g′(x)dx+

1∫
c

f ′(x)g′(x)dx. (4.3.8)

Lemma 5.
∼
V is a complete (and thus Hilbert) space.

Proof. To show (4.3.8) satisfies an inner product, the only property we need to prove

is positive definiteness:

〈f, f〉∼
V

=

c∫
0

[f ′]2 +

1∫
c

[f ′]2 ≥ 0.

Next, if f ∈
∼
V is s.t.

〈f, f〉∼
V

= 0⇒ [f ′]2 |(0,c)= [f ′]2 |(c,1)= 0⇒ f ′(x) = 0 ∀x on (0, 1) \ {c}.

Then, f(x) = c1 in (0, c) and f(x) = c2 in (c, 1), but, f(0) = 0 and f(1) = 0 which

implies that c1 = c2 = 0.
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Now to prove the completeness, let fn ∈
∼
V be a Cauchy sequence and let

gn = fn |(0,c) ∈ H1(0, c).

Clearly gn ∈ H1(0, c) is also a Cauchy. But H1(0, c) is a Hilbert space and thus

complete. So there exists g ∈ H1(0, c) such that gn → g in H1(0, c). Moreover, since

gn(0) = fn(0) = 0 ∀n ∈ N,

also, gn ∈ C([0, c]), again from Sobolev’s embedding theorem convergence in H1
0 (0, 1)

imply convergence in C0[0, c], we have that

g(0) = lim gn(0) = 0.

Similarly, for hn = fn |(c,1) ∈ H1(c, 1), there exists h ∈ H1(c, 1) with h(1) = 0 such

that hn → h in H1(c, 1). Let

f(x) =


g(x) when x ∈ [0, c),

h(x) when x ∈ (c, 1].

Clearly f ∈
∼
V , and

‖fn − f‖2∼
V
≤ ‖fn |(0,c) −f |(0,c)‖2H1(0,c) + ‖fn |(c,1) −f |(c,1)‖2H1(c,1)

= ‖gn − g‖2H1(0,c) + ‖hn − h‖2H1(c,1) → 0.

Thus,
∼
V is complete and therefore a Hilbert space.

We also know that if H1 and H2 are Hilbert spaces then

H1 ×H2 = {(f, g) : f ∈ H1, g ∈ H2}
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is a Hilbert space [31].

Corollary 1. The space H =
∼
V ×H1

0 (0, 1) is a Hilbert space with a scalar product:

〈(f1, g1), (f2, g2)〉H = 〈f1, f2〉∼
V

+ 〈g1, g2〉H1
0 (0,1)

=

c∫
0

f ′1(x)f ′2(x)dx+

1∫
c

f ′1(x)f ′2(x)dx+

1∫
0

g′1(x)g′2(x)dx.

with induced norm ‖(v, w)‖H =

[
(v, w), (v, w)

]1/2

H

.

Next we define bilinear and linear functionals respectively:

1. Define A : H×H→ R by

(u,w), (v, z)→ A((u,w), (v, z)) =
1∫
0

u′(x) v′(x) dx+
1∫
0

w(x) v(x) dx−
1∫
0

u(x) z(x) dx

+ γ
α

1∫
0

w′(x) z′(x) dx+ 1
α

1∫
0

w(x) z(x) dx.

(4.3.9)

Then A is a bilinear.

2. Define L : H→ R by

(v, z)→ L((v, z)) =
2

α
z(c). (4.3.10)

Then L is a linear functional.

With those notations, problem (S2) becomes : Find (u,w) ∈ H such that for all

(v, z) ∈ H,

A((u,w), (v, z)) = L((v, z)). (4.3.11)

We have the following theorem:

Theorem 15. There exists a unique (u,w) ∈ H, solution of (4.3.11).
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Proof. By Lax-Milgram theorem [33], to prove (4.3.11) has a unique solution, it is

enough to show:

1. L is continuous:

∃ k1 > 0 s.t. |L(v, z)| ≤ k1‖(v, z)‖H, ∀ (v, z) ∈ H,

2. A is continuous:

∃ k2 > 0 s.t. |A((v, z), (u,w))| ≤ k2 ‖(v, z)‖H ‖(u,w)‖H, ∀ (v, z), (u,w) ∈ H,

3. A is elliptic:

∃ k3 > 0 s.t. |A((v, z), (v, z))| ≥ k3 ‖(v, z)‖2H ∀ (v, z) ∈ H.

Now we will prove the previous three conditions. First for L is continuous:

Let (v, z) ∈ H. Since z ∈ H1
0 (a, b) ⊆ C0([a, b]) there exists t ∈ (0, 1) such that

|z(x)| ≤ |z(t)| ∀x ∈ [0, 1].

Using the Sobolev’s embedding theorem this implies, in particular, that

|L(v, z)| = 2

γ
|z(c)| ≤ 2

γ
|z(t)| = 2

γ
‖z‖C0([0,1]) ≤

C

γ
‖z‖H1

0 (0,1) ≤
C

γ
‖(v, z)‖H.

Second, we prove that A is continuous. Let (u,w), (v, z) ∈ H. Then

|A((u,w), (v, z))| ≤
1∫

0

|u′, v′|+
1∫

0

|w, v|+
1∫

0

|u, z|+ γ

α

1∫
0

|w′, z′|+ 1

α

1∫
0

|w, z|,
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and using the Cauchy-Schwarz inequality, we get

|A((u,w), (v, z))| ≤ ‖u′‖L2(0,1) ‖v′‖L2(0,1) + ‖w‖L2(0,1) ‖v‖L2(0,1) + ‖u‖L2(0,1) ‖z‖L2(0,1)

+
γ

α
‖w′‖L2(0,1) ‖z′‖L2(0,1) +

1

α
‖w‖L2(0,1) ‖z‖L2(0,1).

We know that by definition


‖w′‖L2(0,1) = ‖w‖H1

0 (0,1),

‖z′‖L2(0,1) = ‖z‖H1
0 (0,1).

Similarly, 
‖u′‖L2(0,1) = ‖u‖∼

V
,

‖v′‖L2(0,1) = ‖v‖∼
V
.

Now using the Poincaré Inequality [33], we know that there exists C > 0 s.t.

‖w‖2L2(0,1) ≤ C ‖w‖2H1
0 (0,1).

A similar argument shows that ‖z‖L2(0,1) ≤ C ‖z‖∼
V

. Putting all together, we get

|A((u,w), (v, z))| ≤ ‖u‖∼
V
‖v‖∼

V
+ ‖w‖H1

0 (0,1) ‖v‖∼V + ‖u‖∼
V
‖z‖H1

0 (0,1)

+
γ

α
‖w‖H1

0 (0,1) ‖z‖H1
0 (0,1) +

1

α
‖w‖H1

0 (0,1) ‖z‖H1
0 (0,1)

≤ max

{
1,
γ + 1

α

}[
‖u‖∼

V
‖v‖∼

V
+ ‖w‖H1

0 (0,1) ‖v‖∼V

+ ‖u‖∼
V
‖z‖H1

0 (0,1) + ‖w‖H1
0 (0,1) ‖z‖H1

0 (0,1)

]
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= max

{
1,
γ + 1

α

}[
(‖u‖∼

V
+ ‖w‖H1

0 (0,1)) (‖v‖∼
V

+ ‖z‖H1
0 (0,1))

]

≤ 2 max

{
1,
γ + 1

α

}√
‖u‖2∼

V
+ ‖w‖2

H1
0 (0,1)

√
‖v‖2∼

V
+ ‖z‖2

H1
0 (0,1)

,

where we used the fact that if a, b > 0 then a+ b 6
√

2
√
a2 + b2. Recall

‖(u,w)‖2H =

c∫
0

(u′)2 +

1∫
c

(u′)2 +

1∫
0

(w′)2 = ‖u‖2∼
V

+ ‖w‖2H1
0
. (4.3.12)

Similarly,

‖(v, z)‖2H = ‖v‖2∼
V

+ ‖z‖2H1
0
. (4.3.13)

Let k2 = 2 max

{
1, γ+1

α

}
. Thus

|A((u,w), (v, z))| ≤ k2

√
‖u‖2∼

V
+ ‖w‖2

H1
0 (0,1)

√
‖v‖2∼

V
+ ‖z‖2

H1
0 (0,1)

≤ k2 ‖(u,w)‖2H‖(v, z)‖2H

Thirdly, we prove that A is elliptic. By its definition, and the fact that ‖z‖2L2(0,1) ≥ 0,

it follows that

A((v, z), (v, z)) = 〈v′, v′〉+���〈z, v〉 −���〈v, z〉+
γ

α
〈z′, z′〉+

1

α
〈z, z〉

= ‖v‖2∼
V

+
γ

α
‖z‖2H1

0 (0,1) +
1

α
‖z‖2L2(0,1)

≥ ‖v‖2∼
V

+
γ

α
‖z‖2H1

0 (0,1)

≥ min

{
1,

1

α

}
‖(v, z)‖2H.

Thus A is elliptic.

So, we have checked the hypothesis of Lax-Milgram’s lemma, and then problem (4.3.11)
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has a unique solution (u,w) ∈ H.

4.3.2 The Finite Element Method and Its Error Estimate

Next, we produce a similar result for a subspace of H. First, we divide the interval

[0, 1] as follows

0 = x0 < x1 < x2 < ......... < xN−1 < xN = 1

with h = 1
N = (xk − xk−1) for k = 1, . . . , N . This is, we divide [0, 1] into equidistant

points. If the jump is located at c ∈ (0, 1) then there exists a unique j ∈ {0, ........, N}

such that

xj−1 ≤ c < xj .

Now we introduce the following subspace:

Hh =
∼
Vh ×Hh ⊆ H =

∼
V ×H1

0 (0, 1),

where

Hh = {vh ∈ C0([0, 1]) = vh |(xi,xi+1) ∈ P1, vh(0) = vh(1) = 0},

and

∼
Vh = {vh |(0,c) ∈ C0([0, c]), vh |(c,1) ∈ C0([c, 1]) : vh |(0,c) ∈ Ph1 [0, c], vh |(c,1) ∈ Ph1 [c, 1],

vh(0) = vh(1) = 0}.

and Ph1 [a, b] is the class of piecewise linear functions on the partition [a = y0 < y1 <

· · · < yn = b] with yi+1 − yi = h with possibly on exception of the first or last segment

which should be clear from the context. Also, the method should still work for P2

(piecewise parabolic functions) or higher Pi’s as we would be adding extra degree of

freedom, the basis functions should be adjusted accordingly.

Note that we did not use the Discontinuous Galerkin method, because even when

we consider the space Ṽ (which consists of functions discontinuous at x = c), we
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really are working on each of the continuous segments separately. The Discontinuous

Galerkin method refers to using a space of totally discontinuous finite element method,

supplemented by appropriate term to enhance stability.

The Finite Element Method consists of finding (uh, wh) ∈
∼
Vh ×Hh s.t.

A((uh, wh), (vh, zh)) = L((vh, zh)) ∀ (vh, zh) ∈
∼
Vh ×Hh. (4.3.14)

As an immediate consequence of Theorem 15 we also have a similar theorem when we

restrict ourselves to the subspace Hh ⊆ H

Theorem 16. There exists a unique (uh, wh) ∈ Hh, solution of (4.3.14).

Proof. Since
∼
Vh×Hh ⊆

∼
V ×H1

0 (0, 1), then A is elliptic and continuous in this space as

well. Also, L is continuous in
∼
Vh ×Hh.

Next we evaluate the error of the solution produced by the Finite element method

introduced above. We have the following theorem

Theorem 17. Let (u,w) be a solution of (4.3.11) which satisfies u |0,c ∈ H2(0, c), u |c,1

∈ H2(c, 1) and w ∈ H2(0, c) and w ∈ H2(c, 1). Then, there exists C > 0 independent

of h such that

‖(u− uh, w − wh)‖H ≤ C h {
√
|u|2

H2(0,c)
+ |u|2

H2(c,1)
+
√
|w|2

H2(0,c)
+ |w|2

H2(c,1)
}.

Proof. Let (u,w) ∈
∼
V ×H1

0 be the unique solution of (4.3.11). Let (uh, wh) ∈
∼
Vh×Hh

be the unique solution of (4.3.14). Thus

A((u,w), (vh, zh)) = L((vh, zh)),

A((uh, wh), (vh, zh)) = L((vh, zh)),

and then

A((u,w), (vh, zh)) = A((uh, wh), (vh, zh)), ∀ (vh, zh) ∈
∼
Vh ×Hh.
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The bilinearity of A implies the following “Galerkin orthogonality”

A((u− uh, w − wh), (vh, zh)) = 0 ∀(vh, zh) ∈ Hh. (4.3.15)

But we know that A is elliptic and continuous. Then, using (4.3.15) we get

k3 ‖(u− uh, w − wh)‖2H ≤ A((u− uh, w − wh), (u− uh, w − wh))

= A((u− uh, w − wh), (u,w))−A((u− uh, w − wh), (uh, wh))

(4.3.15)
= A((u− uh, w − wh), (u,w))

= A((u− uh, w − wh), (u,w))−A((u− uh, w − wh), (vh, zh))

= A((u− uh, w − wh), (u− vh, w − zh))

≤ k2 ‖(u− uh, w − wh)‖H ‖(u− vh, w − zh)‖H, ∀(vh, zh) ∈ Hh,

where we used the fact that A is continuous. Dividing by ‖(u − uh, w − wh)‖H we

conclude that:

‖(u− uh, w − wh)‖H ≤
k2

k3
‖(u− vh, w − zh)‖H ∀(vh, zh) ∈ Hh (4.3.16)

The above implies that

‖(u− uh, w − wh)‖H ≤
k2

k3
inf

(vh,zh)∈Hh

‖(u− vh, w − zh)‖H.

In particular, we choose 
vh =

∼
ih(u),

zh = ih(w),

where
∼
ih(u) and ih(w) are defined as


∼
ih(u) =

N+2∑
i=1

ξiψi(x),

ih(w) =
N∑
i=1

ζiϕi(x),
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where the ψi and ϕi are basis functions of the corresponding
∼
Vh and Hh respectively and

the discrepancy in the number of summands is a result of the allowed discontinuities

at c in the first
∼
Vh. For more details see Chapter 5.

These interpolates satisfy the bounds (see [42])

‖u−
∼
ih(u)‖∼

V
≤ C h

√
|u|2

H2(0,c)
+ |u|2

H2(c,1)

and

‖w − ih(w)‖
H1

0(0,1)
≤ C h

√
|w|2

H2(0,c)
+ |w|2

H2(c,1)
.

The above proves that

‖(u− uh, w − wh)‖H ≤ C h (‖u−
∼
ih(u)‖∼

V
+ ‖w − ih(w)‖H1

0 (0,1))

≤ C h

[ √
|w|2

H2(0,c)
+ |w|2

H2(c,1)
+
√
|u|2

H2(0,c)
+ |u|2

H2(c,1)

]
.

Remark 18. Clearly the right hand side goes to zero when h tends to zero, this is when

the mesh gets refined.

4.4 A weak formulation for the Euler Lagrange Equation

omitting the derivative condition

In this section we will drop the derivative condition u′(c−) = 0. Without the derivative

condition the Euler-Lagrange equation (4.2.1) can be written as the following system

of second order ordinary differential equations

w − u′′ = 0

γ w′′ − w + αu = 0

 in (0, c) ∪ (c, 1) (4.4.1)
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with the following conditions:

� Dirchlet boundary conditions: u(0) = u(1) = w(0) = w(1) = 0,

� three continuity conditions: w(c−) = w(c+), u′(c−) = u′(c+), u(c−) = u(c+),

� one jump condition: w(c+)− w(c−) = 2
γ .

Notice that the u′(c−) = 0 condition has been now replaced by u(c−) = u(c+). Unlike

the previous case we seek for a solution u,w ∈ H1
0 (0, 1) where only w was in H1

0 (0, 1)

while u was in Ṽ, here we seek a solution where both u,w ∈ H1
0 (0, 1). The next result

gives a weak formulation for the system (4.4.1).

Lemma 6. We consider the following two systems of equations:

(S′1)



u′′ = w (S′1a)

γ w′′ − w + αu = 0 (S′1b)

u(0) = u(1) = 0, w(0) = w(1) = 0,

ux(c−) = ux(c+), u(c−) = u(c+),

w(c−) = w(c+), w′(c+)− w′(c−) = 2
γ .

and: Find u,w ∈ H1
0 (0, 1) such that

(S′2)


1∫
0

w(x)v(x) dx+
1∫
0

u′(x)v′(x) dx = 0 ∀ v ∈ H1
0 (0, 1), (S′2a)

γ
1∫
0

w′(x)z′ (x) dx+
1∫
0

w(x)z(x) dx− α
1∫
0

u(x)z(x) dx = 2 z(c) ∀ z ∈ H1
0 (0, 1). (S′2b)

Under the above definitions the systems (S′1) and (S′2) are equivalent, this is, the pair

(u,w) solves (S′1) if and only if (u,w) solves (S′2).

Proof. The proof is similar to the ones in the previous section (see proof of Lemma 4)

except for the following:
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First, we will show that (S′1)⇒ (S′2). We start with (S′1a) and multiply it by v ∈ H1
0 (0, 1)

to get
1∫

0

w(x)v(x) dx− 〈u′′, v〉(0,1) = 0.

By the definition of the weak derivative, we have

1∫
0

w(x) v(x) dx+

1∫
0

u′(x) v′(x) dx = 0,

which is (S′2a).

The other difference is in proving (S′2)⇒ (S′1). Hence (S′2a) implies

〈w, v〉(0,1) − 〈u′′, v〉(0,1) = 0

for all v ∈ D(0, 1). Notice that by definition of the weak derivative we get

〈w − u′′, v〉(0,1) = 0 ∀ v ∈ D(0, 1).

So, w − u′′ = 0 which means u′′ = w ∈ L2(0, 1), and so u ∈ H2(0, 1). Thus u′ ∈

H1(0, 1) ⊆ C0(0, 1), which implies that u′(c+) = u′(c−). Finally, by the definition of

H1
0 (0, 1) and the fact that u, w ∈ H1

0 (0, 1), we immediately have that u(0) = u(1) =

w(0) = w(1) = 0 and u(c−) = u(c+), w(c−) = w(c+).

4.4.1 The Existence and Uniqueness of the Weak Formulation

Next, we prove the existence and uniqueness for the weak formulation S′2 defined above.

The major difference is that u belongs to H1
0 (0, 1) rather than

∼
V . This leads to the

following relevant facts.

Corollary 2. The space H2 = H1
0 (0, 1) × H1

0 (0, 1) is a Hilbert space with a scalar
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product:

〈(f1, g1), (f2, g2)〉H2 = 〈f1, f2〉H1
0 (0,1) + 〈g1, g2〉H1

0 (0,1)

=

1∫
0

f ′1(x)f ′2(x)dx+

1∫
0

g′1(x)g′2(x)dx,

with induced norm ‖(v, w)‖H2 =
√
〈(v, w), (v, w)〉H2.

Next we update the bilinear functional A2 and the linear L2 accordingly:

1. Define A2 : H2 ×H2 → R by

(u,w), (v, z)→ A2((u,w), (v, z)) =

1∫
0

u′(x) v′(x) dx+

1∫
0

w(x) v(x) dx

−
1∫

0

z(x)u(x) dx+
γ

α

1∫
0

w′(x) v′(x) dx+
1

α

1∫
0

w(x) z(x) dx.

(4.4.2)

2. Define L2 : H2 → R by

(v, z)→ L2((v, z)) =
2

α
z(c). (4.4.3)

Now our problem (S′2) becomes : Find (u,w) ∈ H2 such that for all (v, z) ∈ H2,

A2((u,w), (v, z)) = L2((v, z)). (4.4.4)

We have the following theorem:

Theorem 18. There exists a unique (u,w) ∈ H2, solution of (4.4.4).

Proof. The proof is exactly the same as before, except that H is replaced by H2 and

(4.3.12) is replaced by

‖(u,w)‖2H2
=

1∫
0

(u′)2 +

1∫
0

(w′)2 = ‖u‖2 + ‖w‖2.
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In particular, by the Lax-Milgram theorem (see [22], [42]), as in Theorem 15, we need

to prove that A2 is continuous and elliptic and L2 is continuous.

Now we will prove the previous three conditions. First for L2 is continuous:

Let (v, z) ∈ H2. Since z ∈ H1
0 (a, b) ⊆ C0(a, b) there exists t̃ ∈ (0, 1) such that

|z(x)| ≤ |z(t̃)| ∀x ∈ [0, 1].

Using the Sobolev’s embedding theorem this implies, in particular, that

|L2(v, z)| = 2

γ
|z(c)| ≤ 2

γ
|z(t̃)| = 2

γ
‖z‖c0([0,1]) ≤

C

γ
‖z‖H1

0 (0,1) ≤
C

γ
‖(v, z)‖H2 .

Second, we prove that A2 is continuous: like in Theorem 15, we get

|A2((u,w), (v, z))| ≤ 2 max

{
1,
γ + 1

α

}√
‖u‖2

H1
0 (0,1)

+ ‖w‖2
H1

0 (0,1)

√
‖v‖2

H1
0 (0,1)

+ ‖z‖2
H1

0 (0,1)
.

Thirdly, we prove that A2 is elliptic. Similarly, like in Theorem 15, it follows that

A2((v, w), (v, z)) ≥ min

{
1,

1

α

}
‖(v, z)‖2H2

.

Thus A2 is elliptic.

Hence, the proof is finished by applying the Lax-Milgram theorem.

4.4.2 The Finite Element Method and Its Error Estimate

Next, we produce a similar result for the following subspace:

(H2)h = Hh ×Hh ⊆ H2 = H1
0 (0, 1)×H1

0 (0, 1)

where

Hh = {vh ∈ C0([0, 1]) = vh |(xi,xi+1) ∈ P1, vh(0) = vh(1) = 0}.
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The Finite Element Method is to find (uh, wh) ∈ Hh ×Hh such that

A2((uh, wh), (vh, zh)) = L2((vh, zh)) ∀ (vh, zh) ∈ Hh ×Hh. (4.4.5)

Again, as an immediate consequence of Theorem 18 we also have a similar theorem

when we restrict ourselves to the subspace (H2)h ⊆ H2

Theorem 19. There exists a unique (uh, wh) ∈ (H2)h, solution of (4.4.5).

Proof. Since Hh ×Hh ⊆ H1
0 (0, 1)×H1

0 (0, 1), then A2 is elliptic and continuous in this

space as well. Also, L2 is continuous in Hh ×Hh.

Next we evaluate the error of the solution produced by the Finite element method

introduced above.

Remark 19. From the proof of Lemma 6, we showed that u ∈ H2(0, 1), w ∈ H2(0, c), w ∈

H2(c, 1).

We have the following theorem

Theorem 20. Let (u,w) be a solution of (4.4.4) satisfies u ∈ H2(0, 1) and w ∈

H2(0, c) and w ∈ H2(c, 1). Then, there exists C > 0 such that

‖(u− uh, w − wh)‖H ≤ C h {
√
|u|2

H2(0,1)
+
√
|w|2

H2(0,c)
+ |w|2

H2(c,1)
}.

Proof. Let (u,w) ∈ H1
0 (0, 1)×H1

0 (0, 1) be the unique solution of (4.4.4). Let (uh, wh) ∈

Hh ×Hh be the unique solution of (4.4.5). Thus

A2((u,w), (vh, zh)) = L2((vh, zh)),

A2((uh, wh), (vh, zh)) = L2((vh, zh)),

and then

A2((u,w), (vh, zh)) = A2((uh, wh), (vh, zh)) ∀ (vh, zh) ∈ Hh ×Hh.
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The bilinearity of A2 implies the following “Galerkin orthogonality”

A2((u− uh, w − wh), (vh, zh)) = 0 ∀(vh, zh) ∈ (H2)h. (4.4.6)

But we know that A2 is elliptic and continuous. Then, for all (vh, zh) ∈ (H2)h, using

(4.4.6) we have

k3 ‖(u− uh, w − wh)‖2H2
≤ A2((u− uh, w − wh), (u− uh, w − wh))

= A2((u− uh, w − wh), (u− vh, w − zh))

≤ k2 ‖(u− uh, w − wh)‖H2 ‖(u− vh, w − zh)‖H2 ,

where we used the fact that A2 is continuous. Dividing by ‖(u − uh, w − wh)‖H2 , we

conclude that:

‖(u− uh, w − wh)‖H2 ≤
k2

k3
‖(u− vh, w − zh)‖H2 ∀(vh, zh) ∈ (H2)h. (4.4.7)

The above implies that

‖(u− uh, w − wh)‖H2 ≤
k2

k3
inf

(vh,zh)∈ (H2)h
‖(u− vh, w − zh)‖H2 .

In particular, we choose 
vh = ih(u),

zh = ih(w),

where ih(u) and ih(w) are defined as


ih(u) =

N∑
i=1

ξiϕi(x),

ih(w) =
N∑
i=1

ζiϕi(x).
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These interpolates satisfy the bounds [42]

‖u− ih(v)‖
H1

0(0,1)
≤ C h ‖v‖H2(0,1) ∀v ∈ H2(0, 1)

‖w − ih(v)‖
H1

0(0,1)
≤ C h (‖v‖H2(0,c) + ‖v‖H2(c,1)) ∀v :

v|(0,c) ∈ H2(0, c)

v|(c,1) ∈ H2(0, c)

The above proves that

‖(u− uh, w − wh)‖H2 ≤ C h ‖u− ih(u)‖H1
0 (0,1) + ‖w − ih(w)‖H1

0 (0,1)

≤ C h [
√
|u|2

H2(0,1)
+
√
|w|2

H2(0,c)
+ |w|2

H2(c,1)
].

Again, clearly the right hand side goes to zero when h tends to zero, this is when the

mesh gets refined.

Remark 20. In both weak formulation S2 and S′2, we assumed that the parameter α

is a constant. It is worth noting that similar formulations hold true when

α = α(x) : [0, 1]→ R+.

For example S′2 will become

(S′3)



1∫
0

w(x)v(x) dx+
1∫
0

u′(x)v′(x) dx = 0 ∀ v ∈ H1
0 (0, 1), (S′3a)

γ
1∫
0

w′(x)z′ (x) dx+
1∫
0

w(x)z(x) dx−
1∫
0

α(x)u(x)z(x) dx = 2 z(c)

∀ z ∈ H1
0 (0, 1). (S′3b)
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4.5 Conclusion

This chapter was devoted to set the mathematical framework of our numerical meth-

ods. In particular, we started by proving a useful equivalence between a setup which

is almost identical to our problem, except for one missing condition (S1), and weak

formulation which can be approximated numerically (S2). As a matter of fact, we were

able to develop two such equivalences, each one derived by dropping one of the following

assumptions: u(c−) = u(c+) and u′(c−) = u′(c+) = 0. That is, we first created the

weak formulation of the (4.2.1) by first dropping the continuity condition from the list

of (4.2.2) and then created an alternate weak formulation of the (4.2.1) by dropping

one of the derivative conditions of (4.2.2) (see Lemma 4 and Lemma 6). This allowed

us to approach the problem numerically and find approximate solutions (see Sections

4.3 and 4.4).

Moreover, using ideas from functional analysis (i.e. the Lax-Millgram theorem) we

showed that both weak formulations S2 and S′2 have a unique solution. This is im-

portant, because such a solution can be shown to satisfy the original problem (see

Subsections 4.3.1 and 4.4.1).

In particular, we were first able to describe the weak formulations using a convenient

equation involving (bi)linear functionals (4.3.11) and(4.4.4) . From there, we used

the Lax-Millgram theorem to establish existence and uniqueness in the solution spaces

of the corresponding weak formulations (see Theorems 15 and 18). Next, by using

the Finite Element Method approach we were able to first define appropriate solution

subspaces (of piecewise linear functions for progressively finer mesh) and then show

that both weak formulations (represented by (4.3.14) and (4.4.5)) have unique solutions

within those solution subspaces for any given mesh (see Theorems 16 and 19). This is

important, since finding solutions within these new subspaces is possible numerically

and it can be done with the use of MATLAB. Crucially, by using Galerkin orthogonality

we were also able to show that as we refine the mesh, the unique solution of the discrete

problem can be arbitrarily close to the unique solution of the continuous problem (see

Theorems 17 and 20). This allows us to efficiently and accurately approximate the
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unique exact solution of our problem.

Last but not least, we illustrated the power of the method by showing that it can be

applied to the generalized case where the parameter α is not a constant function of

x. This is useful, as in those cases we do not yet have a way of calculating the exact

solutions analytically.
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The Finite Element Method for

the Model Problem

5.1 Introduction

In the previous Chapter 4 we showed a way to express our main Euler-Lagrange equa-

tion into an equivalent weak formulation. This convenient formulation can be used as

a tool for applying numerical methods which can help us find approximate solutions

without having to solve the Euler-Lagrange equation directly. In particular, we will

use a combination of two such numerical methods, namely the Finite Elements Method

(F.E.M) and the Derivative-Free Optimization (D.F.O), see Section 5.5. FEM will al-

low us to solve the problem as a system of linear equations, where our target solution

u is approximated by an element of a finite dimensional space. For a fixed value of

c, this method allows us to approximate the solution. Now, the optimal value for c

is also unknown, and then it needs to be approximated. For this purpose we will use

Derivative-Free Optimization (D.F.O) method. This, in conjunction with the FEM,

will give us an approximate location of the jump and an approximate solution to the

Euler-Lagrange equation.

To test the performance of the method we first approximate a problem with a known
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analytical solution. In particular, we choose a lap 2 case where the theory guarantees

the existence of non-symmetric solutions (1 − 4αγ < 0). We show that both the

approximate solution and the location of the jumps converge to the exact ones. From

there, we expand the construction to solutions of higher lap numbers, using a lap 2

solution as a “building block”.

Finally, we solve a problem from which we do not know the analytical solution. For this,

we let one of the parameter to depend on x (in this case, we let α depends on x). This

further illustrates the potency of the numerical methods which can now approximate a

solution to a problem that otherwise cannot be easily solved analytically, if at all.

5.2 The Finite Element Method (for the first weak for-

mulation)

In the previous chapter we established two weak formulations, which are equivalent to

our main Euler-Lagrange equation, each one of them dropped one of the conditions.

The first of those formulations is determined by dropping the continuity condition and

it is formally given by the following expressions: Find u ∈
∼
V ,w ∈ H1

0 (0, 1) such that


1∫
0

w(x)v(x) dx+
1∫
0

u′(x)v′(x) dx = 0 ∀ v ∈
∼
V ,

γ
1∫
0

w′(x)z′ (x) dx+
1∫
0

w(x)z(x) dx− α
1∫
0

u(x)z(x) dx = 2 z(c) ∀ z ∈ H1
0 (0, 1).

Next, as was done in Chapter 2, we divide the interval [0, 1] as follows

0 = x0 < x1 < x2 < ......... < xN−1 < xN = 1

with h = 1
N = (xk − xk−1) for k = 1, . . . , N . This is, we divide [0, 1] into equidistant

points. Over this partition we define a basis function for the space of continuous,
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piecewise linear functions. In particular, we define ϕ1, ϕ2, . . . , ϕN as follows:

ϕi(xj) =


1 j = i

0 otherwise
(5.2.1)

Figure 5.1: The basis function ϕi

Now we define

Hh = span {ϕ1, ϕ2, . . . , ϕj , ϕj+1, . . . , ϕN}. (5.2.2)

Figure 5.2: Basis of Hh

To approximate u we need to take care of the location of the jump c. If the jump is

located at c ∈ (0, 1) then there exists a unique j ∈ {0, . . . , N} such that

xj−1 ≤ c < xj .

Outside (xi−1, xj) the finite element functions remain unchanged, but inside this in-

terval we introduce a major modification to this. More precisely, we replace the two

functions ϕj−1 and ϕj by four functions that are discontinuous at x = c and are defined
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as follow

lj−1 =


1
h(x− xj−2), x ∈ (xj−2, xj−1)

1
h(xj − x), x ∈ (xj−1, c)

rj−1 =
1

h
(xj − x), x ∈ (c, xj)

lj =
1

h
(x− xj), x ∈ (xj−1, c)

rj =



1
h(x− xj−1), x ∈ (c, xj)

1
h(xj − x), x ∈ (xj , xj+1)

We let

ψi =



ϕi i ≤ j − 2

lj−1 i = j − 1

rj−1 i = j

lj i = j + 1

rj i = j + 2

ϕi−2 i ≥ j + 3

Finally, we introduce
∼
Vh, the finite element subspace of

∼
V , given by

∼
Vh = span {ψ1, ψ2, . . . , ψN+2}.
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ϕ1 ϕ2

lj−1 rj−1

lj rj

ϕ5

Figure 5.4: Basis of Ṽh.

This is the full setup for the Finite Element method and we are now ready to describe

the method.
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The finite element method reads as follow: Find uh ∈
∼
V h and wh ∈ Hh such that

(S2)h


1∫
0

wh(x)vh(x) dx+
1∫
0

u′h(x)v′h(x) dx = 0 ∀ vh ∈
∼
V h,

γ
1∫
0

w′h(x)z′h (x) dx+
1∫
0

wh(x)zh(x) dx− α
1∫
0

uh(x)zh(x) dx = 2 z(c) ∀ zh ∈ Hh.

We look for approximation for uh and wh in the form

uh =

N+2∑
i=1

ξiψi(x) and wh =

N∑
i=1

ζiϕi(x).

The above characterization allows us to describe elements vh ∈
∼
V h as a linear combi-

nation of the above functions, for example if vh ∈
∼
V h, then vh =

N+2∑
i=1

ξiψi(x). This

linear combinations allows us to calculate the inner products from above easier. For

example:

1∫
0

wh(x)vh(x) dx =

1∫
0

(
N∑
i=1

ζiϕi(x))(
N+2∑
k=1

akψk(x))dx =
N∑
i=1

N+2∑
i=1

ζiak

1∫
0

ϕi(x)ψk(x) dx.

This leads us to two crucial observations.

1. It is enough to calculate all inner products of the form

1∫
0

ϕi(x)ψk(x) dx,

1∫
0

ϕi(x)ϕm(x) dx,

1∫
0

ϕ′i(x)ϕ′m(x) dx,

1∫
0

ψ′i(x)ψ′k(x) dx.

2. We can write the system (S2)h above in a matrix form, as follows:

 γ A + B
∼
B

∼
B
T ∼

A

 ·X = b,
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where

A =

[
(ϕ′i, ϕ

′
m)

]
(i,m)∈N×N

∈ RN×N (5.2.3)

B =

[
(ϕi, ϕm)

]
(i,m)∈ (N+2)×N

∈ RN×N (5.2.4)

∼
A =

[
(ψ′i, ψ

′
k)

]
(i,k)∈ (N+2)×(N+2)

∈ R(N+2)×(N+2) (5.2.5)

∼
B =

[
(ϕi, ψk)

]
(i,k)∈N×(N+2)

∈ RN×(N+2) (5.2.6)

b ∈ R2N+1 s.t.

[
b

]
i

=



2(1− θ) i = N + j − 1

2 θ i = N + j

0 otherwise

, θ =
c− xj−2

xj − xj−1
. (5.2.7)

Finally, X = [ζ1, ζ2, ..., ζN , ξ1, ξ2, ..., ξN+2]T ∈ R2N+2, which is the unknown in our

system, and thus the value we are solving for.

Before we proceed, it is worth mentioning that the matrices are sparse (most entries of

the matrix are zero). More precisely:

1∫
0

ϕ′i(x)ϕ′m(x) dx =


2
h i = m,

−1
h | i−m |= 1,

0 otherwise.

1∫
0

ϕi(x)ϕm(x) dx =


2h
3 i = m,

h
6 | i−m |= 1,

0 otherwise
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1∫
0

ψ′i(x)ψ′k(x) dx =



2
h if i = k 6= j − 1, j, j + 1, j + 2

−1
h if | i− k |= 1, i, k 6= j − 1, j, j + 1, j + 2

−1
h if i = j − 1, k = j − 2 or i = j − 2, k = j − 1

1+θ
h if i = k = j − 1

−θ
h if i = j − 1, k = j + 1 or i = j + 1, k = j − 1

1−θ
h if i = k = j

θ−1
h if i = j, k = j + 2 or i = j + 2, k = j

θ
h if i = j + 1, k = j + 1

2−θ
h if i = j + 2, k = j + 2

0 otherwise

where θ is defined in (5.2.7) and j is the unique index s.t. xj−1 ≤ c ≤ xj . In addition

1∫
0

ϕi(x)ψk(x) dx =



2h
3 if i = k 6= j − 1, j, j + 1

h
6 if | k − i |= 1, i, k 6= j − 1, j, j + 1

h
3 (1 + β) if i = k = j − 1

h
3 (1− β) if i = j − 1, k = j

h
6 δ if k = j − 1, i = j + 1 or i = j, k = j − 1

h
6 (1− δ) if i = j − 1, k = j + 2 or i = k = j

h
3 θ if , i = j, k = j + 1

h
3 (2− θ) if , i = j, k = j + 2

h
6 if i = j, k = j + 3

0 otherwise
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where β = θ3 − 3 θ2 + 3 θ and δ = 3 θ2 − 2 θ3.

Visually the matrices look as follows:

A =



(ϕ′1, ϕ
′
1) (ϕ′1, ϕ

′
2) 0 0 . . . . . . 0

(ϕ′2, ϕ
′
1) (ϕ′2, ϕ

′
2) (ϕ′2, ϕ

′
3) 0 . . . . . . 0

0 (ϕ′3, ϕ
′
2) (ϕ′3, ϕ

′
3) (ϕ′3, ϕ

′
4) 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . . . . (ϕ′m, ϕ
′
m−1) (ϕ′m, ϕ

′
m)



B =



(ϕ1, ϕ1) (ϕ1, ϕ2) 0 0 . . . . . . 0

(ϕ2, ϕ1) (ϕ2, ϕ2) (ϕ2, ϕ3) 0 . . . . . . 0

0 (ϕ3, ϕ2) (ϕ3, ϕ3) (ϕ3, ϕ4) 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . . . . (ϕm, ϕm−1) (ϕm, ϕm)



∼
A =



(ψ′1, ψ
′
1) (ψ′1, ψ

′
2) 0 . . . . . . . . . . . . . . . . . . . . . 0

(ψ′2, ψ
′
1) (ψ′2, ψ

′
2) (ψ′2, ψ

′
3) 0 . . . . . . . . . . . . . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . (ψ′j−1, ψ
′
j−2) (ψ′j−1, ψ

′
j−1) 0 (ψ′j−1, ψ

′
j+1) 0 0 . . . . . . . . .

0 . . . 0 0 (ψ′j, ψ
′
j) 0 (ψ′j, ψ

′
j+2) 0 . . . . . .

0 . . . 0 (ψ′j+1, ψ
′
j−1) 0 (ψ′j+1, ψ

′
j+1) 0 0 . . . . . .

0 . . . . . . 0 (ψ′j+2, ψ
′
j) 0 (ψ′j+2, ψ

′
j+2) (ψ′j+2, ψ

′
j+3) 0 . . . . . .

0 . . . . . . . . . . . . 0 (ψ′j+3, ψ
′
j+2) (ψ′j+3, ψ

′
j+3) (ψ′j+3, ψ

′
j+4) 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . . . . 0 . . . 0 (ψ′m, ψ
′
m−1) (ψ′m, ψ

′
m)
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∼
B =



(ϕ1, ψ
′
1) (ϕ1, ψ

′
2) 0 . . . . . . . . . . . . . . . . . . . . . 0

(ϕ2, ϕ
′
1) (ϕ2, ψ

′
2) (ϕ2, ψ

′
3) 0 . . . . . . . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 (ϕj−1, ψ
′
j−2) (ϕj−1, ψ

′
j−1) (ϕj−1, ψ

′
j) (ϕj−1, ψ

′
j+1) (ϕj−1, ψ

′
j+2) 0 . . . . . .

0 . . . . . . 0 (ϕj , ψ
′
j−1) (ϕj , ψ

′
j) (ϕj , ψ

′
j+1) (ϕj , ψ

′
j+2) (ϕj , ψ

′
j+3) 0 . . .

0 . . . . . . . . . . . . . . . 0 (ϕj+1, ψ
′
j+2) (ϕj+1, ψ

′
j+3) (ϕj+1, ψ

′
j+4) . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . . . . 0 . . . 0 (ϕm, ψ
′
m−1) (ϕm, ψ

′
m)



.

For example, for N = 6, and j = 4 we have:

A =



14 −7 0 0 0 0

−7 14 −7 0 0 0

0 −7 14 −7 0 0

0 0 −7 14 −7 0

0 0 0 −7 14 −7

0 0 0 0 −7 14



,

B =



0.952 0.0238 0 0 0 0

0.0238 0.952 0.0238 0 0 0

0 0.0238 0.952 0.0238 0 0

0 0 0.0238 0.952 0.0238 0

0 0 0 0.0238 0.952 0.0238

0 0 0 0 0.0238 0.952



,
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∼
A =



14 −7 0 0 0 0 0 0

−7 14 −7 0 0 0 0 0

0 −7 10.5 0 −3.5 0 0 0

0 0 0 3.5 0 −3.5 0 0

0 0 −3.5 0 3.5 0 0 0

0 0 0 −3.5 0 10.5 −7 0

0 0 0 0 0 −7 14 −7

0 0 0 0 0 0 −7 14



,

∼
B =



0.0952 0.0238 0 0 0 0 0 0

0.0238 0.0952 0.0238 0 0 0 0 0

0 0.0238 0.0893 0.006 0.0119 0.0119 0 0

0 0 0.0119 0.0119 0.0238 0.0714 0.0238 0

0 0 0 0 0 0.0238 0.0952 0.0238

0 0 0 0 0 0 0.0238 0.0952



.

5.2.1 A Numerical Experiment

As first numerical experiment we consider the Euler-Lagrange equation with α = 93,

γ = 0.05, which we know results in 3 solutions, one symmetric and two non symmetric,

since 1− 4αγ < 0 (see Appendix A.3). For the symmetric one, the analytical solution

is given by:

ul(x) =

 0.002326 e5.1540 x cos (4.0698x) + 0.005023 e5.1540 x sin (4.0698x)

−0.002326 e−5.154 x cos (4.0698x) + 0.005023 e−5.1540 x sin (4.0698x)
, 0 ≤ x ≤ 0.5,

ur(x) =

 −0.000015 e5.1540 x cos (4.0698x) + 0.000028 e5.1540 x sin (4.0698x)

−0.93762 e−5.1540 x cos (4.0698x) + 0.19876 e−5.1540 x sin (4.0698x)
, 0.5 ≤ x ≤ 1,

where exact location of the jump is c = 0.5.

We use different values for N and see how increases the dimension of the finite elements
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Figure 5.5: Exact symmetric solution when α = 93, γ = 0.05.

space gives a better approximation of the exact solution. We know c, and introduce it

in our code and refine the mesh. We see from (Figures 5.6 - 5.9) that refining the mesh

produces a more and more accurate solution. In what follows, we use N to describe the

size of the mesh. Also, to avoid confusion and since we are interested in the location

of the jump for different types of solutions, we let j1 be the index of {0, 1, 2, . . . N}

corresponding to the jump location of the symmetric solution, while j2 and j3 are the

jump indices corresponding to the two non-symmetric solutions.

To begin, let N = 10 then we find j1 = 6. Hence, uh is depicted now:
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Figure 5.6: Numerical solution with α = 93, γ = 0.05 and N = 10.

We next try N = 40. In that case j1 = 21 , which leads to the following approximate

uh

Figure 5.7: Numerical solution with α = 93, γ = 0.05 and N = 40.

Increasing the size of the mesh even further (N = 100) we get j1 = 51 which gives:
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Figure 5.8: Numerical solution with α = 93, γ = 0.05 and N = 100.

Finally we set N = 1000, in which case j1 = 501 and uh is presented below.

Figure 5.9: Numerical solution with α = 93, γ = 0.05 and N = 1000.

This last approximation is very close to the exact solution. To give a more quantitative

measure of the error, we start measuring the errors between the exact and approximate
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energies. The exact energy given by

E(u) =

1∫
0

[γ u2
xx +W (ux) + αu2] dx, (5.2.8)

is for this example

E = 0.9083414738.

The approximate energy is given by

E(uh) =

1∫
0

[γ w2
h +W (uh)x + αu2

h] dx. (5.2.9)

Table 5.1 below shows the evolution of |E −Eh| as h→ 0, where we see that the error

tends to zero as h→ 0, thus confirming the result from Theorem 17.

N Eh |E − Eh|

10 0.7954545670 0.1128869068
20 0.8448342719 0.0635072019
40 0.8746563144 0.0336851594
80 0.8909991153 0.0173423585
160 0.8995436360 0.0087978378
320 0.9039107076 0.0044307662
640 0.9061181082 0.0022233656
1280 0.9072277929 0.0011136809
2560 0.9077841335 0.0005573403
5120 0.9080626786 0.0002787952
10240 0.9082020449 0.0001394289
20480 0.9082717515 0.0000697223
40960 0.9083066106 0.0000348632

Table 5.1: FEM numerical solutions for c = 0.5 and various N , and the exact energy is
E = 0.9083414738.

The log-log plot of the above error table is given by the following:
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Figure 5.10: Log-log plot of the error estimate of the energy u for α = 93, γ = 0.05 and
c = 0.5. The x-axis represents log(N) while the y-axis represents log |E − Eh|. Notice the
linear pattern.

To assess the converges of uh and wh in Table 5.2, we report the error |u − uh|∼
V

and

|w−wh|H1(0,1). We see that they tend to zero linearly as h→ 0, which again confirming

the result of Theorem 17.

N |u− uh|∼
V

|w − wh|H1
0 (0,1)

10 0.003251291208095 0.0716300167
20 0.001301982412155 0.0385647033
40 0.0005951299405871450 0.0188128934
80 0.0002895590103471243 0.0091563540
160 0.0001437131863845694 0.0044986418
320 0.00007171915755099461 0.0022272376
640 0.00003584212183320310 0.0011078170
1280 0.00001791884341254925 0.0005524227
2560 0.000008959169650165406 0.0002758357
5120 0.000004479588318073530 0.0001378237
10240 0.000002239813841832357 0.0000688885
20480 0.000001119928629588577 0.0000344387
40960 0.0000005599862764760475 0.0000172183

Table 5.2: Errors generated for α = 93 and γ = 0.05 and various N .

where the log-log plot of the above error table is given by the following:
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Figure 5.11: Log-log plot of the error estimate of the energy u for α = 93, γ = 0.05 and
c = 0.5. The x-axis represents log(N) while the y-axis represents log |u − uh|Ṽ . Notice the
linear pattern.

Note that dropping the continuity condition, allows us to always solve the matrix

equation AX = B regardless of the value of c. In particular, if c is not the correct

location of the jump, solving the matrix equation will result to discontinuous graph

(which is of course not a solution to the Euler Lagrange equation). For example, let

α = 93,γ = 0.05 and c = 0.2. Solving the matrix equation for these parameters yields

the following graph

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 5.12: Plot of a discontinuous graph for an incorrect location of the jump. Here α = 93
and γ = 0.05, but c = 0.2 as opposed to c = 0.5 (which would be the correct value).
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Similarly, we follow the same procedure from above, to construct plots/tables for the

other two non-symmetric solutions. The location of their jumps are c = 0.40214 and

c = 0.59785 respectively. Their precise (exact) solutions are given by:

ul(x) =

 0.006766 e5.1540 x cos (4.0698x) + 0.006133 e5.1540 x sin (4.0698x)

−0.006766 e−5.1540 x cos (4.0698x) + 0.006133 e−5.1540 x sin (4.0698x)
, 0 ≤ x ≤ 0.40214,

ur(x) =

 −0.000015 e5.1540 x cos (4.0698x) + 0.000012 e5.154 x sin (4.0698x)

−0.48202 e−5.1540 x cos (4.0698x) + 0.33302 e−5.154 x sin (4.0698x)
, 0.40214 ≤ x ≤ 1.

ul(x) =

 0.0001283 e5.1540 x cos (4.0698x) + 0.003381 e5.1540 x sin (4.0698x)

−0.0001283 e−5.1540 x cos (4.0698x) + 0.003381 e−5.1540 x sin (4.0698x)
, 0 ≤ x ≤ 0.59785,

ur(x) =

 −0.0000049 e5.1540 x cos (4.0698x) + 0.000052 e5.1540 x sin (4.0698x)

−1.5520 e−5.1540 x cos (4.0698x)− 0.30151 e−5.1540 x sin (4.0698x)
, 0.59785 ≤ x ≤ 1.

Figure 5.13: Exact (non-symmetric) solutions

First, let N = 10 then we find j2 = 5, j3 = 7.
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Figure 5.14: Numerical (non-symmetric) solutions for α = 93, γ = 0.05 and N = 10.

Again, this is already a good approximation, but we can do better. We try N = 40. In

that case j2 = 17, j3 = 25 , which leads to the following:

Figure 5.15: Numerical (non-symmetric) solutions for α = 93, γ = 0.05 and N = 40.

Increasing the size of the mesh (N = 100) we get j2 = 41, j3 = 61 which gives:
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Figure 5.16: Numerical (non-symmetric) solutions for α = 93, γ = 0.05 and N = 100.

Finally we choose N = 1000, in which case j2 = 401, j3 = 601:

Figure 5.17: Numerical (non-symmetric) solutions for α = 93, γ = 0.05 and N = 1000.

Again, this last approximation is very close to the exact solution. Below in Table

5.3, we give a more quantitative measure of the error between exact and approximate

energies where the exact energy is E = 0.9081601666 and c = 0.40214. Also, we see
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that the error tends to zero as h → 0, which again confirms the result from Theorem

17.

N Eh |E − Eh|

10 0.7936323664 0.1145278002
20 0.8448534391 0.0633067275
40 0.8747851382 0.0333750284
80 0.8910294777 0.0171306889
160 0.8995058747 0.0086542919
320 0.9037738319 0.0043863347
640 0.9059733696 0.0021867970
1280 0.9070578431 0.0011023235
2560 0.9076134775 0.0005466891
5120 0.9078843626 0.0002758040
10240 0.9080222092 0.0001379574
20480 0.9080911668 0.0000689998
40960 0.9081256715 0.0000344951

Table 5.3: FEM numerical solutions for α = 91, γ = 0.05, c = 0.40214 and various N , and the
exact energy is E = 0.9081601666.
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Figure 5.18: Log-log plot of the error estimate of the energy u for α = 93, γ = 0.05 and
c = 0.40214. The x-axis represents log(N) while the y-axis represents log |E −Eh|. Notice the
linear pattern.

Finally, to assess the converges of uh and wh in Table 5.4, we report the error |u−uh|∼
V

and |w − wh|H1
0 (0,1). We, again, see that they tend to zero linearly as h → 0, which,

again, confirming the result of Theorem 17.
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N |u− uh|∼
V

|w − wh|H1
0 (0,1)

10 0.0058984678 0.1345821510
20 0.0029131737 0.0753832276
40 0.0014709532 0.0517241132
80 0.0007432482 0.0404002343
160 0.0003741723 0.0346776081
320 0.0001839107 0.0134049369
640 0.0000931058 0.0077355421
1280 0.0000463558 0.0042458197
2560 0.0000232506 0.0010312378
5120 0.0000116130 0.0008534800
10240 0.0000058072 0.0006429552
20480 0.0000029037 0.0000163258
40960 0.0000014519 0.0000059124

Table 5.4: Errors generated for α = 93 and γ = 0.05, c = 0.40216 and various N .
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Figure 5.19: Log-log plot of the error estimate of the energy u for α = 93, γ = 0.05 and
c = 0.40216. The x-axis represents log(N) while the y-axis represents log |u−uh|Ṽ . Notice the
linear pattern.

Remark 21. Notice that up to this point we have been using examples where both the

location of the jump (and consequently the corresponding solution of the Euler Lagrange

equation) can be found analytically. This is to illustrate using the error estimate that

FEM does indeed produce good approximations compared to the exact ones. As we will

see later on, a priori analytical results are not necessary for us to find approximations to
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the locations of the jumps. Instead we will employ methods like DFO to find those jumps,

even for cases where it is hard (or even impossible) to do so analytically. Of course,

without the knowledge of an exact solution we can never have numerical verification

that this approximation is a good one. Fortunately, Theorem 17 from Chapter 4 already

guarantees that for us. As a matter of fact, no such verification is technically necessary

in the first place, we present it here for emphasis, completeness and to illustrate the

rate of convergence.

5.3 The Finite Element Method (for the second weak for-

mulation)

Similarly to our work in the previous section, we now consider the second weak for-

mulation, namely the one where we drop one of the derivative conditions. The Finite

Element Method reads as follow: Find uh, wh ∈ Hh such that

(S′2)h


1∫
0

wh(x)vh(x) dx+
1∫
0

u′h(x)v′h(x) dx = 0 ∀ vh ∈ Hh,

γ
1∫
0

w′h(x)z′h (x) dx+
1∫
0

wh(x)zh(x) dx− α
1∫
0

uh(x)zh(x) dx = 2 z(c) ∀ zh ∈ Hh,

where Hh is defined in (5.2.2).

Since now we are working within the Hh space, we will be looking for approximations

in the form:

u =
N∑
i=1

ξiϕi(x) and w =
N∑
i=1

ζiϕi(x).

Other than that, the process is identical to the one used in Section 5.2, with only small

algebric changes. In particular, the matrix form will be given by

 γ A + B B

BT A

 ·X = b.
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5.3.1 A Numerical Experiment

To illustrate how the method works, we once again consider the case α = 93, γ = 0.05

(see Appendix A.4). For the symmetric solution the exact location of the jump is

c = 0.5, when N = 10 we have
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Figure 5.20: Numerical solution (for the second weak formulation) with α = 93, γ = 0.05 and
N = 10.

Comparing the above to our finding from the first weak formulation, we see that their

graphs are close to one another, with the numerical solution of the first weak formulation

being higher.
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Figure 5.21: Comparison of the solutions corresponding to the two weak formulations. The
red graph on top corresponds to the first weak formulation, α = 91, γ = 0.05, c = 0.5 and
N = 10.

133



CHAPTER FIVE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Figure 5.22: Comparison of the solutions corresponding to the two weak formulations. The
red graph on top corresponds to the first weak formulation, α = 91, γ = 0.05, c = 0.5 and
N = 40.
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Figure 5.23: Comparison of the solutions corresponding to the two weak formulations. The
red graph on top corresponds to the first weak formulation, α = 91, γ = 0.05, c = 0.5 and
N = 100.
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Figure 5.24: Comparison of the solutions corresponding to the two weak formulations. The
red graph on top corresponds to the first weak formulation, α = 91, γ = 0.05, c = 0.5 and
N = 1000.

134



CHAPTER FIVE

Again, Table 5.5 below shows the evolution of |E − Eh| as h → 0, where we see that

the error tends to zero as h→ 0, thus confirming the result from Theorem 20.

N Eh |E − Eh|

10 0.7657982263 0.1425432475
20 0.8297645960 0.0785768778
40 0.8669465710 0.0413949028
80 0.8870767103 0.0212647635
160 0.8975617754 0.0107796984
320 0.9029140827 0.0054273911
640 0.9056183020 0.0027231718
1280 0.9069775073 0.0013639665
2560 0.9076588939 0.0006825799
5120 0.9080000345 0.0003414393
10240 0.9081707167 0.0001707571
20480 0.9082560858 0.0000853880
40960 0.9083071555 0.0000343183

Table 5.5: FEM numerical solutions for c = 0.5 and various N , and the exact energy is
E = 0.9083414738.
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Figure 5.25: Log-log plot of the error estimate of the energy u for α = 93, γ = 0.05 and
c = 0.5. The x-axis represents log(N) while the y-axis represents log |E − Eh|. Notice the
linear pattern.

To assess the converges of uh and wh in Table 5.6, we report the error |u − uh|∼
V

and

|w−wh|H1
0 (0,1). We see that they tend to zero linearly as h→ 0, which, again, confirms
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the result of Theorem 20.

N |u− uh|∼
V

|w − wh|H1
0 (0,1)

10 0.0028539224 0.0688686853
20 0.0012318576 0.0353650051
40 0.0005851146 0.0177843626
80 0.0002882316 0.0088754925
160 0.0001435427 0.0044257548
320 0.0000716976 0.0022087002
640 0.0000358394 0.0011031443
1280 0.0000179185 0.0005512498
2560 0.0000089591 0.0002755419
5120 0.0000044795 0.0001377502
10240 0.0000022397 0.0000688701
20480 0.0000011198 0.0000344341
40960 0.0000005598 0.0000172171

Table 5.6: Errors generated for α = 93 and γ = 0.05 and various N .
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Figure 5.26: Log-log plot of the error estimate of the energy u for α = 93, γ = 0.05. The
x-axis represents log(N) while the y-axis represents log |u− uh|Ṽ . Notice the linear pattern.

Remark 22. After reviewing both methods (namely dropping the [u(c)] = 0 condition

vs dropping the u′(c−) = u′(c+) = 0 condition) it is worth summarizing their advantages

and drawbacks.

Dropping the [u(c)] = 0 condition seems to be the most intuitive approach as it produces

a lot of obviously discontinuous solutions/graphs which can be easily rejected. The cost
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for this is the introduction of the more complicated space
∼
V h and thus the need to

distinguish between matrices such as A and
∼
A.

Dropping the derivative condition on the other hand, seems to be more convenient, as

we no longer need the introduction of the
∼
V h space (we can simply work on Hh instead)

and we can write system (S′2)h above in a simpler matrix form. However, this makes

all the candidate solutions/graph continuous and thus arguably visually harder to decide

which of them have a local extremum at x = c.

In the Table 5.7 below we are comparing the errors (difference between the actual and

the approximate solution) of the two formulations, for various choices of parameters.

We use N = 500 for the approximate solution. Notice that the errors in the second

formulation are always smaller and no significant difference is observed if the mesh

changes, or different solutions are used. We therefore conclude that the second method

is better on to use since it produces more accurate results.

α γ |u− uh|∼
V

|u− uh|H1
0 (0,1)

1 0.1 0.0004059995137234233 0.000405910634606206
55 0.02 0.0000657440098026757 0.000064921486060296
9 0.01 0.0003335475178106126 0.000332107223063766

110 0.01 0.0000094017150117650 0.000009385133443203
93 0.05 0.0000458770984422224 0.000045877097072104
5 0.4 0.0001582018341075732 0.000158201795306649

150 0.1 0.0000315256348241931 0.000031525633627172
12 0.003 0.0002539429514240264 0.0002539429389922499

Table 5.7: Errors generated by the different formulations for various parameter pairs (α, γ)
and N = 500.

5.4 The Finite Element Method (Construct periodic so-

lution of lap > 2)

Now that we have established two concrete ways to approximate all solutions of lap 2,

we can use those results to construct periodic solutions of higher lap number. This is

possible due to the fact that any periodic solution can be thought of as an odd-even
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extension of a lap 2 solution,

More specifically, we can use the methods described in the previous sections to find a

solution in the interval [0, 1
n ], and then “copy” it oddly- evenly for the remaining [0, 1]

interval.

For example, for lap 3, n = 2. This means that we can solve the Euler-Lagrange

equation on the [0, 1
2 ] interval and then extend the result oddly in [1

2 , 1].

5.4.1 A Numerical Experiment

In the graphs below we give examples of the numerical approximations of sevral periodic

solutions for α = 1, γ = 0.1 and N = 1000.
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Figure 5.27: symmetric periodic solution of lap 3, where α = 1, γ = 0.1, c1 = 1
4 and c2 = 3

4 .
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Figure 5.28: symmetric periodic solution of lap 4, where α = 1, γ = 0.1, c1 = 1
6 c2 = 1

2 ,and
c3 = 5

6 .
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Figure 5.29: symmetric periodic solution of lap 5, where α = 1, γ = 0.1, c1 = 1
8 c2 = 3

8 ,
c3 = 5

8 and c4 = 7
8 .
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Figure 5.30: symmetric periodic solution of lap 6, where α = 1, γ = 0.1, c1 = 1
10 c2 = 3

10 ,
c3 = 1

2 , c4 = 7
10 and c5 = 9

10 .
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Figure 5.31: symmetric periodic solution of lap 7, where α = 1, γ = 0.1, c1 = 1
12 c2 = 1

4 ,
c3 = 5

12 , c4 = 7
12 , c5 = 3

4 and c6 = 11
12 .

Remark 23. As we can see, the numerical approximation is leveraging the fact that

the lap 2 solution (for different parameters) acts as a “building block”, but without
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making an a priori assumption on those parameters change. This is another benefit of

the method, since it does not depend on any theoretical properties or formulas.

5.5 Derivative-Free Optimization

Next we analyze another numerical method for finding solutions to the Euler Lagrange

equation, by utilizing the fact that those solutions are of minimal energy. In other

words, we are interested in finding the correct location of the jump, leveraging the fact

that for each candidate location we can compute its corresponding energy, namely

E(u(c)) =

1∫
0

γ u2
xx(c) +W (ux(c)) + αu2(c) dx,

where u(c)(x) is a function that has a jump at x = c and satisfies all but the derivative

condition (ux(c−) = ux(c+) = 0) as in the second weak formulation.

Clearly, E(u(c)) is the smallest when c is the correct jump location. For that reason it

is enough to minimize E(u(c)).

We can do this using the Derivative-Free Optimization (DFO) approach, an iterative

method that improves the answer in each iteration without the use of derivatives (see

[25], [35]). Instead, we replace the function by a quadratic approximation as indicated

below.

5.5.1 The Algorithm

The steps of the algorithm are as follows.

step 0 (Initialization): We choose three arbitrary distinct points c1, c2, c3 ∈ (0, 1) to act

as our first candidates for the jump.

step 1 (Main phase): We calculate the energies Ei = E(u(ci)) i = 1, 2, 3.

step 2 (Main phase): Find a parabola P : [0, 1] → R, P (x) = a x2 + b x + c such that
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P (ci) = Ei i = 1, 2, 3. In other words, find a parabola that goes through these

three points.

In particular it is enough to find a, b, c where


a

b

c

 =


c1

2 c1 1

c2
2 c2 1

c3
2 c3 1


−1 

E (u(c1 ))

E (u(c2 ))

E (u(c3 ))

 .

step 3 (Main phase): Minimize the parabola P from above by finding its vertex c4 = −b
2 a ,

and calculate E4 = E(u(c4)).

step 4 (Main phase): Choose the lowest energies among E1, E2, E3, E4 as well as the

corresponding ci’s. More specifically:

{E1, E2, E3} ← {E1, E2, E3, E4} \ max {E1, E2, E3, E4},

and the new {c1, c2, c3} are the ones corresponding to the new {E1, E2, E3}.

step 5 (Main phase): Go to step 1.

step 6 (Termination condition): Repeat until max {E1, E2, E3}− min {E1, E2, E3} < ε

where ε is our chosen threshold.

step 7 (Final result) When the termination condition is met, return the ci corresponding

to the min {E1, E2, E3}.

After the algorithm terminates we will have access to a c that approximately minimizes

the energy functional, and thus is a very good approximation to the exact location of

one of the jumps (see Appendix A.2). This will further give us access to a solution of

the Euler Lagrange equation.
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Figure 5.33: Successive iterations of DFO plotting solutions with a new location of the jump in
each step where α = 1, γ = 0.1, N = 1000 and the starting points are c1 = 0.2, c2 = 0.4, c3 = 0.9.

5.5.2 Numerical results

We apply the algorithm above, to different examples. The first with (α, γ) = (50, 0.02)

where we know from the analytical methods that the exact location of the jump is

c = 0.5 while the exact energy is E = 0.8935833875

142



CHAPTER FIVE

In the table below we summarize the prediction of DFO for c and E under various

number of iterations. Our three arbitrary distinct points are c0 = 0.1, c1 = 0.4 and

c2 = 0.7. Notice that as N grows large, the values c, E given by DFO correctly approach

the exact value c = 0.5 and E = 0.8935833875.

N cDFO EDFO |c− cDFO| |E − EDFO|

40 0.5260270042 0.8602881256 0.0260270043 0.0332952619
80 0.5110626832 0.8761136517 0.0110626833 0.0174697358
160 0.5051458119 0.8845699232 0.0051458119 0.0090134643
320 0.5025652106 0.8890008182 0.0025652107 0.0045825693
640 0.5001155429 0.8912739430 0.0001155429 0.0023094445
1280 0.5000676253 0.8924240649 0.0000676254 0.0011593226
2560 0.5000362768 0.8930026088 0.0000362769 0.0005807787
5120 0.5000187545 0.8932926977 0.0000187545 0.0002906898
10240 0.5000095312 0.8934379608 0.000095313 0.0001454267
20480 0.5000051810 0.8935106586 0.0000051810 0.0000727289

Table 5.8: DFO numerical prediction for c = 0.5 and E = 0.8935833875.
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Figure 5.34: Log-log plot of the error estimate of the energy u for E = 0.8935833875 and
c = 0.5. The x-axis represents log(N) while the y-axis represents log |E − EDFO|. Notice the
linear pattern.

The second example is with (α, γ) = (108, 0.05) where exact location of the jump is

c = 0.3743602663 and the exact energy is E = 0.917355785. We choose our three

arbitrary distinct points to be c0 = 0.1, c1 = 0.3 and c2 = 0.4. we summarize the
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prediction of DFO for c and E in the table below:

N cDFO EDFO |c− cDFO| |E − EDFO|

80 0.4299301593 0.8955977938 0.0555698930 0.0217579912
160 0.3909558692 0.9062859869 0.0165956029 0.0110697981
320 0.3868837807 0.9117485855 0.0125235144 0.0056071995
640 0.3827112935 0.9145319655 0.0083510272 0.0028238195
1280 0.3790152381 0.9159407327 0.0046549718 0.0014150523
2560 0.3766298522 0.9166470462 0.0022695859 0.0007087388
5120 0.3754507112 0.9170009554 0.0010904449 0.0003548296
10240 0.3746989419 0.9171780994 0.0003386756 0.0001776856
20480 0.3746037820 0.9172667241 0.0002435157 0.0000890609
40960 0.3745164746 0.9173110474 0.0001562083 0.0000447376

Table 5.9: DFO numerical prediction for c = 0.3743602663 and E = 0.917355785.
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Figure 5.35: Log-log plot of the error estimate of the energy u for E = 0.917355785 and
c = 0.3743602663. The x-axis represents log(N) while the y-axis represents log |E − EDFO|.
Notice the linear pattern.

Next, in the Tables (5.10 - 5.12) we present a full DFO process for different α and γ

with different exact location of the jump. In particular, we keep track of all the ci’s for

every iteration. Notice again, that as we are going through the iterations, we converge

to the correct value of c.
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Iteration c1 c2 c3 c4

1 0.11 0.12 0.13 0.2564189682
2 0.12 0.13 0.2564189682 0.2878852633
3 0.13 0.2564189682 0.2878852633 0.3192688312
4 0.2564189682 0.2878852633 0.3192688312 0.3507970419
5 0.2878852633 0.3192688312 0.3507970419 0.3532388834
6 0.3192688312 0.3507970419 0.3532388834 0.3597824859
7 0.3507970419 0.3532388834 0.3597824859 0.3619350512
8 0.3532388834 0.3597824859 0.3619350512 0.3623508185

Table 5.10: Full DFO process with detailed iterations when (α, γ) = (190, 0.1) and N = 1000
and where the exact c = 0.3623549804.

Iteration c1 c2 c3 c4

1 0.91 0.92 0.93 0.7529011875
2 0.92 0.93 0.7529011875 0.6694035449
3 0.93 0.7529011875 0.6694035449 0.5611388507
4 0.7529011875 0.6694035449 0.5611388507 0.4930445220
5 0.6694035449 0.5611388507 0.4930445220 0.4978671246
6 0.5611388507 0.4930445220 0.4978671246 0.5001351766
7 0.4930445220 0.4978671246 0.5001351766 0.5000282733

Table 5.11: Full DFO process with detailed iterations when (α, γ) = (1, 0.1) and N = 1000
and where the exact c = 0.5.

Iteration c1 c2 c3 c4

1 0.1 0.4 0.7 0.5021125227
2 0.4 0.7 0.5021125227 0.4995094199
3 0.7 0.5021125227 0.4995094199 0.4999990724
4 0.5021125227 0.4995094199 0.4999990724 0.5000141110

Table 5.12: Full DFO process with detailed iterations when (α, γ) = (33, 0.01) and N = 1000
and where the exact c = 0.5.

Also, it is worth seeing the DFO as a function of h = 1
N . As the following illustrates,

as h goes to zero, the approximate value of c and E converge to the values of the exact

solution. Here α = 60, γ = 0.1, c = 0.5 and E = 0.8891382917.
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h c (given by DFO) Energy (given by DFO)

0.025 0.49842496 0.85464934

0.0125 0.50228775 0.87063314

0.00625 0.50252113 0.87953131

0.003125 0.50164962 0.88423681

0.001562 0.50093139 0.88666420

0.000781 0.50049379 0.88789532

0.000390 0.50025412 0.88851531

0.000195 0.50012889 0.88882642

0.000097 0.50006491 0.88898226

0.000048 0.50003257 0.88906025

0.000024 0.50001631 0.889099267

0.000012 0.50000816 0.889118778

Table 5.13: DFO predictions as a function of h = 1
N where (α, γ) = (60, 0.1) and the exact

values are c = 0.5 and E = 0.8891382917.

Last but least, In the table below we summarize the prediction of DFO for c and E for

different values of α and γ.

α γ c (given by DFO) Energy (given by DFO) exact c exact energy

55 0.02 0.50007949 0.84547658 0.5 0.84571172
140 0.02 0.27492439 0.91580915 0.27498612 0.91596674
7 0.1 0.50001902 0.68841462 0.5 0.68847220

140 0.03 0.50008207 0.92475010 0.5 0.92495885
130 0.1 0.44142490 0.93655715 0.44072196 0.93674129
1 0.5 0.50002595 0.86324115 0.5 0.86335026
92 0.06 0.56495795 0.91044042 0.56483294 0.91048682
73 0.08 0.50008754 0.89922490 0.5 0.89939575
12 0.09 0.50001945 0.72688605 0.5 0.72695694
32 0.01 0.50006148 0.75911134 0.5 0.75902964

Table 5.14: DFO numerical prediction for for various parameter pairs (α, γ) and N = 5000.

As evidenced by all the tables above, the Derivative-Free-Optimization method, pro-

vides an efficient tool to accurately approximate the location of the jump, when the

latter is not know a priori. The power of the method comes from the fact that it can

rapidly locate (i.e. requires few iterations) the neighbourhood within which the energy

functional has a local minimum and thus reveal it to us. As all of the examples above

illustrate, not only does the method converge quickly to the exact solution but also it
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does so with remarkable accuracy. All in all, DFO is a great way to approximate the

location of the jump, an unknown which is otherwise hard to pin down analytically.

Remark 24. Note that although the figures above are taken from examples where we

have access their corresponding analytical solutions, DFO can be applied to far more

general setting. In particular, for lap number higher than 3, MAPLE fails to solve

the equation required by the Fredholm Alternative and thus we have no access to the

locations of the jump nor their corresponding solutions to the Euler Lagrange equation.

In contrast, DFO can be generalized to an arbitrary amount of jumps (i.e. an arbitrary

lap number).

5.6 The Finite Element Method for a problem with non-

constant parameters

So far we only considered cases where the parameters are always constant and indepen-

dent of the “space” variable x. In general, when α or γ are non-constant, we can not

solve the Euler-Lagrange equation analytically, and then numerical methods become

essential.

Fortunately, the FEM is not affected by the complexity of the functions as it can always

replace them with piecewise-linear counterparts. This allows for an additional freedom

when choosing the parameters, provided that they are reasonably smooth.

In this section we set α(x) = x+ 1 and we show that the FEM (coupled with the DFO

for the jump) can give an approximate lap 2 solution to an otherwise non-tractable

problem.

In what follows we work with the second weak formulation (as described in Section 5.3)

due to the simplicity of the solution space. In that case, the Finite Element Method
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reads as follow: Find uh, wh ∈ Hh such that
1∫
0

wh(x)vh(x) dx+
1∫
0

u′h(x)v′h(x) dx = 0 ∀ vh ∈ Hh,

γ
1∫
0

w′h(x)z′h (x) dx+
1∫
0

wh(x)zh(x) dx−
1∫
0

uh(x)α(x) zh(x) dx = 2 z(c) ∀ zh ∈ Hh.

Since we are working in H1
0 (0, 1), we can assume as earlier that

uh =
N∑
i=1

ξiϕi(x) and wh =
N∑
i=1

ζiϕi(x).

Notice that (like in Section 5.3) we can use the same basis for both uh and wh, since

they belong to the same space. This will significantly simplify our calculations. As a

matter of fact, the only difference with the matrix form of Section 5.3 will be the part

where α is involved, namely the top-right block of the matrix. We can calculate this

precisely by considering:

1∫
0

uh(x)α(x)ϕj(x) dx =

1∫
0

uh(x) (x+1)ϕj(x) dx =

N∑
i=1

N∑
i=1

ξiζi

1∫
0

ϕi(x) (x+1)ϕj(x) dx.

Thus the new top-right block matrix Bα should have entries
1∫
0

ϕi(x) (x + 1)ϕj(x) dx.

That is

Bα =

[ 1∫
0

ϕi(x) (x+ 1)ϕj(x) dx

]
(i,j)∈N×N

.

In particular, we have the following cases:

� [Bα](i−1,i) =
∫ xi
xi−1

(−x
h + i)(x+ 1)(xh − i+ 1) dx = h2(2i−1)

12 + h
6 .

� [Bα](i,i) =
∫ xi
xi−1

(xh − i+ 1)2(x+ 1) +
∫ xi+1

xi
(−x

h + i+ 1)2(x+ 1) dx = 2h(i h+1)
3 .

� [Bα](i,i+1) =
∫ xi+1

xi
(−x

h + i+ 1)(x+ 1)(xh − i) dx = h2(2i+1)
12 + h

6 .

� [Bα](i,j) = 0 for all |i− j| > 1.
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Note that, with a non-constant choice of α, the entries of Bα are also non-constant and

depends on i in general. This leads to the following form:

 γ A + B −Bα

BT A

 ·X = b

where X,A,B, b are exactly as before and γ is constant.

5.6.1 A Numerical Experiment

To advance our understanding of the above calculations, let us define u1 to be the

solution corresponding to α = 1, u2 be the solution corresponding to α = 2 and ux+1

be the solution corresponding to α(x) = x + 1. Since 1 ≤ x + 1 ≤ 2 for all x ∈ [0, 1]

and the fact that the larger the stiffness parameter the closer the solution would be to

zero, we would expect that:

u2 ≤ ux+1 ≤ u1.

This is exactly what we observe as the following figures illustrate (see Appendix A.1).

Notice also that as we refine the mesh (i.e. as N goes to infinity) the energy of the

middle solution (i.e. the one corresponding to α(x) = x + 1) converges to a fixed

amount. We show this clearly in Table 5.6.1 where we compare the energies with mesh

N = 102n for successive values n.
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Figure 5.36: Comparison to numerical solutions with constant parameters when N = 10.
Here we have 1 ≤ x+ 1 ≤ 2 for all x ∈ [0, 1].
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Figure 5.37: Comparison to numerical solutions with constant parameters when N = 20.
Here we have 1 ≤ x+ 1 ≤ 2 for all x ∈ [0, 1].
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Figure 5.38: Comparison to numerical solutions with constant parameters when N = 40.
Here we have 1 ≤ x+ 1 ≤ 2 for all x ∈ [0, 1].
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Figure 5.39: Comparison to numerical solutions with constant parameters when N = 80.
Here we have 1 ≤ x+ 1 ≤ 2 for all x ∈ [0, 1].
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Figure 5.40: Comparison to numerical solutions with constant parameters when N = 160.
Here we have 1 ≤ x+ 1 ≤ 2 for all x ∈ [0, 1].
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Figure 5.41: Comparison to numerical solutions with constant parameters when N = 1000.
Here we have 1 ≤ x+ 1 ≤ 2 for all x ∈ [0, 1].
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N E 1
10·2n

|E 1
10·2n

− E 1
10·2n+1

|

10 0.6803162658 -
20 0.6323789877 0.0479372780
40 0.6160299612 0.0163490265
80 0.6114050728 0.0046248885
160 0.6102796222 0.0011254506
320 0.6100592940 0.0002203281
640 0.6100557338 0.0000035602

Table 5.15: Numerical values (according to FEM) for energies corresponding to the solution
with α(x) = x+ 1 and c = 0.5 for various values of N . On the left of the table we calculate the
difference between successive levels of Energy in a logarithmic scale.

5.7 Conclusion

In this chapter we showed that both the Finite Element Method (FEM) and the

Derivative-Free Optimization (DFO) method can be used in combination with one

another to yield arbitrarily close approximations to the exact solution of our main Eu-

ler Lagrange equation. The proximity of those approximations was later verified by

comparing the numbers produced by the FEM and the DFO methods to those given

by MAPLE from the exact solutions.

Since we already established a concrete theoretical framework for the numerical meth-

ods in the previous chapter, we gave specific examples in the current one. In particular,

we start with the Finite Element Method (FEM) and give a precise algorithmic pro-

cess for how this method will work in practice for a given jump location c. The most

important derivation is that of representing each weak formulation with a convenient

matrix form (see (5.2.3) - (5.2.7)) which can then be solved efficiently using a simple

Gauss-Jordan process.

To evaluate the accuracy of some of these numerical approximations, we compare them

to their analytical solutions and graph them side by side. On top of that, we also

consider both symmetric and non-symmetric solutions for various parameters α and

γ. We also calculated the corresponding energies both of the exact and the numerical
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solutions. We accompany all of the above calculations with error tables, which indeed

confirm that as the mesh gets more refined the error (between the exact and approxi-

mate energies) converges to zero (see Sections 5.2 and 5.3). Last but not least we apply

the FEM to find periodic solutions of lap greater than 2 (see Section 5.4) and also

solutions for when the parameter α is not a constant function of x (see Section 5.6).

In Section 5.5, we introduced an approach that uses the Derivative-Free Optimization

(DFO) method to find the location of the jump (which can then used to construct a

piecewise linear solution using the FEM - as described earlier). The algorithm approxi-

mates the location of the point of minimal energy in the discrete problem by construct-

ing a sequence of approximations without the need of computing the derivative of the

energy functional.

Moreover, we showed experimentally the convergence of the DFO method using specific

examples and their corresponding energy tables for different and progressively finer

partitions. As expected, the numerical values for the energies converge to the exact

values as the mesh gets finer.

We conclude that both DFO and FEM should be used in combination in order to

numerically find an efficient and accurate approximation to each weak formulation and

by extension to the original Euler-Lagrange equation.
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Conclusion and future work

In Chapter 3, we reformulated Grinfeld and Lord’s conjecture for Müller’s problem to

match Yips problem (see Conjecture 10). We allow for a parameter α > 0 which will

help us better study bifurcations and thus answer the conjecture.

First of all, we start with Yip’s functional and Müller’s boundary conditions (see Defi-

nition (3.2.2)). The functional gives rise to an Euler-Lagrange equation which we then

solved. There were 3 cases to be considered for the solution of the Euler Lagrange

equation, depending on the relationship between α and γ (see Section 3.2).

In Section 3.3, we work in the simplest case with lap 2. We found that for given α, γ,

there exists a unique symmetric solution (see Theorem 11). This Theorem disproved

the conjecture for Yip’s problem, since we know that there is a solution without internal

zeroes regardless of how large α is. Also, we show that using solutions of lap 2, we can

construct solutions of higher lap number (see Theorem 12).

Next, we show the existence of non-symmetric solutions. These extra non symmetric

solutions bifurcate from pitchfork bifurcation curve where we go from one symmetric

solution splits into three solutions (one symmetric and two non-symmetric); see Figure

3.21.

In the following Section 3.4, we calculate various energies corresponding to different
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Euler Lagrange solutions. Moreover, we present a formula that calculates the energies

of higher lap number from those with lap number 2 (see Lemma 3). We also calculated

specific energy curves like the E1,2 curve where E(u1) = E(u2). Most of our work (of

lap 2) can be summarized in Figure 3.32.

In summary we have the following: below the E1,2 curve, u1 is a global minimizer.

Above the bifurcation curve, u1 is not a minimizer and between the E1,2 and the

bifurcation curve, u1 is a local minimizer.

In the following Section 3.5.1, we begin our investigation on the bifurcation diagrams of

solutions of lap 3. Our work of lap 3 can be summarized in Figure 3.33. In particular,

we found two types of bifurcation curves, one that gives rise to a fresh pair of non-

periodic solutions (p-curves) and one that gives rise to a fresh pair of non-symmetric

solutions (s1-curve). Below the curve p1 we have a unique solution while above p1 we

have more than 1 solutions. Below s1 we only have symmetric solutions while above s1

non-symmetric solutions start to appear.

Chapter 4 sets up the stage for the mathematical framework of our numerical methods.

The core of our work revolves around an important equivalence between a version

almost identical to our problem (S1) and a weak formulation which can approximated

numerically (S2). As a matter of fact we develop two equivalences. The first by

dropping the continuity condition and the second by dropping a derivative condition.

This permit us to approximate the problem numerically (see Sections 4.3 and 4.4).

We also were able to prove that both weak formulations have a unique solution using

key ideas from functional analysis, namely the Lax-Milgram theorem and (bi)linear

functionals (4.3.11) and (4.4.4). That, combined with the equivalences mentioned ear-

lier can be shown to satisfy the original problem (see Subsections 4.3.1 and 4.4.1 and

Theorems 15 and 18).

The major component of our numerical approach is based on the Finite Element

method. We started by defining convenient solution subspaces (on piecewise linear func-

tions) and then showed that both weak formulations achieve unique solutions within
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those subspaces for any given mesh (see Theorems 16 and 19). The idea is that finding

solutions within these subspaces can be done sufficiently using MATLAB. Another crit-

ical step in the right direction is using Galerkin orthogonality that allows us to prove

that the unique solution of the discrete problem can be arbitrarily close to the unique

solution of the continuous problem (see Theorems 17 and 20). These two facts allowed

us to approximate the unique solution of our problem both efficiently and accurately.

We concluded the section by illustrating the potency of our method by showing that it

can also be used in the general case where the parameter α is not a constant function

(S′3). This is important because we do not yet have access to ways of calculating the

exact solution analytically in those cases.

In Chapter 5, we introduce the second numerical method called The Derivative-Free

optimization to help us approximate the location of the jump c. More precisely, DFO

was used to approximate the location of the jump while the FEM is used to approximate

the solution corresponding to that jump. In other words both the DFO and FEM were

used as a combination with one another to produce arbitrary close approximations to

the exact solution of the Euler Lagrange equation. We verified the accuracy of these

results by comparing them to the exact solution given by MAPLE.

This chapter also includes several specific numerical examples. In particular, we present

a precise algorithmic process on how this FEM method works in practice for a given

jump location c. specifically we were able to present each weak formulation using a

matrix form (see (5.2.3) - (5.2.7)) which can be solved efficiently via the Gauss-Jordan

process.

To make a strong case for the accuracy of our numerical approximation we compare

them graphically to their corresponding analytical solutions and illustrate them side by

side. Our examples include several symmetric and non symmetric solutions for different

α and γ. Moreover we included the energies of both the exact and numerical solutions

as well as their corresponding error table which acts as a confirmation that the error

converges to zero as we refine the mesh (see Sections 5.2 and 5.3).
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Lastly, we apply the FEM to periodic solutions with lap greater than 2 (see Section

5.4) and also to solutions corresponding to a non constant parameter α (see Section

5.6).

Section 5.5 deals with the details of DFO described earlier. In particular, we take

advantage of the fact that the location of the jump c corresponds to a minimal energy

which can be found numerically and without the use of derivatives (thus the name).

The section would not be complete without the use of specific examples and energy

tables for progressively finer partitions. The convergence of the DFO method is then

verified experimentally since the energies converge to the correct exact value as we

refine the mesh.

For future work, one can establish proper theoretical frame work which proves that the

DFO method always converges to the desired jump location. Also, one can consider

gradient flow of our functional in order to understand how interfaces are created. More-

over, one can consider local and non-local Cahn-Hilliard and Cahn-Allen equations with

Yip’s free energy to see if the fact that one can do explicit computations allows for a

deeper insight into the mathematics of those equations. Last but not least, one can

numerically generalize the above results by considering arbitrary lap numbers and also

one can apply our numerical method on several generalizations of the problem in areas

where the exact solutions are not yet tractable analytically.
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MATLAB and MAPLE codes

A.1 Matlab Code for The Finite Element Method for a

problem with non-constant parameters

f unc t i on y = energy ( c )

gamma=0.1;

a=0;

b=1;

N=500;

h=(b−a ) /(N+1) ;

format long ;

j = f l o o r ( c*N) +1;

O = ( c ( ( j −1) * h) ) /(h) ;

A=spar s e (N,N) ;

B=spar s e (N,N) ;

bb=spar s e (2*N, 1 ) ;

bb ( j )= 2 ;

A(1 , 1 ) =2/(h) ;
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A(1 ,2 )= 1/(h) ;

f o r i =2:N − 1

A( i , i −1)= −1/(h) ;

A( i , i ) =2/(h) ;

A( i , i +1)= −1/(h) ;

end

A(N,N) =2/(h) ;

A(N,N − 1)= −1/(h) ;

B(1 , 1 ) =(2*h) /3 ;

B(1 , 2 ) =(h/6) ;

f o r i =2:N−1

B( i , i −1)=(h/6) ;

B( i , i ) =(2*h) /3 ;

B( i , i +1)=(h/6) ;

end

B(N,N) =(2*h) /3 ;

B(N,N−1)=(h/6) ;

Balpha=spar s e (N,N) ;

Balpha (1 , 1 ) =0.2 e1 / 0 .3 e1 * h * (1 * h + 1) ;

Balpha (1 , 2 ) =(h ˆ 2 * (2 * 1 + 1) ) / 0 .12 e2 + h / 0 .6 e1 ;

f o r i =2:N−1

Balpha ( i , i −1)=(h ˆ 2 * (2 * i −1) ) / 0 .12 e2 + h / 0 .6 e1 ;

Balpha ( i , i ) =0.2 e1 / 0 .3 e1 * h * ( i * h + 1) ;

Balpha ( i , i +1)=(h ˆ 2 * (2 * i + 1) ) / 0 .12 e2 + h / 0 .6 e1 ;

end

Balpha (N,N) =0.2 e1 / 0 .3 e1 * h * (N * h + 1) ;

Balpha (N,N−1)=(h ˆ 2 * (2 * N−1) ) / 0 .12 e2 + h / 0 .6 e1 ;
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M2=[(gamma*A)+B , −( Balpha ) ; B ,A ] ;

X2=M2\bb ;

x=l i n s p a c e (0 , 1 ,N+1) ;

F5= (X2(N+1:2*N) ) ;

F5( j ) = [ ] ;

G5=[0 ; − F5 ; 0 ] ;

F1 = d i f f (F5) /h ;

F1(N+1 ,1) =0;

F1( j ) = [ ] ;

F2 = (X2 ( 1 :N+1) ) ;

FF= F5 . ˆ 2 ;

E3= trapz (FF) *h ;

FF2 = (F2) . ˆ 2 ;

E1 = trapz (FF2) *h ;

FF1 = ( abs (F1) − 1) . ˆ 2 ;

E2 = trapz (FF1) *h ;

y = gamma*E1 + E2 + i *h*E3 ;

end

A.2 Matlab Code for DFO

c l e a r a l l

c1 = 0 . 1 ;
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c2 = 0 . 3 ;

c3 = 0 . 7 ;

format long ;

E1= energy ( c1 ) ;

E2= energy ( c2 ) ;

E3= energy ( c3 ) ;

M1 = min ( [ E1 , E2 , E3 ] ) ;

M2 = max ( [ E1 , E2 , E3 ] ) ;

k=1;

minenergy ( k )=M1;

t o l =1;

whi l e t o l > 0.0000001

P = parabola ( [ c1 c2 c3 ] ) ;

c4 =minpara (P) ;

E4 = energy ( c4 ) ;

A= [ E1 E2 E3 E4 ; c1 c2 c3 c4 ] ;

A= delete max column (A) ;

c1= A(2 ,1 ) ;

c2= A(2 ,2 ) ;

c3= A(2 ,3 ) ;

E1 = A(1 ,1 ) ;

E2 = A(1 ,2 ) ;

E3 = A(1 ,3 ) ;

M1 = min ( [ E1 , E2 , E3 ] ) ;

M2 = max ( [ E1 , E2 , E3 ] ) ;

k=k+1;

minenergy ( k )=M1;

t o l=abs ( minenergy ( k ) −minenergy (k −1) ) /minenergy ( k ) ;

end
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A

M1

func t i on y = parabola ( c )

p=spar s e (3 , 3 ) ;

p (1 , 1 )= c (1 ) *c (1 ) ;

p (1 , 2 )= c (1 ) ;

p (1 , 3 )= 1 ;

p (2 , 1 )= c (2 ) *c (2 ) ;

p (2 , 2 )= c (2 ) ;

p (2 , 3 )= 1 ;

p (3 , 1 )= c (3 ) *c (3 ) ;

p (3 , 2 )= c (3 ) ;

p (3 , 3 )= 1 ;

Z=spar s e (3 , 1 ) ;

Z(1 , 1 )= energy ( c (1 ) ) ;

Z(2 , 1 )= energy ( c (2 ) ) ;

Z(3 , 1 )= energy ( c (3 ) ) ;

MM=p\Z ;

y = MM;

end

func t i on y = minpara (p)

aa= p (1) ;

bb = p (2) ;

y = −bb /(2* ( aa ) ) ;

end
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f unc t i on y = delete max column (A)

R = A( 1 , : ) ;

[ ˜ , c o l ] = max(R) ;

A( : , c o l ) = [ ] ;

y = A;

end

A.3 Matlab Code for The Finite Element Method (for the

first weak formulation)

c l e a r a l l

gamma=0.1;

alpha =1;

a=0;

b=1;

N=101;

c =0.5 ;

h=(b−a ) /(N+1) ;

format shor t ;

j = f l o o r ( c*N) +1;

O = ( c − ( ( j −1) * h) ) /(h) ;

beta = (Oˆ3) −(3*Oˆ2) +(3*O) ;

d e l t a = (3*Oˆ2) −(2*Oˆ3) ;

A=spar s e (N,N) ;

B=spar s e (N,N) ;
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AA=zero s (N+2,N+2) ;

BB=ze ro s (N,N+2) ;

bb=spar s e (2*N+2 ,1) ;

xx=l i n s p a c e ( a , b ,N) ;

A(1 , 1 ) =2/(h) ;

A(1 , 2 ) =−1/(h) ;

f o r i =2:N−1

A( i , i −1) =−1/(h) ;

A( i , i ) =2/(h) ;

A( i , i +1)=−1/(h) ;

end

A(N,N) =2/(h) ;

A(N,N−1) =−1/(h) ;

B(1 , 1 ) =(2*h) /3 ;

B(1 , 2 ) =(h/6) ;

f o r i =2:N−1

B( i , i −1)=(h/6) ;

B( i , i ) =(2*h) /3 ;

B( i , i +1)=(h/6) ;

end

B(N,N) =(2*h) /3 ;

B(N,N−1)=(h/6) ;

AA(1 , 1 ) =2/(h) ;

AA(1 , 2 ) =−1/(h) ;

BB(1 , 1 )= (2*h) /3 ;

BB(1 , 2 )= h /6 ;

AA(N+2,N+2)=2/(h) ;

AA(N+2,N+1)=−1/(h) ;

164



Appendix A. MATLAB and MAPLE codes

BB(N,N+2)=(2*h) /3 ;

BB(N,N+1)=h /6 ;

f o r i =2: j −2

AA( i , i −1) =−1/(h) ;

AA( i , i ) =2/(h) ;

AA( i , i +1)=−1/(h) ;

end

AA( j −1 , j −2) =−1/(h) ;

AA( j −1 , j −1)= (1+O) / h ;

AA( j −1 , j ) =0;

AA( j −1 , j +1)=(−O) / h ;

AA( j , j ) =(1−O) / h ;

AA( j , j +2)=(O−1) / h ;

AA( j +1, j −1)=(−O) / h ;

AA( j +1, j ) =0;

AA( j +1, j +1)=O/h ;

AA( j +2, j )=(O−1) / h ;

AA( j +2, j +2)=(2−O) /h ;

AA( j +2, j +3)=−1/(h) ;

f o r i=j +3:N+1 %j+2

AA( i , i −1) =−1/(h) ;

AA( i , i ) =2/(h) ;

AA( i , i +1)=−1/(h) ;

end

f o r i =2: j −2 %j −2

BB( i , i −1)=h /6 ;

BB( i , i ) =(2*h) /3 ;

BB( i , i +1)=h /6 ;

end
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BB( j −1 , j −2)=h /6 ;

BB( j −1 , j −1)=(h/3) *(1+ beta ) ;

BB( j −1 , j )= (h/3) *(1 − beta ) ;

BB( j −1 , j +1)=(h/6) * d e l t a ;

BB( j −1 , j +2)=(h/6) *(1 − d e l t a ) ;

BB( j , j −1)=(h/6) * d e l t a ;

BB( j , j )=(h/6) *(1 − d e l t a ) ;

BB( j , j +1)= (h*O) /3 ;

BB( j , j +2)=(h*(2 −O) ) /3 ;

BB( j , j +3)=h /6 ;

f o r i=j +1:N−1

BB( i , i +1)=h /6 ;

BB( i , i +2)=(2*h) /3 ;

BB( i , i +3)=h /6 ;

end

T = transpose (BB) ;

bb( j −1) =(1−O) ;

bb( j )=(O) ;

bb( j +1)=(O) ;

bb( j +2)=(1−O) ;

M=[(gamma*A)+B , −( alpha *BB) ; T ,AA] ;

X=M\bb ;

x=l i n s p a c e (0 , 1 ,N+3) ;

F= (X(N+1:2*N+2) ) ;

F1 = d i f f (F) /h ;

F1(N+1 ,1) =0;

F2 = (X( 1 :N+1) ) ;

FF= F . ˆ 2 ;
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E3= trapz (FF) *h ;

FF2 = (F2) . ˆ 2 ;

E1 = trapz (FF2) *h ;

FF1 = ( abs (F1) −1) . ˆ 2 ;

E2 = trapz (FF1) *h ;

y = gamma*E1 + E2 + alpha *E3 ;

A.4 Matlab Code for The Finite Element Method (for the

second weak formulation)

gamma=0.1;

alpha =60;

a=0;

b=1;

N=1000 ;

h=(b−a ) /(N+1) ;

format long ;

j = f l o o r ( c*N) +1;

O = ( c − ( ( j −1) * h) ) /(h) ;

A=spar s e (N,N) ;

B=spar s e (N,N) ;

bb=spar s e (2*N, 1 ) ;

bb ( j )= 2 ;

A(1 , 1 ) =2/(h) ;

A(1 , 2 ) =−1/(h) ;

f o r i =2:N−1

A( i , i −1) =−1/(h) ;

A( i , i ) =2/(h) ;
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A( i , i +1)=−1/(h) ;

end

A(N,N) =2/(h) ;

A(N,N−1) =−1/(h) ;

B(1 , 1 ) =(2*h) /3 ;

B(1 , 2 ) =(h/6) ;

f o r i =2:N−1

B( i , i −1)=(h/6) ;

B( i , i ) =(2*h) /3 ;

B( i , i +1)=(h/6) ;

end

B(N,N) =(2*h) /3 ;

B(N,N−1)=(h/6) ;

M=[(gamma*A)+B , −( alpha *B) ; B ,A ] ;

X=M\bb ;

x=l i n s p a c e (0 , 1 ,N+2) ;

F= (X(N+1:2*N) ) ;

F1 = d i f f (F) /h ;

F1(N+1 ,1) =0;

F2 = (X( 1 :N+1) ) ;

FF= F . ˆ 2 ;

E3= trapz (FF) *h ;

FF2 = (F2) . ˆ 2 ;

E1 = trapz (FF2) *h ;
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FF1 = ( abs (F1) −1) . ˆ 2 ;

E2 = trapz (FF1) *h ;

y = gamma*E1 + E2 + alpha *E3 ;

A.5 MAPLE code for the Fredholm Alternative (with lap

2)

with(LinearAlgebra) :

A =



Λ3eΛ c −Λ3e−Λ c λ3eλ c −λ3e−λ c −Λ3eΛ c Λ3e−Λ c −λ3eλ c λ3e−λ c

Λ2 Λ2 λ2 λ2 0 0 0 0

Λ eΛ c −Λ e−Λ c λ eλ c −λ e−λ c 0 0 0 0

0 0 0 0 eΛ e−Λ eλ e−λ

0 0 0 0 Λ2eΛ Λ2e−Λ λ2eλ λ2e−λ

0 0 0 0 Λ eΛ c −Λ e−Λ c λ eλ c −λ e−λ c

eΛ c e−Λ c eλ c e−λ c −eΛ c −e−Λ c −eλ c −e−λ c

Λ2eΛ c Λ2e−Λ c λ2eλ c λ2e−λ c −Λ2eΛ c −Λ2e−Λ c −λ2eλ c −λ2e−λ c

1 1 1 1 0 0 0 0
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At := Transpose(A) :

NullSpace (At)



1/2 e(2 c−1)Λ+λ−e(2 c−1)Λ−λ−e(2 c−1)λ+Λ+e(2 c−1)λ−Λ+e−2λ c+Λ+λ−e−2λ c−Λ+λ−e−2 Λ c+Λ+λ+e−2 Λ c+Λ−λ

Λ
(

Λ e(c−1)λ+Λ−Λ e(c−1)λ−Λ+Λ e−λ c+Λ+λ−Λ e−λ c−Λ+λ−e(c−1)Λ+λλ+e(c−1)Λ−λλ−e−Λ c+Λ+λλ+e−Λ c+Λ−λλ
)
λ

Λ e(c−1)Λ+λ−Λ e(c−1)Λ−λ+Λ e−Λ c+Λ+λ−Λ e−Λ c+Λ−λ−λ e(c−1)λ+Λ+λ e(c−1)λ−Λ−λ e−λ c+Λ+λ+λ e−λ c−Λ+λ

Λ
(

Λ e(c−1)λ+Λ−Λ e(c−1)λ−Λ+Λ e−λ c+Λ+λ−Λ e−λ c−Λ+λ−e(c−1)Λ+λλ+e(c−1)Λ−λλ−e−Λ c+Λ+λλ+e−Λ c+Λ−λλ
)
λ

1/2
Λ2e(2 c−1)λ−Λ−e(2 c−1)Λ−λλ2−Λ2e(2 c−1)λ+Λ+e(2 c−1)Λ+λλ2−Λ2e−2λ c−Λ+λ+e−2 Λ c+Λ−λλ2+Λ2e−2λ c+Λ+λ−e−2 Λ c+Λ+λλ2−(Λ−λ)(Λ+λ)

(
e−Λ−λ−e−Λ+λ−eΛ−λ+eΛ+λ

)
Λ
(

Λ e−λ c−Λ+λ−Λ e−λ c+Λ+λ+Λ e(c−1)λ−Λ−Λ e(c−1)λ+Λ−e−Λ c+Λ−λλ+e−Λ c+Λ+λλ−e(c−1)Λ−λλ+e(c−1)Λ+λλ
)
λ

−Λ eλ c+Λ+Λ eλ c−Λ−Λ e−λ c+Λ+Λ e−λ c−Λ+λ eΛ c+λ−λ eΛ c−λ+λ e−Λ c+λ−λ e−Λ c−λ

Λ e(c−1)λ+Λ−Λ e(c−1)λ−Λ+Λ e−λ c+Λ+λ−Λ e−λ c−Λ+λ−e(c−1)Λ+λλ+e(c−1)Λ−λλ−e−Λ c+Λ+λλ+e−Λ c+Λ−λλ

−Λ eΛ c+λ+Λ eΛ c−λ−Λ e−Λ c+λ+Λ e−Λ c−λ+λ eλ c+Λ−λ eλ c−Λ+λ e−λ c+Λ−λ e−λ c−Λ

Λ
(

Λ e(c−1)λ+Λ−Λ e(c−1)λ−Λ+Λ e−λ c+Λ+λ−Λ e−λ c−Λ+λ−e(c−1)Λ+λλ+e(c−1)Λ−λλ−e−Λ c+Λ+λλ+e−Λ c+Λ−λλ
)
λ

1/2
−Λ2e(2 c−1)λ−Λ+e(2 c−1)Λ−λλ2+Λ2e(2 c−1)λ+Λ−e(2 c−1)Λ+λλ2+Λ2e−2λ c−Λ+λ−e−2 Λ c+Λ−λλ2−Λ2e−2λ c+Λ+λ+e−2 Λ c+Λ+λλ2−(Λ−λ)(Λ+λ)

(
e−Λ−λ−e−Λ+λ−eΛ−λ+eΛ+λ

)
Λ
(

Λ e−λ c−Λ+λ−Λ e−λ c+Λ+λ+Λ e(c−1)λ−Λ−Λ e(c−1)λ+Λ−e−Λ c+Λ−λλ+e−Λ c+Λ+λλ−e(c−1)Λ−λλ+e(c−1)Λ+λλ
)
λ

−Λ e(2 c−1)λ−Λ+e(2 c−1)Λ−λλ+Λ e(2 c−1)λ+Λ−e(2 c−1)Λ+λλ−Λ e−2λ c−Λ+λ+e−2 Λ c+Λ−λλ+Λ e−2λ c+Λ+λ−e−2 Λ c+Λ+λλ+(−Λ+λ)e−Λ−λ+(−Λ−λ)e−Λ+λ+(Λ+λ)eΛ−λ+eΛ+λ(Λ−λ)

2 Λ e−λ c−Λ+λ−2 Λ e−λ c+Λ+λ+2 Λ e(c−1)λ−Λ−2 Λ e(c−1)λ+Λ−2 e−Λ c+Λ−λλ+2 e−Λ c+Λ+λλ−2 e(c−1)Λ−λλ+2 e(c−1)Λ+λλ

1/2
e(2 c−1)λ−Λλ−Λ e(2 c−1)Λ−λ−e(2 c−1)λ+Λλ+Λ e(2 c−1)Λ+λ+e−2λ c−Λ+λλ−Λ e−2 Λ c+Λ−λ−e−2λ c+Λ+λλ+Λ e−2 Λ c+Λ+λ+(−Λ+λ)e−Λ−λ+(Λ+λ)e−Λ+λ+(−Λ−λ)eΛ−λ+eΛ+λ(Λ−λ)

Λ
(

Λ e−λ c−Λ+λ−Λ e−λ c+Λ+λ+Λ e(c−1)λ−Λ−Λ e(c−1)λ+Λ−e−Λ c+Λ−λλ+e−Λ c+Λ+λλ−e(c−1)Λ−λλ+e(c−1)Λ+λλ
)
λ

1



F := 1/2 −e(2 c−1)Λ+λ+e(2 c−1)Λ−λ+e(2 c−1)λ+Λ−e(2 c−1)λ−Λ−e−2λ c+Λ+λ+e−2λ c−Λ+λ+e−2 Λ c+Λ+λ−e−2 Λ c+Λ−λ

Λ (Λ e−λ c−Λ+λ−Λ e−λ c+Λ+λ+Λ e(c−1)λ−Λ−Λ e(c−1)λ+Λ−e−Λ c+Λ−λλ+e−Λ c+Λ+λλ−e(c−1)Λ−λλ+e(c−1)Λ+λλ)λ
:

F1 := −e(2 c−1)Λ+λ + e(2 c−1)Λ−λ + e(2 c−1)λ+Λ− e(2 c−1)λ−Λ− e−2λ c+Λ+λ + e−2λ c−Λ+λ +

e−2 Λ c+Λ+λ − e−2 Λ c+Λ−λ = 0 :

α := 1 :

ε := 0.1 :

Λ :=

√
1+
√

1−4αε
2ε :

λ :=

√
1−
√

1−4αε
2ε :

fsolve (F, c = 0.00001 . . . 0.999)

0.5000000000
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b :=



2
ε

0

0

0

0

0

0

0

0


LinearSolve (A, b)

A1 := −(e0.5λ+e−0.5λ)((Λ−λ)e−0.5 Λ−0.5λ+(Λ+λ)e−0.5 Λ+0.5λ+(−Λ−λ)e0.5 Λ−0.5λ−e0.5 Λ+0.5λ(Λ−λ))(
(−1.0 Λ+λ)e−1.0 Λ−1.0λ+(−1.0 Λ−1.0λ)e−1.0 Λ+1.0λ+(Λ+λ)e1.0 Λ−1.0λ

+(Λ−1.0λ)eΛ+λ+2.0 Λ eΛ−2.0 Λ e−1.0 Λ+2.0 e−1.0λλ−2.0 eλλ

)
εΛ (Λ2−1.0λ2)

:

A2 :=
(e0.5λ+e−0.5λ)((Λ−λ)e−0.5 Λ−0.5λ+(Λ+λ)e−0.5 Λ+0.5λ+(−Λ−λ)e0.5 Λ−0.5λ−e0.5 Λ+0.5λ(Λ−λ))(

(−1.0 Λ+λ)e−1.0 Λ−1.0λ+(−1.0 Λ−1.0λ)e−1.0 Λ+1.0λ+

(Λ+λ)e1.0 Λ−1.0λ+(Λ−1.0λ)eΛ+λ+2.0 Λ eΛ−2.0 Λ e−1.0 Λ+2.0 e−1.0λλ−2.0 eλλ

)
εΛ (Λ2−1.0λ2)

:

A3 := (Λ−1.0λ)e−0.5λ−Λ+(Λ+λ)e0.5λ−Λ+(−1.0 Λ−1.0λ)e−0.5λ+Λ+(−1.0 Λ+λ)e0.5λ+Λ+2.0λ e0.5λ−2.0λ e−0.5λ(
(−1.0 Λ+λ)e−1.0 Λ−1.0λ+(−1.0 Λ−1.0λ)e−1.0 Λ+1.0λ+(Λ+λ)e1.0 Λ−1.0λ

+(Λ−1.0λ)eΛ+λ+2.0 Λ eΛ−2.0 Λ e−1.0 Λ+2.0 e−1.0λλ−2.0 eλλ

)
λ ε (Λ2−1.0λ2)

:

A4 := (−1.0 Λ+λ)e−0.5λ−Λ+(−1.0 Λ−1.0λ)e0.5λ−Λ+(Λ+λ)e−0.5λ+Λ+(Λ−1.0λ)e0.5λ+Λ−2.0λ e0.5λ+2.0λ e−0.5λ(
(−1.0 Λ+λ)e−1.0 Λ−1.0λ+(−1.0 Λ−1.0λ)e−1.0 Λ+1.0λ+(Λ+λ)e1.0 Λ−1.0λ

+(Λ−1.0λ)eΛ+λ+2.0 Λ eΛ−2.0 Λ e−1.0 Λ+2.0 e−1.0λλ−2.0 eλλ

)
λ ε (Λ2−1.0λ2)

:

A5 :=
e−1.0 Λ(e0.5λ+e−0.5λ)((Λ−λ)e−0.5 Λ−0.5λ+(Λ+λ)e−0.5 Λ+0.5λ+(−Λ−λ)e0.5 Λ−0.5λ−e0.5 Λ+0.5λ(Λ−λ))(

(−1.0 Λ+λ)e−1.0 Λ−1.0λ+(−1.0 Λ−1.0λ)e−1.0 Λ+1.0λ+(Λ+λ)e1.0 Λ−1.0λ+(Λ−1.0λ)eΛ+λ

+2.0 Λ eΛ−2.0 Λ e−1.0 Λ+2.0 e−1.0λλ−2.0 eλλ

)
εΛ (Λ2−1.0λ2)

:
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A6 := −(e0.5λ+e−0.5λ)((Λ−λ)e−0.5 Λ−0.5λ+(Λ+λ)e−0.5 Λ+0.5λ+(−Λ−λ)e0.5 Λ−0.5λ−e0.5 Λ+0.5λ(Λ−λ))eΛ(
(−1.0 Λ+λ)e−1.0 Λ−1.0λ+(−1.0 Λ−1.0λ)e−1.0 Λ+1.0λ+(Λ+λ)e1.0 Λ−1.0λ

+(Λ−1.0λ)eΛ+λ+2.0 Λ eΛ−2.0 Λ e−1.0 Λ+2.0 e−1.0λλ−2.0 eλλ

)
εΛ (Λ2−1.0λ2)

:

A7 := − e−1.0λ(e−0.5 Λ+e0.5 Λ)((Λ−λ)e−0.5 Λ−0.5λ+(Λ+λ)e−0.5 Λ+0.5λ+(−Λ−λ)e0.5 Λ−0.5λ−e0.5 Λ+0.5λ(Λ−λ))(
(−1.0 Λ+λ)e−1.0 Λ−1.0λ+(−1.0 Λ−1.0λ)e−1.0 Λ+1.0λ+(Λ+λ)e1.0 Λ−1.0λ

+(Λ−1.0λ)eΛ+λ+2.0 Λ eΛ−2.0 Λ e−1.0 Λ+2.0 e−1.0λλ−2.0 eλλ

)
λ ε (Λ2−1.0λ2)

:

A8 :=
eλ(e−0.5 Λ+e0.5 Λ)((Λ−λ)e−0.5 Λ−0.5λ+(Λ+λ)e−0.5 Λ+0.5λ+(−Λ−λ)e0.5 Λ−0.5λ−e0.5 Λ+0.5λ(Λ−λ))(

(−1.0 Λ+λ)e−1.0 Λ−1.0λ+(−1.0 Λ−1.0λ)e−1.0 Λ+1.0λ+(Λ+λ)e1.0 Λ−1.0λ

+(Λ−1.0λ)eΛ+λ+2.0 Λ eΛ−2.0 Λ e−1.0 Λ+2.0 e−1.0λλ−2.0 eλλ

)
λ ε (Λ2−1.0λ2)

:

eq1 := A1 eΛx + A2 e−Λx + A3 eλx + A4 e−λx

−0.093007 e2.9787x + 0.093007 e−2.9787x + 0.53139 e1.0616x − 0.53139 e−1.0616x

eq2 := A5 eΛx + A6 e−Λx + A7 eλx + A8 e−λx

0.0047299 e2.9787x − 1.8288 e−2.9787x − 0.18381 e1.0616x + 1.5362 e−1.0616x

plots : −display (plot (eq1 , x = 0 . . . c) , plot (eq2 , x = c . . . 1))
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A.6 MAPLE code for the Fredholm Alternative (with lap

3)

with(LinearAlgebra) :

with(plots) :

M =



Λ3eΛ c1 −Λ3e−Λ c1 λ3eλ c1 −λ3e−λ c1 −Λ3eΛ c1 Λ3e−Λ c1 −λ3eλ c1 λ3e−λ c1 0 0 0 0

0 0 0 0 Λ3eΛ c2 −Λ3e−Λ c2 λ3eλ c2 −λ3e−λ c2 −Λ3eΛ c2 Λ3e−Λ c2 −λ3eλ c2 λ3e−λ c2

1 1 1 1 0 0 0 0 0 0 0 0

Λ eΛ c1 −Λ e−Λ c1 λ eλ c1 −λ e−λ c1 0 0 0 0 0 0 0 0

Λ2 Λ2 λ2 λ2 0 0 0 0 0 0 0 0

0 0 0 0 Λ eΛ c1 −Λ e−Λ c1 λ eλ c1 −λ e−λ c1 0 0 0 0

0 0 0 0 Λ eΛ c2 −Λ e−Λ c2 λ eλ c2 −λ e−λ c2 0 0 0 0

0 0 0 0 0 0 0 0 eΛ e−Λ eλ e−λ

0 0 0 0 0 0 0 0 Λ eΛ c2 −Λ e−Λ c2 λ eλ c2 −λ e−λ c2

0 0 0 0 0 0 0 0 Λ2eΛ Λ2e−Λ λ2eλ λ2e−λ

eΛ c1 e−Λ c1 eλ c1 e−λ c1 −eΛ c1 −e−Λ c1 −eλ c1 −e−λ c1 0 0 0 0

Λ2eΛ c1 Λ2e−Λ c1 λ2eλ c1 λ2e−λ c1 −Λ2eΛ c1 −Λ2e−Λ c1 −λ2eλ c1 −λ2e−λ c1 0 0 0 0

0 0 0 0 eΛ c2 e−Λ c2 eλ c2 e−λ c2 −eΛ c2 −e−Λ c2 −eλ c2 −e−λ c2

0 0 0 0 Λ2eΛ c2 Λ2e−Λ c2 λ2eλ c2 λ2e−λ c2 −Λ2eΛ c2 −Λ2e−Λ c2 −λ2eλ c2 −λ2e−λ c2



M1 := Transpose(M)

N := NullSpace(M1)

N := NullSpace(M1)

a1 := N [1]

a2 := N [2]
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b :=



2
ε

−2
ε

0

0

0

0

0

0

0

0

0

0

0

0


L = ((cosh(Λ c2 ))2λ cosh(Λ) sinh(λ)− cosh(Λ c2 ) sinh(Λ c2 )λ sinh(Λ) sinh(λ)

− cosh(λ c2 )Λ sinh(Λ)(cosh(λ) cosh(λ c2 )− sinh(λ) sinh(λ c2 )))(cosh(Λ c1 ))2

+ ((cosh(Λ c2 ))2 sinh(Λ c1 )λ sinh(Λ) sinh(λ)− cosh(Λ)(cosh(λ c2 ) sinh(λ c1 ) cosh(λ)

+ sinh(λ)(sinh(Λ c1 ) sinh(Λ c2 )− sinh(λ c1 ) sinh(λ c2 )))λ cosh(Λ c2 ) + (cosh(λ c2 ))2 sinh(Λ c1 )Λ cosh(Λ) cosh(λ)

+ (− sinh(Λ c1 ) sinh(λ c2 )Λ cosh(Λ) sinh(λ) + sinh(Λ c2 ) sinh(λ c1 )λ cosh(λ) sinh(Λ)) cosh(λ c2 )

− λ sinh(Λ) sinh(λ)(sinh(Λ c2 ) sinh(λ c1 ) sinh(λ c2 ) + sinh(Λ c1 ))) cosh(Λ c1 )− (λ cosh(Λ)(cosh(λ c1 ) sinh(λ)

− sinh(λ c1 ) cosh(λ))(cosh(Λ c2 ))2 + (− cosh(λ c1 ) sinh(Λ c2 )λ sinh(Λ) sinh(λ) + cosh(λ c2 ) sinh(Λ c1 )Λ cosh(Λ) cosh(λ)

− sinh(Λ c1 ) sinh(λ c2 )Λ cosh(Λ) sinh(λ) + sinh(Λ c2 ) sinh(λ c1 )λ cosh(λ) sinh(Λ)) cosh(Λ c2 )− (cosh(λ c2 )(cosh(λ) cosh(λ c2 )

− sinh(λ) sinh(λ c2 )) cosh(λ c1 ) + (cosh(λ c2 ))2 sinh(λ c1 ) sinh(λ) + cosh(λ)(sinh(Λ c1 ) sinh(Λ c2 )

− sinh(λ c1 ) sinh(λ c2 )) cosh(λ c2 )− sinh(λ)(sinh(Λ c1 ) sinh(Λ c2 ) sinh(λ c2 ) + sinh(λ c1 ))) sinh(Λ)Λ) cosh(λ c1 )
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LL = ((Λ cosh(λ) sinh(Λ)− λ cosh(Λ) sinh(λ)) cosh(λ c2 )− sinh(λ c2 )(Λ sinh(Λ) sinh(λ)

− λ cosh(Λ) cosh(λ))) cosh(Λ c2 ) + ((−Λ cosh(Λ) cosh(λ) + λ sinh(Λ) sinh(λ)) cosh(λ c2 )

+ sinh(λ c2 )(Λ cosh(Λ) sinh(λ)− λ cosh(λ) sinh(Λ))) sinh(Λ c2 )(Λ− λ)(Λ + λ)(sinh(λ) sinh(λ c2 )

− cosh(λ) cosh(λ c2 ))(sinh(Λ c2 ) sinh(Λ)− cosh(Λ c2 ) cosh(Λ))

eq2 :=
−2

ε
(
C

D
)

C = (−(cosh(Λ c2 ))2Λ cosh(Λ) sinh(λ) + cosh(Λ c2 ) sinh(Λ c2 )Λ sinh(Λ) sinh(λ)

+ cosh(λ c2 )λ sinh(Λ)(cosh(λ) cosh(λ c2 )− sinh(λ) sinh(λ c2 )))(cosh(Λ c1 ))2

+ ((cosh(Λ c2 ))2 sinh(Λ c1 )Λ sinh(Λ) sinh(λ) + cosh(Λ)Λ (cosh(λ c2 ) sinh(λ c1 ) cosh(λ)

+ sinh(λ)(sinh(Λ c1 ) sinh(Λ c2 )− sinh(λ c1 ) sinh(λ c2 ))) cosh(Λ c2 )− (cosh(λ c2 ))2 sinh(Λ c1 )λ cosh(Λ) cosh(λ)

+ (sinh(Λ c1 ) sinh(λ c2 )λ cosh(Λ) sinh(λ)− sinh(Λ c2 ) sinh(λ c1 )Λ cosh(λ) sinh(Λ)) cosh(λ c2 )

+ Λ sinh(Λ) sinh(λ)(sinh(Λ c2 ) sinh(λ c1 ) sinh(λ c2 ) + sinh(Λ c1 ))) cosh(Λ c1 )

+ (Λ cosh(Λ)(cosh(λ c1 ) sinh(λ)− sinh(λ c1 ) cosh(λ))(cosh(Λ c2 ))2 + (− cosh(λ c1 ) sinh(Λ c2 )Λ sinh(Λ) sinh(λ)

+ cosh(λ c2 ) sinh(Λ c1 )λ cosh(Λ) cosh(λ)− sinh(Λ c1 ) sinh(λ c2 )λ cosh(Λ) sinh(λ)

+ sinh(Λ c2 ) sinh(λ c1 )Λ cosh(λ) sinh(Λ)) cosh(Λ c2 )− (cosh(λ c2 )(cosh(λ) cosh(λ c2 )

− sinh(λ) sinh(λ c2 )) cosh(λ c1 ) + (cosh(λ c2 ))2 sinh(λ c1 ) sinh(λ) + cosh(λ)(sinh(Λ c1 ) sinh(Λ c2 )

− sinh(λ c1 ) sinh(λ c2 )) cosh(λ c2 )− sinh(λ)(sinh(Λ c1 ) sinh(Λ c2 ) sinh(λ c2 )

+ sinh(λ c1 ))) sinh(Λ)λ) cosh(λ c1 )Λ (Λ− λ)(Λ + λ)λ (cosh(λ c1 ) cosh(Λ c2 )

− cosh(Λ c1 ) cosh(λ c2 ))(cosh(λ) cosh(λ c2 )− sinh(λ) sinh(λ c2 ))(cosh(Λ c2 ) cosh(Λ)− sinh(Λ c2 ) sinh(Λ)).

D = ((Λ cosh(Λ) sinh(λ)− λ cosh(λ) sinh(Λ)) cosh(λ c2 )

− sinh(λ c2 )(Λ cosh(Λ) cosh(λ)− λ sinh(Λ) sinh(λ))) cosh(Λ c2 )

+ ((−Λ sinh(Λ) sinh(λ) + λ cosh(Λ) cosh(λ)) cosh(λ c2 )

+ sinh(λ c2 )(Λ cosh(λ) sinh(Λ)− λ cosh(Λ) sinh(λ))) sinh(Λ c2 ) + Λ (Λ− λ)(Λ + λ)λ (sinh(λ) sinh(λ c2 )

− cosh(λ) cosh(λ c2 ))(sinh(Λ c2 ) sinh(Λ)− cosh(Λ c2 ) cosh(Λ)))
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A.7 Optimizing Energy (pseudo code)

e p s i l o n = 0.01

f o r gamma=0.01:10 ( s tep e p s i l o n )

I n i t i a l i z e alpha =0.01

Ca lcu la te u1 , u2 , E( u1 ) , E( u2 )

whi l e |E( u1 ) −E( u2 ) | > 10ˆ−6

alpha= alpha +e p s i l o n

end

p lo t ( alpha , 1 \ gamma)

end
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