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Abstract

Modern manufacturing increasingly utilises automated systems for component po-

sitioning and assembly. Industries are interested in autonomous manufacturing as

it can reduce costs and increase productivity. A vital aspect of autonomous pre-

cision manufacturing is large volume metrology. One popular approach to large

volume or large scale metrology involves using light rays which travel through

the air to calculate the position of an object of interest. Optical-based metrol-

ogy systems like photogrammetry and laser trackers are crucial in improving the

accuracy and quality associated with robotic assembly. In an industrial setting

these positional measurements are subject to uncertainties which can in many

instances be greater than the required tolerances. One source of uncertainty that

arises when considering large scale industrial settings is light refraction (bending

of the light ray path) due to temperature fluctuations in the air. This thesis

will report on the recent work in using light-based sensor data to reconstruct

the heterogeneous spatial map of the refractive index in the air. This is then

used to discount the refractive effects and thereby reduce the uncertainty of this

positioning problem.
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The finite element model software COMSOL Multiphysics was used to simu-

late light ray paths in complex, two dimensional, spatially varying temperature

fields. These simulations provided a sense of the typical measurement uncer-

tainties associated with deploying photogrammetry sensors in environments with

spatially heterogeneous temperature distributions. Following this, physical exper-

iments were carried out to assess the sensitivity of the Vicon T160 Photogram-

metry system.

Later chapters look at solving the inverse problem using Voronoi tessellations

to spatially parameterise the refractive index map. A Bayesian approach, namely

the reversible jump Markov Chain Monte Carlo method (rj-MCMC), is then used

as the optimisation method in the inversion. Using the recovered refractive index

map led to improvements in discounting the refractive effects by up to 54 % and

the uncertainty of this positioning problem was reduced by up to 89 %. Following

this, a second method was employed to reduce computational times, improve the

sensitivity of the objective function and further reduce the positioning errors of

the photogrammetry system. Using this second method, errors in this positioning

problem were reduced by up 67 % and the uncertainty was also reduced by up to

89 %.
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ŝ∗ An estimate of the object of known position in the known refractive index

index map domain, e.g. a retro-reflector mimicking a robot
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Chapter 1

Background

Almost half of UK exports are from manufacturing [1] and, as the world enters

the fourth industrial revolution, the autonomous age, it is crucial that the UK

continues to manufacture high value goods quickly, to a high standard and at a

low cost to sustain this income. As a result, modern manufacturing increasingly

utilises automated systems for component positioning and assembly [2, 3]. Indus-

tries are interested in autonomous manufacturing, for example robotic systems,

as they potentially reduce costs and increase productivity [4]. A key component

of autonomous manufacturing is large volume metrology. Robots require sen-

sors to allow them to accurately position themselves and the component they

are working on; this can be thought of as a local GPS system. Large volume

or large-scale metrology typically involves using light rays which gather data on

the distance, and/or the direction between measurement apparatus and an object

being measured [5].
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1.

1.1 Robotics and Manufacturing

The use of robotics in manufacturing is on the rise. In 2018, it was reported that

the global average was 74 robotic units per 10,000 employees, compared with

only 66 robotic units in 2015 [6]. South Korea and Singapore are the world’s

most automated countries with 631 and 488 robotic units per 10,000 employees

in 2018 [6]. Whereas the United Kingdom is slightly below the world average

with 71 robotic units per 10,000 employees [6].

This rise in the use of robotics within manufacturing is leading to some of the

general public questioning their job security, with 23 % of participants question-

ing this in a recent 2018 study [7]. However, researchers found that industrial

robots lead to workers having increased wages without impacting total number

of hours worked by an employee [8]. In addition, it has been shown that fewer

jobs in manufacturing were lost when a country invested in manufacturing robots

compared to those that did not [9]. A study by Barclays Bank suggested that

an investment of £1.24 billion into autonomous manufacturing between 2015 and

2025 could protect over 70,000 jobs and lead to the creation of 30,000 jobs in new

sectors [10].

Depending on a robot’s configuration, it can be classed as Cartesian, spherical,

or cylindrical [11, 12]. Cartesian robots are often referred to as gantry robots and

these are commonly used in industry [12]. Gantry robots move in straight lines

rather than rotating [12]. Due to their simple design, they have low manufacturing
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1.

costs. Their rigid structure also allows these robots to perform to a high level of

accuracy with a high repeatability [13]. Gantry robots are suitable to work with

heavy objects [12, 13].

Cylindrical robots have two translational and one rotational degree of freedom

and are mainly used for welding [13]. Spherical or polar robots are the oldest of

the robotic configurations; they have two rotational and one translational degree

of freedom [13]. Although these are still found in manufacturing floors, few

spherical robots are manufactured today [12].

The most typical industrial robot are those which have six degrees of freedom

in their motion range as this allows maximum flexibility to complete tasks [11].

These robots are used mainly for welding [12, 14] particularly in the automotive

assembly line, with six workers to every one robot in the automotive industry [13].

Robots are also used for assembly [12], component positioning, and inspection,

with researchers developing a climbing robot to inspect bridges in Madrid [15].

Robots can also be involved in the manufacture of clothing [16, 17] with clothing

giant Adidas stating that they will be able to produce 800,000 t-shirts per day

by implementing robotic sewing machines [18].

Additionally, the collaborative robot or cobot are robots designed to work with

a human operator [19]. KUKA Robotics have developed a cobot which can slow

down their working speed when unexpected contact is made with the robot in

order to safeguard the human employee [20].
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1.

1.2 Metrology

Metrology is arguably the oldest study of mathematics, with the earliest recorded

use being approximately 2900 BC, where an Egyptian Pharaoh wanted to have a

standard unit of length which would aid in the construction of his pyramid [21].

The word metrology means the science of measurement [22], with the National

Physical Laboratory (NPL) maintaining the measurement standards for the UK.

The International System of Units (SI) is the most widely used system of mea-

surement, however in November 2018 a vote was held to redefine the kilogram,

kelvin, mole and ampere so that their values are in keeping with fundamental

constants: Planck, Boltzmann, Avogadro and elementary electrical charge re-

spectively [23, 24].

Many companies may be unaware that they are doing metrology in their day-

to-day roles; companies employ quality control practises to reduce flaws in the

production of goods and to keep batch uniformity of goods, which is a form of

metrology [22, 25]. Since metrology is the science of measurement, it is important

to note that all measurements have a degree of uncertainty surrounding them,

and in particular, there is a subtle difference between error and uncertainty within

metrology. The error is the difference between the true value of the object being

measured and the measured value. There are two main types of error, systematic

and random error [22, 25]. Systematic errors can be controlled and are repro-

ducible, which means that they can be corrected for by using a suitable method,

for example, calibration of software helps to reduce systematic errors. Systematic

4



1.

errors can arise from poor maintenance of environmental factors; for example, not

maintaining a constant temperature in the laboratory. Whereas, random errors

vary inconsistently but are generally straightforward to detect [22, 25]. Uncer-

tainty on the other hand is the estimated range of values which the true value of

the measured quantity lies in [25, 26]. Sources of error will be discussed further

in Subsection 1.3.2.

In manufacturing settings, robots need a sensing system to help them posi-

tion themselves and the component they are working on. The most well-known

positioning system is the global positioning system (GPS) which uses satellite

signals, however these signals often can’t be well received indoors [27]. For this

reason, there have been many advancements in indoor positioning systems (IPS)

and some of these systems typically use ultrasound [27, 28]. For mobile robots,

the most commonly used navigation method is odometry, although this can prove

problematic in outdoor terrains and can lead to large errors [29–31]. Odometry

is the measure of distance and the most well-known example of this is within a

car [31]. Visual odometry uses photographs taken from one or more cameras to

determine the position and orientation of the robot [32]. Another popular sensing

modality uses light rays, which travel through the volume of air, to undertake

this. These systems are called optical based metrology systems [33].

5
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1.3 Optical based Metrology Systems

Optical metrology is the science of using light to make measurements, and optical

based systems allow this to happen. Optical based metrology systems might be

distance based, angle based, or focussed on surface form measurement [34]. Two

types of optical based metrology systems: laser trackers and photogrammetry

systems are now considered.

1.3.1 Laser Tracking

Laser trackers use interferometry to measure lengths. Interferometry is a mea-

suring technique where the analysis of the interference between two or more light

beams is used for precision measurements [22]. In the past laser metrology sys-

tems worked on a fixed axis, but since the invention of the laser tracker, which

gives displacement and angular based measurements they are able to be used

for long distance metrology [35, 36]. Laser trackers use range and two angles to

determine the co-ordinate of the reflector [37, 38]. Laser trackers operate using a

laser beam which is split in two, one part of the beam stays within the tracker and

is used as reference point, the second beam reflects off the target and back into

the instrument. This secondary beam is called the measurement beam. When

these two beams interfere with one another this results in a cyclic change, which

is often called a fringe count. Circuitry inside the tracker uses the fringe counts

to determine how far the tracker is from the reflector [33]. One disadvantage

with these systems is beam breakages as the home position of the target needs
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to be re-evaluated [37, 38]. For this reason absolute distance meters (ADM) are

being increasingly built into laser trackers to provide absolute measurements as

the beam does not break and ADMs work on a “point and shoot” basis, however

these are less accurate [34, 35, 37].

The laser tracker tracks a target, also called a retroreflector and the most

common type of retroreflector is the spherically mounted reflector (SMR), which

is also known as the corner cube reflector (CCR) [34, 35, 39]. SMRs are spherical

in shape which means that they can be seen from more positions compared to

a flat target; a flat target can only be located over an angle of ± 45 ◦ whereas

a spherical target can be located over a range of 240 ◦ [39]. SMRs can range

in diameter from 10 mm to larger than 100 mm [40]. Previously, these types of

retroreflectors were made out of solid glass but now SMRs are hollow and made

from steel [5], however they have high manufacturing cost. To keep costs down

there are some retroreflectors on the market which are made of plastic [39].

In terms of the accuracy of the laser tracker, the typical accuracy for the Leica

Absolute Laser Tracker is ± 7.5 µm + 3 µm/m for angular measurements and

± 0.2 µm + 0.15 µm/m for interferometer measurements [41]. Laser trackers

can be used in many technical disciplines such as aerospace and civil engineering

[5, 42, 43]. Laser trackers can also be used to inspect surfaces, such as dish

antennas. Additionally, laser trackers have also been used to track space debris

[43, 44]. Aside from using a laser tracker in an engineering environment, they
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have also been used to digitally archive the architecture of historical buildings

[45]. This thesis will focus mainly on the optical based metrology system of

photogrammetry.

1.3.2 Photogrammetry

Photogrammetry is an optical-based metrology system used particularly in the

fields of engineering and metrology [5, 46, 47]. Photogrammetry can be thought

of as using a set of photographs taken from different positions to produce posi-

tional measurements [46]. It is possible to obtain robust and dependable data

about the surface, shape, size and position of an object without touching it using

photogrammetry [34]. These sizes and shapes are calculated from measurements

made using 2-D photographs. By using two or more images of the object of inter-

est from different angles, it is possible to find the three dimensional co-ordinates

using optical triangulation [5, 46]. Optical triangulation calculates where two or

more straight rays meet in space. However, due to thermal fluctuations in the

air, the light can be refracted and this can lead to significant positioning errors

in the triangulation calculation [48].

Photogrammetry systems can use two methods of optical triangulation, these

are intersection and bundle adjustment. In fact some photogrammetry systems

may deploy both an intersection method and bundle adjustment to increase the

accuracy of the position of the object of interest. We have already mentioned that
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intersection as a triangulation solution finds the location of a point by finding

where the light-ray paths intersect and then finds the mean of these intersections

[39, 49].

Bundle adjustment is used to produce the final (x, y, z) co-ordinates of the

object of interest. To do this process there are three steps: triangulation using

intersections, resection and self-calibration. The process of triangulation finds

the measured points, whereas resection determines the orientation of the image

[49]. Generally speaking, it is not possible to triangulate without knowing the

orientation of the image and vice versa. Bundle adjustment does these two things

simultaneously and also self-calibrates the camera. For the bundle adjustment

method to be successful it requires an initial orientation to get the process started

[39]. In this thesis, only intersection as a triangulation solution is considered.

These techniques are used to increase the accuracy of the resulting image

or reconstruction. However, target image measurements in particular sub pixel

accuracy can also introduce errors. When the locations of subpixels within the

target image are being calculated it is crucial that the targets are detected and

accurately located. One way to increase detection, which is currently used in

industrial metrology, is to make the targets the brightest or darkest object in

the image [50, 51]. In terms of optimising the accuracy of the location of the

target blob testing can be carried out. This is where outlying pixels are removed

which are not part of the so called “blob” of the target image and have a high

contrast value. The resulting blob is then checked to determine if it is the correct

shape given the known target shape [50, 52]. In citeclarke1995analysis Fourier
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transforms are used to determines if the target location errors are effected by

background noise and ambient conditions. In Chapter 3, a simple mathematical

approach to increase sub pixel accuracy is introduced.

Photogrammetry systems have many applications in industry and manufac-

turing [5, 53, 54]. In medical applications and navigation [53], photogrammetry

systems with more than one camera are used. These systems are called multi-

sensor [53]. Photogrammetry is also used in civil engineering, particularly in

structural assessment [54]. In addition, photogrammetry systems have also been

used to monitor the structure of an ore crusher, the PI Truss of the International

Space Station and the Arecibo Primary Reflector Surface, which is the biggest

single-dish radio telescope in the world located at Arecibo Observatory in Puerto

Rico [5]. A photogrammetry system was used to examine a footbridge in Aveiro,

Portugal [54]. The footbridge is circular with a radius of 13 m and the path for

pedestrians is 2 m wide [54]. Images were captured before a weight was added

to the bridge, when the weight was on the bridge and after the weight had been

taken off the bridge. The researchers concluded that photogrammetry can be

used for structural assessment and they reported an accuracy of lower than 2 mm

[54].

Generally speaking, photogrammetry systems are not as accurate as laser

trackers. In idealised working conditions, the V-STARS/N-Platinum photogram-

metry system has an absolute accuracy of ± 5 µm + 5 µm/m [55], whilst in a

large working volume 100 m3, the Vicon T160 photogrammetry system has av-

erage errors of 1.48 mm to 3.95 mm in a working volume [56]. This paper used
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six Vicon T160 cameras, but the errors found may not be reliable. This is due to

the fact that the cameras are mounted on a scaffold and this structure vibrates

due to traffic and underground trains.

Photogrammetry systems experience intrinsic and extrinsic errors [56]. Intrin-

sic errors are those related to the optical parameters such as the focal length,

image sizing and the principal point [56, 57]. Extrinsic errors are those related

to the position and orientation of the camera [56, 57]. There is also an error

associated with the distortion of the lens, this occurs when the incident angle

is not equal to the emergence angle [39, 56]. When there is no distortion in an

image it is referred to as orthoscopic [39].

More generally, metrology systems can experience random and systematic er-

rors and these have been briefly introduced in Section 1.2. Systematic errors fall

into four main categories: errors in instrument calibration, environmental condi-

tions, deformation of equipment and errors which cannot be avoided [22]. One

example of deformation of equipment is that the photogrammetry cameras can

warm up, particularly those which use infra-red [58, 59]. This heating up of the

exterior of the camera can lead to errors, as the beam will experience refraction

from the outset. Random errors cannot be reproduced and deviate randomly

from the true value, these cannot be corrected for by repeating the reading many

times [22, 25].
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The types of errors explored in this thesis are systematic errors caused by

environmental conditions, in particular, errors caused by refractive index fluctu-

ations.

1.4 Refraction Effects in Large Volume Metrology

A photogrammetry system’s ability to measure accurately depends on many fac-

tors, including, the ability to take into account the atmospheric effects such as

temperature, pressure, refractive index and humidity [60, 61]. If the volume be-

ing measured is extended to that of an industrial setting, light refraction due to

temperature variations within the volume has to be addressed. A factory environ-

ment does not have a constant temperature as machines and operators emit heat.

This therefore means that the first order approximation, which says that rays of

light move in straight lines, is not applicable [5]. The thermal fluctuations within

the air cause the rays of light to bend. This bending of light-rays introduces

errors in the received measurements (that is, the angle measurements of the pho-

togrammetry system) and consequently, as the volume measured increases, these

errors grow and can severely affect the accuracy of the coordinate positioning [61].

Accounting for the refractive index effects is a key step to improving accuracy

and quantifying uncertainties.
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If laser tracker systems are considered, the role that the refractive index of air

plays is crucial to improving the accuracy of laser interferometers [62]. Most laser

interferometers can monitor the environmental conditions and use this informa-

tion to compensate the wavelength [33, 35]. The relationship between wavelength

and refractive index can be expressed by the following

λair = λ0/ηair (1.1)

where, λair is the wavelength of the laser in air, λ0 is the wavelength of a laser

in a vacuum and ηair is the refractive index of air [62]. Therefore, an accurate way

of calculating the refractive index of air is crucial for accurate laser interferometry

measurements.

The “Large volume unified metrology for industry and novel applications and

research (LUMINAR)” project is a recently completed (2016) international col-

laboration between the National Physical Laboratory and other institutions which

focused on tackling refraction effects in industrial settings [63]. Researchers on

the project found that in a typical aircraft industrial space the positional mea-

surement uncertainty can be significant, 0.26 mm for full aircraft measurements

[64, 65]. In addition, [66] found that a light beam will deviate from a straight

line by 0.2 mm for every 15 m it travels horizontally when there is a vertical

temperature gradient of approximately 2 K/m (and a vertical height of 6 m).
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Additionally, researchers found that when a VICON T160 photogrammetry sys-

tem was operating in a working volume of 100 m3 the average positional error

was millimetre scale [56].

1.5 Refractive Index Modelling

Increasingly optical based metrology systems are required to accurately measure

distances to a desired order of 10−7 m, and therefore, it is important to be able

to calculate the refractive index of air accurately [67]. Typically, the Edlén and

Ciddor equations can be used to calculate the refractive index of air, with the

typical refractive index of air at room temperature (21 ◦C) being approximately

1.00028 [33, 42, 68]. The Edlén equation was first published in 1966 and it has

been updated many times since then. The original Edlén equation for standard

air, ηTρ, where T is temperature (measured in degrees Celsius) and ρ is pressure

(measured in torr) is given by [69]

(ηTρ − 1) =
ρ(ηs − 1)

720.775

1 + ρ(0.817− 0.0133T )10−6

1 + 0.0036610T
. (1.2)

In the above, ηs is standard air (also referred to as dry air) with a pressure of

760 torr and a temperature of 15 ◦C [69] is defined as

(ηs − 1)× 108 = 8342.13 + 2406030(130− σ2)−1

+15997(38.9− σ2)−1,

(1.3)
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where σ is the vacuum wave number expressed in µm−1 [33, 69, 70]. The

Edlén equation has been modified since it was first published [70, 71], with the

form in reference [70] being the most commonly used. To improve the accuracy

of the results, the Edlén equation can include the carbon dioxide content of air

[61, 69, 70]. Researchers at NPL updated the Edlén equation [70] as the original

equation was not in keeping with the International System of Units (SI). This

updated Edlén equation, which takes into account conversion to SI units, uses a

correction factor of 1.000079923 which is a ratio of the refractivities of dry air

containing 450 ppm carbon dioxide and 300 ppm carbon dioxide. This updated

formula also has a revision of the dispersion term; this is because when Edlén

originally created his formula the carbon dioxide concentrations were lower than

those measured today so this is corrected for. The refractive index for dry air

(ηTρ), which is air that has no water vapour or a low relative humidity, is given

by the revised formula

(ηTρ − 1) =
ρ(ηs − 1)

96095.43
× [1 + 10−8(0.613− 0.00998T )ρ]

(1 + 0.0036610T )
(1.4)

where ρ is now measured in Pascals [33, 70].

In recent years, researchers have experimentally tested the Edlén equation

[67, 72]. In 1986, researchers found that when the CO2 content was accounted

for the agreement with the Edlén equation was better than 5× 10−8 [67]. This is

very good agreement as researchers state that the refractive index of air should be

known to a few parts in 10−8 to keep uncertainties of a laser interferometer at the
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desired 1 part in 10−7 [67]. More recently, researchers developed a method that

used both laser synthetic wavelength interferometry and the Edlén equation to

give a very accurate reading for the refractive index of air, with the measurement

accuracy being approximately 3.7 ×10−8 [62, 72].

Ciddor was able to find two ways to evaluate an estimate for the refractive

index of moist air, ηprop, using the following,

ηprop − 1 =

(
ρα
ραxs

)
(ηαxs − 1) +

(
ρω
ρωs

)
(ηωs − 1), (1.5)

where ρα is the density of dry air, ραxs is the density of dry air at 15 ◦C with

pressure 101.325 kPa, ηαxs is the refractive index of dry air at 15 ◦C, 101.325

kPa and 0% humidity, ρω is the water vapour component of moist air, ρωs is the

density of pure water vapour at 20 ◦C and nωs is the refractive index of standard

air at 15 ◦C, 101.325 Pa, 0 % humidity and 450 ppm of CO2 [68]. The second

estimate Ciddor created for the refractive index in moist air, ηLL, which uses the

Lorentz-Lorenz (LL) relationship is given by [68],

ηLL =

(
1 + 2L

1− L

)1/2

(1.6)

where L is

L =

(
ρα
ραxs

)
La +

(
ρω
ρωs

)
Lw (1.7)
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and

Li =
ηi

2 − 1

ηi2 + 2
, (1.8)

where i = a(air), w(water) and η is the refractive index in each of these sub-

stances [68].

In terms of relating the refractive index of air with light ray propagation, the

most simple and well-known equation is arguably Snell’s Law

η1 sin θ1 = η2 sin θ2, (1.9)

where η1 and η2 are the refractive indices in media 1 and 2 respectively and θ1

and θ2 are the angles of incidence and refraction that the light ray makes with the

normal [73]. The main problem with Snell’s Law is that it breaks down when θ1

is small and can also only be used in layered media. To better account for these

measurement errors one must include transverse gradients [42]. In Chapter 2,

a full comparison is carried out between the displacement of a light beam in

the y (vertical) direction when the light ray is propagating through transverse

temperature gradients when the ray is in a simulated environment and when the

calculation is carried out using equations found in [42, Appendix E].
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Another way to model a light ray propagating through a spatial domain with

transverse temperature gradients is the Williams’ equation [33, 74]. The refrac-

tion angle, θR, can be expressed as

θR =
1

`

ρ0

T0

∫ `

0

∂T

∂z
s ds (1.10)

where ` is the complete light ray path, ρ0 and T0 are the standard values of

pressure and temperature respectively, z is the direction normal to the ray and s

is expected length of the light ray [74].

1.6 Techniques for Recovering a Spatial Map of the Re-

fractive Index

Since the refractive index is typically inhomogeneous in a material or object, and

it can significantly affect the path of light traversing it, researchers are interested

in modelling it [5, 75–83]. Pollen grains have had the spatial distribution of the

refractive index modelled using digital holographic microscopy to an accuracy of

around 98 % [81], and researchers have used refractometry to generate a tomo-

graphic image of the refractive index of human tissue cells [82]. Researchers have

also developed an optical microscope which provides a three dimensional spatial

map of the refractive index of polystyrene beads and living cells [77]. Methods to
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calculate the refractive index of a solid material or aqueous solution can include

non-linear interferometry [75, 76], using different coloured lasers [5, 77–79, 84]

and microscopy [77, 80, 81].

Researchers are also interested in the refractive index distribution that occurs

in aqueous solutions [85]. Image plane holographic tomography was used in [85]

to reconstruct the refractive index in an aqueous solution of photo sensitizer.

A Least-Squares Estimation approach was used to analyse the data from the

digital holograms which allowed the fluctuations of the refractive index to be

calculated. The researchers were able to obtain reproducible results with an

average percentage error of 6.1 % when they were reconstructing the temperature

profile of an observable volume compared with a reference method [85]. This

system would not be suitable for use in air as the difference in the refractive

indices used in the researcher’s simulation was up to 0.05 [85], whereas in air

a temperature change of 1 ◦C corresponds to an approximate refractive index

change of 9.5 ×10−7; so the system is not sensitive enough to pick up the small

refractive index changes in a robot’s environment in a factory setting.

Due to the inhomogeneous nature of air, researchers found that using sen-

sors based on interferometric displacement to measure distances greater than 50

mm resulted in errors caused by fluctuations in the refractive index [61]. When

operating over larger distances the increase in refractive index fluctuations was

linearly proportional to the distance being measured [61]. To reduce the effect

that the refractive index has on laser based distance measurements, a two-colour

heterodyne laser interferometer with two distinct wavelengths has been developed
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[79]. The wavelengths used were 1555 nm and 777.5 nm. This method is suitable

for measuring distances in open air conditions and the results obtained were in

keeping with the Ciddor Equation. However, this method has only been shown

to work for distances of up to 2.5 m which is not in keeping with the dimensions

of large volume metrology which are usually greater than 10 m in length [63].

This method was tested at 2.5 m due to space restrictions in the laboratory and

the authors have not commented on whether or not this technique would work

over large distances (10 m) [79]. A two colour interferometry approach to find

the refractive index has also been used [84]. Experiments showed that for dis-

tances less than 30 m there is a length-dependent measurement uncertainty of

below 1.2×10−7 per metre measured over. The results are very encouraging but

cannot be used in an industrial setting as this technique can only be used in dry

air (air that has no water vapour or a low relative humidity). For this technique

to be implemented in moist air the air humidity would have to be accurately

measured, and this would require a series of humidity sensors on the optical path

which would be impractical in a manufacturing environment.

It is clear from the literature discussed above that there is currently no light

based sensor system (or otherwise) capable of reconstructing the refractive index

map of air in a large three dimensional volume to an accuracy of 1 ×10−5. Estab-

lishing such a capability is vital to the successful deployment of this technology

in a manufacturing setting, and so the work in this thesis is of substantial im-

portance. The next Sections of this Chapter provide some introductions to key

methodologies which will be used in Chapter 4 and 5.
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1.7 Inverse Problems

Chapter 4 and 5 will look at solving an inverse problem and using the results

to reconstruct a refractive index map of the spatial domain. When given a set

of data or a series of observations the inverse problem entails determining what

specific parameters or factors produced these specific results [86]. Related to this

is the so called forward problem. This is a mathematical model which given a

set of inputs (parameters or causal factors) produces an output (data set) which

can then be compared with experimental observations. It is sometimes tricky to

determine which is the inverse problem and which is the forward problem, the

inverse problem is widely regarded as the one which is more difficult to solve [87].

An inverse problem is often ill-posed [88]. In order to define an ill-posed

problem, it is more intuitive to define a well-posed problem. A problem is well

posed if there exists a unique solution that continuously depends on the data

[88, 89]. In an ill-posed problem the solution may not be unique and is sensitive to

small changes in the data [88–90]. As will be shown later, using this definition, the

inverse problem being solved is ill-posed as refractive index changes of the order

of 10−5 lead to positional uncertainties in large volume metrology, and even the

smallest amount of noise can lead to significant disruptions in the reconstruction

of the refractive index map.

Inverse problems can be applied to a large number of disciplines, and most

commonly used as an imaging technique [86]. In an inverse problem measure-

ments are most commonly taken on the exterior of an object in order to make
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reference about the inside of the object, which in most cases is inaccessible [91].

Inverse problems are commonly used in medical applications, with computerised

tomography (CT) scans being the most well-known [91]. A CT scan works by

measuring the attenuation of many X-rays positioned at different sources and

measuring the intensity of the attenuation on a computer [92]. Researchers solve

inverse problems in order to reconstruct the spatial map of a flaw within a weld

as a method of non-destructive testing [90].

1.8 Parametrisation of the Spatial Domain

Arguably the most straightforward way to parameterise a spatial domain is with a

regular grid; a well-known example being the parametrisation of the Earth using

a latitude longitude spherical grid [93, 94]. The issue with this grid is that there

can be sharp discontinuities and the model may need to be spatially smoothed,

this is particularly true in the Earth where there is a singularity at the poles

[93, 95].

In this thesis, the refractive index map was parametrised using a space-filling

polygon tessellation, known as a Voronoi tessellation; this is related to Delaunay

triangulation [96, 97]. A Voronoi tessellation starts with a set of randomly chosen

seeds; these are the black dots inside each of the Voronoi cells in Figure 1.1. The

partitioning into cells is achieved by ensuring that every point inside each cell is

closer to the seed associated with that cell than to any other seed in the tessella-

tion [98, 99]. Voronoi tessellations can achieve adaptive and irregular partitions
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which in turn provide a low dimensional model (lower degrees of freedom) whilst

affecting large regions with a single perturbation. For example, the removal of a

single Voronoi cell can completely change the parametrisation of the space due

to the irregular shapes that Voronoi cells can have [100, 101].

Voronoi tessellations are used in many applications [90, 102–105]. The first

documented use of Voronoi tessellations was in 1855 when they were used to

model the spread of cholera in London [104]. Researchers have used Voronoi

tessellations to spatially parametrise a crystal orientation map in the application

of ultrasonic non-destructive testing [90]. In biological applications, researchers

have used Voronoi tessellations to model tissue cells [102] and to determine the

optimal positions to site wireless local area networks for Wi-Fi signal coverage

[103]. In seismology, researchers have used a generalised version of a Voronoi

tessellation called a random Johnson Mehl tessellation to estimate the velocity of

seismic waves [106]. This method gives a more generalised shape of the Voronoi

cell which allows them to reduce the computational time.

1.9 Mathematical Modelling of Light Rays in Heteroge-

neous Media

In Chapter 2 COMSOL Multiphysics is introduced as the software which will

be used in this thesis to simulate ray light ray propagation and hence generate

simulated photogrammetry data. This has several advantages including complete
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Figure 1.1: A Voronoi tessellation of the spatial domain in two dimensions where the
black dots are the cell seeds [107].

ground-truth on the refractive index map to be reconstructed. The ray-tracing

package in COMSOL firstly assumes that the electric field E of an electromagnetic

wave can be expressed as

E = aeiΨ, (1.11)

where a is the amplitude of the wave and Ψ is the phase of the wave which

is a function of the position vector of the wave p and the time t taken for the

wave to reach p. In this work, the media is locally isotropic and so the angular

frequency ω can be expressed by

ω(k,p) =
v|k|
η(p)

, (1.12)
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where v is the velocity, k is the wave vector and η(p) is the refractive index

at position p. In this initial value problem (Equation (1.12)) the user inputs

the directional vector k, the initial point of the ray p and the refractive index

at position p, that is η(p). The wave vector k and angular frequency ω can be

written in terms of the phase Ψ, which is

k =
∂Ψ

∂q

ω = −∂Ψ

∂t
,

(1.13)

where t is time [108, 109].

COMSOL traces the ray by solving six (there are six if the ray is propagating

in three dimensions and four if the ray is propagating in two dimensions) coupled

first-order ordinary differential equations for the components of k and q

∂p

∂t
=
∂ω

∂k
∂k

∂t
=
∂ω

∂p
.

(1.14)

As will be discussed in Section 4.2, COMSOL is not suitable to be used within

the inversion algorithm due to the computational overhead and instead the Fast

Marching Method (FMM) will be used as the Forward Solver. The Fast Marching

Method (FMM) is a numerical algorithm which is grid based. It is used for finding

the arrival time of a wave at each point in a discretized spatial domain (typically
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on a square grid) [110]. The FMM has been used in non-destructive testing to

obtain the travel time field of an ultrasonic ray [90], and has also been used in

robotic navigation to find the safest and shortest path a robot should take [111].

Consider a uniform grid with grid side length w, with each intersection point

on the grid denoted by λx,y, where x represents the horizontal direction and y is

the vertical direction. The FMM is used to solve a boundary value problem of

the Eikonal equation [112]

|∇t(λx,y)|
c∞
ηx,y

= 1, (1.15)

where t(λx,y) is the desired travel time field (the time at which the light ray

crosses a point λx,y in the spatial domain) and η is the refractive index at t(λx,y).

Once the travel time field is calculated, the ray that takes the shortest time to

travel between the start of the ray (source) and the end point of the ray (receiver),

can be found using Fermat’s Principle of the Shortest Path [73]. This principle

states that light travelling between the source and the receiver will always take

the path that takes the least amount of time compared to the optical length of

any other curve which joins the source and the receiver. To calculate the time

field each grid point, λx,y, is initially assigned a classification of far and as the

algorithm iterates this classification will eventually switch to narrow band and

then known [113, 114]. Once assigned, the known grid points, λx,y, have fixed

travel times and cannot be changed, narrow band grid points are assigned a

temporary travel time which may be changed and far grid points travel times
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have not yet been calculated. Firstly, the grid points on the boundary where

the camera is positioned are categorised as known and given a travel time of

zero. The arrival times of neighbouring grid points are then calculated using a

discretised form of Equation (1.15)

[
max

(
max

(
D−xf,g t, 0

)
,−min

(
D+x
f,g t, 0

))2

+ max
(
max

(
D−yf,gt, 0

)
,−min

(
D+y
f,gt, 0

))2
]

=
1

F 2
f,g

(1.16)

where Fx,y is the speed at position λf,g, D
−
f,g and D−f,g are the standard back-

ward and forward finite difference operators [113, 114], and the neighbouring grid

points are defined as narrow band. Then, among all the narrow band points, the

grid point with the smallest arrival time is updated to be known and its arrival

times fixed. The set of nearest neighbour grid points that are narrow band are

then updated and the arrival times for these subsequent points is found by solving

Equation (1.16). This process is then repeated until every grid point has a travel

time associated with it [113].

The optical ray path travelled by the light-ray between the source to the

receiver is then calculated using the travel time field created by the FMM, and

then the optical path with the shortest travel time is found. The algorithm begins

at the known end point of the ray (the receiver) and calculates the optical path

to the start point (the source). From the previous step of the FMM, the time

(tk,i) between the source and the receiver is known. The nearest neighbour grid

points of the reflector are considered and the one which satisfies the following is
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chosen: (time at grid point) + (the time between it and the reflector) = tk,i. The

grid point which satisfies this condition is then added to the ray path and the

process is repeated until it traces back to the camera grid point [113, 114].

Researchers have extended the grid based system that the FMM uses to a

multi-stencil fast marching method; as the standard FMM has reduced accuracy

in diagonal directions [90, 113]. The original stencil in FMM is a four point

stencil, however in multi-stencil fast marching this grid is rotated by 45 ◦ and

added to the original stencil which introduces four additional points to the stencil

[90, 113].

This project will use COMSOL and the Fast Marching Method throughout (see

Chapter 2 for further discussions on COMSOL and Chapter 4 for more details

on the FMM). Although, the two methods are generally referred to separately,

COMSOL solves the Eikonal equation (Equation (1.15) and Equation (1.16))

numerically on a grid [109]. The Eikonal equation is solved at the front of the

ray to calculate the direction that the ray will take in its next time step. It uses

the refractive indices in the local grid to perform this calculation and then solves

the Eikonal equation to provide the position of the ray and its wave vector [109].

COMSOL assumes that the propagating light waves are locally plane. COM-

SOL also neglects diffraction effects (slight bending of light as it passes around

an object) at the corners and edges of the geometry [73, 109].
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1.10 Optimisation

Within the inversion method an optimisation technique is needed. Optimisation

is the study of trying to minimise or maximise a function by selecting values

(real or integer) of variables from a set [115–117]. The function that is being

minimised/maximised is called the objective or misfit function (in the study of

business and finance this may be referred to as the cost or utility function). To

undertake an optimisation exercise, the problem must be defined and an objective

function is then formulated mathematically. This initial model is then evaluated

for a given set of parameter values. These parameter values are then perturbed

and a second value (or several values) for the objective function is obtained. The

optimisation method then decides whether or not to accept one of these new

parametrisations and another perturbation is performed. This method iterates

in this way until some prescribed stopping condition is reached [116, 117].

Optimisation methods can either be deterministic or stochastic [118]. A deter-

ministic optimisation generates a sequence of points which converge to the optimal

solution by assuming that there is no uncertainty associated with the model pa-

rameters, and if the process changes through time then these changes are known

[119]. The most basic type of deterministic optimisation is linear programming

[115–117]. Linear programming can be used when the objective function is a

linear combination of variables and the constraints are all inequalities involving

linear combinations of the variables [117, 120].
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If the objective function of the problem being solved has many local minima

and is non differential and discontinuous, optimisation algorithms based on ran-

dom variables have some advantages. This technique is called stochastic optimi-

sation. In this thesis, the objective function meets these conditions and therefore

a stochastic optimisation approach is implemented. Some examples of stochas-

tic optimisation techniques include simulated annealing and genetic algorithms

[117]. Simulated annealing is an iterative stochastic method which is based on

the physics involved with the slow cooling of metals [116, 121]. In the simulated

annealing algorithm it is possible to accept an inferior solution so that the al-

gorithm has a reduced probability of getting stuck in a local minima/maxima.

This decision is conducted using the Metropolis Hastings criterion, which will be

discussed shortly. Genetic algorithms are based on Darwin’s theory of survival of

the fittest [122, 123]. They work by changing a population of solutions at each

model iteration. Parents (solutions at iteration n) are randomly selected and

these parents are combined to produce children (solutions at iteration n+ 1) for

the next generation of the problem. As the number of generations increase the

population converges towards the optimal solution [123].

The most well-known stochastic optimisation method is arguably the Markov

Chain Monte Carlo (MCMC) method [124]. This approach relies on Bayesian

statistics, which uses known data to estimate parameters of interest. Unlike

frequentist statistics, Bayesian statistics assumes the parameters of interest fol-

low some fixed unknown distribution. Bayesian statistics relies on three main

statistical concepts: the prior, the likelihood and the posterior. The prior is a
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probability distribution which reflects prior knowledge or beliefs about the pa-

rameters of interest in the experiment. The prior can be chosen such that it is

either informative or uninformative; an uninformative prior is a wide distribution

to reflect that there is no prior knowledge about the process. In this thesis, a

prior which follows a uniform distribution will be chosen, as it will be assumed

that the refractive index has a finite range of values and each are equally likely.

The likelihood is the probability distribution which quantifies how well a given

model with a particular set of parameter values can reproduce the observed data.

The posterior distribution is the distribution of the parameters which we wish

to recover which is obtained by updating the prior based on the results of the

likelihood, where updating is done using Bayes’ Theorem [125].

The posterior distribution is integrated using Monte Carlo methods in order

to obtain estimates of interest from the posterior distribution. This method

is also called Monte Carlo integration [124]. This method generates random

variables with a probability density function which is approximate to the density

function being integrated, that is, the posterior [126]. However it can be difficult

to generate these samples and the most common method is to use a Markov

Chain [124]. A Markov chain is a stochastic process where the probability of the

next event depends only on the previous event. In Chapter 4, the Metropolis

Hastings algorithm is used as the means of generating the Markov Chains. The

Metropolis Hastings criterion is made up of two key components: a proposal

distribution and an acceptance probability [127, 128]. The acceptance probability
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for the inversion algorithm is given in Equation (4.10). The main ideology of the

Metropolis Hastings criterion is that at every iteration of the model the solution

should be closer to the posterior density function.

Another method would be to use Gibbs Sampling which is a special case of the

Metropolis Hastings algorithm. Gibbs sampling is used when sampling from a

multivariate posterior is not feasible, but sampling from the conditional distribu-

tions for each parameter can be done [124]. Gibbs sampling works by assigning a

start value to the parameter of interest, then draws samples from the parameter’s

conditional distribution, or the probability distribution of the parameter given a

specific value of another parameter [124, 129].

In Chapter 4 the reversible jump Markov Chain Monte Carlo (rj-MCMC)

method is introduced as the optimisation method of the inversion process in

this thesis. The rj-MCMC builds on the aforementioned MCMC and further

particulars of this method in relation to the problem are discussed in Chapter 4.

1.11 Use of rj-MCMC in Inverse Problems

As far as the author is aware the use of photogrammetry data to reconstruct a

refractive index map is a completely new inverse problem. However, the inversion

method employed has found success in other applications. For example, ultrasonic

tomography for flaw detection in non-destructive testing [90]. These researchers

used Voronoi tessellations to parametrise the geometry and the rj-MCMC method

32



1.

as their optimisation technique. The data these researchers obtain is time of flight

from the ultrasonic sensor (as opposed to the angular direction to a target in pho-

togrammetry) and the material map is locally anisotropic (whereas the refractive

index is locally isotropic). The approach has also been used by researchers to

obtain a spatial map of the wave speed within the Earth’s crust [100, 130–132].

1.12 Outline of Thesis

Chapter 1 provides a review of the effects of refraction in large volume metrol-

ogy. It also introduces current techniques used to recover the refractive index

map in other materials with other sensing techniques and ways to model the re-

fractive index maps. An introduction to inverse problems was given along with

the key components: parametrisation of the spatial domain, forward solvers and

optimisation techniques.

The original work in this thesis is presented in Chapters 2 to 5. Chapter 2 pro-

vides discussions of the positional errors associated with optical based metrology

systems (photogrammetry and laser tracker) but mainly focuses on photogram-

metry systems. This Chapter discusses the role that transverse gradients in the

temperature field have in the displacement of a light ray. An empirical compar-

ison is carried out between a finite element solver (COMSOL) and an analytical

formulation [42] to determine the robustness of COMSOL as a ray tracing soft-

ware. This Chapter ends with the introduction of three test cases which have

light rays propagating through a Gaussian temperature profile; the aim of these
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test cases is to determine the effect that the initial angle of the ray, the maxi-

mum temperature and the temperature variance has on the positional errors of

the light ray.

Chapter 3 builds from Chapter 2 and aims to determine the sensitivity of the

Vicon T160 photogrammetry system when positioning a cluster of retroreflectors

in a spatially heterogeneous refractive index volume; created by applying a lo-

calised heat source to the volume. The results from this experiment are then used

to comment on the validity of the simulations described in Chapter 2. Following

the results from the experimentation an investigation into the angular field of

view was carried out to obtain a better understanding of the variation in the

estimated position of the cluster of retroreflectors by looking at perturbations

within the digitised images.

Chapter 4 outlines a methodology to reconstruct the refractive index maps.

The methodology uses Voronoi tessellations to parametrise the refractive index

map, the Fast Marching Method is used as the forward solver and the reversible

jump Markov Chain Monte Carlo is used as the optimisation technique. This

Chapter also details how the results from the inversion will be quantified by

taking the reader through the triangulation process. Since photogrammetry sys-

tems use angular based measurements the objective function uses an estimated

angle calculated by the forward solver and an investigation into how this angle

is calculated is given in this Chapter. This Chapter introduces four numerical

experiments with each having a more industrially relevant refractive index map

than the previous. These numerical experiments all use simulated photogram-
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metry data to ensure ground truth within the results. The aim of the numerical

experiments (and indeed this thesis) is that the positional error (absolute error

and variance) of the target is reduced when the light rays are traced through the

recovered refractive index compared to a homogeneous refractive index map.

Chapter 5 builds on the methodology of the previous Chapter and aims to

reduce computational time and improve the sensitivity of the objective function.

This novel methodology uses the time field as calculated using the FMM rather

than by ray tracing. This Chapter revisits the four numerical experiments pre-

sented in Chapter 4 and aims to improve upon those initial results.

This thesis concludes with a summary of the key findings presented in this

work and then finishes with an overview of the future work for this research.

1.13 Publications Arising from this Thesis

The work presented in Section 2.2 was published in Acta Imeko in 2018 and is

titled Positional uncertainty in optical-based metrology systems in large volume

manufacturing [133].

The work presented in Section 3.1- 3.3 and Chapter 4 has been submitted to

Inverse Problems in Science and Engineering [134].

35



Chapter 2

Mathematical Modelling of Light Rays

in Heterogeneous Media

This Chapter will discuss the positional error associated with a laser tracker sys-

tem and a photogrammetry system. By examining a simplified mathematical

model of light ray propagation it will be seen that the gradients in the refrac-

tive index that run transverse to the ray path direction have a critical role to

play. Following that, it will be shown how to simulate light ray paths in com-

plex, two dimensional, spatially varying temperature fields using a finite element

model (COMSOL Multiphysics [135]). COMSOL Multiphysics was chosen as the

finite element software as there is a large user base within the research group.

COMSOL provides excellent technical support and offers users a free trial prior

to purchasing the software to determine if it is appropriate for use, this free trial

also includes access to the technical support. Other packages were considered for
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example Lambda Trace Pro, however due to the reasons mentioned above, COM-

SOL Multiphysics was chosen as the finite element software. The advantage of

using simulated photogrammetry data is that it provides complete ground truth

on the refractive index field in the volume. This will provide large volumes of

carefully controlled photogrammetry data sets to be generated so that any sub-

sequent methods that are developed to circumvent these effects can be carefully

honed and tested. To illustrate this modelling framework, an investigation into

the dependence of the positional error on the initial ray angle, the maximum

temperature of the domain and the variance of a Gaussian temperature profile is

performed.

2.1 Positional Errors Associated with Light-based Sensors

Optical-based metrology systems assume that the volume of air is homogeneous

and that light-rays travel in straight lines (so no refractive effects). In addition

to an angular measurement, the laser tracker system calculates the lengths (da,i)

of the light-rays from the laser trackers, la, where a = 1, . . . , A to the reflectors,

ri, where i = 1, . . . , R.

For example, in a two dimensional plane, two laser trackers can be deployed (l1

and l2 in Figure 2.1 ) to track a reflector s∗ (of known position). The red dashed

lines show the true ray path where the light-rays bend away from the localised

heat source and have lengths d1,s∗ and d2,s∗ respectively. The circles in blue

have radii d1,s∗ and d2,s∗ . The intersection of these circles gives the estimated
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position of the reflector (r̂l). This method of using the intersection points of

the rays is similar to trilateration used in GPS systems [39, 48] and it assumes

a spatially homogeneous refractive index and hence no refraction takes place.

The error in the estimated position (as shown in Figure 2.1) is ε∗l where ε∗l =

‖s∗ − r̂l‖2. These errors will typically be much smaller than the errors caused by

using a photogrammetry system as photogrammetry systems use angular based

calculations (triangulation) [39, 48].

Figure 2.1: Figure showing the errors caused by using just the ray length measurement
in the laser tracker system when the volume is assumed to be homogeneous. Two laser
trackers (l1 and l2) are tracking a reflector s∗. The red dashed lines show the true ray
path where the light-rays bend away from the localised heat source and have lengths
d1,s∗ and d2,s∗ respectively. The black lines use these lengths for the radii of the blue
circles. The intersection of those circles gives the estimated position of the reflector
(r̂l) and from this the positional error ε∗l can be calculated.
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The photogrammetry system calculates the angle (θ∗k,i) that the light ray enters

camera, ck, where k = 1, . . . , C from the reflector ri (with respect to the normal to

the camera plane). The photogrammetry system assumes a homogeneous medium

and so the predicted ray path is a straight line (see the straight dashed lines in

Figure 2.2). As in the case of the laser tracker, two cameras (or more) can be

deployed (c1 and c2 in Figure 2.2) which track reflector s∗ (of known position).

The red dashed lines in Figure 2.2 show the true ray path where the light rays

bend away from the localised heat and have initial angles θ∗1,1 and θ∗2,1. This

triangulation method gives the estimated position of the reflector, r̂c, and from

this the positional error can be calculated, via ε∗c = ‖s∗ − r̂c‖2. The laser tracker

case is included here for completeness sake but the remainder of this thesis will

focus on the photogrammetry case.

2.2 Modelling of Light Rays in Heterogeneous Media

As mentioned in Section 1.5, the positional errors obtained by simply using Snell’s

Law are far smaller than those observed in practice and to better account for these

measurement errors one must include transverse gradients [42]. For example, if

an additional camera is added to the lower right corner of Figure 2.2, the light

ray will not experience transverse gradients and as a result the positional error

will be much smaller than those observed in c1 and c2.
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Figure 2.2: Figure showing the error caused by using the photogrammetry (angular)
system when the geometry is assumed to be homogeneous. Two cameras (c1 and c2)
track the reflector s∗. The red dashed lines show the true ray path where the light
rays bend away from the localised heat source and have initial angles θ∗1,1 and θ∗2,1
(with respect to the normal to the camera plane). The black lines show the equivalent
straight ray path that the photogrammetry system uses in its calculations since this
assumes the volume is homogeneous (has a constant refractive index throughout and
hence no refraction takes place). The triangulation method gives the estimated position
of the reflector, r̂c, and from this ε∗c can be calculated.

The general form of the ray [73] equation is given by

d

du

(
η
dp

du

)
= ∇η, (2.1)
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where u is the arc-length of the ray, p is the position vector of point ρ on the

ray and η is the spatially dependent refractive index [73]. Since the temperature

fluctuations in a typical industrial environment are relatively small then the ray

does not deviate much from a straight line. If Equation (2.1) is rewritten as two

scalar equations in terms of Cartesian co-ordinates, the following is obtained,

d

du

(
η
dx

du

)
=
∂η

∂x
(2.2)

and

d

du

(
η
dy

du

)
=
∂η

∂y
. (2.3)

The right hand side of Equation (2.3) can be integrated from x = xi to x = x′

as follows

∫ x′

xi

d

du

(
η
dy

du

)
du =

∫ x′

xi

∂η

∂y
du (2.4)

and so

η (x′)
dy

du

∣∣∣∣
x′
− η (xi)

dy

du

∣∣∣∣
xi

=

∫ x′

xi

∂η

∂T

∂T

∂y
du, (2.5)
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where T is the temperature of the ray at each point, ∂η/∂T is the Ciddor

equation differentiated with respect to the temperature T and ∂T/∂y is the trans-

verse gradient of the temperature [42, Appendix E]. For a ray that is propagating

roughly parallel to the x direction (so that the arc-length u can be approximated

by x) then

dy

dx

∣∣∣∣
x′

=
η(xi)

η(x′)

dy

dx

∣∣∣∣
xi

+
1

η(x′)

∫ x′

xi

∂n

∂T

∂T

∂y
dx. (2.6)

Let the final point of the ray be denoted by xf then

dy

dx

∣∣∣∣
xf

=
η(xi)

η(xf )

dy

dx

∣∣∣∣
xi

+
1

η(xf )

∫ xf

xi

∂n

∂T

∂T

∂y
dx. (2.7)

Therefore, in two dimensions (x, y), the displacement of a light beam in the y

direction, ∆y, can be approximated by integrating Equation (2.6) equation from

x = xi to x = xf , where xf is the final point of the ray

∫ xf

xi

dy

dx

∣∣∣∣
x′
dx′ =

∫ xf

xi

(
η(xi)

η(x′)

dy

dx

∣∣∣∣
xi

+
1

η(x′)

∫ x′

xi

∂n

∂T

∂T

∂y
dx

)
dx′,

∫ xf

xi

dy

dx

∣∣∣∣
x′
dx′ = η(xi)

dy

dx

∣∣∣∣
xi

(∫ xf

xi

(
1

η(x′)
+

1

η(x′)

∫ x′

xi

∂n

∂T

∂T

∂y
dx

)
dx′

)
,
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∫ xf

xi

dy

dx

∣∣∣∣
x′
dx′ = η(xi)

dy

dx

∣∣∣∣
xi

(∫ xf

xi

1

η(x′)
dx′ +

∫ xf

xi

1

η(x′)

∫ x′

xi

∂n

∂T

∂T

∂y
dxdx′

)
.

(2.8)

The left hand side of Equation (2.8) reduces to y(xf ) − y(xi) which is equal

to ∆y, and this gives the following result

∆y = η (xi)
dy

dx

∣∣∣∣
xi

∫ xf

xi

dx′

η (x′)
+

∫ xf

xi

1

η (x′)

∫ x′

xi

∂η

∂T

∂T

∂y
dxdx′. (2.9)

Consider an example [42, Appendix E] where a laser tracker sends a beam

parallel to the x-axis and the laser is tracking a retroreflector 10 m away (see

Figure 2.3). The vertical temperature gradients along the beam path are ∂T/∂y =

1◦C/m in x ∈ [0,4) ∪ (5,10] and ∂T/∂y = +10◦C/m in x ∈ [4,5]. The refractive

index η is approximately 1 at all distances x, ∂η/∂T is -1 ×10−6◦C−1 and the

initial angle of the beam with respect to the x-axis is zero. The angle of the laser

beam in the y direction is found using Equation (2.7). Therefore, the angle of

the laser beam in the y direction for x ∈ [0, 4) is

dy

dx

∣∣∣∣
4

=
η(0)

η(4)

dy

dx

∣∣∣∣
0

+
1

η(4)

∫ 4

0

−1× 10−6dx = −4 µradians. (2.10)
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Similarly the angle of the laser beam in the y direction for x ∈ [4,5] and x ∈

(5,10] are

dy

dx

∣∣∣∣
5

=
η(4)

η(5)

dy

dx

∣∣∣∣
4

+
1

η(5)

∫ 5

4

−10× 10−6dx = −14 µradians (2.11)

and

dy

dx

∣∣∣∣
10

=
η(5)

η(10)

dy

dx

∣∣∣∣
5

+
1

η(10)

∫ 10

5

−1× 10−6dx = −19 µradians (2.12)

respectively. From Equation (2.9) for x ∈ [0, 4)

∆y = η(0)
dy

dx

∣∣∣∣
0

∫ 4

0

dx′

η (x′)
+

∫ 4

0

1

η (x′)

∫ x′

0

−1× 10−6 dxdx′ = −8 µm. (2.13)

Similarly the displacement of the laser beam in the y direction for x ∈ [4,5]

and x ∈ (5,10] are calculated as follows

∆y = η(4)
dy

dx

∣∣∣∣
4

∫ 5

4

dx′

η (x′)
+

∫ 5

4

1

η (x′)

∫ x′

4

−10× 10−6 dxdx′ = −9 µm (2.14)
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and

∆y = η(5)
dy

dx

∣∣∣∣
5

∫ 10

5

dx′

η (x′)
+

∫ 10

5

1

η (x′)

∫ x′

5

−1×10−6 dxdx′ = −82.5 µm, (2.15)

respectively. Therefore, the total displacement of the ray in the y direction is

99.5 µm. This provides some information on the types of errors that are encoun-

tered for typical temperature gradients found in industrial settings. For more

complex temperature profiles the finite element package COMSOL can be used

[135]. As a first check on its performance, the above example was investigated

and, as will be seen below, very good agreement was obtained.

Figure 2.3: The bending of the light ray (in red) in accordance with the example
above using Equation (2.9) to find the vertical displacement of the light ray ∆y.
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2.2.1 Ray Tracing Using Finite Elements

In order to simulate the example discussed in Section 2.2 using COMSOL, the un-

derlying geometry needs to be created (recall that in Section 1.9 the mathematics

of COMSOL Multiphysics were presented). In the aforementioned example there

are three clear regions (0 to 4 m, 4 to 5 m and 5 to 10 m). In order to create

these regions the Geometry node was selected and three rectangles were created.

In the example the height of the rectangles is not given, it was decided to make

the height of the rectangle 400 µm (there was no need to make it any larger as

the light ray would still remain within the boundary). In COMSOL the position

of each rectangle is defined by the lower left corner. The bottom left corners of

each rectangle are as follows (0, 0.9998) m, (4, 0.9998) m and (5, 0.9998) m. In

order to add the vertical temperature gradient to each rectangle, two Variables

were created under the Definitions node, both variables were called T domain

(the reasoning behind this will be explained shortly). T domain was firstly de-

fined as 20[degC]+1[degC/m]*y where y corresponds to the vertical direction, the

initial temperature is not defined in the example so 20 ◦C was chosen as it is com-

mensurate with a laboratory. Under the Geometric entity level tab of Variable,

Selection was 1 and 3, this represents the first and third rectangle mentioned

above. The second T domain was defined as 20[degC]+10[degC/m]*y and the

Geometric entity level Selection was 2, to represent the second rectangle defined.

In COMSOL the Geometrical Optics package is used. In this package all spatial

regions must be defined using the refractive index (as opposed to velocity or tem-

perature), this means that, an interpolation which reads in temperature values
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and converts to refractive indices needs to be included. To do this in COMSOL,

an Interpolation function in the Global Definitions node is added and file is then

selected. This command allows the user to read in a file containing temperatures

in Kelvin and their corresponding refractive index using values calculated using

NIST. This function is called n int (this file would have to be created by the user).

To make use of this file, Refractive index, real part is set to be User defined with

value n int(T domain), within the Medium Properties of the Geometrical Optics

(gop) node. To add the light ray the Geometrical Optics (gop) node is used again

and add a Release from Grid since the height of the ray is not explicitly defined.

The ray is defined to begin at (0,1) m and the ray direction vector is [1,0]. In

order to output the (x, y) co-ordinates of the ray a Ray Evaluation in the Derived

values of the Results node is required. To output the x co-ordinates qx is typed

in the expression box (this is a built in COMSOL variable). To obtain the y

coordinates qy is typed in the expression box (there is no need to create another

Ray Evaluation). These (x, y) points were then plotted and the result is shown

in Figure 2.4. The deflection of the ray using a COMSOL was approximately -92

µm.

Comparing Figure 2.3 (which is a schematic) to Figure 2.4 it can be seen that

there is very good agreement which suggests that COMSOL has a variation of

Equation (2.9) embedded within it as the software was able to account for the

refraction effects caused by transverse gradients. The ∆y value is also very simi-

lar, -99.5 µm in the analytical result and approximately -92 µm in the COMSOL

simulation.
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Figure 2.4: Light ray path produced from a COMSOL simulation of the example in
Section 2.2 where various linear temperature gradients are applied to the geometry,
with initial temperature of 20 ◦C. The red line shows the light ray which had starting
point at (0,1) m.

To provide a more realistic example, COMSOL was used to examine the posi-

tional uncertainties that arise when a photogrammetry system is embedded in a

spatial temperature profile that follows a two dimensional Gaussian distribution.

The effect of the initial ray angle, the maximum temperature and the variance

of the temperature distribution on the positional uncertainty was then assessed.

In all of the simulations the size of the spatial domain was kept constant. The

size chosen was commensurate with the laboratory photogrammetry system in

Chapter 3 (3 m by 4 m).
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In these simulations a localised heat source is placed at the centre of the

domain and the Gaussian temperature distribution is then given by

T (x, y) = (Tmax − Tmin) exp

(
−(x2 + y2)

σ2

)
+ Tmin, (2.16)

where σ is the variance of the temperature distribution measured in metres,

Tmax is the maximum temperature in the domain and similarly, Tmin is the min-

imum temperature. To add this equation to the COMSOL simulation, the com-

ponent option in the Model Builder window was accessed and a new variable

was added in the definitions section. Once in this menu, the right hand side of

Equation (2.16) was input into the Expression box and this variable was named

as T domain.

The next step was to convert the temperature map into a refractive index

map. COMSOL requires the refractive index values in order to define the mate-

rial properties. The temperature values in Equation (2.16) were transformed to a

refractive index map using the Ciddor equation [68]; all other parameters in this

equation were set at the NIST average values [136]. These values were simply

collated as a two column table, temperature on the left and the corresponding

refractive index on the right, and saved locally on the computer. In order to up-

load this file, an Interpolation was added to the model; this was accessed from the

Function menu of the Global Definitions node. Once in this menu, the function

was named n int with temperatures ranging from (Tmin to Tmax). To ensure that

these refractive index values were used in the model the Geometrical Optics (gop)
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functionality was accessed. In this functionality the Medium Properties option

was located and in the Medium Properties heading the Refractive index real part

was defined as user defined from the drop-down menu. Finally, the refractive

index was defined to take the values of n int(T domain).

Following this, the rays propagating within this geometry are defined. In the

Geometrical Optics (gop) functionality of the Model Builder the Release from

Grid option was used. This allows the user to prescribe the start point of a ray,

its initial directional vector and its length.

2.2.2 Test Cases

In the first study (T1) 25 rays were simulated with the same starting point (po-

sition of the photogrammetry camera ck) of (-1.5, 0) m, but each ray had a

different initial direction. The vector describing the light rays initial direction is

x0 = [1, y0] where y0 takes the values 0, ± 0.05, ± 0.10, ± 0.15, . . . ±, 0.6. The

upper limit here is 0.6, as any higher values leads to the light ray not reaching the

right hand boundary of the domain. Figure 2.5 shows the 25 rays propagating

in the geometry. In this case, the values of Tmax and σ were kept constant (314

K and 1.3107 respectively), the value for σ was chosen to ensure that at the four

corners of the domain the temperature is approximately Tmin.

The second study (T2) examined the impact that Tmax has on the positional

error. In this case the number of rays propagating through the geometry was

reduced to one. The chosen ray was the one whose initial ray angle led to the
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biggest positional error in the T1 study. All other parameters in this case remain

as before apart from Tmax. In these simulations Tmax takes values from 299 K to

374 K.

The final study (T3) examined the effect that varying the spread of the tem-

perature profile (σ) had on the positional uncertainty. As in the second set of

simulated experiments there was again only one ray propagating through the ge-

ometry (the same ray which was used in the T2 study). As in T1, Tmax was set to

314 K but now the values for σ range from 0.5 to 3.5 m. In all of the simulations

the COMSOL output was a set of (x, y) co-ordinates for each ith ray, with the

last value being the position of the reflector ri.

2.2.3 Results of COMSOL Simulations

The photogrammetry camera is positioned at ck and it is tracking each reflector

at known position ri as shown in Figure 2.6. The ray will take the path shown

by the red dashed line (this ray path has been exaggerated for visual purposes)

as the temperature distribution causes the light ray to bend away from the heat

source (the red colours in Figure 2.6). As in Section 2.1, the photogrammetry

system calculates the angle that the line from the camera (ck) to the reflector

(ri) makes with the normal to the camera plane (denote by θ∗k,i ). The straight

dashed line in Figure 2.6 shows the straight ray path that the photogrammetry

system adopts in its calculations; the associated triangulation algorithm assumes
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Figure 2.5: COMSOL simulation of the 25 light rays (black lines) propagating through
the Gaussian temperature profile described by Equation (2.16). The size of the domain
is 3 metres by 4 metres in the x and y directions, respectively. In this simulation the
light rays have starting position (−1.5, 0) m and the directional vector takes the values
{(1,−0.6), (1,−0.55), (1,−0.50), . . . (1.0), . . ., (1, 0.55), (1, 0.6)}.

that the volume is homogeneous. The intersection of the dashed black line and

the domain boundary gives the estimated position of the reflector r̂c. This value

is then used to calculate the error in the position ε∗c = ‖s∗ − r̂c‖2.

52



2.

Figure 2.6: Figure showing the positional errors caused by refraction of a light ray
traversing a Gaussian temperature profile. The red dashed line shows the true path
of the light ray from camera ck to reflector ri (positioned at s∗ on the right hand
domain boundary). The dashed black line shows the equivalent straight ray path that
the photogrammetry system uses in its calculations since this assumes the volume is
homogeneous. The intersection of the dashed black line and the domain boundary gives
the estimated position of the reflector (r̂c). The positional error is then given by ε∗c .

In the first study (T1), the aim was to deduce if the initial ray angle impacted

the positional error ε∗c . The results (shown in Figure 2.7) are very intuitive; as the

initial angle of the light ray increases so too does the positional error associated

with this. The maximum value seen here is approximately ε∗c = 60 µm when the

ray has an initial angle of approximately θ∗k,i = 31 ◦. At an initial angle of θ∗k,i =

0 ◦ the ray does not experience any transverse refractive index gradients. Since

it is perpendicular to each isothermal contour, and the transverse temperature

gradient is zero, then it does not undergo any refraction and so the positional

uncertainty is zero.
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Figure 2.7: Graph showing the positional error ε∗c of the light rays travelling through
the Gaussian temperature profile described in Equation (2.16) when the initial ray
angle is varying. The size of the domain is 3 metres by 4 metres in the horizontal
(x) and vertical (y) direction respectively. There are 25 rays propagating the domain
each with a starting position of (-1.5, 0) and directional vector x0 = [1, y0] where
x0 takes the values {(1,−0.6), (1,−0.55), (1,−0.50),. . . (1.0),. . . , (1, 0.55), (1, 0.6)}. The
parameters Tmax, Tmin and σ are kept constant throughout at 295 K, 314 K and 1.3107
m respectively

The second study (T2) varied the maximum temperature of the domain, Tmax

(keeping all other variables constant). This simulation only had one ray prop-

agating through the geometry and the ray that was chosen was the ray whose

initial angle led to the largest positional error value in T1. The results in Fig-

ure 2.8 show that as Tmax increases so too does the error. As Tmax increases so too

does the local transverse gradient of the temperature (refractive index) profile.

It can be seen that the positional uncertainty is now of sub-millimetre scale and

would start to cause concern in a high precision manufacturing setting (over tens

of metres this would rise to be of millimetre scale).
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Figure 2.8: Graph showing the positional error ε∗c of a light ray travelling through the
Gaussian temperature described in Equation (2.16) when the range of the temperature
profile is varied (via the parameter Tmax) The size of the domain is 3 metres by 4 metres
in the horizontal (x) and vertical (y) direction respectively. The ray in this instance
has a directional vector of x0 = [1, 0.6] as this led to the largest positional uncertainty
in T1. The parameters Tmin and σ are kept constant throughout at 295 K and 1.3107
m respectively. The values for Tmax are {299, 304, . . . , 374} K.

Finally the variance of the temperature profile was varied (study T3) via the

parameter σ. The results (for the same ray direction used in T2) are shown in

Figure 2.9. For σ values between 0.5 and 1.1 m the positional uncertainty ε∗c value

increases, until it reaches a maximum at around 60 µm when σ is approximately

equal to 0.9 m. Thereafter, the ε∗c value decreases as σ increases. As σ increases

the temperature gradient spreads out becoming less steep in the spatial region

considered, and so it is gradually approaching a constant temperature. So the

temperature domain resembles that of a homogeneous one, resulting in reduced

refractive index effects and hence a lower ε∗c value. In a similar way when σ

is decreased the temperature profile narrows until it forms an isolated peak in

the spatial domain considered. The ray now traverses a domain that is far from
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Figure 2.9: Graph showing the positional error ε∗c of a light ray travelling through
the Gaussian temperature described in Equation (2.16) when the spread of the profile
(as determined via parameter σ) takes the values from 0.5 to 3.5 metres. The size of
the domain is 3 metres by 4 metres in the horizontal (x) and vertical (y) direction
respectively. In each of the simulations there is one light ray propagating the geometry,
with initial position (-1.5, 0) and directional vector x0 = [1, 0.6]. The variables Tmin

and Tmax are kept constant throughout the simulations taking the values 295 K and
314 K respectively.

this peak and hence there is a very flat temperature profile; so the resulting

positional error is significantly reduced. Hence there is an interim value for σ

where the positional error is maximised.

2.3 Chapter Summary

This Chapter looked at how mathematical modelling, and in particular, how a

finite element package (COMSOL Multiphysics) can be used to simulate light

rays propagating through a spatially heterogeneous refractive index (tempera-

56



2.

ture) map. The equations for calculating transverse temperature gradients (Equa-

tion (2.9)) were discussed and it was found that transverse gradients dominate

ray refraction.

A simulation of a Gaussian temperature profile which has light rays propagat-

ing through it was studied. An investigation into the effect that varying three

parameters (initial angle of the ray, the maximum temperature and the temper-

ature variance) had on the positional error were discussed. It was found that

changes in the maximum temperature led to the highest error (approximately

220 µm) relative to changes in the initial angle of the ray and the variance.

This Chapter provides some sense of the typical measurement uncertainties

associated with deploying photogrammetry sensors in environments with spatially

heterogeneous temperature distributions. In the next Chapter some experiments

will be described which report on the measurement uncertainties that arise due

to spatially varying temperature fluctuations.
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Chapter 3

An Experimental Investigation into the

Effects of a Localised Heat Source on

Photogrammetry Measurement Errors

In the last Chapter it was observed from simulations that submillimetre sized

positional errors can arise in industrial sized volumes with reasonable spatial

temperature profiles. This Chapter will turn to physical experiments and starts

by discussing an experiment to determine the sensitivity of the Vicon T160 Pho-

togrammetry system. Following this, the results from this experiment will be

discussed. Finally, this Chapter will introduce the angular field of view of the

photogrammetry system and will derive mathematical equations to represent this.
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An experiment was carried out to determine the sensitivity of the Vicon T160

photogrammetry system when positioning a cluster of retroreflectors in a spatially

heterogeneous refractive index volume; created by applying a localised heat source

to the volume. This experiment will be used to comment on the validity of the

simulations described in Chapter 2. In order to do so it is also necessary to

measure the temperature profile in the working geometry.

3.1 Experimental Setup

Two Vicon T160 cameras (16 megapixel (MP) with standard Vicon 18 mm focal

length lens) (Vicon Motion Systems, LA, USA) were mounted on tripods, and

these tripods were positioned approximately 3.5 m away from a group of reflectors

as shown in Figure 3.1. The cameras were mounted on tripods to mitigate the

vibrational effects and were positioned 2.5 m away from one another. Recall

that in Subsection 1.3.2, the researchers in [56] observed large positional errors

due to the cameras being affixed to a scaffold. There were five retroreflectors

all of which were steel and spherical, each with a 3.81 cm diameter. These

reflectors were mounted on to a plate attached to the top of a tripod which

was approximately 1 m high, as shown in Figure 3.2. This configuration of

retroreflectors and the plate they were attached to were manufactured by Vicon

and sent to the research team for testing. The cameras will be denoted as c1

and c2 and the photogrammetry system records the estimated position of the

cluster of the reflectors as the centroid of them; this estimated position will
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be denoted as ŝ. Photogrammetry systems use the method of triangulation to

estimate the position of objects of interest [39, 48], and so in a two camera setting

the intersection point of the light ray paths emitted from the cameras yields the

estimated position ŝ. For the experiments below the two cameras and the cluster

of retroreflectors remained in a fixed spatial position.

Figure 3.1: Baseline set up of experiment 1 which has two Vicon T160 cameras (16 MP
with standard Vicon 18 mm focal length lens) tracking a cluster of stationary reflectors
over time. Each camera is positioned approximately 3.5 m from the reflectors.

Figure 3.2: Five steel spherical reflectors of diameter 3.81 cm mounted on a plate on
top of a tripod.
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The cameras were recalibrated each time the experiments were carried out

and, during each calibration of the cameras, 2000 frames were captured using

the active wand; the active wand is a T-shaped calibration artefact that has 5

LED sensors. The active artefact minimises the number of data outliers captured

as the number of data points that have an obstructed view are reduced as the

LEDS are actively lit up [56]. In fact using an active calibration leads to an

improvement in the accuracy of 13 % compared with using a passive calibration

artefact [56]. A passive artefact is one which reflects infra-red light projected

from the camera using standard retroreflectors [56]. The active wand was also

used to set the geometry’s origin, as shown in Figure 3.3. To set the origin of the

geometry the active wand has to be placed in a position where both the cameras

can see it; in this case it was placed on the ground. The origin remained in a

fixed position throughout all experimentation.

Initially, the experiment was carried out at room temperature and the es-

timated position (ŝ) of the retroreflector centroid was monitored over approxi-

mately 8 minutes and 20 seconds (time step: 0.02 seconds, number of time steps:

25,000). The estimated position of the reflectors is output as a series of (x, y, z)

co-ordinates. This experiment at room temperature can be thought of as a control

as it is the closest to a homogeneous refractive index map that can be achieved

in the laboratory. In addition to recording the co-ordinates, the temperature of

the volume was also recorded throughout using a printed circuit board (PCB)

with 8 MCP9808 Precision I2C temperature sensors. These temperate sensors

have a typical accuracy of ± 0.5 ◦C and a maximum accuracy of ± 0.25 ◦C [137].
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Figure 3.3: Active wand being used to set the origin for the experiment

Figure 3.4: PCB board with 8 MCP9808 Precision I2C temperature sensors soldered
to it.

This configuration of temperature sensors was designed by a final year project

student at the University of Strathclyde, there are 8 temperature sensors on the

PCB as this is the maximum number that can fit, and this increased number also

increases the reliability of the experimental results. These sensors work by con-
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necting them to a laptop via a MicroUSB cable and they populate a matrix which

has 8 columns (one for each sensor) and the number of rows is determined by how

long the sensor is plugged in, as readings are taken until the laptop connection

is broken. On average the ambient temperature of the laboratory was between

21 ◦C and 22 ◦C and it took approximately 2 seconds for the temperature sensor

to collect one set of readings. Once these baseline readings were collected, a lo-

calised heat source was then introduced to the volume. The heat source used in

this experiment was a 1.6 kW halogen heater.

3.2 Experiment 1

Once the estimated position of the reflectors had been tracked over time for

the homogeneous refractive index map, the experiment was then repeated but

this time the localised heat source was switched on until the laboratory reached a

steady state. In Experiment 1, the heat source was placed on the ground between

camera c1 and the cluster of retroreflectors as shown in Figure 3.5, a schematic of

which is shown in Figure 3.6. As in the control, 25,000 data points were captured

and this experiment was repeated 5 times to increase the reliability of the results.

In Experiment 1 the mean temperature of the volume when there was a localised

heat source applied to the volume was 51 ◦C and the maximum temperature was

55 ◦
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Figure 3.5: Set up of experiment 1 with two Vicon T160 cameras (16 MP with stan-
dard Vicon 18 mm focal length lens), the heat source ( a 1.6kW Halogen Heater) and
a temperature sensor board (a PCB board with 8 MCP9808 temperature sensors sol-
dered to it, shown in Figure 3.4). The cameras are tracking the cluster of retroreflectors
(which are out of shot and are pictured in Figure 3.2).

Figure 3.6: Set up of experiment 1, the 2 Vicon cameras and the retroreflectors are
positioned in the same position for all experimental iterations. A localised heat source
is placed on the ground directly impacting c1. There is also an MCP9808 temperature
sensor placed in front of the heat source measuring the temperature of the volume.
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In order to analyse the impact that the heat source has on the estimated posi-

tion of the cluster of reflectors the data was taken into MATLAB for analysis. The

data-set comprised of 25,000 (x, y, z) co-ordinates of the estimated position of the

cluster of reflectors when the geometry was a homogeneous refractive index map

(localised heat source switched off) and when the geometry was a heterogeneous

refractive index map (localised heat source switched on). Since the experiment

was repeated five times for each case (the homogeneous and heterogeneous re-

fractive index maps) the mean point at each of the 25,000 iterations was taken.

From this a point cloud of the estimated position of the cluster of reflectors was

plotted (at each of the 25,000 data points) for the control case (localised heat

source switched off) and the heterogeneous (localised heat source switched on)

and this point cloud is shown in Figure 3.7.

The positional error was then found for the heterogeneous refractive index

map. Define the mean estimated position of the cluster of reflectors (denoted by

s∗) for the homogeneous case is taken to be the true position of the reflectors.

The mean estimated position of the cluster of reflectors for the heterogeneous case

(denoted by ŝ) is then also calculated. Then the error in the estimated position

is the Euclidean distance between these two points, that is, εc = ‖s∗ − ŝ‖2 which

was found to be 147 µm for Experiment 1.
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Figure 3.7: Experiment 1: Point cloud showing the (x,y,z ) co-ordinates of the reflec-
tors before heat was applied to the volume (blue dots) and after (red dots).

3.3 Experiment 2

Once the temperature of the laboratory had settled back to the ambient tem-

perature of the lab, a new iteration of the experiment was carried out. As in

Experiment 1 the position of the reflectors was firstly found in the homogeneous

refractive index map (localised heat source switched off). However for the hetero-

geneous case (localised heat source switched on) this position of the heat source

was moved in an attempt to maximise the positional error, εc. The heat source

was placed in the same location as Experiment 1, that is, between camera c1

and the reflectors. However, instead of being placed on the floor, the heat source

was elevated approximately 70 cm, as shown in Figure 3.8. As in Experiment 1,

the estimated position of the retroreflectors and the temperature of the working

volume were recorded. As before, Experiment 2 was also repeated five times for

increased reliability of results.
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Figure 3.8: Experiment 2 Experimental Set up: The 2 Vicon cameras and the retrore-
flectors remain in the same position throughout the experiment. A localised heat source
is placed 70 cm above the ground and is directly between camera c1 and the retroreflec-
tors. There is also an MCP9808 temperature sensor placed in front of the heat source
measuring the temperature of the volume.

The point clouds depicting ŝ for the homogeneous (localised heat source switched

off) and heterogeneous (localised heat source switched on) refractive index maps

are shown in Figure 3.9. The point cloud depicting the volume with no heat

source (blue dots) is slightly more spread out (shows more variance) than that in

the heated volume (red dots) in the x-y plane. The reasoning behind this is not

clear at this stage, there could be random errors occurring here (see Section 1.2).

One way of mitigating these errors would be to repeat the experiments more

than 5 times. The point clouds do not overlap as they did in Figure 3.7. It is

clear therefore that for Experiment 2 the positional error will be larger than in

Experiment 1. The positional error for Experiment 2, εc was 679 µm.
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Figure 3.9: Experiment 2: Point cloud showing the (x,y,z ) co-ordinates of the reflec-
tors before heat was applied to the volume (blue) and after (red).

3.4 Experiment 3

In the last experiment, it was of interest to see what happens to the estimated

position of the reflectors when both cameras were affected by the localised heat

source. The heat source was again in an elevated position of approximately

70 cm (as in experiment 2), but, it was placed directly behind the reflectors.

The heat source was not placed in front of the reflectors as this obscured the

reflectors from the camera’s view. Again the experiment was carried out for the

spatially homogeneous (no heat source) and heterogeneous (heat source turned

on) refractive index maps. As with the other iterations of this experiment, the

experiment was repeated five times for the homogeneous and heterogeneous cases

to increase reliability of the results. As in Experiments 1 and 2, 25,000 data

points were recorded.
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Figure 3.10: Experiment 3: Point cloud showing the centroid of the reflectors when
heat is applied to the volume (red point cloud) and when there is no heat applied to
the volume (blue point cloud). The distance between the mean centroid position of the
reflectors when there is heat applied to the volume and when there is no heat applied
to the volume is 421 µm

The point clouds for Experiment 3 are shown in Figure 3.10. It can be seen

that the point cloud for the homogeneous refractive index map has more variation

in the x-y plane than in the z direction. When the localised heat source is applied

to the volume the range of z co-ordinates increases slightly. The mean positional

error was found to be 421 µm, which is less than Experiment 2 and a summary

of the results for Experiments 1 to 3 can be found in Table 3.1.

3.5 Conclusions and Limitations of the Experiment

This set of experiments showed that the Vicon T160 photogrammetry system

is sensitive enough to detect significant positional errors in the retroreflectors

caused by heat fluctuations in the working volume. These results are surpris-
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Table 3.1: Summary of Experimental results

Experiment Positional Error [µm]
1 147
2 679
3 421

ing as the VICON system is not optimised for positional accuracy, it is used

mainly as a tracking camera in the film industry. However, from the results it

can be seen that the VICON system shows a clear movement of a target cluster

when the heat source is switched on (and left to stabilise the local temperature

gradient). Importantly, the sizes of those errors are submillimetre over a rela-

tively small distance (3.5 m) and such positional errors could be significant in

high precision manufacturing scenarios. The positional errors were maximised

when the heater was placed in an elevated position such that the region of in-

creased temperature was directly in the path between one of the cameras and

the cluster of retroreflectors. It would be expected that the largest positional

error εc would be achieved when both of the cameras were impacted by the heat

source. One reason that this did not happen in Experiment 3 is that the heat

source position did not produce an increased transverse temperature gradient;

recall from Chapter 2 that this dominates the positional errors. The errors ob-

tained in Chapter 2 are generally smaller than those obtained in Table 3.1 one key

reason for this is that the experiment is carried out in three dimensions whilst

the simulation was only carried out in two. In addition the simulations allow

complete ground truth meanwhile experimentation can introduce other errors (as

discussed in Subsection 1.3.2). An additional limitation is that the temperature
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sensors only measure temperature locally and in subsequent experiments more

temperature sensors would be required to measure the temperature dispersion

throughout the laboratory. Additional sensors would require more computing

power as they only work when connected to a computer or equivalent, this would

lead to more computing equipment being required which may be costly.

3.6 Discussion

From the above experiment, it was determined that the Vicon T160 photogram-

metry system was indeed capable of detecting a significant change in the observed

position of a cluster of reflectors when heat was applied to the volume. However,

the point clouds (Figure 3.7, Figure 3.9 and Figure 3.10) show a considerable

variation over time. It was expected that the point cloud showing the centroid of

the targets when no localised heat source was applied to the volume would have

less variation than when there was a heat source applied to the volume. This

was not the case and some explanation will be discussed in this section. This

will be done by looking at the angular field of view (AFOV) of the Vicon T160

Photogrammetry system. The horizontal and vertical AFOV, αx,y, is defined as

tan(αx,y) =
Gx,y

2f
, (3.1)
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whereGx,y is the horizontal (x) or vertical (y) dimension of the sensor measured

in millimetres and f is the focal length of the camera measured in millimetres

[39, 138]. In the Vicon T160 photogrammetry system the physical sensor size of

the camera is 18.35 mm horizontally and 13.48 mm vertically [139]. The digitised

sensor size in the horizontal and vertical direction is Nx = 4704 and Ny = 3456

pixels respectively and the focal length of the camera is 584 pixels. Using ratios

the focal length of the Vicon T160 Photogrammetry system is approximately

17.88 mm. Using Equation (3.1) the horizontal and vertical AFOV was calculated

to be 0.9481 radians (54.3 ◦) and 0.7231 radians (41.53 ◦) respectively.

From Figure 3.11, which shows a schematic of the AFOV of the camera, θx,y

is the AFOV per pixel and is defined as

θx,y =
αx,y
Nx,y

. (3.2)

From the experiments the distance between the camera and the reflector was

roughly 3 m. Hence θx,y can also be expressed as

tan θx,y =
νh,v

3 +B
≈ yh,v

3
, (3.3)
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where B is the depth of the charged coupled device (CCD) and ν is the range

of positions captured by one pixel in the CCD. A CCD is a type of sensor used to

capture an image by taking light and converting it into digital data. Therefore,

νx,y = 3 tan θx,y = 3 tan

(
αx,y
Nx,y

)
, (3.4)

and this was calculated to be νh = 604.65 µm in the horizontal direction

and νv= 627.69 µm in the vertical direction. These values quantify the amount

that the targets can move without the photogrammetry system capturing it (the

object remains in the same pixel). However, this does not agree with the results

from Experiments 1 and 3 which reported positional errors of 147 µm and 421

µm respectively.

To begin to explain this, consider a simple case where a retroreflector is repre-

sented on the Vicon system by a square which is 2 pixels in size in both directions

as shown in Figure 3.12. The location of each pixel is given by the co-ordinates

of the bottom left corner. As mentioned previously, the centroid of the cluster of

pixels is the Vicon’s estimate of the reflector’s position. Therefore, the centroid

of the cluster of pixels representing the retroreflector, s̄, is (2,2) as marked by the

blue cross in Figure 3.12.

Now, consider the case that another pixel has been added to the image due

to thermal fluctuations in the refractive index of the volume. Without loss of

generality assume that this additional pixel has centroid position (n+1, 1), where
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Figure 3.11: Schematic representing the angular field of view of the camera, where
αx,y is defined in Equation (3.1), θx,y = αx,y/Nx,y, where Nx,y is the number of pixels,
B is the depth of the CCD and ν is the range of positions captured by one pixel in the
CCD.

n is the side length of the square cluster of pixels. For example, when this

additional pixel is added to Figure 3.12 it will have position (3,1) as shown in

plot (a) of Figure 3.13. Therefore, the Vicon system will report a new centroid

of the cluster, s̄∗, which is equal to (2.3, 1.9), shown by the blue cross in the plot

(b) of Figure 3.13. The difference between s̄∗ and s̄ (denoted by ∆s), is (0.3,

-0.1). This means that the addition of one more pixel caused the centroid of the

targets to move by 0.3 pixels to the right and 0.1 pixel downward; a distance of

0.316 pixels which is approximately 190 µm.

To generalise this consider an image consisting of a square with side length

n pixels with the bottom left pixel located at (0.5, 0.5). Using the formula

for the sum of an arithmetic progression the centroid of this image is s̄ =

((1 + n)/2, (1 + n)/2).
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Then, when one additional pixel is added with centroid position (n + 1, 1)

to the image the new x co-ordinate of centroid of the retroreflector, s̄∗x can be

expressed as

s̄∗x =
1

n2 + 1
((1 + 2 + . . .+ n)n+ (n+ 1))

=
1

n2 + 1

(
n2

2
(1 + n) + (n+ 1)

)
=

(n+ 1)(n2 + 2)

2(n2 + 1)
,

(3.5)

Similarly, the y co-ordinate of the centroid of the target when one additional

pixel is added to the geometry can be expressed as

s̄∗y =
1

n2 + 1
((1 + 2 + . . .+ n)n+ 1))

=
n2(1 + n) + 2

2(n2 + 1)
.

(3.6)

The change in the position of the centroid of the x and y co-ordinates of

the target can be expressed as ∆x, where ∆x=s̄
∗
x − s̄, and ∆y, where ∆y=s̄

∗
x-s̄

respectively,

∆x =
(n+ 1)(n2 + 2)

2(n2 + 1)
− (1 + n)

2
=

n+ 1

2(n2 + 1)
(3.7)
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and

∆y =
n2(1 + n) + 2

2(n2 + 1)
− (1 + n)

2
=

1− n
2(n2 + 1)

. (3.8)

Now, if the limit as n gets large is considered, then

∆x ≈
1

2n
, and ∆y ≈

−1

2n
. (3.9)

Figure 3.12: A digitised image of a square with side length 2 pixels. The red crosses
indicate the centroid of each pixel and the blue cross indicates the centroid of the image.
The centroid of the image is the position of the object that the Vicon system reports
to the user; (2,2) in this example.
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Figure 3.13: (a) One additional pixel has been added to the image shown in Fig-
ure 3.12. (b) The Vicon system will calculate a new centroid position (blue cross) of
(2.3,1.9).

In the experiment a cluster of 5 retroreflectors were used as targets, each

retroreflector had a diameter of 3.81 cm, and these were arranged as shown in

Figure 3.2. The plate that the targets occupy has a side length of approximately

16 cm as shown schematically in Figure 3.14. Using the information above this

equates to a side length of 265 pixels. Using Equation (3.9), with n = 265 then

‖∆x,y‖2 ≈ 0.002668 pixels ≈ 1.62 µm. This means that during the experiment

the smallest movement that the photogrammetry equipment can detect is ap-

proximately 1.62 µm.

During the experiment 25,000 measurements of the position of this cluster of

retroreflectors were recorded. The distance between each successive measurement

was then calculated to monitor the fluctuations. These distances were then illus-

trated using two smoothed histograms for the case where no additional heat was

added to the volume and when the heat source was added to the volume as shown

in Figure 3.15 and Figure 3.16 respectively. If Figure 3.15 is considered firstly,

77



3.

the centroid of adjacent images is most likely to move by between 10 and 20 µm.

It can also be seen that 162 distances out of the 24,999 calculated are less than

the theoretical value that the centroid position can move by, which accounts for

0.648 % of the data. Secondly, if Figure 3.16 is now considered, it can be seen

that the centroid of adjacent images is most likely to move by 10 and 20 µm. It

transpires that fewer than 200 distances (0.65 % of the data) are less than the

theoretical minimum value that the centroid position can move by, when no heat

is applied 17 distances (0.07 % of the data) are less than the theoretical minimum

value.

The addition of the localised heat source has resulted in some of the distances

between adjacent readings being greater than 100 µm compared with the homo-

geneous (no localised heat source) case. The addition of the heat source causes

the working volume to have larger temperature gradients which in turn causes the

light rays to refract more which in turn leads to larger movements between the

calculated positions of the adjacent centroids. Note that these calculations only

take into account the successive distance between the centroid of the adjacent

images and not the cumulative movement of the centroid.

3.7 Conclusions

This Chapter introduced physical experimentation, the aim of which was to show

that the Vicon T160 photogrammetry system was sensitive enough to detect

submillimetre errors in position caused by thermal fluctuations. The experiment
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Figure 3.14: Schematic of the five targets used in the experiment. Each target had
a diameter of 1.5 inches, the schematic shows a bounding box around the targets of 16
cm which is approximately 265 pixels.

used two Vicon T160 cameras tracked a cluster of retroreflectors. A 1.6 kW

heater was used as the localised heat source and when this was switched on it

generated a heterogeneous refractive index map. When the heater was switched

off the spatial domain was assumed to have a homogeneous refractive index map.

It was found that when the heat source was affecting only one of the camera’s

light ray trajectory, the positional error was 679 µm. These positional errors

confirm the findings of Chapter 2 and show that submillimetre sized positional

errors can arise in laboratory sized volumes.

79



3.

Figure 3.15: Histogram showing the frequency between the adjacent distances be-
tween the centroid of the pixel image. In this case the homogeneous refractive index
case (no additional heat source) was considered

Figure 3.16: Histogram showing the frequency between the adjacent distances be-
tween the centroid of the pixel image. In this case the heterogeneous refractive index
(additional heat source is switched on) case was considered.
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Mathematical formulae were derived which illustrate the amount that the cen-

troid of a target can move, following the addition of another pixel to the image of

the retroreflector. It was found that approximately 99 % of the adjacent centroid

movements of the data points captured by the cameras were within the range of

movement calculated using the formulae.

The next Chapter will introduce a methodology to recover the spatial refractive

index map and this map will be used to reduce these refraction effects.
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Chapter 4

The Inverse Problem of Reconstructing

Refractive Index Maps from

Photogrammetry Data

This thesis endeavours to tackle a long-standing problem in large volume metrol-

ogy. The challenge is to use photogrammetry sensor data to reconstruct the

refractive index map in a 2D plane and in so doing reduce the measurement

uncertainty arising from light refraction in heterogeneous media. From the lit-

erature it is known that sub-millimetre errors in the position of a target cause

significant problems [56, 63, 64, 66]. This chapter will outline a methodology to

reconstruct refractive index maps and will discuss preliminary results using this

method on simulated data. The refractive index map is recovered by solving an

inverse problem and a Bayesian approach, namely the reversible jump Markov

Chain Monte Carlo method (rj-MCMC) [140], is used as the optimisation method
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in the inversion. This recovered refractive index map is then used to discount

the effect of variations in this refractive index field in the positioning of reflector

targets. This reduction in uncertainty in this metrology system will enable this

technology to be used in large volume manufacturing environments for robot pose

calculations. The pose of the robot is its location and orientation, which in this

case, is reported in two dimensions.

The inverse problem will be tackled using five building blocks. To begin with

the heterogeneous spatial domain will be parametrised. Then a fast forward solver

to predict the ray paths is built. An objective function will be defined to measure

the distance between the measured (synthetic) data and this modelled data. A

means of minimising this objective function to reconstruct the refractive index

maps will then be proposed. Finally, this recovered map will be used to produce

an improved prediction of a given target in the spatial domain.

4.1 Parametrisation of The Refractive Index Map

As mentioned in Chapter 1, Voronoi tessellations will be used to parametrise the

refractive index map. The method for generating Voronoi tessellations will be

discussed in Section 4.6. In this case, the Voronoi tessellation will be generated

from a set of P (j) randomly chosen seeds. The Voronoi seed locations are denoted

by x
(j)
p and each Voronoi cell is assigned a single refractive index η

(j)
p , where

p = 1, . . . , P (j). Voronoi tessellations can achieve adaptive and irregular partitions

which in turn produces a low dimensional model (low degrees of freedom) whilst
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affecting large regions with a single parameter perturbation. The map realisation

at iteration j of the model is denoted by m(j). Since the Voronoi seeds are in

two dimensions, they have two co-ordinates and within each Voronoi cell there is

a constant refractive index, hence the dimension (degrees of freedom) of m(j) is

3P (j).

4.2 Modelling the Light Ray Propagation in a Heteroge-

neous Refractive Index Map

For each camera (ck, where k = 1, . . . , C) and retroreflector (ri, where i =

1, . . . , R) the ray tracing algorithm (forward model) will generate an estimated

angle denoted by θk,i with the measured (simulated) angle denoted by θ∗k,i. All

angles are measured anticlockwise relative to the horizontal axis.

Using COMSOL for the forward model would be computationally prohibitive,

would be difficult to automate and embed within the inversion algorithm, and

would lead to the ‘inverse crime’ of using the same forward model as that used

to generate the synthetic data. The Fast Marching Method (FMM) [114, 141] is

used to calculate the ray paths through the Voronoi tessellation. The FMM is a

fast means of calculating time fields, and this will enable the inversion algorithm

to make many forward model calculations and have many model realisations. The

FMM is used as an alternative to Dijkstra’s algorithm [142]. One advantage of

the FMM over Dijsktra’s algorithm is that as the grid size tends to zero, the

FMM converges towards the correct solution.
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Fermat’s Principle states that a light ray travelling between two points will

take the path which takes the least amount of time [73]. Consider the light ray

path between the camera, ck, and the retro-reflector, ri, and then using Fermat’s

principle the time taken, t, for the ray of light following path r(Q), where Q is a

length of the ray measured from a fixed point, is defined by

t =
1

c∞

∫ ri

ck

η(r(Q))dQ, (4.1)

where c∞ is the speed of light in a vacuum, η(r(Q)) is the refractive index

along the path which takes the shortest time between ck and ri, and dQ is a small

displacement along the ray. Following this, the optical path length S between

the camera, ck, and the retro-reflector, ri, is

S =

∫ ri

ck

η(r(Q))dQ, (4.2)

where S = c∞t. Using the calculus of variations

∆S = ∆

∫ ri

ck

η(r(Q))dQ = 0, (4.3)

where ∆ is the change in optical path length, and this means that the path

r(Q) satisfies Fermat’s principle.
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4.2.1 The Fast Marching Method

The mathematics behind the Fast Marching Method (FMM) have been discussed

in Section 1.9, but a brief summary is provided here. However, this section builds

from what was presented in Section 1.9 and puts it in the context of the inverse

problem.

The FMM is used to solve a boundary value problem of the Eikonal equation(

see Equation (1.15))to calculate the travel time field. Once the travel time field

is calculated, the ray that takes the shortest time to travel between the camera

ck and the reflector ri, can be found using Fermat’s Principle of the Shortest

Path. There is a uniform grid with grid side length w, and each intersection

point on the grid is denoted by λx,y. Then the intersection points are classified

into far, narrow band and known and a description of this process is presented

in Section 1.9. Then using this travel time field the optical path which took the

shortest time is found.

The Fast Marching Method code (and the entire inversion algorithm) is writ-

ten in FORTRAN 90 and ran on the University of Strathclyde’s super computer

Archie West. This code was originally developed for the seismology community,

in particular the University of Edinburgh’s School of Geosciences [101, 131]. The

algorithm was then passed on the University of Strathclyde where it was updated

to be used within the field non-destructive testing for flaw detection using ultra-

sonics [90]. Then finally, the algorithm was edited so that it could be used within

this thesis for large volume metrology. Due to this code originally being developed
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for seismology, the algorithm is optimised at large volumes (in the order of km).

This meant that all dimensions within this algorithm had to be scaled by a factor

of 1000. The size of w in the algorithm is 5 m. Using the aforementioned scaling

this yields a grid size of 5 mm. An investigation into grid size and accuracy of

results was carried out. It was found that a grid size within the algorithm of 5

m was the smallest grid size which did not cause the code to crash. It is for this

reason that the grid size within the algorithm is 5 m.

4.3 Objective function between the Modelled and Mea-

sured Data

Photogrammetry systems output the angles, θ∗k,i, between each camera, ck, and

the objects it is tracking, ri. The likelihood function which accounts for the

misfit between the observed data, θ∗k,i, and the data arising from the model θ
(j)
k,i ,

is denoted by

L = exp

−γ(j)
(
η

(j)
p , x

(j)
p

)
(ζ(j))

2

 . (4.4)

where ζ(j) is the noise parameter and γ(j) (measured in degrees) is the objective

function (misfit) at iteration j given by

γ(j)
(
η(j)
p , x(j)

p

)
=

∑Nrays

(k,i)∈Φ

(∣∣∣θ∗k,i − θ(j)
k,i

(
η

(j)
p , x

(j)
p

)∣∣∣)2

Nrays

. (4.5)
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The set of camera-reflector pairs is denoted by Φ, where Φ : C→ R maps the

set of cameras C = {c1, c2, . . . cC} to the set of reflectors R = {r1, r2, . . . rR} and

Nrays = |Φ|.

Given the discretised ray-path the angle θ
(j)
k,i is calculated using what will be

referred to in subsequent chapters as the δ method. To begin with, the agreement

between the known angle θ∗k,i and the estimated angle at model iteration zero, θ
(0)
k,i

(calculated from the FMM applied to the known refractive index material map)

will be examined. The angle, θ
(0)
k,i , was calculated by finding the gradient between

the starting point of the ray (at the camera ck) and each subsequent point of the

discretised ray in the first δ % of the ray-points. The mean of these gradients was

found for each ray and this was converted into an angle (measured in degrees),

where 0 ≤ θ
(0)
k,i ≤ 360. The results of this are shown in Figure 4.1 for the cases

where δ = 10, 30, 50, 70, 90 and 100 % have been plotted versus the known angle

θ∗k,i. The figures also include the Pearson correlation coefficient χ and it can be

seen that as δ increased so too did χ. The outliers in Figure 4.1 are due to the

fact that 0 ≤ θ∗k,i, θ
(0)
k,i ≥ 360. If for example θ∗k,i is 356 ◦ and θ

(0)
k,i is 5 ◦, then

due to directional statistics this leads to large errors which is the reason for these

outliers. Based on these investigations and to reduce the number of outliers, the

most robust algorithm was to use all the points of the ray to calculate θ
(0)
k,i .
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Figure 4.1: Scatter-plots of θ
(0)
k,i against θ∗k,i when δ = 10 %, 30 %, 50 % , 70 %, 90 %

and 100 %, where θ∗k,i is the true angle from the camera (from synthetic data) to the

receiver and θ
(0)
k,i is the estimated angle from the FMM. The correlation coefficient is

given for each percentage of the FMM ray used, δ, and the red line denotes θ
(0)
k,i= θ∗k,i.

In addition, the average relative error in the camera-reflector ray angles at

iteration zero (of the inversion algorithm) is denoted by ξ(0) where

ξ(0) =

(
Nrays∑
k,i=1

|θ∗k,i − θ
(0)
k,i |/θ

∗
k,i

)
/Nrays (4.6)

where k, i ∈ Φ, θ∗k,i is the measured angle and θ
(0)
k,i is the angle estimated

by the FMM before the first iteration of the inversion algorithm. Since the in-

version algorithm is not involved in this metric, then it is independent of the

noise parameter ζ(0). A series of test refractive index maps (denoted by m∗)

were created in COMSOL. In this case m∗ takes the form of a Voronoi tessella-

tion with ten Voronoi cells. The positions of the Voronoi seeds, x∗p, were equal
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to those in Figure 4.2. The refractive indices, η∗p, were selected from the set

{1.005, 1.0075, 1.01, . . . , 1.0275} and this equates to a refractive index change of

2.2 % relative to the lowest refractive index value, more details of this refractive

index map can be found in Section 4.7.

The ξ(0) value when the known map m∗ was used was found to be 0.0575

and when there was a homogeneous refractive index map, mh, ξ(0) was found

to be 0.0583. As expected the known refractive index map produced a lower

ξ(0) value but not much lower. This is due to the fact that the refractive index

map only has changes of 2.2 % and will therefore not lead to large refractive

effects and hence large changes in ξ(0). This process was repeated with a series of

randomly chosen refractive index maps which could take an unrestricted number

of Voronoi cells, but the refractive indices were restricted to the range 1.005 to

1.0275. One hundred samples were collected and a histogram of the values is

shown in Figure 4.3. From this figure, it can be seen that there are cases where a

random refractive index map produces a lower ξ(0) value than that arising from

the known map m∗. This can be attributed to the inversion process using a

different ray tracing algorithm (FMM) than COMSOL. It is entirely possible for

a refractive index map with a low ξ(0) value to produce an improvement in the

uncertainty of the position an object, and that is deemed an acceptable result

in this thesis. It should be observed that the value from the known map occurs

around the average.
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Figure 4.2: This plot shows the Voronoi tessellation that was created in COMSOL
with the LiveLink functionality. The black squares within each cell are the set of seeds
P (0), the lines are the edges of the Voronoi cells and a bounding box (greyed out area)
of 40 m in the horizontal and 60 m in the vertical has been created with the lower left
corner positioned at the origin.

Figure 4.3: Histogram of the average relative error in the angles, ξ(0), (Equation
(4.6)) when a random Voronoi tessellation is used and the sample size is 100.
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4.4 Recovery of the Refractive Index Map via a Bayesian

Approach

The reversible jump Markov Chain Monte Carlo (rj-MCMC) [140] method was

employed for the optimisation step. The reversible jump variant of the MCMC

was chosen to allow there to be a transdimensional aspect to the model. This

means that the number of Voronoi seeds is not fixed throughout the model and

allows more flexibility. The rj-MCMC is a stochastic iterative process and is

used to create samples from the posterior distribution; the unknown probabil-

ity distribution describing the likelihood of each Voronoi tessellation being the

reconstructed refractive index map. The approach relies on Bayes’ Theorem [125]

p
(
m(j) | θ∗k,i

)
=
p
(
θ∗k,i | m(j)

)
p
(
m(j)

)
p
(
θ∗k,i
) , (4.7)

where p
(
m(j)

)
is a probability density function representing the prior knowl-

edge of the model m(j), the likelihood of observing the data θ∗k,i given a particular

model m(j) is p
(
θ∗k,i | m(j)

)
, the posterior distribution which describes the proba-

bility of m(j) being the refractive index map m∗ given the data θ∗k,i is p
(
m(j) | θ∗k,i

)
and p

(
θ∗k,i
)

is a probability density function representing observing the known an-

gles θ∗k,i. This then leads to

p
(
m(j) | θ∗k,i

)
∝ p

(
θ∗k,i | m(j)

)
p
(
m(j)

)
. (4.8)
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Notice that p
(
θ∗k,i
)

has been neglected in Equation (4.8) as it is a constant

and serves as a normalising factor. The least squares misfit function can then be

used to form the likelihood model

p
(
θ∗k,i | m(j)

)
∝ exp

−γ(j)
(
η

(j)
p , x

(j)
p

)
(ζ(j))

2

 , (4.9)

where ζ(j) is the system noise parameter at model iteration j. There is no

noise at iteration j = 0, so it is not part of the initial model m∗.

The initial prior probability density function p
(
m(0)

)
is derived from any in-

formation which is known a priori, such as the dimensions of the space and the

likely range of refractive indices.

At each iteration the Voronoi tessellation model of the refractive index map,

m(j) is perturbed to make a new model m(j+1). This can be done in one of five

ways: cell birth, cell death, seed move, cell refractive index change or system

noise change [100]. There are of course more ways to perturb the model, but this

algorithm only uses the aforementioned perturbations. The cell birth step is when

an additional Voronoi cell seed is added to the model. The cell death step is the

opposite of the birth step and this is where a Voronoi cell seed is removed from

the current model. The cell move step is where a randomly selected Voronoi seed

x
(j)
p is moved. The refractive index change step is where a refractive index, η

(j)
p , is

changed and lastly the random noise change is when the value of ζ(j) is changed in

Equation (4.5). A change in ζ(j) is the only perturbation which does not require
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the rays to be re-traced through the new model m(j). At each iteration of the

model a number between 1 and 5 is drawn from a uniform distribution and the

outcome determines what perturbation step is taken. When the user is setting

up the algorithm in the first instance the range of Voronoi seeds is given as an

input. In this thesis, the smallest number of Voronoi seeds that m(j) could have

was 5 and the upper limit of the range was 500. As a result of this condition

if the algorithm is doing the same perturbation repeatedly this initial condition

prohibits the algorithm from getting stuck.

Since the rj-MCMC is an iterative process, at each iteration the algorithm

decides whether or not to replace the existing model m(j) with the new perturbed

one, m(j+1), using the Metropolis-Hastings criterion [127, 128]. The probability

of acceptance depends on the ratio of the probabilities arising from the posterior

distributions of m(j) and m(j+1) via

p (accept) = min

(
1,
p
(
m(j+1) | θ∗k,i

)
p
(
m(j) | θ∗k,i

) × q
(
m(j) | m(j+1)

)
q (m(j+1) | m(j))

)
(4.10)

where in general terms q = 1−p, that is, q
(
m(j) | m(j+1)

)
= 1−p

(
m(j) | m(j+1)

)
.

In this case, q
(
m(j) | m(j+1)

)
/q
(
m(j+1) | m(j)

)
is the ratio of the proposal distri-

butions. Here q
(
m(j+1) | m(j)

)
is the probability of moving to model m(j+1) from

m(j), this is called the forward step, whilst q
(
m(j) | m(j+1)

)
is the reverse step.

For a transdimensional move, that is, cell birth or cell death moves, the ratio

of the proposal distributions is equal to 1 [90, 100]. This method has been im-

plemented by researchers in the fields of geosciences and non-destructive testing
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[90, 101, 131]. The first set of iterations of the model (of the Markov chain) is

referred to as the burn-in period. The burn-in period is required to allow the

Markov chain to converge to the estimated posterior distribution from which the

samples are taken.

From the literature an acceptance rate after the burn-in period of between 25

% and 50 % is desired [95, 143]. However, since this is the first application of this

technique to recovering refractive index maps, it is not clear which acceptance

rate will be optimal. It can be seen that as the value of ζ(j) increases in Equation

(4.9) then p
(
θ∗k,i | m(j)

)
will tend to one, and, as the ζ(j) value decreases towards

zero, p
(
θ∗k,i | m(j)

)
will tend to zero. Hence ζ(j) can be changed to alter the prob-

ability of accepting an inferior model (a higher objective function value). This

is important as, due to the many local minima present in the objective function

hyper-surface, a global optimisation method is required that has a probability

of escaping from a local minimum as the method iterates. If the posterior value

of the perturbed model, m(j+1), is greater than the value in the current model

then the new model is always accepted according to Equation (4.10). However,

if the posterior value is lower it is accepted with probability equal to the ratio of

the posteriors. So the noise parameter is automatically adjusted as the inversion

algorithm iterates to achieve an optimal acceptance rate.

The main output of the inversion process is a reconstructed refractive index

map which can be estimated by the mean, median or the maximum-a-posteriori

of the posterior distribution on refractive index at each point in the domain. The

maximum-a-posteriori (MAP) is in fact the mode of the posterior distribution.
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One of the advantages of using a probabilistic method is that higher moments of

the posterior distribution of refractive index maps can automatically be accessed

and so one can observe where the method is struggling to find an optimal solution

(high variance). In addition, statements can also be made about the level of

uncertainty associated with any metrology related statements.

4.5 Quantifying the Measurement Uncertainty

To quantify whether or not the recovered refractive index map produced a better

estimate of objects of interest (s∗) than the homogeneous refractive index map, a

reflector in a fixed, known position s∗, was introduced into the domain to mimic

a robot or a component to be worked upon. Let the error in the position of

the reflector when the domain is assumed homogeneous be denoted by εh, where

εh =
∥∥s∗ − ŝh(θ∗k,s)∥∥2

and ŝh(θ
∗
k,s) is the estimated position when the domain

is assumed to be homogeneous; that is, the rays are assumed to be straight.

The position of the object can be estimated using a recovered refractive index

map (either the mean, median or MAP of the posterior distribution), which is

denoted by m̂. The error in position using the recovered map is denoted by εα

where εα =
∥∥s∗ − ŝα(θ∗k,s, m̂)

∥∥, where ŝα(θ∗k,s, m̂) is the estimated position of the

reflector; here map m̂ is used and so refractive effects are included. In addition

the relative improvement of the error in the position of the object of interest

when compared to the homogeneous case is defined by εimp = (εh − εα)/εh. The

goal of this work is therefore to find a map such that εα � εh and also to reduce
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the uncertainty, that is, V(εα) � V(εh), where V is the error variance, which is

calculated by taking the Euclidean distances from each of the line intersections

to the true position of the reflector, s∗ and calculating their variance. This is

implemented in COMSOL and MATLAB, and the method is discussed at the

end of this Section. The relative improvement of the variance when compared to

the homogeneous case is defined to be Vimp = (V(εh)− V(εα))/V(εh).

One limitation of COMSOL is that it is not possible to define the start and

the end point of a ray, as this is an initial value problem; details of this and the

equations governing COMSOL can be found in Equation (1.12) and Equation

(1.14). Instead the start point, the initial directional vector and the length of

the ray are prescribed. The following method for generating camera and reflector

positions was devised. This starts with a known refractive index map m∗ as

shown in Figure 4.4 (creation of the known refractive index map m∗ is discussed

in Section 4.6).It should be noted that COMSOL is being used in an application

that it was never designed to be used for, and as a result, these limitations are

due to the application of the software in this particular field of study. From a

prescribed spatial position s∗, C rays were released; each with a distinct direction

but the same length. The end point of each ray is then used to define the camera

positions ck. The angles θ∗k,s that each ray from s∗ enters the camera ck was then

recorded.

In order to calculate ŝh, a homogeneous spatial domain was then created in

COMSOL (the mean refractive index of the above map was chosen but any value

will suffice of course). Then from each camera ck a single straight ray with angle
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θ∗k,s was released; the rays propagate until they reach the edge of the domain.

The set of discrete points of each ray were input into MATLAB (version 2017b)

[144]. Photogrammetry systems use the method of triangulation to estimate the

position of an object in space [39, 48] (see Figure 2.2). All the intersection points

of these rays were obtained and then the centre of mass of the resulting point

cloud was found and this produced an estimate of ŝh. This process was then

repeated for the recovered refractive index map (typically the mean, or median,

or mode of the posterior distribution) and an estimate for the reflector position

ŝα was found.

Figure 4.4: A refractive index map in the form of a Voronoi tessellation where the
colours represent different refractive index values (in the range 1.005 to 1.0275) in a
region of 40 m by 60 m. There are C=20 rays propagating from a known position of a
reflector which is mimicking a robot denoted by s∗ and positioned at (23, 37) m. These
rays have equal length and the small black circles show the end point of each ray which
gives the camera positions ck.
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4.6 Generation of Simulated Data

A series of test refractive index maps (denoted by m∗) were created in COMSOL

(numerical experiments) A-D; a summary of these can be found in Table 4.6.

The typical domain size of each numerical experiment was industrial scale, of the

order of 40 m in the horizontal direction and 60 m in the vertical direction and

attention was restricted to the 2D horizontal plane case. The generation of these

numerical experiments in COMSOL will now be discussed.

A bounding box was created using the Rectangle command in the Geometry

tab in COMSOL; with the bottom left corner positioned at the origin. In nu-

merical experiments A and B, MATLAB was used to generate a random set of

Voronoi seeds x
(0)
p and corresponding refractive indices η

(0)
p and the co-ordinates

of the vertices of each Voronoi cell was output. Due to the computational pro-

cessing power of the COMSOL Livelink functionality, this method can only be

used when the number of Voronoi seeds, P , is small (less than 50) and an alter-

native method for generating Voronoi tessellations with a large number of seeds

is used (see numerical experiment C). The COMSOL Livelink functionality is

an additional feature of COMSOL which allows the user to output COMSOL

files (.mph) as MATLAB files and edit the files within MATLAB and then save

as a COMSOL file. The Livelink functionality does not have the same level of

technical support and online documentation as standard COMSOL, so there is

a steep learning curve. For numerical experiment A and B, the positions of the

seeds, x
(0)
p , were plotted in COMSOL using the LiveLink functionality. This was
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achieved by programming a loop in MATLAB which adds P Points (where P

is the number of Voronoi seeds) to the COMSOL Model (the function Points is

in the Geometry tab of COMSOL). The positions of the seeds are shown by the

small black squares in Figure 4.2. To add the vertices of the Voronoi tessellation

to the COMSOL model a similar method is used. Using the LiveLink function-

ality another loop is added to the MATLAB code which adds n Bezier polygons

(defined in the Geometry settings of the code) to the model, where n is the num-

ber of Voronoi vertices. When the Voronoi tessellation is created in MATLAB

the Cartesian co-ordinates of the vertices are stored in two n × 2 matrices. The

code works by looping through these vertices and inserting them into the Poly-

gon Segments node of the Bezier Polygon tab. The material properties of each

Voronoi cell are then assigned a constant refractive index η
(0)
p .

As already mentioned in Section 4.5 there are ck cameras, and the light rays

propagate from the reflector positioned at s∗ through the known geometry, m∗,

with the angle that the light ray leaves the reflector s∗ being denoted by θ∗s,k. The

end point of each of these rays is a camera position ck, and these are shown by

the small black circles in Figure 4.4. An algorithm was written which estimated

the initial ray angle from each camera ck to the known robot’s position s∗ due

to refraction and hence θ∗s,k 6= θ∗k,s typically. The last two co-ordinates of the ray

path (the points closest to the camera) and the position of the camera ck are used

to calculate angle θ∗k,s (the angle from the camera ck to the reflector mimicking

the robot s∗). The first step to calculate this was to export the discrete ray
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points of the light ray from ck to s∗. Then the gradient between the last two

co-ordinates along the ray (nearest the camera) were calculated. This gradient

was then converted to an angle such that 0 ◦ ≤ θ∗k,s ≤ 360 ◦.

4.7 Numerical Experiment A

In a typical laboratory, minute refractive index changes can cause sub-millimetre

errors in the position of an object of interest which can lead to significant problems

[56, 63, 64, 66]. However, before embarking on this weakly heterogeneous case,

it is instructive to begin with a more strongly heterogeneous refractive index

change. This will allow the methodology to be thoroughly analysed and will be

less challenging in demonstrating an improvement in the reflector position error

(εh), since this error will be more pronounced. Numerical Experiment A will now

be formally introduced.

The spatial domain of Numerical Experiment A was defined by a Voronoi

tessellation with ten Voronoi cells. This spatial domain was chosen as it is a

relatively simple case which can be exploited for initial testing. The subsequent

Numerical Experiments have more complex spatial domains. The positions of the

Voronoi seeds, x∗p, were equal to those in Figure 4.2. The refractive indices, η∗p,

were selected from the set {1.005, 1.0075, 1.01, . . . , 1.0275} and this equates to a

refractive index change of 2.2 %. These refractive indices were chosen as they are

commensurate with the refractive index of Perspex. Experimentation of light-rays

travelling through a series Perspex blocks was scheduled to be carried out during
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the project because Perspex plastic has a higher refractive index than air and

this would allow refraction effects to be observed with the naked eye. However

due to time constraints and prioritisation these experiments never materialised.

The refractive indices were randomly assigned to each Voronoi cell. The locations

of the cameras ck were found by emitting rays of fixed length from the known

retroreflector position s∗ with initial angles θ∗s,k, k = 1, . . . , C. The end point

of the rays yielded the camera positions ck. In this numerical experiment (and

all subsequent ones) the known position of s∗ was (23, 37) m and C = 20 rays

were released from s∗. As in Section 4.5, the angles that the rays entered each

camera were calculated and denoted by θ∗k,s (recall that θ∗k,s does not equal θ∗s,k

due to refraction effects and because all angles are measured anticlockwise from

the horizontal axis, see Figure 4.5). When the known refractive index map, m∗,

was used in the ray tracing algorithm in COMSOL the estimated position of the

target was denoted as ŝ∗. From Figure 4.6a it can be seen that the error in ŝ∗ is

negligible; in-fact the black dot showing its estimated position is the only visible

point on the plot. The plot has been enlarged in Figure 4.6b to show the scale of

the error; the green dot shows the actual position of the reflector and the black

dot is the estimated position of the reflector. In fact, the error in this positioning

is ε∗ = 1.34×10−6 mm and the variance is V(ε∗) = 3.74×10−14 mm. The variance

is calculated by taking the Euclidean distances from each of the line intersections

(the blue dots in Figure 4.6b) to the true position of the reflector, s∗ (green

dot) and calculating their variance. This result gives confidence in COMSOL as
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it shows that if the known map m∗ was precisely recovered then the error, εα,

would be negligible. In fact, from the literature not many systems can measure

to better than 1:1,000,000 of the working volume.

As described in Section 4.5, the light-rays were then traced from ck with initial

angle θ∗k,s but this time the refractive index map was assumed to be homogeneous

with a constant refractive index of the mean of the refractive indices in the region

of interest. These ray-paths are illustrated in Figure 4.7 (a), where it can be seen

that the ray paths appear to coalesce at the point s∗. However, it is not until

the image is enlarged as in Figure 4.7 (b) that the issue with assuming that the

spatial domain is homogeneous is observed. The ray co-ordinates were output and

taken into MATLAB and using the method of triangulation an estimate for the

Figure 4.5: Schematic showing θ∗s,k, the angle from the robot at s∗ to the camera at
ck and θ∗k,s, the angle from camera ck to s∗, as shown in this schematic θ∗k,s 6= θ∗s,k
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(a)

(b)

Figure 4.6: (a) Numerical Experiment A: This plot shows the results of the triangu-
lation method when the light-rays are traced through the known refractive index map,
m∗. The error is so small that the true position of the receiver and the points from
the triangulation cannot be seen. (b) Numerical Experiment A: This plot shows the
results of the triangulation method when the light-rays were traced through the known
refractive index map, m∗. The intersection points of the light-rays are shown by the
blue points, the estimated position of the reflector (ŝ∗ is shown by the black dot and
the true position (s∗) is shown by the green point.
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position of the reflector (ŝh) was found. The cluster of intersection points is shown

in Figure 4.8 (blue points) along with the true position of the reflector s∗ (shown

by the green point) and the estimated position of the reflector ŝh (illustrated by

the black point). In numerical experiment A it was found that the positional

error εh was 73.3 mm and V(εh) was 33.9 mm, and these values arise solely from

refraction effects caused by the thermal fluctuations in the domain.

It will prove instructive to derive some quantitative measures that charac-

terise the convergence of the inversion algorithm and allow a comparison between

COMSOL and the FMM.
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Figure 4.7: Numerical Experiment A: (a) Image showing the straight rays propagating
through a homogeneous refractive index map from cameras ck with initial angle θ∗k,s
towards the retroreflector at known position s∗. (b) Shows an enlarged version of (a)
to show that the rays do not all intersect at a single point with this homogeneous
refractive index map assumption.
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Figure 4.8: Numerical Experiment A: This scatter-plot illustrates the cluster of light-
ray intersection points when the light-rays are traced from cameras ck with initial
angle θ∗s,k through a homogeneous refractive index map. The mean of the light-ray
intersection points yields ŝh (illustrated by the black circle). The true position of the
object of interest (s∗) is shown by the green circle.

4.7.1 Discussion of the optimal method to calculate the

estimate of the initial ray-angle from the FMM

The sensitivity of the refractive index map to changes in its model parameters

(Voronoi cell seed positions and refractive index in each cell) also be examined.

Denote the mean relative difference between the initial refractive index material

map and the known refractive index map at iteration zero by κ(0), where

κ(0) =

(
VW∑

v=1,w=1

|m∗vw −m(0)
vw|

)
/

(
VW∑

v=1,w=1

m∗vm

)
(4.11)
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where V andW are the number of pixels in the horizontal and vertical direction

respectively of the discretised refractive index map. Recall that the refractive

index changes in numerical experiment A only have a 2.2 % difference. It will be

seen that the recovered maps can have a larger change. For numerical experiment

A the range of refractive index values for the reconstructed maps expressed as a

percentage of the mean value was 2.7 %.

The known map, m∗, yields a κ(0) value of zero and the uniform refractive index

map (homogeneous refractive index map with constant refractive index equal to

the mean refractive index) gives a κ(0) value of 0.7 %. A histogram of κ(0) values

is shown in Figure 4.9 arising from 100 randomly chosen Voronoi maps; note that

the values have been converted to a percentage. From Figure 4.9 it can be seen

that κ(0) is left skewed with a maximum at 1.05 % and a peak at 0.95 %.

Figure 4.9: Histogram of the mean relative refractive index map difference, κ(0),
(Equation (4.11)) when a random Voronoi tessellation is used and there is a sample
size of 100.
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Table 4.1: Table detailing the differences between the average relative error in the
angles at iteration zero, mean difference between the refractive index material map and
the error and variance of the position of the reflector mimicking the robot s∗, when
the known refractive index map m∗ and the homogeneous refractive index map mh are
compared.

ξ(0) κ(0) ε V

m∗ 0.0575 0 1.34× 10−6 mm 3.74 ×10−14 mm
mh 0.0583 0.007 73.3 mm 32.9 mm

Now that a numerical experiment with a significantly large positional error

(εh = 73.33 mm) has been generated it can be used to test and develop the re-

fractive index map recovery process. For good coverage of the refractive index

map a set of C = 20 cameras were positioned around the reflector s∗. As men-

tioned previously, COMSOL’s ray tracing software does not allow the stipulation

of the start and end point of a ray. Instead one specifies the starting point of

a ray and its initial angle. Therefore to generate a set of camera-reflector pair

ray-paths, it is more straightforward to have a distinct set of reflectors for each

camera (here four are used) and hence there are in total R = 4C = 80 reflectors

(and so here Nrays = 80 too). Another limitation of COMSOL is that all rays

which propagate in the domain must have the same length, and the ray lengths

are such that all of the R rays remain within the bounded spatial domain (in

this case all the rays have length 24 m). This optical path length also ensures

that all light rays travel through at least two Voronoi cells. The ray-paths which

are simulated in COMSOL are shown by the black lines in Figure 4.10, and from

this it can be seen that there is good coverage throughout the domain. The

light rays leave camera ck with initial angle θ∗k,i. In a practical implementation
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of our methodology the positions of the cameras and the reflectors used for this

calibration stage would be known, and the measured angles would be given by

the photogrammetry equipment. Hence, θ∗k,i is used as one of the inputs for the

inversion process, along with the position of the cameras and receivers. In a

practical situation this would be the calibration stage with known positions for

the cameras and reflector. It is assumed that the cameras would remain in a

fixed position throughout experimentation. This is the case in the University of

Strathclyde’s laboratory as the VICON cameras are fixed to a scaffolding (as in

[56]), and only 2 of the cameras can be moved onto tripods (as done in the experi-

ments in Chapter 3). To begin with, the known refractive index map m∗ was used

as the prior; that is the zeroth refractive index map realisation of the rj-MCMC

inversion algorithm. Since the rj-MCMC forward model (Fast Marching Method)

is a different ray tracing method to that in COMSOL, this first exercise provides

another quantitative assessment of the difference between these two methods as

captured by the objective function given by Equation (4.5). Ultimately, a uni-

form refractive index map (so essentially no prior information) will be used as

this will be the case in the practical deployment of the methodology.

To allow information to be gathered on the light-rays when they travel through

the initial prior refractive index map, the inversion was set to run for zero itera-

tions. The ray-paths produced by the Fast Marching Method were then plotted

to check for good agreement with those produced by COMSOL. The ray-paths

are plotted in Figure 4.11 and a subset of their light ray paths are compared in

Figure 4.12. It can be seen that there is good agreement between these ray-paths
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Figure 4.10: Schematic showing the light rays propagating through the known refrac-
tive index map m∗ from the cameras ck, to the reflectors ri, where C=20 and R = 80.
Four rays propagate from each camera.

Figure 4.11: A plot showing the ray-paths produced by the Fast Marching Method
when the rays are traced from camera ck to receiver ri.
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Figure 4.12: Comparing a subset of the ray-paths produced by the FMM (blue dash
line) shown in Figure 4.11 and COMSOL (black solid line) shown in Figure 4.10 when
the rays are traced from camera ck to receiver ri.

(Figure 4.12) and those produced in Figure 4.10. However, Figure 4.13 shows a

subset of light-rays with poor agreement. The rays in this Figure exhibit bowing

of the ray-path and ray-wriggling. This is one of the reasons why δ was chosen to

use 100 % to calculate the angle θk,i. This plot shows that it is possible for the

light-rays to have trajectories which would have never been observed in a real life

setting. In addition, these light-ray trajectories do not satisfy Fermat’s Principle

of the Shortest Path. The reasoning behind this poor agreement is unclear. One

reason for this could be that this algorithm was not originally designed for the

level of accuracy required for to be applied in a high precision metrology setting.

One possible reason could have also been the grid size that the ray is propagating

over, however an investigation into this found that when a small grid size was
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Figure 4.13: Figure showing the ray paths with poor agreement between the FMM
(blue dash line) and COMSOL (black solid line) when the rays are traced from camera
ck to receiver ri.

used these ray-paths were still observed. In Chapter 5, we look at designing a

bespoke method which does not use the ray-tracing algorithm. Aside from not al-

ways giving good results, it is also the most computationally draining component

of the algorithm.
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4.7.2 Investigation into perturbing the initial refractive

index index map to assess the sensitivity of the ob-

jective function

The advantage of using a Voronoi tessellation as the refractive index map to be

recovered is that the algorithm can be started from κ(0) = 0 by choosing the initial

refractive index map m(0) = m∗. That is, by making the prior refractive index

map m(0) of the model the known refractive index map m∗. Another advantage

is that a perturbed prior map can be examined and this allows the sensitivity of

the objective function to be examined.

Firstly a perturbation in the position of the Voronoi seeds was investigated.

Each seed position was perturbed by m(0) = m∗(x∗p+ε(Lx/2) N(0,1), y∗p +ε(Ly/2)

N(0,1), η∗p) where Lx and Ly are the domain lengths in the horizontal and vertical

direction respectively and ε ∈ [0, 1]. As ε increased more seed positions lay outside

of the domain and for these seeds the known value x∗p was used. The results of

this exercise are shown in Figure 4.14 by the blue line. From this plot it can

be seen that there is not much variation in the objective function value and it

does not go below the unperturbed objective function value at ε = 0. One thing

to note is that the known refractive index map m∗ does not yield a objective

function value of 0. The reason for this is simply that θ
(0)
k,i does not equal θ∗k,i due

to the different ray-tracing techniques used between COMSOL and the FMM.

The fluctuations in the plot are due in part to the fact that as ε increases the

seed positions are being moved by a higher percentage causing more of them to
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lie outside of the domain. When this occurs the known seed positions are used for

those seeds which is why the objective function value can decrease. In addition,

at each ε, only a single random realisation was used and to get a more accurate

picture a larger number of realisations should be averaged over.

Following on from this, an assessment of the objective function’s sensitivity to

refractive index changes in each Voronoi cell was also investigated. The refractive

indices were perturbed by m(0) = m∗(x∗p, η
∗
p + (ηrange/2)εN(0, 1)), where ηrange is

the range of values which the refractive index can take. As in the previous case,

when the value for the refractive index lies outside the pre-specified range of

refractive index values the known refractive index value η∗p is used.

The results of these perturbations are shown in Figure 4.14 by the red line and

from this it can be seen that there is not a defining trend in the data. There is

a noticeable peak, the reason for which could be that this is the highest ε value

which results in all the refractive indices changing.

Finally a perturbation of both the cell seed position and the refractive indices

was considered. The perturbation is described by m(0) = m∗(x∗p+ε(Lx/2)N(0, 1),

y∗p + ε(Ly/2)N(0, 1), η∗p + (ηrange/2) εN(0, 1)). The results of this are shown in

Figure 4.14 by the green line.

It can be seen from Figure 4.14 that the misfit value (γ) is between 5.6 and

5.85 ◦. This misfit in an industrial setting is extremely large because as the

measured distances increases the error will also increase due to the nature of
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Figure 4.14: Plot showing how perturbations of the Voronoi cell seed positions x∗p
(blue line), the refractive indices in each cell η∗p (red line) and the two of these combined
(green line) affect the objective function (misfit) described by Equation (4.5) at iteration
zero.

angles. However these misfit values may not be observed in an industrial setting

due to the strongly heterogeneous nature of m∗. Numerical experiments B-D will

look at industrially relevant test cases.

4.7.3 Numerical Experiment A: The Inversion Process

For each numerical experiment, the inversion process ran for 100,000 iterations

(realisations) with a burn-in period of 20,000. There are many inputs into the

algorithm, most notably, the position of the cameras, ck, the position of the

reflectors ri, the angle between these θ∗k,i, a mapping, Φ, detailing which camera

sees which reflector, the range of refractive indices the model can choose for each

Voronoi cell at each perturbation and the range of the number of Voronoi cells for

116



4.

the model (with the lowest value always set to 5 Voronoi cells). The algorithm

naturally looks for the smallest number of Voronoi cells to represent the map,

and this was already embedded into the code. This method of using the simplest

model is referred to as natural parsimony. It is also possible to prescribe an initial

refractive index map (prior) for each inversion which takes the form of a Voronoi

tessellation. In this thesis three choices for the initial map were trialled: the

known refractive index map m∗, a uniform refractive index map and a random

refractive index map.

In the case of the known and uniform priors, their corresponding input files

are expressed as the seed positions of the Voronoi tessellation and the velocity in

each cell. As mentioned previously this code was initially developed within the

seismology community. Since these researchers typically work with ultrasound

rays as opposed to light-rays they are able to work in velocities. For this reason

all refractive indices are expressed as velocity within the code by using the fol-

lowing result: η = c∞/c where η is the refractive index, c∞ is the speed of light

in a vacuum and c is velocity in media. However, this equation yields velocities

which are far too large and so the resultant velocity is scaled down by a factor

of 1000. Alternatively, c∞ can be scaled down by this factor prior to the calcula-

tion. For each numerical experiment it is assumed that the uniform prior has the

same number of Voronoi cells as the known refractive index map, m∗. For the

random refractive index map the algorithm randomly chooses an initial Voronoi
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where the number of Voronoi seeds ,P , is somewhere within the specified range

mentioned above. Each numerical experiment was repeated three times to allow

the algorithm to start from each of the priors mentioned above.

To produce a single map to enable an assessment of how well the inversion

has worked a single refractive index map is required. This can take three forms:

the mean, the median or the maximum-a-posteriori of the posterior distribution.

At each iteration j of the inversion the corresponding Voronoi tessellation is

stored within the algorithm and once the inversion is finished the mean, median

and MAP value of each pixel in the refractive index map is calculated over j

realisations and these values produce the recovered refractive index maps. In

addition to these recovered maps the inversion process also outputs the posterior

distribution of the noise parameter, ζ(j), the number of Voronoi cells at each

iteration P (j), the objective function γ(j) and material map difference κ(j).

4.7.4 Numerical Experiment A: Results

To begin with the results for the case where the known map is used as the initial

Voronoi map m(0) prior will be discussed. The objective function, γ(j) (Equation

(4.5)) is shown in Figure 4.15. From this plot it can be seen for the first iterations

the objective function is relatively low (around 0.075 degrees) then after time it

proceeds to oscillate with a central value of approximately 0.175 degrees.
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The mean of the posterior, the median of the posterior and the maximum-a-

posteriori of the posterior distribution recovered refractive index maps are shown

in Figure 4.16, along with the true refractive index map m∗. Generally speaking

the recovered refractive index map for the median, mean and MAP of the sampled

refractive index map posterior distribution show no resemblance to m∗; in fact

they look very homogeneous. In order to quantitatively assess the material map

agreement and decide which map to use for estimating the position of the robot,

the material map errors, κmean, κmedian and κmax were found for the respective

recovered refractive index maps, where κ is the relative change between the known

map m∗ and the recovered map. It was found that κmedian (see Equation (4.11))

was 0.70 %, κmean was 0.71 % and κmax was 0.95 %. Therefore, in this instance

the median of the posterior recovered refractive index map was chosen as the

optimal recovered refractive index map.

The median recovered refractive index map was taken into COMSOL using

the Interpolation option in the Functions tab of the Global definitions menu.

Following this, the rays were released from positions ck with angle θ∗k,s and the

co-ordinates of the ray paths were stored. Using the aforementioned triangulation

method (see Section 4.5) the value of ŝα was found and the corresponding εα

value. The intersection points of the light-rays are depicted by the blue dots in

the scatter-plot shown in Figure 4.17, and so too are ŝα (black dot) and s∗ (green

dot). After finding the centre of mass of all the intersection points the error in

the position was found to be εα = 33.6 mm which gives an improvement εimp
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Figure 4.15: Numerical Experiment A: Objective function (misfit) γ(j) (Equation
(4.5)) when the inversion was set to run for 100,000 iterations with a burn-in period of
20,000, where the known refractive index map, m∗, was used as the prior.

value of 54 %. The variance, V(εα) was found to be 28.5 mm which gives an

improvement Vimp value of 16 % in uncertainty compared to the homogeneous

case (see Figure 4.8).

The inversion process was repeated and all values were kept constant aside

from the prior. In this instance, the prior refractive index map was that of a

uniform refractive index map with a constant refractive index of the mean of the

known refractive index map m∗. The inversion algorithm again ran for 100,000

iterations and had a burn-in of 20,000 iterations. The objective function, γ(j) for

this particular numerical experiment is shown in Figure 4.18. From this plot it

can be seen that for the first iterations the objective function is low around 0.075
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Figure 4.16: Numerical Experiment A: known refractive index map as prior. Top
Left: Known refractive index map m∗ Top Right: mean of the sampled refractive index
map posterior, Bottom Left: median of the sampled refractive index map posterior, (d)
maximum-a-posteriori of the sampled refractive index map posterior distribution.

degrees, which is very close to the γ(0) value when m∗ is used as the initial prior.

Then after time it proceeds to oscillate with a central value of approximately

0.175 degrees.

As in the case where the known refractive index map was used as the initial

prior, the median recovered refractive index map (see Figure 4.19) had a κmedian

value of 0.70 % (κmean was 0.71 % and κmax was 1.02%). Using the triangulation

method an estimate for ŝα was found and the results of the triangulation method

are shown in Figure 4.20. The error in the estimated position εα was 39.4 mm

121



4.

Figure 4.17: Numerical Experiment A: This plot shows the results of the triangulation
method when the light-rays are traced through the recovered refractive index map
shown in Figure 4.16 (c). The intersection points of the light-rays are shown by the
blue points, the estimated position of the reflector (ŝα) is shown by the black dot and
the known position (s∗) is shown by the green dot. There are 20 cameras tracking the
target s∗.

which leads to an improvement, εimp, of 46 %. There is also an improvement

in the uncertainty, since the variance was found to be 28 mm, which lead to an

improvement, Vimp, in the variance of 15 %.

A third and final inversion was carried out for numerical experiment A, only

this time a completely random refractive index map was chosen as the initial

prior. This refractive index map was a Voronoi tessellation with 86 cells and is

shown in Figure 4.21. As was seen in the cases where the known and uniform
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Figure 4.18: Numerical Experiment A: Objective function (misfit), γ(j) when the
inversion was set to run for 100,000 iterations with a burn-in period of 20,000. In this
instance a uniform refractive index map was used as the prior.

refractive index map were used as priors the median recovered refractive index

map again had a κmedian value of 0.66 % (κmean was 0.68 % and κmax was 0.86

%).

Following this, the light-rays were traced through Figure 4.22 in order to find

the error in the reflector s∗. The results of the triangulation are shown in Fig-

ure 4.24, the blue dots show the intersection points of the light rays, the green dot

shows the true position of the reflector s∗ and the black dot shows the estimated

position of the reflector when Figure 4.22 is used as the refractive index map.

Interestingly, the error in the position of the reflector, s∗, was found to be 20

mm, that is εα = 20 mm, which leads to an εimp value of 73 %. The variance,

V(εα) was found to be 3.6 mm which gives a Vimp value of 89 %. Whilst it is
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Figure 4.19: Numerical Experiment A: This is the recovered refractive index map for
the median of the posterior distribution, achieved from running the inversion process
for 100,000 iterations with a burn-in of 20,000 and a uniform prior was used.

unusual that using a random refractive index map as the prior yields a better

improvement in position and uncertainty compared to using the known map m∗,

Figure 4.26 shows that generally speaking the random prior gives a lower value of

κmedian compared to the other two cases. One reason for this could be attributed

to the robustness of the ray-tracing algorithm.

A comparison of the different γ(j) convergence plots is shown in Figure 4.25.

The blue line shows γ(j) when m∗ is used as the prior, the red line shows γ(j) when

mh is used as the prior and the green line shows γ(j) when the random refractive
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Figure 4.20: Numerical Experiment A, uniform refractive index map as prior. This
plot shows the results of the triangulation method when the light-rays are traced
through the recovered refractive index map shown in Figure 4.19. The intersection
points of the light-rays are shown by the blue points, the estimated position of the
reflector (ŝα) is shown by the black point and the true reflector position (s∗) is shown
by the green point.

index map as shown in Figure 4.21 is used as the prior. This plot shows that

as the number of iterations j increases all three lines converge and then oscillate

around the same γ(j).

Finally, the mean material map difference is examined in Figure 4.26. The

dashed black line in Figure 4.26 is K which is the range of refractive index values

expressed as a percentage of the mean value. It can be seen that when the

known refractive index map was used as the prior (blue line) at iteration one the

objective function is zero (as expected) and then it increases and begins to flatten

out. This plot only considers the accepted Voronoi tessellations and in addition

only each 1000th Voronoi tessellation over the 100,000 iterations. The red line
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Figure 4.21: Numerical Experiment A: Random initial Voronoi tessellation with 86
cells and the colours in each cell are attributed to a refractive index.

shows the objective function when a uniform refractive index map is used as the

prior. As expected this has an initial value which is not equal to zero and this

has quite a flat trend. The green line is the equivalent plot for the random initial

Voronoi tessellation shown in Figure 4.21.
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Figure 4.22: Recovered refractive index map when a random refractive index map
was used as the prior refractive index map. This was the median of the posterior
distribution, achieved from running the inversion process for 100,000 iterations with a
burn-in of 20,000.

In terms of acceptance rates the case where the known refractive index map

was used as the prior accepted 69.2 % of proposed models, 69.2 % when the

uniform refractive index map was used as a prior and 69.6 % when there was a

random refractive index map used as the initial prior.

The results from numerical experiment A are encouraging in that the εα is

much less than εh and V(εα) is much less than V(εh). One thing that is concerning

however is that the εα value when a random refractive index map is used as the

initial prior is lower than the εα when the known map is used as the initial prior.

Intuitively this should not be occurring and it suggests that the inversion process

is not as robust as one would want.
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Figure 4.23: Numerical Experiment A: Objective function (misfit), γ(j), when the
inversion was set to run for 100,000 iterations with a burn-in period of 20,000 and a
random refractive index map was set as the prior (Figure 4.21).

Figure 4.24: Numerical Experiment A, random refractive index map as prior. This
plot shows the results of the triangulation method when the light-rays are traced
through the recovered refractive index map shown in Figure 4.22. The intersection
points of the light-rays are shown by the blue points, the estimated position of the
reflector (ŝα) is shown by the black dot and the true position (s∗) is shown by the
green dot.

128



4.

Figure 4.25: Numerical Experiment A: Objective function, γ(j), when the inversion
was set to run for 100,000 iterations with a burn-in period of 20,000. This plot compares
γ(j) when m∗ was used as the prior (blue line), when mh was used as the prior (red
line) and when a random refractive index map as the initial prior (green line).

Figure 4.26: Numerical Experiment A: This plot shows how the mean percentage
difference between the known map m∗ and accepted Voronoi tessellations change as
the algorithm progresses. The blue line shows the error in the material map κ(j) when
m∗ was used as the prior, the red line shows the error in the material map κ(j) when
mh was used as the prior and the green line shows the error in the material map κ(j)

when a random refractive index map was used as the prior. The dashed black line is
K which is the range of refractive index values expressed as a percentage of the mean
value. In this inversion process the algorithm ran for 100,000 iterations and a Voronoi
diagram was output every 1000 iterations.
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Table 4.2: Table summarising the improvement in uncertainty and position of the
object of interest s∗ when the light-rays are traced through various reconstructed re-
fractive index maps. These results are for Numerical Experiment A

Spatial domain ε [mm] εimp [%] V [mm] Vimp [%]
m∗ 1.3433 ×10−6 NA 3.74 ×10−14 NA

Homogeneous mh 73.3 NA 33.9 NA

Known map as prior 33.6 54 28.5 16

Uniform map as prior 39.4 46 28 17

Random map as prior 20.0 73 3.6 89
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4.8 Numerical Experiment B

Now that it has been shown that this method works for a strongly heteroge-

neous refractive index map, a weakly heterogeneous refractive map will now be

considered. Recall that a strongly heterogeneous case is one that would not be

observed in an industrial setting due to unrealistic refractive indices. Whereas a

weakly heterogeneous case is one that could be observed in an industrial setting.

The same 10 cell Voronoi as presented in numerical experiment A will be used,

only this time the refractive indices will be commensurate with those observed in

an industrial setting. The refractive indices chosen are those associated with a

temperature range of 22 to 90 ◦C and the refractive indices are again randomly

assigned to each Voronoi cell. This lower value of 22 ◦C is commensurate with the

ambient temperature of the laboratory in Chapter 3). However, 90 ◦C is a higher

temperature than the maximum temperature observed in Chapter 3, however this

value was chosen in an attempt to make εh as large as possible and of a similar

order to the results obtained in Chapter 3. This value of 90 ◦C is realistic, as

the laboratory where the experiments in Chapter 3 were carried out is also where

one of the University of Strathclyde’s welding stations is located. Therefore it is

not uncommon for high temperatures to be observed in this volume. Since the

simulation only focuses on errors coming from thermal fluctuations whereas the

positional error in the experimentation is not just caused by thermal fluctuations,

the maximum temperature is raised to account for this. Using these tempera-

tures, this led to the range in refractive index values being 8× 10−3 % compared

with 2.2 % in numerical experiment A.
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Using the same method detailed in Section 4.7 the error in the position of the

reflector (εh) and variance (V(εh)) when the refractive index map was assumed

to be homogeneous was εh = 494.9 µm and V(εh) = 43.7 µm. The εh value is in

keeping with those observed experimentally (see Table 3.1). Also these values are

much smaller than those from Numerical Experiment A. In numerical experiment

A εh was 73.3 mm and V(εh) was 33.9 mm

It will now be determined if using the recovered refractive index map yields an

improvement in the uncertainty in the position of the reflector and the variance

in the position. As in numerical experiment A, with the case where the known

refractive index map m∗ is used as the prior will be examined first, and the

inversion will have 100,000 iterations with a burn-in period of 20,000 iterations.

Firstly, γ(j) will be considered and this is shown in Figure 4.27, the first thing

to note is that the objective function values are significantly smaller than those

observed for numerical experiment A, which shows that the method is sensitive

to refractive index changes. Furthermore, the number of Voronoi cells for maps

m(j) ranged from 5 to 29 which is again a reduction from numerical experiment

A. The acceptance rate for this particular instance was 39 % which is within the

tolerance of the literature and is much lower than those obtained in numerical

experiment A.

As in numerical experiment A, three recovered refractive index maps were

output from the inversion algorithm. It was found that the κmean was the lowest

value (1.996 ×10−3 %, compared with 2.077 ×10−3 % and 2.7230 ×10−3 % for the

κmedian and κmax values respectively) so this was chosen as the map to calculate
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Figure 4.27: Numerical Experiment B: Objective function (misfit), γ(j), when the
known refractive index map m∗ is used as the prior.

εα. The recovered refractive index maps for the mean, median and maximum

of the posterior distribution are shown in Figure 4.28. In addition, Figure 4.29

shows the temperature maps in degrees Celsius to give an improved readability

of the results. The refractive indices have been converted to temperatures using

the Ciddor equation.

Following the triangulation method (the results of which are shown in Fig-

ure 4.30). The blue dots show the intersection points of the light rays, the green

dot shows the true position of the reflector s∗ and the black dot shows the esti-

mated position of the reflector when the mean recovered refractive index map is

used as the refractive index map. It was found that εα was 243 µm which yields

an εimp of 51 % and V(εα) was 22 µm which is a Vimp of 50 %.
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Figure 4.28: Numerical Experiment B: Top Left: The known refractive index map
m∗, Top Right: the mean of the sampled refractive index map posterior, Bottom Left:
median of the sampled posterior refractive index map and Bottom Right: the maximum-
a-posteriori of the sampled posterior refractive index map distribution. In this case the
prior was the known refractive index map.
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The case where the uniform refractive index map was used as the initial prior

will now be examined. The acceptance rate for this inversion was again 39 %.

The mean recovered refractive index map had a κmean value of 1.930 ×10−3 %,

compared with 2.005 ×10−3 % and 2.458 ×10−3 % for κmedian and κmax) so this

was chosen as the map to calculate εα. The number of Voronoi cells ranged from

5 to 26 which is a marginally smaller range than when the known refractive index

map m∗ was used as the prior.

The light-rays were traced in order to find the error in the positioning of the

reflector s∗. Using the triangulation method an estimate for ŝα was found and the

results of the triangulation indicated that the positional error in the estimated

position εα was 260.7 µm which leads to an εimp value of 47 %. There is also

an improvement in the uncertainty, since the variance was found to be 21 µm,

which is a Vimp value of 52 %. Interestingly the κmedian values is lower for this

prior compared with when the known refractive index map is used as the prior,

but the εα and V(εα) are higher which seems counter intuitive.

A final inversion was carried out for numerical experiment B, wherein a random

refractive index map was chosen as the prior. This refractive index map was a

Voronoi tessellation with 138 cells and is shown in Figure 4.21. The acceptance

rate was 40 %. The mean recovered refractive index map had a κmean value

(1.885 ×10−3 %, compared with 1.893 ×10−3 % and 2.320 ×10−3 % for κmedian

and κmax respectively) so this was chosen as the map to calculate εα. One thing

to note here is that the κmean and κmedian are lower than those calculated when

the known and uniform refractive index map m∗ is used as the prior.
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Figure 4.29: Numerical Experiment B: Top Left: The known temperature map, Top
Right: the mean of the sampled temperature map posterior, Bottom Left: median of
the sampled posterior temperature map and Bottom Right: the maximum-a-posteriori
of the sampled posterior temperature map distribution. In this case the prior was the
known refractive index map, and have been converted to a temperature in this instance
using the Ciddor equation. All of the above temperatures are reported in degrees
Celsius.
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Figure 4.30: Numerical Experiment B: This plot shows the results of the triangu-
lation method when the light-rays were traced through the mean recovered refractive
index map. The intersection points of the light-rays are shown by the blue points, the
estimated position of the reflector (ŝα) is shown by the black dot and the true position
(s∗) is shown by the green dot.

The light-rays were traced through Figure 4.22 in order to find the error in the

reflector s∗. Using the triangulation method an estimate for ŝα was found and

the results of the triangulation indicated that the improvement in the estimated

position εα was 242.7 µm which leads to a εimp value of 51 %. There is also an

improvement in the uncertainty, since the variance was found to be 19 µm, which

is a Vimp value of 57 %. A full summary of the results for numerical experiment

B can be found in Table 4.3.

Finally, the mean material map difference is examined in Figure 4.31. Recall

that K, the range of refractive indices expressed as a percentage of the mean

refractive index for the reconstructed refractive index maps is 8 ×10−3 %. In this
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case at every 500th iteration of the inversion the κ(j) value of the corresponding

Voronoi tessellation is plotted. It can be seen that when the known refractive

index map was used as the prior (blue line) at iteration zero the objective function

is zero (as expected) and then it increases and begins to flatten out. The red line

shows the objective function when a uniform refractive index map is used as the

prior. As expected this has an initial value which is not equal to zero and this

has quite a flat trend. The green line is the equivalent plot for the case where

a random Voronoi tessellation is used as the prior. Generally speaking the κ(j)

value for all three cases is approximately 3 ×10−3 %.

Figure 4.31: Numerical Experiment B: This plot shows how the mean percentage
difference between the known map m∗ and accepted Voronoi tessellations change as
the algorithm progresses. The blue line shows the error in the material map κ(j) when
the known refractive index map was used as the prior, the red line shows the error in
the material map κ(j) when a uniform refractive index map was used as the prior and
the green line shows the error in the material map κ(j) when a random refractive index
map was used as the prior. In this inversion process the algorithm ran for 100,000
iterations and a Voronoi tessellation was output every 1000 iterations.
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Table 4.3: Numerical Experiment B: Table summarising the improvement in uncer-
tainty and position of the object of interest s∗ when the light-rays are traced through
various reconstructed refractive index maps

Spatial domain ε [ µmm] εimp [%] V [/mum] Vimp [%]

Homogeneous mh 494.9 NA 43.7 NA

known map as prior 242.9 50 22 51

uniform map as prior 260.7 47 21 52

random map as prior 242.7 51 19 57

4.9 Numerical Experiment C

Due to the success of numerical experiment B, the known refractive index map,

m∗, will now take the form of a 100 cell Voronoi, as shown in Figure 4.32. As

in numerical experiment B, the refractive indices in each cell, η
(j)
p , will be com-

mensurate with those observed in the real world, indeed. In order to generate

this Voronoi the method detailed in Section 4.6 cannot be used due to the large

number of cells. Instead, MATLAB is used to generate 100 random seeds and

then using Equation (2.16) the temperature in each Voronoi cell is determined

and these temperatures were converted to refractive indices using the NIST con-

version [145]. This data was then input into the inversion algorithm which was

set to run for one iteration. In doing this, a file was obtained containing the

specifics of the Voronoi (cell seed positions and corresponding refractive indices)

and this file is now in the correct format to import directly into COMSOL and

get the image shown in Figure 4.32.
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Using the same method detailed in Section 4.7 the error in the position of the

reflector (εh) and variance (V(εh)) when the refractive index map was assumed to

be homogeneous was found, εh = 279.3 µm and V(εh) =2.5 µm. The εh value is

in keeping with those observed experimentally (see Table 3.1). Also these values

are smaller than those calculated in numerical experiment B, showing that this

smoother Voronoi tessellation leads to a smaller εh and Vh. The reason for this is

that a smooth Voronoi will exhibit less refraction effects as the refractive index

ratio between the Voronoi cells is reduced.

Figure 4.32: 100 cell Voronoi tessellation of a refractive index map which characterises
a Gaussian distribution with a central temperature of approximately 363.15 K (90 ◦C)
and a minimum temperature of 295.15 K (22 ◦C).
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It will now be determined if using the recovered refractive index map yields an

improvement in the uncertainty in the position of the reflector and the variance

in the position. As in numerical experiment A and B, the case where the known

refractive index map m∗ is used as the prior will be examined first and as in

previous, the inversion will use 100,000 iterations with a burn-in period of 20,000

iterations. The objective function, γ(j), is shown in Figure 4.33, the first thing to

note is that the objective function values are the same order of magnitude than

those observed in numerical experiment B. Furthermore, the number of Voronoi

cells for model iterations m(j) ranged from 81 to 118 which is a larger range

than that of numerical experiment B, which may suggest that the ray tracing

part of the inversion lacks the sensitivity to detect the small ray path deviations

caused by small refractive index changes when a larger number of Voronoi cells

is considered. The acceptance rate for this particular instance was 40 % which is

within the tolerance of the literature and is similar to numerical experiment B.

As in numerical experiment A and B, three recovered refractive index maps

were output from the inversion algorithm. It was found that the κmean was the

lowest value (1.65 ×10−3 %, compared with 1.79 ×10−3 % and 2.53 ×10−3 %

for the κmedian and κmax values respectively) so this was chosen as the map to

calculate εα. Following the triangulation method (the results of which are shown

in Figure 4.34). The blue dots show the intersection points of the light rays, the

green dot shows the true position of the reflector s∗ and the black dot shows the
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Figure 4.33: Numerical Experiment C: Objective function (misfit), γ(j), when the
known refractive index map m∗ is used as the prior.

estimated position of the reflector when the mean recovered refractive index map

is used as the refractive index map. It was found that εα was 149 µm which yields

an εimp of 47 % and V(εα) was 0.7 µm which is a Vimp of 72 %.

The case where the uniform refractive index map was used as the initial prior

will now be examined. The uniform refractive index was set to be a 100 cell

Voronoi tessellation with each cell having a single refractive index which was

the mean of the refractive indices used (this was the same value as in numerical

experiment B). The acceptance rate for this inversion was again 40 %. The mean

recovered refractive index map had a κmean value of 1.94 ×10−3 %, compared

with 1.99 ×10−3 % and 2.65 ×10−3 % for κmedian and κmax) so this was chosen

as the map to calculate εα. The number of Voronoi cells ranged from 83 to 123

which is a marginally larger range than when the known refractive index map m∗

was used as the prior.
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As in all the previous numerical experiments, the light-rays were traced through

the recovered map in order to find the error in the positioning of the reflector s∗.

Using the triangulation method an estimate for ŝα was found and the results of

the triangulation indicated that the error in the estimated position εα was 205.8

µm which leads to a εimp value of 26 %. The variance was found to be 5 µm,

which is not an improvement and results in a Vimp value of -100 %.

A final inversion was carried out for numerical experiment C, wherein a random

refractive index map was chosen as the prior. This refractive index map was a

Voronoi tessellation with 111 cells and the number of Voronoi cells ranged between

90 and 124. The acceptance rate was again 40 %. The mean recovered refractive

index map had a κmean value (2 ×10−3 %, compared with 2.1 ×10−3 % and 2.7

×10−3 % for κmedian and κmax respectively) so this was chosen as the map to

calculate εα.

The light-rays were traced through the mean of the posterior recovered refrac-

tive index map in order to find the error in the reflector s∗. Using the triangulation

method an estimate for ŝα was found and the results of the triangulation indi-

cated that the error in the estimated position εα was 226 µm which leads to an

εimp value of 19 %. There is also an improvement in the uncertainty, since the

variance was found to be 0.9 µm, which is a Vimp value of 64 %. A full summary

of the results for numerical experiment C can be found in Table 4.4.
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In summary, for numerical experiment C, every recovered refractive index map

yielded an improvement in the positioning of s∗ and for the most part the variance

was also significantly improved. The main concern with the results is the objective

function which struggled to adapt to the smoothness of the Voronoi tessellation,

this is due to the ray tracing algorithm of the inversion process. This improvement

in the methodology will be looked at in the subsequent chapter. Prior to that a

Gaussian refractive index map which is not based on a Voronoi tessellation will

be considered.

Figure 4.34: Numerical Experiment C: This plot shows the results of the triangu-
lation method when the light-rays were traced through the mean recovered refractive
index map. The intersection points of the light-rays are shown by the blue points, the
estimated position of the reflector (ŝα) is shown by the black dot and the true position
(s∗) is shown by the green dot.
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Table 4.4: Table summarising the improvement in uncertainty and position of the
object of interest s∗ when the light-rays are traced through various reconstructed re-
fractive index maps. These results are for Numerical Experiment C.

Spatial domain ε [µm] εimp [%] V [µm] Vimp [%]

Homogeneous mh 279.3 NA 2.5 NA

Known map as prior 149.0 47 0.7 72

Uniform map as prior 205.8 26 5.0 -100

Random map as prior 226.2 19 0.9 64

4.10 Numerical Experiment D

To create a refractive index map that is closer even to that observed in an indus-

trial setting, a smooth Gaussian distribution was chosen for the known refractive

index map, m∗. This Gaussian distribution was introduced in Subsection 2.2.1

via

T (x, y) = (Tmax − Tmin) exp

(
−(x2 + y2)

σ2

)
+ Tmin (4.12)

where T (x, y) is the temperature at point (x, y) in the domain, σ is the vari-

ance of the temperature distribution measured in metres, Tmax is the maximum

temperature in the domain and similarly Tmin is the minimum temperature. This

refractive index map was input into COMSOL following the steps outlined in

Subsection 2.2.1. In this numerical experiment, Tmax was 363.15 K (90 ◦C), Tmin

was 295.15 K (22 ◦C, this is commensurate with the ambient temperature of the
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laboratory in Chapter 3) and σ was 20 m, so this is a very plausible industrial

setting, for example, in a working volume where welding takes place. The Tmax

value is larger than that observed in Chapter 3, however this value was chosen in

an attempt to make εh as large as possible and of a similar order to the results

obtained in Chapter 3. This value of Tmax is still very plausible in an industrial

setting. These temperatures were converted to refractive indices using the Ciddor

equation [68]; all other parameters in the equation were set at the NIST average

values [136]. The domain size was kept the same as in all previous numerical

experiments (40 m × 60 m).

As in all previous numerical experiments, the error when the refractive index

map is assumed to be homogeneous was firstly calculated, as this informs whether

or not refraction effects cause large enough inaccuracies in the position of s∗. To

find this error, εh, the rays were traced from camera, ck, with initial angle θ∗k,s.

The triangulation method was used to find the intersection points of the rays and

then the centre of mass is found which gives the estimated position of s∗ when

the domain is assumed to be homogeneous, that is, ŝh. In Figure 4.35 the blue

points show the intersection points from the triangulation, the true position of the

reflector s∗ (shown by the green point) and the estimated position of the reflector

ŝh (shown by the black point). In this case εh was 174.2 µm and V(εh) was 1.4

µm. Comparing this results with those experimentally obtained in Chapter 3 we

find that the error is slightly larger than in Experiment 1 and smaller than those

obtained in Experiment 2 and 3, but they are all of the same order. In Chapter 3

there were 2 cameras compared to the 20 in this case, increasing the number

146



4.

of cameras gives a smaller error εh. The working volume was much smaller in

Chapter 3 than in this case. In these simulated experiments there is complete

ground truth, whereas experimentation can introduce other types of error. Whilst

it is unlikely that an industrial space would have access to twenty cameras, we are

simulating with this large number of cameras in an attempt to make the errors

solely due to refraction as large as possible.

Unlike numerical experiments A to C, it is not possible to express the known

refractive index map, m∗, exactly in terms of a Voronoi tessellation. It is possi-

ble to project the Voronoi tessellation onto a piecewise constant if the Voronoi

tessellation takes the form of a regular grid. One of the advantages of a Voronoi

Figure 4.35: Numerical Experiment D: This scatter-plot illustrates the cluster of
light-ray intersection points when the light-rays are traced from cameras ck with initial
angle θ∗s,k through a homogeneous refractive index map. The mean of the light-ray
intersection points yields ŝh (illustrated by the black circle). The true position of the
object of interest (s∗) is shown by the green circle.
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tessellation is that all the cells are irregular in shape. In order for this piecewise

constant to be accurate the grid size would need to be very small (this algorithm

struggles with a fine grid size- see Subsection 4.2.1). In addition, this algorithm

makes use of natural parsimony and tries to use the smallest number of Voronoi

cells and since this would require a large number of Voronoi cells (in the order of

thousands), this would not be feasible. This means that for numerical experiment

D, the inversion process will only be able to start with a uniform and a random

prior. The case where a uniform prior is used will be looked at first.

The uniform prior used in numerical experiment D is the same as the one used

in numerical experiment C, that is, a Voronoi tessellation with 100 cells and the

refractive index in each cell is the same (this value is the mean refractive index of

the known refractive index map in numerical experiment C). As in all previous

numerical experiments the inversion ran for 100,000 iterations and had a burn-in

of 20,000. The range of Voronoi cells throughout the inversion ranged from 74

to 114 and the acceptance rate was 39.6 %. The objective function is shown in

Figure 4.38, it can be seen that this objective function is of the same order as

that obtained in numerical experiment C.

It was found that κmean was the lowest value (3.50 ×10−3) compared with

κmedian and κmax, 3.57 ×10−3 and 5.5 ×10−3 respectively. Following this, the

mean of the posterior refractive index map was used as the spatial map for which

the light rays are traced through. These refractive index maps are shown in Fig-

ure 4.36 and for increases readability, these refractive indices have been converted
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to temperatures using the Ciddor equation. The results of this are shown in Fig-

ure 4.37. The triangulation method obtained the following results: εα = 110.2

µm and V(εα) = 0.1 µm. This leads to an εimp of 37 % and Vimp of 89 %.

Finally, a random Voronoi tessellation was used as the prior, the Voronoi had

96 cells. The range of Voronoi cells throughout the inversion varied from 80 to

110, which is a smaller range than when the uniform prior was used for numerical

experiment D, but the lowest value is higher in this instance and the acceptance

rate was 39.5 %. The objective function is shown in Figure 4.39, and starts off

with a large γ(j) value and then decreases as j increases and finally begins to

oscillate around 2.5 ×10−3 ◦ which is only slightly higher than the converged

value in numerical experiment C.

It was found that κmean was the lowest value (4.57 ×10−3) compared with

κmedian and κmax, 5.18 ×10−3 and 6.1 ×10−3 respectively. Following this, the

mean of the posterior refractive index map was used as the spatial map for which

the light rays are traced through. The triangulation method obtained the follow-

ing results: εα = 147.2 µm and V(εα) = 0.7 µm. This leads to an εimp of 15 %

and Vimp of 51 %. The results of numerical experiment D are shown in Table 4.5.

These results seem more intuitive as these κ values are larger and led to a lower

εimp and Vimp values.
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Figure 4.36: Numerical Experiment D: Top Left: The known refractive index map
m∗, Top Right: the mean of the sampled refractive index map posterior, Bottom Left:
median of the sampled posterior refractive index map and Bottom Right: the maximum-
a-posteriori of the sampled posterior refractive index map distribution. In this case the
prior was a uniform Voronoi tessellation.
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Figure 4.37: Numerical Experiment D: Top Left: The known temperature map, Top
Right: the mean of the sampled temperature map posterior, Bottom Left: median of
the sampled posterior temperature map and Bottom Right: the maximum-a-posteriori
of the sampled posterior temperature map distribution. In this case the prior was a
uniform Voronoi tessellation. All of the above temperatures are reported in degrees
Celsius
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Figure 4.38: Numerical Experiment D: Objective function (misfit), γ(j), when a
uniform refractive index map is used as the prior.

Figure 4.39: Numerical Experiment D: Objective function (misfit), γ(j), when a
random refractive index map is used as the prior.
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4.11 Chapter Summary

This chapter outlined the methodology involved in reconstructing the refractive

index map, this methodology is referred to as the δ method. The parametrisation

of the refractive index map employed Voronoi tessellations as these require fewer

degrees of freedom to describe a heterogeneous map and large regions can be

affected by a single perturbation. The forward model was solved using the Fast

Marching Method (FMM), which calculates the travel time field between the cam-

era and the reflector and then finds the optical path within this field that the ray

takes. The objective function was based on the absolute difference between the

experimentally measured angle (θ∗k,i) and the angle calculated at each iteration of

the inversion algorithm (θ
(j)
k,i ) as shown in Equation (4.5). The choice of optimi-

sation method was the reversible jump Markov Chain Monte Carlo (rj-MCMC)

method. This is an iterative stochastic process which generates a population of

solution samples from the posterior distribution. The goal of this is to reconstruct

Table 4.5: Table summarising the improvement in uncertainty and position of the
object of interest s∗ when the light-rays are traced through various reconstructed re-
fractive index maps. These results are for Numerical Experiment D.

Spatial domain ε [µm] εimp [%] V [µm] Vimp [%]

Homogeneous mh 174.2 NA 1.4 NA

Uniform map as prior 110.2 37 0.1 89

Random map as prior 147.2 15 0.7 51
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Table 4.6: Table giving the description of the spatial domain of each numerical ex-
periment and the corresponding error when the domain is assumed to be homogeneous,
εh.

Numerical
Experiment

Description εh V(εh)

A
10 cell strongly heterogeneous Voronoi 73.3 mm 33.9 mm
(random cell allocation)

B
10 cell weakly heterogeneous Voronoi 494.9 µm 43.7 µm
(random cell allocation)

C
100 cell weakly heterogeneous Voronoi 279.3 µm 2.5 µm
(cell refractive index allocation
follows a Gaussian distribution)

D
Weakly heterogeneous Gaussian distribution 174.2 µm 1.4 µm

the refractive index map such that the positional error, εα is smaller than the er-

ror that arises when assuming a homogeneous refractive index map, εh (which is

the current practice).

An initial test case (numerical experiment A) based on a ten cell Voronoi

diagram refractive index map was investigated. This refractive index map was

strongly heterogeneous and produced a positional error (εh) of 73.7 mm arising

from a refractive index fluctuation of 2.2 %. Using the median of the refractive

index map posterior distribution, a 54 % improvement in the estimated position

of the reflector s∗ was obtained and a reduction in the variance of 16 %. When

there was a uniform prior refractive index map the improvement in the estimated

position of the reflector is 46 % and there was a reduction in uncertainty of 17 %.

Using a random refractive index map as the prior led to the best improvement in

position, 73 % and uncertainty 89 %.
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Numerical experiment B had the same Voronoi cell seed position as in A, but

the refractive indices were weakly heterogeneous to be commensurate with values

observed in an industrial setting. This known refractive index map had a K

value of 8× 10−3%, where K is the range of refractive index values expressed as

a percentage of the mean value. When the known refractive index map was used

as the initial prior the mean recovered refractive index map was most similar to

it and yielded an εα of 242.9 µm which is an εimp of 51 % and V(εα) was 22 µm

which is a Vimp of 51 % . The uniform prior had a εα value of 260.7 µm which

is an εimp of 47 % and V(εα) was 21 µm which is a Vimp of 51 %. The random

prior yielded an εα of 242.7 µm which is an εimp of 51 % and V(εα) was 19 µm

which is a Vimp of 57 %. The issue of robustness was questioned as intuitively

starting with the known map as initial prior should yield a greater εimp and Vimp

compared when a random Voronoi map is the initial prior.

Numerical experiment C introduced a Voronoi tessellation with 100 cells, with

the same refractive index range as in numerical experiment B. For all three priors

(known, uniform and random) the uncertainty in the position of s∗ was reduced

by 47 %, 26 % and 19 % respectively. These results were more intuitive than

numerical experiment B as it was expected that starting from the known prior

to yield the greatest reduction in the position. When the inversion algorithm

started with the known refractive index map, and a randomly generated refractive

index map, a reduction in the variance of 67 %, and 64 % respectively, was

observed, whereas the uniform prior led to the variance doubling compared to

the homogeneous case. One limitation of this numerical experiment was the lack
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of sensitivity in the objective function. The objective function was the same order

of magnitude as numerical experiment B, however in general the refractive index

maps were much smoother due to a larger number of Voronoi cells. One potential

reason for this is that the ray tracing part of the inversion is not robust enough

to deal with small changes in the trajectory of the ray paths.

The final numerical experiment, D, was a more realistic scenario with a single

Gaussian distribution representing the heterogeneous temperature distribution.

Since this refractive index map cannot be represented as a Voronoi tessellation,

the inversion process could only start with a uniform and random prior. Using a

uniform prior led to an εimp of 37 % and a Vimp of 89 %, whereas a random prior

resulted in an εimp of 15 % and Vimp of 51 %.

The following Chapter will introduce a new method for calculating θ
(j)
k,i which

avoids using the ray tracing algorithm. This new method aims to produce a more

sensitive misfit γ(j) and reduce computational time.
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Chapter 5

Using Time Fields to Reconstruct

Refractive Index Maps from

Photogrammetry Data

5.1 Using the Time Field to Trace the Ray-paths

The numerical experiments in Chapter 4 suggest that the ray-tracing step that

follows the Fast Marching Method (FMM) is computationally very expensive and

is not robust. In addition, this algorithm feeds into the objective function which

causes it to not be sensitive to small changes in the refractive index. Therefore, to

avoid using the ray tracing algorithm in the refractive index map reconstruction

algorithm, used in Chapter 4, an alternative method is proposed. This chapter
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will give details of this proposed method and discuss the results from initial

testing. The chapter will repeat Numerical Experiments A through D using the

revised method and will report on the comparison between the two methods.

The reason this new revised method is being proposed is two-fold. Firstly, the

ray tracing part of the algorithm dominates the computational expense and so this

new method will greatly reduce the running time of the algorithm. Secondly, the

ray-paths code is not robust and can lead to rays taking trajectories which would

never be observed physically; this could be one of the reasons that the recovered

refractive index maps do not resemble their respective known refractive index

map m∗.

The proposed method still uses the FMM to calculate the arrival times of

the ray as the travel time field of the whole domain will be required for the

calculations. Due to the weakly heterogeneous nature of the refractive indices

which are observed in an industrial setting, the straight ray angle (θhk,i) between

the camera ck and the reflector ri is approximately equal to the experimentally

known angle, that is, θhk,i ≈ θ∗k,i. We are proposing that the difference, φ∗k,i, where

φ∗k,i = θhk,i−θ∗k,i, between these two angles will be related to the difference between

the homogeneous time field and the time field calculated at the jth iteration in

the inversion algorithm.

For weakly heterogeneous refractive index maps the degree of ray refraction

will be small and so it is assumed that the ray refraction follows a parabolic curve

with 0 < φ� 1. Let us consider a line that is perpendicular to the straight ray
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path between ck and ri and goes through reflector ri. Due to reciprocity, it can

be considered that a spherical wave is emitted from camera ck, meaning that the

arrival time of this wave along this line can be calculated. If the medium was

homogeneous then the wave would arrive at ri first and then the adjacent points

on this line and then those adjacent to those and so on. When the medium is

heterogeneous the ray bends due to refraction and the arrival times along this

line change. Using this change in the arrival times is the basis for this revised

approach and it is clear that there is no need now for a ray tracing step (see

Figure 5.1, Figure 5.2 and Figure 5.3.

Figure 5.1: Schematic describing the time of flight method, where φ∗k,i is the dif-

ference between the straight ray angle (θhk,i ) between the camera ck and reflector ri
and the actual angle that the ray propagates with (θ∗k,i) in the heterogeneous refractive

index field. t
(j)
i are the entries of the FMM calculated timefield along the line running

perpendicular to the straight ray trajectory.
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Figure 5.2: Schematic describing the time of flight method, where φ∗k,i is the difference

between the straight ray angle (θhk,i ) between the camera ck and reflector ri and the
actual angle that the ray propagates with (θ∗k,i). βk,i is the line that lies perpendicular

to the straight ray path between ck and ri. t
h is the homogeneous time field and t(j) is

the time field at iteration j of the inversion.

Denote the line that lies perpendicular to the straight ray path between ck and

ri by βk,i. Denote by thi the times of arrival (on the discretised grid used by the

FMM) of the spherical wave from ck on the line βk,i when the refractive index

160



5.

Figure 5.3: Results from initial investigation, showing τ (j) against βk,i.

map is homogeneous. Similarly, denote by t
(j)
i the times of arrival at iteration j of

the inversion process (when the material is heterogeneous). Denote the difference

between these two as

τ
(j)
i = thi − t

(j)
i . (5.1)

Following this, the gradient, q, between each adjacent point is found and then

the mean of this value is taken

q
(j)
k,i =

∑p−1
p=1(τ

(j)
p+1 − τ

(j)
p )c̄/Γx

p− 1
, (5.2)
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where Γx is the pixel size of the domain, p is the number of pixels along βk,i

and c̄ is the velocity of the homogeneous domain. This equation is divided by p

to ensure that when φ∗k,i and θ∗k,i are compared, values with the same scale and

units are being compared. Finally, φ
(j)
k,i is calculated by φ

(j)
k,i = arctan(q

(j)
k,i ) (see

Figure 5.4), φ
(j)
k,i = θhk,i − θ

(j)
k,i

If the ray length between camera ck and ri is denoted by b from Figure 5.5,

then in the homogeneous case at y = 0 then rh =
√
x2 + b2 and since x ≈ 0 then

using a Taylor series expansion

rh ≈ b+
x2

2b
+O(x4). (5.3)

Similarly for iteration j, r(j) =
√

(x− a)2 + b2 and since x ≈ 0 then using a

Taylor series expansion

r(j) ≈
√
a2 + b2 − ax√

a2 + b2
+

b2x2

2(a2 + b2)
3
2

+O(x3), (5.4)

but since b� a because of the weakly heterogeneous setting, then 0 < φ
(j)
k,i �

1, so b dominates a. Therefore Equation (5.4) reduces to

r(j) ≈
√
b2 − ax√

b2
+
b2x2

2(b2)

3
2

+O(x3), (5.5)
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≈ b− ax

b
+
b2x2

2b3
+O(x3) (5.6)

≈ b− ax

b
+
x2

2b
+O(x3) (5.7)

Then rh − r(j) is

b+
x2

2b
+O(x4)−

(
b− ax

b
+
x2

2b
+O(x3)

)
, (5.8)

which is equal to ax/b+O(x2), showing that tanφ
(j)
k,i = a/b, as in Figure 5.5.

The time of flight methodology had to be coded into the inversion algorithm.

Prior to running this code the homogeneous time fields have to be found. This

is done by running the inversion algorithm for j = 0 iterations (this ensures that

there is no noise) where the spatial domain is a Voronoi tessellation where every

Voronoi cell has an equal refractive index. The refractive index chosen is the

median refractive index which occurs in m∗. This file is then saved as a stacked

matrix (there is one timefield matrix for each camera, so in this case there are 20

timefield matrices stacked vertically with c1 at the top and c20 at the bottom).

This homogeneous timefield dataset is then read into the inversion algorithm at

every iteration j.
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Following this at each iteration of the code, the algorithm finds the gradient

of the line between ck and ri and the finds the gradient of the line perpendicular

to this and from this the equation of the line is found. This line is then bounded

such that it lies in the gridded geometry. The grid is exactly the same one which

is used in the FMM. Then determining on the orientation of the line step along

the grid horizontally (or vertically) to obtain integer (x, y) co-ordinates of grid

points which the perpendicular line intersects and store these co-ordinates. Then

read in the homogeneous time field data and obtain the time of flight in each

of the stored co-ordinates, repeat this for the heterogeneous time of flight (this

is calculated by default earlier in the algorithm for each iteration j). This then

gives enough information to calculate τ
(j)
i in Equation (5.1), then using Equation

(5.2) and the steps previously detailed φ
(j)
k,i is found.

In order to assess whether φ
(j)
k,i and φ∗k,i are correlated initial testing was carried

out at the zero-th iteration of the inversion algorithm, this was done to ensure

complete control over the algorithm. In addition, it was important that the

correct initial refractive index map was chosen, the map would have to be smooth

and in keeping with what is observed experimentally, for this reason the spatial

domain of Numerical Experiment C is chosen (see Table 4.6 and Figure 4.32).

This Voronoi tessellation was then taken into COMSOL using the same method

used with the reconstructed refractive index maps described in Subsection 4.7.4.

Multiple rays of the same length with varying initial angle θ∗k,i were then emitted

from cameras ck to reflectors ri. The straight ray angle (θhk,i) between each camera

- reflector pair were calculated as well as the value of φ∗k,i, where φ∗k,i can be
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Figure 5.4: A schematic giving more detail of the time of flight method, where

(p, c̄τ
(j)
p ) and (p + 1, c̄τ

(j)
p+1) are two points on the line, Γx is the size of a pixel, c̄

is the mean velocity in the spatial domain.

positive or negative. Once these values were calculated, the inversion algorithm

was run for zero iterations and the camera and receiver positions, the initial angles

θ∗k,i and the extent of the spatial domain were given as inputs. In the inversion

algorithm the travel time field matrix is calculated via the FMM for each camera

ck. In the homogeneous case the refractive index map was set equal to the mean
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Figure 5.5: A schematic of a light ray emitted as a wave (red curves- equation of each
wave is written in red also) from (0,−b) and (a,−b), where b is the ray length between
camera ck and ri.

of those values in Figure 4.32. The travel time field matrix was then output when

the refractive index map was homogeneous (to give thi for each camera-receiver

pair) and heterogeneous (to give the corresponding t
(0)
i ).

Once the travel time field matrices were found for the homogeneous and the

zero-th iteration, initial testing in MATLAB was carried out. An algorithm was

written which calculates the equation of the line perpendicular to the straight

ray path (βk,i), following this the elements of the travel time matrix which lie on

the this line are found (thi and t
(0)
i ). Then equations (5.1) to (5.3) are evaluated.

Before presenting the results of this method, a comparison between the δ-

method in Chapter 4 and this Time of Flight (TOF) method is provided. The

inversion algorithm (at the zero-th iteration) was used to calculate the angle

estimates using the δ-method for the same camera-reflector pairs as above with

the prior refractive index map being the Voronoi diagram from Figure 4.32 and

numerical experiment C. The angle estimated from the algorithm was subtracted
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from the known angle (θ∗k,i) to give the deviation between the two (φδk,i). This

was then plotted against φ∗k,i in Figure 5.6a. From this plot it is clear to see that

the TOF method (blue dots) performs much better than the δ-method (red dots).

Closer examination of φ
(0)
k,i against φ∗k,i is plotted in Figure 5.6b. This shows that

φ
(0)
k,i and φ∗k,i are positively correlated with each other, with a Pearson correlation

coefficient of r = 0.74, which suggests a strong positive correlation.
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(a)

(b)

Figure 5.6: (a) Plot comparing the values that are obtained from using the δ method

(φδk,i) detailed in Chapter 4 (red dots) and the time of flight method (φ
(0)
k,i ) presented

in this chapter (blue dots) versus the (φ∗k,i prescribed in COMSOL and 20 rays are

considered. (b) Plot showing the relationship between φ
(0)
k,i and φ∗k,i, where φ

(0)
k,i is

calculated time of flight method.
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5.2 Numerical Experiment A

In this section the results of numerical experiment A using the revised TOF

method compared with the δ-method results obtained in Section 4.7 will be ex-

amined. A comparison between the inversion algorithm performance in both

approaches is discussed before presenting the use of the reconstructed refractive

index maps in the positioning of the robot at s∗. Note that the computational

time when using the TOF method took on average three hours to run 100,000

iterations compared to approximately three days for the δ method took to run.

The reason for this is that in the δ method the ray tracing is the most compu-

tationally expensive part of the code. However, in the TOF method this part of

the code has been switched off, hence the reduction in computational time. The

inversion algorithm looks for the smallest number of Voronoi cells (P (j)) to repre-

sent the map and so tracking this against iteration number j gives an indication

of any improvement. The results are plotted in Figure 5.7 using a histogram and

it can be clearly seen that the range of P (j) using the TOF method (blue bars)

is much smaller than the corresponding values coming from the δ method (red

bars).

The second indication of an improvement is a comparison of the objective

function value γ(j) as expressed in Equation (4.5). Figure 5.8 shows a comparison

of the two objective functions obtained from using the known refractive index

map as the prior refractive index map when the TOF method is used (blue line)
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Figure 5.7: Histogram showing a comparison between the number of Voronoi cells
P (j) at each iteration, j, of the inversion algorithm when the δ method (red bars)
and the TOF method were used (blue bars). These results are based on Numerical
Experiment A, when the known refractive index map was used as the prior.

compared with the δ method. It can be clearly seen from Figure 5.8 that the

objective function is significantly reduced due to the implementation of the TOF

method.

Since the user is ultimately interested in the improvement in the estimation

of the position of an object of interest embedded in the domain, the recovered

refractive index maps of the posterior distribution will now be considered and

these are shown in Figure 5.9. In these plots (a) is the known refractive index

map m∗, (b) is the mean of the posterior refractive index map, (c) is median of the

posterior refractive index map and (d) the maximum-a-posteriori of the posterior

refractive index map distribution. These plots do in fact show some improvement

compared with Figure 4.16 particularly the upper left corner of plots (b) and (c)

are showing good resemblance to plot (a). However, as in Chapter 4, the MAP
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Figure 5.8: Plot showing a comparison between the misfit (objective function) γ(j)

at each iteration j of the inversion algorithm when the previous δ method (red line)
and the new TOF method was used (blue line). These results are based on Numerical
Experiment A when the known refractive index map was used as the initial prior.

is not a good representation of the spatial domain. The same metric to assess

the material map agreement, that is, κmean, κmedian and κmax is used. It was

found that these values were 0.66, 0.65 and 0.77. Since κmedian was the lowest

value, it is the spatial domain that the rays will be traced through in order to

calculate εα. As in previous numerical experiments the triangulation method was

carried out and the results of this are shown in Figure 5.10 where the intersection

points of the light-rays are shown by the blue points, the estimated position of

the reflector (ŝα) is shown by the black dot and the true position (s∗) is shown

by the green dot. It was found that εα was 19.6 mm with a variance V(εα) of

13.4 mm. These values lead to an εimp and Vimp of 73 % and 60 % respectively

and the full results are expressed in Table 5.1. When these results are compared
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with those obtained using the δ method in Chapter 4 (Table 4.2), this method

has a 42 % improvement in the error of the position and a 53 % improvement in

the variance.

Following on from this, numerical experiment A was carried out again however

the prior refractive index map was set to be a uniform refractive index map, mh.

The uniform prior has the same Voronoi cell positions as m∗ but each cell has the

same refractive index value which was the mean refractive index value of m∗. The

triangulation method was again carried out to calculate ŝα. It was found that

Figure 5.9: Numerical Experiment A: Top Left: The known refractive index map
m∗, Top Right: the mean of the sampled refractive index map posterior, Bottom Left:
median of the sampled posterior refractive index map and Bottom Right: the maximum-
a-posteriori of the sampled posterior refractive index map distribution.
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Figure 5.10: Numerical Experiment A: This plot shows the results of the triangulation
method when the light-rays are traced through the recovered refractive index map
shown in Figure 5.9 (c). The intersection points of the light-rays are shown by the blue
points, the estimated position of the reflector (ŝα) is shown by the black dot and the
true position (s∗) is shown by the green dot.

εα was 23.5 mm with a variance V(εα) of 12.1 mm. These values lead to an εimp

and Vimp value of 68 % and 64 % respectively and the full results are expressed

in Table 5.1. When these results are compared with those obtained using the δ

method in Chapter 4 (Table 4.2), this method has a 40 % improvement in the

error of the position and a 57 % improvement in the variance.

Finally, Numerical Experiment A was carried out again however the prior was

set to be a randomly generated refractive index map chosen by the algorithm.

The initial Voronoi diagram that the algorithm chose had P (0) = 86 cells which

is larger than the maximum value of the range in Figure 5.7. The triangulation
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method was again carried out to calculate ŝα. It was found that εα was 23.8 mm

with a variance V(εα) of 12.2 mm. These values lead to an εimp and Vimp value

of 68 % and 64 % respectively and the full results are expressed in Table 5.1.

These results appear more robust than observed in Section 4.7 as starting with

the initial prior gives the lowest εα value which is intuitive, which in turn gives

the largest εimp value, giving further validation on the robustness of this method.

The acceptance rates when the known, uniform and random refractive index map

are used as the prior are 40 %, 40 % and 44 % which are lower than the equivalent

numerical experiment for the δ method.

Now that results have been obtained from the known refractive index map,

uniform refractive index map and random refractive index map as priors, the

objective functions and the material map errors will now be compared. If the

former is considered which is shown in Figure 5.11 it can clearly be seen that

the objective function is much smaller for the TOF method compared with the δ

method, which is very encouraging and shows that TOF is sensitive to the small

angle fluctuations observed.

Overall for numerical experiment A there was a 19 % improvement in error in

the position in the case where the known prior was used for the TOF method,

compared to the δ method and gave a 44 % improvement in the variance. When

a uniform refractive index map was used as the prior, there was a 22 % improve-

ment in error in the position in the case where a uniform prior was used for the

TOF method, compared to the δ method and a 47 % reduction in variance. Fi-

174



5.

nally, when a random refractive index map was used as the prior, the δ method

performed better in terms of reduction in εα and V(εα) (was better by 5 % and 25

% respectively) compared to the TOF method. 2 % improvement in the variance.

Finally the material map error at each iteration j of numerical experiment

A, κ(j) was calculated (Equation (4.11) shows the formulation for κ(0)) and the

results of this are shown in Figure 5.12 as well as the range of refractive index

values expressed as a percentage of the mean value, K,recall K ≈ 2.7%). This

plot looks remarkably similar to Figure 4.26 although the recovered maps are

significantly different (Figure 4.16 compared with Figure 5.9) and there is an

improvement in the error in the positioning and the variance for all but one case.

It could be possible that because the median and the MAP recovered maps in

Figure 5.11: Numerical Experiment A: Plot showing a comparison between the misfit
(objective function) γ(j) at each iteration j of the inversion algorithm when the δ
method (yellow, cyan and magenta lines) and the TOF method were used (green, red
and blue lines).
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Figure 5.9 are very smooth compared to Figure 5.9 that the κ(j) value averages

out to be the same. One thing to note is that the κ(j) looks at only the accepted

Voronoi tessellations at each iteration (every 500 due to computational power)

and not the mean, median or recovered refractive index maps which could explain

why Figure 4.16 and Figure 5.9 are so similar.

Figure 5.12: Numerical Experiment A: This plot shows how the mean percentage
difference between the known map m∗ and the accepted Voronoi diagrams change as
the inversion algorithm progresses. The blue line shows the error in the material map
κ(j) when the known refractive index map was used as the prior, the red line shows
the error in the material map κ(j) when a uniform refractive index map was used as
the prior and the green line shows the error in the material map κ(j) when a random
refractive index map was used as the prior. The dashed black line is K which is the
range of refractive index values expressed as a percentage of the mean value. In this
inversion process the algorithm ran for 100,000 iterations and a Voronoi diagram was
output every 500 iterations.
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Table 5.1: Table summarising the improvement in uncertainty and position of the
object of interest s∗ when the light-rays are traced through various refractive index
maps. These results only consider Numerical Experiment A

Spatial domain ε [mm] εimp [%] V [mm] Vimp [%]
m∗ 1.3433 ×10−6 NA 3.74 ×10−14 NA

mh 73.3 NA 33.9 NA

known map as prior
19.6 73 13.4 60

uniform map as prior
23.5 68 12.1 64

random map as prior
23.8 68 12.2 64

Table 5.2: Numerical Experiment A: Table summarising the improvement in uncer-
tainty and position of the object of interest s∗ when the light-rays are traced through
various refractive index maps, this table considers the TOF and δ method.

Spatial domain ε [mm] εimp [%] V [mm] Vimp [%]
mh 73.3 NA 33.9 NA

δ
TOF

known map as prior 33.6 54 28.5 16
19.6 73 13.4 60

δ
TOF

uniform map as prior 39.4 46 28.0 17
23.5 68 12.1 64

δ
TOF

random map as prior 20 73 3.6 89
23.8 68 12.2 64
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5.3 Numerical Experiment B

To continue on with the comparison of the method the results of numerical exper-

iment B (defined in Table 4.6) compared with those obtained using the δ method

from Chapter 4 will be compared. As in the previous section all of the variables

in the inversion have been keep constant aside from the method for calculating

θk,i. The case where the known refractive index map was used as the prior is

considered first.

The first metric output by the inversion process is the number of Voronoi cells

of the perturbed model, m(j) at each iteration, j. In this case the number of

Voronoi cells ranged from 5 to 23, which is a smaller range than the equivalent

from Section 4.8. Following this, the objective function is the next metric to be

output and a comparison of the objective functions is shown in Figure 5.13 (δ

method is the red line and the TOF method is the blue line). It can clearly be

seen that γ(j)is smaller for the TOF method compared with the δ method which

is a positive result. In addition, the acceptance rate was 30 % which is lower than

the equivalent in Section 4.8, but still within the realms of the literature.

The main assessment into the performance of the inversion algorithm is the

improvement of the position of the robot and the variance associated with this.

The material map difference, κmean, κmedian and κmax were found to be 1.83

×10−3 %, 1.89 ×10−3 % and 2.40 ×10−3 % respectively. Since κmean is the

lowest it was the refractive index map which the light rays were traced through

for the triangulation method. The recovered refractive index maps are shown in
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Figure 5.13: Numerical Experiment B: Plot showing a comparison between the misfit
(objective function) γ(j) at each iteration j of the inversion algorithm when the δ
method (red line) and the TOF method was used (blue line). These results are from
Numerical Experiment B when the known refractive index map m∗ was used as the
prior.

Figure 5.14, with the corresponding temperature maps shown in Figure 5.15. If

we compare Figure 5.15 and Figure 4.29, then it can be seen that the range of

temperatures in the mean of the posterior distribution of Figure 5.15 is lower.

Generally speaking the median and maximum of the posterior distribution have

a similar range and scale.

The results of the triangulation are shown in Figure 5.16. The intersection

points of the light-rays are depicted by the blue dots, ŝα (black dot) and s∗

(green dot). After finding the centre of mass of all the intersection points the

error in the position was found to be εα = 222.0 µm which gives an εimp value of
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55 %. The variance, V(εα) was found to be 21 µm which gives a Vimp value of 52

% improvement in uncertainty compared to the homogeneous case (see Table 5.3

).

Continuing on with the comparisons, the case where a uniform refractive index

map is used as the prior will now be examined. As in previous discussions, this

map will have the same number of Voronoi cells as the known refractive index

map, m∗, but the refractive index in each cell will be equal to the mean of the

refractive indices of m∗. If the number of Voronoi cells is considered, the range

is marginally smaller compared to the δ case (range of 21 compared to 22). The

objective functions for all of numerical experiment B will be considered at the

end of this section. The κmean value was found to be the lowest (equal to 1.99

×10−3 compared with κmedian of 2.18 ×10−3 and κmax of 2.83 ×10−3. These values

are more intuitive than those observed by the equivalent δ method as the κmean

value is larger when the uniform is used as the prior compared with m∗, and this

was not the case for the δ method. Following this, the triangulation yielded the

following results: εα 226.5 µm, εimp = 54 %, V =21 µm and Vimp = 52 %. The

εimp is larger than the equivalent δ method but the Vimp is unchanged.
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Figure 5.14: Numerical Experiment B: Top Left: The known refractive index map
m∗, Top Right: the mean of the sampled refractive index map posterior, Bottom Left:
median of the sampled posterior refractive index map and Bottom Right: the maximum-
a-posteriori of the sampled posterior refractive index map distribution. In this case the
prior was the known refractive index map.
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Figure 5.15: Numerical Experiment B: Top Left: The known temperature map, Top
Right: the mean of the sampled temperature map posterior, Bottom Left: median of
the sampled posterior temperature map and Bottom Right: the maximum-a-posteriori
of the sampled posterior temperature map distribution. In this case the prior was the
known refractive index map, and have been converted to a temperature in this instance
using the Ciddor equation. All of the above temperatures are reported in degrees
Celsius.
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Finally, a random refractive index map was used as the prior. This initial

Voronoi had 107 cells, which is large decrease from the 138 in the equivalent δ

method. The number of Voronoi cells throughout the inversion ranged between

107 and 147, which is a much smaller range than the δ method and the values are

much lower. The κmean value was found to be the lowest (equal to 1.90 ×10−3

compared with κmedian of 1.94 ×10−3 and κmax of 3.34 ×10−3. These values

are larger than those observed by the equivalent δ method. Following this, the

triangulation yielded the following results: εα = 239.3 µm, εimp = 52 %, V =18

Figure 5.16: Numerical Experiment B: This plot shows the results of the triangu-
lation method when the light-rays were traced through the mean recovered refractive
index map. The intersection points of the light-rays are shown by the blue points, the
estimated position of the reflector (ŝα) is shown by the black dot and the true position
(s∗) is shown by the green dot.
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µm and Vimp = 59 %. The εimp and Vimp are larger than the equivalent δ method,

further showing the success of this method. A full summary of the results can be

found in Table 5.3.

A comparison of the objective functions between the δ and TOF method for

each of the priors as shown in Figure 5.17 will now be discussed. From this plot

it can be seen that all γ(j) values for the TOF method oscillate around a central

value of 0.5 ×10−3 which is one order of magnitude from the oscillation value of

the δ method. This plot further shows the success of this method.

Overall for numerical experiment B there was a 4 % improvement in error in

the position in the case where the known prior was used for the TOF method,

compared to the δ method and gave a 2 % improvement in the variance. When a

uniform refractive index map was used as the prior, there was a 7 % improvement

in error in the position in the case where a uniform prior was used for the TOF

method, compared to the δ method and both methods reduced the variance by

the same amount. Finally, when a random refractive index map was used as the

prior, there was a 1 % improvement in error in the position for the TOF method,

compared to the δ method and 2 % improvement in the variance. Generally

speaking for numerical experiment B, the TOF method always performed better

than the δ method in terms of reduction of positional error and reduction of

variance.
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Figure 5.17: Numerical Experiment B: Plot showing a comparison between the misfit
(objective function) γ(j) at each iteration j of the inversion algorithm when the δ
method (yellow, cyan and magenta lines) and the TOF method were used (green, red
and blue lines).

Table 5.3: Numerical Experiment B: Table summarising the improvement in uncer-
tainty and position of the object of interest s∗ when the light-rays are traced through
various refractive index maps, this table considers the TOF and δ method.

Spatial domain ε[µm] εimp [%] V[µm] Vimp [%]
mh 494.9 NA 43.7 NA

δ
TOF

known map as prior 242.9 51 22 50
222.0 55 21 52

δ
TOF

uniform map as prior 260.7 47 21 52
226.5 54 21 52

δ
TOF

random map as prior 242.7 51 19 57
239.3 52 18 59
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5.4 Numerical Experiment C

The results of numerical experiment C (defined in Table 4.6) compared with those

obtained using the δ method from Chapter 4 will now be examined. As in the

previous section all of the variables in the inversion have been keep constant aside

from the method for calculating θk,i. The case where the known refractive index

map, m∗, was used as the prior is considered first.

The first metric output by the inversion process is the number of Voronoi cells

of the perturbed model, m(j) at each iteration, j. In this case the number of

Voronoi cells ranged from 87 to 126, which is a slightly larger range than the

equivalent from Section 4.9 and it also has a higher lower range value. Following

this the objective function is the next metric to be output and a comparison of

the objective functions is shown in Figure 5.18, the red line is the δ method and

the blue line is the TOF method. It can clearly be seen that γ(j) is much smaller

for the TOF method compared with the δ method which is a positive result,

although it looks relatively flat. Figure 5.19 shows γ(j) when the known is used

as the prior for the TOF method in more detail. In addition, the acceptance rate

was 40 % which is the same as in Section 4.9.

The main assessment into the performance of the inversion algorithm is the

improvement of the position of the robot and the variance associated with this.

The material map difference, κ was found for the mean, median and maximum-

a-posteriori of the posterior distribution, yielding 1.43 ×10−3 %, 1.29 ×10−3 %

and 2.16 ×10−3 % respectively. Since the median of the posterior distribution
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Figure 5.18: Numerical Experiment C: Plot showing a comparison between the misfit
(objective function) γ(j) at each iteration j of the inversion algorithm when the δ
method (red line) and the TOF method was used (blue line). These results are from
Numerical Experiment C when the known refractive index map m∗ was used as the
prior.

Figure 5.19: Numerical Experiment C: Misfit (objective function) γ(j) when the
known refractive index map m∗ is used as the prior. .

187



5.

had the lowest κ value it was chosen as the map to perform the triangulation on.

Using the triangulation method, it was found that the error in the position, εα

was 91.6 µm which gives an εimp of 67 %. The variance, V(εα) was found to be

0.9 µm which gives a Vimp value of 64 % improvement in uncertainty compared

to the homogeneous case (see Table 5.4).

Continuing on with the comparisons, the case where a uniform refractive index

map is used as the prior will now be looked at. If the number of Voronoi cells is

considered, it can be seen that the range is larger compared to the δ case (range

of 57 compared to 41), however the lower bound of the range is lower in the TOF

case, 64 compared to 83. The κmedian value was found to be the lowest (equal to

1.51 ×10−3 compared with κmean of 1.54 ×10−3 and κmax of 1.99 ×10−3. These

values look reasonable as all κ values are greater than when m∗ is used as the

prior and these values are also smaller than the equivalent δ ones. Following this,

the triangulation yielded the following results: εα 107.9 µm, εimp = 61 %, V =

0.6 µm and Vimp = 76 %. The εimp and Vimp are larger than the equivalent δ

method.

Finally, a random refractive index map was used as the prior. This initial

Voronoi had 107 cells, which is slightly smaller than the 111 in the equivalent δ

method. The number of Voronoi cells throughout the inversion ranged between 70

and 127, which is a larger range than the equivalent numerical experiment using

the δ method (90 - 124), but the lower bound of the range is lower. The κmean

value was found to be the lowest (equal to 1.91 ×10−3 compared with κmedian of

1.93 ×10−3 and κmax of 2.53 ×10−3. These values are marginally smaller than
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those observed by the equivalent δ method. Following this, the triangulation

yielded the following results: εα = 140.8 µm, εimp = 50 %, V =2.1 µm, which

gives a Vimp of 16 %. A full summary of the results can be found in Table 5.4.

A comparison of the objective functions between the δ and TOF method for

each of the priors as shown in Figure 5.20 will now be looked at. From this plot

it can be seen that all γ(j) values for the TOF method are again lower than the δ

method. In Figure 5.21 only model iteration 500 to 100,000 are considered as it

better shows the difference between the objective functions of the two methods.

This plot further shows the success of the TOF method and its sensitivity.

Overall for numerical experiment C there was a 20 % improvement in error in

the position in the case where the known prior was used for the TOF method,

compared to the δ method. However, the δ method provided a better improve-

ment (by 20 %) in variance when the known map was used as the prior compared

to the TOF method. When a uniform refractive index map was used as the prior,

there was a 35 % improvement in error in the position in the case where a uniform

prior was used for the TOF method, compared to the δ method. As in the case

when the known refractive index map was used as the prior, the TOF method did

not yield a better performance in the variance when compared to the δ method.

Finally, when a random refractive index map was used as the prior, there was

a 21 % improvement in error in the position for the TOF method, compared to

the δ method. Generally speaking for numerical experiment C, the TOF method
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Figure 5.20: Numerical Experiment C: Plot showing a comparison between the misfit
(objective function) γ(j) at each iteration j of the inversion algorithm when the δ
method (yellow, cyan and magenta lines) and the TOF method were used (green, red
and blue lines).

always performed better than the δ method in terms of reduction of positional

error. However, the δ method always performed better than the TOF method in

terms of reduction of variance.
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Figure 5.21: Numerical Experiment C: Plot showing a comparison between the misfit
(objective function) γ(j) at each iteration j of the inversion algorithm when the δ
method (yellow, cyan and magenta lines) and the TOF method were used (green, red
and blue lines), note that iteration 500 to 100,000 are only considered here.

Table 5.4: Numerical Experiment C: Table summarising the improvement in uncer-
tainty and position of the object of interest s∗ when the light-rays are traced through
various refractive index maps, this table considers the TOF and δ method.

Spatial domain εµm εimp [%] Vµm Vimp [%]
mh 279.3 NA 2.5 NA

δ
TOF

known map as prior 149.0 47 0.7 72
91.6 67 0.9 64

δ
TOF

uniform map as prior 205.8 26 5 -100
107.9 61 0.6 76

δ
TOF

random map as prior 226.2 19 0.9 64
140.8 50 2.1 16
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5.5 Numerical Experiment D

The results of numerical experiment D (defined in Table 4.6) compared with those

obtained using the δ method from Chapter 4 will now be examined. As in the

previous section all of the variables in the inversion have been keep constant aside

from the method for calculating θk,i. Recall that the known refractive index map,

m∗ cannot be expressed as a Voronoi, this means that a uniform and random

prior can be considered. The case where a uniform refractive index map, was

used as the prior will be looked at first.

The first metric output by the inversion process is the number of Voronoi cells

of the perturbed model, m(j) at each iteration, j. In this case the number of

Voronoi cells ranged from 80 to 121, which is a slightly larger range than the

equivalent from Section 4.9 and it also has a higher lower range value. The κmean

value was found to be the lowest (equal to 1.9×10−3 compared with κmedian of 1.94

×10−3 and κmax of 2.32 ×10−3. These values are lower than the corresponding

δ method for numerical experiment D. The recovered refractive index maps are

shown in Figure 5.22 and for easier readability the corresponding temperature

maps are shown in Figure 5.23. If Figure 5.23 is compared with Figure 4.37 then

the range in temperature scale is the same for the median, mean and maximum

of the posterior distribution. The only difference is that the lower and upper

bounds of the median of the posterior distribution are lower by 10 ◦ in Figure 5.23.
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Following this, the triangulation yielded the following results: εα 68.2 µm, εimp

= 61 %, V = 0.1 µm and Vimp = 89 %. The εimp and Vimp are larger than the

equivalent δ method.

Finally, a random refractive index map was used as the prior. This initial

Voronoi had 108 cells, which is larger than the 96 in the equivalent δ method.

The number of Voronoi cells throughout the inversion ranged between 78 and

125, which is a larger range than the equivalent numerical experiment using the

δ method (80 - 110). The κmedian value was found to be the lowest (equal to 1.91

×10−3 compared with κmean of 1.93 ×10−3 and κmax of 2.50 ×10−3. These values

are much smaller than those observed by the equivalent δ method. Following this,

the triangulation yielded the following results: εα 90.3 µm, εimp = 48 %, V = 0.6

µm, which gives a Vimp of 59 %. A full summary of the results can be found in

Table 5.5.

A comparison of γ(j) between the δ and TOF method for each of the priors

as shown in Figure 5.24 will now be considered. From this plot it can be seen

that all γ(j) values for the TOF method are again lower than the δ method. In

Figure 5.25 model iteration 500 to 100,000 are solely considered as these iterations

better show the difference between the objective functions of the two methods.

This plot further shows the success of the TOF method and its sensitivity.
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Figure 5.22: Numerical Experiment D: Top Left: The known refractive index map
m∗, Top Right: the mean of the sampled refractive index map posterior, Bottom Left:
median of the sampled posterior refractive index map and Bottom Right: the maximum-
a-posteriori of the sampled posterior refractive index map distribution. In this case the
prior was a uniform Voronoi tessellation.
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Figure 5.23: Numerical Experiment D: Top Left: The known temperature map, Top
Right: the mean of the sampled temperature map posterior, Bottom Left: median of
the sampled posterior temperature map and Bottom Right: the maximum-a-posteriori
of the sampled posterior temperature map distribution. In this case the prior was a
uniform Voronoi tessellation. All of the above temperatures are reported in degrees
Celsius.
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Overall for numerical experiment D there was a 24 % improvement in error

in the position in the case where a uniform prior was used for the TOF method,

compared to the δ method and the improvement in the variance was equal for

both cases. When a random refractive index map was used as the prior, there

was a 33 % improvement in error in the position in the case where a uniform prior

was used for the TOF method, compared to the δ method. There was also an 8

% improvement in the variance for the TOF method, compared to the δ method.

A full summary of the results can be found in Table 5.6, this table contains the

TOF and δ method for all numerical experiments and includes the computational

time associated with each.

5.6 Chapter Summary

This chapter outlined a revised methodology which avoids using the ray tracing

algorithm in the inversion. The ray tracing algorithm is computationally expen-

sive and is not robust. The results from this algorithm feed into the calculation of

the objective function which in turn leads to the objective function not being sen-

sitive enough. Generally speaking the TOF method takes between 3 and 6 hours

to run, whereas the δ method could take up to 3 days. This new method uses

the time field calculated by the FMM and examines the profile lying orthogonal

to the light ray path.
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Figure 5.24: Numerical Experiment D: Plot showing a comparison between the misfit
(objective function) γ(j) at each iteration j of the inversion algorithm when the δ
method (yellow, cyan and magenta lines) and the TOF method were used (green, red
and blue lines).

Figure 5.25: Numerical Experiment D: Plot showing a comparison between the misfit
(objective function) γ(j) at each iteration j of the inversion algorithm when the δ
method (yellow, cyan and magenta lines) and the TOF method were used (green, red
and blue lines), iteration 500 to 100,000 are the only iterations considered here.
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Table 5.5: Numerical Experiment D: Table summarising the improvement in uncer-
tainty and position of the object of interest s∗ when the light-rays are traced through
various refractive index maps, this table considers the TOF and δ method.

Spatial domain εµm εimp [%] Vµm Vimp [%]
mh 174.2 NA 1.4 NA

δ
TOF

uniform map as prior 110.2 37 0.1 89
68.2 61 0.1 89

δ
TOF

random map as prior 147.2 15 0.7 51
90.3 48 0.6 59

As in the previous chapter the analysis began with numerical experiment A. It

was found that the range of Voronoi cells during the inversion were much smaller

than that of the equivalent δ method. In addition, the objective function was

much smaller than the equivalent δ method, highlighting that the TOF method

is sensitive to these small refractive index changes. For the known and uniform

priors the TOF method resulted in a larger εimp and Vimp compared to the equiv-

alent δ method. The random prior still resulted in an εimp which was positive,

and hence better than the homogeneous case.

Numerical experiment B had the same Voronoi cell seed position as in numer-

ical experiment A, but the refractive indices were weakly heterogeneous to be

commensurate with values observed in an industrial setting. Using the known

refractive index map as prior led to an εimp of 55 % and a Vimp of 52 %,. Using

a uniform refractive index map resulted in an εimp of 54 % and Vimp of 52 %.

Finally, when a random refractive index map was used as the prior εimp was 52

% and Vimp was 59 %.
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Table 5.6: Table summarising the improvement in uncertainty and position of the
object of interest s∗ when the light-rays are traced through various refractive index
maps, this table considers the TOF and δ method for all numerical experiments and
includes the computational time associated with each.

Numerical Spatial ε εimp V Vimp Computational
Experiment domain [µm] [%] [µm] [%] time [hours]

A mh 73700 NA 33900 NA NA
A δ known map 33600 54 28500 16 72
A TOF as prior 19600 73 13400 60 3
A δ uniform map 39400 46 28000 17 72
A TOF as prior 23500 68 12100 64 3
A δ random map 20000 73 36000 89 72
A TOF as prior 23800 68 12200 64 3
B mh 495 NA 44 NA
B δ known map 243 51 22 50 72
B TOF as prior 222 55 21 52 3
B δ uniform map 216 47 21 52 72
B TOF as prior 227 54 21 52 3
B δ random map 243 51 19 57 72
B TOF as prior 240 52 18 64 3
C mh 279 NA 2.5 NA
C δ known map 149 47 0.7 72 72
C TOF as prior 92 67 0.9 64 6
C δ uniform map 206 26 5 -100 72
C TOF as prior 108 61 0.6 76 6
C δ random map 226 19 0.9 64 72
C TOF as prior 141 50 2.1 16 6
D mh 174 NA 1.4 NA
D δ uniform map 110 37 0.1 89 72
D TOF as prior 68 61 0.1 89 4
D δ random map 147 15 0.7 51 72
D TOF as prior 90 48 0.6 59 4

Numerical experiment C introduced a Voronoi tessellation with 100 cells, with

the same refractive index range as in numerical experiment B. For all three priors

(known, uniform and random) the uncertainty in the position of s∗ was reduced
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by 67 %, 61 % and 50 % respectively. There was also an improvement in the

variance for all cases, which was not the case for the equivalent δ method. The

objective function, γ(j) was significantly lower in the TOF method compared to

the equivalent numerical experiment using the δ method. This indicates that the

TOF method of calculating θ
(j)
k,i is more sensitive to the changes in the ray path

caused by refraction effects.

Finally numerical experiment, D, was a more realistic scenario with a single

Gaussian distribution representing the heterogeneous temperature distribution,

since it is not possible to represent this refractive index map as a Voronoi, then

the inversion process could only begin with a uniform and random prior. Using

a uniform prior led to an εimp of 61 % and a Vimp of 89 %, whereas a random

prior resulted in an εimp of 48 % and Vimp of 59 %. As in all the previous numer-

ical experiments, the objective function, γ(j) was significantly lower in the TOF

method compared to the equivalent numerical experiment using the δ method.

The following final chapter provides conclusions of the thesis and looks at

future work which could be undertaken.
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Chapter 6

Conclusions and Future Work

6.1 Final Conclusions

The thesis began by providing a review of the effects of refraction in large vol-

ume metrology. It also introduced current techniques used to recover the refrac-

tive index map and ways to model the refractive index maps. There was also

an introduction to inverse problems and components involved: spatial domain

parametrisation, forward solvers and optimisation techniques.

Following this Chapter 2 looked at how mathematical modelling, and in par-

ticular, how a finite element package (COMSOL Multiphysics) can be used to

simulate light rays propagating through a spatially heterogeneous refractive in-

dex (temperature) map. The equations for calculating transverse temperature

gradients were discussed and it was found that transverse gradients dominate ray
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refraction. A simulation of a Gaussian temperature profile which has light rays

propagating through it was studied. An investigation into the effect that varying

three parameters (initial angle of the ray, the maximum temperature and the tem-

perature variance) had on the positional error was discussed. It was found that

changes in the maximum temperature led to the highest error (approximately 220

µm) relative to changes in the initial angle of the ray and the variance.

Chapter 3 introduced physical experimentation, the aim of which was to show

that the Vicon T160 photogrammetry system was sensitive enough to detect the

submillimetre errors in position caused by thermal fluctuations. The experiment

used two Vicon T160 cameras which tracked a cluster of retroreflectors. It was

found that when the heat source was affecting only one of the camera’s light ray

trajectory, the positional error was 679 µm. These positional errors confirm the

findings of Chapter 2 and show that submillimetre sized positional errors can arise

in laboratory sized volumes. Mathematical formulae were derived which illustrate

the amount that the centroid of a target can move, following the addition of

another pixel to the image of the retroreflector. It was found that approximately

99 % of the adjacent centroid movements of the data points captured by the

cameras were within the range of movement calculated using the formulae.

Chapter 4 outlined the methodology involved in reconstructing the refractive

index map, this methodology is referred to as the δ method. The parametrisation

of the refractive index map employed Voronoi tessellations as these require fewer

degrees of freedom to describe a heterogeneous map and large regions can be

affected by a single perturbation. The forward model was solved using the Fast
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Marching Method (FMM), which calculates the travel time field between the cam-

era and the reflector and then finds the optical path within this field that the ray

takes. The objective function was based on the absolute difference between the

experimentally measured angle (θ∗k,i) and the angle calculated at each iteration of

the inversion algorithm (θ
(j)
k,i ) as shown in Equation (4.5). The choice of optimi-

sation method was the reversible jump Markov Chain Monte Carlo (rj-MCMC)

method. This is an iterative stochastic process which generates a population of

solution samples from the posterior distribution. The goal of this is to reconstruct

the refractive index map such that the positional error, εα is smaller than the er-

ror that arises when assuming a homogeneous refractive index map, εh (which is

the current practice).

An initial test case (numerical experiment A) based on a ten cell Voronoi

diagram refractive index map was investigated. This refractive index map was

strongly heterogeneous and produced a positional error (εh) of 73.7 mm arising

from a refractive index fluctuation of 2.2 %. In this numerical experiment, an

improvement in positioning and uncertainty of up to 73 % and 89 % respectively

were observed.

Numerical experiment B had the same Voronoi cell seed position as in A, but

the refractive indices were weakly heterogeneous to be commensurate with values

observed in an industrial setting. In this numerical experiment, an improvement

in positioning and uncertainty of up to 51 % and 57 % respectively were observed.
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Numerical experiment C introduced a Voronoi tessellation with 100 cells, with

the same refractive index range as in numerical experiment B. In this numerical

experiment, an improvement in positioning and uncertainty of up to 47 % and

67 % respectively were observed. One limitation of this numerical experiment

was the lack of sensitivity in the objective function. The objective function was

the same order of magnitude as numerical experiment B, however in general the

refractive index maps were much smoother due to a larger number of Voronoi

cells. One potential reason for this is that the ray tracing part of the inversion is

not robust enough to deal with these changes in the trajectory of the ray paths

and the unusual ray paths were discussed in Section 4.7.1.

The final numerical experiment, D, was a more realistic scenario with a single

Gaussian distribution representing the heterogeneous temperature distribution.

Since this refractive index map cannot be represented as a Voronoi tessellation,

the inversion process was only able to start with a uniform and random prior. In

this numerical experiment, an improvement in positioning and uncertainty of up

to 37 % and 89 % respectively were observed.

Finally Chapter 5 outlined a revised methodology which avoids using the ray

tracing algorithm in the inversion. The ray tracing algorithm is computationally

expensive and is not robust. The results from this algorithm feed into the cal-

culation of the objective function which in turn leads to the objective function

not being sensitive enough. Generally speaking the TOF method takes between
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3 and 6 hours to run, whereas the δ method could take up to 3 days. This new

method uses the time field calculated by the FMM and examines the profile lying

orthogonal to the light ray path.

As in the previous chapter, numerical experiment A was considered first. It

was found that the range of Voronoi cells during the inversion were much smaller

than that of the equivalent δ method. In addition, the objective function was

much smaller than the equivalent δ method, highlighting that the TOF method

is sensitive to these small refractive index changes. For the known and uniform

priors the TOF method resulted in a larger εimp and Vimp compared to the equiv-

alent δ method. The random prior still resulted in an εimp and Vimp which were

positive, and hence better than the homogeneous case.

In numerical experiment B, an improvement in positioning and uncertainty of

up to 55 % and 59 % respectively were observed. In numerical experiment C, an

improvement in positioning and uncertainty of up to 67 % and 76 % respectively

were observed. The objective function, γ(j) was significantly lower in the TOF

method compared to the equivalent numerical experiment using the δ method.

This indicates that the TOF method of calculating θ
(j)
k,i is much more sensitive to

the changes in the ray path caused by refraction effects. Then finally numerical

experiment D, an improvement in positioning and uncertainty of up to 61 % and

89 % respectively were observed.
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6.2 Future Work

Since this was the first attempt at solving this inverse problem there is a lot of

scope for future work. The method could be improved by the use of the multi-

stencils FMM which is presented in [90, 113]. This update could lead to a more

accurate travel time matrix which could lead to an improvement in accuracy to

the results obtained in Chapter 5. However, it is unclear how much this would

increase the computational time of the algorithm.

The simulations would be straightforward to do in three dimensions and no

doubt the εh values would increase. However, it would less straightforward to code

the inversion algorithm in three dimensions and in turn it would be expected that

the computational times would be prohibitive. A deterministic optimisation ap-

proach could be employed instead of the stochastic reversible jump Markov Chain

Monte Carlo but as the objective function is highly nonlinear (and indeed discon-

tinuous) then this would require very careful treatment and a global optimisation

scheme adopted.

One area of future work would be to look at updating the inversion code for

another optical based metrology system; most likely the laser tracker system.

Experimentation would first need to be carried out to gauge sensitivity of the

errors due to heterogeneous refractive index domains. The simulations of a light

ray propagating from a laser tracker would be the same as currently presented,

however the way in which the errors are calculated would need to be updated

for the new optical based metrology system as the laser trackers use distance
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and angle. In terms of the inversion algorithm, the code would also need to be

modified to trace the rays emitted from the laser tracker and calculate the errors

associated with this. The main barrier to deploying this using the original method

detailed in Chapter 4 is the robustness of the ray tracing algorithm within the

forward model. As mentioned in Chapter 4 this method uses FMM to firstly get

the time field then finds the path between the camera and the reflector. This

method is not robust and since one of the laser tracker outputs is distance the

ray paths output by the forward model would be subject to large errors and as a

result this would need addressed. In addition the objective function would need

to be updated, and as mentioned previously laser trackers use distance and angle

in the measurements, so it would be necessary to come up with some sort of

weighted objective function, which is not currently implemented.
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parallélloèdres primitifs.,” Journal für die reine und angewandte

Mathematik, vol. 134, pp. 198–287, 1908.

[97] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial tessellations:

concepts and applications of Voronoi diagrams. West Sussex, UK: John

Wiley & Sons, 2 ed., 2009.

222



REFERENCES

[98] T. M. Liebling and L. Pournin, “Voronoi diagrams and Delaunay

triangulations: Ubiquitous siamese twins,” Documenta Mathematica Extra

volume: Optimization stories, pp. 419–431, 2012.

[99] E. B. Kurt Mehlhorn, Michael Sagraloff, “Computational Geometry and

Geometric Computing: Triangulations ,” Max Planck Institut, Informatik,

Saarbrücken, Germany, 2009.

[100] T. Bodin and M. Sambridge, “Seismic tomography with the reversible

jump algorithm,” Geophysical Journal International, vol. 178, no. 3,

pp. 1411–1436, 2009.

[101] E. Galetti and A. Curtis, “Transdimensional electrical resistivity

tomography,” Journal of Geophysical Research: Solid Earth, vol. 123,

no. 8, pp. 6347–6377, 2018.

[102] M. Bock, A. K. Tyagi, J.-U. Kreft, and W. Alt, “Generalized Voronoi

Tessellation as a Model of Two-dimensional Cell Tissue Dynamics,”

Bulletin of Mathematical Biology, vol. 72, no. 7, pp. 1696–1731, 2010.

[103] M. Lee and D. Han, “Voronoi tessellation based interpolation method for

wi-fi radio map construction,” IEEE Communications Letters, vol. 16,

no. 3, pp. 404–407, 2012.

[104] J. Snow, “On the mode of communication of cholera,” in On the mode of

communication of cholera, New York, USA: The Commonwealth Fund,

1903.

223



REFERENCES

[105] L. Ju, T. Ringler, and M. Gunzburger, “Voronoi tessellations and their

application to climate and global modeling,” in Numerical techniques for

global atmospheric models, pp. 313–342, Springer, 2011.

[106] J. Belhadj, T. Romary, A. Gesret, M. Noble, and B. Figliuzzi, “New

parameterizations for bayesian seismic tomography,” Inverse Problems,

vol. 34, no. 6, p. 065007, 2018.

[107] D. M. Mount, “Computational Geometry CMSC 754: Fortune’s

Algorithm and Voronoi diagrams,” 2002. [Online]. Available:

http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf, Accessed

2019-08-23.

[108] L. D. Landau and E. Lifshitz, The classical theory of fields, vol. 2. 4 ed.

[109] Multiphysics 5.3a, COMSOL, “COMSOL multiphysics user guide - Ray

Optics Interface,” COMSOL, AB, 2017.

[110] N. Rawlinson and M. Sambridge, “Wave front evolution in strongly

heterogeneous layered media using the fast marching method,”

Geophysical Journal International, vol. 156, no. 3, pp. 631–647, 2004.

[111] M. S. Hassouna, A. E. Abdel-Hakim, and A. A. Farag, “Robust robotic

path planning using level sets,” in IEEE International Conference on

Image Processing 2005, vol. 3, (Genova, Italy), IEEE, 14 Sept 2005.

224

http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf


REFERENCES

[112] K. Siddiqi, A. Tannenbaum, and S. W. Zucker, “A hamiltonian approach

to the Eikonal equation,” in Energy Minimization Methods in Computer

Vision and Pattern Recognition, vol. 1654, pp. 1–13, York, UK: Springer

Berlin Heidelberg, 1999.

[113] M. S. Hassouna and A. A. Farag, “Multistencils fast marching methods:

A highly accurate solution to the eikonal equation on cartesian domains,”

IEEE transactions on pattern analysis and machine intelligence, vol. 29,

no. 9, pp. 1563–1574, 2007.

[114] J. A. Sethian, “A fast marching level set method for monotonically

advancing fronts,” Proceedings of the National Academy of Sciences,

vol. 93, no. 4, pp. 1591–1595, 1996.

[115] M. Cavazzuti, Optimization methods: from theory to design scientific and

technological aspects in mechanics. Berlin, Germany: Springer Science &

Business Media, 2012.
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