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CASANDRA. — Apolo, dios de la profećıa, me encomendó el cumplimiento de este

servicio.

CORIFEO. — ¿Acaso fue herido, a pesar de ser dios, por deseo amoroso?

CASANDRA. — Yo teńıa antes pudor de hablar de estas cosas.

CORIFEO. — ¡Claro! Todo el mundo es más delicado, cuando es feliz.

CASANDRA. — ¡Bien que luchó para conseguirme, suspirando de amor por mı́!

CORIFEO. — ¿Y llegasteis a compartir la acción de engendrar?

CASANDRA. — Luego de haber consentido, no le cumpĺı mi palabra a Loxias.

CORIFEO. — ¿Estabas ya entonces posesa por el arte de adivinar?

CASANDRA. — Ya veńıa yo vaticinando todos los sufrimientos a los ciudadanos.

CORIFEO. — ¿Cómo, entonces, quedaste indemne de la ira de Loxias?

CASANDRA. — Por haber cometido esta falta, ya no convenzo a nadie de nada.

CORIFEO. — Nos parece, no obstante, que haces vaticinios dignos de creerse.

Esquilo. La Orest́ıada I: Agamenón [Esquilo, 1986]

(Aeschylus. Oresteia I: Agamemnon)
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Abstract

This work proposes a new methodology to manage the increase in space traffic and ensure

the safe and sustainable utilisation of space by all actors involved in the New Space context.

The proposed methodology aims to improve the automation and robustness of Space Traffic

Management. The resulting framework constitutes CASSANDRA, an intelligence agent to

robustly support operators on complex Space Traffic Management tasks accounting for aleatory

and epistemic uncertainty and implementing Artificial Intelligence techniques to address the

problems.

This research presents an evidence-based framework to assist operators in the conjunction

risk assessment decision-making process, using Dempster-Shafer theory of evidence to model

both aleatory and epistemic uncertainty on the object’s state vector. This framework assists

operators in making robust decisions in space conjunction assessment based on the value of

the probability of collision and its correctness from the available information. The framework

is designed to cope with Conjunction Data Messages. These messages are the most common

standard protocol for conjunction communication, and the proposed methodology models the

epistemic uncertainty affecting them. The framework also addresses the Conjunction Avoidance

Manoeuvre design by providing robust optimal strategies accounting for both aleatory and

epistemic uncertainty.

The framework enhances the autonomy of Space Traffic Management using Artificial Intel-

ligence methods. These techniques facilitate the autonomy of the decision processes through

the creation of faster surrogate models, data-driven models and decision-making architectures.

The use of Artificial Intelligence in this research intends to improve the automation of the

Space Traffic Management system. First, a Decision Support System based on Multi-Criteria

Decision-Making and Game Theory is proposed to prioritise the best avoidance strategies based

on the available alternatives and the operator’s criteria and constraints. Second, automation

is improved by implementing Machine Learning and Deep Learning techniques, like Random

Forests or Neural Networks, to speed up the conjunction assessment process accounting for
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Chapter 0. Abstract

both types of uncertainty while providing reliable levels of accuracy.

Finally, this work presents some examples where the methodology is tested on a range

of real and synthetic scenarios addressing the multiple-encounter events problem, presenting

a pipeline integrating the different elements of the framework, and comparing the proposed

framework with the current approaches followed by the European and French Space Agencies.
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Chapter 1

Introduction

The emergence of the New Space, with small satellites, mega-constellations and the

stronger role of the private sector, has brought the necessity of new collision risk as-

sessment approaches. The capacity of the current system to guarantee the safe use

of space will soon be overwhelmed by the new context and, thus, a more robust and

automated system will be required. This research aims to propose new method-

ologies to deal with the increase in traffic and the characteristics of the new

spacecraft and constellations to ensure and manage the sustainable use of

space by the different agents involved in the space sector. This is achieved

by addressing the need for robustness and automation in Space Traffic Man-

agement required to guarantee safe operations in space. In this research, a

new methodology is introduced to automatise and speed up Space Traffic

Management using Artificial Intelligence to support operators in the robust

decision-making process. Artificial intelligence technologies were used to enable

automation and uncertainty quantification methods, modelling both aleatory and epis-

temic uncertainty, were developed to make possible robust space traffic management.

Automation in Space Traffic Management (STM) is a necessity due to the changes

in the space environment. Machine Learning (ML) techniques have been started to

be applied in the space field, and more specifically, in the space safety area to help

automate and speed up some processes. Similarly, addressing uncertainty in a more

complex environment is becoming paramount to ensure the safety management of the
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Earth’s orbital region. This work proposes improvements in both fields and combines

them to create a more exhaustive framework to address STM problems, accounting for

epistemic uncertainty and enhancing automation.

1.1 Research objectives and contributions

Based on the rationale presented before, the main objectives of this thesis are:

• Improve robustness of STM by accounting for epistemic uncertainty and integra-

tion its quantification in the conjunction assessment decision-making process.

• Capture the different sources of uncertainty affecting conjunction communication

standards (i.e. Conjunction Data Messages (CDMs)).

• Account for aleatory and epistemic uncertainty in the design of a Collision Avoid-

ance Manoeuvre (CAM) and the decision-making process.

• Devise a methodology to use Artificial Intelligence (AI) to automate STM.

From the list of objectives detailed above, the contributions of this thesis to achieve

them are:

• Implementation of a revised collision risk model that accounts for epistemic un-

certainty on the objects’ position:

– Development of an evidence-based framework to perform collision risk as-

sessment accounting for aleatory and epistemic uncertainty using Dempster-

Shafer theory of evidence (DSt).

– Analysis of the robustness of the system accounting for several sources of

uncertainty, implementing a data fusion process to fuse the risk of collision

with other relevant quantities.

– Development of an epistemic-based classification criterion for supporting op-

erators in close encounters decision-making.
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– Development of a methodology to model missing sources of epistemic uncer-

tainty on the CDMs and its integration in the evidence-based framework.

• Development of a methodology to automatically generate optimal and robust

CAMs and support the avoidance decision-making under different conjunction

scenarios.

– Development of a methodology to compute robust collision avoidance ma-

noeuvres under aleatory and epistemic uncertainty for the impulsive and the

low-thrust scenarios.

– Implementation of an approach to support the decision-making on the exe-

cution of the robust CAMs, both in the cooperative scenario using a Multi-

Criteria Decision-Making (MCDM)-based approach and in the non-cooperative

case employing Game Theory.

– Generalisation of the methodology to cope with multiple-encounter events,

both for subsequent encounters of a single satellite and for simultaneous

encounters within a constellation.

• Development of a methodology which uses AI to provide robust decision support

to operators and enables robust automation of STM.

– Study of different ML and Deep Learning (DL) techniques to classify close

encounters events according to the confidence on their risk accounting for

aleatory and epistemic uncertainty, creating faster surrogate models of the

evidence-based framework.

– Development of a prototype modular system integrating the proposed method-

ologies to automatise conjunction risk assessment and provide robust support

to operators.

• Validation of the developed methodologies and tools to real scenarios.

– Definition of realistic scenarios based on real encounter events.

– Development of tuning methods for the parameters and threshold introduced

in the evidence-based framework conjunction analysis.
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– Comparative analysis between the proposed approach and real operators

procedures on relevant real conjunction scenarios.

– Statistical comparison of approaches on databases of real satellite missions.

1.1.1 Publications

Part of the content of this thesis was published in journal articles, book chapters, and

conference papers. In the following, the list of publications produced in this research

period is reported.

Journal papers

1. Sánchez, L. and Vasile, M. (2021), “On the use of machine learning and evidence

theory to improve collision risk management”, Acta Astronautica, Vol. 181, pp.

694-706, https://doi.org/10.1016/j.actaastro.2020.08.004 [Sánchez and

Vasile, 2021c];

2. Sánchez, L. and Vasile, M. (2022), “Intelligent decision support for collision

avoidance manoeuvre planning under uncertainty”, Advances in Space Research,

Special Issue: Space Environment Management and Space Sustainability, in press,

https://doi.org/10.1016/j.asr.2022.09.023 [Sánchez and Vasile, 2023];

3. Sánchez, L., Vasile, M., Sanvido, S., Merz, K. and Taillan, C., “Treatment

of epistemic uncertainty in conjunction analysis with Dempster-Shafer theory”,

Advances in Space Research, submitted [Sánchez et al., 2024].

Book chapters

1. Sánchez, L., Vasile, M. and Minisci, E. (2020), “AI and space safety: collision

risk assessment”, In Schrogl, KU. (eds) Handbook of Space Security, pp. 941-959.

Springer, Cham, https://doi.org/10.1007/978-3-030-23210-8_136 [Sánchez

et al., 2020].
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Peer-reviewed conferences papers

1. Vasile, M. and Sánchez, L. (2022), “Robust optimisation of coordinated collision

avoidance manoeuvres in large constellations”, In 11th International Workshop

on Satellites Constellations and Formation Flying (IWSCFF), Milan, Italy, 7-10

June, Paper Number: ThuSOT1.3 [Vasile and Sánchez, 2022].

2. Sánchez, L., Rodŕıguez-Fernández, V. and Vasile, M. (2023), “Robust classifica-

tion with belief functions and deep learning applied to space traffic management”,

In 2024 IEEEWorld Congress on Computational Intelligence (WCCI), Yokohama,

Japan, 30 June - 5 July. Accepted. [Sánchez et al., 2023].

Conferences papers and presentations

1. Sánchez, L., Vasile, M. and Minisci, E. (2019), “AI to support decision making

in collision risk assessment”, 70th International Astronautical Congress (IAC),

Washington DC, US, 21-25 October. Paper number: IAC–19–A6,IP,20,x53728

[Sánchez et al., 2019];

2. Sánchez, L. and Vasile, M. (2020), “On the use of machine learning and evidence

theory to improve collision risk assessment”, 2nd IAA Conference on Space Sit-

uational Awareness (ICSSA), Washington DC, US, 14-16 January [Sánchez and

Vasile, 2020b];

3. Sánchez, L. and Vasile, M. (2020), “AI for autonomous CAM execution”, 71st

International Astronautical Congress (IAC), The Cyber Space Edition, 12-14 Oc-

tober. Paper number: IAC–20–A6,2,12,x58045 [Sánchez and Vasile, 2020a];

4. Greco, C., Sánchez, L. and Vasile, M. (2021), “A robust Bayesian agent for

optimal collision avoidance manoeuvre planning”, 8th European Conference on

Space Debris, ESA/ESOC, Darmstadt, Germany, 12-14 April [Greco et al., 2021];

5. Sánchez, L. and Vasile, M. (2021), “CASSANDRA: Computational Agent for

Space Situational Awareness aNd Debris Remediation Automation”, Stardust-

Robust AI for STM Luis Sánchez Fernández-Mellado 5



Chapter 1. Introduction

R – Second Global Virtual Workshop (GVW-II), Darmstadt, Germany, 13-17

September [Sánchez and Vasile, 2021a];

6. Sánchez, L. and Vasile, M. (2021), “Constrained optimal collision avoidance

manoeuvre allocation under uncertainty for subsequent conjunction events”, 72nd

International Astronautical Congress (IAC), Dubai, EAU, 25-29 October, Paper

number: IAC-21,A6,IP,9,x64861 [Sánchez and Vasile, 2021b];

7. Sánchez, L., Stevenson, E., Vasile, M., Rodŕıguez-Fernández, V. and Camacho,

D. (2022), “An intelligent system for robust decision-making in the all-vs-all con-

junction screening problem”, 3rd IAA Conference on Space Situational Awareness

(ICSSA), Tres Cantos, Madrid, Spain, 4-6 April [Sánchez et al., 2022a];

8. Hallgarten la Casta, M., Sánchez, L., Amato, D. and Vasile, M. (2022), “Non-

linear set propagation with generalised equinoctial orbital elements”, 5th Interna-

tional Workshop on Key Topics in Orbit Propagation Applied to SSA (KePASSA),

Logroño, Spain, 22-24 June [Hallgarten la Casta et al., 2022];

9. Sánchez, L., Vasile, M. and Taillan, C. (2022), “Close encounter decision-

making: comparing CASSANDRA and CNES operational processes”, 2nd Star-

dust Final Conference (STARCON-2), ESA/ESTEC, Noordwijk, The Nether-

lands, 7-11 November [Sánchez et al., 2022b].

1.1.2 Thesis structure

The thesis is structured in two parts and two additional chapters for the State of the

Art and the Conclusions. Part I includes the theoretical and methodological devel-

opments related to the use of DSt on conjunction risk assessment, providing robust

decision-making, and computing robust CAMs in single and multiple encounters. Part

II contains advanced applications of those methods on STM challenges, including the

use of AI techniques to the theoretical developments.

Chapter 2 presents the current State of the Art on Space Traffic Management ap-

proaches and efforts to account for uncertainty, both aleatory and epistemic. It also
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shows previous works done towards the automation of STM tasks and the pioneering

works on the use of AI for space safety.

In Part I, Chapter 3 presents a robust classification system to evaluate the risk

of close encounters accounting for aleatory and epistemic uncertainty. While aleatory

uncertainty is commonly modelled in space objects’ state vectors and close encounter

analysis, epistemic uncertainty is usually overlooked. An evidence-based framework

using DSt is proposed to model both types of uncertainty and provide the operators

robust support in the decision-making process. Chapter 4 extract the epistemic un-

certainty implicit on the sequence of CDMs, capturing missing sources of uncertainty

(probabilistic model, dynamic model, observations) to integrate this commonly used

protocol on the DSt-based framework introduced in the previous chapter. Initially,

statistical tools, like empirical Cumulative Distribution Function (eCDF), Dvoretzky-

Kiefer-Wolfowitz (DKW) inequalities and p-boxes, are used to model this uncertainty in

the CDMs, and later, it is inserted into the proposed decision support system. In Chap-

ter 5, the DSt framework is extended to compute robust optimal CAMs, accounting for

aleatory and epistemic uncertainty, to provide the optimal manoeuvre that reduces the

risk of the worst-case scenario. If the evidence-based decision-making support system

suggests to the operator an avoidance strategy should be implemented, the proposed

manoeuvre should account as well for the epistemic uncertainty affecting the objects’

state vector. A min-max optimisation approach methodology is presented to compute

the impulsive robust optimal manoeuvre. The method is then extended to address

the low-thrust scenario. Finally, in Chapter 6 the robust decision-making problem is

addressed. If an avoidance strategy is required, under the evidence-based framework,

a number of robust optimal solutions may be obtained, by changing some parameters

such as the manoeuvre execution position or its magnitude. The task of the opera-

tor consists of selecting the most appropriate alternative according to some mission

criteria, usually contradictory among them. The proposed approach uses MCDM in

the collaborative scenario (when all agents are expected to follow the same outcome)

and Game theory in the non-collaborative scenario (when other operators’ action is

not known in advance and it is not agreed) to proposed an informed ranking of the
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difference avoidance strategies available.

In Part II, Chapter 7 applies the robust methodology to real conjunction scenar-

ios. Examples in other chapters are based on simulated encounters mimicking actual

scenarios. In this chapter, events provided by the European and French space agencies

are analysed using the evidence-based approach, and the results are compared with

the decisions made by the actual operators during the real operations of the satellites

involved in the encounters. Chapter 8 proposes different intelligent models to enhance

the capabilities of the robust framework introduced in Part I. These models use ML

and DL techniques, like Artificial Neural Networks (ANN), Random Forests (RF), K-

Nearest Neighbours (KNN), Support Vector Machine (SVM), Light Gradient Boosting

machine (LGBm) or Transformers, to help the automation and speed up the conjunc-

tion risk assessment process. The objective is to quickly propose to the operators the

most suitable action based on the encounter geometry by building a surrogate model

of the evidence-based methodology introduced in previous chapters. In Chapter 9, the

MCDM methodology introduced in Chapter 6 is applied to the multi-encounter sce-

nario. While single encounters are currently the norm in space operations, the increase

in space traffic will raise the chance of multi-event conjunctions. The chapter applies

MCDM techniques to deal with two separate situations: a single satellite facing mul-

tiple encounters, and several satellites belonging to the same constellation facing an

encounter with the same external object. The last chapter of this part of the thesis,

Chapter 10, introduces CASSANDRA, an intelligent agent to deal with STM and Space

Environment Management (SEM) problems automatically, applying AI techniques and

accounting for aleatory and epistemic uncertainty. The chapter introduces some of the

modules compounding the agent, which are based on the methods introduced in previ-

ous chapters, and shows two examples of their integration to solve specific space safety

problems.

Finally, Chapter 11 summarises the main contributions of the thesis and presents

some possible new research directions.
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1.2 Research funding

This research was funded by the European Space Agency, through the Open Space

Innovation Platform (OSIP): “Idea I-2019-01650: Artificial Intelligence for Space Traffic

Management”.

The research focuses on leveraging AI and ML for STM, aiming to enhance decision-

making processes in collision risk assessment and avoidance.

This project aligns with the Space Safety research line followed by the Aerospace

Centre of Excellence (ACE) at the University of Strathclyde. The ACE carries out

extensive research on planetary defence and the long-term sustainability of the space

environment in combination with AI techniques to enhance automation and speed up

processes. The ACE also research the development of uncertainty quantification algo-

rithms applied to orbit propagation and control, with important studies on the quan-

tification of epistemic uncertainty.
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Chapter 2

State of the Art

The space environment around the Earth has experienced a dramatic change during

the last years and is expected to keep evolving during the mid-term horizon. For

decades, space traffic experienced a constant but steady increase, with space agencies,

governments and communication satellites being the main actors [ESA, 2023b,NASA,

2023]. However, the New Space era [Peterson et al., 2018] is a reality bringing a

plethora of changes, which range from the use of space to the available technologies,

traffic density and operational practises. The space community, adapted to the slower-

growing and less populated environment, will need to adapt to ensure the sustainable

and safe use of space by all new and old actors.

One of the areas greatly affected by the new situation is Space Traffic Management

(STM) [Muelhaupt et al., 2019]. The International Academy of Astronautics (IAA)’s

Cosmic Study on Space Traffic Management defines STM as “the set of technical and

regulatory provisions for promoting safe access into outer space, operations in outer

space and returns from outer space to Earth free from physical or radio-frequency

interference” [Contant-Jorgenson et al., 2006]. Currently, the STM system is tailored to

the environment that arose from the Fengyun 1 antisatellite test [Pardini and Anselmo,

2009, Pardini and Anselmo, 2011] and the Iridium 33 - Cosmos 2251 [Nicholas, 2009,

Pardini and Anselmo, 2011] collision in 2007 and 2009, respectively. In this scenario,

the Earth’s environment was dominated by space debris and with few space agents

operating a reduced fleet of satellites.
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In this context, STM tasks could be handled by human operators since conjunction

alerts occur in a manageable number and conjunction assessment was scarce enough

to be able to dedicate enough time to safely address them. The common approach by

the main space agencies was similar, despite some operational differences according to

their necessities [Braun et al., 2016,Merz et al., 2017, Newman et al., 2014, Newman

et al., 2019, Laporte and Moury, 2013]. Events surpassing a certain risk threshold,

usually measured with the Probability of Collision (PoC) metric, were short-listed to

be further analysed. If the risk kept high when receiving updated information, the

encounters were classified as higher-risk encounters (i.e. High-Interest Events), and

further measures to mitigate the risk were studied. Finally, if an avoidance manoeuvre

was required after the design stage, a go/no-go decision was made in the last days

before the encounter to implement the avoidance action some revolutions before the

conjunction. This process is very time-consuming, requires a lot of human workload

and is based on the constant coordination among departments and operators which are

based on phone calls and emails. Although it has been effective during the last few

years, it has no scalability capacity [Nag et al., 2021] and relies on teams of several

operators to take care of one satellite or a small fleet of satellites.

The New Space era is characterised by a shift from a governmental-led space to a

commercial-focused use of space [ESA, 2023b,Peterson et al., 2018]. The first conse-

quence is the appearance of new actors in a relatively small ecosystem, creating new

relations, affecting the existing ones and competing for the limited resources. As a

result, during the last years, the launching rate has accelerated dramatically, with an

exponential increase in the number of satellites orbiting the Earth and the total mass

they represent, in contrast with the linear increase seen before [Ailor et al., 2017,Fed-

eral Communications licensing website, 2023]. Only a proportion of those objects cor-

respond to similar systems than already in orbit, i.e. single satellites in the Low Earth

Orbit (LEO) regime. However, the more concerned contributions are represented by

the small satellites and the big constellations [Bastida Virgili et al., 2016b,Lewis et al.,

2017b,ESA, 2023b].

Small satellites have become very popular due to their inexpensive manufacture and
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operation. New companies have specialised in them and new commercial businesses

and research centres have opted to use them for providing low-cost services or research.

Due to their many advantages, they present a number of challenges from the point of

view of safety. Because of their small size, it is usually harder to track them or provide

accurate information on their state. However, despite their size, they represent a threat

to other spacecraft in case of a collision. Moreover, the smaller available space inside

the platform may translate to limited capabilities and a lack of redundancy. In the

case of a conjunction, the spacecraft’s capabilities may be restricted, especially when

the event involves a dead object. Similarly, the End-Of-Life actions may be limited,

affecting the overall space safety. [Lewis et al., 2017b,Radtke et al., 2017b,Lewis et al.,

2014,Bastida Virgili and Krag, 2015]

The other element impacting space safety in this new context is satellite constella-

tions. Although there have been constellations for several decades, they were located in

relatively low-density areas or involved a small number of satellites. Nevertheless, it is

worth noting that the only recorded fatal collision affecting an operational satellite, the

Iridium 33 - Cosmos 2251 collision, involved a spacecraft in a constellation [Nicholas,

2009]. However, modern constellations are being deployed or are projected to operate in

the LEO region, already occupied by most of the operational satellites, and they include

thousands of satellites, which represent the same order of magnitude as the satellites

placed in orbit during the last 50 years of Space Era [Ailor et al., 2017,Federal Com-

munications licensing website, 2023]. Such an increase in the number of objects and

the fact that they need to operate in a coordinated way puts a lot of pressure on the

current systems that ensure space safety. [Bastida Virgili et al., 2016a,Radtke et al.,

2017a,Peterson et al., 2016,Lewis et al., 2017a,Rossi et al., 2017]

Parallel to the increase in space traffic, new technologies have impacted STM

procedures. While in the past, manoeuvres involved mainly chemical propulsion, re-

stricting the operation time to a narrow interval, modern satellites are equipped with

Low-Thrust (LT) propulsion, which involves much longer operation times, potentially

extending for several orbits [Hernando-Ayuso and Bombardelli, 2020, Palermo et al.,

2021,De Vittori et al., 2022]. While more efficient, the orbit correction takes longer and
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is more complex, which directly impacts space safety. First, being a longer operation,

it is harder to compute the new orbit to predict conjunction. Second, if a conjunction

is detected, the available reaction time is smaller. Third, there is a greater effect on the

knowledge of the spacecraft state’s uncertainty [Bernelli-Zazzera et al., 2012, di Carlo

et al., 2019].

Associated with the increase in traffic, there is a rise in the number of pieces of

space debris, defined as “all non-functional, artificial objects, including fragments and

elements thereof, in Earth orbit or re-entering into Earth’s atmosphere. Human-made

space debris dominates over the natural meteoroid environment, except around mil-

limetre sizes” [European Space Agency, 2021c]. Despite mitigation and remediation

policies [ESA, 2023b, Frey and Lemmens, 2017], the trend of space debris fragments

remains rising despite collision among background populations or not-compliant mis-

sions. Adding to that, the improvement in Space Situational Awareness (SSA) and

Space Surveillance and Tracking (SST) capabilities [Haimerl and Fonder, 2015,Fonder

et al., 2017] and the appearance of commercial providers (e.g. LeoLabs, ExoAnalyt-

ics, SlingShot Aerospace) have incorporated newly discovered objects, previously un-

tracked, that now may generate collision alerts with operational spacecrafts [Peterson

et al., 2018].

The combined effect of these contributions brings the current STM to the limit

[Muelhaupt et al., 2019]. On the one hand, a growth in the space population will imply

an increase in conjunction alerts, both from actual collisions that will require taking

more avoidance or mitigation actions, and false alerts that would saturate operators’

capabilities [Peterson et al., 2018]. On the other hand, more actors are now involved in

operations, SSA/SST and STM activities [Águeda Maté et al., 2021, Simarro Mecinas

et al., 2022]. The current system is adapted to a low-populated environment with ad-

hoc communication and leaving a great effort of the activities to the operators. The

paradigm change will require a shift on the STM architecture if safety service wants to

be granted for satellites. A much more robust and automated system is required [Nag

et al., 2018], where operators deal with a much greater number of satellites, more

similar to well-established systems like Air Traffic Management (ATM) or Maritime
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Traffic Management (MTM) [Contant-Jorgenson et al., 2006].

Several steps should be taken to ensure the long-term employment of space, guar-

anteeing safety for users, without outstriping the STM system capabilities. They can

be grouped into five different actions: policies, remediation, mitigation, robustness and

automation. Policies include all protocols aiming to standardise the line of action under

encounters and regulations to comply with regarding passivation, end-of-life, avoidance

capabilities and responsibilities against other actors [Innocenti et al., 2013,UNOOSA,

2010,IADC, 2022,WEF, 2023,ESA, 2023a]. Mitigation measurements correspond to ac-

tions taken by manufacturers and operators to prevent the proliferation of space debris

during and after the mission: end-of-life procedures and decommissioning, tracking de-

vices, manoeuvre capabilities... [ESA, 2023a,Letizia et al., 2019,Pontijas Fuentes et al.,

2019]. Remediation corresponds to those actions meant to solve the current debris situ-

ation or meant to be used if mitigation actions fail, making Active Debris Removal the

best example in this group [Wormnes et al., 2013, Forshaw et al., 2018,Priyant Mark

and Kamath, 2019,Weeden et al., 2019,Aglietti et al., 2019,Botta et al., 2020,McKnight

et al., 2021,Briesboek et al., 2021,Wijayatunga et al., 2023]. Robustness refers to the

capability to make decisions in an uncertain environment, where not all the informa-

tion is available to the operators or it is partial or in conflict among sources [Newman

et al., 2019,Faucher et al., 2020,Águeda Maté et al., 2021,Delmas et al., 2023]. Finally,

automation of STM system is becoming essential due to the growth in the number

of satellites to operate, alerts to evaluate and conflict decisions to make [Nag et al.,

2018,Bastida Virgili et al., 2019,Flohrer et al., 2019]. This research focuses on the last

two groups of actions, robustness and automation. While policy measurement concerns

mainly the less technical aspects, mitigation measurement relates to stages previous to

operations (like satellite and mission design or end-of-life) and remediation mainly af-

fects already dead objects, automation and remediation are related to the operational

stage. This step is critical for the success of the mission, and so is the importance of

robust and automated STM for safe and sustainable operations. Moreover, since those

two areas affect the same tasks, they can be addressed in parallel, as done in this work.
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2.1 Robustness

Information in the space objects is affected by uncertainty. Their position and velocity

are never perfectly known, but it is always affected by a degree of uncertainty and

ignorance coming from the noise in the measurements, the precision of the dynamic

models or the assumptions considered in the description of their movement. This

uncertainty in the position and velocity influences the level of accuracy and confidence

in the detection of high-risk events. A robust system should cope with the different

sources of uncertainty affecting the conjunction events, give reliable outputs and, at

the same time, provide a quantification of the confidence of those outputs.

A robust system should be able to ingest different information formats about the

object’s position and velocity. Conjunction Data Messaged (CDMs) [CCSDS, 2013]

are the most extended way of communicating conjunction information among opera-

tors and space agents. CDMs consist of a standardised document including information

about the identification of the objects involved in a given encounter, additional informa-

tion about the conjunction geometry, including the risk of collision, some information

regarding the observations to determine the state, and the objects’ state vector and

associated covariance matrix. They are not the only options, being Two-Line Ele-

ments (TLE) [Celestrack, 2022] another popular way to exchange information on the

satellite position used for conjunction assessment before the appearance of CDM. Al-

though not as popular as CDMs in the present, some operators still use them. However,

these two standards provide products already pre-processed, which makes it hard to

replicate or extract information on uncertainty [Carpenter, 2019]. Thus, operators’

ephemeris and observations are very valuable for Conjunction Assessment Risk Anal-

ysis (CARA), usually involving smaller covariances. With more actors involved in

SSA/SST activities and more telescopes and radars available to collect information, it

is likely that in the near future, raw observations will be more available to operators to

perform conjunction assessment. Thus, a robust STM system should be able to ingest

all these types of information.

Dealing with uncertainty is one of the biggest areas of research in space operations
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and conjunction risk assessment [Poore et al., 2016]. The objects’ state vector is never

perfectly known but is always affected by a level of uncertainty. There are several

sources of uncertainty associated with different steps in the process: uncertain pa-

rameters in the models, measurements noise, orbit determination, propagation, wrong

models, or lack of knowledge. [Poore et al., 2016]

There are different methods in the field of Uncertainty Quantification to deal with

uncertainty and correctly model it. Uncertainty quantification deals with the iden-

tification and characterisation of the different sources to provide the right model of

the uncertainty affecting a process (e.g. observation noise. propagation error, model

parameters...). Some authors, especially in the field of STM tend to use the term uncer-

tainty realism when the models characterising the uncertainty are based on probability

density functions (pdfs), and covariance realism when the pdf follows a Gaussian dis-

tribution [Drummond et al., 2007,Poore et al., 2016]. In this work, this concept is not

considered since, in Uncertainty Quantification, whatever the model of uncertainty, it

should converge to the true uncertainty.

In CARA, PoC is used to assess the likeliness of a direct impact in an encounter.

This metric computes the probability of both objects being in the same space region

at a certain epoch, given their state uncertainty distributions [Foster and Estes, 1992].

Usually, it is assumed the event takes place in such a short interval of time that the

fast encounter hypothesis holds [Chan, 2003b,Patera, 2003,Patera, 2006, Slater et al.,

2006,Coppola, 2017, Jones and Doostan, 2016,Vittaldev and Russell, 2016,Hall et al.,

2017], although there are general techniques for distributions not following this hy-

pothesis. The main consideration when assuming the fast encounter hypothesis is that

the position uncertainty follows a Gaussian distribution (the velocity is assumed to be

perfectly known) and the objects follow a rectilinear movement around the point of

closest approach. This allows obtaining the PoC computing a 2D integral to quantify

the weight of the combined density function falling in a specified integration region,

which is defined by the size of the objects, modelled as the combined radius of the ob-

jects’ enclose sphere [Alfriend et al., 1999,Chan, 1997,Chan, 2003a,Chan, 2008,Patera,

2001,Alfano, 2005a,Alfano, 2007,Serra et al., 2016].
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The effects of a poorly quantified uncertainty (what some authors refer to as uncer-

tainty or covariance irrealism) are well documented and summarised in [Poore et al.,

2016, Hejduk and Johnson, 2016, Alfano and Oltrogge, 2018]. If assuming Gaussian

distribution as the model of uncertainty, the size of the covariance plays an important

role in the size of the PoC, which experiences a sharp increase with an increase in

the covariance (unless the expected relative position falls within the integration region,

in which case the PoC remains constant), until reaching a maximum, after which the

PoC decreases, a phenomenon known as dilution of probability [Alfano, 2005b,Balch,

2016,Balch et al., 2019,Alfano and Oltrogge, 2018]. In the same way, the orientation of

the covariance has a dramatic impact on the value of the PoC, the more notorious the

more elongated the associated uncertain ellipse is. Finally, the shape of the distribu-

tion itself may be very relevant, which would correspond to a wrong model to quantify

the uncertainty. While the fast encounter hypothesis assumes Gaussian distribution

on the positions, it is well known that propagating an initial position Gaussian dis-

tribution through the non-linear dynamics describing the satellite movement creates a

banana-shape distribution on the final position [DeMars et al., 2011,Horwood et al.,

2011,Jones et al., 2013,Hallgarten la Casta et al., 2022]. Although this effect is smaller

compared with the other factors [Poore et al., 2016, Ghrist and Plakalovic, 2012], it

may be important for longer propagation times or when reducing the influence of the

other effects.

Different efforts exist to improve uncertainty quantification. The authors in [Poore

et al., 2016] include some approaches to improve the representation of the covariance

size and orientation. First, they mention the Joint Space Operations Center (JSpOC)’s

methods to improve the covariance matrix due to propagation errors by using scaling

factors: the Dynamic Consider Parameter to compensate for errors in the atmospheric

drag models and a scaling factor accounting for the Root Mean Squared error of the

batch differential equation. As the authors mentioned, there are criticisms of the later

approach, and in any case, both models try to compensate for missing or wrongly

modelled terms on the dynamics just by increasing the size of the uncertainty. A

similar approach to scale the secondary object’s covariance matrix was developed to
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assess conjunction risk on the International Space Station, assuming the errors should

follow a given distribution [Foster and Frisbee Jr, 1998]. This approach also tends

to compensate the limitations on the uncertainty quantification with the covariance by

increasing its size and it also adds the assumption that the position errors should follow

a given distribution. A related approach is followed by the Centre National D’Etudes

Spatiales (CNES) [Laporte, 2014a,Laporte, 2014b]. The Mahalanobis distance between

successive covariance matrices is assumed to follow a given distribution, so scaling

factors are computed to modify the covariance size accordingly, computing the so-

called scaled PoC, claiming to be more accurate, at earlier stages of the conjunction

assessment, to estimate the value of the PoC closer to the encounter. However, this

process also relies on the assumption of a specific underlying distribution for the position

error and assumes the last piece of information to be more trustworthy, as it is used as

the reference when computing the Mahalanobis distance. In [Alfano, 2005b], the use

of the maximum PoC in relation to the covariance variability is studied, proposing the

use of this maximum value instead of the computed one when falling in the dilution

region. However, this approach is criticised in [Hejduk, 2016]. Moreover, this approach

does not intend to avoid or minimise the dilution problem or modify the uncertainty

quantification but limits itself to proposing a practical approach for operators.

Furthermore, the use of the PoC as the risk metrics presents some limitations [Car-

penter, 2019]. There also exist statistical concerns on the fact that the PoC is actually

a p-value and if its current utilisation is the most appropriate [Carpenter et al., 2017].

The authors of [Carpenter et al., 2017] highlight the warnings on the use of p-values

in system safety and decision-making through six principles established by the Ameri-

can Statistical Society [Wasserstein and Lazar, 2016]. Thus, according to the first two

principles, even if assuming the use of the PoC as p-value, this metric would indicate

the compatibility, or lack of it, between the model and the data. Thus, a low PoC

value may be due to low risk or due to poor uncertain quantification (where dilution

of probability is a very well-known effect) and a high value of the metric indicates

the consistency of the data, not necessarily the collision of the objects. Even a well-

characterised covariance will assume some underlying error due to the wrong model
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employed for the uncertainty, and the PoC behaviour will induce a reduction of the

PoC (dilution) when poor quality data are available, even though a big covariance may

be the right approximation of the uncertainty. The third, fifth and sixth principles

focus on the inadequacy of using PoC as a stand-alone metric in relation to specific

thresholds (as several operators do [Newman et al., 2014,Merz et al., 2017]) to indicate

a system’s risk or to set a decision-making strategy. Also, they indicate that the p-value

needs extra evidence for having a meaningful value (i.e. quality of the sensors), since a

specific PoC value may not necessarily indicate a high-risk (i.e. flawed tracking data).

Finally, the fourth principle addresses the transparency of how the data were obtained,

which directly affects how the PoC in the CDMs is computed.

Regarding the use of CDMs, they still present some limitations, despite the efforts

to improve uncertainty quantification. As mentioned before, according to the fourth

principle in [Carpenter et al., 2017], the data used to derive a p-value should be trans-

parent. However, CDMs are a final product from which is hard to extract information

on the quality of observations sensors or dynamic models and parameters employed for

propagating the orbits [Carpenter, 2019]. Other concerns point to the lack of guaran-

tee of generating non-positive definite covariance with the current information provided

within the CDMs. [Carpenter, 2019]

There are some efforts to improve the uncertainty quantification on CDMs. In [Reihs

et al., 2017], the authors study the consistency of the covariance matrices included on

the CDM by comparing them with operational mission orbits. Despite the consistency,

they found CDM covariances tend to be quite small, so they propose a scaling factor for

the covariance. In addition to the fact that they did not find a single scaling factor due

to the mission dependency, this approach may generate problems with the dilution of

probability and simplifies the uncertainty modelling problem to a matter of size. Other

authors proposed methods to predict the next CDMs, either using time-series ML

methods [Pinto et al., 2020,Acciarini et al., 2021] or statistical learning models [Caldas

et al., 2023]. Despite the very good forecasting capacities of these proposals, they

still do not address the limitations on the CDMs information and uncertainty models.

Finally, citing [Caldas et al., 2023]: “GMV [a space technology and services company]
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is currently developing an autonomous collision avoidance system that decides if the

current information is enough for the owners/operators to decide, or if they should

wait for another CDM to have more information. However, the techniques used are

not publicly available”. This approach seems to provide operators with a further piece

of information regarding the forecasting approaches, indicating whether more CDMs

are required. However, due to the lack of public information, no comments on the

uncertainty models can be made.

There is some research that proposes to focus not only on the risk but also on

the consequences of the potential collision, in what is known as consequence metrics

[McKnight et al., 2021]. This metric evaluates jointly the risk of the collision, but also

the consequence it may have on the environment. These consequences are measured

based on the energy of the collision, the mass involved, the location of the collision or

the objects’ manoeuvrability. Thus, a high-risk event with low mass and energy may

be less risky than a lower-probability encounter involving two big pieces of debris in

a frontal trajectory. While providing additional information from the operator point

of view, these approaches do not address directly the uncertainty problem. However,

uncertainty can be treated in a more complete way, modelling more elements of the

problem.

However, a common aspect missed in all the works mentioned above, and partially

responsible for the limitations indicated, is the lack of modelling for the epistemic

uncertainty [Poore et al., 2016]. Uncertainty can be found in two basic forms: aleatory

and epistemic. Aleatory uncertainty, also known as objective, stochastic or Type I

uncertainty, is modelled with probabilistic theory and refers to the process’s inherent

uncertainty of its own randomness, and cannot be reduced, but only properly modelled;

while epistemic uncertainty refers to a lack of knowledge of the system and its properties

and can be reduced [Helton, 1997]. It is also known as ignorance or Type II, reducible

or subjective uncertainty.
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2.1.1 Epistemic uncertainty

When it comes to the computation of the probability of collision, it is generally assumed

that all uncertainty affecting the objects’ position is aleatory, and thus, poor quality

information will be assigned a bigger covariance matrix, which leads to the phenomenon

of dilution. The problem with the dilution of probability is the counterintuitive idea

that having poorer-quality data translates into a safer situation. What is wrong in this

reasoning is the aleatory assumption. The satellite position does not follow a random

event. While some steps may introduce some random error, some of the uncertainty is

associated with a lack of knowledge of the sensors or model parameters. This differ-

ence in the type of uncertainty within the conjunction assessment context is very well

illustrated in the example provided in [Balch et al., 2019]:

“For example, suppose two satellites were known, with certainty, to be on

a collision course, and the satellite operator could only impart an impulse

of random magnitude in a random direction [...] If the mean of this distri-

bution were the null vector, [...] then the higher the variance of the added

impulse, the bigger the resulting perturbation and hence the smaller the

resulting probability of collision. In this example, the mean of the resulting

trajectory distribution would still have the satellites on a collision trajec-

tory, but [...] higher variance in a satellite’s trajectory really does reduce

the risk of collision. However, it is a variance in the trajectory itself that

makes the satellite safer, not a variance in the estimate of that trajectory.

It should go without saying that, given two satellites on a sure collision

trajectory, simply recomputing the trajectories with lower quality data does

not make them safer.”

There are proposals for using dilution-free metrics [Balch, 2016], but the source of the

problem regarding dilution is a wrongly modelled uncertainty.

Enhancing robustness in decision-making requires dealing with both aleatory and

epistemic uncertainty and managing different sources of information which may provide

incomplete information or be in conflict with each other [Hoffman and Hammonds,
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1994]. While aleatory uncertainty is well studied and implemented in CARA, epistemic

uncertainty has been overlooked in space applications [Poore et al., 2016].

Opposite to aleatory information, where probabilistic theory is the established

model, there is not a single theory for epistemic uncertainty [Sentz and Ferson, 2022,Fer-

son et al., 2003,Zervas et al., 2011,Poore et al., 2016]. When only epistemic uncertainty

is involved, intervals can be used [Moore et al., 2009]. When uncertainty is compounded

by both aleatory and epistemic contributions, there are different approaches, including

Dempster-Shafer theory of Evidence (DSt) [Dempster, 1967, Shafer, 1976], possibil-

ity theory [Dubois and Prade, 1988, Dubois, 2006], fuzzy sets [Zadeh, 1965, Zadeh,

1984a,Walley and Cooman, 2001], or bounds on probability and probability boxes (p-

boxes) within the probabilistic theory [Ferson et al., 2003,Destercke et al., 2008,Walley

and Fine, 1982,Williamson and Downs, 1990,Berleant, 1998].

Some efforts exist to overcome the limitation of probabilistic theory for conjunction

risk assessment and the exclusive use of the PoC value as the only metric to determine

the risk of the encounter. The authors of [Hejduk and Johnson, 2016] criticise the

use of the PoC as a point estimate and propose an approach to use a PoC density

that accounts for uncertainties on the PoC inputs (covariance, positions, hard body

radius...). By a resampling approach of the objects’ position and covariance, they

obtain a PoC distribution. Using Monte Carlo (MC) approach to account for the

uncertainty on the inputs, they repeat the resampling method with both a PoC density

for each input uncertainty and a total distribution accounting for all the effects. In

this way, it is possible to analyse the influence of the input uncertainty on the PoC and

compare the nominal value with the distribution obtained, so a more informed decision

can be made.

The limitation of the CDMs to provide covariance information and the restric-

tions of just modifying the covariance matrix to improve the uncertainty model as the

technique to improve the risk estimates is highlighted in [Carpenter, 2019], and in [Car-

penter et al., 2017], the authors criticise the use of PoC as a decision-making metric.

As an alternative, the authors proposed to use miss distance intervals to capture the

uncertainty of the event, which also can tell about the confidence or lack of confidence
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to make a decision using the value of the PoC based on the interval width.

In this line, [Hejduk and Snow, 2019] revise different methods to evaluate the con-

junction risk from the perspective of the likelihood to occur and the support from the

information. They use the concept of plausibility and possibility as addictions to prob-

ability. The authors refer to probability as the well-defined estimation of a single value

indicating the risk of an event, and possibility as a mere indication that a conjunction is

possible. In between, they locate plausibility, which refers to methods that compute a

probability value but include some level of uncertainty indicating the possibility of the

event to occur (not confused with the Plausibility concept later used in this work in the

context of DSt). The authors rank some of the methods mentioned before, including

the PoC densities, according to their plausibility, being the standard PoC method in

one end of the scale (pure probability) and the ellipses overlap [Balch et al., 2019], in

the sense of ensuring the separation of the covariance is sufficiently high, on the other

scale (pure possibility).

In all these examples, there is an attempt to go beyond the limitation of a single

value of the PoC to compute the risk of collision and introduce some of the concepts em-

ployed in epistemic uncertainty as interval-valued variables or the concepts of possibility

and plausibility. However, they do not attempt to extend the probabilistic framework

and explicitly model the epistemic uncertainty affecting the problem. In fact, only a

limited number of authors have directly addressed epistemic uncertainty in conjunction

risk analysis [Tardioli and Vasile, 2015,Delande et al., 2018,Balch et al., 2019,Tardioli

et al., 2020,Greco et al., 2021].

In this work, DSt is proposed to model both types of uncertainty in the context of

conjunction assessment. Authors in [Sentz and Ferson, 2022] mention four advantages

of DSt over other approaches:

• higher degree of development with respect to other theories;

• the relation between DSt and probabilistic theory. If the available evidence is

coherent (i.e. there is no epistemic uncertainty), this theory simplifies into prob-

abilistic theory, so it can be understood as the extension of the approaches already

implemented [Ferson et al., 2003];
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• wider literature on its application in engineering problems [Zervas et al., 2011,Liu

et al., 2017b,Vasile et al., 2017a,Filippi and Vasile, 2019], and more specifically,

in risk assessment problems [Helton et al., 2005,Oberkampf and Helton, 2002];

• the capacity of DSt to represent different types of uncertainty and, more inter-

estingly, to combine sources of information [Sentz and Ferson, 2022].

On top of this, [Ferson et al., 2003] shows the equivalence between DSt and probability-

bounded (p-boxes) approaches, which will be exploited later in this work.

Information in DSt is interval-valued, instead of precise quantified. The single-

valued variable may not be adequate in situations driven by lack of knowledge, for

example when there is little information to evaluate a probability or when information

is ambiguous or in conflict [Sentz and Ferson, 2022]. The use of intervals implies that

the Principle of Insufficient Reason and the axiom of additive is not imposed, which, in

other words, means that there are no assumptions on the event or set of events when

there is no direct evidence about them (i.e. evidence on the occurrence of an event

does not imply knowledge on the non-occurrence of the event) [Sentz and Ferson, 2022].

This allows basing the decisions on a system’s safety not just on a single value of the

desired metrics, but providing plausible bounds on the metrics. Even more important,

it allows for the quantification of the support for specific values of the safety metric and

measuring the level of uncertainty (or conflict) affecting the information. Knowing the

degree of uncertainty allows discerning better if high or low values of PoC correspond

to risky or safety cases, or if they are related to a lack of consistency in the data.

Similarly, it reduces the assumptions required, not imposing any distribution on the

data other than the presence of certain intervals with a given level of support. These

aspects align with the principles stated in [Carpenter et al., 2017].

Finally, DSt provides a framework to handle information originating from different

sources [Koks and Challa, 2003] (e.g. a network of sensors, or information from different

providers). The increase in SSA providers means that information received by operators

may have different origins, which will be more or less reliable according to the sensor

or information quality of the provider or on data processing (e.g. during the generation

of CDM). Similarly, information may be received in different formats, from the old
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TLEs to the actual CDMs, the operator’s ephemeris or directly from unprocessed raw

observations, which, again, will have different levels of trustworthiness. In addition,

information may be in conflict, with some sensors suggesting a more likely conjunction

than others. A robust STM system must be able to handle all this information reliably,

ensuring operators are provided with the right information, and more importantly, with

the right confidence in the different sources. Frequentist approaches already proposed

some data fusion approaches based on Baye’s rule [Koks and Challa, 2003]. Similarly,

DSt uses combination rules [Sentz and Ferson, 2022] to bring together information and

provide a measure of the level of conflict and the reliability of the desired variable of

interest, with the additional advantage of fewer assumptions on the information (e.g.

probability densities). However, the selection of the most adequate combination rule

is a challenging process related to the degree of conflict affecting the information, the

type of sources, the amount of evidence in the information or the way the operator

desires to deal with it [Sentz and Ferson, 2022].

Additionally, the DSt framework allows not only to fuse information in different

formats or provided by different sources but also to fuse data generated with different

models. An example of this could be the propagation of orbit under atmospheric drag

(or any other orbit perturbation). Density models vary considerably from source to

source and from different providers. Also, the satellite state would impact the results.

All of this can be combined using DSt, since differences in the atmosphere density

model (or any other perturbation model) or the satellite attitude can be treated as

additional uncertain parameters within the uncertainty model, in the same way as the

position uncertainty.

2.2 Automation

With the increase in space traffic, space surveillance capabilities, actors involved in

space operations and the emergence of new technologies automation is becoming a key

element to ensure the safety of space [Nag et al., 2018,Nag et al., 2021]. Current STM

protocols [Merz et al., 2017, Newman et al., 2014, Newman et al., 2019, Laporte and

Moury, 2013] require intensive operator workload, constant coordination among teams
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and agencies/operators, and tight decision-making windows. All the factors listed above

characterising the New Space will only exacerbate the limitation of a human-based

STM. For example, the conjunction alerts received by operators are dominated by low-

risk encounters or false alerts, which should be analysed to make sure they do not pose

an actual risk. An increase in the number of alerts may consume operators’ resources

making it impossible to detect actual collisions or to properly address them. Even if

they are detected and addressed, the Collision Avoidance Manoeuvre (CAM) design

process is complicated, involves the coordination of different mission teams and requires

the nominal satellite operation to stop. Automation may help ease the operator’s

workload so they can focus on operational mission objectives or just on very critical

conjunctions.

Different agencies and other space actors are already aware of this necessity. The

National Aeronautics and Space Administration (NASA) has published plans for au-

tomating the current CARA architecture [Nag et al., 2018,Nag et al., 2021], and has

proposed an automated system based on Unmanned Aerial Vehicles (UAV) Traffic Man-

agement architecture. The proposed architecture is based on Application Programming

Interfaces to facilitate the interaction between STM agents, the data sharing among ac-

tors and enhance automation throughout the whole process, including risk assessment

and optimal CAM search. The Application Programming Interfaces allow the build-

ing of a modular architecture to add or remove capabilities and facilitate automation

through the interface among modules.

Similarly, the European Space Agency (ESA) has recognised the importance of

space safety, making one of its pillars with the Space Safety Program. Among its

addressed topics, it includes “an adequate pre-emptive approach concerning future

activities and to enable the safe operation through an Automated Collision Avoidance

System” [Bastida Virgili et al., 2019,Flohrer et al., 2019], that is, the development of

an automated approach to deal with conjunction avoidance tasks. According to this

program, the three topics expected to be addressed in the context of collision avoidance

and STM are: reduce manpower effort, minimise the decision time, and reduce the false

alerts.
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Several tasks currently carried out by operators could be automatised. This in-

cludes the classification of geometries and encounters, the identification of high-risk

alerts among the plethora of potential conjunctions, trends on parameters evolution

or conjunction patterns, prediction of CDMs, improving uncertainty quantification or

even manoeuvres design [Bastida Virgili et al., 2019]. All these tasks comprise a cer-

tain level of routine tasks and bring associated plenty of data which may be difficult to

analyse by a reduced number of operators in a team.

With a more populated catalogue, the chances of finding actionable encounters or

even multiple encounters for the same satellite increase, which affects the decision time

reaction: if more encounters are likely to happen in a given time horizon, a faster

decision time will allow addressing different events better or reducing the share of

operators among events. With the increase in operational satellites, the probability of

conjunction involving two of them grows, which requires even further coordination. The

development of both protocols [Bast and Krag, 2019], techniques and architectures [Nag

et al., 2018, Delmas et al., 2023] to support decision-making becomes paramount for

the smooth operation of the STM system.

Reducing false alerts is related to the other two aspects. Being able to automatically

and adequately differentiate actual high and low-risk events or to provide a confidence

measurement when classifying events on either of those two categories, would reduce

the decision time and the manpower efforts avoiding dealing with cases not actually

possessing a high risk of collision.

In this context, Artificial Intelligence (AI) and Machine Learning (ML) can play a

fundamental role due to their potential to learn from real and synthetic data, create

faster dynamic-free models and provide decision support with limited computation

effort. The goal is to predict events and automatise the allocation of remediation

actions.

2.2.1 Artificial intelligence

Artificial Intelligence is referred to as the ability of computers to learn from data, rea-

son, acquire knowledge, react to the environment and correct themselves to imitate
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human intelligence or behaviour without being specifically programmed to do it. It is

a wide knowledge area including Machine Learning, Natural Language Representation,

Computer Vision, and Data Mining among many others [Russell and Norvig, 2009]. It

has been studied for some decades, but only during the last years, with faster and more

capable computers and the availability of big datasets, it has been possible its imple-

mentation into real applications in a broad range of disciplines, including engineering.

In this thesis, two branches of AI will be employed: ML and Decision Support

System (DSS). The first one is a field of AI that learns from data to replicate behaviours.

The second one, develop agents to support operators in decision making. Both may

support the automation of STM via generating faster surrogate models replicating the

actual models or by leveraging the decision process on complicated tasks based on

conflict information.

Regarding ML algorithms, they are characterised by the ability to learn from data

certain answers and replicate the answer on unseen data. There are three main branches

in ML: supervised learning, unsupervised learning and reinforcement learning [Khoei

et al., 2023]. Supervised learning refers to those techniques where the actual answer

to the training data is known. That is, in regression problems, the value of the target

variable given a set of inputs is known, and in classification problems, the label is asso-

ciated with those given inputs. Thus, when training the model (fitting the parameters

of the model, e.g. stochastic gradient descent [Robbins and Monro, 1951]), pairs of

inputs-outputs are given sequentially and the answer of the model is used to adjust

the parameters and eventually obtain a closer answer to the real target. Unsupervised

algorithms, on the contrary, are not given the target output. Instead, these models

are used to obtain patterns on the data or clustering the information creating their

own labels. Finally, reinforcement learning techniques differ from the previous one in

the sense that they learn sequentially and from the experience of interacting with the

environment. In this work, only supervised learning is considered. More precisely, this

study will focus on some of the most used techniques: on the one side, more traditional

algorithms like Support Vector Machine (SVM) or K-Nearest Neighbours (KNN), or

some of the most successful, yet simple, methods like Random Forests (RFs), gradient
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boosting methods or single layers Artificial Neural Networks (ANNs).

Within ML, there is a subfield referred to as Deep Learning (DL), which has shown

great results on different applications and fields (e.g. chatGPT [Brown et al., 2020]).

DL, which can be supervised, unsupervised or reinforcement learning, refers to those

algorithms using ANNs using several neuron layers (hence the term deep). One of the

latest and most successful architectures is Transformers, which will also be considered

in this work.

In supervised ML and DL, to avoid overfitting when training the algorithm, all the

techniques, except KNN, are trained on a subset of the complete database. Overfitting

refers to the phenomenon of adjusting the model parameters so that the model can

predict very accurately within the set of data used for training but is generalised badly

when predicting data not belonging to this set [Rosin and Fierens, 1995]. This can

happen, for example, if the system has too many degrees of freedom (e.g. neurons in a

ANN model), in the same way that a polynomial of high degree passing through every

single point of a noisy linear distribution would not be a good fit.

To mitigate this risk, the available dataset is split into a Training set and a Test set,

so that the models’ performance is not evaluated in the Training Set, but in the Test

set. The system training is then stopped when the fitting error based on the Test set

starts increasing. This typically happens before the fitting error based on the Training

set achieves machine zero. In this work, the split on the Training and Test sets follows

an 80%-20% proportion. The score comparing the different models’ performance can

be obtained by predicting a third set, the Validation set, not included at any stage

during the training, or using the Test Set, provided it was never used for tuning the

model’s hyperparameters and was just used for evaluating the performance.

Machine Learning techniques

In the following, a brief explanation of some of the most common supervised ML tech-

niques is given. This is not an exhaustive list, but it focuses on those used in this thesis

and represents common techniques used in the field (as detailed later): Artificial Neu-

ral Networks (ANN) [Kubat, 2017], Random Forests (RF) [Breiman, 2001], K-Nearest
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Neighbours (KNN) [Cover and Hart, 1967], Support Vector Machine (SVM) [Cortes

and Vladimir, 1995], Gradient Boosting machine [Ke et al., 2017], and Transformer

architecture [Vaswani et al., 2017].

Artificial Neural Networks ANN models have experienced a relevant development

during the last years thanks to the increase in computational power, currently existing a

plethora of variants used for different applications like Multi-Layer Perceptron (MLP),

Convolutional Neural Networks (CNN) or Long/Short Term Memory network (LSTM).

Most of them fall in the field of DL. In this work, however, the focus is on the simpler,

yet powerful, MLP-based ANN models.

The MLP algorithm consists of a set of connected layers of neurons, which can

predict the quantity of a desired variable given a set of inputs after having provided a

set of examples, whose actual value is known (Fig. 2.1).

The first layer, referred to as the inputs layer, consists of the components of the

input variable. The last layer or output layer varies depending on the problem: for

regression problems, it consists of one or more neurons (depending on the dimension of

the output variable) providing the value of the corresponding variable; for classification

problems, it consists of a set of neurons (as many as fields on the classification), whose

value ranges in [0, 1] depending on the probability of the classification value of been the

correct one. In the classification case, usually, an additional layer with a single output

is included with the value of the class receiving the higher probability on the previous

layer. In between, there are a set of layers, called hidden layers, with a number of

neurons, whose values vary, generally, between 0 and 1 (although other pairs of values

are also possible).

The value of each neuron depends on the values of the previous layer’s neurons and

the weights that connect that node with all the neurons in the previous layer. The

activation function of the neuron will dictate how it reacts to the received values. The

value of the neuron is then, transmitted to the next layer. There are different activation

functions in the literature [Lederer, 2021], with the sigmoid, hyperbolic tangent and
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Figure 2.1: General structure of single-layer ANN
model.

the Rectified Liner Unit (ReLU) functions the most popular:

ReLU(x) = max(0, x) (2.1a)

σ(x) =
1

1 + e−x
(2.1b)

tanh(x) =
ex − e−x

ex + e−x
(2.1c)

The set of neurons and layers constitute the network. The MLP may have an

arbitrary number later. In this work, the analysis was limited to the single layer

Robust AI for STM Luis Sánchez Fernández-Mellado 31



Chapter 2. State of the Art

case. Thus, the MLP ANN can be understood as a universal function approximator

fg(x) : Rnd → Rno , [Cybenko, 1989], where nd is the size of the input vector x, and no

is the size of the output vector function fg. The outcome in the output layer is dictated

by the general matrix-vector definition in Eq. (2.2) to approximate the desired function

fg.

fg(x) ≈ A2(b
(2) +W(2)(A1(b

(1) +W(1)x))) (2.2)

where W(1) is a weight matrix of size (N × nd) and W(2) is a weight matrix of size

(n0 ×N) connecting all the neurons of the input layer with the hidden layer and those

in the hidden layer with the output layer, respectively, being N the number of neurons

in the hidden layer; b(1) and b(2) are the bias (column) vectors of length N and no,

respectively; and A1 and A2 are the activation functions of the hidden layer and the

output layer, respectively.

The learning process consists of adjusting the values of the weights matrices and bias

vectors so that, given an input vector, the network provides the actual output. This

process is done by a two-step process (feed-forward and back-propagation) feeding

the network with a sufficient number of cases. Each time a new example is input

into the network, the predicted output is compared with the actual value. Then, a

back-propagation algorithm updates every individual weight and bias on the network

following a local gradient-based optimisation. Different algorithms are available for this

task: Levenberg-Marquardt [Hagan and Menhaj, 1994], Adam [Kingma and Ba, 2014],

RAdam [Liu et al., 2020].

Random Forest RF is an ensemble method that combines several independent

Decision Tree (DT) during the training step, feeding each of them with different subsets

of the training set. The predicted class is the mode of the output of every single tree

in a classification problem and the mean of the trees’ output in a regression problem.

RF overcome the overfitting problem usually faced by DTs.

DTs are a supervised ML method that classifies the input variables hierarchically

according to the value of their different features, creating subsets that end on the label

class at the leaves level Fig. 2.2, an algorithm called top-down induction of decision
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trees (TDIDT) [Quinlan, 1986]. The training consists of feeding the DT with several

training samples (whose actual output is known) to modify the order of the features,

the split value and the number of splits per node so that the correct classification rate

is maximised.

Figure 2.2: General structure of a single Decision Tree.

DTs suffer from overfitting and bias. Ensemble methods allow the combination

of several classifiers introducing an amount of randomness in the process to better

generalise the predictions. RFs are an ensemble of DTs, where, instead of taking all

the possible configurations of features, just a selected number of them on each tree.

On top of that, a bagging method [Breiman, 2001] is employed in the samples, so

that, for each tree, a different subset of samples from the Training Set is drawn with

replacement. The combination of both aspects (trees with different features and node

distribution, and different sets of samples) provides reduced overfitting and variance

in the data. The outcome of the RF will be the mode (classification problem) or the

mean (regression problem) of the outcome of all the individual trees (Fig. 2.3).

K-Nearest Neighbours The KNN algorithm predicts the output of a given sample

by comparing its proximity with the training samples (Fig. 2.4) under the assumption

that similar points will be located close to each other [Raschka, 2018]. As opposed to

the previous methods, this method lies within the lazy learning group of algorithms.

This means that the system is not trained before making predictions, but instead, all
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Figure 2.3: General structure of a Random Forest.

data are used every time a prediction is expected: the distance from the new point is

computed each time a new sample arrives, which could be beneficial since it simplifies

the algorithm and the number of parameters, but make the method suffers severely

from the curse of dimensionality.

To estimate the proximity of the samples, different metrics can be employed. The

easiest to visualise is the Euclidean distance (
√

Σi(y2i − x2i )), shown in Fig. 2.4, al-

though other metrics exist: Manhattan distance (Σi|yi − xi|), Minkowski distance

([Σi|yi − xi|]1/p)... It is possible to make a variant on the algorithm so the closer

the sample, the more importance it is assigned. In this way, in a 5-NN problem, if the

selected sample lies very close to two samples of one class, but the next three nearest

examples are from the other class, it can be still classified within the first group.

In this algorithm, the only parameter to be selected is the number of neighbours,

k. However, the selected value heavily influences the final results due to overfitting or

underfitting and the optimal value will depend on the specific problem.
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Figure 2.4: Example of 4-Nearest Neighbour.

Support Vector Machine SVM algorithms [Cortes and Vladimir, 1995] classify

samples from different classes by building the hyperplane that splits the classes of the

training point, maximising the distance to the nearest point on each class (Fig. 2.5).

In the linear problem, finding the hyperplane that maximises the distance to the

closest points in each class and divides the space into the two classes is done by solving

the Eq. (2.3).  minw,b ||w||

s.t. yi(w
T · xi − b) ≥ 1 ∀ {i, ..., n}

, (2.3)

with w the vector normal to the hyperplane, b the offset of the hyperplane at the origin,

b/∥w∥ the margin between the closest point and the hyperplane, and n the number of

samples in the Training Set, being the hyperplane defined as the set of points x so that

wT · x− b = 0. Different algorithms exist to solve the minimisation problem including

sub-gradient descent or coordinate descent.

Non-linear divisions may be required for a good division among classes. Kernels

can be used to define the problem in a higher dimensional space where the division

may be easier (e.g. Gaussian or polynomial). An example of cases where a non-linear
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Figure 2.5: Example of Support Vector Machine.

approach will give better results may be a class defining a circumference around the

other class.

Gradient Boosting machine Gradient Boosting machine is also an ensemble of DT

methods, which combine different weak learners to provide an accurate prediction. A

weak learner refers to a learner that makes few assumptions on the data. Iteratively,

new weak learners are added to compensate for the limitations of the previous one.

The algorithm adds a new weak learner (i.e. a DT) to reduce the difference between

the actual value and the value provided by the ensemble model (gradient descent).

Thus, the idea is to find a learner F (x) to predict the variable y, by minimising the

error between the actual value, yi and the predicted value ŷi. In different stages, a new

learner Fm is added so that a new estimator, hm is added to improve the prediction:

Fm+1(xi) = Fm(xi) + hm(xi) = yi. Thus, the algorithm aims to minimise hm(xi) =

yi − Fm(xi) [Li et al., 2016].

In this work, the Light Gradient Boosting machine (LGBm) algorithm [Ke et al.,

2017] was implemented. This algorithm shares many of the advantages of other en-

Robust AI for STM Luis Sánchez Fernández-Mellado 36



Chapter 2. State of the Art

semble and gradient boosting methods, like the simplicity and the reduced number

of parameters to be defined. However, it is usually faster to train (then, the term

light) and it is usually more precise. The main difference from other algorithms is the

growth of the decision trees. Instead of growing a level at a time (level-wise growth),

it grows from the node that looks more promising (leaf-wide growth) (Fig. 2.6). This

approach is based on two techniques: Gradient-based one-sided sampling, which gives

more importance to instances with higher gradients, dropping those with lower values,

and Exclusive Feature Bundling, which reduces the dimensionality of the problem by

bundling together mutually exclusive features. LGBm also presents the advantage of

accepting both numerical and categorical inputs without any pre-processing of the data.

Figure 2.6: Scheme of the Light Gradient Boosting machine process.

Transformer The transformer architecture is a DL approach implementing several

layers of networks based on the mechanism of attention [Vaswani et al., 2017]. It

was initially developed for natural Language Processes applications, but it has been

extended to other fields, like computer vision [Dosovitskiy et al., 2020] or times series

[Stevenson et al., 2022a].

Transformers address the sequence of data but without the need for recurrent net-

works, such as LSTM, reducing the training requirements. Instead, they used the

attention mechanism and an encoder-decoder structure, where the decoder is fed both

by the encoder output and the previous step decoder output. The attention mech-

anism algorithm addresses the problem of local connectivity by comparing, in turn,

every point of the sequence to all the other points to derive the most relevant part of
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the sequence for each of them.

In this work, the transformer architecture is implemented based on the implemen-

tation in [Stevenson et al., 2022a], which is inspired by the computer visual application

of transformers Vision Transformer [Dosovitskiy et al., 2020]. Here, each point on the

time sequence is split into individual tokens, which are the input of a Convolutional

Neural Network (a feature extractor) to create a new sample with a higher dimension.

The re-dimensioned samples are then passed to the encoder, which consists of a series of

encoder blocks, each of them conformed by a set of two neural networks: a multi-head

self-attention unit and a feed-forward neural network. Finally, the output of the set of

encoders is passed through a fully connected layer that provides the class probabilities.

2.2.2 Artificial intelligence for automation

AI has several qualities that make it suitable to address the challenges and the aims

of automation in space, as shown below. For example, ML techniques, a field of AI,

are data-driven, which means that no underlying model is required to obtain accurate

predictions or reliable actions on a system. Instead, the model learns from the available

information, searching for patterns and relations that explain the underlying dynam-

ics. Thus, ML can be used to create surrogate models that reconstruct the functional

relationship between a set of input and a set of output data, creating faster models

that help automation. ML performs very well on repeated tasks which require pattern

recognition or prediction from data relationships. With the increase in available infor-

mation, precisely, this kind of task becomes more challenging for humans but makes

the ML perform better. This is the case, for example, of false alert detection, where

the increase in conjunction messages may overwhelm human operators but are useful

for the system to learn, or anomaly detection (e.g. CAM detection), where changes in

the orbit’s parameters are not always obvious.

Another field of AI are DSS agents. These techniques are dedicated to supporting

decision makers by gathering and analysing, diagnosing problems and providing sugges-

tions and recommendations on the best course of action, freeing operators of this burden

and enabling automation of the system. [Shim et al., 2002, Fülöp, 2005]. One of the

Robust AI for STM Luis Sánchez Fernández-Mellado 38



Chapter 2. State of the Art

most common approaches is Multi-Criteria Decision-Making (MCDM) [Triantaphyllou,

2000], which evaluates alternatives (Multi-Attribute Decision Making) [Triantaphyllou

and Shu, 2001] or a mathematical model (Multi-Objective Decision Making) [Roijers

and Whiteson, 2017] over a set of criteria to prioritise the best outcome according to

the operator’s preferences. DSS and MCDM approaches have been applied in several

fields, ranging from engineering to economics and social sciences.

The use of AI can be found nowadays in every engineering field. The examples

range all the AI spectrum, although image recognition and natural language processing

are probably the most advanced technologies. For example, image recognition plays an

important role in the automation of self-driven cars. Natural language processing is

also a leading technology, with digital assistants the main example of this technology.

Nevertheless, the list of cases is endless, and examples can be found in robotics, weather

forecasting, medical diagnosis, and bank fraud detection, among many others.

Relevant for automation and traffic management is the application of DSS systems

to assist operators. In [Ramı́rez-Atencia et al., 2017,Ramı́rez-Atencia et al., 2017], the

authors employ DSS agents to automate the control of UAV swarms. In the ATM field,

an Autonomous Operator Planner is employed in [Barhydt and Krishnamurthy, 2004]

to provide guidance to pilots on trajectory planning, accounting for the pilots’ goals,

conflict detection and resolution and ATM constraints. Other space traffic management

sectors have employed other AI techniques to facilitate automation. Still, on the ATM

system, the authors of [Julian et al., 2016, Kochenderfer and P., 2011] use AI, DL

and dynamic programming to support operators on the decision making and improve

automation on collision avoidance systems. Also in the MTM system, AI methods and

techniques are used to facilitate automation, as in [Statheros et al., 2008], where the

authors enhance a dynamic-based method with AI for collision avoidance automation.

Despite the difference, there are some similar characteristics between those systems

and STM, like high-density areas in an, apparently, broad space that complicates the

operations, the aim to reduce the operators’ workload, the increase in traffic, and

the conflict and collision avoidance management, from where the space sector can take

lessons to accelerate the automation process [Nag et al., 2018,Contant-Jorgenson et al.,
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2006]. Another interesting possibility would be to apply DSS model to consequence

metrics [McKnight et al., 2021] and algorithms to classify events and objects based on

a more comprehensive list of factors.

Artificial intelligence for space safety

In space engineering, AI has been used in a wide range of fields. Several AI-based meth-

ods can be found in different areas of space engineering, for example, image recognition

algorithms are being used for autonomous navigation [Tail et al., 2020,Downes et al.,

2020,Song et al., 2022,Mancini et al., 2023,Kaluthantrige et al., 2023,Pugliatti et al.,

2023] and are expected to be applied for satellite inspection or swarm relative naviga-

tion [Izzo and Pettazzi, 2007,Zhu et al., 2023]; AI and reinforcement learning techniques

have been applied for trajectory optimisation, guidance and control [Gaudet and Fur-

faro, 2014, Furfaro et al., 2020,Gaudet et al., 2020,Oestreich et al., 2021,Wilson and

Riccardi, 2023,Izzo et al., 2019]; natural language processing tools have been developed

to create digital assistant agents to interact with astronauts [Airbus, 2021] or to sup-

port the mission design [Berquand and Riccardi, 2020,Berquand et al., 2021,Berquand

and Ladeira, 2022,Darm et al., 2022,Darm et al., 2023]; AI time-series prediction tools

have been applied for space weather forecasting, especially, Sun flux and atmosphere

density [Rüdisser et al., 2022,Dorelli et al., 2022,Salvatelli et al., 2022,Stevenson et al.,

2022b].

More specifically, STM and SSA are two fields where the use of AI can bring great

benefits to facilitate the automation of processes, speed up tasks and assistance of

operators in decision-making. STM, as defined above, is compounded by those activities

focused on ensuring the safe operation of satellites. SSA consist of the activities to

track objects, identify them, determine their orbits and predict the future positions

and threads to operators. Together, they constitute the two main pillars to ensure the

safety and sustainability of the space environment and its utilisation. For this reason,

agencies and other relevant actors have started different programs to incentive the use

of AI for space safety [Mashiku et al., 2018,Mashiku et al., 2019,Bastida Virgili et al.,

2019,Flohrer et al., 2019,Manfletti et al., 2023,Maric et al., 2023,Frontier Development
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Lab Europe, 2020,Flohrer et al., 2020].

Another example illustrating the increasing trend of using AI in SSA and STM are

the challenges proposed by research entities. In these challenges, a problem related to

space safety is proposed to the participants along with a database containing several

samples of events associated with the problem. The participants are expected to pro-

pose solutions and the best ones tend to be data-driven and ML-based, instead of models

based on the dynamic laws governing the phenomenon. The ESA’s Advances Concept

Team has presented already several challenges through its Kelvins platform [ESA’s

Advanced Concepts Team, 2023]: the Collision Avoidance Challenge [European Space

Agency, 2019,Tulczyjew et al., 2020,Tulczyjew et al., 2021,Uriot et al., 2022], where the

participants are expected to predict collision risk given a set of CDMs, the Spot the GEO

challenge [European Space Agency, 2020], whose aim was to spot the Geostationary

Orbit (GEO) satellites on images of the sky, the Pose Estimation challenge [European

Space Agency, 2021a] to determine space debris position and orientation from images,

or the Space Debris challenge [European Space Agency, 2021b], aiming to backtrack

space debris in GEO to its original parent body. The Frontier Development Lab also

proposes AI inspired challenges [Frontier Development Lab Europe, 2020,Flohrer et al.,

2020], like the 2020 Constellation Challenge where the selected team proposed an open

source tool to predict CDMs [Pinto et al., 2020,Acciarini et al., 2020,Acciarini et al.,

2021]. Recently, the Massachusetts Institute of Technology has proposed a similar

challenge for detecting patterns of life in GEO satellites given the times series of their

position for a certain period [Siew et al., 2023b,EvalAI and ARCLab - Massachusetts

Institue of Technology, 2023].

During the last years, there has been a proliferation of studies on the use of AI for

SSA. In [Linares and Furfaro, 2016b,Furfaro et al., 2018,Furfaro et al., 2019,Linares

et al., 2020], the authors used ML and DL techniques, like Convolutional Neural Net-

works (CNN) to classify space objects and determine their shape and attitude based on

the light curves of the objects generated with physic-based models. A similar approach

of object classification with light curves was followed in [McNally et al., 2021], analysing

different ML architectures. In [Vasile et al., 2023], the authors also determine the atti-
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tude of the space objects and classify them using ML approaches based on hyperspectral

images and the inferred surface composition. The applicability of DL models for space

object characterisation from radar signals is shown in [Wu and Rosengren, 2023], while

authors in [Paulete et al., 2021] propose a ML-based for object identification based

on their Radar Cross Section trained on real data. Related to object observations,

AI has been employed for sensor tasking to schedule observations to cope with the

increase of space objects and help automation of SSA. Works range from single sensor

constraint-free scheduling [Linares and Furfaro, 2016a], to multi-sensor networks [Siew

et al., 2023a] via a centralised agent, using reinforcement learning approaches.

Other uses of AI for space safety fall in the intersecting area of SSA, understood as

surveillance and characterisation of objects, and STM, understood as conjunction risk

assessment, avoidance manoeuvres and satellite operations. This is the case of digital

assistants to support operations on SSA, like VerSSA [Ludwig et al., 2019, Ludwig

et al., 2021], which automates the analysis of the input data (in the background and on-

demand), filters information, analysis scenarios, and provides space objects information

summaries to speed the decision-making process on critical events. Other tools focus

on space object behaviour analysis to support operators in the better understating of

satellite operations and the prediction of future actions, facilitating the automation

of tasks or the prediction of risk scenarios. The authors of [Manzi and Vasile, 2020b]

used Deep Symbolic Regression to reconstruct the underlying dynamics, which allows to

improve dynamics models or reconstruct orbit anomalies (e.g. manoeuvres); in [Linares

and Furfaro, 2017], the authors used reinforced learning to reconstruct the optimised

cost function when manoeuvring satellites, and in [Roberts and Linares, 2021], CNNs

are trained to detect manoeuvres in GEO, in both cases facilitating predict future

scenario for space safety; and in [Shen et al., 2019,Shen, 2020], different ML techniques

were used to detect and classify satellite behaviours, which again, helps on the further

prediction of operators actions.

Finally, it is possible to find examples of AI techniques applied to improve automa-

tion and increase speed on specific STM tasks. For example, the works of Peng and

Bai [Peng and Bai, 2017, Peng and Bai, 2018c, Peng and Bai, 2018a, Peng and Bai,
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2018b] aim to reduce the propagation error by using different ML techniques, like SVM

and ANN. In their works, they show that by feeding the intelligent system with the

object’s orbits to predict the propagation errors and then subtracting that error from

the propagation, the position accuracy can be greatly improved. There are some works

on the use of DL to address the all-vs-all problem during catalogue screening, that is,

detect all possible conjunctions among objects in a given catalogue, which is a very

time-consuming task due to the necessity to compare all pairs of objects. AI can help

with the prediction of these events, avoiding the propagation step and the individual

comparison of pairs [Stevenson et al., 2021,Stevenson et al., 2022b]. Other works [Ac-

ciarini et al., 2021] try to predict the next CDM to improve uncertainty quantification

and anticipate decision-making. Also, in the field of CAM design and allocation there

are some contributions on the use of ML [Vasile et al., 2017b,Abay et al., 2017,Gonzalo

et al., 2020, Stroe et al., 2021] and this is one of the main focus of ESA’s CREAM

program [Flohrer et al., 2019,Flohrer et al., 2020]. In [Vasile et al., 2017b], the authors

presented a system for supporting the planning and implementation of CAMs using

ML (Elastic Nets) and a manoeuvres dataset, with special attention to the future con-

sequences on the global space environment. In [Abay et al., 2017], a ML-based system

was presented to plan sub-optimal automatic collision avoidance manoeuvres.

As it was shown, automation in STM is a necessity due to the changes in the space

environment. ML methods have started to be used in this field due to their advantages

regarding their lack of physical model and their capacity to enhance automation. Fol-

lowing this line, this research will make use of these novel techniques to apply them to

STM tasks automation. Although there are some works on object detection and classifi-

cation and improving orbit propagation, conjunction detection and decision-making are

areas where ML is not applied that extensively. Similarly, more effort on CAM design

and allocation should be developed according to the results of previous work, extending

their capabilities to the low-thrust manoeuvres, which are becoming more common in

space platforms. Finally, there are other fields of AI, like DSS which have been proven

to be useful in traffic management systems but are still not applied in space, which can

be very useful to address complex scenarios like multi-encounter events.
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Evidence-based conjunction

classification system

The content of this chapter was partially published in:

Sánchez, L. and Vasile, M. (2021), “On the use of machine learning and

evidence theory to improve collision risk management”, Acta

Astronautica. [Sánchez and Vasile, 2021c]

This chapter presents a methodology for robustly assessing space close encounters,

evaluating not only the risk of the event but also the confidence in the correctness

of the value. The method proposed aims to avoid the phenomenon of the dilution of

PoC, which gives the counterintuitive idea that the poorer the quality of the avail-

able information for the operators, the smaller the Probability of Collision (PoC).

This lack of information corresponds to an uncertainty that is epistemic in nature.

Thus, Dempster-Shafer theory of Evidence (DSt) was used to address both aleatory

and epistemic uncertainty. Furthermore, when different sources provide contradictory

information, the level of epistemic uncertainty in the calculation of PoC can lead to

false confidence in the likelihood of a collision with either an undesirable increase in the

number of Collision Avoidance Manoeuvres (CAMs) or an equally undesirable number

of False Negatives.

An evidence-based classification criterion, derived from the application of DSt to

conjunction risk assessment, is proposed to support operators. The classification sys-
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tem, as opposed to common approaches based only on the value of the PoC or derived

metrics, also accounts for the confidence in the correctness of the values. Thus, a robust

decision is proposed to the operator in regards to the best action to take according to

the available information and the confidence according to the provided evidence. The

concept of robustness is used as the capacity to provide responses accounting for both

epistemic and aleatory uncertainty so that, the worst-case scenario among the possible

ones is taken into account.

The rest of the chapter is structured as follows. In Section 3.1, the problem of

the dilution of probability is stated and the incorrect modelling, with a lack of epis-

temic uncertainty in the models, is shown as the root of the problem. Section 3.2

gives an overview of the DSt for modelling both aleatory and epistemic uncertainty

and introduces a collision risk assessment method based on it. Next, in Section 3.3,

three different conjunction event evidence-based classification criteria are presented.

Section 3.4 summarises the main contributions of this chapter.

3.1 Modelling epistemic uncertainty

Uncertainty on the objects’ position involved in a close encounter is usually assumed to

follow a multivariate Gaussian distribution. This assumption is limited by three main

sources of uncertainty: the uncertainty in the dynamic model used to propagate the

orbit from the last available observation to the time of closest approach, the uncertainty

in the actual distribution at the time of closest approach, and the uncertainty in the

last observed state before closest approach. It can be argued that all three forms of

uncertainty are epistemic in nature since they derive from a lack of knowledge of the

model, distribution and error in the observation. [Poore et al., 2016]

So far, only a limited number of authors have directly addressed epistemic uncer-

tainty in conjunction analysis [Tardioli and Vasile, 2015, Delande et al., 2018, Balch

et al., 2019,Greco et al., 2021]. Generally, the epistemic uncertainty is overlooked and

efforts to manipulate the objects’ position covariance (sometimes referred to as covari-

ance realism) were made [Foster and Frisbee Jr, 1998,Alfano, 2005b,Drummond et al.,

2007,Laporte, 2014a]. However, those approaches do not intend to capture the actual
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nature of the source of uncertainty (the lack of knowledge) [Poore et al., 2016]. In this

chapter, a robust methodology based on DSt to model epistemic and aleatory uncer-

tainty is proposed aiming to capture the uncertainty associated with the three main

sources indicated above: uncertainty model, dynamic model and observation noise.

One of the consequences of the lack of a model for epistemic uncertainty is the

phenomenon of dilution of probability. Below, an introduction to the topic and the

main impact on Conjunction Assessment Risk Analysis (CARA) is presented.

3.1.1 Dilution of the probability of collision

The PoC and other derived metrics (e.g. scaled PoC [Stroe et al., 2021]) have been

broadly used on conjunction risk assessment to evaluate the risk of an encounter be-

tween two space objects [Merz et al., 2017,Newman et al., 2014,Laporte, 2014a]. Due

to the characteristics of most of the encounters in the Low Earth Orbit (LEO) region,

the computation of the PoC can be simplified under the fast encounter assumptions [Al-

friend et al., 1999,Patera, 2001,Alfano, 2005a,Alfano, 2007, Serra et al., 2016]: i) the

relative motion between objects is assumed to be rectilinear; ii) the uncertainty dis-

tributions of the position of the two bodies are Gaussian and uncorrelated; iii) the

velocity vectors are not uncertain; iv) the objects are modelled as hard spheres. The

PoC computation can be reduced to the 2D integral in Eq. (3.1). This equation inte-

grates the Gaussian distribution defining the combined covariance ellipse projected on

the impact plane, Eq. (5.9), over the Hard-Body Radius (HBR), which is the closed

region B((0, 0),HBR) defined by the sphere of radius HBR enveloping the two objects

involved on the conjunction [Serra et al., 2016]:

PoC =
1

2π
√
∥Σb∥

∫
B((0,0),HBR)

e−
1
2((b−µb)

TΣ−1
b (b−µb))dξdζ, (3.1)

where b = [ξ, ζ] is the target’s two-components position relative to the chaser on the

impact plane at the time of expected impact, µb = [µξ, µζ ] defines the coordinates of

the centre of the ellipsoid projected on the impact plane, i.e. the expected relative
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position, and

Σb =

 σ2ξ σξζ

σξζ σ2ζ

 (3.2)

is the [2 × 2] covariance matrix associated with the combined uncertainty ellipsoid

projected on the impact plane, being the combined ellipsoid covariance matrix, the sum

of the two objects’ covariance matrices in the same reference frame: Σb = Σb,1 +Σb,2.

Note that, even though the simplifications associated with this PoC computation, the

following considerations are generally applicable.

Eq. (3.1) leads to the known paradoxical phenomenon of the dilution of probabil-

ity [Alfano and Oltrogge, 2018]. This phenomenon is well represented in Fig. 3.1: an

increase in the standard deviation yields at first an increase of the PoC, up to a max-

imum value, and then a progressive decrease. In the figure, PoC is computed using

Eq. (3.1) with µζ = 6 m, σζ = 3 m, σξζ = 0 m2 and HBR = 5 m. Thus, if the

uncertainty in the observations grows beyond the point of maximum PoC the obvious

conclusion would be a lower risk of collision. In other words, Eq. (3.1) seems to suggest

that the risk of a collision decreases as the amount of information on the position of the

two objects decreases or, in other words, the objects seem to be safer when the quality

of the information worsens.

Figure 3.1: Dilution of probability when increasing the standard deviation,
for different values of miss distance.
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As explained also in [Balch et al., 2019], the central problem is the model of un-

certainty. If the uncertainty in the position of the two objects was purely aleatory

(an irreducible random process), the dilution of probability would describe an actual

reduction in the risk of a collision. This can be understood from Fig. 3.2 where an

increase in the standard deviation leads to a reduction of the total probability mass

falling within the HBR = 5 m (grey region) for σξ > 5 m. However, one can argue

that this is true only when the uncertainty on the dynamics and sensors is perfectly

known. On the contrary, when the uncertainty is epistemic, i.e. there is a lack of

knowledge on the position or velocity of an object, the correct reasoning should lead

to the conclusion that a higher ignorance corresponds to a higher risk of a collision, or

at least, not in its reduction. Some efforts on metrics not suffering from dilution have

been presented in [Balch, 2016] (see Appendix A), although lacking a model for the

epistemic uncertainty.

Figure 3.2: Flattening of the Normal Distribution curve when the standard
deviation increases, causing the dilution of probability.

In the following, the calculation of the PoC with Eq. (3.1) is maintained, but a model

for the epistemic uncertainty in the observations using DSt is proposed. In particular,

the case in which the values of µb and Σb are partially known is considered and a degree

of belief (or confidence) to the set to which they belong can be assigned. This situation

can derive, for example, from the fusion of different conflicting observations or from a
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lack of knowledge of the quality of the sensors.

3.2 Dempster-Shafer theory of evidence

In this section, an introduction to DSt is presented. This theory was proposed by

Dempster [Dempster, 1967] and improved by Shafer [Shafer, 1976] to model evidence

theory and address the lack of a model for epistemic uncertainty. It could be seen

as a generalisation of the classical probability theory when the available information

suffers from a degree of ignorance (epistemic uncertainty). In DSt, one can associate a

degree of belief in the realisation of an event without exact knowledge of an associated

probability distribution, based on confidence in the source of information or the lack

of knowledge of some of the system’s parameters.

In DSt, the evidence is not restricted to single events, but it can be associated

with a set of events (represented by intervals), without the need to assume any kind

of distribution or assign any degree of evidence to any specific event within the set.

Moreover, DSt is not restricted to Laplace’s Principle of Insufficient Reason, avoiding

making assumptions about events about whom there is no knowledge: in probability

theory, in a situation with three possible outcomes, if an event has a 0.3 probability

to occur, it could apply 0.35 to each of the other events, even if there is no knowledge

about it. DSt allows to not assign specific mass to the individual events. Not only

that, if there is no information on the probability of A not occurring, this event can

have a different probability than 0.7 (as it would happen in probability theory) [Sentz

and Ferson, 2022].

Given an event space, the set Θ of all the mutually exclusive and collectively ex-

haustive elementary events (or hypotheses) is considered: Θ =
{
θ1, θ2, ..., θ|Θ|

}
. The

collection of all non-empty subsets of Θ, including the Empty Space and Θ itself, is the

Power Set 2Θ = (Θ,∪). One can now assign a probability mass, called basic probability

assignment (bpa), to the elements of 2Θ. The bpa is equivalent to mapping the power

set to the interval [0, 1] [Sentz and Ferson, 2022]. The bpa assigned to the event θ can

be understood as the proportion of all relevant and available evidence that supports

the claim that a particular element of Θ belongs to the set θ, that is, the sum of all
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the support assigned to all the single events (θi) and combination of events of Θ that

include θ. This assignment can be derived from an expert-based decision, from the re-

liability of the sources of information, or from a formal method to extract the relative

importance of the elements in Θ [Soundappan et al., 2004, Augustin, 2005, Jian and

Deng, 2014]. The bpa is not exactly, but it is similar, to the generalisation to the DSt

framework of the probability mass functions in probability theory [Ferson et al., 2003].

The bpa functions have the following properties [Sentz and Ferson, 2022]:

bpa(∅) = 0 (3.3a)

0 ≤ bpa(θ) ≤ 1, ∀ θ ∈ 2Θ (3.3b)∑
bpa(θ) = 1, ∀ θ ∈ 2Θ (3.3c)

The bpa allows obtaining the Belief (Bel) and Plausibility (Pl), which are the upper

and lower bounds of an interval, or the minimum and maximum support a statement

receives from the available evidence. Thus, the Bel and Pl contain the precise proba-

bility of a variable in the classical (probabilistic) sense, that is if the information was

precisely known, instead of interval-valued. Bel and Pl are computed according to

equation Eq. (3.4). Bel(θ) is the sum of the bpas of all the elements of the Power Set

containing θ, and represents the amount of complete support from the evidence. Pl(θ)

is computed as the sum of the bpas of the elements of 2Θ partially containing θ, and

indicates the lack of support to the event not happening or, in other words, the amount

of credibility on the event being possible to occur.

Bel(θ) =
∑

θi⊂θ,θi∈2Θ
bpa(θi) (3.4a)

Pl(θ) =
∑

θi∩θ ̸=∅,θi∈2Θ
bpa(θi) (3.4b)

The Bel and Pl functions allow building the Dempster-Shafer structures (some

examples in Fig. 3.3), bounding the maximum and minimum support from the evidence

to a certain value of the variable of interest [Ferson et al., 2003].
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DSt enables also to propagate the uncertainty throughout the system [Soundappan

et al., 2004], which allows using this approach for system safety/risk assessment [Helton

et al., 2005]. Having a system whose safety is defined with a variable of interest f(u),

but the information about the system is provided by a set of uncertain variables u =

[u1, u2...], it is possible to propagate the belief assignment from the input variables to

the variable of interest. The set of intervals of uncertain variables is called the Uncertain

Space, U .

First, it is necessary to build the Joint Body of Evidence, which is the mass assign-

ment of the individual variables, but in the joint space. This is done by performing a

Cartesian product of the intervals on U . The result of this operation is a set of intervals

in the multi-space, whose bpa will be equal to the product of bpa associated with the

intervals of the individual variables forming the interval in the joint space, as shown in

Eq. (3.5), where uli and u
u
i represent the lower and upper bound of the given interval

for variable ui [Soundappan et al., 2004].

bpau1,u2...([u
l
1, u

u
1 ]× [ul2, u

u
2 ]× ...) = bpa1([u

l
1, u

u
1 ]) · bpa2([ul2, uu2 ]) · ... (3.5)

Each element of the Joint Body of Evidence with a non-zero bpa is called a Focal

Element (FE). With the set of FEs, knowing the relation between the input variables

and the variable of interest, f(u), it is possible to define the set:

Υ = {u ∈ U |f(u) ∈ Φ}, (3.6)

where Φ is a desirable target set for f . The final step to evaluate the safety of the system

is to obtain the amount of support on the variable of interest, that is, computing the

Bel and Pl of Υ. Eq. (3.4) can be used, but now the sum is done on the space of the

variable of interest, using the bpa of the FEs in the Joint Body of Evidence, as stated

in Eq. (3.7).

Bel(Υ) =
∑

γi⊂Υ,γi∈U
bpa(γi) (3.7a)

Robust AI for STM Luis Sánchez Fernández-Mellado 52



Chapter 3. Evidence-based conjunction classification system

Pl(Υ) =
∑

γi∩Υ ̸=∅,γi∈U

bpa(γi) (3.7b)

The Belief and Plausibility functions have the following properties [Helton et al.,

2005]:

Pl(Υ) ≥ Bel(Υ) (3.8a)

Bel(Υ) + Pl(¬Υ) = 1 (3.8b)

Bel(Υ) +Bel(¬Υ) ≤ 1 (3.8c)

Pl(Υ) + Pl(¬Υ) ≥ 1 (3.8d)

Eq. (3.7) defines the standard definition of Bel and Pl . However, in risk failure

analysis (conjunction risk assessment can be understood as evaluation of the risk failure

of the system, that is, the satellite), it is common to use the complimentary quantities

[Helton et al., 2005] in Eq. (3.9), which, in this work, will be used to evaluate the

confidence on the value of the PoC:

Bel(Υ) = 1−
∑

γi⊂Υ,γi∈U
bpa(γi) (3.9a)

Pl(Υ) = 1−
∑

γi∩Υ ̸=∅,γi∈U

bpa(γi) (3.9b)

Finally, the Degree of Uncertainty (DoU) is the difference between Pl and Bel ,

DoU(Υ) = Pl(Υ)−Bel(Υ) (3.10)

and can be used to determine the degree of epistemic uncertainty associated with

an event given the available evidence. This concept will be exploited to classify the

conjunction events.

3.2.1 Epistemic conjunction risk assessment

The idea is that when µb and Σb are affected by epistemic uncertainty, their values

are not precisely defined, but belong to an interval with a given belief, that is, with
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a given confidence the actual value is located within the interval. A higher epistemic

uncertainty will translate into a larger set or a greater number of, possibly disjoints,

FEs. Then, all the pieces of evidence in support of the possible values of µb and Σb are

collected and the corresponding values of the PoC with Eq. (3.1) are calculated. The

evidence on the values of µb and Σb comes from the degree of knowledge or ignorance

of the source of the observations. The bpa assignment can derive from a quantitative

analysis (Chapter 4) or simply from a subjective opinion on the credibility of the source

of information (examples appear in [Helton et al., 2005]).

This approach can be illustrated with an example. Provided a close encounter

between two space objects, let a source provide uncertain information on the position

and uncertainty (e.g. information extracted from a sequence of CDMs). Without

loosing generality, let assume µζ , σ
2
ζ and σξζ are perfectly known and equal to 6 m,

81 m2, 0 m2, respectively, while µξ and σ2ξ are affected by epistemic uncertainty. The

source of information indicates that the actual value for these variables could fall in one

of the two following intervals: µξ,1 = [4, 7] m, µξ,2 = [15, 25] m and σξ,1 = [1, 6.25] m,

σξ,2 = [4, 36] m. If both intervals on each variable are equally believed to contain

the true value, they will be assigned the same bpa, bpaµξ,1 = bpaµξ,2 = bpaσξ,1 =

bpaσξ,2 = 0.5, as illustrated in Figs. 3.3a and 3.3b (blue) with the associated Dempster-

Shafer structures. If, on the contrary, there is more evidence that the actual value

is within one of the intervals, the value of the bpa would be different, for example,

bpaµξ,1 = bpaσ2
ξ ,1

= 0.9 and bpaµξ,2 = bpaσξ,2 = 0.1, as shown in Figs. 3.3c and 3.3d

(red).

Due to the uncertain knowledge of the values of mean and covariance, the uncertain

ellipse is not precisely defined. Instead, each set of intervals would define a family of

ellipses on the impact plane.

Under the assumption of pure aleatory uncertainty, since all pieces of information

(both sets of intervals) are credible and any of them cannot be discarded, the simplest

approach would be to sample both families and build a joint distribution to compute the

PoC. Setting aside the fitting method, not important at this stage, the key assumption

is that no matter the combination rule, it would be required to build a single distribution
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(a) (b)

(c) (d)

Figure 3.3: Dempster-Shafer structures for µξ and σξ: plausibility (solid
lines) and belief (dashed lines). (a) and (b): intervals equally reliable; (c)
and (d): intervals non equally reliable.

to compute the PoC. If both sets of intervals are equally reliable, the joint distribution

is defined by an expected miss distance of µb = [11.4, 6] m and a diagonal covariance

matrix with σ2ξ = 1857.61 m2, σ2ζ = 73.96 m2 (Fig. 3.6a). When one set is given more

credibility than the other, the joint ellipse would be smaller and more similar to the set

of intervals with greater weight. In this case, the joint ellipse in the non-evenly weighed

case is defined by a miss distance of µb = [6.6, 6] m and a diagonal covariance matrix

with σ2ξ = 331.24 m2, σ2ζ = 73.96 m2 (Fig. 3.6b). Note that more complex fitting could

be implemented (e.g. Kernels, Gaussian Mixture Model), but in any case, they assume

no uncertainty on the variables, and thus, no uncertainty on the computed PoC.
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Independently of the weights distribution, due to the conflict among the intervals,

it can be seen that the joint distribution provides a bigger uncertain ellipse than those

defined by the intervals, which may make the computed PoC fall in the dilution region,

giving a false sense of safety. Actually, the degree of conflict among the intervals

suggests that there is a degree of epistemic uncertainty in the event that cannot be

neglected when computing the risk of the event. DSt will be used to capture this

uncertainty on the position and to quantify the associated uncertainty on the PoC.

Given a belief assignment to µb and Σb, it is possible to compute the Joint Body of

Evidence, that is, the FEs obtained from the Cartesian product of the intervals of each

uncertain variables and their associated bpa, obtained by multiplying the bpa of the

intervals conforming each FE. DSt then allows to transferred the uncertainty along the

system [Soundappan et al., 2004] and be used to evaluate its risk of failure [Helton et al.,

2005]. If using the PoC as the metric to evaluate the risk, it is possible to compute

the associated support on the PoC and use the confidence on its value to evaluate the

safety of the system, i.e. the possibility of a collision. Note, that since the geometry

variables are no longer single-valued, the PoC will be also interval-valued.

With reference to Eq. (3.6), f = PoC, computed with Eq. (3.1), and Φ would be the

desired set of values for PoC. For example, one can define Φ = {PoC|PoC < PoC0}

with PoC0 a given threshold on the values of PoC. Then, the joint uncertainty space

U can be defined so that u = [µξ, µζ , σ
2
ξ , σ

2
ζ , σξζ ]

T and write:

Υ = {u ∈ U |PoC(u) ∈ Φ} (3.11)

With Eq. (3.11), it is possible to apply Eq. (3.9) to compute the corresponding Bel

and Pl of the value of PoC. Note that using the complimentary Bel and Pl with Φ is

equivalent to using the non-complimentary functions for PoC ≥ PoC0. These metrics

would indicate the support, from the available information, that the PoC is greater

than a certain value, and the degree of uncertainty affecting the correctness of the

value. At this point, it is important to underline that although the theoretical devel-

opment started from the simple calculation of the PoC in Eq. (3.1), this methodology

is applicable to more sophisticated definitions of the PoC as long as one can identify
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the source of epistemic uncertainty and translate it into a bpa assignment.

Coming back to the illustrative example, given the set of uncertain variables, as-

suming independence on the variables, and no constraints on mean and covariance,

the joint body of evidence would be defined as U = [µξ × σξ], illustrated in Fig. 3.4.

Being two intervals per variable and two uncertain variables, the joint body of evidence

Figure 3.4: Joint body of evidence for µξ and σξ with each FE’s bpa if
intervals equally and non-equally reliable, respectively.

would be constituted by four FEs as detailed in Table 3.1. The first column identifies

the FE bounds, the second column, the associated bpa if all intervals are assigned simi-

lar credibility, the third column shows the bpa if the first set of intervals is assigned nine

more times belief than the second set, and the last two columns show the minimum

and maximum PoC within each FE, which will allow building the Bel and Pl curves,

respectively.

Having obtained the different FEs and the associated bpas, the Pl and Bel can be

computed using Eq. (3.9). According to the definition of those variables, the Bel would
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Table 3.1: FE with the associated bpa (for intervals equally and non-equally
reliable) and the minimum and maximum PoC on each FE.

Focal Element
µξ, σξ [m]

bpa (equally
reliable)

bpa (not equally
reliable)

Min PoC
in FE

Max PoC
in FE

[4, 7],[1, 6.25] 0.25 0.81 1.73x10−3 1.58x10−1

[4, 7],[4, 36] 0.25 0.09 2.37x10−2 1.59x10−1

[15, 20],[1, 6.25] 0.25 0.09 8.88x10−37 3.12x10−6

[15, 20],[4, 36] 0.25 0.01 1.91x10−15 1.06x10−2

take into account all FEs fully supporting Υ and the Pl would consider all FEs partially

supporting the statement. Regarding the definition of Υ, the set of all FEs whose PoC

is greater than a certain value, the computation of these variables can be performed by

using the minimum and maximum values of the PoC on each FE (last two columns in

Table 3.1). Thus, the Bel is obtained by subtracting to one the bpa at the associated

value of the FE’s minimum PoC, since it is the value of the PoC the FE stop fully

supporting higher values are possible. Similarly, the Pl is computed by subtracting to

one the value of the bpa of the corresponding FE at the value of its maximum PoC,

when the FE stop supporting higher values of probability. The resulting curves are

displayed in Fig. 3.5 for both cases: when intervals are equally credible (a) and when

more belief is assigned to the first set of intervals (b).

The curves should be understood as follows. Having selected a safety threshold

PoC0 = 10−4 (red dashed line), if both intervals are equally reliable it would indicate

that values of PoC above the threshold are possible, although with limited support

(Pl = 0.75). However, when the set of intervals µξ = [4, 7] m and σξ = [1, 4] m are

more reliable, it is much more likely (Pl = 0.91). Moreover, in this second case, the

conflict between information is much smaller with a smaller gap between curves both,

overall and at the PoC0, which makes sense if thinking that more reliability is given to

the source suggesting a higher-risk encounter. In dashed-pointed blue, the joint ellipse

distribution PoC, ˆPoC, is shown. It is worth noting the great gap between curves at

that value, which indicates the uncertainty affecting this value in both cases.
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(a)

(b)

Figure 3.5: Bel (dash line) and Pl (solid line) curves of the PoC. (a) Equally
reliable intervals; (b) one interval being more reliable than the other.

3.2.2 Data fusion

DSt allows for the combination of different sources of information (e.g. information

received from different sensors). It is common in engineering problems that information

comes from different sources which may present better or worse quality and may provide

coherent or conflicting information. If on top of that, information is not precisely known

Robust AI for STM Luis Sánchez Fernández-Mellado 59



Chapter 3. Evidence-based conjunction classification system

(contains epistemic uncertainty), DSt’s combination rules can be used to meaningfully

fuse those pieces of evidence and to account for the conflict among them [Sentz and

Ferson, 2022,Ferson et al., 2003].

The combination rules consist of techniques to aggregate information coming from

different sources in the context of evidence theory and interval-set variables. More

precisely, they combine the bpa assignments (or the Dempster-Shafer structures) for

each variable provided by the sources to provide a single mass or bpa distribution.

There are many rules mainly diverging in the way they treat and quantify the

conflict among rules. The main assumption common to all of them is the independence

of the sources. Some rules emphasise the agreement, discarding the conflict (conjunction

rules), others may prioritise one source among the others (disjunction rules), and most

lie in between, giving more or less importance to the conflict among sources. It is worth

noting that the selected combination rule will have a great impact on the system risk

assessment, since the combined bpa distribution may be greatly affected [Sentz and

Ferson, 2022].

The first proposed rule was Dempster’s Combination rule [Dempster, 1967]. This

rule completely ignores the conflict, assigning to the null set any bpa associated with

it. Eq. (3.12) shows the formula to combine n sources of information. Thus, it may

provide counterintuitive conclusions if there is very little agreement among sources (e.g.

example of the doctors in [Zadeh, 1984b] p.82). Moreover, if the information from the

sources is completely in conflict, this rule cannot be used. bpa1...n(γ) =

∑
∩iγi=γ

∏n
i=1 bpai(γi)

1−K if γ ̸= ∅

bpa1...n(γ) = 0 if γ = ∅

where K =
∑

∩iγi ̸=∅
∏n

i=1 bpai(γi)

(3.12)

Different rules have been proposed to overcome these limitations, like Yager’s rule

[Yager, 1987], also known as Modified Dempster’s rule, whose main difference is the

assignment of conflict. Instead of ignoring conflict, it attributes the mass of the con-

flict to the universal set, which should be understood as the degree of ignorance: any

statement supporting the whole set (that is, not prioritising any outcome) or any set
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not supporting the same information should be understood as lack of knowledge on the

actual system. Inagaki’s rule [Inagaki, 1991] generalises Yager’s rule and creates a con-

tinuous parametrised class of rules (including Dempster’s and Yager’s rules). Inagaki’s

rule works only if there is no detail on the reliability of the sources. Zhang’s Center

combination rule [Zhang, 1994], which allows obtaining information from one set of

discernment from the information on another logically related set, modified Dempster’s

rule on the treatment of the intersection between sets introducing a measure of in-

tersection. Dubois and Prade’s Disjunctive rule [Dubois and Prade, 1986,Dubois and

Prade, 1992], on the other hand, proposes a disjunctive rule, which may be prone to

more imprecise results.

Other rules are based on the averaging process, such as a discount-combine method

[Shafer, 1976], mixing rule or convolutive averaging rule [Ferson et al., 2003]. The mix-

ing (also called averaging) rule generalises the averaging of distributions in probability

theory (towards it would simplify if intervals reduce to single points), so it could be

seen as the logical step coming from aleatory uncertainty [Sentz and Ferson, 2022]. The

mixing rule is based on equation Eq. (3.13) [Ferson et al., 2003], where n is the number

of sources, γ1,..,n the bpa of the combined sources, and γi the bpa of source “i” for the

same set.

bpa1...n(γ) =
1

n

n∑
i=1

bpai(γ) (3.13)

However, the mixing rule presents an advantage, it allows waiting for the sources of

information regarding their reliability (i.e. information coming from the own sensor is

usually considered more reliable than third party’s sensors). In the case sources are not

evenly weighted, the combined bpa should be computed using Eq. (3.14) [Ferson et al.,

2003], where wi is the relative weight of source “i”. If the different sources provide any

interval equal to another source, a final step should be added so that the bpa of all

equal intervals is summed up.

bpa1...n(γ) =
1∑
iwi

n∑
i=1

wibpai(γ) (3.14)

Below, an example will show the behaviour of Dempster’s rule and the Mixing
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rule when two sources provide information on two variables. Note that this example

resembles the previous one, however, instead of one source providing two intervals per

variable, two sources provide one interval each. Both rules would operate the same

if any or both of them provide more than one interval or even a different number of

intervals per variable.

Two sources of information are providing information on a close encounter. µζ ,

σζ , σξζ and the HBR are known without ambiguity, however, µξ and σξ are provided

as intervals. Each source provides a single interval per variable, thus the bpa of each

interval for each interval is equal to 1. Source 1 indicates that µξ ∈ [4, 7] m and

σξ = [1, 6.25] m, while Source 2 proposes that µξ ∈ [15, 20] m and σξ = [4, 36] m.

Fig. 3.6 illustrates this uncertain geometry. In the figure, the HBR centre at the chase

and in the centre of the impact place reference frame appears in solid yellow. In red

(dashed and pointed-dashed for the 1σ and 3sigma, respectively) is the frequentist

ellipse presented in some paragraphs above. It encapsulates all the information by

fitting a single ellipse. Finally, the two families of 3σ ellipses provided by each source

appear in blue and green, respectively. Each of those families is represented in the

figure by a finite set of all possible ellipses defined by the intervals supported by the

corresponding source. Thus, for Source 1, the green ellipses have sizes and positions

drawn from the intervals σξ = [4, 36] m and µξ ∈ [15, 20] m, respectively (note, the

ellipses are not concentric since µξ is not single-valued).

Due to the epistemic uncertainty and the interval-valued variables, the uncertain

ellipses become a set of ellipses, as mentioned before. The blue ellipses are associated

with Source 1, while the green ellipses are associated with Source 2. The red ellipses

would correspond with the joint ellipse for the probabilistic case as explained in the

previous example (Fig. 3.6a with sources equally reliable and Fig. 3.6b with sources

non-equally reliable). The yellow circumference represents the HBR of the combined

objects.

If combining the sources with Dempster’s rule, one would obtain a combined interval

for σξ = [4, 6.25] m with bpaAB = 1. However, for µξ, there would not be any value in

receiving any support due to the conflict among sources
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(a)

(b)

Figure 3.6: Conjunction geometry on the impact plane centred on the
chaser. (a) Sources equally reliable. (b) Sources non-equally reliable.

Using the mixing rule instead, the set of intervals after combining the sources of

information is included in Table 3.2, both with all sources are equally reliable (wA =

wB = 0.5) and if Source 1 is more reliable (wA = 0.9 and wB = 0.1). Fig. 3.7 shows

the combined Dempster-Shafer structures for each variable for the different situations.
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Table 3.2: Intervals provided by sources with their bpa before and after
being combined with the mixing rule for the equally reliable (upper tier) and
non-equally reliable (lower tier) cases.

Weights Intervals µξ [m] Intervals σξ [m] bpa Combined bpa

Source 1 0.5 [4,7] [1,6.25] 1 0.5
Source 2 0.5 [15,20] [4,36] 1 0.5

Source 1 0.9 [4,7] [1,6.25] 1 0.9
Source 2 0.1 [15,20] [4,36] 1 0.1

(a) (b)

(c) (d)

Figure 3.7: Dempster-Shafer structures for µξ and σξ, before combining
sources (black and green, plausibility in solid lines, belief in dashed lines)
and after combining sources with Dempster’s rule (pink shaded region) and
mixing rule (dashed-pointed line, blue equally reliable, red non-equally reli-
able): (a) and (b) sources equally reliable; (c) and (d) sources non-equally
reliable.
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Note that if there is absolute conflict among sources, as it happens for µξ in the

example, Dempster’s rule cannot provide a combined Dempster-Shafer structure. It is

worth noting that if a single source of information provides the same intervals as each of

several sources of information, and assigns to them a bpa equal to the reliability of the

sources (example in Section 3.2.1 and the example above), the final Dempster-Shafer

structure is the same (compare Figs. 3.3 and 3.7). Thus, for the rest of this work, when

more than one source provides information, the weighted mixing rule is applied.

3.3 Conjunction classification criteria

This section presents how to use Bel and Pl as additional criteria to classify conjunction

events. A classification purely based on PoC will be compared with a classification that

includes Bel and Pl . This classification criterion will form the ground for the rest of

the theoretical developments and applications in the following chapters.

3.3.1 Probability of collision as classification criterion

When the PoC in Eq. (3.1) is used as the single classification criterion, it is customary

[Muelhaupt et al., 2019] to define a series of thresholds on the value of PoC, each of

which activates an alert or a recommended action. Different operators employ different

amounts of thresholds and different values and some of them, even employ variants

of the PoC to trigger the alerts, but in all the cases, the common factor is the use of

the computed value of the risk metric, without taking into account the support on its

correctness. More details on some of these approaches are given in Chapter 7.

Generally speaking, events presenting a value of PoC above a certain threshold

start an assessment process, usually requiring additional tracking. If the risk remains

at that level longer or a higher PoC is obtained, the planning of a CAM becomes

necessary, and eventually, a CAM execution should be implemented. The details of

the process vary from operator to operator, with variations on the specific value of the

thresholds, the action to be carried out or the inclusion of other considerations, like

the Time of Closest Approach (TCA), or derived metrics, as the Scaled Probability

Robust AI for STM Luis Sánchez Fernández-Mellado 65



Chapter 3. Evidence-based conjunction classification system

of Collision (sPoC). For example, the CARA team of the NASA uses two thresholds

(10−7 and 4.4 x 10−4) [Newman et al., 2014]. Anything below the former threshold

is considered to be low risk while everything above the latter threshold is considered

high risk and anything in between deserves further investigations. The European Space

Agency’s (ESA) Space Debris Office (SDO) team also considers the time to the TCA

and performs a CAM if the value of the PoC is higher than a given threshold some

days before the TCA [Merz et al., 2017]. Nevertheless, no matter the specific values

and metrics, all these approaches and criteria always assume that the PoC is affected

exclusively by aleatory uncertainty and propose an action based on the computed value,

not paying attention to the uncertainty of this value or its degree of correctness.

3.3.2 Evidence-based classification criteria

As explained in the previous section, a classification based solely on the PoC triggers

actions when its value is found to be higher than the given thresholds. However, no

information is given on the correctness of the PoC. Thus the operator might react

to false positives or do nothing in the case of false negatives. Furthermore, unknown

cases, that require further observations, are identified only by the thresholds and not

by an actual quantification of the degree of ignorance of the PoC.

Consider now the case in which one can quantify the Bel and Pl that the PoC is

above a given PoC0 threshold. In this case, three additional pieces of information are

available to the operator: the value of Bel , the value of Pl and the gap between the

two, the DoU. A large gap between Pl and Bel implies that there is either a lack of

information on the calculation of PoC or uncertainty on the available information, for

example, due to conflict on the different pieces of data. If both Bel and Pl at the

computed value are low, there is little evidence that the value of PoC is to be trusted,

or if the Bel and Pl are low at the selected threshold, higher values are not expected.

The opposite is true if those values are high: a greater value of PoC would be likely

according to the available information.

Starting from these considerations one can devise a classification that allows op-

erators to differentiate between high-risk, low-risk and uncertain events based on the
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degree of uncertainty in the correctness of the ˆPoC. In Table 3.3, this possible classi-

fication criterion, Criterion 1, exploiting Bel and Pl is presented.

Table 3.3: Evidence-based conjunction classification Criterion 1.

CRITERION 1

PoC value DoU at ˆPoC Bel and Pl at ˆPoC Class

PoC ≥ PoC0

DoU > ∆ - NK-1

DoU ≤ ∆
Pl < Pl0 NK-2
Bel ≥ Bel0 HR

PoC < PoC0

DoU > ∆ - NK-1

DoU ≤ ∆
Pl < Pl0 NK-2
Bel ≥ Bel0 LR

Criterion 1 provides three possible outputs, High-Risk (HR), Low-Risk (LR) and

Not-Known (NK). The last class presents two subclasses: subclass NK-1, when PoC

present a high DoU, being too much uncertainty to make a confident decision and

requiring more information to be acquired; and subclass NK-2, where there is low

confidence on the correctness of the PoC value, meaning a decision cannot be made

based on that value of PoC.

3.3.3 Criteria comparison

In this section, a database of virtual conjunction geometries with different combinations

of miss distances and standard deviations is used to compare the different classification

methods: a classification method solely based on the value of PoC and the evidence-

based Criterion 1, which uses also the Pl and Bel of the PoC.

Five different scenarios were identified, depending on the information provided by

the two sources, so that relevant encounter geometries are covered. More sources could

have been considered, but no new cases would appear regarding conflict among them.

The definition of each type of geometry is included in Table 3.4, including the inter-

vals of the uncertain variables characterising the encounter geometry. On each set of

geometries in the table, the first row refers to the bounds for the intervals provided by

Source 1 and the second row for Source 2. Geometry 1 represents cases where the fam-
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ilies of ellipses provided by both sources tightly overlap each other and both intersect

the HBR. In this scenario, both sources are in agreement and support the fact that a

collision might occur with high probability. Geometry 2 are cases where the two sets

of ellipses tightly overlap each other but do not intersect the HBR. In this scenario,

both sources are in agreement and support the fact that a collision is unlikely to occur.

In Geometry 3, both sources are disjoint and only one intersects the HBR. In this

situation, there is a high degree of uncertainty about the correctness of the prediction.

In Geometry 4, both sets are disjoint but none intersects the HBR. In this scenario,

the joint distribution at 3σ is assumed not to intersect the HBR thus, although the

sources are in disagreement, the conclusion is that a collision is unlikely to happen.

Finally, Geometry 5 includes cases where the ellipses are disjoint not overlapping the

HBR, but the joint distribution at 3σ does intersect the HBR. In this case, the sources

are in disagreement but the conclusion could be that a collision is highly likely to occur

because ˆPoC is high. Without losing generality, the cases on the database for this

analysis assume σξζ = 0.

Table 3.4: Bounds for upper and lower limits of the uncertain variables’
intervals (µb and Σb) for each geometry set. The first row represents the
bounds for Source 1 and the second row for Source 2. Units in meters.

Geom. Characteristics µξ [m] µζ [m] σξ [m] σζ [m]

Geo. 1
Sets of ellipses overlapping [0,10] [0,7] [0.1,4] [0.2,2]
Both sets overlapping HBR [0,10] [0,7] [0.1,4] [0.2,2]

Geo. 2
Sets of ellipses overlapping [750,1000] [-100,100] [10,25] [10,18]
No set overlapping HBR [750,1000] [-100,100] [10,25] [10,18]

Geo. 3
Sets of ellipses not overlapping [0,10] [0,7] [0.1,4] [0.2,2]
One set overlapping HBR [750,1000] [-100,100] [10,25] [10,18]

Geo. 4
Set of ellipses not overlapping [750,1000] [200,500] [10,25] [10,18]
No set overlapping HBR [500,800] [-300,0] [10,25] [10,18]

Geo. 5
Sets of ellipses not overlapping [30,200] [30,200] [3,12] [3,12]
No set overlapping HBR [-200,-30] [-200,-30] [3,12] [3,12]
Combined ellipse would overlap HBR

Geometry 1 and 2 present low conflict between the sources and can be expected to
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provide high Bel at ˆPoC with smaller DoU. Geometry 1 will have ˆPoC > PoC0 and

Geometry 2 will have ˆPoC < PoC0. Geometry 3 includes conflict cases, but depending

on the distribution of confidence among the sources, they can present high or low values

of Bel at ˆPoC (LR and HR, respectively) or big gaps between Pl and Bel (Not Known

due to uncertainty, NK-1). The key difference between Geometry 5 and 3 is that in

Geometry 5 the high value of ˆPoC is an artefact because both sources think that no

collision is going to happen.

A total of 3,000 sample geometries were created, 600 samples for each type of

geometry. Within this 600 samples per geometry, one-third (200 samples) corresponds

to cases where both sources are equally reliable, another 200 samples to cases where

Source 1 is nine times more reliable than Source 2 and the remaining third of the

samples to cases where Source 1 is nine times less reliable than Source 2.

In Fig. 3.8, one can see one example of the geometry of an encounter event of the

family Geo. 1 with the associated Bel and Pl curves (black) and the key PoC values:

the PoC0 threshold, the joint ellipse ˆPoC value (red), and the PoCb value at the Bel

threshold (green). Examples of the other families can be found in Appendix B. It is

now possible to compare the outcome of the different classification methods.

To allow for an easier classification for the purely aleatory case, only one risk thresh-

old, PoC0, is considered to distinguish between Collision and No-Collision: if the com-

puted value of the PoC is greater than the threshold, the event is classified as Collision,

otherwise, it is catalogued as No-Collision. The values of this one and the other thresh-

olds used for the classification can be found in Table 3.5.

Table 3.5: Classification thresholds.

Parameter Units Value Criterion

Probability of Collision (PoC0) [-] 4.4·10−4 1, 2, 3
Degree of Uncertainty (∆) [-] 0.3 1, 2, 3
Belief (Bel0) [-] 0.5 1, 2, 3
Plausibility (Pl0) [-] 0.5 1
Lower time threshold (T1) [days] 2 3
Upper time threshold (T2) [days] 4 3

Fig. 3.9 shows two histograms comparing a classification based only on PoC and
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(a)

(b)

Figure 3.8: Representative scenario of a single case of Geo. 1 : (a) en-
counter geometry, (b) the associated Bel and Pl curves.

a classification that accounts for Bel and Pl at ˆPoC. Blueppshaded cases correspond

to events classified as collision by the PoC-based approach, while red-shaded events

correspond to safe encounters according to this same criteria. Different shades corre-

sponds to different classifications using the evidence-based criteria, with darker shades

corresponding to HR, lighter shades to LR, and intermediate shades to NK-1 and NK-2
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situations.

While the right histogram shows that using only the value of the PoC half of the

events are safe, and only an action is required on the other half. However, when

attending to the epistemic uncertainty (right histogram), it indicates that the value of

the computed PoC can be trusted on a small fraction of events(a small gap between

Pl and Bel), while the rest of the scenarios are affected by epistemic uncertainty. This

also indicates than using a single ellipse to characterise the whole uncertainty affecting

an event, no matter the type or the source, is not reliable. For the numerical values

of each of the bars in Fig. 3.9, broken down by Geometry families, go to Table B.1 in

Appendix B.

However, this classification, where the vast majority of events are classified as not

known based on the current evidence, is not useful from the operation point of view.

Thus, a new evidence-based classification criterion is proposed.

(a) (b)

Figure 3.9: Histograms comparing criterion using (a) only the value of PoC
and (b) the evidence-based Criterion 1. Each colour represents the fraction
of samples from each bin on the histogram (a) that moves to one of the bins
on the histogram (b).
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Consider now the value of PoC at which Bel switches from Bel ≥ Bel0 to Bel <

Bel0, referred to as PoCb. If PoCb ≥ PoC0 the operator has enough evidence that any

value of PoC between PoC0 and PoCb is credible and, therefore, the event has to be

classified as High-Risk. If PoCb < PoC0 then one has to check the DoU gap at PoC0

and beyond. If the gap at PoC0 is high, then there is some evidence that supports the

fact that the event might be high risk but there is not enough information to make a

decision. On the contrary, if the gap is small one can consider the event low-risk. Based

on this reasoning, Criterion 2 can now be introduced as a new classification criterion

as defined in Table 3.6.

Table 3.6: Evidence-based conjunction classification Criterion 2.

CRITERION 2

PoC at Bel0 DoU at PoC0 Class

PoCb ≥ PoC0 - HR

PoCb < PoC0
DoU ≤ ∆ LR
DoU > ∆ NK

Using the samples of the previous example, Fig. 3.10 shows two histograms compar-

ing the Probabilistic criteria based only on the ˆPoC (Fig. 3.10a) and the evidence-based

Criterion 2 (Fig. 3.10b), using the thresholds indicated in Table 3.5. The left plot is

the same as in Fig. 3.9, showing the encounters classified as high risk (blue-shaded)

and as no collision (red-shaded). The difference is on the left side, where the newer

evidence-based criterion is used. With this criterion, the classification does not rely

anymore on the computed PoC, that as seen in the previous figure, is not reliable.

Instead, only using the available evidence and the values of loss of support, a more

informed decision can be obtained. On the one hand, the HR and LR cases are now

granted to be uncertainty-free, while the cases affected by uncertainty are now a small

proportion. It can be seen as well that the PoC-based criteria erroneously classify some

events as high risk, where the evidence from all sources indicates it does not possess

any risk (dark blue column).

For the numerical values of each of the bars in Fig. 3.10, broken down by Geometry
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families, see Table B.2 in Appendix B.

(a) (b)

Figure 3.10: Histograms comparing criterion using (a) only the value of
PoC and (b) the evidence-based Criterion 2. Each colour represents the
fraction of samples from each bin on the histogram (a) that moves to one of
the bins on the histogram (b).

All events still classified as Not-Known would suggest two actions: perform a CAM

or acquire more information. The decision is often dictated by the available time and

resources. If the time to impact is included, one could further refine the classification

and make a decision based on the available time to obtain better-quality data.

3.3.4 Extended evidence-based classification criterion

In order to improve the decision-making process, it is desirable to include other param-

eters on top of Bel and Pl at a given PoC. The goal is to improve the confidence in

the decisions of the operators. In particular, decision support is required in all those

cases that are classified as Not-Known.

To this end, in this section, the classification process is extended by including the

TCA. Two time thresholds were considered, dividing events into long-term, mid-term
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and instantaneous. Table 3.7 summarises Criterion 3 and its outcome: a 5-fold classi-

fication. Events in Class 1 are High-Risk and require the execution of a CAM. Events

in Class 2 are High-Risk but there is time to collect better information, either to im-

prove the manoeuvre planning or re-assess the level of risk. Events in Class 3 are not

supported by enough evidence to make a confident decision, but there is sufficient time

to acquire more information and allocate new measurements. Events in Class 4 are

Low-Risk and the time to the encounter is high enough to acquire further information

if desired. Events in Class 5 are Low-Risk but there is little time to acquire further

information, proposing to the operator no further actions to be taken concerning the

event. Events with a high level of uncertainty but close to the TCA are classified as

Class 1, instead of Class 3 as the DoU would have suggested, choosing a conservative

approach enhancing safety.

Further analyses can include other considerations, such as a comparison between

the risk of the event and the inherent risk of executing a manoeuvre or the cost of

the manoeuvre against the cost of the satellite pondered by the risk of the encounter

(Chapter 8).

Table 3.7: Evidence-based conjunction classification Criterion 3.

CRITERION 3

Time to TCA PoC at Bel0 DoU at PoC0 Class

tTCA < T1

PoCb ≥ PoC0 - 1

PoCb < PoC0
DoU ≤ ∆ 5
DoU > ∆ 1

T1 ≤ tTCA < T2

PoCb ≥ PoC0 - 2

PoCb < PoC0
DoU ≤ ∆ 5
DoU > ∆ 3

T2 ≤ tTCA

PoCb ≥ PoC0 - 2

PoCb < PoC0
DoU ≤ ∆ 4
DoU > ∆ 3

Fig. 3.11 shows the histograms comparing the probabilistic classification with this

last Evidence-based approach using the same sample as the previous examples and

the thresholds stated in Table 3.5. In order to account for the time to the TCA,
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three different times to the TCA (one per each time bin: long-term, mid-term and

instantaneous) were associated with each sample, creating three events per sample.

For the numerical values of each of the bars in Fig. 3.11, broken down by Geometry

families, see Table B.3 in Appendix B.

(a) (b)

Figure 3.11: Histograms comparing criterion using (a) only the value of
PoC and (b) the evidence-based Criterion 3. Each colour represents the
fraction of samples from each bin on the histogram (a) that moves to one of
the bins on the histogram (b).

The new histogram shows a more comprehensive classification, yet, clear to un-

derstand from the decision-making point of view. Most of the cases classified as No-

Collision initially remain in classes associated with low risk (Class 4 and 5 ), with the

exception of a very small fraction catalogued as Class 3, which indicates cases with a

low ˆPoC tends to be more reliable. However, cases initially classified as Collision are

now spread along the different classes. Around a third are in high-risk classes (Class 1

and 2 ), associated with Geo. 1 cases or Geo. 3 cases with more weight in the source

whose information was closer to the HBR. There are some samples where more infor-

mation is required. They are related to those scenarios with sources providing conflict
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information that, due to the construction of the joint distribution, were catalogued as

Collision initially, although not all evidence supported that. Finally, there are Collision

examples that are moved to lower-risk classes with the new classification. Geo. 5 are

the most representative cases of this situation, where the high ˆPoC was an artificial

value, and now the lower risk associated with both sources is better detected.

3.4 Chapter summary

This chapter presented a methodology to model aleatory and epistemic uncertainty on

space conjunction risk assessment. Aleatory uncertainty on the position was modelled

following a classical probability approach with a Gaussian distribution. Epistemic un-

certainty was introduced as uncertainty on the actual value of the Gaussian distribution

parameters. The method allowed evaluating the confidence in the correctness of the

value of the PoC associated with the close encounter.

An evidence-based classification criterion was proposed based on the DSt method to

provide operator robust decision-making support to deal with conjunction events. The

criterion takes the uncertain encounter geometry, and classifies the event in one of the

5 proposed classes, depending on the level of support and the amount of uncertainty on

the inputs. The methodology was compared against a classical probability approach,

showing its capacity to correctly identify encounters and to detect cases where more

information was required to make a confident decision.

This evidence-based framework will be the core aspect of the rest of this work, used

along with the different methods and applications presented in the next chapters. The

last classification criterion introduced above will be also further used in this document

and extended according to the new developments introduced in the following chapters.

Robust AI for STM Luis Sánchez Fernández-Mellado 76



Chapter 4

Modelling epistemic uncertainty

in Conjunction Data Messages

The content of this chapter was partially published in:

Sánchez, L., Vasile, M., Sanvido. S, Maerz, K. and Taillan, C.,

“Treatment of epistemic uncertainty in conjunction analysis with

Dempster-Shafer theory”, Advances in Space Research,

submitted. [Sánchez et al., 2024]

In satellite operations, it is common practice to use Conjunction Data Messages

(CDMs) [CCSDS, 2013] when dealing with conjunction events. The CDMs are a com-

munication protocol established more than a decade ago for standardising the com-

munication shared with operators containing the information of a close encounter, its

epoch, the relative state, and data of the satellites involved in the encounter, includ-

ing its positions and the quantification of their uncertainty. However, the model of

uncertainty is not transparent. It is customarily assumed that the distribution of pos-

sible positions of the two objects at the time of closest approach follows a multivariate

Gaussian with a given mean and covariance matrix [Merz et al., 2017]. In practice,

there is little transparency to retrieve the uncertainty at the observation epoch and it

is virtually impossible to discern the sources of uncertainty (e.g. sensors, propagation

and dynamic errors).

When receiving a series of CDMs there is no standardised protocol of how to treat
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them, and more importantly, how to deal with the encoded uncertainty. In any case, it is

clear that there are sources of epistemic uncertainty (lack of knowledge) on some of the

steps to obtain the information on the CDM. However, most of the current applications

do not take into account this type of uncertainty [Laporte and Moury, 2013,Laporte,

2014a,Newman et al., 2014,Braun et al., 2016,Merz et al., 2017,Stroe et al., 2021] in the

analysis. In this chapter, a methodology to model the epistemic uncertainty implicitly

contained on the CDMs sequences is proposed. This model also allows integrating this

uncertainty on the Dempster-Shafer theory of Evidence (DSt) framework proposed in

the previous chapter, providing a complete system to operationally assess the risk of

close encounters.

The rest of the chapter is structured as follows. Section 4.1 shows the presence

of epistemic uncertainty on the sequences of CDMs and the necessity to account for

it. The next section, Section 4.2, introduces a methodology for accounting for the

epistemic uncertainty under DSt based on the concepts of Dvoretzky-Kiefer-Wolfowitz

(DKW) inequality and p-boxes. Section 4.3 shows a numerical example based on a real

sequence of CDMs. A sensitivity analysis based on this example is shown along with

the robustness of the methodology when dealing with poor quality CDMs. Finally,

Section 4.4 indicates the main contributions of the chapter.

4.1 Epistemic uncertainty in the CDMs

The information on a given close encounter is generally available in the form of a CDM,

which contains the means and covariances of the two objects at the Time of Closest

Approach (TCA) [CCSDS, 2013]. As indicated, uncertainty on the objects’ position

involved in a close encounter is usually assumed to follow a multivariate Gaussian

distribution, which is used to model the actual distribution on at the encounter, the

dynamic model error and the observation noise. However, this yields some problems,

like the probability of dilution, as shown in the previous chapter.

The general attempt to compensate for the uncertainty in the CDMs is to improve

the covariance matrix model by improving its propagation [Aristoff et al., 2014] or by

some form of updating of the dynamic model [Cano et al., 2023]. These approaches
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are all very valuable but require direct access to the post-observation data. Other

methods based solely on the available CDMs tried to predict the next CDMs using

machine learning starting from an available time series [Pinto et al., 2020, Acciarini

et al., 2021,Caldas et al., 2023] or increased the last covariance under the assumption

that the series of CDMs should follow a given distribution [Laporte, 2014a, Laporte,

2014b]. This last approach does not modify the mean value or miss distance.

So far, only a limited number of authors have directly addressed epistemic uncer-

tainty in conjunction analysis [Tardioli and Vasile, 2015, Delande et al., 2018, Balch

et al., 2019, Greco et al., 2021]. In the previous chapter, a robust approach to con-

junction analysis based on DSt was presented, allowing making decisions based on the

degree of confidence in the correctness of a value instead of based the decision on a sin-

gle value of the metric [Helton et al., 2005]. However, the available information to build

the frame of discernment that is needed in DSt is often limited in a sequence of CDMs.

CDMs contain little information on the three forms of uncertainty listed above and es-

sentially only provides covariance and miss distance. Thus, one key question is how to

translate the time series of CDMs into the frame of discernment used in DSt, based on

interval-valued variables with the associated basic probabilistic assignment (bpa). The

underlying assumption adopted in this work is that the CDMs are observables drawn

from an unknown family of distributions defined within some bounds. Without uncer-

tainty, one would be able to predict exactly the next CDMs as the mean and covariance

would only depend on observations with known distribution and there would not be

any uncertainty in the propagation model and distribution at TCA. Furthermore, the

CDMs computed from observations acquired close to the TCA are assumed to be less

affected by model and distribution uncertainty. This is reasonable as the propagation

time is shorter and thus both nonlinearities and model errors have a lower impact on

the propagation of the distribution of the possible states.

In the next section, a methodology based on the DKW inequality [Dvoretzky et al.,

1956] is introduced to derive a DSt structure capturing the epistemic uncertainty in a

given sequence of CDMs. From the DSt structures, one can derive the Belief (Bel) and

Plausibility (Pl) that the value of the Probability of Collision (PoC) is correct and an
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upper and lower bound on its value as explained in the previous chapter.

4.2 Methodology

This section presents a method to integrate sequences of CDMs within the evidence-

based framework introduced in Chapter 3. The use of DSt to model epistemic uncer-

tainty does not require any assumption on the probability of an event and also captures

rare events with low probability. On the other hand with no direct information on mea-

surements and dynamic model, one can only rely on the CDMs to define the FEs and

associated probability masses.

The first step is to derive the FEs from the time series of miss distances and co-

variance matrices in the CDMs. In accordance with DSt, no prior assumption is made

on the underlying distribution of the CDMs and, instead, it is considered that each

CDM is drawn from an unknown set of probability distributions. The assumption is

that the value of the uncertain vector u in each CDM is a sample drawn from the

set of unknown distributions. The DKW inequality [Dvoretzky et al., 1956] is used

to build an upper and lower bound to the set starting from the empirical Cumulative

Distribution Function (eCDF) derived from the sequence of CDMs. This confidence

region resembles the Dempster-Shafer structures obtained with the intervals and bpas

(Fig. 3.3).

Note the similarity between the family of ellipses derived from the set of intervals in

the DSt approach in Section 3.2.1 (Fig. 4.1a) and the set of ellipses from the sequence

of CDMs (Fig. 4.1b). This idea lies behind the proposed method and underlines the

fact that the set of CDMs presents some forms of epistemic uncertainty.

Given a sequence of CDMs, it is possible to compute the eCDF (solid blue line in

Fig. 4.2) of the uncertain variables, a step-function approximating the actual unknown

distributions (if any), from where the CDMs are drawn from. However, given the

limited number of samples, there is a range of possible distributions compatible with

the eCDF, showing the epistemic uncertainty presented in the system. The DKW

inequality defines the following upper and lower bounds (dashed green lines in Fig. 4.2)
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around the eCDF Fn(x):

Fn(x)− ε ≤ F(x) ≤ Fn(x) + ε ε =

√
ln 2

δ

2n
(4.1)

given n CDMs and the confidence level 1−δ that the exact distribution F(x) ∈ Fn(x)±ε.

(a)

(b)

Figure 4.1: Encounter geometry on the impact plane: family of ellipses
from (a) a DSt analysis with one interval per source, (b) sequence of CDMs.
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Figure 4.2: DKW region for a given set of samples. The width of the
region, ε, is indicated. In solid blue the eCDF, in dashed green the DKW
bands, and in dashed-pointed orange the CDF of the equally weighted sum
of Gaussian distributions centred at the samples.

From the confidence region defined by the DKW bands, it is possible to derive the

probability box or p-box [Ferson et al., 2003, Ferson et al., 2007, Liu et al., 2017a] of

the data. A p-box is a set of all Cumulative Distribution Functions (CDFs) compatible

with the data, that is, the bounded region containing all distributions from where the

set of samples may have been drawn [Ferson et al., 2007]. The upper and lower bounds

of the p-box should be monotonic non-decreasing curves, ranging from 0 and 1, so that

F(x) ≤ F(x) ≤ F(x), with F(x) and F(x) the upper and lower bounds of the p-box

for variable x [Ferson et al., 2003].

In this work, the p-box bounds are computed from the CDF of a weighted sum

of univariate Gaussian distributions, each one centred at one of the samples. More

formally, the assumption is that F(x) can be approximated by:

F(x) ∼ P(x) =

∫ inf

− inf

∑
i

wiN (xi, σi;x) dx, (4.2)
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with xi the realisations of the uncertain variable x, wi a weight associated with each

sample, and σi the variance of the Gaussian distribution associated with the ith sample.

See Fig. 4.3 for an illustrative example. Implicitly, it implies that each sample presents

some uncertainty which is modelled with a Gaussian distribution (grey lines in Fig. 4.3).

This distribution represents the confidence in the sample’s value.

with xi the realisations of the uncertain variable x, wi a weight associated with

each sample, and σi the variance of the Gaussian distribution associated with the ith-

sample. See Fig. 4.3 for an illustrative example. Implicitly, it implies that each sample

presents some uncertainty which is modelled with a Gaussian distribution (grey lines in

Fig. 4.3). This distribution represents the confidence in the sample’s value. By doing

so, it is admitted that when observing a sequence of CDMs it is not possible to tell from

which exact distribution that sequence is drawn. This is consistent with the available

sequences of real CDMs and the approach adopted by the Centre National d’Etudes

Spatiales (CNES) to model the uncertainty in the covariance (see Chapter 7).

Figure 4.3: Gaussian distributions centred at the samples for building
the eCDF fit. In blue the eCDF, in grey the pdf of individual Gaussian
distributions, and in orange the CDF of the equally weighted sum.
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In order to define the p-box’s limits, the two free parameters on each Gaussian

distribution on the weighted sum, wi and σi, must be computed by solving these opti-

misation problems: P(x) = maxwi,σi P(x;wi, σi)

P(x) = minwi,σi P(x;wi, σi)
s.t.

 P(x) ≤ min(1, Fn(x) + ε)

P(x) ≥ max(0, Fn(x)− ϵ)
, (4.3)

where P(x),P(x) are the upper and lower bounds of the p-box, respectively. An approx-

imation to P(x),P(x) can be computed by finding the values of wi and σi in Eq. (4.2)

that best fit the upper and lower DKW bands (red dashed-pointed line in Fig. 4.4):

 P(x) ≈ P (x) = fitwi,σi(Fn(x) + ϵ)

P(x) ≈ P (x) = fitwi,σi(Fn(x)− ϵ)
(4.4)

Eq. (4.4) gives the upper and lower bounds on the probability of realisation of a

particular value of the uncertain vector u, but the definition of a set of intervals for

each component of u requires the definition of the range of each component. Eq. (4.2)

suggests that each p-box has infinite support. However, this would lead to an incon-

venient infinite range for variance and miss distance. Instead, in the following a more

practical interval [x, x] is defined such that:

∫ ∞

x
w1N (x1, σ1;x) dx = 0.99,

∫ x

−∞
wnN (xn, σi;x) dx = 0.99, (4.5)

It is important to note that the assumption is that the miss distance and each

component of the covariance can be treated independently. Although this is generally

not the case, the independence assumption in this paper leads to a more conservative

set of focal elements that cover the space of realisations of the uncertainty vector.

Although this can lead to over-conservative decisions, it is deemed to be acceptable in

the case of high-risk events with little available information.
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Figure 4.4: p-box derived from a DKW region. In solid blue the eCDF,
in dashed-green the DKW bands, in dashed-pointed red the p-box, and in
dashed vertical black the 1% and 99% percentiles of the upper and lower
p-box bounds, respectively.

4.2.1 Scaling of the CDMs

The approach described in above assumes that every CDM in a sequence has the same

relative importance and no additional source of information is available to qualify each

individual CDM. However, as the t2TCA decreases, so does the effect of the uncer-

tainty on the true shape of the distribution on the impact plane and the effect of

model uncertainty in the propagation. Fig. 4.5a shows the normalised determinant

of multiple sequences of covariance matrices taken from the database of the Euro-

pean Space Agency’s (ESA) Collision Avoidance Kelvins Challenge [European Space

Agency, 2019, Uriot et al., 2022]. The database contains 13,152 sequences of CDMs

of some of the Low Earth Orbit(LEO) satellites monitored by the ESA’s Space Debris

Office (SDO). The figure shows that one can fit the simple exponential law y∗ = e−3t∗

to the magnitude of the determinant (red thick line in the figure). However, one cannot

simply trust later CDMs due to large uncertainty in each individual sequence. Thus,
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the following fit for each individual sequence is proposed:

y∗ = CeAt∗ +B A,B,C ≥ 0, (4.6a)

y∗ =
∥Σ∥

maxCDMs(∥Σ∥)
(4.6b)

t∗ =
(1−maxCDMs(t2TCA))

(minCDMs(t2TCA)−maxCDMst2TCA)
(4.6c)

Once the parameters A,B and C are fitted to the samples from a given sequence,

the following weight is associated with each CDM in that sequence. This fitting process

is repeated each time a new CDM is added to the sequence.

wCDMi =
1

y∗(t2TCACDMi)
(4.7)

The weight is applied to each sample in the eCDF used to compute the DKW

bounds: the probability mass associated with each sample is re-scaled by a factor

wCDMi . See Fig. 4.6 where the eCDF of µξ for an example with five observations is

shown both with samples equally weighted (dashed red) or having applied the weighting

law described above (blue).

This approach results in a scaling of the probability mass associated with the CDMs

but still allows the quantification of highly uncertain CDMs since there is no filtering

process. The reason is that, with no information on trusted sources or individual CDMs,

one cannot make any assumption on which CDM is more credible.

However, the current version of this method does not account for possible corre-

lation among CDMs in the same sequence. The correlation may be due to using the

same source or the same propagation interval. Correlation may impact the way the

same information is accounted for. On the other hand, the DSt includes the option

of several pieces of information coming from the same source, and giving more cred-

ibility when this information is coherent. Future improvements on this method may

limit the importance (weight) of future CDMs if too correlated with previous ones in

the sequence and not adding additional information (i.e. new observations during the

period).
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(a)

(b)

Figure 4.5: CDMs fitting law: (a) y′ = e−3t′ (thick red line) and the
dimensionless covariance determinant for some sequences of CDMs (thinner
lines), (b) Fitted law (dashed-pointed red) of a single sequence of CDMs
(dashed-pointed black).
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Figure 4.6: eCDF for µξ weighing the samples (blue) and with samples
equally weighted (dashed red).

4.2.2 α-cuts and DSt Structures

Once the p-box is defined, the intervals for each component of the uncertain vector u

are derived from a series of equally spaced α-cuts (light blue and grey dotted horizontal

thin lines in Fig. 4.7). Each α-cut creates interval [He et al., 2015, Chojnacki et al.,

2007]:

[xα, x
α] = {x | F(x) ≥ α} . (4.8)

The intersection with the upper bounds in the p-box defines the lower limit of

the interval, and the intersections with the lower bound define the upper limit of the

interval. The number of intervals is equal to the number of cuts plus one, and the

bpa associated with each interval, assuming the cuts are evenly spaced, is equal to

the inverse of the number of cuts. The intervals and their bpa will define an envelope

around the p-box (blue and black dashed lines in Fig. 4.7). The greater the number

of α-cuts, the closer the envelope will be to the p-box, but the more computationally

expensive the computation of Bel and Pl in the next step.

Once the intervals for the marginals (the uncertain variables) are obtained, the set

of Focal Elements (FE) and the joint bpas can be computed as the Cartesian product

of the intervals of the different variables, as explained in Chapter 3, and from there,
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Figure 4.7: Intervals partition derived from a p-box. In solid blue the
eCDF, in dashed-pointed red the p-box, in thin dotted blue and grey the
alpha-cuts (1 and 7 cuts, respectively), in dashed blue the 2 intervals parti-
tion, in dashed black the 8 intervals partition.

derived the Pl and Bel of PoC ≥ PoC0 with Eq. (3.9), obtaining the representative

curves on the confidence of the value of PoC. Finally, the event of the CDM can be

classified with the criteria in Table 3.7.

Even in this case, the assumption that the variables are independent is main-

tained. Approaches to address dependencies already exist in the literature [Ferson

et al., 2004, Hejduk, 2016], although they are not addressed in this work. The in-

dependence assumption has two implications: i) the uncertainty space U is an outer

approximation of the space of all distributions of u, and ii) some focal elements might

not contain any sample of u. The combination of the two generally leads to over-

conservative results. Thus, in order to have less conservative results, yet coherent with

DSt, a bpa = 0 is assigned to all empty FEs coming from the Cartesian product. The

original bpa of those FEs is evenly distributed to the rest of FEs so that
∑

i bpai = 1.
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Figure 4.8: Joint Body of Evidence with artificially generated FEs (top-left
and bottom-right ones) not containing any sample (black dots).

4.3 Conjunction Data Message epistemic analysis

This section shows a numerical example of the proposed methodology using a real

sequence of CDMs from an ESA’s operated satellite. Initially, the methodology is

presented, extracting the epistemic uncertainty from the sequence and obtaining the

p-boxes and the set of intervals. Then, a sensitivity analysis based on this example is

carried out to show the influence of different parameters on the results. Finally, the

robustness of the approach is shown by adding three poor quality CDMs discarded by

ESA on the real operation during the encounter event analysis.

The sequence analysed consists of a series of 33 CDMs, whose risk increased, ap-

proximating to the PoC threshold set for this mission, although no evasive actions

were finally required on the real scenario (Fig. 4.9a). When observing the geometry

encounter along the whole sequence, it can be seen the great variability presented along
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the series, indicating the event is probably affected by epistemic uncertainty (Fig. 4.9b).

(a)

(b)

Figure 4.9: Sequence of CDMs. (a) Evolution of the PoC in the CDMs.
(b) Uncertain geometry from the series of CDMs.

In order to assess the risk of the event under the DSt approach proposed in the

Chapter 3, the methodology in the previous section is applied. Initially, to obtain the

eCDF of the five uncertain variables (miss distance and covariance matrix components
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in the impact plane), the CDM are weighted according to the aforementioned expo-

nential law. The best-fitted for the evolution of the covariance matrix determinant

(for the whole sequence) follows the law in Eq. (4.6a) with parameters: A = 1.113244,

B = 2.45612646, C = 4.71282852 · 10−18. The fitting law can be seen along with the

determinant from the CDMs in Fig. 4.10a. From the fitting law, the different CDMs

are weighted according to the curve in Fig. 4.10b.

Provided the sequence and the weights of the samples it is possible to define the

eCDF. Once the value of the interval of confidence is decided, it is possible to obtain

the DKW region with Eq. (4.1) and the p-box with Eq. (4.3). Selecting the number of

α-cuts, the Dempster-Shafer structures for each variable are derived. Fig. 4.11 includes

the p-box bounding the eCDF for a value of δ = 0.5 and the intervals for 3 α-cuts per

variable for µξ and σ2ξ .

Finally, the set of intervals and the Pl and Bel curves for the PoC can be derived.

Fig. 4.12 shows the resulting Pl and Bel curves for a 4-intervals partition, resulting

in 1,024 FEs, from which 882 were removed for not containing any sample from the

sequence.

From the figure, it can be seen that values above the PoC threshold receive some

support (Pl > 0 at PoC = PoC0 = 10−4). Note that in this case, the PoC threshold

(purple dotted line) almost corresponds to the maximum value on the sequence and the

value on the last CDM (solid and dashed green lines). However, Bel(PoC0) = 0, and

the separation between the curves is relatively wide, both at the threshold and overall

for the range of values of PoC receiving any support. This indicates that the sequence

is affected by epistemic uncertainty and should be taken into account by the operator

when making a decision based on the PoC value.

Computational time

From the previous steps on the Conjunction Assessment Risk Analysis (CARA), some

of them are more time-consuming than others. Also, there are some stages whose

computational time would depend on the parameters chosen (as will be shown in the

next section). In Table 4.1, the computation time (in seconds) of the study case, overall
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(a)

(b)

Figure 4.10: CDMs weighting law for the whole sequence. (a) Evolution
of covariance determinant (black) and fitting law (red). (b) CDM weighting
versus the time to the TCA.

and broken down into the different steps, is shown. The CARA analysis can be divided

into three main stages: obtaining the eCDF and the DKW bands of the variables, which

includes the weight of the CDMs, deriving the p-boxes for each sample, and compute

the Pl and Bel curves, including the FE dropping. The time to compute the p-boxes is

shown both for the optimisation in Eq. (4.3) and for the approximation using Eq. (4.4).
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(a)

(b)

Figure 4.11: eCDF (solid blue), p-box (solid green) and Dempster-Shafer
structure (pointed-dashed red) from where obtained the intervals for (a) µξ

and (b) σ2
ξ .

The overall time using one approach or the other is also shown in the table. However,

for the rest of this chapter, only the approximated p-boxes were computed.

From the results in the table, it could be possible to identify two main bottlenecks

in the process: the computation of the Pl and Bel curves and the construction of

the p-boxes. When obtaining the Pl and Bel curves, several optimisation problems

have to be solved: for each FE, the minimum and maximum PoC have to be obtained

(which would increase with N5 with the number of interval partitions). Besides, this
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Figure 4.12: Pl and Bel curves for PoC ≥ PoC0 for 4-intervals partition.

Table 4.1: Computational time (in seconds) of the CARA analysis provided
the sequence of CDMs.

Stage Computational time [s]

CARA analysis (optimising/fitting) ∼9635/∼ 194
eCDF and DWK bands ∼ 0.1
CDMs weighting ∼ 0.02

p-boxes (optimising/fitting) ∼9555/∼ 114
Pl and Bel curves ∼ 80

optimisation step considers the constraints set by the given intervals on each of the

variables of interest (miss distance and covariance matrix). The author acknowledges

that optimisation techniques not investigated in this work would potentially accelerate

this step, however, the dependency on the number of uncertain variables and interval

partitions would still influence the required computational time of this step. The other

main expensive step is the computation of the p-boxes. This step has to be repeated

for each of the uncertain variables and requires two optimisation steps, one per each of

the bounds of the p-box. The step is highly sensitive to the number of CDMs in the

sequence. Increasing the number of CDMs brings more conditions to be satisfied in

the optimisation, which has to keep as close as possible to them, but ensure the p-box

remains more conservative than the DKW band. Approximating the p-box with the

fitting of the points considerably reduced the required time, but it is also affected by
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the number of CDMs in the sequence since more points have to be fitted. As in the

case of the Pl and Bel , the author recognises that other optimisation techniques to be

implemented in this work may speed up the process, but the effects on the length of

the sequence would remain. Comparatively, the other steps are quick and are no or less

affected by the number length of the sequence or the number of intervals. In Chapter 8,

some AI-based alternatives to speed up these steps are presented.

4.3.1 Sensitivity analysis

In this section, a sensitivity analysis based on the previous case is carried out. In the

example, some of the parameters defining the analysis are given by the sequence itself

(e.g. the number of samples), but others have to be selected by the operator (e.g. the

number of cuts, the value of the confidence interval, the weighting of the samples). In

the following, some of these parameters are modified to understand the impact on the

construction of the Dempster-Shafer structures and the Pl and Bel curves.

Confidence interval

One of the first parameters set during the analysis was the value of the confidence

interval, 1− δ, containing the actual distribution from where the eCDF was drawn. A

bigger value of 1 − δ would better guarantee the actual CDF is captured within the

DKW bands. However, it will create a wider region that, eventually, would translate

into a broader p-box and bigger intervals, increasing the uncertainty associated with

the event, and thus, the gap between the Pl and Bel curves.

Fig. 4.13 show the Pl and Bel curves for three situations: a 50% confidence interval

(δ = 0.5) in black (the above case), 0.1% confidence interval (δ = 0.999) in red and

99.9% confidence interval (δ = 0.001) in blue. The rest of the parameters are set as

before: 3 α-cuts, removal of the FEs and weighting of the samples with the exponential

law.

As expected, when increasing the confidence interval, the separation between the

curves becomes bigger. Since a bigger confidence interval is associated with a widening

of the region around the eCDF, which has two effects. On the one hand, it will create
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Figure 4.13: Pl and Bel curves for PoC ≥ PoC0 with 4-intervals partition
for three different values of the confident interval: δ=0.001 (red), δ=0.5%
(blue), δ=0.999% (black).

wider p-boxes and bigger intervals (Fig. 4.14) that will include, in general, higher/upper

values of PoC within the FEs. On the other hand, it will be more likely that more FEs

contains samples. The combined result of these effects is a more conservative analysis

(greater values of PoC received higher support) and, at the same time, more uncertainty

affecting the decision (greater Degree of Uncertainty, DoU). Note that in the extreme

case of 100% confidence interval (δ = 0), the DKW region would look as a rectangular

region ranging from 0 to 1 around the extreme values of the series, and the Dempster-

Shafer structure would be that of a single interval. If reducing the confidence interval,

the conclusions are the opposite, bearing in mind that, by definition, it is more likely

to leave the actual CDF out of the bounded region.

Number of α-cuts

The other main parameter to be decided by the operator is the number of α-cuts. Ide-

ally, a number of cuts high enough so that the Dempster-Shafer structure matches the

p-box (or the DKW region) should be ideal since it would not add any further approx-

imations. However, a higher number of α-cuts translates into more FEs (N5, with N

the number of cuts, before removing those without samples) and the computational
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Figure 4.14: eCDF (solid blue) and DKW region (dashed lines) of µξ for
three different values of the confident interval: δ=0.001 (black), δ=0.5%
(green), δ=0.999% (red).

time to obtain the Pl and Bel curves grows accordingly. In the other direction, a lower

number of intervals speed up the next stage but make the decision more conservative.

Note that in the way the intervals are obtained, the Dempster-Shafer structure will be

always more conservative than the p-box (externally bounded it). In the extreme case

of not performing any cut, a single interval with bpa = 1 between the lower and upper

values would be obtained, being extremely over-conservative.

Fig. 4.15 shows the Dempster-Shafer structures approximating the p-box of µξ for

different numbers of α-cuts (a similar behaviour is obtained for the other variables). As

a general rule, the higher the number of cuts, the more similar both regions (p-box and

Dempster-Shafer structure) are. Since the cuts are performed equally distributed along

the vertical axis, there may be situations, especially for the low number of intervals,

where performing one less cut provides a better approximation. This should be avoided

with enough intervals.

When observing to the Pl and Bel curves (Fig. 4.16), the more the number of

cuts, the less uncertainty affecting the event, both because the region is more finely

approximated and because a bigger proportion of FE can be removed. Thus, while

the maximum value receiving support (PoC where Pl = 0) is basically the same inde-

pendently of the partition, the Pl curve is lower (less over-conservative approximation)
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Figure 4.15: eCDF (dashed blue), p-box (dashed-pointed green) and
Dempster-Shafer structure (solid lines) for µξ for different α-cut partitions:
black for one cut, red for three cuts, magenta five cuts, grey for seven cuts.

with more intervals. The Bel curves experiment a similar trend, although less ac-

centuated. Overall, the more the number of cuts, the smaller the DoU and the less

over-conservative results, but the most computationally expensive.

Figure 4.16: Pl and Bel curves for PoC ≥ PoC0 for a different number of
α-cuts per variable: one (black), two (blue), three (red), four (green), five
(magenta), six (yellow), seven (grey).

In Table 4.2, the comparison of the computational time to obtain the Pl and Bel
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curves for different numbers of α-cuts is included. It can be seen the important impact

when increasing the number of intervals. Note that the other stages take a similar

Table 4.2: Computational time of obtaining the Pl and Bel curves (in
seconds) for different values of α-cuts and the percentage of FEs removed.

# α-cuts Computational time [s] FE removed

0 0.25 0.0% - 0 (1)
1 3.5 65.625% - 21 (32)
2 13 88.888% - 216 (243)
3 80 86.132% - 882 (1,024)
4 106 95.840% - 2,995 (3,125)
5 370 93.312% - 7,256 (7,776)
6 330 97.709% - 16,422 (1,6807)
7 860 96.201% - 31,523 (32,768)

computational time as in Table 4.1, which means that the Pl and Bel computation stage

may vary from requiring a negligible computational time (with 1 or 2 α-cuts) to be as

important as the p-box computation (the main contribution on the standard scenario)

or even being by far the main contribution (with more than 5 α-cuts). Be aware also

the fact that the higher the number of cuts, the higher the proportion of FEs removed,

which can create the paradoxical situation a partition requires less computational time

to compute the Pl and Bel curves than a partition with less intervals (the case of 5

and 6 α-cuts).

Number of samples

The number of samples is given by the sequence, so in general, it is not something the

operator will modify. As a rule, all available CDMs should be used (see the robustness

analysis in the next section). However, the number of samples is a parameter appearing

in Eq. (4.1) when computing the separation of the DKW bands, ε. This section analyses

the variation in the number of samples.

However, care should be taken when performing this analysis. For example, if just

taking a section of the sequence (i.e. the second half), the bounds of the variables

would be different, and so the FE limits. Thus, the resulting Pl and Bel analysis

would correspond to a completely different case (even though it refers to the same
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event), since the available information is too different. For this analysis, two different

sequences were considered: one with the whole sequence, as in the standard scenario,

and another with half of the CDMs, with the samples distributed throughout the whole

observation period, keeping the extreme values of the variables.

In Fig. 4.17a, it is shown how a smaller sequence creates wider bands, even though

the confidence interval is set the same, which is the expected result from Eq. (4.1). Since

there are fewer samples, it is more likely to find more distribution that corresponds with

the eCDF, so the region should be wider to include them all. These translate into a more

conservative p-box and wider intervals, which eventually, provide a more conservative

risk assessment, with higher Pl and also a bigger gap between curves, as it can be seen

in Fig. 4.17b.

Another impact of the number of samples is the computational time. The longer the

sequence, the longer it will take to obtain the p-boxes: longer sequences imply longer

sums of Gaussian distributions associated with the samples, thus the optimisation/fit

of the p-box involves more parameters. Bearing in mind that it has to be done for five

variables, the impact on the computational time may be important. Keeping the whole

sequence, with 33 CDMs, the computational time for obtaining the p-box is about 115

seconds, while with half of the CDMs, the computational time for this stage is reduced

to 15 seconds. The rest of the stages required similar computational time with both

sequences.

FE removal

This analysis covers the effect of taking into account the removal of those FEs not

containing any samples with respect to accounting for them all. There are two main

implications: first, the resulting Joint Body of Evidence, and second, the number of

effective FEs, which impacts the computational time of the Pl and Bel curves.

Fig. 4.18 includes these curves for a case with δ = 0.5 and 4 intervals. The black

lines correspond to the case where the FEs are removed (corresponding to the standard

initial case) and the blue lines if no FE is removed. Regarding the conjunction analysis,

it can be seen that not removing the FEs translates into a more conservative approach.
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(a)

(b)

Figure 4.17: Modification on the number of CDMs: whole sequence and
half of the sequence. (a) eCDF and DKW bands: solid blue and solid green
for the whole sequence, dashed red and dashed black for half sequence. (b)
Pl and Bel curves, black for the whole sequence, and blue for half sequence.

Since the Joint Body of Evidence is wider, it may include (as in this encounter) a

combination of miss distance and covariance matrix with a higher PoC, even though

they do not appear in the sequence of CDMs. The removal of those FEs allows a better

adjustment to the provided evidence without violating the theory behind the approach.

Moreover, since the number of FEs is reduced, being the main driver of the Pl and

Bel computation, this step also takes less time if removing the FE (Table 4.3).
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Figure 4.18: Pl and Bel curves for PoC ≥ PoC0 with 4-intervals partition
with (black) and without (blue) removal of FEs not containing any sample.

Table 4.3: Computational time of obtaining the Pl and Bel curves (in
seconds) when removing FEs or not, and the percentage of FEs removed for
different values of α-cuts.

# α-cuts FEs removed Computational time [s]

No removing FEs Removing FEs

1 65.625% 9.5 3.5
2 88.888% 96 13
3 86.132% 490 80
4 95.840% 1690 106
5 93.312% 4270 370
6 97.709% 9600 330
7 96.201% 16665 860

In summary, assigning a bpa = 0 to those FEs not containing samples from the

sequence of CDM make the analysis less over-conservative and faster. Note, the eCDF

and Dempster-Shafer structures are the same in both cases, since the removal of the

FE takes place when combining the intervals, just before computing the Pl and Bel .

Weighting of samples

The last parameter to be studied in this sensitivity analysis is the weight of the samples.

As in the previous case, technically, this is not a parameter to be selected by the
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operator, but an approach to be applied or not, which may affect the final result.

As indicated in the previous section, the CDMs in the sequence are weighted using

Eq. (4.7), which corresponds to the inverse of the best exponential fit of the covariance

matrix determinant evolution. In general, although with exceptions, the determinant

decreases when approaching the encounter (shorter propagation time generates smaller

uncertain ellipses), thus, the later CDMs tends to be assigned more importance than

earlier ones.

Fig. 4.19 shows the eCDF of µξ and σ
2
ξ along with the associated DKW region (with

δ = 0.5) both weighting the samples with the fitting law (blue for the eCDF and green

for the DKW bands) or with equal weights for all samples (red and black, respectively).

For this case where the later CDMs suggest a closer encounter than at the beginning

with less (aleatory) uncertainty, the figures show the eCDF for both variables grows

faster for smaller values if weighing the samples. Note that for different trends, the

relative position of the eCDF and the DKW bands may be different. Nevertheless, the

important aspect is the potential impact of weighting the samples. In this example, the

fact that the blue eCDF grows faster means that when performing the α-cuts, more

relative weight will be assigned to the smaller values and the intervals will be smaller

for the lower range of the variable. When computing the Pl and Bel , this means that

values of PoC associated with those smaller µξ and σ2ξ (values of PoC on the higher

range) will have greater support, as seen in Fig. 4.20, where the Pl and Bel curves

when weighting the samples (black) are slightly above the curves when samples are not

weighted (blue).

The impact on the computational time of weighing the samples is negligible, with

values around a hundredth of a second.

4.3.2 Robustness

This section illustrated the robustness of the approach when poor quality CDMs is

received in the middle of the sequence. In the previous examples, 3 CDMs appearing

in the actual sequence were filtered out for the analysis due to the clear deviation from
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(a)

(b)

Figure 4.19: eCDF and DKW bands weighting the samples (solid blue and
dashed green, respectively) and not weighting them (dashed red and dashed
black, respectively). (a) µξ and (b) σ2

ξ .

the previous trend, which indicated the operators their bad quality [Sanvido, 2023].

The miss distance was clearly off compared to the previous ones, generating a null PoC

for those cases. After them, the new CDMs received were in line again with the general

trend in miss-distance, covariance matrix and PoC values.

However, this action, based on the knowledge and experience of the operator, does

not follow a formal procedure. Moreover, if a decision on how to deal with the event

had to be made when at the time of that bad quality CDMs arrived, the actual decision
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Figure 4.20: Pl and Bel curves for PoC ≥ PoC0 with 4-intervals partition
with (black) and without (blue) weighing the CDMs.

might have been wrong or presented an important lack of knowledge.

By using the proposed epistemic approach, these offset samples are naturally inte-

grated into the process. Thus, if they play an important role in the risk of the event,

an increase in the uncertainty on the value of the PoC should be noted, otherwise,

the system will be robust enough to consider these pieces of information not reliable

enough. This is the reason the epistemic approach proposed here is also referred to as

robust.

The actual sequence of CDM is presented in Fig. 4.21, where the PoC evolution

and the uncertain geometry are shown. The three poor quality CDMs can be clearly

identified.

In Fig. 4.22, the eCDF for µξ and σ2ξ of both situations (with and without the

poor quality CDMs) is presented along with the associated p-box with δ = 0.5. It is

highlighted in the figure where the poor quality CDMs fall. While the covariance value

is within the expected range (both p-boxes mainly overlap each other), the discrepancy

appears in the miss distance (poorer overlapping between both p-boxes).

Performing the risk assessment analysis with 3 α-cuts per variable, after having

received the whole sequence, the Pl and Bel for the PoC can be obtained, as shown

in Fig. 4.23. Despite the difference in the Dempster-Shafer structures for the miss
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(a)

(b)

Figure 4.21: Sequence of CDMs, including the poor quality ones. (a)
Evolution of the PoC in the CDMs. (b) Uncertain geometry from the series
of CDMs.
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(a)

(b)

Figure 4.22: Dempster-Shafer structures with and without poor-quality
CDMs, eCDF in solid blue and dashed red, DKW in solid green and dashed
black, respectively. (a) µξ, (b) σ

2
ξ . Orange circle highlighting the region with

the poor-quality CDMs.

distance, the method is robust enough not to be biased by those values. It can be

seen that the Pl follows a very similar trend in both cases. The Bel presents a slightly

different trend, associated with more conflict between samples and, thus, a greater

DoU. However, although for low values of PoC, the support is slightly lower, for the

values of interest (around the risk threshold), both trends are similar.

These results indicate that, although there is some impact in the support for low
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Figure 4.23: Pl and Bel curves for PoC ≥ PoC0 for 4-intervals partition
accounting for the poor quality CDMs. Black, only good quality CDMs;
blue, including the poor quality CDMs.

values of the PoC, given all the great amount of evidence from the good quality CDMs,

the impact of the low-quality ones is diluted in the final results. Although, in the

end, directly discarding the bad-quality CDMs provided a similar outcome, the current

analysis shows that the proposed method (objective reasoning) is robust enough to

reach the same conclusions without relying on the knowledge and expertise of the

operator (subjective decision).

4.4 Chapter summary

This chapter proposed a methodology to model the epistemic uncertainty associated

with the sequences of CDMs to integrate these pieces of information with the evidence-

based conjunction risk assessment framework proposed in the previous chapter.

The key working assumption was that the value of the miss distance and covariance

matrix in each CDM were drawn from a set of unknown distributions. Thus, using

statistical tools such as the eCDF and the DKW inequality to derive the Dempster-

Shafer structures of the uncertain variables defining the encounter geometry. From

these structures, it is possible to extract the intervals and compute the Pl and Bel

required to robustly assess the risk of the event.
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The chapter is completed with an example based on a real sequence of CDM and a

sensitivity analysis of the different parameters involved in the methodology, with special

attention to the confidence interval bounding the region containing the underlying

distribution and the number of evidence intervals defining the uncertain geometry.

Finally, the robustness of the method was shown with the addition of three poor quality

CDMs to the aforementioned sequence.

This methodology will be tested on databases of real CDMs in Chapter 7 of Part II.
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Chapter 5

Robust collision avoidance

manoeuvres

The content of this chapter was partially published in:

Sánchez, L. and Vasile, M. (2020), “AI for autonomous CAM execution”,

71st International Astronautical Congress, The Cyber Space

Edition; [Sánchez and Vasile, 2020a]

Sánchez, L. and Vasile, M. (2022), “Intelligent agent for decision-making

support and collision avoidance manoeuvre design on Space Traffic

Management”, Advances in Space Research, in press. [Sánchez and Vasile,

2023]

This chapter introduces a methodology to compute robust Collision Avoidance Ma-

noeuvre (CAMs), both in the impulsive and the Low-Thrust (LT) scenarios. When

performing a robust conjunction risk assessment, not only aleatory uncertainty should

be considered in the analysis, but also epistemic uncertainty. If the output of the

evidence-based decision-making process suggests a manoeuvre should be implemented,

to be coherent this manoeuvre should account for all types of uncertainty. However,

computing the optimal CAM as the manoeuvre that minimises the Probability of Colli-

sion (PoC) based only on the nominal values of uncertainty leaves aside the uncertainty

on the uncertainty, that is, the lack of knowledge on the position, sensors, data process-

ing steps or dynamic models. This chapter first introduces a linear model to compute
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the effect of a manoeuvre in the impact plane, and then extends the Dempster-Shafer

theory of Evidence (DSt)-based framework to the computation of robust optimal CAMs.

The rest of the chapter is structured as follows. First, the linear model to obtain the

effect of an impulsive manoeuvre on the relative position at the encounter is presented

in Section 5.1. Then, the method to compute robust optimal manoeuvres accounting

for epistemic and aleatory uncertainty is presented: in Section 5.2 for the impulsive

case and in Section 5.3 for the LT scenario. Finally, Section 5.4 presents a numerical

case validating the linear model and showing the behaviour of the robust optimal CAM

algorithms. Section 5.5 concludes the chapter.

5.1 Linear model for impulsive manoeuvres

This section presents a model to fast compute the effect of a CAM in the relative

position of two objects. The approach proposes a linear model to relate variations in

velocity with modifications in position, derived from asteroid deflection works [Vasile

and Colombo, 2008]. More specifically, the model computes the effect on the impact

plane of an impulsive manoeuvre performed by a satellite (target or primary object)

involved in a close encounter to avoid another object (chaser or secondary object), as

illustrated in Fig. 5.1.

Given a manoeuvre δvtnh at time tm, the corresponding variation of position δxb

at the encounter time tc on the impact plane (or b-plane) is:

δxb = [δξ δη δζ]T = Tδvtnh = BA(tm, tc)Gδvtnh. (5.1)

The matrix T, relating the impulse with the position change in the impact plane,

is the product of three matrices: G, A(tm, tc) and B. The first of these three matrices,

G, relates the impulse δvtnh = [δvt, δvn, δvh] expressed in the spacecraft’s centred tan-

gential, normal, out-of-plane reference frame <T,N,H>, with the instantaneous change

on Keplerian elements δk = [δa, δe, δi, δΩ, δω, δMtm ]:

δk(tm) = Gδv, (5.2)
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Figure 5.1: General configuration of a space encounter.Two orbits in a
collision path (blue and green) and the modified orbit due to a CAM (purple).

where matrixG is expressed in Eq. (5.3), with subscript “m” referring to the manoeuvre

position/time, being b = a
√
1− e2 the semi-minor axis, p = b2/a the semi-latus rectum,

h = nab the specific angular momentum, n =
√
µ/a3 the mean motion, u = ω + θ the

argument of latitude, with θ the true anomaly, rm and vm the satellite’s unperturbed

position and velocity at the manoeuvre position, and µ the Earth gravitational constant.

G =



2a2vm
µ 0 0

2(e+cos θm)
vm

− rm
avm

sin θm 0

0 0 rm cosum
h

0 0 rm sinum
h sin i

2
evm

sin θm
2e+(rm/a)

evm
cos θm − rm sinum cos i

h sin i

− 2b
eavm

(
1 + e2rm

p

)
sin θm − b

eavm
rm
a cos θm 0


(5.3)

The matrix At(tm, tc) propagates the effect of the impulse to the encounter time,

relating the change on orbital parameters at tm with the change in position at encounter
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time, δrrth(tc), expressed in the satellite’s <R,T,H> reference frame:

δrrth(tc) = At(tm, tc)δk(tm), (5.4)

with At(tm, tc) expressed in Eq. (5.5), where the subscript “c” refers to the encounter

time or Time of Closes Approach (TCA) and ∆t = tc − tm is the elapsed time between

the manoeuvre execution and the encounter.

At
T =



rc
a − 3e sin θc

2(1−e2)

√
µ

a
3
2
∆t − 3rc

2(
√
1−e2)3

(1 + e cos θc)
2
√
µ

a
5
2
∆t 0

−a cos θc rc sin θc
1−e2

(2 + e cos θc) 0

0 0 rc sinuc

0 rc cos i −rc cosuc sin i

0 rc 0

ae sin θc√
1−e2

rc
(
√
1−e2)3

(1 + e cos θm)2 0


(5.5)

Note that the variation in mean anomaly, δM , is made of two terms: δMtm and

δMn. The first term comes from the change in mean anomaly due to the manoeuvre

and it is equal to:

δMtm = − b

eavm

[
2

(
1 +

e2rm
p

)
sin θmδvt +

rm
a

cos θmδvn

]
, (5.6)

and is already included in G. The second term refers to the delay at TCA due to the

change in the semi-major axis, Eq. (5.7), and it is included in At after approximate

with Eq. (5.8).

δn =

√
µ

a3
−
√

µ

(a+ δa)3
(5.7)

δMn = δn∆t ≈ −3

2

√
µ

a
5
2

∆tδa (5.8)

Finally, matrix B is the rotation matrix between the satellite’s <R,T,H> reference

frame and the impact plane reference frame, <ξ,η,ζ>, centred at the chaser (secondary)
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object, expressed as:

η̂ =
v1 − v2

∥v1 − v2∥
, ξ̂ =

v2 × η

∥v2 × η∥
, ζ̂ = ξ̂ × η̂, (5.9)

where v1 is the target’s velocity vector and v2 the chaser’s velocity vector. Fig. 5.2

illustrate the impact plane geometry, with the objects’ orbits in blue and green, the

impact plane and its reference frame in purple and the relative velocity in orange.

Figure 5.2: Impact plane of the encounter centred at the secondary object.

Thus, the deflection on the impact plane due to the position change originated by

the impulse can be expressed as:

δxb = [δξ δη δζ]T =
[
ξ̂ η̂ ζ̂

]T
δrrth = Bδrrth, (5.10)

Once the model to compute the effect of a manoeuvre was introduced, an optimal

CAM can be computed to avoid a close encounter. In the rest of the chapter, a method

to compute the optimal CAM accounting for aleatory and epistemic uncertainty is

presented.
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5.2 Robust optimal impulsive avoidance manoeuvre

In this section, a method to compute robust optimal manoeuvres using the linear model

introduced in the previous section is presented. While an optimal manoeuvre would

minimise the PoC given by the aleatory uncertainty on the object’s position, the robust

optimal CAM proposed in this section will minimise the PoC of the worst-case ellipse

within the families of ellipses obtained from the DSt framework introduced in previous

chapters.

The assumption is that, in the limit of the linear model, the ellipsoid of uncertainty

translates rigidly without deforming or rotating. This is not true in general and rep-

resents an approximation introduced by our method. This is added to the other two

assumptions used along the chapter to compute optimal CAMs: the first one is the

Keplerian motion, implicitly considered on the linear model, although perturbations

have a minor impact on this context [Bombardelli and Hernando-Ayuso, 2015]; the sec-

ond one is the fast encounter hypothesis, which include the modelling of the aleatory

uncertainty as a Gaussian distribution, although as indicated in Chapter 3, the robust

framework is not limited to the method to compute the PoC. Finally, for the scope of

this work, the manoeuvre is assumed to introduce negligible uncertainty, although the

method could cope with this source of information without requiring any modification.

5.2.1 Optimisation of impulsive manoeuvres: aleatory uncertainty

First, the method to compute the optimal CAM only under aleatory uncertainty using

the linear model introduced in the previous section is presented. An optimal CAM is

a manoeuvre that reduces the risk of collision in a given encounter.

Defining µb0 = [µξ0, 0, µζ0]
T as the unmodified (no CAM) relative position between

two objects projected in the impact plane and being Σb the combined position covari-

ance matrix expressed in the same reference frame, the optimal CAM will be computed

by minimising the PoC, which is computed using Eq. (3.1) in Chapter 3. the combined

covariance matrix is the sum of both object’s position covariance matrices projected on

the impact plane: Σb = Σb,1 +Σb,2.
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Under the assumptions that the CAM does not introduce further uncertainty and

only rigidly translates the uncertainty ellipse on the impact plane, the relative position

of the modified orbit will present the same covariance matrix Σb, while the relative

position after the manoeuvre will be equal to:

µb = µb0 + δxb, (5.11)

with δxb the manoeuvre deflection given by Eq. (5.1).

From Eq. (3.1), the miss distance, µb, is the two-component vector equal to the first

and third components of µb, and the [2 × 2] position covariance matrix in the impact

plane is equal to:

Σb = Σb,[1,3],[1,3] =

 σ2ξ σξζ

σξζ σ2ζ

 . (5.12)

Eq. (3.1) assumes that the area of the secondary object on the impact plane is

the combined radial envelope of the areas of both objects (Hard Body Radius, HBR)

projected on the plane, while the combined uncertainty projected on the impact plane

is associated with the primary object and centred in µb. Under the assumption that the

manoeuvre does not change the shape of the covariance, Eq. (3.1) would be equivalent

to placing the HBR centred in µb and the combined ellipse of uncertainty centred at

(0,0) on the impact plane.

Then, in order to minimise the PoC, one needs to solve the following maximisation

problem [Bombardelli and Hernando-Ayuso, 2015]:

 maxδvtnh

(
δvT

tnhT δvtnh + 2µb,0Σ
−1
b QTδvtnh

)
subject to ||δvtnh|| ≤ δv0

, (5.13)

being δv0 the maximum capacity of the thruster and where

T = QTTΣ
−1
b TQ (5.14)
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and

Q =


1 0 0

0 0 0

0 0 1

 (5.15)

However, if the magnitude of the manoeuvre is set constant and equal to δv0, the

following simplified problem has to be solved instead: maxδvtnh

(
δvT

tnhT δvtnh

)
s.t. µb ·Tδvtnh > 0

, (5.16)

whose solution δvopt is the vector parallel to the eigenvector s1 conjugate to the maxi-

mum eigenvalue of the matrix T , with magnitude δv0:

δvopt = δv0s1 (5.17)

5.2.2 Optimisation of impulsive manoeuvres: epistemic uncertainty

When the miss distance µb or the covariance matrix Σb are not precisely known,

the PoC is computed accounting for a degree of uncertainty. This uncertainty is epis-

temic in nature and can come from a lack of knowledge of the system dynamics, the

distribution of measurements, the sensor, the propagation method, and the observa-

tion data as shown in previous chapters. For the development of the robust optimal

CAM methodology, all these sources of uncertainty are assumed to concur to define

the epistemic uncertainty in covariance and miss distance but without entering into the

detail of the origin of the lack of knowledge. In this work, as shown in Chapter 3, this

epistemic uncertainty can be modelled with DSt [Shafer, 1976].

The idea is to use DSt to compute the level of confidence in the correctness of the

value of the PoC, given the available evidence on the sources of information. Each

component of the covariance, [σ2ξ , σ
2
ζ , σξζ ], is modelled with one or more intervals and

so is the mean value of the relative position [µξ, µζ ]. Those intervals can be derived,
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for example, from a time series of CDMs (Chapter 4) or directly from the raw obser-

vations.Thus, covariance and miss distance could not be modelled with a crisp value

or with a single specific distribution. Instead, the Plausibility (Pl) and Belief (Bel)

on the value of PoC should be computed, as explained in Chapter 3. Based on this

framework, it is possible to compute robust optimal CAMs accounting for both aleatory

and epistemic uncertainty.

According to this approach, when epistemic uncertainty is considered, the relative

encounter geometry is not defined by a single ellipsoid but by families of ellipsoids

corresponding to the families of covariances and mean values. Thus, instead of having

a single uncertain ellipse on the impact plane, one has to consider families of uncertain

ellipses, each of which has to be displaced by a manoeuvre. This means that an optimal

and robust manoeuvre displaces all the ellipses at once.

The presence of families of ellipses means that the optimal CAM has to be able to

minimise the PoC corresponding to the worst-case ellipse, which is the uncertain ellipse

leading to the highest value of the PoC. Thus, the minimisation problem presented in

Eqs. (5.13) and (5.16) needs to be reformulated into the following min-max problem:

 minδvtnh
maxu∈Υ PoC

s.t. µb · δvtnh > 0
, (5.18)

which has to be solved over the whole set of Focal Elements (FEs). Eq. (5.18) is a

constrained robust optimisation problem where the optimal manoeuvre reduces the

highest risk of a collision over the whole set of ellipses.

Similarly to what was proposed in [Filippi and Vasile, 2019] for the solution of

general min-max optimisation problems, an iterative process is proposed. First, for

each FE, the value of the uncertain vector u that gives the highest PoC is computed.

From there, the matrix S = Σ−1
fe1

+ Σ−1
fe2

+ ... given by the sum of all the worst-

case ellipses for all FEs is built. From S it is possible to compute T with Eq. (5.14)

and then use Eq. (5.17) to compute the manoeuvre. Since the implementation of a

manoeuvre displaces all the ellipses, the process has to be repeated until convergence

of the optimised worst-case PoC value. The pseudo-code of the min-max algorithm can
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be found in Algorithm C.1 in Appendix C.

5.2.3 Impulse magnitude optimisation

Up to this point, the optimisation of the manoeuvre assumed a constant magnitude, δv0.

However, this can lead to situations where the correction of the orbit is overestimated,

with a reduction of the PoC several orders of magnitude below the minimum safety

threshold considered by the operator. In such situations, a smaller impulse could

reduce the risk to acceptable levels without an excessive cost of the manoeuvre, as long

as the thrust can be adjusted by the spacecraft.

Assuming the maximum capacity of the thruster is defined by δv0, the optimum

value of the magnitude will be the minimum one that allows reducing the worst-case

scenario PoC below the selected threshold, PoC0: min ∥δvtnh∥

s.t. PoC < PoC0

, (5.19)

Once the optimal direction is computed with Eq. (5.17), the minimum δv can be

simply derived from the solution of Eq. (5.19). However, since the magnitude of the

impulse affects the deflection of the orbit and, subsequently, the worst-case scenario,

the optimal magnitude computation has to be integrated within the min-max optimi-

sation algorithm. Algorithm C.2 in Appendix C summarises the process: an outer loop

computes the manoeuvre direction at constant magnitude; after computing the optimal

direction, dopt, with Eq. (5.17), the new worst-case ellipse is computed; if PoC < PoC0

an inner loop reduces the magnitude of the impulse with a simple bisection method till

PoC = PoC0, recalculating the worst-case ellipse at each iteration of the inner loop

until convergence.

5.3 Low-Thrust robust optimal avoidance manoeuvre

In this section, the previous method is extended to compute robust optimal manoeuvre

using LT propulsion. The process is divided into two steps, illustrated in Fig. 5.3. First,

a LT arc is defined (thin black) and the middle point of the arc is selected. At the
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middle point of the arc, θm, Algorithm C.2 is used to compute an approximation of the

optimal direction of the thrust along the arc (red). Then, the approximated optimal

thrust direction is applied to the whole arc with constant thrust acceleration ε (green).

Figure 5.3: CAM strategy for the LT scenario, with burning time between
θm0 and θmf , thrust magnitude ϵ and direction α, and the encounter at θc.

With the arc-length, the initial arc angular position with respect to the encounter,

the thrust magnitude and the direction of the manoeuvre, the analytical solution im-

plemented in FABLE [Di Carlo et al., 2018,Zuiani and Vasile, 2014] is used to compute

the effect of the manoeuvre on the impact plane. FABLE, Fast Analytical Boundary-

Value Low-Thrust Estimator, is a toolbox developed at the University of Strathclyde’s

Aerospace Centre of Excellence (ACE) that allows analytically propagating low thrust

orbits. Given the direction and the magnitude of the thrust, FABLE computes the

variation of the orbital elements along the thrust arc. The calculation is done in non-

singular equinoctial elements E = [a, P1, P2, Q1, Q2, L] by solving Gauss’s planetary

equations [Zuiani and Vasile, 2014]:

dE

dL
= εF (E, L, α, β) , (5.20)
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under the assumption that the thrust is small compared to the magnitude of the local

gravity field. L = Ω + ω + θ is the true longitude, where θ is the true anomaly,

ω the argument of the pericentre and Ω the right ascension of the ascending node.

In Eq. (5.20), α and β are the LT direction angles in the <R,T,H> reference frame

attached to the spacecraft so that the acceleration vector is defined as:

er = ε cosβ cosα (5.21a)

et = ε cosβ sinα , (5.21b)

eh = ε sinβ (5.21c)

If E0 is the set of orbital elements at the start of the thrust arc, an approximation

of the value of the orbital elements at the end of the arc can be computed with the

first-order expansion:

E = E0 + εE1 +O(ε2) =



a0 + εa1

P10 + εP11

P20 + εP21

Q10 + εQ11

Q20 + εQ21


+O(ε2) (5.22)

Substituting in Eq. (5.20) and taking only terms up to first order, it is possible to

obtain: 
dE0
dL = 0

εdE1
dL = εF (E0, L, α, β)

. (5.23)

Thus, the first-order term of the expansion is:

E1 =

∫ Lmf

Lm0

F (E0,L, α, β) dL (5.24)

Once the new orbital elements at the end of the thrust arc are available, FABLE

is used to propagate a coast-arc (ε = 0) with the variated trajectory from the end

of the manoeuvre to the nominal TCA (where the impact plane is defined) under the
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simplifying assumption that the manoeuvre and orbit perturbations do not modify

the shape of the ellipsoid of uncertainty (note that this is analogous to taking only the

first two statistical moments in a full nonlinear propagation of uncertainty). Under this

simplifying assumption, the LT manoeuvre, as the impulsive one, produces a translation

of the uncertain ellipse on the impact plane by the quantity:

δxb = µb,LT − µb,0. (5.25)

from where the PoC can be obtained. Algorithm C.3 in Appendix C summarises the

LT CAM optimisation.

5.3.1 Magnitude and arc-length optimisation

The previous algorithm started from the assumption that one knows the magnitude of

the thrust acceleration and the length of the thrust arc. However, the optimal value of

these two parameters is not known a priori. Thus, an iterative process starting from a

first guess is presented below to find the optimal values.

Once the optimal direction, dopt, is available for a fixed magnitude and arc-length,

one can look for the optimal magnitude, the optimal arc-length or both by iterating

the following process:

• Keeping the thrust-arc length constant (∆L = Lmf − Lm0 = Lc − Lm0), the

acceleration magnitude is modified so that PoC < PoC0 and ε is minimal. Thus,

similar to the impulsive case, the magnitude is reduced until PoC = PoC0 and ε >

0. Algorithm C.4 in Appendix C includes the pseudo-code of this optimisation.

• Keeping the acceleration magnitude and direction constant, the arc-length is re-

duced. In this case, the mid-point of the arc is kept fixed, and with a bisection

method, the arc size is reduced until PoC = PoC0 and ∆θ > 0. Algorithm C.5

in Appendix C summarises this optimisation.

Note that in the remainder of the chapter, either the magnitude or the arc-length are

optimised. The simultaneous optimisation of both is, of course, possible but in this

work, the attention was limited to the effect of each individual optimisation.
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5.4 Numerical scenarios

In this section, the robust CAM optimisation method is tested on different scenarios.

Initially, the linear model is tested, accounting only for aleatory uncertainty. Then,

epistemic uncertainty is also included in the example, to compute the robust optimal

CAM in both impulsive and LT scenarios.

5.4.1 Impulsive CAM: minimisation of the PoC under aleatory un-

certainty

In this example, a numerical case is presented to show the validity of the linear CAM

model in Eq. (5.1). Only aleatory uncertainty is considered in this case, thus the

computation of an optimal CAM reduces to problem Eq. (5.17) for a given covariance

matrix. The magnitude of the impulse is kept constant and equal to δv0 = 10 cm/s.

Table 5.1 includes the reference orbital parameters at the encounter time of both

objects and Table 5.2 the diagonal Keplerian elements covariance matrix, D, for the

piece of debris (the secondary object), assumed diagonal. The manoeuvrable object

(the primary) is assumed to be perfectly known, thus, no covariance matrix associated

with it is required. The HBR of the combined objects is 10 m. The miss distance

on the impact plane before the CAM is µb,0 = [−0.143, 0.0, 0.494]T km, and the PoC,

computed with Eq. (3.1), before CAM execution is PoC = 9.898 · 10−6.

Table 5.1: Primary and secondary objects’ nominal Keplerian elements at
encounter time.

Variable Units Object 1 Object 2

Semimajor axis (a) [km] 7,006.794 6,292.553
Eccentricity (e) - 5.5·10−4 0.6684
Inclination (i) [rad] 1.3321 2.0291
Right ascension of the ascending node (Ω) [rad] 0.1537 6.1208
Argument of perigee (ω) [rad] 0.0571 3.4077
True anomaly (θ) [rad] 5.8100 2.4224

In order to validate the solution coming from the linear model in Eq. (5.16) a trivial

grid search on the impulse angles ϕ, ψ in Eq. (5.26) is used to find a close to optimal pair
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Table 5.2: Secondary object’s covariance matrix (assumed diagonal) on the
Keplerian elements at encounter time.

Variable Units Object 2

σ2a [km2] 1.54·10−3

σ2ecc - 7.24·10−9

σ2inc [rad2] 4.925·10−7

σ2Ω [rad2] 0
σ2ω [rad2] 0
σ2θ [rad2] 0

of angles. The direction of the impulse can be defined by the two angles ϕ ∈ [−π, π] and

ψ ∈ [−π/2, π/2], as shown in Fig. 5.4. The relation between [ϕ, ψ] and the components

on the <T,N,H> reference frame is:

ϕ = arctan
(
(v1 × δvtnh) · ĥ1,v1 · δvtnh

)
(5.26a)

ψ = arctan

[
(δvtnh · ĥ1)∥δvtnh × ĥ1∥
δv2 − (δvtnh · ĥ1)2

]
(5.26b)

For each pair of angles, the PoC at the encounter after the impulse is computed. For

Figure 5.4: Manoeuvre geometry, with orbit in blue, manoeuvre in orange
and manoeuvre angles in red.
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Figure 5.5: Components of the unit vector δv̂opt = [δv̂t δv̂n δv̂h] par-
allel to the optimum impulse, δvopt, as a function of the angular difference
between manoeuvre and encounter, ∆θ = θc − θm. Black, using the linear
model; red, using the grid search.

each θm, the optimal direction is chosen as the pair of angles providing the minimum

PoC.

Fig. 5.5 shows the components of the direction of the optimal impulse vector in

the primary object’s <T,N,H> reference frame, δv̂opt, applied to the primary object

as a function of the angular distance between the manoeuvre and encounter positions,

∆θ = θc − θm. The results that optimise the PoC at each manoeuvre position θm

obtained with the linear model appear in black, and the results from the grid search

are in red. The figure shows the good agreement between both values for all the

components, with only slightly greater differences for late manoeuvres (small ∆θ).

Table 5.3 includes the Root Mean Squared Error (RMSE) and the Maximum Ab-

solute Error (MAE) of each component of δv̂opt computed with the linear model with

respect to the grid search value.

Table 5.3: Linear model errors with respect to the grid search value for the
unit vector, δv̂opt, parallel to the direction of the optimal impulse, δvopt.

Variable RMSE MAE

δv̂t 5.434·10−2 5.792·10−2

δv̂n 4.244·10−2 5.512·10−2

δv̂h 2.619·10−3 7.039·10−2
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5.4.2 Impulsive CAM: minimisation of the PoC under epistemic un-

certainty

In this section, a scenario in which the miss distance and the covariance are affected by

epistemic uncertainty is considered. This can be the case in which multiple Conjunc-

tion Data Messages (CDMs) are in conflict (Chapter 4) or correspond to an unknown

distribution of covariance matrices (Chapter 3). In this scenario, the CAM needs to

be robust enough to cope with the distribution of the covariance matrices and optimal

at the same time. Two cases are analysed: one with a non-optimal impulse magnitude

and one with an optimised magnitude.

In Table 5.4, the exact orbital elements at initial time t0 of both objects are shown.

The primary object, which is the manoeuvrable one, is assumed to be perfectly known.

The knowledge of the orbit of the secondary object is affected by aleatory and epistemic

uncertainty. The HBR of the combined objects is 10 m. Assuming Keplerian motion,

the close approach occurs at the perigee of both objects (θ1 = θ2 = 0 rad) one and a

quarter revolutions after t0.

Table 5.4: Initial Keplerian elements of both objects for the optimal robust
CAM under aleatory and epistemic uncertainty.

Variable Units Object 1 Object 2

Semimajor axis (a) [km] 7,100 7,100.5
Eccentricity (e) - 10−5 10−5

Inclination (i) [rad] π/4 2/3π
Right ascension of the ascending node (Ω) [rad] 0.0 0.0
Argument of perigee (ω) [rad] 0.0 0.0
True anomaly (θ) [rad] 4.7148 4.7148

The uncertainty is introduced on the secondary object’s initial position in its<T,N,H>

reference frame. The aleatory uncertainty is modelled as a 3D-Gaussian distribution,

with mean µtnh0 and covariance matrix Σtnh0 (see Fig. 5.6).

The epistemic uncertainty is modelled with interval-valued parameters that modify

the Gaussian distribution (Fig. 5.7). Thus, the epistemic parameter λµ defines the

variability of the mean value, while the epistemic parameter λσ, scales the covariance

matrix. Note, the factor λ does not displace/scale the single value defined by the
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Figure 5.6: Secondary object’s position ellipsoid of uncertainty at the ini-
tial epoch. Thick green line: trajectory; orange arrow: position vector; black
arrow: velocity vector; green thin line: ellipsoid.

aleatory uncertainty but defines a family of ellipsoids compatible with the epistemic set.

As a consequence, the single well-defined initial position uncertain ellipsoid becomes

the family of ellipsoids:

xtnh = N (µtnh0 ,Σtnh0 ;λ), (5.27)

with λ = [λµ,λσ] and

µtnh = µtnh0 + λµ

Σtnh =


σ2t0λσt 0 0

0 σ2n0λσn 0

0 0 σ2h0λσh

, (5.28)

It is assumed that two independent sources of information are available. Each source

of information provides one interval for each of the epistemic parameters λµ and λσ.

The intervals provided by each source are assumed to be completely disjoint and each

epistemic parameter can belong to the interval provided by the corresponding source

of information.

Table 5.5 includes the initial expected value, µtnh0 , and diagonal covariance matrix,

Robust AI for STM Luis Sánchez Fernández-Mellado 128



Chapter 5. Robust collision avoidance manoeuvres

Figure 5.7: Representation of the effect of the epistemic parameter λ. Pur-
ple: aleatory uncertainty ellipsoid. Pink arrows: compatible displacements
due to λµ. Compatible ellipsoid shrink/augmentation due to λσ.

Σtnh0 , for the secondary object’s initial position modelling the aleatory uncertainty. It

also includes the epistemic parameters that define the family of ellipsoids for each

source. The first source of information supports the hypothesis that the position is

closer to the nominal expected value (less than 10 m off the nominal position) and

is compatible with covariance matrices scaled up to 4 times. The other source of

information supports the hypothesis that the miss distance is further away (around 500

m from the nominal position) and is compatible with covariance matrices shrunk by a

factor between 2 and 5.

The uncertainty is expressed in an Earth-Centred Inertial reference frame and prop-

agated to the nominal encounter time. The propagation is carried out by sampling the

initial ellipsoids defined by each source and propagating each sample to the nominal

TCA. Finally, the uncertainty is projected onto the impact plane centred at the sec-

ondary object with Eq. (5.9). Since the independence of the sources is assumed, the

projection on the impact plane corresponds to two families of uncertain ellipses (see

Fig. 5.8), defined by the intervals in Table 5.6. The PoC accounting for epistemic un-
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Table 5.5: Secondary object’s position initial uncertainty. The aleatory
uncertainty is modelled with a multivariate Normal distribution, while the
epistemic uncertainty is modelled with the interval-valued parameter λ.

Aleatory uncertainty

µtnh0 [km] [0, 0, 0]
σ2t0 [km2] 0.252

σ2n0 [km2] 0.252

σ2h0 [km2] 0.252

Epistemic uncertainty Source 1 Source 2

λµt = λµn = λµh
[km] [0.00, 0.01] [-0.53, -0.515]

λσt = λσn = λσh
[1,4] [1/5, 1/2]

certainty varies then in the intervals [10−21, 9.1·10−3] and [10−39, 1.5·10−8] for Source 1

and Source 2, respectively, when taken independently. If one was considering one single

enveloping ellipsoid, assuming both sources are equally reliable (as for the non-epistemic

case in Chapter 3), the PoC would be 2.571 · 10−5. When the intervals provided by the

two sources are combined using the mixing rule, the epistemic uncertainty space U is

composed of 32 FEs coming from the Cartesian product of two intervals for each of the

5 uncertain parameters defining the mean value and covariance matrix. The CAM has

to be optimal for every value of mean and covariance in each focal element.

Table 5.6: Bounds of the sources’ intervals for the uncertain variables on
the impact plane.

Variable Units Source 1 Source 2

µξ [km] [0.406, 0.572, ] [0.338, 0.380]
µζ [km] [-0.842, 0.625] [2.708, 2.998]
σ2ξ [km2] [0.0316, 0.312] [0.931, 5.611]·10−3

σ2ζ [km2] [1.452, 20.12] [0.3298, 0.0480]

σξζ [km2] [0.180 , 2.422]·10−2 [0.498, 3.962]·10−2

In the following figures, the optimal manoeuvre was computed at each quarter

of orbit for the 12 revolutions before the TCA. Fig. 5.9 shows the evolution of the

components of the unit vector parallel to the optimal impulse, δv̂, as a function of

the angular distance from the TCA, ∆θ = θc − θm, for both cases: with and without

optimisation of the impulse magnitude. For these examples, both strategies present the
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Figure 5.8: Encounter geometry at the impact plane with two sources of
information providing uncertain (aleatory and epistemic) information. Red
triangle: nominal position. Blue and green: samples and ellipses of Source
1 and Source 2, respectively. Orange: HBR.

same optimal direction at all manoeuvre positions, which tends to a tangential impulse.

They differ, however, in the value of the magnitude for ∆θ > 56.5 rad (approximately

9 orbits before the TCA) when PoCWC < PoC0 (Fig. 5.10), being WC the worst-case

ellipse with the highest PoC among all the FEs.

Fig. 5.11 includes the evolution of the worst-case PoC as a function of ∆θ. It can

be seen how the worst-case scenario PoC remains closer to PoC0 when optimising the

magnitude of the impulse for ∆θ > 56.5 rad (red solid line). The robustly optimised

PoC (solid line) is compared with the highest PoC obtained at each θm from a set of

uncertain ellipses extracted from the intervals defined in Table 5.6.

Finally, Fig. 5.12 includes the worst-case scenario uncertain variables as a function

of ∆θ along with the sources’ interval bounds. It can be appreciated how the worst-

case scenario (blue and red solid lines for the non-optimal magnitude and optimal

magnitude cases, respectively) is restricted to the given intervals provided by the sources

of information (black and green dashed lines).

The results of the optimisation using the linear model for computing the optimal

impulse are compared with a Monte Carlo (MC) simulation to prove their validity.

For the MC simulation, 1,000 samples per ellipsoid and 20 ellipsoids per source are
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Figure 5.9: Evolution of the direction of the optimal impulse, δv̂, as a
function of the position of the manoeuvre, ∆θ. Solid line: with optimisa-
tion of the magnitude of the impulse; points: without optimisation of the
magnitude. Both cases coincide. Red: tangential component; blue: normal
component; green: out-of-plane component.

Figure 5.10: Evolution of the impulse magnitude as a function of the posi-
tion of the manoeuvre, ∆θ. Red solid line: impulsive magnitude optimised;
blue dashed line: without optimising the impulse magnitude.

used. The primary object’s initial nominal state (not uncertain) is propagated to the

manoeuvre position where the optimal impulse is added to the orbital velocity. The

new modified orbit is propagated to the unperturbed nominal TCA. The secondary

object is propagated as indicated before: samples from some uncertain ellipsoids on

the initial position are taken and individually propagated to the nominal TCA. The
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Figure 5.11: Evolution of worst-case scenario PoC with the position of the
manoeuvre, ∆θ. Red, with impulse magnitude optimisation. Blue, without
optimising the impulse magnitude. Solid lines: worst-case scenario. Dashed
lines: the worst-case PoC among 20 ellipses per source randomly drawn from
the intervals. Dashed-dotted black line, PoC threshold.

Figure 5.12: Worst-case scenario uncertain variables evolution with respect
to the difference between encounter and manoeuvre positions, ∆θ. From left
to right and top to bottom: µξ, µζ , σ

2
ξ , σ

2
ζ , σξζ . Red solid line: with impulse

magnitude optimisation; blue solid line: without impulse magnitude opti-
misation. Horizontal dashed line: lower bound; horizontal dashed pointed:
upper bound. Black: Source 1; green: Source 2.

relative position between the primary nominal state and the state of each sample from

the secondary object is projected onto the impact plane defined at the TCA by the

unperturbed nominal orbits.
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Figure 5.13: Uncertain ellipses displaced by an impulse applied at 3.5
revolutions before the encounter. Blue and green dashed lines: uncertain
ellipses according to the linear model; purple and black solid lines: uncer-
tain ellipses according to the MC simulation. Red dashed circle centred at
the origin: HBR (position highlighted with indicative arrow). Triangles (po-
sition highlighted with indicative arrows): displaced nominal position, red
for linear model, black for MC simulation. Note that the good agreement of
both methods makes the MC ellipses (solid) and CAM linear method ellipses
(dashed) overlap. Same with the nominal miss distance positions (triangles).

Fig. 5.13 shows the displacement of the set of ellipses obtained using the linear

model (blue and green ellipses are associated with Source 1 and Source 2, respectively),

and the uncertain ellipses families obtained with the MC simulation (black and purple

ellipses are associated to Source 1 and Source 2, respectively) when applying the optimal

impulse 3.5 revolutions before the encounter. The figure shows a good agreement

between the two simulations to the point that the purple and black lines are nearly

completely overlapped with the blue and green ones, respectively. Fig. 5.14 illustrates

the evolution of the deflection due to the impulse (Fig. 5.14a) and the associated worst-

case PoC (Fig. 5.14b) as a function of ∆θ. In red, the MC simulation results and with

dots, the linear model. The agreement between methods for all the variables can

be understood as a validation of the linear model proposed in this work also for the

epistemic case.
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(a) (b)

Figure 5.14: (a) Evolution of the deflection due to the robust optimal
CAM. Red lines: MC simulation, solid for ξ, dashed for ζ. Dots for the
linear model: in green, ξ; in blue, ζ. (b) Evolution of the PoC due to the
manoeuvre: solid red line for MC simulation; blue dots for the linear model.

5.4.3 Low-thrust scenario

In this section, an example showing the method for computing the optimal CAM for

the LT case is presented. A comparison between the different algorithms presented

in Section 5.3 is shown. The results of each of these algorithms are then compared

against the results obtained by applying a tangential manoeuvre, as proposed by other

authors [Hernando-Ayuso and Bombardelli, 2020].

The same scenario as in the previous example is investigated. The exact orbital

parameters are included in Table 5.4. The primary object is assumed to be perfectly

known, while the uncertainty in the initial position for the secondary object is included

in Table 5.5 and the encounter uncertain variables bounds for the two sources of infor-

mation are included in Table 5.6. The parameters employed for the LT scenario appear

in Table 5.7. The optimal direction was computed at multiples of half orbit before the

encounter for 10 revolutions.

In Figs. 5.15 to 5.18, Strategy 0 refers to the LT manoeuvre obtained using Algo-

rithm C.3 with εopt = εmax and with θmf = θc, thus, maximum thruster capacity and

maximum arc-length. Strategy 1 refers to the case where the acceleration magnitude

is optimised, keeping the thrust until the encounter. Strategy 2 shows the case where
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Table 5.7: Parameters employed for the optimal LT CAM computation.

Variable Units Value

δvmax [cm/s] 10
εmax [cm/s2] 2·10−3

PoC0 [-] 10−6

the thrust is kept equal to the maximum capacity of the thruster and the arc-length is

optimised. Those figures also show a comparison between the results obtained applying

the LT in the optimal impulsive direction (solid lines) and the results obtained with a

purely tangential thrust (dashed lines).

Figure 5.15: PoC evolution versus the difference in true anomaly between
the mid-point of the Low-Thrust manoeuvre and the encounter. Blue: max-
imum thruster capacity and arc-length. Red: optimised acceleration magni-
tude. Green: optimised arc-length. Solid lines: optimal direction. Dashed
line: tangential manoeuvre.

Fig. 5.15 includes the evolution of the PoC as a function of the difference between

the true anomalies at the manoeuvre mid-point and at the encounter, ∆θ. It can be

seen the difference between executing the manoeuvre with maximum capacity until the

encounter (blue solid line) and optimising the acceleration magnitude (red solid line)

or the burning time (green solid line). For values ∆θ > 30 rad, if using the maximum

capacity and maximum burning time, the PoC drops far below the threshold, PoC0.

However, for the other two cases, the PoC remains close, but below the threshold.
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Figure 5.16: Acceleration magnitude evolution versus the difference in true
anomaly between the mid-point of the Low-Thrust manoeuvre and the en-
counter. Blue: maximum thruster capacity and arc-length. Red: optimised
acceleration magnitude. Green: optimised arc-length. Solid lines: optimal
direction. Dashed line: tangential manoeuvre.

Figure 5.17: Burning time evolution versus the difference in true anomaly
between the mid-point of the Low-Thrust manoeuvre and the encounter.
Blue: maximum thruster capacity and arc-length. Red: optimised accelera-
tion magnitude. Green: optimised arc-length. Solid lines: optimal direction.
Dashed line: tangential manoeuvre.

In Figs. 5.16 and 5.17, it can be seen how the acceleration magnitude and the

burning time are optimised, respectively. Fig. 5.16 shows that for Strategy 0 and

Strategy 2 the acceleration magnitude is equal to the maximum capacity, ε = εmax,

but for Strategy 1 the acceleration is optimised (red solid line). Similarly, Fig. 5.17
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Figure 5.18: Equivalent velocity change to the difference in true anomaly
between the mid-point of the Low-Trhust manoeuvre and the encounter
(∆θ = θc − θm). Blue: maximum thruster capacity and arc-length. Red:
optimised acceleration magnitude. Green: optimised arc-length. Solid lines:
direction of the impulse according to the proposed algorithm. Dashed line:
tangential manoeuvre. Black dashed line: velocity change used on the hy-
pothetical impulsive manoeuvre.

illustrates the optimisation on the burning time for Strategy 2 (green solid line), while

Strategy 0 and Strategy 1 present the maximum burning-time. Finally, in Fig. 5.18, the

equivalent velocity change is shown for each strategy, obtained with the LT manoeuvre

according to δv = ε/∆tb. In general, it is different than the velocity change considered

by the impulse employed to compute the optimal direction manoeuvre, which is shown

as the horizontal black dashed line, being greater for most of the values of θm, showing

the bigger efficiency of this kind of propulsion. It is also seen that the equivalent change

of velocity when optimising either the thrust magnitude or the arc-length is equivalent.

When comparing with the tangential control law, it can be seen from Fig. 5.15 that,

for all the approaches, the proposed method (solid line) yields a lower worst-case PoC

than the tangential manoeuvre (dashed line) at any given value of ∆θ. Similarly, the

optimised values of thrust magnitude, burning time and equivalent δv present worse

values in the tangential case. This implies the proposed method improves over a purely

tangential manoeuvre.

Robust AI for STM Luis Sánchez Fernández-Mellado 138



Chapter 5. Robust collision avoidance manoeuvres

5.5 Chapter summary

The work in this chapter presented a method to use DSt to generate robust CAMs

based on robust estimates of the correctness of the PoC. This methodology accounts

for the aleatory and epistemic uncertainty that may affect a space object’s position and

was proven to provide accurate results with respect to a MC simulation.

The CAM methodology is based on a linear model also proposed in this chapter,

inspired by asteroid deflection theories. This model was also validated and showed its

accuracy in the context of close encounter avoidance.

Finally, the robust optimal CAM methodology was extended to the LT scenario,

providing better results in terms of lower propellant consumption, than simple appli-

cations of a tangential thrust. This was also demonstrated in the optimisation of the

burning time or the thrust magnitude.

In Part II, this method will be further used in the multiple-encounter scenario

(Chapter 9), to train ML models (Chapter 8), and to be integrated along with a deci-

sion support system and other tools to solve more complex Space Traffic Management

problems (Chapter 10).
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Robust decision-making

The content of this chapter was partially published in:

Sánchez, L. and Vasile, M. (2021), “Constrained optimal collision

avoidance manoeuvre allocation under uncertainty for subsequent

conjunction events”, 72nd International Astronautical Congress; [Sánchez

and Vasile, 2021b]

Vasile, M. and Sánchez, L. (2022), “Robust optimisation of coordinated

collision avoidance manoeuvres in large constellations”, 11th International

Workshop on Satellites Constellations and Formation Flying. [Vasile and

Sánchez, 2022]

When the Conjunction Assessment Risk Analysis (CARA) of a close encounter

indicates a Collision Avoidance Manoeuvre (CAM) is required, it is possible to compute

several robust optimal manoeuvres to avoid the event depending on several parameters:

position of the manoeuvre execution, magnitude of the impulse or the thrust, the

returning manoeuvre after the event or, in the case that more than one satellite or

more than one encounter is involved on the event, the combination of those parameters

for each satellite/encounter. Then, the operator has a set of optimal, yet non-dominant,

solutions, but only one can be applied. Moreover, the selected alternative has to be

chosen according to several contradictory criteria, whose importance may be modified

along the mission life, making the task of choosing an optimal solution a challenging

step.
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This chapter proposes an approach to support operators in the decision-making

process when a set of alternatives is available, allowing their evaluation under different

criteria. Multi-Criteria Decision-Making (MCDM) techniques were implemented to deal

with the collaborative scenario: when there is only one operator or the decided outcome

will be agreed upon among different operators (if that is the case). A Game Theory-

based methodology will extend this approach to the non-collaborative case when one

operator does not know which will be the action finally taken by another one, being

necessary to discover which is the equilibrium solution when all agents win or, at least,

do not lose.

The rest of the chapter is structured as follows. In Section 6.1, MCDM theory

is explained, detailing the techniques, criteria and alternatives considered to support

decision-makers. Section 6.2 introduces the Game Theory and indicates how to apply

it for decision-making in the event of a non-collaborative scenario (e.g. two operational

satellites with no/restricted communication between operators). The next two sections,

Sections 6.3 and 6.4, apply the aforementioned techniques in the context of conjunc-

tion risk assessment for a collaborative and a non-collaborative case, respectively. These

sections show the application of MCDM and Game Theory to support operators in de-

ciding the best robust optimal CAM and avoidance strategy under uncertainty. Finally,

Section 6.5 concludes the chapter.

6.1 Multi-criteria decision-making

In engineering, it is common to find situations when several potential solutions are

available to solve a problem, all of them being optimal under certain criteria, but sub-

optimal for others. For example, adding more material to a space structure would

benefit its mechanical properties, but would increase its weight and, consequently, its

cost. In such situations, the decision-maker (the operator in the context of Space

Traffic Management, STM) should choose in an informed way the alternative that

better tackles the problem.

When different alternatives are available, each of them being optimal for some of

the decision-maker criteria and there is a single agent, MCDM techniques may be used
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to support the decision-maker to make informed decisions. It can be also applied when

the selected alternative is known to be followed by all agents involved in the problem.

These situations are known as collaborative scenarios.

MCDM is a branch of decision-making and operations research that provides a

compromise solution (in the form of a sorted list) of a set of non-dominated alternatives

evaluated across a set of, usually, contradictory criteria based on the decision-maker

preferences [Triantaphyllou et al., 1998,Triantaphyllou, 2000].

Hence, three types of parameters should be defined to apply the different MCDM

methods: the alternatives, the criteria and the weight of the criteria.

• The alternatives are all possible responses to a given problem built by combining

the different answers of all agents. In other words, they are the options from

which to select the best outcome to tackle the given problem.

• The criteria are quantities used to evaluate the suitability of the alternatives

to optimise different aspects related to the problem: risk, cost... They can be

beneficial if they want to be maximised, or non-beneficial when they want to be

minimised. The criteria have to be measurable and be related to the magnitude

the alternatives represent, but they may have different units among them. The

most common situation is to find conflict among criteria: improving the perfor-

mance in some criteria will deteriorate the score on others.

• The weights are associated with criteria and are used to assign more impor-

tance to certain criteria than others, enabling one to address the problem from

different perspectives. They represent the decision-maker preferences. From a

multi-objective point of view, weights are used to secularise the vector of decision

criteria and allow a partial ranking of the alternatives.

6.1.1 Alternatives-Criteria matrix

To compare the alternatives, they have to be evaluated over different criteria. As men-

tioned, criteria usually conflict with each other and some alternatives perform better

on some criteria than on others. The Alternatives-Criteria matrix A, allows for the vi-
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sualisation of the performance of each alternative on every criterion individually. Given

M alternatives and N criteria, in the matrix A with shape [M ×N ], each row repre-

sents one alternative and each column the score of the alternatives over each criterion

individually. Thus, the term aij is the value of alternative i under criteria j.

A =


a11 a12 ... a1N

a21 a22 ... a2N

... ... ... ...

aM1 aM2 ... aMN

 , (6.1)

In its plain form, the Alternatives-Criteria matrix will show just the score of the

alternative with respect to the criteria. However, as mentioned before, some criteria

can be Beneficial, meaning a higher score is desirable, while others are Non-Beneficial

or Cost criteria, where lower scores indicate better performance. Thus, the values on

the matrix may be misleading if not taken with care. Moreover, the function to evaluate

the criteria may provide values in completely different ranges or even in different units

(e.g. weight in kilograms and resistance in MPa), which makes the comparison among

criteria performance meaningless.

6.1.2 Normalisation techniques and weights distribution

To be able to compare the score of the different alternatives over the different criteria,

it is necessary to normalise the matrix so that the score ranges in the same interval

(e.g. between 0 and 1). This enables the build of the Normalised Alternatives-Criteria

matrix or Decision matrix, A, which contains the normalised score of the alternatives

over the criteria. Although during the next step, when ranking the alternatives, some

techniques are able to work with normalised alternatives differing between Beneficial

and Cost alternatives, it is a good practice to use a normalisation technique that also

transforms Cost criteria into Beneficial criteria, that is, eliminate the optimisation

orientation [Aytekin, 2021]. Thus, no matter the criterion, an alternative with the

highest score would be desirable.

There are several normalisation methods which follow different rules: distance-
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based or specific value-based techniques, optimisation orientation-based methods, linear

or non-linear normalisation... The method employed may influence the final ranking

after applying the MCDM techniques in the next step, and the decision on which

one to use may depend on the structure of the problem and the MCDM techniques

employed [Vafaei et al., 2016, Aytekin, 2021]. In this work, three different methods

were considered: Maximum Linear normalisation, Max-Min normalisation and Vector

normalisation [Jahan and Edwards, 2015], whose expression can be seen in Eqs. (6.2)

to (6.4). All of them are linear models, convert the criteria into the range [0,1] and

transform the Cost criteria into Beneficial (optimisation orientation-based). The first

two methods are specifically value-based, while the latter is a distance-based technique.

• Maximum-Linear normalisation:if Beneficial aij = aij/maxi(aij)

if Cost aij = 1− aij/maxi(aij)
(6.2)

• Max-Min normalisation:if Beneficial aij = aij/maxi(aij)

if Cost aij = mini(aij)/aij
(6.3)

• Vector normalisation, an Euclidean distance-based procedure:

if Beneficial aij = aij/
√
ΣM
i=1a

2
ij

if Cost aij = 1− aij/
√

ΣM
i=1a

2
ij

(6.4)

This work does not intend to make a detailed analysis of normalisation techniques, but

to present a MCDM-based methodology to support operators on collision avoidance

decisions. Thus, despite the great variety of methods found in the literature, this work

focuses only on those three, which are widely used [Vafaei et al., 2016,Chakraborty and

Yeh, 2007] and were studied for specific MCDM techniques [Vafaei et al., 2016,Vafaei

et al., 2018,Vafaei et al., 2022,Chakraborty and Yeh, 2009].

Finally, it is necessary to establish the weight distribution of the criteria before
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implementing any MCDM technique. As indicated above, the weights will assign more

or less importance to a specific criterion according to the agent’s preferences. Thus, the

final ranking will be greatly impacted by this distribution. The weight assignation may

respond to objective parameters (e.g. internal risk among a swarm of satellites to avoid

losing the whole constellation) or to the subjective preferences of the decision-maker

(e.g. prioritise cheaper manoeuvres, even though smaller risk decreases, if the satellite

is at the end of life with little propellant remaining).

6.1.3 MCDM techniques

Once the Decision matrix is obtained and the criteria weight distribution defined, it

is possible to rank the solutions by applying one of the several methods available in

the literature [Kolios et al., 2016,Triantaphyllou, 2000,Ramı́rez-Atencia et al., 2020].

Similar to the normalisation methods, this work aims to present a concept to use MCDM

to support operators on CARA decision-making, not to perform an exhaustive analysis

of the best technique. Thus, this work limited to the following techniques: Weighted

Sum Method (WSM) [Kolios et al., 2016], normalised Weighted Sum Method (nWSM)

[Ramı́rez-Atencia et al., 2020,Mateo, 2012], Weighted Product Method (WPM) [Kolios

et al., 2016,Tofallis, 2014], Technique for the Order of Preference by Similarity to the

Ideal Solution (TOPSIS) [Kolios et al., 2016,Garćıa-Cascales and Lamata, 2012]. In

the following, a brief explanation of each of them is provided. Note: in the following

equations and for all the methods: i, k = 1, ..., Nalt and j = 1, ..., Ncrit, where Nalt is

the number of alternatives and Ncrit the number of criteria.

• WSM. Also called Simple Additive Weighting, it is one of the simplest MCDM

methods. It is based on the utility add hypothesis. The weighted values of the

alternatives with respect to the criteria are added. The alternative with the

highest added value ranks first. If the variables present different ranges of values

or different units, normalisation schemes are required. If the criteria are both

Beneficial and Cost, the normalisation technique should also transform them all
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into Beneficial.

Ai,WSM =

Ncrit∑
j=1

wj · aij . (6.5)

• nWSM. It is a variation of the previous method, which normalised the aggregated

score with the maximum alternative with respect to each criterion.

Ai,nWSM =

Ncrit∑
j=1

wj · aij
max(a:j)

. (6.6)

where a:j indicates the score of all alternatives under the jth criterion, and

max(a:j) the maximum score under that criterion.

• WPM. This method is similar to WSM, but instead of adding the values, it

compares each solution to all the others using a product of weighted ratios:

Pik,WPM =

Ncrit∏
j=1

(
aij
akj

)wj

, (6.7)

where Pik,WPM > 1 indicates the ith alternative is better than the kth alternative.

The above equation does not rank the alternatives but just provides a new matrix,

P, with size [Nalt ×Nalt]. To sort the solutions, an alternative ranks first when

it has a bigger number of elements greater than one on its corresponding row:

Ai,WPM = countk(Pik,WPM ≥ 1). (6.8)

If normalisation techniques are applied to the Decision matrix, care should be

taken to avoid zeros on the matrix.

• TOPSIS. As its name suggests, this method is based on finding the best solution

according to the distance to some ideal best and worst alternatives. From the

normalised and weighted Decision matrix, the ideal best and ideal worst solution

(also called Positive Ideal Solution and Negative Ideal Solution, respectively) can
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be obtained as:

A+ = {max
j

(aij) if j ∈ C+,min
j

(aij) if j ∈ C−},

A− = {min
j

(aij) if j ∈ C+,max
j

(aij) if j ∈ C−},
(6.9)

whit C+ the set of Beneficial criteria and C− the set of Non-Beneficial criteria

(this technique does not require a normalisation method that transforms all cri-

teria into Beneficial, although it could be useful). That is, the best ideal solution

vector would be the one compound by the elements ranking best on each criterion

(maximum value if Beneficial, minimum if Cost), and the opposite for the worst

ideal solution.

Then, the method ranks the solutions based on the geometrical distance between

each alternative and the ideal alternatives:

Ai,TOPSIS =
D−

i

D+
i +D−

i

, (6.10)

where

D∗
i =

√√√√Ncrit∑
j=1

(
aij − a∗j

)2
, and ∗ = {+,−}, (6.11)

being a+j and a−j the elements of A+ and A−, respectively. The solution with

higher Ai,TOPSIS ranks first.

6.2 Game theory

When the agents are not expected to collaborate, but rather they are competitors, the

outcome of the decision may not be the optimal one for every agent, in the so-called non-

collaborative scenarios. This is the case, for example, when a space encounter involves

two satellites operated by different operators. MCDM can address problems where

there is only one decision-maker, having to evaluate the proposed solutions among its

own conflict criteria, or if it is known that the several agents involved in a decision-

maker problem would agree on the proposed outcome. However, the proposed problem
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Figure 6.1: TOPSIS ideal solutions given the set of alternatives A =
{A1, ..., A9}, evaluate on criteria C1 (Beneficial) and C2 (Cost).

does not fall into those categories, but in the so-called Multi-Criteria Multi-Decision-

Making (MCMDM) problem [Madani and R., 2011].

A MCMDM problem presents several alternatives that have to be agreed upon by

several agents, who may have different criteria or assign different importance to the

same criteria. Moreover, as in the collaborative MCDM problem, criteria are usually

contradictory among each other. In such situations, the MCDM approach presented

before may be applied, especially in the case where each agent has only one criterion,

a situation that is mathematically equivalent to a single decision-maker with several

criteria [Madani and R., 2011, Hipel et al., 1993]. However, this enforces that the

outcome of the analysis is restricted to those alternatives that involve collaboration

among agents (non-dominant or Pareto optimal), that is, agents will follow the outcome

even if it is not optimal for their interests.

However, this situation can be understood instead as a game theoretic problem

with multiple players and strategies [Madani, 2010,Madani and Hipel, 2011]. Thus,

Game Theory [Myerson, 1984] can be used to model and tackle this non-collaborative

problem. In Game Theory, the different agents are expected to apply the solution that
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better satisfies their interests, instead of agreeing on a common outcome. However,

their decisions are conditional to the decision made by the other agents, which is, in

principle, not known (although the possible alternative of the other agents may be

known). In this context, the agents are expected to perform the action that benefits

them better, assuming the other agent will do the same. Thus, Game Theory looks for

the outcomes (combinations of the selected alternatives from each agent) that maximise

the interest of the different decision-makers, or at least, make all of them not lose with

the decision.

This section proposed a methodology that extends the MCDM method introduced

above to the non-collaborative case by implementing Game Theory techniques to deal

with the different agents’ criteria.

6.2.1 Game matrix

While in the collaborative case, optimal decisions were derived from the Alternatives-

Criteria or Decision matrix, in a game theoretic problem, decisions are derived from the

Game matrix. From the Game matrix, one can assess which are the best outcomes of

a given strategy. This matrix either quantifies the value of an alternative for one agent

given the alternatives chosen by the others (cardinal case) or sorts the alternatives

of one agent based on the other agents’ decision (ordinal case). In the following, the

process to obtain this matrix is explained.

The first step is to obtain the alternatives and define the criteria for each agent. Note

that, contrary to the collaborative case, each agent will have its own set of alternatives,

criteria and criteria weighting. Thus, each decision-maker will have its own extended

Decision matrix (extended since it depends on the other agents’ alternatives). For the

rest of the chapter, for the sake of clarity but without losing generality, only two agents

are considered. Having obtained the alternatives for each agent and having defined

the criteria considered for each of them, it is possible to define the agents’ extended
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Alternatives-Criteria or Decision matrices:

AA =


aA111 ... aA1C1 aA112 ... aA1C2 ...

aA211 ... aA2C1 aA212 ... aA2C2 ...

... ... ... ... ... ... ...

aAA11 ... aAAC1 aAA12 ... aAAC2 ...

 , (6.12)

where aAijk is the value of alternative i (can or cannot be normalised) of decision-maker

A under criteria j, given that decision-maker B chooses its alternative k. A similar

matrix, AB, is built for the other decision-maker. The shape of one agent’s extended

Alternatives-Criteria matrix is equal to [Nalt × (Ncrit,a · Ncrit,b)], where Nalt is the

number of alternatives considered by the agent, Ncrit,a the number of criteria taken

into account by the agent and Ncrit,b the number of criteria evaluated by the other

agent.

To build the Game matrix, it is necessary to integrate the alternative scores over the

different criteria given the other agent’s answer into a single aggregated score [Zhang

et al., 2019b]. Understanding the extended Alternatives-Criteria matrix as a set of

Decision submatrices (one per the other agent’s alternative) as the one present in the

collaborative case, the objective is to integrate them into a single column. MCDM tech-

niques (explained in the previous section) can be applied individually to each submatrix

to score the alternatives (cardinal case) or rank them (ordinal case). In this work, the

ordinary matrix is preferred since it is more robust to input uncertainties. The preferred

order of the alternatives is less likely to change to small variations in the input values

than the score of the alternatives [Madani and R., 2011]. Thus, each agent’s extended

Decision matrix is reduced to the integrated Alternatives-Criteria matrix, where each

column represents the preferred order of the alternatives of one of the agents, given the
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alternatives selected by the other:

CA =


cA11 cA12 ... cA1N

cA21 cA22 ... cA2N

... ... ... ...

cAM1 cAM2 ... cAMN

 , (6.13)

where cij is the preferred order of the ith alternative of agent A, having integrated all

its criteria, with B choosing its alternative j. Similarly, a matrix CB can be obtained

for the other decision-maker.

Combining both integrated Alternatives-Criteria matrices, CA and CB, the Game

matrix can be easily obtained:

Z =


z11 z12 ... z1N

z21 z22 ... z2N

... ... ... ...

zM1 zM2 ... zMN

 , (6.14)

where zij = (cAij , c
B
ij) indicates the pair of values with the ranking of decision-maker A’s

alternative i, given agent B has selected its alternative j, and the ranking of agent’s B

alternative j given decision-maker A’s alternative i. Each element of the Game matrix

is called an outcome of the problem, which is the same as a combination of the agents’

alternatives.

6.2.2 Equilibrium points

From this matrix, it is possible to apply different stability definitions to find those

outcomes that are beneficial for both agents. The stability definitions find the equi-

librium outcomes (those where no player losses) by modelling the decision-makers’

behaviour, risk considerations, preferences and how the game is played [Madani and

Hipel, 2011]. There are different definitions: Nash Stability [Nash, 1950], General

Metarationality [Howard, 1971], Symmetric Metarationality [Howard, 1971] or Sequen-
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tial Stability [Fraser and Hipel, 1979], among others. In this work, the Nash Stability

was implemented to show the Game Theory-based methodology. Nevertheless, other

stability definitions can be applied without any major modifications to the method.

According to this approach, the equilibrium points in the matrix, if any, are those

where, given the other agent’s alternatives, moving to another alternative implies a

loss (i.e. it implies moving to alternatives with a lower ranking):

zi∗j∗ ≡ equilibrium point ⇐⇒

cAi∗j = maxi(c
A
ij)

cBij∗ = maxj(c
B
ij)

. (6.15)

Different integrated Alternatives-Criteria matrices can be obtained depending on

the combination of normalisation technique (e.g. linear or vector normalisation) and

the MCDM method (e.g. WSM, nWSM, WPM, TOPSIS) used to integrate the criteria.

Different Game matrices and their Nash Stability points are computed for each of those

combinations. The final preferred outcome will be the one being an equilibrium point

more frequently. The final result is presented with the matrix NE:

NE =


n11 n12 ... n1N

n21 n22 ... n2N

... ... ... ...

nM1 nM2 ... nMN

 , (6.16)

where nij indicates the total number of times the outcome formed by the ith alternative

of A and the jth alternative of B has been identified as an equilibrium point after inte-

grating criteria with the different combinations normalisation techniques and MCDM

methods.

6.3 Conjunction decision-making: collaborative case

In the previous chapters, an approach to assess encounters under aleatory and epistemic

uncertainty and a methodology to compute robust CAMs were proposed. However, de-

pending on several factors (e.g. where to manoeuvre, magnitude of the manoeuvre),
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the actual action to be taken by the operator should be selected among many possi-

bilities. However, this decision will be subjected to the criteria the operators consider

more important, which can drastically change the final option to be applied.

In this section, a methodology to apply MCDM in the context of conjunction risk

assessment to select the best robust CAM is proposed. When there is only one agent

involved in the problem or all the agents involved in the decision-making process are

known to collaborate, that is, will agree on the decision to be taken to achieve a

common goal, the problem can be addressed with MCDM methods [Madani, 2010,

Madani and R., 2011,Hipel et al., 1993]. This is the case when a single operator has

to select the best evasive action to avoid another object, which is going to be shown

below. Other situations falling into this kind of problem would be when more than

one satellite belonging to the same operator/constellation has to avoid each other or

the same external object, or when a satellite has to deal with subsequent encounters,

which will be treated in Chapter 9.

6.3.1 Satellites information

The proposed scenario is a continuation of the case presented in Chapter 5 to show

the robust optimal CAM methodology. Two objects are involved in the encounter, one

of them with manoeuvre capabilities, on which the operator will employ the MCDM

methods, and another whose position is uncertainly known (e.g. a piece of space de-

bris) The initial Keplerian elements at t0 of both objects appear in Table 5.4. The

manoeuvrable satellite is assumed to be perfectly known, while the secondary object

is affected by both aleatory uncertainty, modelled with a multivariate Gaussian distri-

bution, and epistemic uncertainty from two sources of information, modelled with the

epistemic parameter λ, whose values appear in Table 5.5. The encounter takes place

7442.3 seconds after t0 and the uncertain geometry at the Time of Closest Approach

(TCA) is defined by the interval-defined miss distance and covariance matrix in the

impact plane (Table 5.6). The Hard Body Radius (HBR) of the combined objects is

10m.

The manoeuvres are computed for 12.5 revolutions before the encounter, at intervals
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of a quarter of orbit: Θm = kπ/2 with k = {0, 1, 2, 3, ..., 50}. The maximum thruster

capacity is δvmax = 0.1 m/s and the Probability of Collision (PoC) below which brings

the risk is PoC0,CAM = 10−6. The optimised magnitude of the robust CAM and the

associated worst-case PoC can be seen in Figs. 5.10 and 5.11, respectively.

6.3.2 MCDM parameters

Once the different avoidance strategies are computed, the operators need to select the

best one, or to take a set of possibilities, ideally ranked in order of preference. Here is

where MCDM can be applied for conjunction risk assessment and collision avoidance.

In the proposed example, there are a total of 51 alternatives (the robust optimal

manoeuvres computed). Three criteria were considered by the decision-makers: two

cost-wise criteria and one risk-wise:

• Collision risk. It is measured with the Probability of Collision Reduction (PoCR),

which indicates how much the risk is reduced with respect to the non-avoidance

situation and it is defined as:
if PoC ≥ PoC∗ PoCR = 0

if PoC ≤ PoC0,CAM PoCR = 1

else PoCR =
(

log(PoC)−log(PoC∗)
log(PoC0,CAM )−log(PoC∗)

)16, (6.17)

with PoC∗ the PoC without manoeuvre, so that 1 indicates PoC0,CAM is reached

and 0 means the initial risk is not reduced (this is a Beneficial criteria).

• Manoeuvre cost. Associating the cost of the manoeuvre to the amount of pro-

pellant, and assuming it is proportional to the magnitude of the manoeuvre, this

criterion is quantified as the δv normalised with the maximum magnitude among

the alternatives (this is a Cost criterion):

ManC =
δv

max(δv)
. (6.18)

• Operational cost. Understood as the time the satellite has to be away from its

nominal orbit and thus, unable to provide services. It is measured as the angular
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length of the arc between the manoeuvre and the encounter, normalised with the

maximum length among the alternatives (this is a Cost criterion):

OpC =
∆θm

max(∆θm)
. (6.19)

The returning manoeuvre is not considered in this example. It would add an

extra arc to be summed to the avoidance arc length. Other sources of operational

cost are not taken into account in this example.

In this scenario, only the vector normalisation defined in Eq. (6.4) is considered to

avoid zeros in the Normalised Alternatives-Criteria matrix (and thus, avoiding problems

with some of the MCDM techniques). The normalised value of the criteria for each

alternative (that is, the Decision matrix) appears in Fig. 6.2.

Figure 6.2: Criteria score versus the number of the alternative or, equiva-
lently, the distance between manoeuvre and encounter. Blue, PoCR (bene-
ficial criterion); green, ManC (cost criterion); ref, OpC (cost criterion).

6.3.3 Analysis

Given the alternatives and the criteria, it is possible to rank the alternatives to provide

support to the operator once the criteria importance is defined. Four different scenarios

are proposed. On the first three, only one of the criteria is prioritised: one where more

Robust AI for STM Luis Sánchez Fernández-Mellado 155



Chapter 6. Robust decision-making

importance is given to risk reduction, a second one where more importance is given

to the manoeuvre cost, and a final one where importance is given to the operational

cost. The distribution is, in all cases, 80% for the more important criterion, and 10%

for the other two. Finally, the last scenario shows more equally distributed weights,

where contradictory criteria receive the same weight: 45% relative weight for the risk

reduction and the operational cost criteria, and the remaining 10% for the manoeuvre

cost criterion. In this study, the MCDM techniques used for ranking the alternatives

are WSM, WPM and TOPSIS.

Scenario 1

This scenario prioritised the reduction of the PoC, so it is expected that those alterna-

tives providing a higher PoCR rank first: manoeuvres executed half a revolution away

from the position of the encounter in the orbit, and the sooner the better. Table 6.1

shows the top-10 alternatives using the different MCDM techniques.

Table 6.1: Top-10 alternatives in the collaborative case Scenario 1.

WSM WPM TOPSIS

Rank. θm
[rad]

PoC
[-]

δv
[cm/s]

θm
[rad]

PoC
[-]

δv
[cm/s]

θm
[rad]

PoC
[-]

δv
[cm/s]

1 56.46 10−6 8.82 56.46 10−6 8.82 56.46 10−6 8.82
2 62.66 10−6 8.35 62.66 10−6 8.35 59.39 10−6 9.39
3 68.95 10−6 7.21 59.38 10−6 9.39 61.13 10−6 9.47
4 59.38 10−6 9.39 68.95 10−6 7.21 62.66 10−6 8.35
5 61.13 10−6 9.47 61.13 10−6 9.47 64.19 10−6 9.24
6 65.77 10−6 8.62 65.77 10−6 8.62 65.77 10−6 8.62
7 75.16 10−6 7.02 64.19 10−6 9.24 67.42 10−6 8.70
8 64.19 10−6 9.24 67.42 10−6 8.70 68.95 10−6 7.20
9 67.42 10−6 8.70 75.16 10−6 7.02 72.14 10−6 7.89

From the table, it can be seen that the preferred options are those that reduce the

risk below the threshold, as could be expected when prioritising the risk reduction.

Those alternatives occur when executing the CAM early and are associated with lower

magnitudes of the manoeuvre. It can be seen in Table 6.2 that the different MCDM

strategies agree on the ranking. The first option in all of them is the same, which
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corresponds to the later manoeuvre achieving PoC < PoC0,CAM , also with a δv <

δvmax. The rest of the alternatives in the top-10 are the same, although in a slightly

different order depending on the technique. In general, manoeuvres executing later, as

soon as the threshold risk is reached, are preferred, although the magnitude of the CAM

may modify this rule (remember that in this example, both Manoeuvre Cost (ManC)

and Operational Cost (OpC) has a 10% relative weight).

Table 6.2: Top-10 alternatives identifier in the collaborative case Scenario
1.

Technique Ranking

WSM 36 40 44 38 39 42 48 41 43 46
WPM 36 40 38 44 39 42 41 43 48 46
TOPSIS 36 38 39 40 41 42 43 44 45 46

Scenario 2

In this case, despite seeming an opposite situation, the expected top-ranked alternatives

may not differ too much, since it is the cost of the manoeuvre (which is related to the

PoC reduction) which drives the decision. In this scenario, alternatives with a lower δv

are expected to be preferred, which tends to occur at early manoeuvre, where the PoC

can be reduced below the threshold. Table 6.3 shows the top-10 alternatives.

Table 6.3: Top-10 alternatives in the collaborative case Scenario 2.

WSM WPM TOPSIS

Rank. θm
[rad]

PoC
[-]

δv
[cm/s]

θm
[rad]

PoC
[-]

δv
[cm/s]

θm
[rad]

PoC
[-]

δv
[cm/s]

1 75.16 10−6 7.02 68.95 10−6 7.20 68.95 10−6 7.20
2 68.95 10−6 7.20 75.16 10−6 7.02 75.16 10−6 7.02
3 76.64 10−6 7.76 72.14 10−6 7.89 72.14 10−6 7.89
4 72.14 10−6 7.89 76.64 10−6 7.76 76.64 10−6 7.76
5 73.84 10−6 7.93 73.84 10−6 7.93 73.84 10−6 7.93
6 62.66 10−6 8.35 62.66 10−6 8.35 62.66 10−6 8.35
7 70.44 10−6 8.45 56.46 10−6 8.82 70.44 10−6 8.45
8 56.46 10−6 8.82 70.44 10−6 8.45 65.76 10−6 8.62
9 65.76 10−6 8.62 65.76 10−6 8.62 56.46 10−6 8.82
10 67.42 10−6 8.70 67.42 10−6 8.70 67.42 10−6 8.70
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From the table, those alternatives presenting a smaller magnitude are prioritised.

This classification is similar to the previous one since a reduction of the risk below

PoC0,CAM activates the optimisation of the magnitude. It suggests that these two

criteria may be combined together for a more optimised approach to this problem.

Nevertheless, the classification is slightly different than in Scenario 1, ranking first

earlier manoeuvres, since, they have a bigger impact reducing the cost. It also explains

the better agreement (with respect to the previous scenario) between sources, as shown

in Table 6.4: earlier manoeuvres benefit the magnitude criterion (with bigger relative

weight), are indifferent to the reduction risk criterion (as long as the PoC threshold

is achieved), and only are negative to the operational cost criterion, which has a low

relative weight.

Table 6.4: Top-10 alternatives identifier in the collaborative case Scenario
2.

Technique Ranking

WSM 48 44 49 46 47 40 45 36 42 43
WPM 44 48 46 49 47 40 36 45 42 43
TOPSIS 44 48 46 49 47 40 45 42 36 43

Scenario 3

This example, due to the definition of the operational cost, is expected to prioritise

later manoeuvres, since they require to be less time away from the operational orbit.

Table 6.5 shows the top-10 alternatives.

Finally, when prioritising the operational cost the results give the expected results:

the later the manoeuvre the better. For both WSM and TOPSIS, the first option is not

to manoeuvre (no modification of the nominal orbit), and the following alternatives are

exactly in order of the distance between the CAM execution and the encounter. The

bigger weight to the only criterion prioritising later manoeuvres explains the perfect

agreement between techniques shown in Table 6.6, except for WPM, whose results

suggest the appearance of 0 during the normalisation process.
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Table 6.5: Top-10 alternatives in the collaborative case Scenario 3.

WSM WPM TOPSIS

Rank. θm
[rad]

PoC [-]
(·10−3)

δv
[cm/s]

θm
[rad]

PoC [-]
(·10−6)

δv
[cm/s]

θm
[rad]

PoC [-]
(·10−3)

δv
[cm/s]

1 0 9.1 10 56.46 1 8.82 0 9.1 10
2 1.49 1.77 10 59.38 1 9.39 1.49 1.77 10
3 3.11 2.09 10 61.13 1 9.47 3.11 2.09 10
4 4.73 7.3 10 62.66 1 8.35 4.73 7.3 10
5 6.04 5.24 10 64.19 1 9.24 6.04 5.24 10
6 7.79 3.95 10 65.76 1 8.62 7.79 3.95 10
7 9.40 0.5 10 67.42 1 8.70 9.40 0.5 10
8 10.93 8.02 10 68.95 1 7.20 10.93 8.02 10
9 12.59 1.61 10 53.22 1.305 10 12.59 1.61 10
10 14.30 0.207 10 58.03 1.216 10 14.30 0.207 10

Table 6.6: Top-10 alternatives identifier in the collaborative case Scenario
3.

Technique Ranking

WSM 0 1 2 3 4 5 6 7 8 9
WPM 36 38 39 40 41 42 43 44 34 37
TOPSIS 0 1 2 3 4 5 6 7 8 9

Scenario 4

Finally, this scenario shows a more realistic situation, where different criteria are equally

important, so trade-off solutions have to be found. Table 6.7 shows the top-10 alterna-

tives on this scenario.

The results show a trade-off between criteria. All the alternatives in the table reduce

the risk below the threshold as in Scenario 1. However, the order of the alternatives

follows a perfect increase in the distance to the encounter, reflecting the influence of the

OpC criterion, as in Scenario 3, which prefers later manoeuvres. Earlier manoeuvres

are not ranked first due to this last criterion, while earlier manoeuvres are discarded

since they do not reduce the risk enough. In this case, all three techniques agree on the

outcome with no difference in the top-10 (except the seventh/eighth alternative with

the WSM) as can be seen in Table 6.8.
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Table 6.7: Top-10 alternatives in the collaborative case Scenario 4.

WSM WPM TOPSIS

Rank. θm
[rad]

PoC
[-]

δv
[cm/s]

θm
[rad]

PoC
[-]

δv
[cm/s]

θm
[rad]

PoC
[-]

δv
[cm/s]

1 56.46 10−6 8.82 56.46 10−6 8.82 56.46 10−6 8.82
2 59.38 10−6 9.39 59.38 10−6 9.39 59.38 10−6 9.39
3 61.13 10−6 9.47 61.13 10−6 9.47 61.13 10−6 9.47
4 62.66 10−6 8.35 62.66 10−6 8.35 62.66 10−6 8.35
5 64.19 10−6 9.24 64.19 10−6 9.24 64.19 10−6 9.24
6 65.76 10−6 8.62 65.76 10−6 8.62 65.76 10−6 8.62
7 68.95 10−6 7.20 67.42 10−6 8.70 67.42 10−6 8.70
8 67.42 10−6 8.70 68.95 10−6 7.20 68.95 10−6 7.20
9 70.44 10−6 8.45 70.44 10−6 8.45 70.44 10−6 8.45
10 72.14 10−6 7.89 72.14 10−6 7.89 72.14 10−6 7.89

Table 6.8: Top-10 alternatives identifier in the collaborative case Scenario
4.

Technique Ranking

WSM 36 38 39 40 41 42 44 43 45 46
WPM 36 38 39 40 41 42 43 44 45 46
TOPSIS 36 38 39 40 41 42 43 44 45 46

6.4 Conjunction decision-making: non-collaborative case

This section presents an example of a non-collaborative close encounter between two

satellites operated by different agents.

6.4.1 Satellites information

If the two objects involved in the conjunction are active satellites operated by different

agents, the optimal solution could be different for each of them, even though none of

the agents desires to lose the satellite in a collision. Different perceptions of the risk,

the preference of not spending propellant or not stopping the nominal activity to avoid

the conjunction may lead to different optimal solutions for each decision-maker. Thus,

the Game Theory approach presented in Section 6.2 should be applied.

In this example, two operational satellites in a close encounter course are proposed.
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The conjunction occurs 43,200 seconds after the initial time, t0. The initial orbital

elements at t0 appear in Table 6.9. Satellite A is assumed to be perfectly known,

while Satellite B is assumed to be affected by both aleatory and epistemic uncertainty.

Note that the choice of which satellite is affected by uncertainty does not change the

methodology and the outcome of the decision because both operators are assumed to

be able to compute a single PoC, pre and post-manoeuvre. In the case in which the

computation of the PoC of one operator is unknown to the other, the game becomes

stochastic and the approach in this work has to be further extended.

Table 6.9: Objects’ Keplerian elements at initial epoch t0. Units in km
and deg.

Keplerian elements Units Satellite A Satellite B

Semimajor axis (a) [km] 7100.0 6944.26
Eccentricity (e) [-] 0.0 0.031
Inclination (i) [rad] 60.0 141.04
Right Ascension of the Ascending Node (Ω) [rad] 0.0 335.26
Argument of Perigee (ω) [rad] 0.0 116.15
True Anomaly (θ) [rad] 252.57 47.03

The aleatory uncertainty for the Satellite B position is modelled by the covariance

matrix at the initial position expressed in the <R,T,H>,

Σ2,rth(t0) =


0.1042 0 0

0 0.5562 0

0 0 0.1392

 km2, (6.20)

while the epistemic uncertainty is modelled with the epistemic parameter λ = [λµ,λσ],

one per each source of information, affecting only the size of the ellipsoid, but not its

position (λµ = 0). In this example, two sources are considered to provide information:

Source a scaling up the uncertainty ellipsoids and b shrinking it, with:

λσ,a = [1, 4] (6.21)

λσ,b = [1/5, 1/2]. (6.22)
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Thus, the encounter geometry is defined by the intervals of the uncertain variables in

Table 6.10. The HBR is equal to 10m, computing the PoC with Eq. (3.1).

Table 6.10: Uncertain encounter geometry with 2 sources providing infor-
mation. Upper and lower bound of the components of miss distance and
covariance matrix in the impact plane.

Component Units Source 1 Source 2

µξ [km] [0.02855,0.08342] [1.263·10−3,0.01529]
µζ [km] [-0.6327,0.7230] [-0.2317,0.2542]
σ2ξ [km2] [0.1208,0.4353] [0.02530,0.05332]

σ2ζ [km2] [140.265,505.054] [29.311,61.202]

σξζ [km2] [-14.586,-4.0744] [-1.8012,-0.8572]

As indicated in Section 6.2, the first step is to obtain the alternatives and define

the criteria for each agent, in this case, the two operators of the satellites involved

in the encounter. For each of the agents, the alternatives are obtained by changing

the CAM execution position: θAm ∈ ΘA
m and θBm ∈ ΘB

m, with ΘA
m ̸= ΘB

m in general.

The robust optimal CAMs are computed at the following execution positions for each

satellite: ΘA
m = {0, 9π, 17π} rad, ΘB

m = {0, 7π, 11π, 15π} rad, measured as distance to

the encounter.

In this example, the two decision-makers consider the same two criteria: the risk

reduction, quantified with the PoCR in Eq. (6.17), and the cost of the manoeuvre,

measured as the δv required. Each agent may present different risk and cost perceptions.

Two different avoidance cases were studied by changing the maximum impulse capacity

of each satellite and the PoC threshold of each operator. Although in these cases both

examples present the same parameters, they can be different without affecting the

method. Table 6.11 includes the CAM parameters for both cases. For simplicity of the

Table 6.11: PoC threshold and maximum impulse capacity of each satellite
involved in the encounter for the two cases considered.

Satellite A Satellite B

Case δvAmax [km/s] PoCA
0,CAM δvBmax [km/s] PoCB

0,CAM

1 2.5 · 10−4 10−6 2.5 · 10−4 10−6

2 5·10−4 10−5 5 · 10−4 10−5
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analysis, no returning strategy is considered. Including returning manoeuvres would

only introduce new alternatives and, possibly, new criteria. Other than this, the method

would remain the same.

6.4.2 Game theory matrices

This situation can be described as a MCMDM problem with 2 decision-makers with two

criteria each, selecting among four alternatives the Satellite A and three alternatives the

Satellite B. Eqs. (6.23) and (6.24) include the Alternatives-Criteria matrices for Case 1,

and Eqs. (6.25) and (6.26) for Case 2. The even columns indicate the velocity change

required for the satellite, given the other satellite’s action, and the odd columns indicate

the PoCR, where 0 means no improvement with respect to the pre-CAM situation, and

1 is a reduction of PoC below the risk threshold. Note that for Case 1, if only one

satellite manoeuvres, the risk threshold is not reached for any of the satellites, while in

Case 2, there are situations where if only one satellite manoeuvres, the safety threshold

can be reached by the moving satellite, but also for the other one.

AA
1 =


0 0 0.056 0 0.139 0 0.367 0

0.031 2.5 · 10−4 1 1.925 · 10−4 1 1.875 · 10−4 1 1.75 · 10−4

0.156 2.5 · 10−4 1 1.875 · 10−4 1 1.75 · 10−4 1 1.675 · 10−4


(6.23)

AB
1 =


0 0 0.031 0 0.156 0

0.056 2.5 · 10−4 1 1.925 · 10−4 1 1.875 · 10−4

0.139 2.5 · 10−4 1 1.875 · 10−4 1 1.75 · 10−4

0.367 2.5 · 10−4 1 1.75 · 10−4 1 1.675 · 10−4

 (6.24)

AA
2 =


0 0 1 0 0.952 0 0.971 0

0.918 1.6 · 10−4 1 9.1 · 10−50 1 9.4 · 10−5 1 9.6 · 10−5

0.982 1.7 · 10−4 1 8.2 · 10−5 1 8.3 · 10−5 1 8.5 · 10−5

 (6.25)

Robust AI for STM Luis Sánchez Fernández-Mellado 163



Chapter 6. Robust decision-making

AB
2 =


0 0 0.918 0 0.982 0

1 1.4 · 10−4 1 7.3 · 10−5 1 7.6 · 10−5

0.952 1.2 · 10−4 1 6.3 · 10−5 1 6.6 · 10−5

0.971 1.0 · 10−4 1 5.5 · 10−5 1 5.8 · 10−5

 (6.26)

Five different subscenarios were analysed for each case: i) criteria in both satellites

equally weighted, ii) both satellites giving more importance to PoCR, iii) both satellites

giving more importance to ManC, iv) Satellite A giving more importance to PoCR and

Satellite B to the ManC, v) Satellite A giving more importance to ManC and Satellite

B to PoCR.

For all the subscenarios, the criteria are integrated considering two normalisation

approaches: maximum-linear and vector; and four MCDM methods: WSM, nWSM,

WPM, TOPSIS. An example of the ordinal integrated Alternatives-Criteria matrices,

CA and CB, for Case 1 - Subscenario i using Maximum-Linear normalisation and

WPM method to integrate the criteria are presented in Eq. (6.27), and for Case 2 -

Subscenario i using Maximum-Linear normalisation and WPM method in Eq. (6.28).

CA
1,lin,WPM =


1 2 2 2

2 1 1 1

1 0 0 0

 , CB
1,lin,WPM =


1 2 1

1 0 0

2 1 2

3 3 3

 , (6.27)

CA
2,lin,WPM =


1 2 2 2

2 1 1 1

1 0 0 0

 , CB
2,lin,WPM =


1 3 3

1 0 0

2 1 1

3 2 2

 , (6.28)

where the element cAij indicates the order preference of the i
th alternative of Satellite A,

given Satellite B chooses alternative j, with the highest values for the most preferred

alternatives in each column; and the element cBkp the preference of the kth alternative

of Satellite B, given the Satellite A chooses alternative p. A lower number indicated a

prioritised option.
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6.4.3 Analysis

In the following, each subscenario for both cases is analysed. The Game matrices are

shown, with the best outcome in bold as the solution appearing as a Nash equilibrium

point for most of the normalisation and MCDM techniques combinations.

Case 1

In this scenario, is only one satellites manoeuvre, the risk reduction is not reached by

any, making more likely to find an agreed solution.

• Subscenario i.

NEi =


0 0 0 2

0 0 0 0

2 0 0 4

 . (6.29)

This subscenario tries to optimise both cost and risk for both satellites. The pre-

ferred outcome is both satellites manoeuvring the earlier, so both reduce the risk

below the threshold (PoCRA = PoCRB = 1) and both have to expend less pro-

pellant, assuming the other will do the same. However, not all the combinations

of normalisation and MCDM techniques agree on this outcome.

• Subscenario ii.

NEii =


0 0 0 0

0 0 0 0

0 0 0 8

 . (6.30)

If the PoC is to be minimised, the preferred option, independently of the method,

is an outcome where both satellites manoeuvres, reducing the risk below the

threshold (PoCRA = PoCRB = 1).

• Subscenario iii.

NEiii =


7 0 0 2

1 0 0 0

0 0 0 0

 . (6.31)
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If the cost is prioritised, the preferred option is, obviously, where no satellites

manoeuvres (δvA = δvB = 0), even if there is no reduction of risk (PoCRA =

PoCRB = 0).

• Subscenario iv.

NEiv =


4 0 0 0

3 0 0 1

0 0 0 0

 . (6.32)

When Satellite A prioritises the risk and Satellite B the reduction of the cost,

a curios situation is obtained: the most common equilibrium points appear for

the outcome where no manoeuvre is executed. The explanation can be that due

to the prioritisation of cost reduction for Satellite B, it will prefer alternatives

where it does not manoeuvre. Given this outcome, the reduction of PoC for

Satellite A is very small no matter the manoeuvre, so the small contribution of

the ManC criterion on this satellite may prioritise the lack of manoeuvre. Other

than this, the second alternative is a more expected outcome where only Satellite

A manoeuvres.

• Subscenario v.

NEv =


0 0 0 8

0 0 0 0

0 0 0 0

 . (6.33)

This scenario is the opposite of the previous one: Satellite A search to minimise

the cost, while Satellite B to minimise the risk. The preferred option, indepen-

dently of the method, is the one where Satellite A does not manoeuvre (minimis-

ing the cost) and Satellite B manoeuvres the earliest: reducing the risk to the

threshold (PoCRB = 0.367). In this case, the manoeuvre of Satellite B has a

bigger impact on the PoC reduction, so the no manoeuvring option is discarded.
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Case 2

In this case, if only one satellite manoeuvres, the risk threshold is reached for both

satellites, making finding a trade-off solution more challenging.

• Subscenario i.

NEi =


0 0 0 8

0 0 0 0

0 0 0 0

 . (6.34)

The preferred option, in this case, is where only one satellite manoeuvres, execut-

ing the CAM at the cheapest position, since in this way, the threshold is reached,

and the cost is minimised. One satellite does not spend anything and the other

spends the minimum possible: for the outcome (1,4), being an equilibrium point

eight times, δvA = 0 cm/s and δvB = 10 cm/s, while PoCRA = PoCRB = 0.971.

• Subscenario ii.

NEii =


0 0 0 7

0 0 0 0

7 0 0 0

 . (6.35)

Similarly, the preferred outcomes are those where only one satellite manoeuvres.

Since the threshold is reached (or almost) when a single satellite manoeuvres,

these options are preferred over those with the two satellites manoeuvring. The

alternative is always the manoeuvre which reduces the risk the most, implement-

ing the action the earliest. The complication of this situation is that both satellites

would choose the outcome where the other one manoeuvres, potentially jeopar-

dising the safety of the encounter.

• Subscenario iii.

NEiii =


6 0 0 2

2 0 0 0

0 0 0 0

 . (6.36)

As in the previous case, if the cost is to be optimised by both satellites, the pre-

ferred option is no manoeuvring, so no propellant is expended and the manoeuvre
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has no cost.

• Subscenario iv.

NEiv =


0 0 0 2

1 0 0 0

7 0 0 0

 . (6.37)

If Satellite A prioritised the risk and Satellite B the cost, the preferred option

where Satellite B does not manoeuvre and Satellite A does it at the option where

the maximum risk reduction is achieved: PoCRA = 0.982.

• Subscenario v.

NEv =


0 7 0 1

0 0 0 0

0 0 0 0

 . (6.38)

If Satellite A prioritised the cost and Satellite A the risk, the situation is the

opposite than in the previous scenario and the same for the preferred option:

Satellite A does not manoeuvre and Satellite B does it at the position where a

maximum risk reduction is achieved: PoCRB = 1 .

6.5 Chapter summary

This chapter presented a decision-making system to support operators with the robust

optimal CAM allocation tasks under different criteria. If the CARA analysis of a close

encounter requires a CAM, several manoeuvres may be possible (e.g. changing the

execution position, the magnitude). This chapter introduced two methodologies to

deal with this situation.

A MCDM-based method was presented to rank a set of alternatives in the collabora-

tive scenario. This case includes situations involving a single operator (both operating

one or more satellites) or a number of operators agreeing on the outcome. The method

was illustrated with an example when the set of robust optimal manoeuvres executed

at different distances to the encounter had to be ranked according to contradictory cri-

teria. A comparison of the use of different techniques and different criteria importance
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was performed.

This decision-making support method based on MCDM will be applied in Chapter 9

to more challenging situations involving multiple encounters.

The chapter also introduced a methodology to deal with non-collaborative scenarios,

where the outcome of the decision-makers may not reach a consensus outcome. Game

Theory in combination with MCDM was implemented to obtain the best equilibrium

solution for the agents involved in the problem, that is, to find the solution where no

agent loses, thus, being the most likely solution to be implemented by all of them.

More specifically, the methodology was applied to a close encounter involving two

different operators, with no communication between them, and where none of them

is certain about the other’s action. Different scenarios were used to illustrate the

methodology and highlight the differences in the reached equilibrium points according

to the hypothesis used, that is, the criteria and their importance for each decision-

maker.
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Chapter 7

Robust classification system on

real encounter scenarios

The content of this chapter was partially published in:

Sánchez, L., Vasile, M., Sanvido. S, Maerz, K. and Taillan, C.,

“Treatment of epistemic uncertainty in conjunction analysis with

Dempster-Shafer theory”, Advances in Space Research,

submitted. [Sánchez et al., 2024]

The first Part I of this work focused on the development of new methods to address

the problem of epistemic uncertainty in the conjunction risk assessment, developing

a framework to provide support to operators on robust conjunction risk assessment.

However, the proposed methodologies were tested on synthetic data. This chapter

verifies the proposed approaches by running the risk assessment on a number of real

encounters and comparing the analysis with the real decision process carried out by the

operators. This step is essential to prove the right operation of the system if it aims to

be implemented as an operational tool.

The rest of the chapter is structured as follows. Initially, in Section 7.1, the epis-

temic classification criterion introduced in Chapter 3 is revised to use the area between

the curves as the uncertainty metric. Section 7.2 proposes a methodology to obtain

adequate values for the epistemic threshold used by the classification criterion. In

Section 7.3, real encounters examples provided by Centre National d’Etudes Spatiales
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(CNES) and the European Space Agency’s (ESA) European Space Operations Cen-

tre (ESOC) are analysed using the epistemic classification criterion and the methodol-

ogy introduced in Chapter 4. Section 7.4 extends the approach in the previous section

to perform a statistical comparison between ESOC approach and the proposed method-

ology in a database of thousands of real Conjunction Data Messages (CDMs). Finally,

Section 7.5 concludes the chapter.

7.1 Area-based epistemic classification criterion

When using the classification criterion proposed in Chapter 3 on real conjunctions, there

is the necessity to incorporate an additional class to the existing ones. For detected

encounters whose time to the conjunction is close (t2TCA < T1), the criterion classified

events within two possible categories: Class 5 if no further action is required due to

low-risk, and Class 1 if a manoeuvre is proposed to the operator. However, the latter

category can be achieved either when there is high evidence of the high risk of the

event or due to uncertainty in making a confident decision on the level of risk. For

Class 1 events, although the final outcome is the same from the methodological point

of view, from the operational point of view, it is relevant to distinguish between these

two categories, so the operator can have an extra piece of information regarding the

uncertainty of the event when designing the Collision Avoidance Manoeuvre (CAM)

or deciding on its final execution. Class 0 is thus proposed for those highly uncertain

events whose last observation update is close to the conjunction time.

Moreover, certain situations can lead to contradictory results when using the vertical

gap (Degree of Uncertainty, DoU) to determine the level of uncertainty on the sequence

of CDMs. In general, a big gap between the Plausibility (Pl) and the Belief (Bel) at a

given value of Probability of Collision (PoC) indicates a lack of confidence in that value

due to epistemic uncertainty, but limiting the evaluation of the gap to a single value

restrict the analysis capacity. One example is when Bel(PoC0) = 0 and Pl(PoC0) < 1.

It may happen that for PoC < PoC0, the gap is greater than the threshold. However,

due to a lack of support on bigger values of PoC, the value of Pl decreases and combined
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with the null value of the Bel , limits the maximum value DoU(PoC0) < ∆ may achieve.

This lower value on DoU would not happen due to the lack of uncertainty, but because

of the minimum and maximum values that Pl and Bel may take, as occur in Fig. 7.13.

A different example can be found in Section 7.3.1, where a clear high-risk event may

be misclassified as Uncertain if only considering the vertical gap: while DoU is zero or

close to zero for most of the PoC values, around the PoC threshold, the values is close

to one. Since the values of PoC in the sequence of CDMs are concentrated in a narrow

range close to the risk threshold, the Bel sharply jump from one to zero, while the value

of Pl remains high, before drastically jumping as well to values close to zero, as seen

in Fig. 7.5. This implies that DoU(PoC0) ∼ 1, while the actual epistemic uncertainty

affecting the event is low. In this case, adding information on the horizontal gap would

provide a more precise classification.

To overcome the limitations of the use of the vertical gap, a modification of the

evidence-based classification criterion in Table 3.7 is proposed here based on the total

area between the Pl and Bel curves. This new criterion appears in Table 7.1. This

change is reflected in the third column (the confidence filter), where the value of the

DoU at the risk threshold is changed by the area between the curves, APl,Bel, and the

∆ threshold is replaced by an area threshold, A0. The addition of the sixth class can

be seen in the fourth column, with the inclusion of the Class 0. Two additional minor

changes are included in this new criterion. First, the support filter (the second column

of the table) is based now on the value of the Pl at the risk threshold, instead of the

value of the Bel . The reason for the change is that after evaluating the criterion on real

data, it was detected that Bel tends to drop quicker than in virtual data, leading to

overestimated risk of safe encounters. The other modification on the criterion affects

encounters with t2TCA ≥ T2 (last row of the table). Due to the relatively long distance

to the encounters and, generally, the scarcer data up to this point, it is common not to

completely discard events at this stage since confidence decisions are, in general, hard

to make. Thus, events detected well in advance are classified as Class 3.

When computing the area between the curves, one consideration should be taken.

Although the horizontal axis is represented by the PoC, using directly this value may
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Table 7.1: Evidence-based classification criterion using the area between
the curves.

Time to TCA Pl at PoC0 Area Class

tTCA < T1

Pl(PoC0) < PoC0 - 5

Pl(PoC0) ≥ Pl0
APl,Bel ≤ A0 1
APl,Bel > A0 0

T1 ≤ tTCA < T2

Pl(PoC0) < Pl0 - 4

Pl(PoC0) ≥ Pl0
APl,Bel ≤ A0 2
APl,Bel > A0 3

T2 ≤ tTCA - - 3

lead to wrong classifications: for example, assuming a jump from one to zero in Bel at

a certain value of PoC and the same jump for Pl at a higher value of risk, the value

of the area if using the PoC in the horizontal axis would be much greater when the

jump occurs at higher values of PoC. For example, if the jump in Bel takes place at

10−5 and the jump in Pl at 10−4, the area between curves would be equal to 9 · 10−5.

However, if the lost of confidence takes place at 10−2 and 10−1, respectively, the value

of the are is 0.09. It seems that the second case is much more affected by uncertainty,

while in reality, the level of uncertainty is the same in both cases.

If in the figures presented in the previous chapters showing the evolution of Pl and

Bel curves, the horizontal axis was presented using the logarithmic scale for the hori-

zontal axis, logPoC (see Fig. 7.1). Thus, the area between curves should be computed

as:

APl,Bel =

∫ 0

log(PoC)
Pl(Ω) d(log(PoC))−

∫ 0

log(PoC)
Bel(Ω) d(log(PoC)) (7.1)

where PoC > 0 is a minimum value for the PoC to avoid error in the logarithm,

since PoC ∈ [0, 1]. Thus, the area may vary in APl,Bel ∈ [0, Amax] with Amax =

−log10(PoC). The case where APl,Bel = 0 indicates a case where Pl = Bel for all

values of PoC ∈ [PoC, 1] (no epistemic uncertainty), while the case of APl,Bel = Amax

represents a case dominated by epistemic uncertainty when every value is possible,

Pl = 1, but no value receives full support, Bel = 0, for all values of PoC ∈ [PoC, 1].
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Figure 7.1: Pl and Bel curves with the relevant classification parameters
indicated: PoC0, PoC(Pl0), Pl0, Pl(PoC0), DoU(PoC0), APl,Bel.

7.2 Thresholds calibration

When performing robust Conjunction Assessment Risk Analysis (CARA) using the

proposed approach in Part I, the evidence-based classification criterion contains some

thresholds whose value has to be selected by the operator. Some thresholds, such as

the risk threshold, PoC0, and the time thresholds, T1, T2, can be selected following the

current practice employed by operators since they are defined in the same way as in

current approaches. However, the epistemic-based thresholds, like Pl0 and A0, which

are required to make a decision on the uncertainty in the PoC, need to be tuned on

known conjunction scenarios. Thus, the test in this section is used to tune Pl0 and A0

on a database of synthetic cases with known outcomes.

The methodology proposed requires the prior definition of the values of two thresh-

olds: Pl0 and A0. These two thresholds should be tuned by analysing a large dataset

of conjunction events with known outcomes. However, in every database of CDMs

available, the number of provable Class 1 and 2 conjunctions is very small or zero.

Since A0 does not affect Class 4 and 5, which depend only on Pl0, but influences

the number of True Positives (TPs) (actual collisions) and False Positives (FPs) (no-

collisions believed to be collisions), one can define Pl0 first and then use A0 to quantify
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the degree of uncertainty in the class associated to an event.

According to the classification in Table 7.1, the expected outcome is that low values

of Pl0 would increase the number of events classified as Class 1 or 2, reducing, at the

same time, the number of False Negatives (FNs) (collisions believed to be no-collisions)

and increasing the amount of TPs. If this is combined with high values of A0, the

chances of detecting all high-risk events are high, but at the cost of increasing the

number of FPs. If instead, A0 is low, more events will be classified as uncertain (Class

0 and 3 ). On the contrary, a higher value of Pl0 would reduce the false alerts, FPs,

but at the risk of increasing the number of FNs.

The value for Pl0 is set by using the Dempster-Shafer theory of Evidence (DSt)

structure. If there is at least one Focal Element (FE) supporting PoC > PoC0, it

means that there exists at least one piece of evidence suggesting that the PoC can be

correct. This piece of evidence may correspond to an extreme event with low probabil-

ity. Following this idea, it is proposed the value Pl0 = mini(bpa(γi)). This implies that

even a PoC that corresponds to a rare event in the generation of a CDM is considered

to be plausible.

The value of A0 is selected by balancing the number of TPs and FPs. The idea

is to try to reduce the number of FPs by reclassifying them as uncertain cases and

presenting the level of such uncertainty to the operator. A low value of A0 implies that

the operator accepts very little uncertainty in the sequence of CDM, which reduces the

number of FPs but potentially classifies some TPs as uncertain. On the other hand,

a greater value of A0 implies that the operator is very conservative and accepts to

treat a number of FPs as TPs. Thus, the decision to execute a CAM is related to the

confidence of the operator in the quality of the CDMs. For highly uncertain sequences

of CDMs, a low A0 is recommended, but if the quality of the CDMs is high, a higher

A0 should be used.

In the following, rather than selecting the value of the area threshold A0, it is the

value of the normalised area A∗
0 = {0, 0.05, 0.1, 0.15, ..., 0.95, 1}, where A∗

0 is the fraction

of the maximum possible area between the Bel and Pl curves, that is, when Bel drops

to zero at the minimum value of PoC, PoC, and Pl remains equal to one until PoC = 1.
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In this tuning exercise the area is computed by taking the lower limit PoC = 10−30 for

the PoC as this is the lowest value computed from all the sequences of CDMs in the

databases. For all the first four tests in this chapter, a value of A∗
0 = 0.1 is used, which

allows one to clearly differentiate Event 1 from Events 3 and 4 in the following section.

In the last test, the sensitivity of the number of recommended CAMs to the value of

A∗
0 is presented.

Figure 7.2: Evolution of the normalised APl,Bel over time, for Events 1 to
4.

7.3 Comparison against real operators approach

This section presents the conjunction risk assessment on a selected number of represen-

tative real CDM sequences, comparing the approach the evidence-based method would

suggest against the actual decision-making process carried out by real operators, both

at the European and the French space agencies, ESA’s Space Debris Office (SDO) at

ESOC and CNES, respectively.

For all examples the values of the thresholds are reported in in Table 7.2. The

evolution of the normalised area gap between the Pl and Bel curves, or APl,Brel, over

time, for all four cases can be found in Fig. 7.2, where A∗
Pl,Bel = APl,Bel/max(APl,Bel) is

the normalised area between curves, APl,Bel, defined in Eq. (7.1). The Figure confirms
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Table 7.2: Threshold values.

Threshold Units Value

T1 days 3
T2 days 5
PoC0 - 10−4

Pl0 - 1/#FE
A∗

0 - 0.1
PoC - 10−30

that an A∗
0 = 0.1 is appropriate to differentiate between cases like Event 1 from cases like

Event 3 and 4. All four cases are presented in more detail in the following subsections.

7.3.1 Space Debris Office conjunction risk assessment

The approach followed by the ESA’s SDO is probability-based, relying mainly on the

value of the PoC computed with the information from the CDMs, if not the PoC in-

clude on the CDM. The following quote may summarise the generic SDO’s conjunction

risk assessment process: “For a given close approach the last obtained CDM, including

the computed risk, can be assumed to be the best knowledge we have about the po-

tential collision and the state of the two objects in question. In most cases, the Space

Debris Office will alarm control teams and start thinking about a potential avoidance

manoeuvre 2 days prior to the close approach in order to avoid the risk of collision, to

then make a final decision 1 day prior” [European Space Agency, 2019]. Nevertheless,

each mission monitored by the SDO will have a specific procedure based on this general

approach according to its characteristics and constraints [Merz et al., 2017].

Under this generic approach, each mission will introduce its own operational con-

straints (e.g. the time needed to prepare, execute the manoeuvre) and will have its own

risk and time threshold. While the time threshold will be highly related to the mission

constraints, generally 2 or 3 days to the encounter, the mission team is informed about

the possible collision, with a final decision usually made (when possible), 1 day to the

conjunction [European Space Agency, 2019]. The risk threshold is determined statisti-

cally based on the overall collision risk and the annual frequency of close approaches,
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trading off the ignored risk and the avoided risk by selecting the risk threshold at the

cost of an expected number of annual manoeuvres [Merz et al., 2017]. Generally, for

missions in the Low Earth Orbit (LEO) regime, a threshold of PoC0 = 10−4 leads to a

risk reduction of around 90% at the expense of 1 to 3 manoeuvres per year. However,

a lower threshold, around 10−5, may be selected to ensure potential escalating events

are detected with sufficient time to prepare an avoidance strategy [Merz et al., 2017].

Thus, when the last CDM’s PoC is bigger than the threshold, the event is escalated

for further and more detailed analysis. If the risk is still above the threshold at the

decision time, a CAM is designed in cooperation with the mission team, whose final

decision will be made based on the value of PoC included in the last CDM received

before the go/no-go decision time. More detailed information on the SDO’s CARA

process can be found in [Merz et al., 2017].

In the following, a number of real conjunction events, representative of the dif-

ferent evidence-based criterion cases (high-risk, low-risk and uncertain scenario), are

presented. A comparison of the different operational approaches is made. For the next

three examples, a simplified scenario only with CDMs generated from the MiniCat

database was considered.

Event #1

This event represents a high-risk scenario provided by the ESA’s SDO. The un-

certain geometry in the impact plane, with the whole sequence of CDMs and the PoC

evolution appear in Fig. 7.3. Events with PoC above the threshold for times to the

Tiem of Closes Approach (TCA) greater than T1 make the event escalate, that is, they

are further analysed and possible alerts to the mission’s team can be triggered, while

high-risk CDMs received in the last 72 hours start a CAM procedure.

From Fig. 7.3b, it can be seen that the PoC remains high along the whole sequence.

Even if at the beginning it is below the threshold, its proximity to PoC0 along with

the increasing trend made the operator escalate the event. Finally, the PoC threshold

was violated within the last days before the encounter, which led to a CAM execution
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(a)

(b)

Figure 7.3: CDM information for example in Scenario #1: High-risk event.
(a) Uncertain ellipses in the sequence of CDMs. Green ellipses correspond
to earlier CDMs, and red ellipses to later CDMs. (b) Evolution of the PoC
in the CDMs (blue solid) and PoC threshold (orange dashed)

to reduce the risk of the event.

The robust conjunction analysis is made following the method presented in Chap-

ter 4. To obtain the Dvoretzky-Kiefer-Wolfowitz (DKW) bands, a confidence interval
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parameter of δ = 0.5 is selected. The CDMs are weighted according to the expo-

nential law in Eq. (4.6). Fig. 7.4a shows the fitting law after having received all

the CDMs (red) along with the value of the combined covariance matrix determi-

nant for the sequence (black). For the fitting law in Fig. 7.4b, the value of the di-

mensionless parameters in Eq. (4.6a) after having received the whole sequence are:

A = 1.0752, B = 0.9811, C = 0.001716. Note that the value of the parameters varies

with the number of CDMs received to better fit the covariance determinant evolution

up to that time.

The robust analysis is performed for a different number of α-cuts per uncertain vari-

able: #α-cuts = {1, 2, 3, 4, 5, 7}. These cuts lead to a number of intervals per variable

equal to #intervals = {2, 3, 4, 5, 6, 8}, which translates into a number of FEs (before re-

moving those without samples from the CDMs) equal to #FE = {32, 243, 1024, 3125, 7776, 16807},

respectively. The Pl and Bel curves for the PoC, for each number of cuts, are presented

in Fig. 7.5, after having received the whole sequence of CDMs. The Bel is represented

by the solid line, and the Pl by the dashed lines, where each colour represents a differ-

ent number of α-cuts. The vertical solid line indicates the PoC on the last CDM, the

vertical dashed vertical line represents line the maximum PoC on the sequence and the

purple pointed vertical line shows the PoC threshold.

Fig. 7.5 shows that, although the increasing number of α-cuts provides a more

refined set of curves, their shape and values almost do not differ as function of the

number of intervals. In this case, the Bel and Pl curves overlap for most values of

PoC except for a small interval around the PoC0, as it could be expected both from

the uncertainty geometry in Fig. 7.3a and the values of the PoC in Fig. 7.3b. Since the

information in the CDM is coherent across the whole sequence, the gap between Pl and

Bel curves is small, indicating a small epistemic uncertainty affecting this sequence.

Fig. 7.6 shows the classification, purple solid line, as a function of the time to the

TCA from the last received CDM. The vertical line indicates the time threshold, the

horizontal dashed black line the PoC threshold and the horizontal solid lines represent

the different levels of risk: green, low risk-uncertain boundary; yellow, uncertain-high

risk boundary; red, mid-term high risk-long term high-risk boundary. The crossed
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(a)

(b)

Figure 7.4: Scenario #1: High-risk event. (a) Combined covariance matrix
evolution (exact and fit) and (b) CDM weighting law.

orange line shows the computed PoC in the CDM. Note that the classification is the

same, no matter the number of α-cuts, so in the figure, the solid lines corresponding to

classification with different interval partitions overlap each other.

Initially, the event is classified as Class 4 and rapidly falls to Class 5, since there is
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Figure 7.5: Pl (dashed lines) and Bel (solid lines) of the PoC after having
received the whole sequence of CDMs Scenario #1: High-risk event for a
different number of α-cuts.

little evidence supporting a higher PoC (Pl(PoC0) < Pl0). However, at 2.5 days from

TCA the PoC consistently grows above the threshold. Given the little uncertainty in

the sequence of CDMs event is reclassified as Class 1 and a CAM is recommended.

This is the same decision finally taken by the SDO. As seen in Fig. 7.5, the support

for a high value of PoC is high and the gap between the curves (level of uncertainty) is

very small. Thus, the outcome for the operator for any decision made in the last days

prior to the encounter would be that a manoeuvre should be implemented to reduce

the risk of a collision.

Event #2

A similar analysis is done for the Low-risk conjunction event illustrated in Fig. 7.7,

also provided by the ESA’s SDO. Opposite to the previous scenario, in this case, the

PoC remains well below the threshold, so no alert was required to be triggered and no

CAM was required to be designed or executed in the real scenario.

The robust analysis is performed using the same parameters as before: δ = 0.5

for the DKW bands, with a different number of cuts: #α-cuts = {1, 2, 3, 4, 5, 7} per
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Figure 7.6: Collision risk assessment for Scenario #1: High-risk event.

variable. The CDMs after having received the whole sequence were weighted with the

exponential fitting law Eq. (4.6a) using the following parameters: A = 0.6049, B =

5.0896, C = 0.4518. The fitting law (red) and the combined covariance matrix deter-

minant in the CDMs (black) appear in Fig. 7.8. Note the convergence in the second

half of the sequence.

In Fig. 7.9, the corresponding Pl and Bel curves on the value of PoC after having

received all the CDMs of the event are shown. Again, increasing the number of α-cuts

makes the curves smoother, but does not change the overall confidence in the value

PoC. The maximum value of PoC with some supporting evidence is well below the

threshold, indicating that the event can be deemed to be safe. However, the left-most

part of the Bel and Pl curves shows a significant gap. This can be explained by the

fact that the ellipses are not too different from each other (Fig. 7.7a) and they tend to

converge to a single ellipse for the later CDMs, as shown in Fig. 7.7b. Thus, the initial

information content in each CDM tends to support lower values of PoC, which explains

the lower value of Bel on the left of the graph. However, due to the concentration

of information around the later CDMs, the big drop both in Pl and Bel occurs at

PoC∼ 10−7.

Finally, the conjunction assessment for the whole sequence is shown in Fig. 7.10.
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(a)

(b)

Figure 7.7: CDM information for example in Scenario #2: Low-risk event.
(a) Uncertain ellipses in the sequence of CDMs. Green ellipses correspond
to earlier CDMs, and red ellipses to later CDMs. (b) Evolution of the PoC
in the CDMs (blue solid) and PoC threshold (orange dashed).

Despite the greater uncertainty with respect to the previous scenario, it affects only

very small values of the PoC. For values of the PoC greater than 10−7, there is no

uncertainty: those higher values do not receive any support (Pl = Bel = 0), meaning
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(a)

(b)

Figure 7.8: Scenario #2: Low-risk event. (a) Combined covariance matrix
evolution (exact and fit) and (b) CDM weighting law.

higher values of PoC are not likely to happen according to the available evidence. Thus,

the event is initially classified as Class 4 (t2TCA > T1) and then dropped to Class 5

(t2TCA ≤ T1) for the whole sequence, meaning that no further action should be taken

by the operator. Note that the same conclusions are reached no matter the number of
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Figure 7.9: Pl (dashed lines) and Bel (solid lines) of the PoC after having
received the whole sequence of CDMs Scenario #2: Low-risk event for a
different number of α-cuts.

α-cuts. This is the same decision made by the SDO.

Figure 7.10: Collision risk assessment for Scenario #2: Low-risk event.

Event #3

This last event is affected by a significant level of uncertainty. The encounter
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geometry and the evolution of the PoC in the CDMs are shown in Fig. 7.11. Despite

the initial higher risk, with values of PoC close to the threshold, the final decision of

the SDO was not to take any further action. This decision was driven by the latest

values of PoC, notably lower than the initial ones, and considerably below PoC0.

The robust analysis is performed with the same parameters as before: δ = 0.5 for

the DKW bands. The exponential fitting law Eq. (4.6a) to weight the CDMs, after

having received the whole sequence, uses the following parameters A = 0.7917, B =

7.1471, C = 0.1858 and is shown in Fig. 7.12 (red) along with the covariance matrix

determinant from the CDMs (black).

The Pl and Bel curves for the PoC are for different α-cuts: #α-cuts = {1, 2, 3, 4, 5, 7}.

The curves are shown in Fig. 7.13. In this case, there is a significant gap between Pl

and Bel for all the values of PoC for which Pl > 0. This uncertainty (or level of dis-

agreement between CDMs) can be seen in Fig. 7.11a, which shows the variety of the

uncertainty ellipses from the beginning of the sequence to the last CDMs. In this case

the supporting evidence that a value of PoC > PoC0 is plausible does not go to zero

but the gap between the Pl and Bel curves suggests that a further analysis is required

although the value of Pl is low and Bel is zero.

Fig. 7.14 shows the result of the classification: the event starts at Class 2, given

the potential high risk suggested by the initial CDMs but quickly drops to Class 3

(t2TCA > T1) because of the level of uncertainty and is finally classified as Class 0

(for t2TCA ≤ T1). In this case, the proposed approach would suggest a further analysis

due to the non-zero plausibility of a high PoC and a high difference between Pl and

Bel , while the decision made by the SDO was to take no further action. The more

prudent recommendation coming from the robust classification system would lead to a

further inspection of the Pl curve with the realisation that the supporting evidence is

small, albeit not zero.

7.3.2 CNES conjunction risk assessment

As shown in Eq. (3.1), the value of the PoC is very sensitive to the position covariance

matrix of the objects involved in the encounter, whose value from CDM can be underes-
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(a)

(b)

Figure 7.11: CDM information for example in Scenario #3: Uncertain
event. (a) Uncertain ellipses in the sequence of CDMs. Green ellipses cor-
respond to earlier CDMs, and red ellipses to later CDMs. (b) Evolution of
the PoC in the CDMs (blue solid) and PoC threshold (orange dashed), TCA
(vertical dashed green).

timated or overestimated. In order to have a value that accounts for this miss-estimation

on the CDMs covariance matrices, CNES operators use Java for Assessment of Con-

junctions (JAC) for conjunction risk assessment [Laporte, 2014a,Laporte, 2014b]. JAC
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(a)

(b)

Figure 7.12: Scenario #3: Uncertain event. (a) Combined covariance
matrix evolution (exact and fit) and (b) CDM weighting law.

employs the so-called scaled PoC (sPoC), instead of the PoC, as the metric to make

decisions [Stroe et al., 2021]. To compensate for the possible poor model of the covari-

ance matrices, the scaling factor kp ∈ KP and ks ∈ KS are employed to scale it up

and down. The sPoC is obtained by solving Eq. (7.2) as the maximum value of the
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Figure 7.13: Pl (dashed lines) and Bel (solid lines) of the PoC after having
received the whole sequence of CDMs Scenario #3: Uncertain event for a
different number of α-cuts.

Figure 7.14: Collision risk assessment for Scenario #3: Uncertain event.

PoC among the different combinations of scaling factors for the primary and secondary

objects.  sPoC = maxKP ,KS
(PoC)

with Σ = k2pΣp + k2sΣs

, (7.2)
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where Σp and Σs are, respectively, the primary and secondary covariance matrices in

the last CDM associated with the conjunction event.

The default bounds of KP and KS in JAC software are [0.25, 4], although more

realistic boundaries can be obtained based on the sequence of CDMs. However, it goes

at the expense of making two assumptions: the sequence of CDMs represents a set of

samples from an underlying distribution, and the last CDM is given more relevance.

Thus, using the last CDMs as the reference, it is possible to compute the Mahalanobis

distance of previous CDMs uncertainty ellipses, and assuming the uncertainty in po-

sition follows a Gaussian distribution. The Mahalanobis distance must follow a X2

distribution with 3 degrees of freedom. Performing a Kolmogorov-Smirnov test be-

tween the actual distribution and the theoretical one, and setting a desired level of

realism, it is possible to find more realistic boundaries for KP and KS . More details

can be found in [Stroe et al., 2021].

CNES decision-making is then based on both geometric criteria and sPoC-based

criteria. Events with values of sPoC > 5 · 10−4 are treated as High-Interest Events,

the more risky classification level (red level). For values of 10−4 < sPoC < 5 · 10−4,

the events are classified as an Interest Events, the second level of risk (orange level). If

the value of the sPoC is below those thresholds, caution geometric criteria are applied:

miss distance below 1 km or radial distance below 200 m. Note that these threshold

values are the default ones and may change from mission to mission. If the CDMs

are received early in time (generally, around 4-5 days before the encounter), no alerts

are raised independently of the level of risk of the conjunction, although the event is

decided to be under study if some of the criteria are violated. For later CDMs, alerts

may be raised according to the level of risk of the event (orange or red). Finally, if the

high risk continues after the decision time (usually 2 days before the encounter), a final

decision is made before the TCA. [Taillan and Laporte, 2022]

Event #4: CNES approach

This scenario presents a high-risk collision case for a real close encounter where

CNES had to implement a manoeuvre to reduce the risk. This scenario is interesting

since it allows comparing the CNES approach, based on the sPoC, with both the robust

Robust AI for STM Luis Sánchez Fernández-Mellado 192



Chapter 7. Robust classification system on real encounter scenarios

approach proposed in this paper and the approach based exclusively on the value of

the PoC.

Fig. 7.15a shows the geometry of the event, where initial CDMs (greener colours)

suggested a lower PoC, while later ellipses (yellow and red) approach to the Hard Body

Radius (HBR). This is reflected in the value of the PoC in Fig. 7.15b, where the value

of the PoC increases when approximating to the encounter. This figure also shows the

sPoC which already suggests from the beginning value above the risk threshold and a

higher risk than the value of PoC in the CDM. It can also be seen how the sPoC already

predicted a value of risk above 10−4, close to the PoC value of the last CDM, while the

PoC in the sequence of CDMs required to be much closer to the encounter to proposed

such values, and even then, with a less stable behaviour. This is reflected in the decision-

making process followed by CNES’s operators on this event: the event is catalogued as

High-Interest Event, meaning careful monitoring should be taken, from the 12th CDM

(2.96 days before the TCA), and a final decision for performing a manoeuvre is taken

30 hours before the encounter. Note that the last CDM received by the decisions time

indicates a PoC< 10−5, well below the risk threshold, while the sPoC indicates a risk

above 10−3, which aligns better with the last three CDMs received between the decision

time and the CAM execution time.

The evidence-based analysis is performed following the same approach as for the

SDO cases and with the same thresholds: PoC = 10−4, T1 = 3 days, T2 = 5 days,

Pl0 = 1/243, A∗
0 = 0.1, and with #intervals = {2, 3, 4, 5, 6, 8} intervals per variable

and CDM weighed according to the exponential law in Fig. 7.16.

The Pl and Bel corresponding to the whole sequence of CDM are shown in Fig. 7.17,

and the classification sequence for different numbers of intervals is shown in Fig. 7.18.

In Fig. 7.17 one can see that Pl(PoC0) is nearly 1, and Pl(sPoC) > 0 along the whole

time series. In fact, Pl = 0 at PoC ∼ 10−2, while max(sPoC) = 5 · 10−3. However,

the gap between the Pl and Bel curves is very high, indicating a degree of uncertainty

in the sequence of CDMs. This is due to the variability in the CDMs. Thus the event

is classified as Class 0.

Although this event is placed in the same class as Event 3, the supporting evidence
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(a)

(b)

Figure 7.15: CDM information for example in Scenario #4. (a) Uncertain
ellipses in the sequence of CDMs. Green ellipses correspond to earlier CDMs,
and red ellipses to later CDMs. (b) Evolution of the PoC in the CDMs
(blue solid), evolution of the sPoC (dashed-pointed green) and PoC threshold
(orange dashed).

is quite different. Event 4 has a Pl ≈ 1 and Bel different from zero at PoC0 while

Event 3 has Bel = 0 and Pl < 0.2 at PoC0. This means that, although in this paper

we opted for a very conservative classification of the events such that both Events 3 and
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(a)

(b)

Figure 7.16: Scenario #4. (a) Combined covariance matrix evolution (ex-
act and fit) and (b) CDM weighting law.

4 fall in the same uncertainty class, a simple analysis of the Bel and Pl curves would

suggest that the available evidence for Event 4 supports a high probability of collision,

up to 10−2 in fact, while for Event 3 the supporting evidence at PoC0 is quite low.
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Figure 7.17: Pl (dashed lines) and Bel (solid lines) of the PoC after having
received the whole sequence of CDMs Scenario #4 for a different number of
α-cuts.

Figure 7.18: Collision risk assessment for Scenario #4.

7.4 Statistical analysis of Swarm-A dataset

After having compared the proposed evidence-based conjunction assessment approach

against real operations on specific cases, in this section a comparison is made on how

many CAMs are executed or recommended in a large number of real conjunctions.
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The selected mission is the ESA’s SWARM-A satellite, orbiting in the LEO regime

(circular polar orbit of 87.7 deg at 511 km of altitude), dedicated to studying the

Earth’s magnetic field as part of a constellation of three satellites [ESA, 2020]. The

mission thresholds to trigger conjunction alerts are PoC0 = 10−4 and T1 = 72 hours.

Thus, any satellite with a PoC above the threshold in the last 3 days would escalate

and would require further analysis, and eventually, a possible CAM design or execution.

Nevertheless, encounters presenting a higher risk or an increasing trend before T1 may

be escalated if the operator considers that there is a potential risk for the mission.

Finally, the go/no-go decision is subject to operational constraints: the time required

to design a CAM after receiving the triggering manoeuvre, the possibility to upload

and check the design manoeuvre and the ground station availability.

The database of CDMs includes alerts from 2015 to 2022, with a total of 36,072

events. Overall, most of the events in the database did not represent a threat to the

satellite, with only 20 samples representing escalated events. As explained before, an

escalated event is an encounter where the PoC, or the PoC trend, suggests that the

conjunction may be high risk. From those escalated events, only 2 cases required a

CAM to be executed.

The evidence-based analysis was performed with the same thresholds as the previous

study cases (Table 7.2): PoC0 = 10−4, T1 = 3 days, T2 = 5 days, Pl0 = 1/243,

A∗
0 = 0.1, with PoC = 10−30, and A0 = 3. The DKW bands were obtained assuming

a confidence interval of δ = 0.5. As shown before, a higher number of α-cuts would

refine the Pl and Bel curves, providing closer curves that better represent the actual

epistemic uncertainty. However, this is at the expense of increasing the computational

cost and with limited impact on the final classification. Thus 2 α-cuts (3 intervals) per

variable, with a total of 243 FEs per analysis were used.

Since the evidence-based analysis lacks the real information available in the actual

operation of the satellite that may have affected the operator decision (for example,

the ground station availability or the mission constraints), the statistics were computed

at four decision times: Td = 3 days to the TCA, corresponding with the mission time

threshold, T1; Td = 2 days to the TCA, allowing for more data to arrive; Td = 1 day to
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the encounter, the usual go-no go decision time in ESA’s missions, [Merz et al., 2017];

and the epoch of the last CDM in the sequence, Td = 0. For simplicity, it is assumed

that there is no operational constraint that prevents or modifies the final decision and

all information is, thus, available.

Table 7.3 includes the results from the analysis, compared with the actual statistics

provided by the SDO. It is important to bear in mind the differences between the

approaches. An event classified as Class 3 or Class 0 (labelled as Uncertain), with

the evidence-based approach, would not correspond, necessarily, to an escalated event,

since the meaning is different: while an escalated event assumes a certain level of risk,

a Class 0 or 3, suggests a degree of uncertainty that requires further investigation

before making a final decision. This further investigation might be simply limited to

an inspection of the Bel and Pl curves as in Events 3 and 4 above or might require

additional observations. On the other hand, for all Class 1 events, the recommendation

is to perform a CAM.

Table 7.3: Results from the statistical analysis on the SWARM-A mis-
sion, with the SDO approach and the evidence-based approach. Threshold:
PoC0 = 10−4,T1 = 3 days, T2 = 5 days, Pl0 = 1/243. Partition with 2
α-cuts per variable. Upper tier: A∗

0 = 0.1 (A0 = 3); middle tier: A∗
0 = 0.5

(A0 = 15); lower tier: A∗
0 = 0.8 (A0 = 24).

SDO Evidence-based

# events A∗
0 # events Td = 3 Td = 2 Td = 1 Td = 0

Total 36,072 Total 24,296 27,918 32,108 36,072
Escalated 20 0.1 Unc. 120 130 172 293
CAM 2 CAM 1 2 3 2

0.5 Unc. 102 98 107 154
CAM 19 34 68 141

0.8 Unc. 95 83 77 75
CAM 26 49 98 220

From the upper tier in Table 7.3 (with A∗
0 = 0.1), one can observe that: i) the total

number of events increases with the delay in the decision time because more CDMs are

available for a decision; ii) the number of manoeuvres proposed by the evidence-based
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approach is similar to the number of CAMs proposed by the SDO operators; iii) the

evidence-based classification system found many more uncertain cases than the SDO.

The Table shows also the number of CAMs and uncertain events for A∗
0 equal to 0.5

and 0.8. As expected, an increase in the values of A∗
0 increases the number of CAMs

and reduces the number of uncertain cases.

Even if the Pl0 threshold is quite low, the number of events escalating to Class 1

remains small. Thus, in this test case, the system is robust enough to remove false

negatives without introducing false alerts. Also, the number of CAMs remains roughly

constant independently of the decision time (especially, for the selected default value

of A∗
0 = 0.1). The number of uncertain cases increases when approaching the TCA,

despite the more information available, especially for lower area thresholds. This is

partially due to the higher increase in the total number of events and partially due

to the likely discrepancy between initial and final CDMs, as can be deduced from the

decrease when the areas threshold is bigger. More relevant is that the number of Class 0

events is between 6 and 15 times higher than the number of escalated events proposed by

ESOC. It is here where the evidence-based system differentiates from the probabilistic

approach used by ESOC. Class 0 events are those with Pl(PoC0) > Pl0, but are still

deemed uncertain because APl,Bel > A0. Pl captures all realisations, within each FE,

that correspond to extreme cases, extreme low or extreme high PoC, compatible with

the observed sequence of CDMs. Hence, a large APl,Bel with high Pl signifies that

there is evidence that a high PoC event can occur but is uncertain. As in the case of

Event 3, many of these cases display a low Pl and zero Bel . Others present conflicting

CDM, that cannot be resolved without further observations, or a high Pl for high PoC

values, as in Event 4 but with a low Bel . An example can be seen in Figure 7.19. The

evolution of the combined covariance shows a radical rotation of nearly 90 degrees at

4 days to the TCA. The evolution of the PoC does not provide any evidence that the

covariance had a step change but remains close to the threshold limit. The evidence-

based approach, instead. shows quite some uncertainty and maintains a high Pl till

the end of the sequence, suggesting that the event cannot be discarded and requires

further analysis.
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Note that the percentage of events in this category increases when delaying the

decision. This indicates a growing disagreement among CDMs in the sequence as the

time approaches TCA, an aspect usually overlooked by probabilistic-based approaches.

(a) (b)

(c)

Figure 7.19: Conjunction event with conflicting CDMs: a) evolution of the relative
position distribution on the impact place, b) evolution of the PoC, c) Pl and Bel curves
of the whole CDMs sequence.

7.5 Chapter summary

This chapter tested against real operations the methodology proposed to quantify un-

certainty in sequences of CDMs and to provide robust conjunction risk assessment
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accounting for aleatory and epistemic uncertainty on a number of real scenarios.

A modification of the evidence-based classification criteria presented in previous

chapters was introduced, so the uncertainty on the event is now based on the area

between the Pl and Bel curves, APl,Bel, instead of only on the vertical gap at a certain

PoC value. This facilitates capturing better the whole uncertainty of the event and is

less sensitive to narrow gaps on the curve that do not represent the actual epistemic

uncertainty of well-known events. The values of the two epistemic thresholds (Pl0

and A0) are selected with a proposed methodology so that Pl0 reduces the number of

missing events detected (FN) and A0 minimises the false alerts (FP).

The method is compared with real operators’ responses to actual events. Three of

the scenarios were provided by ESA and represent the main three possible outcomes

of the analysis. If the information was coherent along the sequence (high-risk or low-

risk) both answers were similar, while when the sequence presented a higher degree

of variability or a degree of inconsistency, the proposed evidence-based approach pro-

vided a quantification of the related uncertainty and classifies the events accordingly.

When comparing with the CNES and the concept of sPoC, the proposed evidence-based

approach provided consistent decisions but with a higher level of information on the

uncertainty in the decision.

Finally, the method was applied to a whole set of sequences for a statistical analysis

of the proposed CAM and uncertain events on a real mission operated by ESA. The

main difference was not in the number of CAM, but in the number of uncertain cases

and escalated events, which has to be further investigated.
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Chapter 8

Artificial intelligence for Space

Traffic Management

The content of this chapter was partially published in:

Sánchez, L. and Vasile, M. (2021), “On the use of machine learning and

evidence theory to improve collision risk management”, Acta

Astronautica; [Sánchez and Vasile, 2021c]

Sánchez, L. and Vasile, M. (2022), “Intelligent agent for decision-making

support and collision avoidance manoeuvre design on Space Traffic

Management”, Advances in Space Research, in press [Sánchez and Vasile,

2023];

Sánchez, L., Rodŕıguez-Fernández, V. and Vasile, M. (2024), “Robust

Classification with Belief Functions and Deep Learning Applied to Space

Traffic Management”, 2024 IEEE World Congress on Computational

Intelligence (WCCI), submitted. [Sánchez et al., 2023]

This chapter addresses the use of Machine Learning (ML) to assist operators in the

conjunction of risk assessment and decision-making processes. Different ML techniques

and architectures are assessed on their ability to predict the risk of the conjunction

events. The objective is to build surrogate models of the methods developed in Part I,

allowing a faster, yet accurate, evaluation of the risk, to help with the automation of

the decision-making process.
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The rest of the chapter presents a set of applications of different ML techniques to

encounter scenarios based on the methods presented in Part I. In Section 8.1, an analysis

of the use of ML for the classification criterion presented in Chapter 3 is shown, and in

Section 8.2, these ML techniques are applied to the classification criterion which takes

into account the robust Collision Avoidance Manoeuvre (CAM) approach introduced in

Chapter 5. Section 8.3 applies that ML techniques to predict the conjunction class using

the Conjunction Data Messages (CDMs) analysis presented in Chapter 4. Section 8.4

concludes the chapter.

8.1 Intelligent classification system

This section introduces an Intelligent Classification System (ICS) that exploits the

evidence-based classification criterion presented in previous chapters to provide decision-

making support to operators. The Intelligent Classification System (ICS) uses ML tech-

niques to predict the classes of risk of the events given the uncertain close encounter

geometry. The main advantage of such a system is that it can provide a fast, automatic

and robust classification of conjunction events from the objects’ information.

Two intelligent event classification systems are proposed based on the classification

criterion in Table 3.7 to provide the risk level of the event, that is, its Class. The

objective is to build a surrogate model of the classification criterion. The first one,

System 1, takes the three classification parameters of the criterion. Thus, the inputs

are the time to the encounter from the last position update, t2TCA, the Degree of

Uncertainty (DoU) at the risk threshold DoU(PoC0), and the value of the Probability

of Collision (PoC) at the Belief (Bel) threshold PoCb. The single output is the Class

of the event.

The second proposal, System 2, goes one step backwards in the classification al-

gorithm. Instead of taking the classification parameters, it takes the variables that

allow to obtain them: the time to the encounter (t2TCA) and the bounds of the un-

certain geometry at the impact plane (miss distance and combined covariance matrix,

u = [µξ, µζ , σξ, σζ , σξ,ζ]]). If more than one interval is provided or more than one source

provides information, the intervals’ basic probability assumptions (bpa) are also pro-
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vided as inputs. Then, the number of inputs is equal to three times the number of

sources (the upper and lower bounds and the bpa) times the number of uncertain vari-

ables (5) plus one more input (the time to the Time of Closes Approach, TCA). For

example, if three intervals per variable are available, the number of inputs would be

equal to 3 ∗ 3 ∗ 5 + 1 = 46. In the case of a single interval per variable, the number of

inputs is equal to 2 ∗ 5 + 1 = 11 corresponding to the two bounds of the five uncertain

variables and the time to the encounter. Without losing generality and in agreement

with the examples shown in Chapter 3, the cases shown in this section assumed σξζ = 0,

reducing the number of uncertain variables to 4, u = [µξ, µζ , σξ, σζ ], and consequently,

the number of inputs. The single output of the system is the Class of the event.

8.1.1 Synthetic dataset

To test the two classification systems, two datasets of synthetic encounters are generated

representing a variety of conjunction scenarios: dataset DB1 and dataset DB2. DB1

contains 9,000 different conjunction scenarios built using the intervals in Table 3.4,

assuming two sources of information providing a single interval each and combined

with the mixing rule. Each set of geometries contributes with 1,800 samples where the

encounter geometry is provided by two sources of information in the form of intervals for

each of the uncertain variables and associated bpas. These 1,800 samples are distributed

in groups of 600 samples into each of the three times bins indicated in the robust

classification criterion: immediate encounters (t2TCA < T1), medium-term encounters

(T1 ≤ t2TCA < T2) and long-term encounters (t2TCA ≥ T2), where t2TCA is the

time to the TCA. Each of these groups is composed of three subgroups of 200 samples:

in one subgroup the sources are equally reliable (bpa1 = bpa2 = 0.5), in a second sub-

group Source 1 has an associated bpa1 = 0.9 and Source 2 an associated bpa2 = 0.1,

and in the third sub-group, Source 1 has an associated bpa1 = 0.1, and Source 2 and

associated bpa2 = 0.9.

The dataset DB2 includes other 19,800 samples, out of which 9,000 are obtained in

a similar way to the samples in DB1 and the other 10,800 samples feature an extended

set of geometries divided into 9 sub-sets characterised by the intervals in Table 8.1.
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For each of the 9 sub-sets half of the samples have both sources equally reliable (see

the bpas defined for DB1), and in the other half, Source 1 is more reliable than Source

2. Within each half of the data, three different encounters are generated by changing

the time to the TCA, one geometry per each of the three time bins of the classification

criterion. In addition to those samples, DB2 includes the 9,000 examples of DB1. In

total, this second dataset is made of 28,800 samples.

For each dataset, 80% of the samples are used for training and 20% for evaluating

the performance (Validation Set), so DB11 and DB12 are the training and valida-

Table 8.1: Bounds for the upper and lower values of the [µx, µy] and [σx, σy]
uncertainty intervals for each of the set of geometries used for creating DB2.
The first row represents the limits for Source 1 and the second row for Source
2.

Geom. Characteristics µξ [m] µζ [m] σξ [m] σζ [m]

Geo. 1
Low µ [0,4] [0,4] [0.1,5] [0.1,5]
Low σ [2,20] [2,20] [0.1,5] [0.1,5]

Geo. 2
Low µ [0,4] [0,4] [10,20] [10,20]
High σ [2,20] [2,20] [10,20] [10,20]

Geo. 3
Low µ [0,4] [0,4] [0.1,20] [0.1,20]
Wide σ [2,20] [2,20] [0.1,20] [0.1,20]

Geo. 4
High µ [100,2000] [100,2000] [10,100] [10,100]
Low σ [100,2000] [100,2000] [10,100] [10,100]

Geo. 5
High µ [100,2000] [100,2000] [500,5000] [500,5000]
High σ [100,2000] [100,2000] [500,5000] [500,5000]

Geo. 6
High µ [100,2000] [100,2000] [10,5000] [10,5000]
Wide σ [100,2000] [100,2000] [10,5000] [10,5000]

Geo. 7
Low µ Low σ [0,5] [0,5] [0.1,5] [0.1,5]
High µ Low σ [100,500] [100,500] [10,100] [10,100]

Geo. 8
Low µ High σ [0,5] [0,5] [10,20] [10,20]
High µ Low σ [100,500] [100,500] [10,100] [10,100]

Geo. 9
Low µ Low σ [0,5] [0,5] [0.1,5] [0.1,5]
High µ High σ [100,500] [100,500] [500,2000] [500,2000]
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tion datasets from DB1, respectively, and DB21 and DB22 the training and validation

datasets from DB2, respectively. The training sub-sets (DB11 and DB21) are further

divided into 80% for samples used to tune the model parameters (Training Set) and

20% for the test samples (Test Set) used during the training process to avoid overfitting

the system.

8.1.2 Machine learning techniques and metrics

Different ML techniques are studied, each one with different combinations of hyper-

parameters. To select the best model for each technique and compare the different

techniques, the systems’ performance is measured using the following metrics on the

Validation Set:

• Accuracy, the percentage of samples correctly predicted over all the samples,

Accuracy =
#Correct predict classes

# Total number of samples
(8.1)

• Precision, the percentage of the samples correctly predicted from a certain class

over the total number of samples predicted in this class.

Precision =
True positives

True positives+ False positives
(8.2)

• Recall, the percentage of samples correctly predicted on a certain class over the

total number of samples in that class,

Recall =
True negatives

True negatives+ False positives
(8.3)

The Artificial Neural Network(ANN) trained in this work contains only one hidden

layer. Since it is a classification problem, the output layer contains five nodes, one

per Class, indicating the probability of the output being one of them. The final output

corresponds to the Class presenting a higher probability. Ideally, when inputs of a Class

k are provided, all nodes in the output layer should score 0 but node k, which should
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score 1. The only hyperparameter modified in this study is the number of neurons in the

hidden layer: 10, 20, 50, and 100. Each neuron possesses a hyperbolic tangent activation

function. The optimiser is based on the Levenberg-Marquardt algorithm [Hagan and

Menhaj, 1994] and the loss function is the Multi-Class Cross-Entropy [Bishop, 2006].

Each configuration is trained iteratively 10 times with different initialisation of the

parameters (weights and bias of the neurons). The ANN providing the lowest value of

the loss function on the Test Set is selected as the best model. The ANN is implemented

using MATLAB’s Deep Learning Toolbox [Matlab, 2021].

Several Random Forests (RF) configurations are trained, by modifying the number

of trees in the forest, n estimators = {50, 100, 200, 400}, the maximum depth of the

tree, max depth = {‘None’, 50, 100}, the minimum number of samples required to be

at a leaf node, min samples leaf =
{
1, 10−4, 10−7

}
, the minimum number of samples

to split a node, min samples split = {2, 20}, and the number of features to consider

when looking for the best split,max features = {‘auto’, 0.5, ‘log2’}. All the other

parameters are kept equal to the default values in Python’s Scikit library [Scikit-learn,

2021b]. The model with the combination of hyperparameters that provides the best

results over the Test Set is saved as the best model.

Different K-Nearest Neighbours (KNN) models are trained, each one with a dif-

ferent number of neighbours, n neighbors = {1, 3, 5}, weight function, weights =

{‘uniform’, ‘distance’} and leaf size, leaf size = {30, 60}. All the other hyperpa-

rameters are kept equal to the default values in Python’s Scikit library [Scikit-learn,

2021a]. The model with the combination of hyperparameters that provides the highest

accuracy over the Test Set is saved as the best model.

For Support Vector Machine (SVM) techniques, the models only modified the hy-

perparameter indicating the decision function of shape, decision function shape =

{‘ovo’, ‘ovr’} are considered, leaving as default the rest of parameters in Python’s

Scikit library on SVM [Scikit-learn, 2021c]. The best model is the one with the highest

accuracy over the Test Set.
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8.1.3 Classification results

Table 8.2 shows the results using the best settings of each ML technique for System 1,

trained in DB11 and validated in DB12. It can be seen that all ML methods provide

good results and accurate classification. RF and ANN show slightly better results, with

overall accuracy and class precision/recall very close to 100%. The hyperparameters

selected for the best model of each technique can be found in Table D.1 in Appendix D.

Note, however, that the Validation Set contains only 5 representative geometries

because it is taken from DB1. Thus, the same ML models are put to the test by

taking DB22 as the Validation Set. The result can be found in Table 8.3. It can be

seen that the performances of all the techniques, if slightly worse, are in general above

90% accuracy, even close to 100% for RF. Apart from the levels of accuracy, it also

demonstrates that different geometries correspond to similar classifications using the

Bel and Plausibility (Pl) curves.

Table 8.4 presents the performance of all ML techniques on classification System

2, trained with the training set DB11 and validated on dataset DB12. When using

classification System 2 the performance of all ML methods degrades due to the wider

set of input parameters and the more complex relationship between input parameters

Table 8.2: Overall accuracy and precision and recall by classes. System 1
trained with DB11 and tested with DB12. The best technique is underlined.

Method Total
Acc.

Class 1 Class 2 Class 3 Class 4 Class 5

ANN 0.999
Prec. 0.988 0.998 1.00 1.00 0.999
Rec. 1.00 0.996 0.994 0.998 1.00

RF 0.999
Prec. 1.00 1.00 0.994 1.00 1.00
Rec. 0.988 1.00 1.00 1.00 1.00

KNN 0.970
Prec. 0.889 0.934 1.00 0.998 0.998
Rec. 0.988 0.996 0.938 0.963 0.977

SVM 0.992
Prec. 0.987 1.00 1.00 0.992 0.990
Rec. 0.963 0.991 0.938 0.996 1.00
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Table 8.3: Overall accuracy and precision and recall by classes. System 1
trained with DB11 and tested with DB22. The best technique is underlined.

Method Total
Acc.

Class 1 Class 2 Class 3 Class 4 Class 5

ANN 0.956
Prec. 0.913 0.844 1.00 0.997 0.998
Rec. 0.734 0.950 0.991 0.998 1.00

RF 0.999
Prec. 0.996 1.00 1.00 1.00 1.00
Rec. 1.00 0.998 0.997 1.00 1.00

KNN 0.936
Prec. 0.907 0.903 0.960 0.967 0.955
Rec. 0.916 0.859 0.926 0.960 0.966

SVM 0.852
Prec. 0.966 0.996 0.922 0.818 0.817
Rec. 0.633 0.500 0.913 0.994 1.00

and risk classes. This drop is especially remarkable for KNN and SVM techniques. In

any case, the accuracy of both ANN and RF remains relatively high, with values above

80%.

Table 8.4: Overall accuracy and precision and recall by classes. System 2
trained with DB11 and tested with DB12. The best technique is underlined.

Method Total
Acc.

Class 1 Class 2 Class 3 Class 4 Class 5

ANN 0.846
Prec. 0.487 0.752 0.904 0.993 0.995
Rec. 97.5 98.6 0.815 0.844 0.842

RF 0.844
Prec. 0.487 0.737 0.894 0.995 0.995
Rec. 0.975 0.986 0.784 0.844 0.844

KNN 0.583
Prec. 0.441 0.680 0.734 1.00 0.65
Rec. 0.790 0.848 0.512 0.771 0.865

SVM 0.513
Prec. 0.0 0.434 0.0 0.0 0.641
Rec. 0.0 0.844 0.0 0.0 0.890

Table 8.5 shows the prediction accuracy of the ML algorithms using classification

System 2, DB11 for training and DB22 for validation. It can be seen, that opposite

to what happened in Table 8.3 where accuracy levels remained high, here they fall for
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Table 8.5: Overall accuracy and precision and recall by classes. System 2
trained with dataset DB11 and tested with dataset DB22. The best tech-
nique is underlined.

Method Total
Acc.

Class 1 Class 2 Class 3 Class 4 Class 5

ANN 0.636
Prec. 0.774 0.599 0.159 0.774 0.864
Rec. 0.517 0.564 0.604 0.676 0.689

RF 0.778
Prec. 0.835 0.705 0.577 0.789 0.801
Rec. 0.628 0.473 0.479 0.930 0.929

KNN 0.589
Prec. 0.732 0.586 0.304 0.500 0.606
Rec. 0.628 0.479 0.479 0.930 0.929

SVM 0.533
Prec. 0.0 0.419 0.0 0.0 0.607
Rec. 0.0 0.871 0.0 0.0 0.878

all ML algorithms. The main reason is the extended range of the input parameters

combined with the more nonlinear link between input and output underneath System

2. In this case, a broad range of geometries actually translates into a broad range of

inputs that complicates the prediction.

More complex ML models, for example, deeper RF or ANN with more hidden layers,

might improve the results. However, the limitation here is probably the restricted range

of the training set rather than the ML algorithms. A more sensible approach would

be using a bigger and, especially, wider training set. Table 8.6 shows the results of the

best model of all ML algorithms using classification System 2, training dataset DB21

and validation dataset DB22. It can be seen that results improve due to the extended

training dataset, obtaining results even better than those achieved in Table 8.4, where

both Training and Validation Sets were restricted to the 5 geometries. Thus, while

different geometries led to similar Bel and Pl structures as shown with System 1, when

feeding with the geometry (System 2 ), the richer the dataset, the better.

Table 8.7 shows the training time for the best settings of each ML method. The

running time during the testing phase is included in Table 8.8, for each of the cases

studied in this example. The machine used for the training and prediction of all the

models was an Intel Core i7-3520M CPU @ 2.90GHz.
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Table 8.6: Overall accuracy and precision and recall by classes. System 2
trained with training dataset DB21 and tested with dataset DB22. The best
technique is underlined.

Method Total
Acc.

Class 1 Class 2 Class 3 Class 4 Class 5

ANN 0.924
Prec. 0.880 0.821 0.750 0.991 0.991
Rec. 0.987 0.963 0.714 0.918 0.919

RF 0.933
Prec. 0.884 0.835 0.829 0.992 0.992
Rec. 0.987 0.974 0.777 0.924 0.924

KNN 0.619
Prec. 0.737 0.621 0.615 0.667 0.600
Rec. 0.594 0.782 0.438 0.0 0.885

SVM 0.538
Prec. 0.0 0.460 0.0 0.0 0.576
Rec. 0.0 0.460 0.0 0.0 0.576

From the comparison between Table 8.7 and Table 8.8 one can see that training is

the most expensive step. The training time grows with the size of the dataset, as the

difference in training time between DB11 and DB21 demonstrates. Among the different

methods, the ANN requires the longest training time, which is due to the more complex

structure and the greater number of parameters. The complexity of ANN also explains

the longer training time in the case of System 2. Nevertheless, from the point of view

of the automation of operations, training times are not as relevant as prediction times.

Furthermore, the initial training is expected to be the most time demanding while all

following updates to improve predictions with new verified data are expected to be

faster.

Table 8.7: Training time (in seconds) for the best settings of each method
applied to each System.

System 1 System 2

DB11 DB21 DB11 DB21

ANN 54.378 1151.576 429.119 9899.855
RF 0.481 0.494 0.577 7.543
KNN 0.997 0.256 0.146 0.795
SVM 0.809 7.987 1.668 19.730
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From the operational point of view, the prediction time is what actually counts for

automating the evaluating process (training can be made offline). Table 8.8 shows that

prediction times range from tens of seconds to a few seconds to generate predictions

over the whole Validation Set.

Table 8.8: Running time (in seconds) for prediction over Validation Set for
the best settings of each method for each System.

System 1 System 2

Trained in: DB11 DB11 DB21

Validated in: DB12 DB22 DB12 DB22 DB22

ANN 1.275 1.296 1.221 1.554 1.523
RF 0.045 0.084 0.318 0.220 0.555
KNN 0.122 0.282 0.227 0.615 0.905
SVM 0.144 0.321 0.401 1.032 3.702

8.2 Intelligent classification accounting for robust CAM

The system presented in this section extends the ICS approach. When a manoeuvre

is suggested by the decision-making system, different alternatives can be proposed, as

shown in Chapter 6. The system below proposes the use of ML techniques to predict

the class, as before, but based on a different classification criterion that takes into

account the CAM alternatives on the reduction of the risk.

8.2.1 Manoeuvre-driven epistemic classification criterion

The classification criterion introduced in Section 3.3.3 classifies events based on the

proximity of the event to the encounter and the support and confidence on the value of

the PoC based on the available information. Using the classification criterion described

there, events can be categorised into 5 classes, where two of them (Class 1 and 2 )

propose a CAM, another two are associated with low-risk events (Class 4 and 5 ), and

the remaining one informs about uncertainty on the information (Class 3 ). When a

manoeuvre is required, the method proposed in Chapter 5 can provide a set of robust

alternatives.
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When the magnitude and effect of a CAM are available, the classification can be

modified to consider if and when a manoeuvre should be executed Table 8.9. Class

4 and 5, which do not consider the possible execution of a manoeuvre, thus they are

not affected by the information on the CAM. Class 1 recommends a CAM execution

independently of the magnitude or position, and it is not affected either since it already

represents the highest degree of risk.

Once the CAM is computed, Class 2 is reclassified to Class 1 if a CAM is below a

given threshold at any orbital position prior to TCA, i.e. δv < δv0 ∀ θm ∈ Θm, where

Θm is the set of angular positions where the robust optimal CAMs are computed. Since

the cost of the manoeuvre is already low, the reclassification would allow anticipating

the execution if desired, knowing the event poses a high risk even if it happens further

in time. On the contrary, if the cost of the CAM is higher than the threshold δv0, Class

2 will remain unchanged but new measurements are recommended before recomputing

the CAM, having the possibility to refine the CAM with the new information, obtaining

a cheaper manoeuvre.

Class 3 is reclassified as Class 1 or 2 depending on the magnitude of the CAM.

When the CAM cost is above the threshold for any orbital position the event remains as

Class 3, indicating more measurements are required to make a confident decision, since

manoeuvring would not bring any benefit from the point of view of the cost. However,

if an earlier CAM is smaller than a later one, the event is reclassified as Class 1 and

the optimal CAM and position are provided, seeking for the saving in propellant. If

the CAM is below the threshold for every orbital position, i.e. δv < δv0 ∀ θm ∈ Θm,

the event is reclassified as Class 2 : the low cost of the manoeuvre may justify its

execution, but the higher degree of uncertainty and the fact that a later manoeuvre

does not increase the cost supports the fact that acquiring more measurements can lead

to a better decision.

8.2.2 Definition of the dataset

As shown in the previous case, the manoeuvre-driven ICS needs to be trained on a

carefully constructed dataset with a variety of encounter geometries and an inclusive
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Table 8.9: Manoeuvre-driven epistemic classification criterion.

Class in Table 3.7 δv criterion New Class

Class 1 - 1

Class 2
δv < δv0 ∀ θm 1
else 2

Class 3

{
δv < δv0 for θm > θm0

δv ≥ δv0 for θm < θm0
1

δv < δv0 ∀ θm 2
else 3

Class 4 - 4
Class 5 - 5

uncertainty set. To test the performance of ML techniques applied to the manoeuvre-

driven classification criterion, a new synthetic dataset is created with close encounters

between simulated space objects in Low Earth Orbit (LEO) whose orbit and associated

covariances (or set of CDMs) are assumed to be provided by two sources. The dataset

contains the following features: the time to the TCA, the upper and lower bounds

of the five uncertain variables, u = [µξ, µζ , σ
2
ξ , σ

2
ζ , σξζ ], provided by each of the two

sources of information, the bpa of the source, and the set of positions (measured as

the difference in true anomaly between execution and encounter positions) where the

optimal CAM is computed along with the value of the manoeuvre at those positions,

expressed in <T,N,H> reference frame. Finally, the Class of the event according to

the new classification criterion in Table 8.9 is also included as the label to be predicted.

The close encounters are obtained by propagating the uncertain initial state from

an initial position (i.e. the position at the last observation) to the nominal TCA, as-

suming Keplerian motion. One of the objects is assumed to be perfectly known and

manoeuvrable (e.g. an operational satellite), while the other is affected by uncertainty

on the position and has no manoeuvre capabilities (e.g. a piece of space debris). The

close encounters are defined using the exact nominal orbital parameters. The values

of the nominal initial Keplerian parameters of the primary object are sampled from

the intervals defined in Table 8.10. The nominal initial state of the secondary object
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is obtained by propagating backwards the nominal state from the encounter The sec-

ondary object’s nominal state at the encounter is obtained from the nominal encounter

geometry, adding to the primary object’s state vector, the relative position and velocity,

defined by taking values from the intervals defined in Table 8.11. In the table, re is the

miss distance in the impact plane, χ the ratio between secondary and primary objects’

speed, ϕ the angle between both velocities within the primary’s orbital plane and ψ

the out-of-plane angle [Bombardelli and Hernando-Ayuso, 2015].

Table 8.10: Intervals from which the primary object’s nominal initial Ke-
plerian elements were obtained.

Parameter Units Interval

Semimajor axis (a) [km] [7000, 7100]
Eccentricity (e) - [10−5, 10−4]
Inclination (i) [deg] [70, 90]
Right ascension of the ascending node (Ω) [deg] [0, 20]
Argument of perigee (ω) [deg] [0, 20]
True anomaly (θ) [deg] [0, 360]

Table 8.11: Intervals from which the nominal encounter geometry variables
were obtained.

Parameters Units Interval

Relative position
reξ [m] [-5, 5]
reη [m] [-5, 5]
reζ [m] [-5, 5]

Speed ratio χ - [0.9, 1.1]

Relative velocity angles
ψ [deg] [-90, 90]
ϕ [deg] [0, 90]

The uncertainty, assumed to follow a multivariate Gaussian distribution, is included

in the secondary object’s initial position as explained in Section 5.4.2 (Figs. 5.2 and 5.4).

Then, the initial uncertainty position can be defined as:

x
(2)
tnh = N (0,Σtnh0 ;λ). (8.4)

The uncertainty is then propagated to the nominal TCA and projected on the nominal

impact plane. The intervals for the encounter of uncertain variables (miss distance and
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combined covariance matrix in the impact plane) can be then obtained. Note that the

simplifying and conservative assumption that the intervals for the miss distance and

covariance associated with the propagated ellipsoids can be computed independently is

used.

The dataset is generated considering two sources of information and the associated

epistemic uncertainty intervals on the miss distance and the covariance matrix, chosen

so that the events could be grouped according to five families of encounter geometries.

These geometry configurations indicate the different degrees of uncertainty, represented

by the combination of the relative position of the sources’ sets of ellipses and the Hard

Body Radius (HBR), according to Table 3.4. The information from the two sources is

fused using the mixing rule.

The samples for each geometry are obtained as follows. The aleatory component

of the uncertainty is modelled in the same fashion for all the sets of geometries. The

mean of the initial position of the secondary object is set to zero for all the samples,

µtnh0 = [0, 0, 0] km. The three diagonal terms, σ2t0, σ
2
n0, σ

2
h0, of the aleatory component

of the covariance matrix, Σtnh0 , are drawn from the intervals [0.05,0.1], [0.01,0.1],

[0.01,0.1] km2, respectively. The epistemic component is obtained, for each geometry

family, by sampling from the intervals included in Table 8.12. Each ellipsoid within each

family of ellipsoids is sampled and the samples are then propagated to the encounter

epoch. For each of the ellipsoids before the propagation, an uncertain ellipsoid is fit

from the samples, which is then projected on the impact plane.

Finally, the optimal CAM (assumed impulsive) is computed. These five angular

positions are used to classify the events according to the new classification criterion

introduced in Table 8.9. Table 8.13 includes the rest of the parameters employed to

create the dataset. The HBR is kept constant for all the virtual encounters. Likewise,

the threshold in PoC, Bel and DoU (PoC0, Bel0 and ∆, respectively) are kept constant

for all the encounters. Two time thresholds are considered, T2 > T1. The robust optimal

CAM for each encounter is computed at the five positions, Θm, measured as the True

Anomaly arc-length to the TCA. The CAM magnitude is optimised so that the risk of

the worst-case scenario remained just below the PoC threshold, PoC∗ = PoC0, with a
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Table 8.12: Intervals from which the bounds of the epistemic parameters
λµ and λσ, per each geometry configuration were obtained. The upper and
lower bounds of λµ and λσ are taken randomly from Λµ and Λσ, so that
λµ ∈ Λµ and λσ ∈ Λσ.

Geometry Parameter Units Source 1 Source 2

Geometry 1
Λµ [km] [-0.01, 0.01] [-0.01, 0.01]
Λσ [-] [0.1, 0.4] [0.1, 0.4]

Geometry 2
Λµ [km] [0.35, 0.45] [0.35, 0.45]
Λσ [-] [0.5, 2] [0.5, 2]

Geometry 3
Λµ [km] [-0.01, 0.01] [0.35, 0.45]
Λσ [-] [0.1, 0.4] [0.5, 2]

Geometry 4
Λµ [km] [-0.1, -0.05] [0.18, 0.23]
Λσ [-] [0.1, 0.4] [0.1, 0.4]

Geometry 5
Λµ [km] [-0.15, -0.1] [0.1, 0.15]
Λσ [-] [0.1, 0.4] [0.1, 0.4]

maximum capacity of the thruster of δvmax.

Table 8.13: Parameters employed to obtain the dataset.

Parameter Units Value

HBR [m] 10
PoC0 [-] 10−6

Bel0 [-] 0.5
∆ [-] 0.3
T1 [days] 2
T2 [days] 4
δvmax [cm/s] 10
Θm [rad] [π, 3π, 5π, 11π, 19π]

A total of 18,000 simulated encounters are considered. From them, 3,600 come

for each of the five sets of geometries. Each group of 3,600 encounters are evenly

distributed over the three time bins used in the classification: short-term, mid-term

and long-term. For each time bin and each encounter configuration, in one third, the

PoCs is computed using two equally reliable sources of information, on another third,

using two sources where one is nine times more reliable than the other, and in the

remaining third, the other source is nine times less reliable than the first one. The

manoeuvre-driven criterion is then applied, with the resulting classification in Fig. 8.1.

There, the dataset classified without accounting for the execution of the manoeuvre,
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Fig. 8.1a, is compared to the same dataset classified including the CAM, Fig. 8.1b.

From the figure, it can be seen that Class 2 and 3 are underrepresented. This

is mainly because the magnitude of the manoeuvre tends to classify Class 2 and 3

geometries as Class 1. Due to this unbalanced distribution, the average performance

of the ICS system is negatively affected, with a limited ability to correctly predict

Class 2 and 3 scenarios, as shown later. Performing the undersampling technique, a

less populated but more balanced dataset can be obtained, providing better prediction

capabilities. Thus a new dataset which contains 174 samples per Class (from the least

populated class), making a total of 870, is created for the training of the ICS.

The features of the datasets are the time to TCA, the sources’ bpa, and the upper

and lower bounds of the uncertain variables, constituting 1 + 2 ∗ 3 ∗ 5 = 31 inputs.

The label of the datasets is the Class of the events. The datasets are split into two

sets: 80% of the data points forming the Training Set and 20% of data points used as

the Test set. The Training Set is used to train the models. The Test Set is used to

evaluate the performance of the trained models during the hyperparameter tuning (see

next section). Note that the data in the Test Set are not seen by the models during the

training process but are used only to assess the performance of each model for a given

combination of the hyperparameters. For this reason, the final model performance and

comparison are provided on the Test Set acting as the Validation Set.

8.2.3 Machine learning techniques and metrics

The performance of each ML technique is obtained by predicting the results of the

samples in the Test Set. The metrics employed to assess the models are the same as in

the previous case: the overall accuracy (the percentage of samples correctly predicted

over all the samples), the precision by class (the fraction of samples correctly predicted

among the total number of samples predicted in that class), the recall by class (the

fraction of samples correctly predicted in one class over the total number of samples

actually belonging to that class); however, a fourth additional metric is included: the

F2-score, both by class and the mean of across categories. The F2-score combines both

recall and precision, giving more importance to recall, that is, penalising more False
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(a) (b)

Figure 8.1: Histograms representing the distribution of the sample by
Classes: (a) unbalanced dataset with criterion presented in Chapter 3, (b)
unbalanced dataset with criterion in Table 8.9.

Negatives (FN) or missed conjunctions than False Positives (FP) or false alerts.

F2 = 5
recall ∗ precision

4 · recall + precision
(8.5)

From the previous section, it was clear that RF and ANN techniques performed

much better on this classification problem than the other techniques analysed. Thus,

for this system, whose basic structure is similar, only those two techniques are imple-

mented.

The hyperparameters of both techniques are the same as in the previous study

case. For the ANN models, the only modified parameter is the number of neurons

in the single hidden layer considered: 10, 20, 50, and 100 neurons. The rest of the

parameters are kept fixed during the analysis. Similarly, for the RF models, the only

four parameters modified during the analysis were: the number of trees in the forest,

n estimators = {50, 100, 200, 400}, the maximum depth of the tree, max depth =
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{‘None’, 50, 100}, the minimum number of samples required to be at a leaf node,

min samples leaf =
{
1, 10−4, 10−7

}
, the minimum number of samples to split a node,

min samples split = {2, 20}, and the number of features to consider when looking for

the best split, max features = {‘auto’, 0.5, ‘log2’}. In both cases, each combination

of hyperparameters was trained on the Training Set using a 4-fold cross-validation

approach [Hastie et al., 2009]. The model giving the best F2-score value is saved as the

best model of each technique.

8.2.4 Prediction results

Table 8.14 shows the performance of the system using the best RF and ANN models

over the Test Set of the balanced dataset. The best ANN model contains 100 neurons

on the hidden layer. The best performing RF model’s hyperparameters are: 100 trees,

automatically determined depth of the trees (max depth = ‘None’), the minimum

samples at a leaf note equal to 1, the minimum number of samples to split a node

equal to 2 and the ‘auto’ the value of the variable indicating the number of features

to consider then looking for the best split (max features = ‘auto’).

It can be seen from the table that RF outperforms ANN, both in mean F2-score and

on almost all individual Class F2-score. Overall, the performance of the system is good,

with a mean F2-score near 90%. Breaking down by Class, it is worth noting how Class

4 and 5 are almost perfectly predicted, while Class 3 presents the worst prediction

score. The reason for a lower score, in this Class, is the lack of direct information on

the magnitude of the manoeuvre. In fact, the CAM itself is not an input and the ICS

has to assume the presence of the CAM from the allocated Class. Since Class 3 is

the more ambiguous one, events are miss-classified as Class 1 or 2. Note also the low

recall of Class 1, and the corresponding low precision of Class 2. This suggests that

the ICS tends to generate a number of false Class 1 that would induce the operator to

acquire additional information before executing a CAM. Although the situation might

improve with an extended dataset, this result is still positive, as it is, because it leads

to the acquisition of more information. Indeed since Class 1 usually corresponds to

short TCAs, the operator can anyway decide to implement a manoeuvre if there is no
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Table 8.14: Performance of the best models for predicting the close event
Class. The best technique is underlined.

Technique Class Accuracy Precision Recall F2

RF

Overall 0.9033 - - 0.8724
1 - 0.9234 0.7647 0.7919
2 - 0.7754 0.9404 0.9020
3 - 0.8387 0.7027 0.7262
4 - 0.9867 0.9823 0.9831
5 - 0.9769 0.9546 0.9589

ANN

Overall 0.8767 - - 0.8145
1 - 0.8894 0.8009 0.8171
2 - 0.7556 0.8681 0.8430
3 - 0.6000 0.4865 0.5056
4 - 0.9601 0.9602 0.9602
5 - 0.9676 0.9414 0.9465

time to allocate a new observation.

From these results, it can be concluded that the system can predict, with a rea-

sonable level of accuracy, the correct Class of a close encounter event, except Class

3. However, Class 3 is characterised by a medium-to-long-term event and further de-

cisions can be made. Furthermore, an Class 3 event, with the added δv criterion, is

miss-classified as more stringent Class 1 and 2. It can also be concluded that out of

the two tested ML algorithms, RFs worked better for this problem.

As shown below, the classification errors have a significantly lower computational

time compared to the exact calculation of Bel and Pl . When the number of uncertain

intervals and dimensions increases, the direct computation of Bel and Pl would make

the screening of the whole catalogue of resident objects quite time-consuming. Further-

more, all incorrect classifications would lead the operators to take the robust decision

to prepare a CAM and acquire more information unless the available time is too short.

8.2.5 Computational time

In this section, the computational time required to the ICS to indicate the Class of

an event and suggest action is compared against the computational time required to

generate the same output but without ML. The numerical case used in Section 5.4.2
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was used as a reference. The bounds of the uncertain variables on the impact plane are

included in Table 5.6, both sources are assumed to be equally reliable (bpa1 = bpa2 =

0.5) and the time to the nominal TCA is 2.0673 hours. This information represents

the input to the ICS. With these values, the ICS indicates that the event has to be

classified as Class 1 : a CAM should be implemented.

Table 8.15 shows the computation time required to evaluate the risk and classify

the event. It can be seen that the use of the ML model in the ICS leads to a reduction

of the computation time by three orders of magnitude. Note that these times refer to

a case with 2 sources of information. If more sources of information were available the

Time Pl/Bel would have increased, or if more positions had been included in Θm, Time

CAM, the calculation of CAM, would have also been greater. This demonstrates the

utility of the ICS at processing a potentially large number of events.

Table 8.15: Comparison on computational time for the risk assessment:
using the ICS (left) against computing the actual values of the variables
involved on the criterion (right). The time is given in seconds.

Prediction with ML Computing actual values

Time ML [s] 0.1875
Time Pl/Bel [s] 29.7916
Time CAM at Θm [s] 93.7321
Time criterion [s] 1.5798

Total time [s] 0.1875 Total time [s] 125.1035

8.3 Intelligent robust conjunction analysis with CDMs

This section proposed the application of ML and Deep Learning (DL) techniques to

improve the automation of the robust prediction using the sequence of CDMs. Based

on the methodology presented in Chapter 4, RF, Light Gradient Boosting machine

(LGBm) and Transformers are employed to skip the most computationally expensive

steps of the method: the optimisation of the p-boxes and the computation of the Pl

and Bel curves.
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8.3.1 Databases

The architectures proposed in the next section are tested on three different databases

of close encounters, sharing the same structure. One of the databases is composed

exclusively of virtual encounters, while the other two correspond to encounters faced

by two real missions operated by the European Space Agency ESA. The datasets in-

clude information about the uncertain variables derived from the CDM sequences of a

number of encounters and include the object ID (if any), the encounter identification,

the number of the CDM on the list, the time to the encounter from the CDM creation

and the miss distance and combined covariance matrix at the impact plane correspond-

ing to each CDM. For each new sample, that is, for each CDM in the sequence, the

database associates a label indicating the class according to the methodology exposed

Chapter 4, accounting for all the CDMs of the event received up to that stage.

sgen =
[
EvID−ObjID1−ObjID2−#CDM− t2TCA− µξ − µζ − σ2ξ − σ2ζ − σξζ − Class

]
(8.6)

For the rest of this section, the class in the databases is computed using the criterion

in Section 7.1 and the following parameters and thresholds: δ = 0.5, T1 = 3 days,

T2 = 5 days, PoC0 = 10−4, Pl0 = 1/243, A∗
0 = 0.1, PoC = 10−30 and N = 3. For more

information, refer to Chapter 7.

Synthetic database

A synthetic database composed of virtual encounters is generated. The reason for using

a synthetic database is double. First, the real orbit of the satellites (nominal orbit on

the next) allows having an actual grown truth for the events, that is, it is possible to

know whether the satellites are in an actual collision track. Second, if the ML models

trained exclusively on the synthetic database perform well in the real ones, it will make

it possible not to get limited to the unbalanced real databases and create databases

tailored to the operators’ necessities.

This database comprises 1,000 encounters, 50% of whom are collision scenarios.

Each event is created as follows: the primary object’s Keplerian elements at the nominal
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TCA are randomly drawn from the bounds in Table 8.16. The HBR of both objects and

the nominal miss distance, xb =
√
µ2ξ + µ2ζ , are drawn from the respective sets making

sure the proportion of collision/no-collision events remained balanced. The secondary

object’s position is then derived from the miss distance and its velocity is randomly

selected so that its Keplerian elements at the encounter fall within the same boundaries

used for the primary object. Both objects are back-propagated to the first observation

epoch, whose difference to the encounter epoch is randomly drawn from [1.5, 7] days,

assuming Keplerian motion.

Once the nominal orbit is defined, a preliminary error is added to both objects’

states assuming a Gaussian distribution, N (µ0,Σ0) (i.e. simulating the filtering process

outcome from a set of observed positions). The expected value of the distribution is

drawn from x0 ∈ [0.02, 5] m for the collision cases and x0 ∈ [0.02, 200] m for the no-

collision events, with x0 = ∥µ0−x∥, being µ0 the expected position and x the nominal

position. There is no offset in the velocity vector. The covariance matrix in the object’s

< R,T,H > frame at the first observations epoch is assumed to be diagonal and the

values are from the values in Table 8.16. For each object, random observation epochs

are determined, so that the total number of observations (and thus, the final length of

the CDM sequence) falls within [15, 30].

At each observation epoch, an observation error based on the preliminary Gaussian

distribution defined above, assuming Gaussian distribution N (µi,Σi), is added to the

nominal state in one of the following three alternatives:

i) no position offset is assumed in any observation (including the first one), µi = 0,

and the same covariance error as in the first observations is assigned at every

observation, Σi = Σ0;

ii) the same observation offset of the first observations is assumed for the rest of

the observations, µi = µ0, while the same covariance matrix is assumed for each

observation (Σi = Σj), derived from a rotated and resized version of Σ0;

iii) at each observation, a different offset and covariance matrix are assigned (µi ̸= µj ,

Σi ̸= Σj), with µi obtained in the same way as µ0, and Σi being a rotated and
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Table 8.16: Boundaries of the parameters used to generate the synthetic
database of virtual encounters.

Parameters Units Range of values

Semimajor axis (a) [km] [6850, 7200]
Eccentricity (e) [-] [0, 10−4]
Inclination (i) [rad] [0, π]
Right Ascension of the Ascending Node (Ω) [rad] [0, 2π]
Argument of Perigee (ω) [rad] [0, 2π]
True Anomaly [rad] [0, 2π]
Time to encounter (t2TCA0) [days] [1.5, 7]
Hard Body Radius (HBR) [m] [1,12]
Miss distance - Col. (x0) [m] [0.02, 5]
Miss distance - No Col. (x0) [m] [0,02, 200]
Covariance σrr,0 [km] [0.1, 0.15]·10−4

Covariance σtt,0 [km] [0.5, 0.6]·10−4

Covariance σhh,0 [km] [0.1, 0.15]·10−4

Covariance σvrvr,0 [km/s] [5, 6]·10−8

Covariance σvtvt,0 [km/s] [1, 1.5]·10−8

Covariance σvhvh,0 [km/s] [1, 1.5]·10−8

CDM sequence length [-] [15,30]

resized version of Σ0.

From each observation epoch, each uncertainty ellipsoid is propagated to the nom-

inal TCA using a Monte Carlo run. Following the CDM assumption, the distribution

at the encounter epoch is assumed to remain Gaussian. Thus, the propagated samples

of both objects are fitted to a Gaussian distribution, N (µTCA,ΣTCA), to obtain the

associated CDM, from where the relative position and the combined covariance matrix

in the impact plane, that is, the uncertain variables, are derived.

A total of 17,051 are generated, from which 52.6% corresponds to collision scenarios

and the other 47.4% to no-collision cases. After classifying them with the evidence-

based approach, the distribution in Table 8.17 is obtained.

The database is relatively well distributed, although some classes (especially, Class

3, 4 and 5 ) present a lower percentage of samples. This effect is due to the epistemic

threshold selection (Chapter 7), which moves some low-risk cases to the uncertainty

classes. Nevertheless, the threshold tuning falls out of the scope of this section.
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Real databases

Two real databases are used in this work. They correspond to two different missions op-

erated by ESA in the same LEO region (within the boundaries of the synthetic database

for the Keplerian elements and other parameters). The databases are compounded by

the CDMs received and analysed by the ESA’s Space Debris Office (SDO) during the

period 2015-2022. The objective of the real databases is also double: first, to analyse

the performance of the ML models trained on the synthetic database; second, to study

the capacity to extrapolate prediction results from one mission to another, by training

the models in one of the two real databases and making predictions on the other.

The first real database contains 36,071 encounters and a total of 239,521 CDMs.

The second real database contains 36,160 events and a total of 249,943 CDMs. The

class distribution for both databases after the robust conjunction analysis appears in

Table 8.17.

The main characteristic of the real databases is the marked unbalanced structure,

where the immense majority of cases correspond to low-risk scenarios, with only a

handful of events falling in classes associated with high-risk or CAM execution.

Table 8.17: Class distribution on the three databases, in percentage.

Cl. 0 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5

Synth. 25.3 46.6 10.0 6.03 5.07 7.00
Real 1 0.46 0.03 0.01 10.7 30.9 57.9
Real 2 0.48 0.01 0.01 10.5 31.3 57.7

Database split

To avoid overfitting during the training stage, The databases are split into a training

set (80%) and a test set (20%). The test set remained unseen for the models during

the training phase and is only used to make predictions and compare the models’

performance (acting also as the validation set). Thus, the same test split is shared by

all the models.

Since from each event, several samples are obtained (one sample per each new CDM
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on the sequence), to avoid data leaking, having two very similar samples coming from

the same event in the training and the test set, the division is made at an encounter

level, splitting the database using the Event ID. That is, the training set is compounded

by the 80% of the events, which is close, but not necessarily equal, to the 80% of the

samples due to the difference in the length of the CDM sequences.

Table 8.18 shows the distribution of classes in the two sets, both for the synthetic

database and one of the real databases. The remaining real database is not used for

training, but only for testing the extrapolation capabilities of the models, and thus, is

not split.

Table 8.18: Class distribution on the training and test sets, in percentage.

Cl. 0 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5

Synth Train. 25.9 45.6 10.3 6.13 4.98 7.09
Synth Test 23.2 50.4 8.64 5.66 5.09 7.01

Real Train. 0.46 0.02 0.02 10.7 30.8 58.0
Real Test 0.54 0.05 0.01 10.7 31.1 57.6

8.3.2 Architectures

This section presents the different architectures analysed in this work to predict the class

obtained with the evidence-based classification criterion presented in Chapter 4 given

a sequence of CDMs. These models aim to skip all or some of the computationally

expensive steps by building a faster mapping between uncertain geometry and the

robust class. Five different architectures are proposed, two of them using RF, another

two using LGBm and the last one employing Transformers.

RF [Breiman, 2001] is an ensemble method that combines several independent De-

cision Trees during the training step, feeding each of them with different subsets of

the training set. The predicted class is the mode of the output of every single tree.

RFs allow for overcoming the overfitting and bias problem presented by Decision Trees

while maintaining the simple architecture.

LGBm [Ke et al., 2017] is a variant of the Gradient Boosting methods, also based on

the ensemble of Decision Trees (Boosting). LGBm present the advantages of other Gra-
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dient Boosting models, like the simplicity of implementation, and the reduced number

of parameters required to be tuned, but it allows for faster training and higher accu-

racy. The main difference to other Decision Trees-based algorithms is that it does not

present a level-wise growth (growing a new row from the previous nodes at a time), but

a more efficient leaf-wise growth, where only the most promising node generates a new

row. One important advantage to other architectures is that it accepts, simultaneously,

continuous and categorical variables without any pre-processing.

The Transformer architectures [Vaswani et al., 2017], originally proposed for the

task of machine translation in the field of Natural Language Processing (NLP) and now

applied to a wider range of tasks, leverages the ideas from attention-based models and

proposes to construct a model to process sets and sequences by using only an attention

mechanism between a data encoder and a decoder. The term “attention mechanism” in

neural networks is used to represent a specific class of algorithms, in which the model

looks at each element of the sequence in turn, and compares it to every other point,

attempting to determine the most relevant part of the sequence for each point. This

overcomes the limitation of local connectivity, at the cost of the quadratic complexity

that the attention matrix has in terms of memory usage. The network implemented

here follows the structure used in [Stevenson et al., 2022a].

Random forest with intervals

This architecture uses RF to classify the events taking the interval bounds of the

uncertain variables instead of the CDM samples. That is, this approach skips the

second optimisation step (the computation of the Pl and Bel) in Chapter 4, but it still

requires to derive the set of intervals using the Dvoretzky-Kiefer-Wolfowitz (DKW)-

based approach.

RF requires the tabular inputs, thus, the length of every sample should be the

same. Since sequences of CDM have different lengths, this approach takes advantage

of the tabular format of the Dempster-Shafer theory of Evidence (DSt) structures after

performing the α-cuts. However, the number of inputs grows with the number of cuts,

thus a trade-off between accuracy (of the DSt structure) and complexity (of the input
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Table 8.19: Set of hyperparameters considered to select the best model
during the RF training.

Hyperparam. Values

n estimators {50, 100, 200, 400}
max depth {None, 50, 100}
min samples split {2, 20}
min samples leaf {10−7, 10−4, 1}
max features {‘auto’,‘log2’,0.5}

data) should be achieved. As indicated before, in this work, two α-cuts per variable

are performed, thus N = 3 for each variable.

The features are structures for this architecture so they take the lower and upper

bound of each interval and its associated bpa, for each of the uncertain variables, and

the time to the encounter. Thus, the number of features is equal to: #featRF,int =

3 ∗N ∗m+ 1 = 3 ∗ 3 ∗ 5 + 1 = 46, with N the number of intervals and m the number

of uncertain variables:

sRF,int = [µξ,1, µξ,1, bpaµξ,1, µξ,1, µξ,2, bpaµξ,2, ...σ
2
ξ,1, σ

2
ξ,1, bpaσ2

ξ ,1
, ...] (8.7)

The method was implemented using Python’s “scikit-learn” library [Scikit-learn,

2021b]. A hyperparameters search was carried out among the values included in Ta-

ble 8.19. The rest of the arguments took the default values in the library, including the

loss function (cross-entropy).

Random forest with CDMs

This architecture also uses RF, but it takes directly the information from the CDMs

instead of the intervals. Thus, it skips the two computationally expensive optimisation

steps. To avoid the different lengths of the sequences, this approach uses a lag window,

so it takes a certain number of CDMs previous to the latest one in the sequence. While

this solves the problem of the tabular inputs, it is at the cost of losing some information

on the sequence. Note that the class of the event takes into account the whole sequence

of CDM (Chapter 4). This allows training the model on a database with more accurate
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Table 8.20: Synthetic samples with lag step 1 used by the LGBm archi-
tectures and the RF with CDM approach. The Classt−1 columns would be
used only by the autoregressive LGBm method. Units in m, m2 and days.

#Sample µξ,t µζ,t σ2
ξ,t σ2

ζ,t σξζ,t t2TCAt ...

0 37.51 7·10−11 9.4·105 5.1·105 -6.9·105 2.79 ...
1 25.37 4·10−10 3.4·105 1.6·106 6.3·105 2.64 ...
2 22.59 -7·10−11 1.7·10−5 8.5·105 -3.8·105 2.36 ...
3 32.99 4·10−10 5.9·105 4.7·105 5.3·10−10 2.23 ...
... ... ... ... ... ... ... ...

(#Sample) µξ,t−1 µζ,t−1 σ2
ξ,t−1 σ2

ζ,t−1 σξζ,t−1 t2TCAt−1 Classt−1

(0) 177.1 -5·10−10 1.8·106 2.6·104 2.1·105 2.86 -
(1) 37.51 7·10−11 9.4·105 5.1·105 -6.9·105 2.79 1
(3) 25.37 4·10−10 3.4·105 1.6·106 6.3·105 2.64 1
(3) 22.59 -7·10−11 1.7·10−5 8.5·105 -3.8·105 2.36 1
... ... ... ... ... ... ... ...

classes obtained from a finer p-box partition without increasing the number of inputs.

However, to compare the models’ predictions across the different alternatives, the same

3 intervals partition is used for to train this model.

The structure of the features takes the last CDM uncertain variables and the time

to the encounter plus the same variables of the previous CDMs included on the lag

window: #featRF,lag = (m + 1) ∗ (l + 1), where l is the lag window and l = 0 means

that only the last CDM is considered. In Table 8.20, an example of the samples with

l = 1 can be seen (note the last column is not used in this case architecture).

The same implementation, hyperparameters and loss function as in the previous

model are employed here.

LGBm with CDMs

The same approach as before is followed here, but using LGBm architecture instead.

The inputs (Table 8.20 without the last column) and output are the same. Thus, the

influence of the model can be also analysed, as a mid-step between the previous and

the next approaches.

The method was implemented using Python’s “LightGBM” library [Python, 2023],
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Table 8.21: Set of hyperparameters considered to select the best model
during the LGBm training.

Hyperparam. Values

n estimators {1, 2, 5, 10}
max depth {2, 7, 10, 15}
subsample {0.7, 0.8, 0.9}
colsample bytree {0.7, 0.8, 0.9}
boosting type {‘gbdt’,‘rf’}

following the same approximation as in the previous scenarios. The set of hyperparam-

eters considered in the search appears in the Table 8.21, with the rest of the argument’s

values set as default, with cross-entropy as loss function.

Autoregressive LGBm with CDMs

This approach follows a similar approach to the previous one, but instead, it uses

the previous class as a feature (all columns in Table 8.20). Due to the possibility of

combining numerical and categorical features in the input data, this alternative applies

a sort of autoregressive implementation, including the class to be predicted in the

previous time series instance as a feature (last column in Table 8.20).

To have a tabular structure on the input data, a lag window is also employed to

take the information from the last and the previous l CDMs, and additionally, the

class associated with those previous cases. Thus, the number of features is equal to

#featLGBm = m+ (m+ 1) ∗ l.

The aim of this autoregressive technique is to include the sequential character of

the inputs, expecting that the classification is influenced by the incremental amount

of information received with the new CDMs. With this approach, it is expected to

recover some of the information from previous CDM lost with the lag window, since

the previous class implicitly contains information from the whole sequence.

The same implementation as the previous case is followed, using Python’s “Light-

GBM” library [Python, 2023] and the hyperparameters in Table 8.21.
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Figure 8.2: Multi-channel time series synthetic sample for the transformer,
including padding and the padding flag.

Transformers with CDMs time series

Finally, this last proposal implements the Transformer architecture. to classify the time

series of CDMs. As in the two previous implementations, from an event with N CDMs,

N−1 samples are extracted (at least two samples are required to perform the proposed

methodology). However, in this case, each sample is compounded by a set of eight

time series corresponding to the five uncertain variables, the time to the encounter, the

previous class (categorical) and a padding flag. To have regularly spaced time series

of equal length, the samples in the time series are sorted according to their index on

the series, including the time as a feature (time to the encounter), and the length of

the time series is set equal to the maximum length, filling shorter times series with a

padding value. The padding flag indicates if the value comes from the CDM or is a

filling value. The variables are normalised before being fed to the network. Fig. 8.2

includes an example of a normalised sample.

The model is implemented using Python’s “tsai” library [tsai, 2023]. The models

are compared using the F2-score metric. For the optimiser, Ranger is used, an extension

of the Adam optimiser [Stevenson et al., 2022a]. Weights and momentum are instanti-
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Table 8.22: Set of hyperparameters considered to select the best model
during the transformer training.

Hyperparameters Values

depth {1, 2, 3, 4, 5}
attn dropout {0, 0.1, 0.2, 0.3, 0.5 }
res dropout {0, 0.1, 0.2, 0.3, 0.5 }
wd {0, 0.1, 0.3}
n epochs {10, 25, 50}

ated as default, the loss function used is also cross-entropy and a variable “one-cycle”

learning rate is applied. The hyperparameters modified appear in Table 8.22.

Training and hyperparameter search

The same hyperparameters search process is performed on each architecture while train-

ing. The process performs a random search on the space defined in Tables 8.19, 8.21

and 8.22 for each architecture. The model defined by the selection of hyperparameters

is trained on the training set and evaluated on the test set. The process is repeated

for several combinations of hyperparameters, and the best model is selected as the one

performing better on the test set. Due to the class imbalance and the higher impor-

tance of avoiding miss encounters than the false alert, the performing metric used is

the average F2 score, F2,

F2 =
ΣN
i F2,i

N
, F2,i =

5 · precisioni · recalli
4 · precisioni + recalli

, (8.8)

being N the number of labels. For the architectures using a lag window, the best model

for a different window length is saved for further analysis in the next section.

8.3.3 Results

This section compares the different models’ performance across the different databases,

after having been trained on the synthetic database and in one real database. Table D.3

in Appendix D shows the hyperparameters of the best model for each technique in both

cases.
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Table 8.23: F2-score of the best model of each architecture trained on the
synthetic set. Upper-tier, models evaluated on the corresponding test set
(synthetic on left, real on right), lower-tier, models evaluated on the real
dataset not used for training. In bold, the model with the highest overall
F2-score on each database. Underlined, the best F2-score by class.

Overall Cl. 0 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5

RF interv. (test set) .854 .902 .947 .868 .841 .805 .873
RF CDMs (test set) .748 .780 .933 .820 .798 .803 .581
LGBm CDMs (test set) .759 .788 .930 .766 .798 .774 .449
LGBm (test set) .879 .916 .948 .883 .859 .838 .847
Transformer (test set) .881 .873 .970 .909 .894 .830 .824

RF interv. (real) .523 .079 .024 .009 .823 .975 .958
RF CDMs (real) .270 .015 <.001 .043 .459 .766 .599
LGBm CDMs (real) .403 .020 .003 .008 .830 .915 .806
LGBm (real) .601 .672 .026 .016 .907 .903 .950
Transformer (real) .302 .240 .005 .101 .581 .445 .536

Training on synthetic database

Table 8.23 shows the performance of the different approaches trained on the synthetic

set both evaluated on the synthetic test set (upper tier) and the real database (lower

tier). The prediction on the synthetic test set, with similar characteristics to the

training set, presents a generally good F2 score, both overall and by classes. RF

with intervals has good prediction capabilities since the inputs are some steps closer

to the output in the underlying model. However, the autoregressive LGBm and the

Transformer architectures (which also include the previous class among the inputs)

match or improve those results, even though they are fed directly with the uncertain

geometry. Regarding the score by class, there is a slightly better score in the more

populated categories, although good prediction capabilities are obtained across the

classes. In any case, the synthetic database does not present a sharp imbalance trend.

Nevertheless, it seems that an equally distributed and enough populated database could

level those scores.

However, the extrapolation capabilities to a real database do not provide good

results. The autoregressive LGBm still provides the best results, with better extrapo-

lation capabilities, although with a score some points below the previous case. While
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the populated classes still score well, the scarcely populated categories are not well

predicted. This pattern is repeated across all the methods, including also the RF with

intervals, despite the less complex model tried to be replicated. This method scores

especially well on labels 4 and 5, but very poorly on the others. Surprisingly, the trans-

former does not extrapolate well the predictions from the virtual database to the real

one. Such an imbalanced database, with very few high-risk cases and so differently

distributed from the training set is, at least partially, behind those poorer results. It

is possible, given the score in the synthetic database, that a more equally distributed

database should provide better scores in the lower database. Regarding the scarcity of

real high-risk data, a potential approach is to evaluate the model during training in a

validation set simulating the distribution on the real set, so it prioritises models scoring

highs on such databases.

From this analysis, it was observed that the length of the lag window has little

influence on the performance, even though it adds more information to the model. In

Fig. 8.3, it can be seen that the score is almost indifferent to the lag step. For the

RF and LGBm using the CDMs (green and red, respectively), the score both in the

synthetic validation set and in the real set is almost constant. The LGBm has slightly

better performance and better extrapolation capabilities, but they provide very similar

results. However, when observing the autoregressive LGBm score, it can be seen that

adding a 1-step lag window significantly increases the performance, but longer windows

have no effect. This allows the conclusion that including the previous class is what

improves the model prediction capabilities.

Training on real database

This section presents the same analysis, but having trained the model on one of the

real databases. On Table 8.24, the performance of the models on the validation set of

the real database (upper tier) and in the whole dataset of the other real mission (lower

tier) are shown.

The performance of the validation is greatly affected by the imbalance in the dataset.

The overall F2 score is lower than when trained on the synthetic database, affected by
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Figure 8.3: Overall F2 score as a function of the lag window length for the
different architectures. Solid: train in synthetic evaluated on the synthetic
dataset; dashed: train in synthetic evaluated on the real dataset.

the poor performance in the less populated categories, especially Class 1 and Class 2,

where some methods are not able to predict any sample. Nevertheless, the autoregres-

sive LGBm and the transformer are the better models, performing well along all the

classes (including Class 0), except the least populated. More interestingly, when com-

paring the performance of the models trained on the synthetic dataset and validated in

the real set, the performance is, in general, better for these two techniques, especially

the transformer.

When extrapolating the results to the other real dataset, the autoregressive LGBm

and the transformer perform also better than the other models. Although not achiev-

ing the same scores as when validating in the synthetic dataset due to the imbalance

character of the real set, they achieve almost similar results as when predicting on the

real test set. Moreover, the extrapolation capabilities of the transformer improve when

compared when training on the synthetic set, achieving good scores except for Class

2 (where is not able to predict any sample as the rest of the architectures). Again, a

better-distributed database for training is likely to improve scores on the less populated

categories.
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Table 8.24: F2-score of the best model of each architecture trained on one
of the real sets. Upper-tier, models evaluated on the corresponding test set
(synthetic on left, real on right), lower-tier, models evaluated on the real
dataset not used for training. In bold, the model with the highest overall
F2-score on each database. Underlined, the best F2-score by class..

Overall Cl. 0 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5

RF interv. (test set) .663 .637 .000 .731 .999 .998 .997
RF CDMs (test set) .509 .436 .000 .000 .954 .936 .924
LGBm CDMs (test set) .580 .000 .000 .000 .950 .935 .922
LGBm (test set) .640 .835 .434 .000 .949 .926 .924
Transformer (test set) .732 .807 .294 .000 .961 .935 .981

RF interv. (real) .566 .578 .000 .000 .998 .999 .995
RF CDMs (real) .489 .250 .000 .322 .944 .930 .908
LGBm CDMs (real) .441 .000 .000 .000 .944 .931 .907
LGBm (real) .579 .824 .098 .000 .944 .923 .910
Transformer (real) .618 .549 .898 .000 .914 .949 .963

Training on real database

Table 8.25 shows a comparative of the computational time saved by the different AI

approaches with respect to using the model-based approach for a case with 15 CDMs

and 3 α-cuts. It can be seen that proposed approaches save time by skipping specific

steps: the derivation of the p-boxes (except for the RF with intervals) and the compu-

tation of the Pl and Bel curves. The required time is one or two orders of magnitude

smaller when using the ML approaches directly with the sequences. Note that, if in-

creasing the number of α-cuts, the time required for the computation of Pl and Bel

increases significantly (in the table, indicated in parenthesis), while the classification

with AI-based approached remains indifferent.

8.4 Chapter summary

This chapter introduced the use of ML methods to enhance the capabilities of the

robust decision-making system proposed in previous sections of this work. The objec-

tive of those ML models is to make the automation of the STM system more likely

thanks to their capacity to learn from data, improving capabilities when more available

information, and speeding up the tasks by providing faster surrogate models.
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Table 8.25: Computational time (in seconds) for robust CARA with and
without using AI techniques.

p-box Pl/Bel Class. Total

No AI 75.4 2.37 (∼150) 0.02 78.1 (∼225)
RF inter. 75.4 - 0.06 75.8
RF CDMs - - 0.15 0.16
LGBm CDMs - - 0.03 0.03
LGBm - - 0.03 0.03
Transf. - - 0.07 0.08

Several ML systems were proposed to predict the classification risk of the conjunc-

tion events affected by epistemic uncertainty, applying different ML techniques, being

RF and ANN the most successful. Good accuracy was obtained when trained and

validated on synthetic datasets. The proposed system was extended to cope with the

information provided as CDMs, a common practice with real operators. This allows as

well to try the models on datasets of real conjunctions. Although the performance was

reduced in this case, the results still suggest ML can be a useful tool for STM.

One important aspect of the training and validation process is the impact of the

datasets. Having varied examples within the datasets seems to improve notably the

results without the need to add complexity to the ML models. Balanced datasets

proved to be necessary for achieving good-quality predictions, although this is not

always the case on datasets of real scenarios. Related to this, the build of realistic

datasets representative of the real scenarios is a challenging process. However, the

potential benefits (more populated and balanced datasets with a wider range of inputs)

compensate for the difficulties.
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Multiple encounters

The content of this chapter was partially published in:

Sánchez, L. and Vasile, M. (2021), “Constrained optimal collision

avoidance manoeuvre allocation under uncertainty for subsequent

conjunction events”, 72nd International Astronautical Congress; [Sánchez

and Vasile, 2021b]

Vasile, M. and Sánchez, L. (2022), “Robust optimisation of coordinated

collision avoidance manoeuvres in large constellations”, 11th International

Workshop on Satellites Constellations and Formation Flying. [Vasile and

Sánchez, 2022]

This chapter addresses the multiple-encounter decision-making issue by extending

the method proposed in Chapter 6. If avoiding a single encounter already requires some

decision-making that may be problematic, the challenge increases when the avoidance

strategy involves more than one satellite, more than one encounter or both situations

simultaneously. The number of alternatives and the criteria to be taken into account

will increase in such situations. Thus, the Multi-Criteria Decision-Making (MCDM)-

based approach proposed then can support operators in taking the best alternative in

the multiple-encounter event.

The rest of the chapter is structured as follows. In Section 9.1, a definition of a

multiple-encounter event and an explanation of why this should be a concern in the

near future is presented. Section 9.2 proposes the use of the MCDM approach to deal
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with subsequent encounters faced by a single satellite (One-vs-Many), that is, when

an operational satellite has to avoid more than one encounter, either with the same or

different objects. A numerical example is presented, showing different scenarios that

will affect the best approach. In Section 9.3, the MCDM is adapted to cope with

encounters affecting constellations. More specifically, a situation where more than one

satellite need to manoeuvre (Many-vs-One or Many-vs-Many, depending on the number

of secondary objects) and the constellation configuration may be compromised. Finally,

the chapter finishes with the main remarks in Section 9.4.

9.1 Multiple encounters

Space is getting more crowded in recent years with the exponential growth of the com-

mercial market, the appearance of very small and accessible satellites and the emergence

of mega-constellation [ESA, 2023b]. The so-called New Space is a reality and, together

with new opportunities, it will bring new challenges [Muelhaupt et al., 2019]. One of

those new problems to be faced by future operators is the occurrence of multiple en-

counter events [Masson et al., 2022,Kim et al., 2012]. These events involve one or more

satellites that need to avoid several encounters. Although they do not present a current

issue, which is reflected in the few studies on this topic [Duncan et al., 2011,Kim et al.,

2012,Masson et al., 2022,Arias et al., 2023], a more populated space will increase the

number of conjunction alerts [Muelhaupt et al., 2019], which will necessarily increase

the chances of having more than one encounter within the operator time horizon.

A multiple-encounter can be defined as a series of successive close conjunctions

between one satellite and one or more space objects, either operational satellites or

pieces of space debris, within a given time horizon. In this context, the individual

encounters involved in the multiple event may be classified as:

- Primary encounter, the first conjunction between Object A (e.g. operational

satellite) and Object B (e.g. another satellite or a piece of space debris).

- Secondary encounters, the subsequent conjunctions between Object A and Object

B.
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- Tertiary encounter, an encounter between Object A and Object C (e.g. another

satellite or piece of space debris) taking place after the primary encounter.

For the sake of clarity on the methodology and without losing generality, in the rest

of the analysis, only secondary encounters were considered, and more precisely, two-

encounters events (that is, one secondary event). Nevertheless, the method can be

applied without any modification for more than one secondary event and is easily

extended to cope with tertiary encounters.

From a different perspective, also affecting the New Space context, a constella-

tion operator may face situations where more than one of its satellites is involved

in an encounter. This multiple-encounter event affecting the constellation creates a

more complex scenario than the single satellite one due to the effect on the constella-

tion geometry, and thus, the provision of services [Petit et al., 2021]. In this case, a

multiple-encounter is defined as an event, given a time horizon, where more than one

encounter has to be avoided by the constellation, either by a single satellite or more

than one satellite, affecting its overall configuration [Ayala Fernández et al., 2021]. The

encounters may be caused by a single external object (operational satellite or piece of

space debris) or by several objects.

Under this definition, situations when several satellites have to manoeuvre almost

at the same time are now contemplated as well. Considering that the constellation

service is optimally delivered when the satellites keep the nominal configuration of the

constellation [Stoll et al., 2011,Ayala Fernández et al., 2021], this situation introduces a

greater disruption in the relative position among satellites than the single satellite sce-

nario, especially if taking into account the returning strategies to recover the adequate

configuration.

In any case, both scenarios, the One-vs-Many and Many-vs-One, fall within the

collaborative problems defined in Chapter 6. In the case of a single satellite with a

single decision-maker, by definition, it is a collaborative scenario. In the case of the

constellation, despite involving several satellites, there is only one supra-agent looking

for the most common beneficial outcome, which represents a collaborative case as well.

Only, if the external object was an operational satellite, this scenario could be classified
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as a non-collaborative one, a situation not considered in this work. Thus, MCDM

techniques can be used to support decision-makers in the multiple encounters events

treated in this work.

In the next lines, the MCDM-based system presented in Part I is extended to deal

with these more complex scenarios. Note that only impulsive manoeuvres are consid-

ered. Although the application of the MCDM methodology on the Low-Thrust (LT)

case would not be altered, the computation of the alternatives (avoidance and return-

ing strategy) would require some modification with respect to the approach presented

in the next sections, especially in the referring to the returning strategy or strategies

avoiding more than one encounter simultaneously.

9.2 Subsequent encounters

This section applies the MCDM-based method to provide robust decision-making in

Conjunction Assessment Risk Analysis (CARA) to deal with subsequent encounters

faced by a single satellite.

9.2.1 Avoidance strategies

Several different strategies can be carried out to avoid the encounters:

• Single manoeuvre - single encounter avoidance (Strategy A). This approach only

addresses one of the encounters (e.g. the closest in time, the one involving a

higher risk), and computes the robust optimal manoeuvre to avoid it, leaving the

reduction of risk on the other encounters as the secondary result of the manoeuvre.

It presents the advantage of simplifying the computation and requiring fewer

manoeuvres to be implemented (saving the associated risk of the execution of the

manoeuvres), although it has the risk of not reducing enough, or even increasing,

the risk associated with the not avoided event. The optimal impulse would be

computed by solving Eq. (5.18), where Υ is composed only for the family of

ellipses of the conjunction considered.

• Single manoeuvre - multiple encounters avoidance (Strategy B). This strategy
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takes advantage of the reduction of cost and risk associated with the Collision

Avoidance Manoeuvre (CAM) due to the lower number of manoeuvres (only one)

while minimising the risk of all the encounters simultaneously. Assuming all the

encounters involved the same pair of objects, their uncertainties are correlated

and they can be added together. Thus, the set Υ is now constituted by the set of

families of all the encounters, increasing in size accordingly. The solution of the

process is a manoeuvre that optimises the worst-case scenario of the combined

event, presenting the additional advantage of being robust. However, the impulse

may not be optimal from the point of view of each encounter: the worst-case

scenario of each encounter after executing this proposed manoeuvre may present

a higher Probability of Collision (PoC) compared to the separate optimisation of

the individual conjunctions (next strategy).

• Multiple manoeuvres - multiple encounters avoidance (Strategy C ). This strategy

consists of implementing an individual manoeuvre for each of the encounters.

The main advantage is that each encounter is optimised individually, overcoming

the disadvantages of the previous approaches. However, it introduces some chal-

lenges: more than one manoeuvre is required (with the associated execution risk),

additional cost (both for the CAM and for the time out of normal operation),

more optimisation runs required... To obtain the optimal impulse, the process

is different for the primary encounter than for the subsequent encounters. The

impulse for the first encounter is obtained by solving Eq. (5.18). For the next

conjunction, the new relative position after executing the previous manoeuvre

has to be obtained, which will modify the encounter geometry and the PoC with

respect to the unperturbed scenario. Once the new geometry is obtained, the

optimal CAM is obtained by solving again Eq. (5.18). Note that in this work, if

choosing this strategy, the satellite is assumed not to return to the original orbit

after all the close encounters were avoided.

In case more than two encounters are involved in the event, a combination of the

previous strategies can be also possible (for example: avoiding two encounters with

a single manoeuvre and the third one with a dedicated one). This situation will be
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necessary if one or more of those encounters involves a third object.

In addition to the avoidance strategies, one could consider the returning strategy.

Assuming the satellite is not returning to the original orbital after all events have

passed, the returning strategy to the nominal orbit should present small differences

among alternatives compared to the other variables (both in terms of cost and risk).

Thus, no returning strategy is considered in this case. However, it will be of major

importance in the following scenario (Section 9.3).

The combination of avoidance strategies with the manoeuvre execution position

will generate a set of alternatives from which the operator will have to select the most

appropriate one according to the mission’s needs. For example, the operator may need

to discern between a late single strategy manoeuvre avoiding the riskiest encounter,

an early manoeuvre optimising both encounters simultaneously, an early first manoeu-

vre to avoid the first encounter with a late manoeuvre to avoid the second one, or

two late manoeuvres to avoid each of the encounters separately, among many others

possibilities. The right alternative may depend on the risk the operator is willing to

assume (both on the encounter and in the CAM execution), the mission’s lifespan mo-

ment, the remaining propellant, the cost associated with implementing manoeuvres...

Thus, MCDM techniques can be used to rank the alternatives, provided the criteria

and weights are defined.

Certain strategies may create incompatibilities between the manoeuvres to avoid

each encounter. For example: avoiding a second encounter by manoeuvring earlier than

the previous one takes place may lead to an increase in the risk of that first conjunction

or conflict with the strategy to avoid it. Thus, the system has to take into account

certain constraints related to the geometry of the problem. Associated with this, other

operational constraints may be desired by the operators (operational constraints), which

will be similarly treated by the system. For example, not executing manoeuvres in the

last orbits (to have time to check the right upload of the commands or having an extra

opportunity with an additional pass), avoiding certain regions of the orbit (eclipse areas)

or certain times (avoid not-working hours), or exclude certain directions (protection of

certain sensor, only tangential manoeuvres), among other considerations.
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9.2.2 Risk assessment

In the following, an example of how to use MCDM to support operators in the decision-

making to deal with subsequent encounters is presented. Two scenarios are proposed in

this example. In both cases, two objects are facing two subsequent encounters between

each other. One of the objects is an operational manoeuvrable satellite, while the

other has no manoeuvre capabilities (e.g. a piece of space debris or a small satellite).

The difference between the two scenarios is that in the first one (Example 1 ), the two

conjunctions take place in the same orbit region, while in the second case (Example

2 ), they occur on opposite sides of the orbit. In this example, Keplerian motion is

assumed on the propagation of the objects and their uncertainty, and the Normality of

the distribution is also assumed before and after the propagation.

Initial and encounter information

Having two space objects with the orbital elements at a specific epoch, state as initial

time, specified in Table 9.1, two scenarios are presented. Note: the secondary object

in Example 1 has a period five times greater than the manoeuvrable satellite.

Table 9.1: Nominal Keplerian elements at the initial time for the
subsequent-encounters scenario.

Variable Units Object 1 Object 2
(Example 1)

Object 2
(Example 2)

Semi-major axis (a) [km] 7,100.0 20,760.53 7,100.05
Eccentricity (e) - 10−5 0.658 10−5

Inclination (i) [rad] π/4 2/3π π/3
Right ascension asc. node (Ω) [rad] 0.0 0.0 π
Argument of perigee (ω) [rad] 0.0 0.0 π
True anomaly (θ) [rad] π/2 3.9723 π/2

The primary object is assumed to be perfectly known. The uncertainty on the

secondary’s initial position has two components: aleatory and epistemic. The aleatory

term is modelled with a 3D Gaussian distribution, expressed on the object’s <T,N,H>

reference frame: N (µtnh0 ,Σtnh0). The epistemic uncertainty is modelled using the

Dempster-Shafer theory of Evidence (DSt). Thus, the epistemic component is expressed
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with two interval-valued epistemic parameters: λ = [λµ,λσ] = [[λµ,λµ], [λσ,λσ]], such

that:

µtnh = µtnh0 + λµ (9.1a)

Σtnh =


σ2t0λσt 0 0

0 σ2n0λσn 0

0 0 σ2h0λσh

 . (9.1b)

The uncertain initial position of the secondary object can be defined as:

xtnh0 = N (µtnh0 ,Σtnh0 ;λ). (9.2)

Since DSt allows the inclusion of more than one source of information, in this example,

two equally reliable sources are assumed to provide conflict information. Thus, two

sets of epistemic parameters are provided. The values of the initial uncertainty for the

secondary object are shown in Table 9.2.

Table 9.2: Secondary object’s initial uncertainty. Aleatory uncertainty as
a 3D Gaussian distribution on the <T,N,H> reference frame. Epistemic
uncertainty with the epistemic parameters, λ1 and λ2, provided by two
sources of information.

Aleatory Units Example 1 Example 2

µtnh0 [km] [0, 0, 0] [0, 0, 0]
σ2t0 [km2] 0.12 0.052

σ2n0 [km2] 0.12 0.052

σ2h0 [km2] 0.12 0.052

Epistemic
(Examples 1 & 2)

Source 1 Source 2

λµi [km] [0.00, 0.01] [-0.53, -0.515]
λσi [1,4] [1/5, 1/2]

The nominal position is propagated for Tinter = 1 days, appearing some close

encounters. For the scope of these scenarios, a close encounter is defined when the

nominal relative distance between both objects is smaller than a selected threshold:

D ≤ D0 = 10 km. Since there are only two bodies involved, only primary and sec-

ondary encounters may occur. Thus, two encounters are detected in each scenario. In
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Example 1, the primary encounter is located at t1 = 34, 235 s from the initial time (5.75

revolutions for the primary satellite after the initial time) and the secondary encounter

at t2 = 64, 004 s (5 revolutions after the primary encounter for the operational satellite,

∆θ1,2 = 10π rad), with a nominal miss distance of D1 = 2.69 km and D2 = 1.33 km,

respectively. Both encounters take place at the perigee of the orbits. In Example 2,

the primary encounter occurs at 34,235 s from the initial time (5 revolutions for the

manoeuvrable object) with a relative distance of 3.73 km, and the secondary encounter

takes place at 66,981 s from the initial time with a relative distance of 1.84 km (5.5

revolutions after the first encounter for the primary object, ∆θ1,2 = 11π rad). In this

case, the primary encounter takes place at the perigee and the secondary encounter at

the apogee of the operational satellite’s orbit.

The initial uncertainty is propagated to the encounters using a Monte Carlo (MC)

run. From each set of distributions defined by each of the two sources of information, a

number of ellipsoids are drawn within the interval limits. Those ellipsoids are sampled

and each sample is propagated to the encounter times and projected on the respective

impact planes. In this work, the Normality of the distributions remains after the

propagation is assumed, so from each initial ellipsoid, an uncertain ellipse in the impact

plane is obtained. Since the primary object is assumed to be perfectly known, the

combined covariance matrix at the encounter is equal to the secondary object covariance

matrix. At each encounter’s impact plane, two sets of uncertain ellipses, associated with

each source of information, are obtained. These sets are modelled, according to DSt,

with intervals defined by the minimum and maximum values of each of the uncertain

variables within the set, which are fused using the Mixing rule [Ferson et al., 2003]

explained in Chapter 3. The uncertain variables are the miss distance and covariance

matrix elements, whose bounds are shown in Tables 9.3 and 9.4. From the intervals,

it is possible to obtain the Plausibility (Pl) and Belief (Bel) curves required for the

robust CARA analysis of the encounters.

Robust AI for STM Luis Sánchez Fernández-Mellado 247



Chapter 9. Multiple encounters

Table 9.3: Bounds of the two sources’ intervals for the uncertain variables
on the impact plane of the two encounters and bounds of the intervals of the
associated PoC for Example 1.

Variable Units Source 1 Source 2

Primary encounter

µξ [km] [-0.02948, 0.03158] [-0.01485, -0.09976]
µζ [km] [2.4001, -0.3924] [12.298, 13.497]
σ2ξ [km2] [0.01435, 0.04358] [2.045, 4.893]·10−3

σ2ζ [km2] [9.258, 39.255] [1.858, 5.009]

σξζ [km2] [-1.024 , -0.1559] [-0.1247, 2.983]
PC - [0.523 , 1.382]·10−4 [0.0, 10−13]

Secondary encounter

µξ [km] [-0.01978, 0.03996] [-0.09024, -0.06255]
µζ [km] [-4.282, -0.307] [24.537, 26.855]
σ2ξ [km2] [0.01301, 0.04937] [1.470, 3.907]·10−3

σ2ζ [km2] [34.391, 152.602] [6.898, 18.498]

σξζ [km2] [-2.103 , -0.279] [-0.172, -2.103]
PC - [2.523 , 9.152]·10−5 [0.0, 10−12 ]

Events classification

Once the uncertain relative geometry at each of the encounters is obtained, the decision-

making system introduced above (Chapter 3). Anything that categorised at least one

of the two encounters as Class< 3 would require the design of a CAM.

Assuming both sources are equally reliable, bpa1 = bpa2 = bpa = 0.5, and knowing

the time to the Time of Closest Approach (TCA) for both encounters, it is possible to

classify the event. Using the following values for the mission thresholds: PoC0 = 10−4,

T1 = 2 days, T2 = 4 days and the values derived from Chapter 7 for the epistemic

thresholds in both scenarios and in both the primary and secondary encounters, all of

the events are classified as Class 1. This means a CAM should be implemented to avoid

both conjunctions in both scenarios.
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Table 9.4: Bounds of the two sources’ intervals for the uncertain variables
on the impact plane of the two encounters and bounds of the intervals of the
associated PoC for Example 2.

Variable Units Source 1 Source 2

Primary encounter

µξ [km] [-0.02948, 0.03158] [-0.2405, -0.1936]
µζ [km] [-1.4605, 1.335] [12.457, 14.163]
σ2ξ [km2] [0.01311, 0.06118] [2.1843, 6.008]·10−3

σ2ζ [km2] [12.045, 53.657] [2.4137, 6.5185]

σξζ [km2] [0.3298, 1.6396] [0.0592, 0.1761]
PC - [0.574, 1.311]·10−4 [0.0, 0.0]

Secondary encounter

µξ [km] [0.0351, 0.1214] [-0.7497, -0.7172]
µζ [km] [-4.355, 0.9630] [21.840, 25.081]
σ2ξ [km2] [0.01559, 0.06119] [0.8778, 2.3635]·10−3

σ2ζ [km2] [4.360, 19.430] [8.735, 23.598]

σξζ [km2] [-3.288, -0.6823] [-0.1567, -0.0251]
PC - [2.453, 9.533]·10−5 [0.0, 0.0]

Alternatives

The alternatives are defined by the selected strategy and by the position of the ma-

noeuvres. Thus, each alternative on A is defined as:

A = [∆θm,n, δv̂n, δvn] | n = 1, ..., Nman, (9.3)

where ∆θm,n = θm,n−θc is the execution positions measured as the angular distance in

true anomaly with respect to the encounter they are avoiding (if only one manoeuvre,

it refers to the primary encounter); δv̂ is the direction of the manoeuvre expressed in

the satellite’s <T,N,H> reference frame; and δvn is the magnitude of the impulse, for

each of the required manoeuvres.

The optimal manoeuvres are obtained for the 9 revolutions before the encounter,

executed half an orbit before the encounter position in the orbit: Θm = {π, 3π, ..., 17π}

rad. The operator sets two constraints: if a single manoeuvre per encounter is executed,

the manoeuvre for the second conjunction cannot be executed after the first one is
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avoided (thus, θm,2 < θ1,2), and the manoeuvre cannot be executed during the last tow

orbits so that the operator keeps some time to confirm the correct preparation of the

CAM: θm,n > 6π rad.

A total of Nalt = 35 alternatives for Example 1 are obtained: seven from Strategy

A (one manoeuvre optimising the first encounter), 7 from Strategy B (one manoeu-

vre optimising the two encounters simultaneously), and 21 from the multi-manoeuvre

strategy or Strategy C. Alternatives are numbered so the first 7 alternatives correspond

to Strategy A, starting from the manoeuvre executed closer to the encounter, the next

7 correspond to the Strategy B also starting from the manoeuvre position closer to the

encounter, and the rest of the alternatives (Strategy C ) are numbered according to the

proximity of the first manoeuvre to the primary encounter and, when equal, according

to the proximity of the second manoeuvre to the secondary encounter. For the Exam-

ple 2, with the encounters taking place at the opposite sides of the orbit, Nalt = 42

alternatives are obtained (Fig. 9.2): 7 from Strategy A, 7 from Strategy B and 28 for

Strategy C, numbered in the same fashion as in Example 1.

Figs. 9.1 and 9.2 shows the robust optimal CAM in the object’s <T,N,H> reference

frame, for Example 1 and Example 2, respectively. Subfigure (a) includes Strategy A

and Strategy B, and (b) shows Strategy C. The shaded areas correspond to the excluded

constrained regions.

Strategy A is represented in Figs. 9.1a and 9.2a with the solid lines: red, blue and

green for the tangential, normal and out-of-plane components, respectively. In both

examples, a tangential manoeuvre to avoid the first encounters seems to be the optimal

solution. For Example 1, the impulse in the direction of the velocity (in most of the

cases), in Example 2, opposite to the velocity vector. Those two figures also include

Strategy B with dots. A very similar result is proposed when optimising both encounters

simultaneously, with an optimal CAM very close to the tangential direction.

Figs. 9.1b and 9.2b shows the manoeuvre proposed for the second encounter using

Strategy C. Each colour represents a manoeuvre position to avoid the first encounter

(the solid lines corresponding to Example 1 in Figs. 9.1a and 9.2a). The solid lines

correspond to the tangential component for the secondary encounter manoeuvre (the
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(a)

(b)

Figure 9.1: Alternative manoeuvres the multiple-encounter event in Ex-
ample 1 : (a) Strategy A and Strategy B ; (b) Strategy C.

other two components, in dashed and pointed-dashed lines, overlap at ∼ 0.0 m/s). For

the second encounter, the optimal manoeuvre seems to be also a tangential one, in the

same or opposite direction as the velocity vector depending on the case.

Figs. 9.3a and 9.4a show the evolution of the worst-PoC for single-manoeuvres

strategies. The solid red line shows the evolution for the primary encounter and the blue

solid line, the evolution for the secondary encounter worst-PoC when only optimising

the first conjunction (Strategy A). The black solid line shows the worst-PoC of the

combined encounter (Strategy B), while the red-pointed and blue-pointed line shows

the evolution of the worst-PoC for the first and second encounter, respectively, when
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(a)

(b)

Figure 9.2: Alternative manoeuvres the multiple-encounter event in Ex-
ample 2 : (a) Strategy A and Strategy B ; (b) Strategy C.

optimising the combined encounter. It can be seen that the combined encounter PoC

represent a sort of envelope for the individual encounters. Also, it shows that both

first and second avoidance strategies do not differ too much. More importantly, there

are differences between both examples: while in Example 1, where both encounters

take place in the same orbit region, a single manoeuvre seems to reduce the risk of

both of them, in Example 2, where encounters take place at opposite sides of the orbit,

optimising the first encounter has little effect on the second one.

Finally, Figs. 9.3b and 9.4b show the PoC of the secondary encounter for Strategy

C. Each colour on the solid line represents a different execution position for the first
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(a)

(b)

Figure 9.3: Effect on the risk reduction of the avoidance manoeuvres in
Example 1 : (a) Strategy 0 and Strategy 1 ; (b) Strategy 2.

encounter (Strategy A). The black dashed-solid line indicates the worst-PoC if only the

second event is avoided (no manoeuvre to avoid the primary encounter). The dots

indicate the PoC on the secondary when only one manoeuvre is executed: red dot for

Strategy A, blue empty dot for Strategy B. Again, it is possible to spot the difference

between the two examples, and how important is the position on the orbits of the

different conjunctions compounding the multiple-encounters event.

Criteria

The criteria used for this example are indicated in Fig. 9.5, classified as risk or cost.

More details on each criterion are given in the below:
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(a)

(b)

Figure 9.4: Effect on the risk reduction of the avoidance manoeuvres in
Example 2 : (a) Strategy 0 and Strategy 1 ; (b) Strategy 2.

• Probability of Collision Reduction (PoCR), introduced in Eq. (6.17), indicates

how much the worst-PoC was reduced with respect to the non-manoeuvre risk

(PoCR = 0) and the risk threshold (PoCR = 1). This Beneficial criterion

appears as many times as encounters occur in the event.

• Manoeuvre Risk (ManR). Since the manoeuvre execution poses an inherent risk,

this criterion prioritises those strategies that involve fewer manoeuvres. Since

the risk of the manoeuvre will increase each time one has to be executed, this

criterion was modelled as:

ManR = Nman/Nenc, (9.4)
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Figure 9.5: MCDM criteria, their classification and their quantification for
the One-vs-Many example.

where Nman is the number of manoeuvres required and Nenc is the number of

encounters on the event. While more manoeuvres than encounters are possible,

in this work, the manoeuvres are limited to a maximum of one per encounter:

ManR ∈ [0, 1]. It is a Non-Beneficial criterion.

• Manoeuvre Cost (ManC). The cost of the manoeuvre refers to the amount of pro-

pellant required, which is directly proportional to the magnitude of the impulse.

It is a Non-Beneficial criterion that follows the same definition as in Eq. (6.18).

However, due to the higher number of encounters per event, the definition is

modified so it follows Eq. (9.5), that is, the sum of the impulses of the strategy

is normalised with the maximum capacity of the thrust at each manoeuvre:

ManC =

Nman∑
n=0

δvn
δvn,max

. (9.5)

• Operational Cost (OpC). This criterion refers to the cost associated with placing

the satellite out of the nominal orbit, as modelled in Eq. (6.19). In this case,

since there is more than one encounter, it is assumed that the nominal operation

is not recovered until the last encounter is avoided. Thus, this Non-Beneficial

criterion is modelled as the arc-length the satellite is away from the nominal

position due to the manoeuvre, starting at the first manoeuvre, and normalised
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with the maximum arc-length among all the alternatives:

OpC =
∆θm,1

maxi(∆θm,1)
, i = 1, ..., Nalt, (9.6)

with Nalt the number of alternatives.

The Decision matrix is normalised using the maximum-linear model in Eq. (6.2) to

make all criteria Beneficial and ranging between zero and one.

In this example, the risk threshold for the CAM is PoC∗ = 10−6 for all the encoun-

ters. The magnitude of the manoeuvres is not optimised in Example 1, with a thruster

capacity of δv0 = 18 cm/s. In Example 2, the magnitude is optimised in case the PoC

threshold is reached with the maximum thruster capacity, being δvmax = 18 cm/s.

Results analysis

For each multi-encounter event example, two scenarios are proposed depending on the

operator’s priorities. In the first scenario, the operators give more importance to the

reduction of the risk of collision. This could be understood as the standard approach,

being the collision avoidance the priority. The second scenario prioritises the cost

associated with the action, both the manoeuvre and the operational cost. This may

represent a more critical situation where, for example, the spacecraft is running out of

propellant, or a critical operation is already planned (e.g. data downloading).

The different scenarios are defined by the weights assigned to the criteria, which are

detailed in Table 9.5. Since there are two encounters, the risk of each of them is included

as a different criterion. In Example 1, since the magnitude of each manoeuvre is the

same, the total cost of an alternative will be proportional to the number of manoeuvres,

as it does the manoeuvre risk. This means the two criteria are correlated and one can

be eliminated. In this case, Manoeuvre Risk (ManR) was excluded from the analysis.

Thus, the total number of criteria is Ncrit,1 = 4 for Example 1 and Ncrit,2 = 5 for

Example 2.

Having set the weights for the different scenarios, it is possible to obtain the De-

cision matrix from where to rank the alternatives for the different scenarios. To sort
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Table 9.5: Weight distribution for the two analysed scenarios, for Example
1 and Example 2.

Scenario PoCR1 PoCR2 ManR ManC OpC

Example 1

Risk priority 0.45 0.45 - 0.05 0.05
Cost priority 0.05 0.05 - 0.45 0.45

Example 2

Risk priority 0.4 0.4 0.1 0.05 0.05
Cost priority 0.05 0.05 0.1 0.4 0.4

the alternatives, some of the MCDM techniques and the methodology explained in

Section 6.1 are employed, in this example: Weighted Sum Method (WSM) [Kolios

et al., 2016], Weighted Product Method (WPM) [Kolios et al., 2016,Tofallis, 2014] and

TOPSIS [Kolios et al., 2016, Garćıa-Cascales and Lamata, 2012]. The ranking lists

for each scenario, using the different techniques, showing the top-10 alternatives, are

presented in Tables 9.6 and 9.7, for Example 1 and Example 2, respectively.

Table 9.6: Top-10 alternatives for the two scenarios using the three MCDM
methods considered for Example 1.

Scenario 1 Scenario 2

WSM WPM TOPSIS WSM WPM TOPSIS

6 6 6 8 8 8
13 13 13 1 1 1
7 7 7 9 15 9
14 14 14 2 16 2
32 32 32 3 17 15
31 31 31 17 20 16
30 30 30 15 19 17
35 35 35 16 18 3
33 33 33 10 13 10
34 34 34 6 6 11

Regarding the results from these tables, before comparing both examples, some

aspects should be noted. It can be seen from the tables that in all the scenarios but

one, the three methods agree on the best solution. If observing the top-10 results,

although the order may vary from one method to another, in general, the proposed
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Table 9.7: Top-10 alternatives for the two scenarios using the three MCDM
methods considered for Example 2.

Scenario 1 Scenario 2

WSM WPM TOPSIS WSM WPM TOPSIS

28 28 28 8 17 8
9 33 22 1 18 1
10 17 33 2 22 2
11 22 27 9 21 9
22 18 9 3 28 3
2 27 10 10 26 17
4 38 11 4 16 18
33 26 21 11 27 16
27 32 17 17 2 15
17 31 2 18 33 10

alternatives in each scenario are the same for WSM and TOPSIS. This is especially

true for Example 1. However, the WPM seems to provide slightly different alternatives,

other than the best alternative. Most likely, the discrepancy of this method is associated

with the appearance of zeros in the Decision matrix.

The proximity of the rankings can be compared using the number of common al-

ternatives ranked among the top-10 solutions. In Table 9.8, it can be seen how, in

fact, WSM and TOPSIS agree better (8, 9 and 10 common alternatives out of 10 pos-

sibilities depending on the scenario). Also, it shows that Example 1 presents a better

agreement among the top-10 proposed alternatives than Example 2. This suggests, as

expected, that Example 1 is easier to decide on since the manoeuvre executed for the

first encounter also helps the second one.

When comparing both examples, more differences can be found. When observing

Scenario 1 (more weight to the PoC reduction), the top-4 alternatives in Example

1 correspond to single-manoeuvres strategies, which proved to be beneficial for both

encounters. More specifically, they are proposed at the earliest positions where the

PoCWC < PoC∗ in both encounters: ∆θm,1 = 15π rad and ∆θm,1 = 17π rad (see

Fig. 9.3a), which is also beneficial for the risk reduction and the operational cost. Only

later, alternatives with two manoeuvres appear on the list (and in any case, involving

an early first manoeuvre, ∆θm,1 > 15π, which ensures a greater reduction of PoCWC,1).
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Table 9.8: Number of common alternatives ranked among the top-10 be-
tween pairs of methods.

Example 1

Scenario 1 Scenario 2

WSM-WPM 10 6
WSM-TOPSIS 10 9
WPM-TOPSIS 10 5

Example 2

Scenario 1 Scenario 2

WSM-WPM 5 3
WSM-TOPSIS 9 8
WPM-TOPSIS 5 4

However, in Example 2, the situation is not so simple. The best alternative is always

a two-manoeuvre strategy, but the rest of the top-10 alternatives are, more or less,

evenly distributed between single or multiple manoeuvres strategies (excluding WPM

ranking). This is related to, firstly, the fact that none of the proposed alternatives

achieved PoCWC,2 < PoC∗ and, secondly, that a single manoeuvre does not reduce

significantly the risk of the second encounter (Figs. 9.4a and 9.4b).

When prioritising the cost of the manoeuvre (Scenario 2), both examples behave

similarly. In fact, the 4 or 5 best alternatives in both scenarios with WSM and TOPSIS

are the same: a single manoeuvre executed close to the event. The first alternative is a

manoeuvre optimising the combined encounter executed at ∆θm,1 = 5π, which makes

sense: a single manoeuvre has a lower ManC associated, and late manoeuvres have

a smaller impact on the OpC. It is worth noting how the best alternatives differ

with respect to Scenario 1 and, in fact, do not accomplish PoCWC,1 < PoC∗ and

PoCWC,2 < PoC∗. This highlights the challenging environment operators face when

selecting the best strategy to deal with a multi-encounter event if conflict criteria are

considered.

Finally, it is interesting to note the similarity between the top-ranked alternatives.

For instance, in Scenario 2 of both examples, the top-ranked solutions are 8, 1, 9, and 2.

However, solutions 8 and 1 are single-manoeuvre approaches executed 2.5 revolutions
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before the encounter. The only difference is that Alternative 1 is computed optimising

only the first encounter and Alternative 8 optimising both encounters simultaneously

(and similar for alternative 2 and 9, but executing the manoeuvre 3.5 revolution before

the encounter): both alternatives propose a similar CAM, almost a tangential impulse

in the same direction, and the reduction of the probability of collision is also very

similar. The same conclusion can be reached with the top alternatives in Scenario 1 of

Example 1. Thus, it would be interesting to include a final step in the decision-making

system that filters the ranked alternatives according to the similarity to the solutions

listed immediately above regarding their proximity as proposed in Ramirez-Atencia et

al. [Ramı́rez-Atencia et al., 2020].

9.3 Multiple encounters within a constellation

This section addresses the other multiple-encounter situation analysed in this chapter:

several satellites belonging to the same constellation having to avoid some encounters

within a given time horizon, aiming to reduce the impact on the constellation configu-

ration.

9.3.1 Avoiding and returning strategies

In this case, the avoiding strategies are simpler, since each satellite is facing a single

encounter. Thus, the avoidance strategy consists only of performing a CAM at a certain

arc-length before the encounter, robustly optimised independently for each encounter

using Eq. (5.18).

However, in this scenario, the returning strategy of the satellites to the nominal

constellation configuration is more relevant. The returning strategy defines how the

satellites return to the original orbital plane, original orbit within the plane and orig-

inal slot within the orbit to keep the operational configuration. In this sense, the

final constellation strategy to avoid multiple encounters would be determined by the

individual satellite’s avoidance and, especially, the returning strategies.

Three different actions can be followed by the satellites after the conjunction. The
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first approach consists of not executing any further action after the encounter, which

means not recovering, in general, the nominal constellation configuration. However,

this strategy is simpler, faster and requires fewer manoeuvres. The other two options

involve executing one or more manoeuvres after the encounter to recover the constel-

lation configuration. The first of those two approaches proposes to execute a single

manoeuvre a certain distance after the encounter, so that the satellite returns to the

original orbit within the constellation, although not in the same slot as before the

avoidance manoeuvre. This is a compromise between the other two strategies in terms

of constellation configuration, number of manoeuvres and operational time. The final

alternative requires two manoeuvres, one to enter into a phasing orbit, and another

manoeuvre to recover the original slot in the constellation. This approach requires

more time and more manoeuvres (with the associated cost and risk), with the benefit

of not disturbing the constellation after the event.

Note that it could be possible to extend the last two alternatives by delaying the

recovering manoeuvres. For example, allowing for a natural delay in the avoidance orbit

so that a single manoeuvre would restore the satellite to the original slot, or allowing

more time between manoeuvres to ensure their correct execution, or coordinating both

satellites to recover simultaneously. Similarly, if the constellation is constituted by

a sufficiently small number of satellites (or the number of satellites involved in an en-

counter for a given time horizon is high enough), another strategy to recover the original

configuration could be to move the objects not affected by any encounter. Nevertheless,

for the scope of this work, and without losing generality, these last alternatives are not

considered, since the goal of the chapter is to show the methodology under this kind of

event.

To simplify the problem, in this section, in the second strategy, the recovery ma-

noeuvre is executed half a revolution after the conjunction, and in the third strategy,

the satellite enters the phasing orbit half a revolution after the encounter, and the last

manoeuvre is executed after one revolution in this transition orbit.
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9.3.2 Risk assessment

In the rest of the chapter, an example of a multiple-encounter event within a constel-

lation is presented. In the example, two manoeuvrable satellites belonging to the same

constellation experience a close encounter with a non-manoeuvrable external object

(e.g. a piece of space debris). Opposite as in the previous section, each encounter

is now addressed independently, since each of the operational satellites only faces a

single encounter. Different scenarios are presented depending on the criteria the oper-

ator wants to prioritise. Keplerian motion is assumed in the example, as well as the

Normality of the uncertainty.

Constellation

The proposed constellation is comprised of 60 satellites in a Walker constellation

[Walker, 1977], 60:18/3/1, distributed along three different orbital planes, following

a circular orbit of 7,100 km in radius. Each satellite is equipped with a 60-degree aper-

ture Nadir-pointing antenna. The objective of the constellation is to cover as much

area of the Earth’s surface as possible. Thus, the quality of the constellation configu-

ration can be measured as the total area covered by the satellites’ antenna (removing

overlapping of different satellites’ coverage). Two of the 60 satellites are involved in

the encounter, each belonging to a different plane. In the case where they belong to

the same orbital plane, the returning strategies may be slightly different.

Initial and encounters information

The external object is defined by the following orbital parameters at time t0:

q2(t0) = [6944.26, 0.031016, 141.04, 335.27, 116.15, 47.03] , (9.7)

in km and deg. The time interval of analysis is one day (Tinter = 86, 400 s). The first

encounter takes place at t1 = 43, 200 s from the initial time, and the second encounter

at t2 = 64, 800 s after t0.

The satellites of the constellation are assumed to be perfectly known. The state
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vector of the external object is affected by aleatory uncertainty, expressed in the object’s

< R, T,H > reference frame at t0:

Σ2,rth(t0) =


0.1042 0 0

0 0.5562 0

0 0 0.1392

 km2.

Assuming two sources (Source A and Source B) provide information about the

object, there are two components of epistemic uncertainty. It is quantified through an

epistemic parameter, that displaces the nominal miss distance or scales up and down

the covariance matrix providing a range of possible values (Section 9.2). This implies

that the uncertainty ellipse in the impact plane becomes a family of ellipses per source

of information. In this example, only the position covariance is assumed to be affected

by epistemic uncertainty:

λσ,A = [1, 4]

λσ,B = [1/5, 1/2]

Thus, the uncertain geometries of the encounters are defined by the intervals in

Tables 9.9 and 9.10, and the PoC is computed assuming the fast encounter hypothesis

using Eq. (3.1), with a Hard Body Radius (HBR) of 10 m. The information from both

sources is combined using the mixing rule introduced.

Table 9.9: Uncertain encounter geometry for the first encounter: upper
and lower bound of the components of miss distance and covariance matrix
in the impact plane.

Component Units Source A Source B

µξ [km] [0.02855,0.08342] [1.263·10−3,0.01529]
µζ [km] [-0.6327,0.7230] [-0.2317,0.2542]
σ2ξ [km2] [0.1208,0.4353] [0.02530,0.05332]

σ2ζ [km2] [140.265,505.054] [29.311,61.202]

σξζ [km2] [-14.586,-4.0744] [-1.8012,-0.8572]

If both encounters are classified as Class< 3, the MCDM starts to rank the possible

avoidance and return strategies. If only one encounter is classified within those classes,
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Table 9.10: Uncertain encounter geometry for the second encounter: upper
and lower bound of the components of miss distance and covariance matrix
in the impact plane.

Component Units Source A Source B

µξ [km] [-0.1065,5.970·10−3] [-7.415·10−3,8.664·10−3]
µζ [km] [-0.7490,0.6741] [-0.2729,0.2292]
σ2ξ [km2] [0.4547,1.2045] [0.07724,0.1487]

σ2ζ [km2] [154.274,560.924] [32.537,68.346]

σξζ [km2] [3.0797,10.613] [0.6213,1.3313]

the analysis would be similar, but with a much-reduced number of alternatives, since

only one satellite will be involved in the problem. The scenario would reduce to the

collaborative case in Section 6.3, adding the returning strategies to the alternatives.

Using the same basic probabilistic assumptions (bpa) and threshold values as in the

previous study case in this chapter (Section 9.2), both events are classified within the

high-risk categories, initiating the next analysis step.

Alternatives

The different alternatives are defined by the following parameters: the CAM execution

position for each satellite, θmi, and the strategy followed after the encounter, si: not

performing any further action and remaining in the new orbit (Strategy 0 or s0), exe-

cute one manoeuvre to return to the original orbit (Strategy 1 or s1), or execute two

manoeuvres to return to the original position within the original orbit (Strategy 2 or

s2).

For each of the satellites involved in a close encounter, the robust optimal CAM is

computed at 6 different positions. Including the alternative of not executing a CAM by

one of the satellites, the space of CAM execution position (measured as distance to the

encounter) for both objects is Θm,i = {0, pπ} rads, with p = 1, 3, .., 11. The magnitude

of the impulse was set fixed and equal to δv0 = 10 cm/s and the constellation threshold

is PoC∗ = 10−6.

In order to establish the alternatives, for each manoeuvre position there are three

possible returning strategies, except for θm = 0 which accepts only one strategy (s0).
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This makes 22 options per satellite. Thus, for each first encounter alternative, there

are 22 options for the second encounter, making a total of 484 alternatives. Each

alternative can be identified according to the indexes in Table 9.11, which follows the

rule in Eq. (9.8),

N = N1(M2 · S2 + 1) +N2

Ni =

 if ni = 0 → Ni = 0

else Ni = (ni − 1)Si + sij + 1

(9.8)

where N is the number of the alternative, Ni is the number of the alternative for the

ith encounter, ni is the argument of θmi in Θmi for the ith encounter, sij is the jth

returning strategy for the ith encounter, Si is the total number of returning strategies

considered for the ith encounter, and Mi is the size of Θmi.

Table 9.11: Alternatives as a function of the CAM execution position
(θmi), measured as the angular distance to the encounter, and the returning
strategy (sij).

N N1 θm1[rad] Strat. 1 N2 θm2[rad] Strat. 2

0 0 0 s10 0 0 s20
1 0 0 s10 1 0.5 s20
2 0 0 s10 2 0.5 s21
3 0 0 s10 3 0.5 s22
... ... ... ... ... ... ...
21 0 0 s10 21 6.5 s22

22 1 0.5 s10 0 0 s20
23 1 0.5 s10 1 0.5 s20
24 1 0.5 s10 2 0.5 s21
25 1 0.5 s10 3 0.5 s22
... ... ... ... ... ... ...
43 1 0.5 s10 21 6.5 s22

44 2 0.5 s11 0 0 s20
45 2 0.5 s11 1 0.5 s20
46 2 0.5 s11 2 0.5 s21
47 2 0.5 s11 3 0.5 s22
... ... ... ... ...
65 2 0.5 s11 21 6.5 s22

... ... ... ... ... ... ...
483 21 6.5 s12 21 6.5 s22
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Criteria

Once the alternatives are defined, the next step is to define the criteria to evaluate the

alternatives. Four criteria are proposed with information on all satellites involved in the

event and other two criteria per each encounter. Thus, in a multiple encounter event

involving two satellites of the constellation, a total of eight criteria will be considered:

• ManR, accounting for the total number of manoeuvres of all the satellites. This

quantifies the inherent risk of executing manoeuvres, assuming that the higher

the number of manoeuvres, the higher the risk, Eq. (9.4).

• ManC, the total cost of the avoidance action, measured as the sum of all δv, both

in the CAM and in the returning strategy, of all satellites:

δvq = Σi(δvi +Σkδv
−1
ik ), (9.9)

where k the returning strategy, i the encounter, and q the alternative.

• ManC per satellite. This criterion appears as many times as satellites of the

constellation require a manoeuvre.

δvqi = δvi +Σkδv
−1
ik . (9.10)

This criterion is included to quantify possible operational constraints as it can

be the limitation of manoeuvres in a single satellite due to propellant shortage

(e.g. at the end of life). It can be tuned according to the necessities with the

appropriate weight.

• OpC, measured as the total time of the operation, from the time the first manoeu-

vre is executed by any satellite to the moment the last manoeuvre is executed by

any satellite, Eq. (6.19). This criterion associated with the cost of the operation is

related to the time the satellites are out of the nominal orbit or unable to perform

routine activities.
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• PoCR for each encounter, quantified with Eq. (6.17), indicating the effectiveness

of the manoeuvre regarding the reduction of the risk.

• Constellation’s figure of merit. In this example, this quantity is modelled based

on the total area covered by the constellation assuming sensors mounted on each

satellite and pointing to Nadir. The figure of merit is defined as the integral,

over the considered interval of time, Tinter, of the difference in the Earth’s surface

covered by the constellation with respect to the nominal configuration:

CFMq =

∫ tf=t0+Tinter

t0

∥Aq(t)−A0(t)∥
AEarth

dt, (9.11)

where Aq(t) is the area covered at instant t by the constellation in alternative q,

and A0(t) is the area the constellation would cover in the nominal configuration

at the same epoch. Note that the area is made dimensionless by normalising with

the Earth’s surface, AEarth. Fig. 9.6 includes the difference in covered area as a

function of time for three cases: none of the satellites returning to the original

orbit (Fig. 9.6a), both satellites returning to the original orbit, but only one to

the original slot (Fig. 9.6b), and both satellites returning to the original slot

(Fig. 9.6c).

Fig. 9.7, at the end of the chapter, shows the behaviour of the parameters defining

the criteria as a function of the alternatives. This work uses two normalisation tech-

niques: the maximum-linear Eq. (6.2) and the vectorEq. (6.4) normalisation approaches

(Chapter 6).

Results analysis

Seven different subscenarios are studied in this example. Each of those scenarios gives

more importance to one or more criteria by assigning different relative weights distribu-

tion (Table 9.12). Subscenario 0 weights all criteria equally, Subscenario 1 gives more

importance to the safety of the satellites (PoCR1 and PoCR2), Subsenario 2 prioritises

the manoeuvre cost reduction (ManC), Subscenario 3 focuses on keep the constella-

tion configuration and Subscenario 4 gives more importance to OpC. The other two
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(a)

(b)

(c)

Figure 9.6: Difference in Earth’s surface covered between the avoidance
case and the nominal configuration. (a) None satellites returned to the
original orbit. (b) Both satellites returned to the original orbit, only one to
the original slot. (c) Both satellites return to the original slot.
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subscenarios are combinations of some of the previous ones: Subscenario 5 prioritises

the service disruption, that is, the configuration of the constellation and the operation

cost, and Subscenario 6 the sustainability of the service: the safety of the satellites

(PoCR1 and PoCR2) combined with the configuration of the constellation.

Table 9.12: Weight distribution along the criteria for the different subsce-
narios.

Subsc. ManR ManC ManC1 ManC2 OpC PoCR1 PoCR2 Const.

0 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
1 0.1/6 0.1/6 0.1/6 0.1/6 0.1/6 0.45 0.45 0.1/6
2 0.1/7 0.9 0.1/7 0.1/7 0.1/7 0.1/7 0.1/7 0.1/7
3 0.1/7 0.1/7 0.1/7 0.1/7 0.1/7 0.1/7 0.1/7 0.9
4 0.1/7 0.1/7 0.1/7 0.1/7 0.9 0.1/7 0.1/7 0.1/7
5 0.1/6 0.1/6 0.1/6 0.1/6 0.45 0.1/6 0.1/6 0.45
6 0.1/5 0.1/5 0.1/5 0.1/5 0.1/5 0.3 0.3 0.3

The normalised alternatives evaluated on the criteria are sorted usingWSM, nWSM,

WPM, TOPSIS (Chapter 6). Each combination of MCDM method with normalisation

technique (eight in total) provides a different ranking for the subscenarios. Table 9.13

provides the top 5 alternatives for each of the eight rankings for Subscenario 0.

Table 9.13: Top 5 alternatives in Subscenario 0 for the 8 combinations
of MCDM methods and normalisation techniques along with the combined
ranking with gtop = 5.

WSM nWSM WPM TOPSIS Combined
Linear Vector Linear Vector Linear Vector Linear Vector

0 22 22 41 41 41 414 65 41
22 41 41 42 42 42 417 87 42
44 42 42 63 63 63 477 351 63
88 63 44 64 64 64 480 417 64
110 64 63 85 85 85 483 483 22

Since each combination of normalisation and MCDM techniques may lead to a

different ranking of the alternatives, it is possible to end up with 8 different best alter-

natives. Those sorted lists can be combined using the following approach. Alternatives

appearing among the top of the ranking for several combinations of MCDM and nor-

malisation techniques seem to generate more consensus than an alternative appearing
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as the best alternative, but also in one ranking (and not showing in the top position for

other combinations). Thus, the combination method counts how many times each al-

ternative appears in the gtop-top values of all the rankings, and sorts those alternatives

according to the number of appearances. Note that the value of gtop may influence the

final combined ranking. The last column of Table 9.13 includes the combined ranking

for Subscenario 0 with gtop = 5. The combines rankings, with gtop = 5, for all the

subscenarios appears in Table 9.14.

Table 9.14 includes the top-5 alternatives for the seven subscenarios already having

combined the eight rankings with gtop = 5.

Table 9.14: Top 5 alternatives in each subscenario with gtop = 5.

Subsc. 0 Subsc. 1 Subsc. 2 Subsc. 3 Subsc. 4 Subsc. 5 Subsc. 6

41 85 0 44 0 22 63
42 41 1 66 22 44 64
63 42 41 0 44 66 85
64 63 42 2 88 0 86
22 64 64 3 66 110 65

In the rest of the section, an analysis of the results is provided.

• Subscenario 0: Criteria equally weighted. Basically, it is an equilibrium of crite-

ria, not giving as much information as the rest of the subscenarios. The preferred

alternatives correspond to situations where the first satellite manoeuvres 0.5 rev-

olutions before the encounter (θm1 = 0.5 rad) without returning, s1 = 0, and the

second satellite moves at θm2 = 6.5 rad, with no returning manoeuvre, s2 = 0

(alternative 42), or returning also to the original orbit, s2 = 1 (alternative 43).

The equivalent alternatives, but with the first satellite returning to the original

orbit are also well-ranked (alternatives 63 and 64).

• Subscenario 1: Importance given to PoC. The preferred options are a combination

of late manoeuvres in the first encounter and early manoeuvres in the second one:

second satellite performing the manoeuvre at θm2 = 6.5 rad, without returning

manoeuvre, s2 = 0, or returning to the original orbit, s2 = 1, with Satellite A

manoeuvring late, θm1 = 0.5 rad, without difference among the returning criteria:
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s1 = 0 first (alternatives 41 and 42), s1 = 1 later (alternatives 63 and 64) and

s2 = 2 afterwards (alternatives 85). This combination of CAM execution position

provides the smallest PoC for both encounters, minimising other criteria such as

time of operation, the number of manoeuvres or the total δv required.

• Subscenario 2: Importance given to manoeuvre cost. This is the only subscenario

presenting results more challenging to interpret. For the first encounter, in gen-

eral, the CAM of the top alternatives presents a lower δv, which is not the case

for the second encounter. Overall, the alternatives are within the lower range of

total δv, but they are not the lowest. This could be due to the (small) influence

of other criteria: if some of the other criteria, although with a small weight, com-

monly preferred an alternative with a slightly higher δv, it can explain why not

just the alternatives with the lowest total impulse magnitude are selected. In any

case, the preferred alternative is no satellite manoeuvring (alternative 0) or only

the second one doing so the closest to the TCA, θm1 = 0.5 rad, without returning

strategy, s1 = 0 (alternative 1). The other strategies (41, 42, 64) are associated

with alternatives with the first satellite manoeuvring late (θm1 = 0.5 rad) and

the other performing the CAM early (θm2 = 6.5 rad).

• Subscenario 3: Importance given to constellation configuration. The preferred

alternatives are those with either no manoeuvre by any satellite: alternative 0

(obviously, since there is no disruption of the constellation), or where there is

only a CAM in one encounter, with the CAM executed close to the encounter

(less disruption of the constellation configuration), with both situations: return-

ing to the original position (no further disruption of the constellation) or not

returning to the original orbit (but, due to the late CAM, the disruption after

the encounter is small): alternatives 2 and 3 when manoeuvres the satellite in the

second encounter and alternatives 44 and 66 when the CAM is only performed in

the second encounter.

• Subscenario 4: Importance given to the time of operation. The preferred alter-

native is not manoeuvring (alternative 0) and, otherwise, only manoeuvring for
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one encounter (the first one), as close to the TCA as possible. For the top al-

ternatives, the time of the operation is restricted from half a period (alternatives

22, 44, 66) to a period and a half (alternative 88), essentially. The alternatives

where only the other satellite manoeuvres do not rank as high, probably due to

the smaller reduction of probability.

• Subscenario 5: Importance given to constellation configuration and time of oper-

ation. The preferred options are those shared by subcenario 3 and 4. The ma-

noeuvre is executed only for one encounter (again, the first one), or even for none

of the encounters (alternative 0). The CAM is executed close to the encounter

(θm1 = 0.5 rad for alternatives 22. 44, 66 and θm1 = 1.5 rad for alternative 110).

These alternatives require less operation time and less disruption of the constel-

lation configuration, and in all of them, the satellites follow a returning strategy

to the original position.

• Subscenario 6: Importance given to constellation configuration and PoC. It is

similar to the subscenario 2, where PoC was prioritised. The preferred alternatives

are situations with the CAM is executed late for the first encounter and early for

the second one, where the minimum values of PoC are found (alternatives 63,

64, 85). However, there is a preference to execute a returning manoeuvre to the

original orbit (alternative 86) or to the original position (alternative 65), due to

the higher weight on the constellation criteria than in subscenario 2.

9.4 Summary

In this chapter, the multiple-encounter problem was addressed, proposing a MCDM-

based method to support operators in the decision on the best avoidance and returning

strategy.

Initially, a single-agent (single-satellite) scenario was analysed. When a single satel-

lite faces subsequent encounters, different avoidance strategies are possible (single or

multiple manoeuvres) and operational constraints may restrict the available possibil-

ities. The proposed MCDM method ranked the alternatives under different criteria
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importance. It showed the influence of the relative location in the orbit of the encoun-

ters on the best decision to be adopted.

Then, a supra-agent scenario (multiple encounters within a constellation) was ad-

dressed. In this situation, each satellite only faces a single encounter, but the constella-

tion operator treats the encounter as a multiple encounter. In this case, the returning

strategy becomes as important as the avoidance one. Also, the coordination between

the satellites may be crucial in the best way to act, depending on the importance of

some criteria, such as the constellation configuration.
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(d)

(e)

(f)

Figure 9.7: Value of parameters used to compute the MCDM criteria as
a function of the alternatives. a) PoC for the first satellite’s encounter, b)
PoC for the second satellite’s encounter, c) Total δv of the alternative, d)
total time of the operation, e) total number of manoeuvres, including CAM
and returning manoeuvres, for both encounters, e) constellation metric.
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Chapter 10

CASSANDRA

The content of this chapter was partially published in:

Greco, C., Sánchez, L. and Vasile, M. (2021), “A robust Bayesian agent

for optimal collision avoidance manoeuvre planning”, 8th European

Conference on Space Debris; [Greco et al., 2021]

Sánchez, L. and Vasile, M. (2021), “CASSANDRA: Computational Agent

for Space Situational Awareness aNd Debris Remediation Automation”,

Stardust-R – Second Global Virtual Workshop (GVW-II); [Sánchez and

Vasile, 2021a]

Sánchez, L., Stevenson, E., Vasile, M., Rodŕıguez-Fernández, V. and

Camacho, D. (2022), “An intelligent system for robust decision-making in

the all-vs-all conjunction screening problem”, 3rd IAA Conference on

Space Situational Awareness (ICSSA). [Sánchez et al., 2022a]

In the New Space context, Space Environment Management (SEM) should tend

towards automation [Muelhaupt et al., 2019]. The continuous growth of space objects,

with the associated rise in close encounters and fragmentation events, tracking cam-

paigns, or re-entry episodes, implies that the required workload may threaten the capac-

ity of current human-based systems. New technologies should be implemented, with Ar-

tificial Intelligence (AI) and Machine Learning (ML) being strong candidates [Bastida

Virgili et al., 2019,Mashiku et al., 2019].

Along this work, some theoretical developments towards automation were intro-

duced along with some applications to deal with Space Traffic Management (STM)
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problems. This chapter presents the integration of some of them to address more

complex scenarios compounding the foundations of the Computer Agent for Space Sit-

uational Awareness aNd Debris Remediation Automation (CASSANDRA).

In this chapter, the integration of those modules along with other modules pre-

viously developed to address specific STM tasks is presented. Thus, in Section 10.1,

the main concept of the system and its modules are introduced. Further details on

the modules used in the next sections are also included. Section 10.2 and Section 10.3

present two examples of the integration to address specific STM problems. Section 10.4

concludes the chapter with the final remarks.

10.1 CASSANDRA framework

CASSANDRA is an intelligent agent to support operators on SEM. The intelligent

agent is constituted by separate modules which carry out specific tasks. CASSANDRA

is responsible for automatically managing the relationships among blocks (input/output

interfaces, activate appropriate modules, data management) to ensure the complete

analysis of complex SEM events.

Two main drivers on the development of CASSANDRA are the use of AI and the

treatment of uncertainty. AI techniques are employed to extract information from

available data to make predictions in satellites’ states or space weather, but also for

supporting operators with decision-making aid tools or for modelling the long-term

evolution of the space environment. Regarding uncertainty, the aim is to widen the

perspective on its modelling by incorporating not only aleatory but also epistemic

uncertainty. While the former is inherent to the process and cannot be reduced, the

latter refers to the lack of knowledge of the process or the limitations on the modelling

of the phenomenon. It could be reduced if more information about the system was

available.
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10.1.1 Modules

A number of modules assist CASSANDRA in managing SEM events. All these blocks

can work as stand-alone tools without interacting with the other modules and pro-

viding the corresponding information: observations, conjunction alerts, object’s state

estimation, the outcome of a decision-making process... The aggregate value of CAS-

SANDRA is that it can coordinate the different modules to address more complex

problems. Fig. 10.1 shows the modular architecture of CASSANDRA. A brief descrip-

tion of each of the packages is provided below:

• Radar: Responsible for acquiring radar measurements of space objects and their

associated position uncertainty [Dı́az Riofŕıo et al., 2021].

• Automated Conjunction Screening or ACS: AI-based module for predicting

close encounters and generating conjunction alerts, both on the All-vs-All and

in the One-vs-All scenarios [Stevenson et al., 2021, Sánchez et al., 2019]. More

information can be found in the following sections.

• InteLlIgent Atmospheric Density modelling for space operations or IL-

IAD: AI-based system for space weather forecasting [Stevenson et al., 2022b] and

atmospheric density modelling [Manzi and Vasile, 2021].

• Anomaly detection: AI-based module for predicting unmodelled terms on the

dynamics [Manzi and Vasile, 2020a]. Potential uses can be the detection of ma-

noeuvres [da Graça Marto et al., 2023] or alterations on perturbing forces.

• Intelligent Decision Support System or IDSS: AI-based decision-making sys-

tem for supporting operators in the event of a close approach [Sánchez and Vasile,

2021c, Sánchez et al., 2024]. Its output may suggest the execution of an avoid-

ance manoeuvre or the acquisition of more observations. More information in

Chapters 3, 4 and 8.

• Robust State Estimation: Module for robust estimation and propagation of

state vector and uncertainty (aleatory and epistemic). It also includes func-
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tionalities for updating the state when receiving new observations [Greco et al.,

2021,Greco and Vasile, 2021]. More information can be found below.

• Collision Avoidance Manoeuvre or CAM: Module for computing the opti-

mal CAM accounting for aleatory and epistemic uncertainty [Sánchez and Vasile,

2023,Greco et al., 2021]. More information in Chapter 5.

• TITAN: Module responsible for the analysis of re-entry events, including the

estimation of re-entry time and on-ground risk [Falchi et al., 2017, Peddakotla

et al., 2022].

• Fragmentation: Module taking care of the fragmentation events of space objects

[Celletti et al., 2021].

Figure 10.1: Modules of CASSANDRA.

An important role of CASSANDRA is the management of the relations between dif-

ferent modules. Even if each of them is a complex tool, real scenarios will likely involve

the combination of more than one. For the automatic operation of CASSANDRA, it

is essential to set the allowed interaction between modules and specify the format of

the module’s inputs and outputs. It is important to note that, due to the modular

architecture of CASSANDRA, these relationship pathways may be altered due to the
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inclusion of new modules or new problems to be addressed.

In the next sections, two module integration proposals are presented to address

some STM problems combining some of the modules listed above. More specifically,

in Section 10.2, the Robust State Estimator (RSE), Intelligent Decision Support Sys-

tem (IDSS), Collision Avoidance Manoeuvre (CAM) are integrated to address a single

conjunction among two satellites whose position is known with uncertainty. Section 10.3

presents an extension of the previous example by adding the Automated Conjunction

Screening (ACS) module and the multi-encounter analysis capabilities of the system,

addressing the catalogue screening and the possibility of multiple conjunction events

within the catalogue. Before, a more detailed explanation of them is provided below.

10.1.2 Robust State Estimation module

The RSE is the module in charge of the precise state propagation, but more importantly,

of the uncertainty propagation and the state updating when observations are received.

This module is able to account both for aleatory and epistemic uncertainty. The RSE

provides, in addition to the propagated state, an estimation of the confidence interval

of the expected value of any parameters related to the encounter, like the uncertain

geometry or the probability of collision. These intervals can be used later by the IDSS

to make the decision or the CAM to compute robust manoeuvres. A comprehensive

explanation of the RSE can be found in [Greco and Vasile, 2021], where Dr. C. Greco

first introduced this work.

Robust formulation

To provide robust decision-making, the system should account for epistemic uncer-

tainty. In the next lines, a brief explanation is included of how the filtering problem of

propagation and observation update is reformulated to account for this type of uncer-

tainty.

The problem can be formulated as:

ẋ = f(t,x,d), (10.1)
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yk = h(tk,xk, εk), (10.2)

where Eq. (10.1) is the equation of motion, with t the time, x the state vector and

d ∈ R the model parameters, with initial conditions x0 = x(t0). Eq. (10.2) repre-

sents the noisy observations of the state vector at certain times tk, k = 1, ..,M , where

tk < tk+1 and εk the measurement noise. The initial condition, the model parameters

and the observations are modelled as random variables: X0, D, Ek, being x0, d and εk

specific realisation within their respective sample spaces: Υx0 , Υd and Υε. The prob-

ability density function (pdf) of the initial state and the dynamic model parameters

are represented by p(x0) and p(d), and the likelihood of the observations is expressed

as p(yk|xk). The transition distribution p(xk|xk−1) induced by the uncertainty in the

model parameters indicates how likely a realisation xk at tk is given the previous state

at tk−1. The pdf of the state at time tk given the observations acquired up to this time

is p(xk|y1:k), with k > 0, also known as posterior distribution.

If epistemic uncertainty is introduced, the pdfs are no longer precisely known, but

defined within imprecise sets, which can be expressed as:

Px0 =
{
p(x0;λ0) |λ0 ∈ Υλ0

}
,

Pxk|xk−1
=
{
p(xk|xk−1;λxk

) |λxk
∈ Υλxk

}
,

Pyk|xk
=
{
p(yk|xk;λyk) |λyk ∈ Υλyk

}
,

(10.3)

so that:

X0 ∼ p(x0;λ0) ∈ Px0

Xk ∼ p(xk |xk−1;λxk
) ∈ Pxk|xk−1

Yk ∼ p(yk |xk;λyk) ∈ Pyk|xk
,

(10.4)

for k = 1, . . . ,M , where λk = [λ0,λx0:k
,λy0:k ] ∈ Υλk

are the epistemic parameters for

the initial position, model parameters and observations, respectively. Similarly, the

epistemic distribution of the state at time tk given the observation up to that time (the
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posterior distribution) can be expressed as an imprecise set as well, as in Eq. (10.5).

Pxk
=
{
p(xk |y1:k;λk)|λk ∈ Υλk

}
. (10.5)

Robust Particle Filter

To compute the generic posterior Eq. (10.5), a two-steps Robust Particle Filter (RPF)

is executed iteratively from t0 to tk:

• uncertainty propagation: the posterior distribution at time tk−1 is propagated to

time tk through mapping

p(xk−1|y1:k−1) → p(xk|y1:k−1) . (10.6)

The resulting distribution is called prior at time tk. This propagation is performed

in two steps: the propagation of the polynomial representation of all possible

states at time tk as a function of the states at time tk−1, followed by the propa-

gation of particles by inexpensive polynomial evaluations. In this way, the cost

of the particle propagation, which is the most expensive step, is reduced [Greco

and Vasile, 2021,Greco et al., 2022];

• observation update: at discrete instances, the prior distribution is updated to

incorporate the last observation according to the unnormalised sequential Bayes’

rule

p(xk|y1:k) ∝ p(yk|xk) p(xk|y1:k−1) . (10.7)

The equation is evaluated for each particle to compute the corresponding weight.

In addition to uncertainty propagation, the RSE can provide the expectation on any

variable of interest, ϕ(x0:k), function of the propagated state (e.g. geometry variables

on the impact plane or probability of collision) with Eq. (10.8).

E [ϕ(X0:k) |y1:k;λ] =

∫
Υxk

ϕ(x0:k) p(xk|y1:k;λ) dx0:k (10.8)

Robust AI for STM Luis Sánchez Fernández-Mellado 282



Chapter 10. CASSANDRA

This expectation depends on the posterior distribution. Due to the epistemic uncer-

tainty, the expectation is not single-valued but interval-valued. The RSE is then able

to provide the upper and lower bound of the expectation as a function of the epistemic

parameters solving the optimisation problem in Eq. (10.9). This interval-valued expec-

tation of the desired variables resembles the interval bounds of the epistemic framework

introduced in Chapter 2.

E = min
λ∈Υλ

(E [ϕ(xk)]) (10.9a)

E = max
λ∈Υλ

(E [ϕ(xk)]) (10.9b)

The integral involving the expectation computation has no closed-form solution

due to the non-parametric nature of the posterior pdf for generic distributions. In

addition, it is not practical to draw samples from non-parametric distributions to obtain

a numerical approximation of the integral. The chosen alternative is to use importance

sampling [Greco and Vasile, 2021] to construct an estimator of the expectation:

E [ϕ(X0:k) |y1:k;λ] ≈ θ̂
(
χ0:k;λk

)
=

N∑
i=1

ŵ
(i)
k (λk)ϕ(x

(i)), (10.10)

This estimator, which exploits the sequential nature of the problem, is a weighted

sum of ϕ(x(i)) evaluated on fixed samples and importance weights that depend on the

epistemic parameters. The symbol χ0:k = {x(1)
0:k, ...,x

(N)
0:k } indicates the collection of N

trajectories represented by samples at k + 1 discretised time. Thus, the function of

interest can be pre-computed with a fixed number of samples, x
(i)
k , drawn for a pro-

posal posterior distribution, π(xk |x0:k−1,y1:k), which does not depend on the epistemic

parameters. Only the weights depend on the epistemic parameter:

w
(i)
k (λ) =

p(yk |x
(i)
k ;λyk) p(x

(i)
k |x(i)

k−1;λx)

π(x
(i)
k |x(i)

0:k−1,y1:k)
ŵ

(i)
k−1(λ)

ŵ
(i)
k (λ) =

w
(i)
k (λ)∑N

j=1w
(j)
k (λ)

,

(10.11)
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In this way, it is possible to split the problem. The particles can be drawn and

propagated once, while the optimisation over the epistemic parameters is executed only

on the weights of the pre-computed distribution. Thus, the upper and lower bound of

the expectation estimator can be computed by solving Eq. (10.12).

θ̂
(
χ0:k

)
= min

λk

θ̂
(
χ0:k;λk

)
θ̂
(
χ0:k

)
= max

λk

θ̂
(
χ0:k;λk

)
.

(10.12)

These optimisation problems are generally nonlinear and multimodal. Therefore,

a Branch and Bound approach over simplicial subdomains exploiting the estimator

Lipschitz continuity is developed in [Greco and Vasile, 2021]. This algorithm ensures

asymptotic convergence to the global bound and a measure of the distance from it at

each iteration.

In the context of the robust conjunction risk assessment addressed in this framework,

the desired quantities to be bounded are the uncertain variables defining the encounter

geometry used by the IDSS to robustly classify the risk of the event: the component of

the miss distance and the components of the combined covariance matrix in the impact

plane, u =
[
µξ, µζ , σ

2
ξ , σ

2
ζ , σξζ

]
.

10.1.3 Intelligent Decision Support System

This section describes the Intelligent Decision Support System module of Fig. 10.3. In

particular, the IDSS automatically allocates the most appropriate action to be taken

by an operator in the event of a close encounter. This system is the application of the

methodology introduced in Chapter 3 to account for epistemic uncertainty in conjunc-

tion risk assessment using Dempster-Shafer theory of Evidence (DSt) and the imple-

mentation of ML tools, more specifically Random Forest (RF) models, to predict the

risk of the encounter, as shown in Chapter 8.

This example shows the robustness and flexibility of the IDSS and the evidence

framework behind it. While in Chapter 4 the input intervals of the evidence frame-

work were derived from a sequence of CDM, in this case, the IDSS receives the inputs

Robust AI for STM Luis Sánchez Fernández-Mellado 284



Chapter 10. CASSANDRA

directly from the synthetic measurements. Thus, the upper and lower estimation from

Eq. (10.12) of the miss distance and the covariance matrix in the impact plane are

ingested in the IDSS, which will provide the operator with the best action to avoid the

encounter.

The IDSS implements RF multi-label classification models to skip the computation-

ally expensive step of computing Plausibility (Pl) and Belief (Bel) of the Probability

of Collision (PoC), defined in Eq. (3.9), from the set of intervals of the uncertain en-

counter geometry. The ML model receives as input the intervals and associated bpas

and the time to the encounter from the last observation. The model employed in the

IDSS was trained on 28,800 synthetic conjunction events with different geometries and

different values of the uncertain variables, u, as explained in Chapters 3 and 8.

The outcome of the system is one of the classes established in Table 7.1 in Chapter 7,

whose meaning is refreshed here:

• Class 0. Manoeuvre due to the proximity of the event and the possibility of high

risk.

• Class 1. Perform a CAM due to the support of immediate high risk.

• Class 2. Design a CAM due to a possible high-risk event in the mid-term

• Class 3. Collect more measurements due to the impossibility of making a confi-

dent decision.

• Class 4. Potential low-risk scenario. Keep monitoring although no further action

is initially required.

• Class 5. No further action due to the low risk of the event.

Classes 4 and 5 are associated with safer events, thus, the Low risk and No action path

in Fig. 10.3 would be followed. Since Class 3 is associated with uncertain events and

the lack of possibility to make confident decisions, further measurements are required

(Uncertain and Collect new measurements in Fig. 10.3). Finally, the rest of the classes

would require the design and/or implementation of a CAM, following High risk path

in Fig. 10.3 and activating the CAM module, explained next.
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10.1.4 Collision Avoidance Manoeuvre module

The robust optimal avoidance strategy is computed by the CAM module of CASSAN-

DRA, activated when the event is categorised with Class< 3. This module provides

the best avoidance strategy to avoid a potential collision, accounting for aleatory and

epistemic uncertainty. It uses the approach presented in Chapter 5, based on the lin-

ear model in Eq. (5.1) and the optimisation problem in Eq. (5.18). Thus, given the

uncertain encounter geometry, defined by the intervals of the miss distance and the

covariance matrix, the system computes the best manoeuvre to reduce the risk of the

worst-case ellipse, that is, the case, among the sets of ellipses, with a higher PoC. The

magnitude of the event may be also optimised, so that the propellant consumption is

minimised, as long as a safety risk threshold PoCCAM is achieved, as in Eq. (5.19).

The module’s inputs are, other than the uncertain geometry, the thruster capacity

(either chemical or low-thrust) and the set of positions where compute the optimal

manoeuvres, Θm. It provides the direction and magnitude of the robust optimal ma-

noeuvres executed at the desired positions, along with the worst-case PoC after the

CAM and its associated set of uncertain parameters.

Note that an extra layer could be included in this module by applying the Multi-

Criteria Decision-Making (MCDM) techniques presented in Chapter 6 to rank the com-

putes manoeuvres. The first integration example does not make use of it, for better

clarity on the closing loop process. The second integration example does include this

layer if a manoeuvre is required to reduce the conjunction risk.

10.1.5 Automated Catalogue Screening module

This section details the ACS module, which is designed to predict close encounters be-

tween catalogued objects. This is typically the first stage of the conjunction assessment

procedure and is responsible for determining which (and when) object pairs fall within

a given screening volume over a given screening period. These pairs are then subjected

to a more detailed risk assessment to establish if mitigation actions are required to

avoid a possible collision, i.e. using the RSE and IDSS modules within CASSANDRA,

as discussed before and illustrated in Section 10.3.
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The ACS module has two actionable modes: All-vs-All and One-vs-All, which are

described in more detail below.

All-vs-All

The All-vs-All mode was designed for fast inference in large-scale conjunction screen-

ing, specifically in the context of the All-vs-All problem, where conjunctions between

all possible sets of catalogued objects, both active and debris, are considered. This

work was first introduced by Dr. E. Stevenson in [Stevenson et al., 2021]. This sce-

nario is computationally challenging, scales quadratically with the growing number of

catalogued space objects, and must cope with hundreds of millions of object pairs. To

handle these scales efficiently, the ACS was developed using ML and DL AI techniques,

which are promising in this context owing to their ability to process and exploit large

datasets, infer hidden correlations and also reduce computational time during model

prediction.

In line with the particular demands for efficiency of the All-vs-All mode, the task

of automated conjunction screening was framed as a tabular ML classification task.

This implies that, given a set of object pairs and their corresponding initial states, the

resulting model will predict whether or not these pairs will be involved in a conjunction

over the given screening period (binary label).

In this work, a feed-forward neural network for this task is employed, which was

trained using a realistic catalogue-wide conjunction database generated by the Centre

National d’Etudes Spatiales (CNES) BAS3E space surveillance simulation framework

[Morand et al., 2019] and input Teo Line Elements (TLE) catalogue. Based on the

initial state vectors of the object pairs, the model is trained to predict which of the

pairs will undergo a close encounter (as defined by a 20 km spherical safety volume)

over the next 7 days. These predictions are designed to serve as an initial first filter

for the catalogue. Various methods were employed for forcing the importance of these

cases including class rebalancing, weighted loss functions, and the tuning of the class

probability threshold to ensure that only cases for which the model has high confidence

are rejected. This threshold can be translated into a constraint on the number of
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acceptable missed conjunctions by the model, and therefore to an operator decision.

More details on the model, underlying database and training procedure can be found

in [Stevenson et al., 2021].

The primary output of the All-vs-All mode is thus a list of risky object pairs re-

quiring further consideration. Following this, the Time of Closest Approach (TCA)

can be found, and the list of objects can be further refined through the inclusion of

uncertainty data and evaluation of the collision risk in subsequent modules. At this

stage, information on the properties of the objects involved in the conjunctions, for

example, whether they are operational, can also be retrieved from catalogues such as

ESA’s DISCOS [European Space Agency, 2022], which can be used alongside the TCA

to prioritise the analysis of certain object pairs. This information can also be used to

ultimately determine an appropriate course of mitigation action, such as a CAM (as

considered in this work), or even techniques such as just-in-time collision avoidance for

non-manoeuvrable debris-debris conjunctions [Bonnal et al., 2020].

One-vs-All

A second One-vs-All mode for the ACS is available. This mode was designed to pro-

vide more detailed information on possible conjunctions, including the TCA and miss

distance of individual events. As such, this mode could be employed as a second higher-

fidelity filter following the All-vs-All mode or for manoeuvre screening. In this latter

scenario, the new orbit of an object undertaking a CAM to avoid a specific conjunction

(the one), should be screened against the space object catalogue (the all) to ensure

that no additional conjunctions will be incurred. This screening should be used to

decide whether the proposed CAM, which may be optimal under given constraints to

avoid the original conjunction, should go ahead, or whether a different solution should

be found. This scenario is explored in Section 10.3.

The impact parameter is the norm of the relative distance vector between two

objects in the so-called impact plane. Under the assumptions of a short-term encounter,

the impact plane can be defined as the plane perpendicular to the relative velocity of the

primary object at the encounter time, such that it contains both objects Eq. (5.9). This
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definition of the impact parameter is therefore equivalent to the miss distance used in

the calculation of thePoC [Alfano, 2007], and thus this quantity gives direct information

on the proximity of two objects, with low values indicating a close encounter (assuming

positional uncertainties are not considered).

As the impact parameter for a given object pair is dependent on the relative position

and velocity vectors of both bodies and, therefore, varies in time, the prediction of

this quantity is phrased as a time series ML regression task. Regression tasks in ML

consist of predicting a continuous outcome y based on the value of one or more predictor

variables x. In this case, both x and y are time series structured data, with x consisting

of the 6-channel ephemeris data of each object (12 variables in total), and y the future

evolution of the impact parameter. In ML terms, this could be viewed as a univariate

forecasting task with auxiliary variables, but this case is unusual in that the history of

the forecast variable does not feature as an input to the predictive model. Nevertheless,

to describe this problem, the forecasting terms horizon and lookback are used for the

number of time steps to predict in y and the number of time steps used to create the

prediction from x, respectively.

In this work, the predictive model was trained using a synthetic database which

comprised the ephemeris data of 200 objects over 7 days, with a timestep of 180 seconds,

and the corresponding impact parameters for each pair (19,900 in total), calculated at

each timestep. The initial parameters of these objects were restricted to the orbit

regime given in Table 10.1. This range of orbits was restricted due to computational

considerations but enables presenting a proof of concept of this mode and demonstrating

the pipeline of the integrated system described in Section 10.3.

Table 10.1: Bounds on the initial orbital parameters of the orbits used to
train the One-vs-All mode of the ACS.

Variable Units Lower bound Upper bound

Semimajor axis [km] 6900 7200
Eccentricity - 10−5 5 · 10−3

Inclination [rad] 1.22173 1.91986
Right ascension of the ascending [rad] 0 2π
Argument of perigee [rad] 0 2π
True anomaly [rad] 0 2π
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The choice of the length and configuration of the lookback and horizon windows

is application-dependent. For the case of manoeuvre screening, it is the new (future)

orbit of an object following a CAM that needs to be considered, and not the past

history of the object which is typically associated with the forecast lookback. As such,

the lookback needs to be based on the post-manoeuvre propagated state. The model

input is chosen to be the 12 ephemeris variables of each object pair over a 1-day period

post-CAM. The evolution of the impact parameter for each pair over a 3-day period

post-CAM is intended to be predicted. This allows increasing the quantity of training

data by using a sliding window over the 7 available days in the database, generating

20 training examples for each object pair. An example is illustrated in Fig. 10.2a, with

truncated sections of the lookback and horizon windows for readability.

(a) (b)

Figure 10.2: ACS One-vs-All mode for truncated sections of the 1-day
lookback and 3-day horizon: (a) example of the input, (b) example of the
output.

This dataset was then divided following an 80% to 20% splitting strategy into

training and validation sets, ensuring that overlapping windows were not present in

both to prevent data leakage. While the training set is used to train the model directly,

the validation set is used to evaluate the performance of the model during training to

ensure that the model is generalising well to unseen data, and not merely memorising

the training data, as well as to tune higher level hyperparameters that are pre-set by

the user and not learnt by the model.
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In this work, the InceptionTime architecture [Fawaz et al., 2020] is employed for

training the predictive model, a state-of-the-art deep neural architecture for time series

tasks among the family of 1-dimensional Convolutional Neural Networks (CNNs). This

family of networks is chosen as they are most suitable for capturing short-term patterns

in the data, such as orbit oscillations, since they compute features using sliding convo-

lutional filters. Deep Learning (DL) architectures such as this have a higher complexity

and representation capacity compared to simpler tabular architectures, but come at the

cost of increased computational expense as a result, motivating the two-mode nature

of the ACS.

The training configuration used was as follows, for which the tsai [Oguiza, 2022] li-

brary was employed, which implements DL techniques and architectures for time series

data. First, the neural network is built using six sequential inception modules to accept

12-channel inputs and a 1-channel output. The input data is standardised, transform-

ing each variable to have zero mean and unit variance to account for differences in

units and scales. For the loss function (the objective to be minimised while training),

the nominal regression metric, the Root Mean Squared Error (RMSE), is used. For

the optimiser (the component that updates the parameters of the neural network),

Ranger was employed, an extension of the popular Adam optimiser that combines both

RAdam [Liu et al., 2020] and Lookahead [Zhang et al., 2019a] optimisation algorithms.

A dynamic learning rate (which determines the factor by which the weights of the neu-

ral network are updated in each training iteration) was chosen following a one-cycle

schedule with cosine annealing. The model was then trained subject to early stop-

ping criteria, whereby training is terminated once over-fitting becomes evident on the

validation set, and the best-performing model (based on the validation loss) is taken.

This model can then be applied to new data to obtain the predicted evolution of

the impact parameter for different possible conjunction pairs. Once this was obtained

for a given pair, the TCA associated with possible conjunction events can then be

identified by considering crossing points of the impact parameter with an operator-

defined threshold (e.g. 20 km), as illustrated in Fig. 10.2b. The output of the One-vs-

All mode is thus a list of conjunction events, the objects involved, their TCA and miss

Robust AI for STM Luis Sánchez Fernández-Mellado 291



Chapter 10. CASSANDRA

distance.

10.2 Robust decision-making based on Bayesian state es-

timation framework

This section addresses the problem of automatically allocating CAMs under uncertainty

by a robust Bayesian framework. This framework allows propagating the objects’ state

and uncertainty, predicting collisions, allocating manoeuvres, updating the state es-

timation with Bayesian inference, and redefining the manoeuvres, accounting at all

steps for aleatory and epistemic uncertainty. The Bayesian framework combines a ro-

bust particle filter for state estimation and uncertainty propagation (RSE module), an

intelligent agent for automatically classifying risk events and allocating avoidance ma-

noeuvres (IDSS module) and a robust avoidance manoeuvres optimiser (CAM module).

With this system, the intention is to close the loop between state estimation, uncer-

tainty propagation, risk assessment under potential collisions, decision-making, CAM

performance and observations acquisition.

Fig. 10.3 shows the overall architecture of the Bayesian framework. The Noisy

observations and Uncertain state estimation boxes represent the RSE module. Note

that, for this work, the observations were simulated. The RPF explained above works

by relating these two blocks, estimating the uncertain state and updating it when

new observations are available. The IDSS is represented by the Intelligent Decision

Support System box, which receives the estimated state at the TCA from the RSE.

The theory to handle epistemic uncertainty by the IDSS was provided in Chapter 3,

and the intelligent component was introduced in Chapter 8, as explained before. The

outcome of the IDSS is a classification presented in previous chapters, that can be

summarised in the High risk, Low risk and Uncertain light-shade boxes. Each outcome

has its respective suggested actions represented by the darker boxes: Perform CAM, No

action and Collect new measurements, respectively. Finally, the system closes the loop

by acquiring more observations (in this example, simulated by the RSE) and updating

the state in the case of uncertain encounters or, in the case of high-risk events, by
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Figure 10.3: Diagram of robust Bayesian pipeline for optimal collision
avoidance manoeuvre planning.

estimating the new state after executing a CAM, computed by the CAM module based

on the methodology introduced in Chapter 5 as explained above.

10.2.1 Study case

This section discusses the operational scenarios on which the robust Bayesian agent is

tested using a numerical example.

Satellite Conjunction Setup

The conjunction under consideration is between the operation satellite SENTINEL 2B

(NORAD ID 42063) and a piece of debris from FENGYUN 1C (NORAD ID 30141). On
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the 7th of January 2021, SOCRATES (Satellite Orbital Conjunction Reports Assessing

Threatening Encounters in Space) [Celestrak, 2019] reported a potential collision be-

tween these objects at TCA 13th of January 2021 at 13:24:25 UTC. The nominal orbital

elements for SENTINEL 2B and FENGYUN 1C DEB are reported in Table 10.2.

Table 10.2: Objects orbital elements from NORAD TLEs.

Variable Units Object 1 Object 2

NORAD ID [-] 42063 30141

EPOCH [UTC] 08/01/21 07/01/21
01:17:15 16:24:07

Semi-major axis (a) [km] 7167.14 7180.78
Eccentricity (e) [-] 1.1e-4 2.5e-3
Inclination (i) [deg] 98.57 99.08
Right ascension of ascending node (Ω) [deg] 85.33 183.01
Argument of perigee (ω) [deg] 81.09 252.25
Mean anomaly (M) [deg] 279.04 107.59

The dynamical system is described in Cartesian coordinates within an Earth-Centred

Inertial (ECI) reference frame. The dynamical forces included are Earth’s gravity with

harmonics up to degree and order 4, atmospheric drag using the Jacchia-Gill model,

soli-lunar third-body gravitational attraction, and the solar radiation pressure with a

conical shadow model for Earth’s eclipses.

In the two scenarios presented below, an operational satellite that is tracked with

very low uncertainty is considered, e.g. due to GPS receivers, and, therefore, the

approximation x = x(2) can be used. The debris object is affected by uncertainty on

its state vector. Observations are simulated to improve the knowledge of the debris

state. The measured quantities are the debris azimuth and elevation with respect to

the equatorial plane [Schutz et al., 2004] obtained by means of optical measurements.

Robust decision-making

A multivariate Gaussian distribution is considered to model the aleatory uncertainty

of the initial condition

X0 ∼ N (x0;µ0,Σ0) . (10.13)
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The mean µ0 is set to the Cartesian state resulting from the orbital elements in Ta-

ble 10.2. The covariance Σ0 is constructed by taking typical errors associated to TLE

from the European Space Agency (ESA) guidelines [Klinkrad et al., 2008]. The 1σ

uncertainty on TLE for objects characterised by inclinations larger than 60 deg is sum-

marised in Table 10.3 in radial, transversal and normal components. The covariance

Table 10.3: 1σ position (r) and velocity (v) uncertainty of TLEs for orbits
with e < 0.1, i > 60 deg, perigee altitude ≤ 800 km, in radial (U), transver-
sal (V), and normal components (W).

Component Units Value

1σrU [m] 104
1σrV [m] 556
1σrW [m] 139
1σvU [mm/s] 559
1σvV [mm/s] 110
1σvW [mm/s] 148

Σ0 resulting from these standard deviations is then rotated in the standard Cartesian

inertial frame by using the Jacobian of the radial-transversal-normal transformation.

However, the uncertainties in Table 10.3 are just presumed [Klinkrad et al., 2008]

and therefore far from being well-characterised. Furthermore, because different sets of

TLEs are usually estimated from different measurement stations, it may be impossible

to define a single covariance which properly characterises the TLE uncertainty. Hence,

epistemic uncertainty is introduced on the covariance by parameterising Σ0 using two

epistemic parameters λ0 = [λ0−1, λ0−2]. The covariance parameterisation reads as

follows

Σ0(λ0) =

 λ0−1Σ0(1 : 3, 1 : 3) 03×3

03×3 λ0−2Σ0(4 : 6, 4 : 6)

 , (10.14)

that is the epistemic parameters scale respectively the position and velocity blocks of

the reference covariance Σ0 computed as above.

The bounds considered for these multipliers are λ0−1, λ0−2 ∈ [1/52, 52], that is they

can change the reference 1σ uncertainties by roughly shrinking them up to 1/5, or

expand them by a factor of 5. The measurements are simulated using the debris ref-
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erence trajectory and then adding the sensor errors, drawn from a zero-mean normal

distribution with diagonal covariance Σy. The reference uncertainty on the measure-

ment is set to 1σyaz = 1 and σyel = 10 arcsec. Given that the optical measurements

are acquired from non-professional stations, these 1σ values were again obtained from

the literature and are not coming from a rigorous sensor characterisation. Thus, epis-

temic uncertainty is considered on the noise covariance by means of two parameters

λy = [λy−az, λy−el], similarly to what was done for the initial conditions in Eq. (10.14).

The epistemic parameters range is set to λy−az, λy−el ∈ [1/52, 52], in line with diverse

1σ values found in literature [Bennett et al., 2015,Li et al., 2016].

The values of the thresholds used by the IDSS for risk assessment (Section 10.1.3) are

shown on Table 10.4. They include the two time thresholds (T1, T2) to discern among

short-term, mid-term and long-term encounters; the threshold on the probability of

collision (PoC0) indicating the risk level; the value of the upper expectation at which

the trust on the value is lost (Pl0), and the value of the area between the curves above

which the event is considered to be highly affected by uncertainty (A0). In this work,

the safe PoC threshold is set to PoCCAM = 10−6 according to ESA’s guidelines [Braun

et al., 2016].

Table 10.4: IDSS thresholds values for the RSE-IDSS-CAM implementa-
tion.

Threshold Units Value

T1 [days] 2.0
T2 [days] 4.0

PoC0 - 10−6

Pl0 - 0.5
A∗

0 - 0.1

Results

Two operational scenarios are considered, one resulting in a collision and another in a

near-miss conjunction.
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Collision scenario In this case, the true unknown trajectory of the FENGYUN 1C

DEB debris eventually results in a collision with SENTINEL 2B. It is assumed that

observations are available up to 48 hours before TCA. The result of the robust Bayesian

estimation at this point is displayed in Fig. 10.4.

Figure 10.4: Impact plane 3σ ellipses for collision scenario with observa-
tions up to 48h before TCA.

In the plot, several 3σ ellipses, which correspond to different values of the epistemic

parameters, are displayed on the impact plane. Those ellipses are bounded by the

estimated bounds from Eq. (10.12) for the uncertain variables of the problem. Note

that with the current approach, without losing generality, only one interval per source

is obtained, thus the Joint Body of Evidence is compounded by a single Focal Element

(FE). Thus, the resulting curves of the Pl and Bel for the PoC are a single-step function,

jumping from one to zero at the maximum and minimum value of the PoC in the FE,

respectively. The step for the Bel curve corresponds to the minimum value of the

PoC among all the possible ellipses defined by the intervals, while the step for the Pl

correspond to the Worst Case scenario, that is, the ellipse with the highest PoC. At

this stage of the analysis, the value of the risk ranges between PoC ∈ [10−30, 2.5 ·10−2].

Hence, the IDSS is run to analyse the conjunction. The classification returns a
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Class 3 scenario, which corresponds to a highly uncertain conjunction, as can be seen

in the previous figure. This requires the acquisition of further measurements to make

an informed action. Therefore, the agent decides to wait for them until the next

checkpoint, 24 hours before TCA. At this point, after new observations are available,

the robust Bayesian estimation is rerun and the results are displayed in Fig. 10.5.

Figure 10.5: Impact plane 3σ ellipses for collision scenario with observa-
tions up to 24h before TCA.

The collision probability is now PoC ∈ [0, 5.5 · 10−2]. Still, Pl and Bel are single-

step curves at the minimum and maximum values of the PoC, and the IDSS indicates

a CAM is required. Thus, the CAM module is run to design a robust and optimal

manoeuvre which provides a PoC < 10−6 while taking into account the state uncer-

tainty. The CAM on SENTINEL 2B is designed 10 revolutions before the TCA. After

the manoeuvre execution, the robust estimation is run again to check that the upper

collision probability indeed satisfies the safety threshold. The resulting geometry is

shown in Fig. 10.6, where it can be seen that there is no intersection between the 3σ

ellipses and the Hard Body Raiud (HBR). In fact, the highest value of the PoC (the

worst-case scenario) is PoC < 10−6, below the safety threshold. The evolution of the

PoC bounds at the several checkpoints considered is shown in Figure 10.7.
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Figure 10.6: Impact plane 3σ ellipses for collision scenario after CAM.

Figure 10.7: Evolution of PoC bounds for collision scenario.

The Bayesian agent performance for this scenario is reported in Table 10.5. The

estimation box running the RPF requires the longest computational time, whereas the

ML-based IDSS is inexpensive to evaluate. The CAM design module requires less than
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two minutes to optimise the manoeuvre.

No-collision scenario In this scenario, the true unknown trajectory of the FENGYUN

1C DEB debris misses SENTINEL 2B by ∼ 2 km. Again, it is assumed that observa-

tions are available up to 48 hours before the TCA. The result of the robust Bayesian

estimation 48 hours before the TCA is depicted in Fig. 10.8. The probability interval

(and thus, the steps of Pl and Bel in the curves) are PoC ∈ [0, 7.5 · 10−3].

Figure 10.8: Impact plane 3σ ellipses for no-collision scenario with obser-
vations up to 48 h before TCA.

In both cases, the conjunction analysis is similar to the collision one at 48 hours

before TCA. The IDSS is run and it returns a Class 3 conjunction, labelling the

encounter as a highly uncertain scenario with the need for further measurements to

implement an informed action. Those further measurements are acquired until the 24-

hour checkpoint, where the Bayesian estimation is updated. The resulting conjunction

geometry is displayed in Fig. 10.9.

Here, it can be seen how the debris 3σ ellipses are rather distant from the HBR

of the operational satellite and indeed centred on the true (unknown) trajectory. The

IDSS now returns a Class 5 conjunction labelling a safe conjunction. Indeed, the
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Figure 10.9: Impact plane 3σ ellipses for no-collision scenario with obser-
vations up to 24 h before TCA.

corresponding upper probability is estimated to be PoC < 10−10. The intelligent agent,

therefore, suggests no further action to be taken. For the no-collision scenario, the PoC

bounds estimated at the two different checkpoints are displayed in Figure 10.10.

Figure 10.10: Evolution of PoC bounds for no-collision scenario.
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The agent performance for the no-collision scenario is reported in Table 10.5 as well.

The estimation box takes longer when compared to the collision scenario as the global

minimum is isolated and, therefore, the optimisation results are more challenging. The

IDSS is again inexpensive to evaluate and requires the same amount of computational

time, while no CAM is designed in this scenario. The simulations were performed on

Matlab R2020b on a macOS Big Sur 3.5GHz Dual-Core i7.

Table 10.5: Bayesian agent performance for different conjunction scenarios.

Instance Time

Estimation [s] ICS [s] CAM [s]

Collision 295.8 0.015 108.2
No-collision 462.6 0.015 -

10.3 Robust catalogue screening

In this section, further integration of CASSANDRA’s modules is presented. Starting

from the previous integration of the RSE, IDSS and CAM modules presented above, a

new module is added to the pipeline: the ACS presented in Section 10.1.5. This scenario

allows for closing the loop between catalogue screening, conjunction risk assessment,

manoeuvre allocation and catalogue update.

An important element of such a system is its ability to cope efficiently with the scales

associated with current and future space object populations. This is especially relevant

in the All-vs-All problem (although also in the One-vs-All one), which considers all

possible pairs of catalogued objects, both active and debris, and is therefore crucial to

SEM, but a computational challenge owing to the vast and growing number of possible

conjunction pairs. Another key element when dealing with the automation of high-risk

scenarios is the treatment of uncertainty. In the case of STM, uncertainties in the

state estimation and orbit propagation translate into uncertainty on the probability

of collision between two objects, which is critical for effective decision-making. The

integration presented below tackles both problems by implementing the AI techniques

embedded in the ACS and the IDSS modules, and the modelling of the uncertainty
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(both aleatory and epistemic) underlying the RSE, IDSS and CAM modules.

10.3.1 Pipeline

In this section, the integrated pipeline of the ACS, RSE, IDSS and CAM modules is

presented. It describes the generic workflow and the different paths the decision-making

process can follow.

Catalogue screening

The pipeline is illustrated in Fig. 10.11. The workflow starts in the left bottom corner

of the figure with the automatic screening of the catalogue (Catalogue box in the figure)

by the ACS (ACS: All-vs-All block). The catalogue includes information on the states

of several objects at a certain epoch and information on the type of object (debris,

operational satellite, manoeuvrable, etc.). Using the All-vs-All mode, the system can

detect NE potential close encounters. After the analysis, the ACS provides an output

file with a reduced set of potential conjunction pairs, indicating the objects requiring

further screening. For this work, the time to TCA with respect to the epoch of the

catalogue for individual encounters is computed by propagation, although this could

be replaced using the One-vs-All mode as a second filter in future work.

State estimation and conjunction risk analysis

For each of the NE conjunction pairs identified by the ACS, a more detailed conjunc-

tion analysis is automatically activated, where information about the uncertainty on

the state, both epistemic and aleatory, is included in the analysis. Thus, the RSE prop-

agates the state and uncertainty of the objects to the TCA (RSE. Orbit & Uncertainty

Propagation box in the figure). In case there are observations available for any of the

objects involved, they can be included in the uncertainty propagation process (RSE:

State Estimation box).

Once the uncertainty states of both objects are propagated to the TCA and the

uncertain geometry of the encounter is defined, the IDSS will autonomously propose

the most suitable action to be made to address the event, according to the risk, the
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Figure 10.11: Pipeline of the modules to be integrated into this work.

available information and the confidence on this information (IDSS. Risky Conjunction?

decision box). Three possible actions can be suggested:

i) Low Risk, related with Class0 > 3: no further action.

ii) High Risk, associated with Class0 < 3: compute CAMs.

iii) Uncertain, corresponding to Class0 = 3: allocate new observations.

If the event returns a low-risk situation, the event is safe enough not to require

mitigation actions (No further action box on the right side of Fig. 10.11). In case

the event is classified as Uncertain, new simulations will be allocated (Collect new

observations box). In this work, the new observations are simulated with the RSE

(see Section 10.3.2). These observations may introduce new uncertainty in the system

(e.g. noise). The new state and uncertainty are fed again to the RSE (represented

by the RSE dashed box in the figure). If the event is classified as High Risk, it is

necessary to compute at least one CAM to avoid the encounter or reduce its risk (CAM

Computation block on the right-top corner of Fig. 10.11). A more detailed explanation
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of the interaction of RSE, IDSS and CAM modules to deal with encounter events was

presented in the previous example (Section 10.2).

Collision avoidance manoeuvre and reassessment

In the event is classified as Class0 ≤ 2, a new iterative process starts. The CAMmodule

will provide M robust optimal CAM candidates, sorted according to certain criteria

and constraints, which can be selected by the operator [Sánchez and Vasile, 2021b], as

shown in Chapter 6: time to the encounter, cost of the manoeuvres, reduction of the

risk, disruption of the operational orbit, etc.

The first step after obtaining the list of candidates is to evaluate the safety of the

new orbit, and whether it reduces the risk satisfactorily for the considered conjunction:

the IDSS should output after the CAM a Classm ≥3 for the encounter to be safely

avoided (IDSS, CAMm and “m < M?” decision boxes). In case this is not achieved by

any of the proposed options (“Class0?” decision box):

• If the original class before CAM was Class0 ≥ 2 (meaning a long/mid-term event),

new observations are allocated, and the process returns to the RSE state estima-

tion and uncertainty propagation.

• If the original class was Class0 < 2 (short-term high-risk event), there is no time

to allocate new measurements and an alert is raised to the operator (Alert box)

to perform a manual detailed analysis: relax constraints on the computation of

the CAM, widen the search of alternatives, etc.

For the CAM options that do reduce the risk of the event, the ephemerides as-

sociated with the new post-CAM orbit are subsequently computed, starting with the

top-ranked alternative (as ranked by Classm). These ephemerides are then used to

screen the new orbit against all the objects in the catalogue to identify any new possi-

ble conjunctions. This operation is performed by the ACS under the One-vs-All mode

(ACS: 1-vs-All CAM Screening module). If new encounters are predicted, the ACS

generates a file containing the objects involved, predicted TCAs and the predicted im-

pact parameters for the N new encounters. This can result in three different situations
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(“N > 0?, m < M?” decision box):

a) No new encounters are found, in which case the execution of the manoeuvre is

encouraged and the catalogue is updated accordingly (Update Catalogue box).

b) New encounters are detected, but the analysed CAM is not the last of the pro-

posed options. In this case, the system loops back to the CAM module and the

next manoeuvre on the sorted list is selected. If the number of future encounters

is lower than for previous CAMs, this alternative is saved as the most promising

solution thus far.

c) Future encounters are anticipated and there are no more alternative manoeuvres

remaining, the CAM resulting in the minimum number of new encounters is

selected for further analysis, which is further explained below.

These N new encounters are fed back to the RSE-IDSS loop (N encounters assess-

ment dashed box): the new post-CAM orbit and that of the object in the catalogue

are propagated, along with their uncertainties, to the new TCA using the RSE (RSE

new encounters box). Then, the event is assessed with the IDSS (IDSS new encounters

decision box). Depending on the Classn output by the IDSS for these N events, the

following actions can be made:

I) All events present Classn ≥ 3. This means there is no evidence that the new

predicted events present a high risk. The best action is to perform the CAM to

avoid the initial encounter and update the catalogue, dealing with the potential

new encounters later.

II) At least one event presents Classn < 3 (high-risk event) and the original event

without CAM was classified as Class0 ≥ 2. Since there is enough time, new mea-

surements are allocated, returning to the RSE state estimation and uncertainty

propagation stage.

III) At least one event presents Classn < 3 (high-risk event) and the original event

was classified as Class0 < 2 (e.g. short-term high-risk event): since there is

no more time to acquire measurements and all the CAM alternatives involve new

encounters, an alert is raised to the operator (Alert box). Possible alternatives the
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operator can analyse are: to relax the constraints employed to obtain the list of

CAM alternatives, or to consider the possibility of performing a multi-encounter

CAM [Sánchez and Vasile, 2021b].

Pipeline exit points

In summary, there are 5 possible exit points of the process for each of the NE potential

encounters detected by the ACS module in the All-vs-All mode. Once any of these are

reached, the system will start the analysis for the next encounter identified from the

catalogue.

1. The encounter does not present an actual risk (Class0 ≥ 3), and no further actions

are required.

2. The encounter requires a CAM (Class0 < 3), and the proposed CAMs do not

create new encounters (N = 0). This implies the execution of the manoeuvre and

updating of the catalogue.

3. The encounter requires a new CAM (Class0 < 3), which generates new encounters

(N ̸= 0), but none of them present, at the moment of the decision, evidence of

being high risk (Classn ≥ 3 ∀ n = 1, .., N). This also implies the execution of the

manoeuvre and updating of the catalogue.

4. The encounter presents a high risk, occurring in the short term (Class0 < 2),

and none of the proposed CAMs sufficiently reduce the risk (Classm ≥ 3 ∀ m =

1, ..,M). This scenario will raise an alert to the operators, who should decide what

further actions to follow (e.g. obtain new CAMs alternatives, relax constraints,

change criteria to compute alternatives).

5. The encounter presents a high risk, occurs in the short term (Class0 < 2), and

some of the new encounters generated by the new post-CAM orbit are also a high

risk (∃ n | Classn ≤ 2 for n = 1, ..., N). In this situation, another alert will be

raised, indicating that the operator should start a multi-encounter CAM analysis.
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10.3.2 Study case

In the rest of this section, an example of the workflow with a synthetic catalogue

containing a potential encounter is presented.

Catalogue conjunctions

For this study case, a reduced synthetic catalogue containing 20 objects is used, in-

cluding their state vector and associated uncertainty in EME2000 reference frame at

CNESJD 25718.999594907 (31-05-2020, 23:59:25.00), including two synthetic objects

(Object IDs 11111 and 22222) used to illustrate the rest of the pipeline. The catalogue

also includes information on the type of object: operational with manoeuvre capabil-

ities, non-manoeuvrable, debris or unknown. For the scope of this work, and due to

the characteristics of the database used to train the One-vs-All models of the ACS

(Section 10.1.5), a reduced catalogue including only orbits falling within the bounds

indicated in Table 10.1 is used.

The catalogue is automatically screened by the ACS in the All-vs-All mode. This

mode takes the initial state vectors of each of the object pairs from the catalogue and

returns a binary label as to whether the pairs will undergo a close encounter (as defined

by a 20 km screening volume) over a screening period of 7 days. Further details of this

mode are given in Section 10.1.5.

From the screening process, five pairs of potential encounters are detected (Ta-

ble 10.6). Two output files are provided by the ACS. One includes the potential

conjunction pairs found by the system, as well as the time to the encounter and the

type of object involved. The other file contains the state vector at the initial epoch

used for the screening, and the associated uncertainty (if any).

Conjunction risk assessment and decision-making

For the rest of this example, the study focuses on the first encounters (involving objects

ID 11111 and ID 22222 ), whose initial conditions are included in Table 10.7. Note that

in this work, only the secondary object of the encounter is assumed to be affected by
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Table 10.6: The 5 the potential encounters detected by the ACS: All-vs-
All.

Obj. ID 1 Obj. ID 2 Time to TCA
[days]

Manoeuvre
capabilities

Number of
encounters

11111 22222 6.956327887 OP-DEB 1
36345 41138 5.451224743 DEB-DEB 1
42127 36337 1.929933804 DEB-DEB 1
7959 10520 1.210088713 DEB-OP 1
6843 44547 4.574278349 DEB-OP 1

uncertainty, and the uncertainty is given in the object’s < T,N,H > reference frame.

The primary object is assumed to be perfectly known.

Table 10.7: Initial state vector and uncertainty of objects involved in the
first encounter detected by the ACS. Epoch CNESJD 25718.999594907 (31-
05-2020, 23:59:25.00).

Obj. ID X
[km]

Y
[km]

Z
[km]

Vx

[km/s]
Vy

[km/s]
Vz

[km/s]

11111 618.143 7143.340 7.183 1.119 -0.112 7.372
22222 -7183.237 -331.032 96.552 0.035 1.176 7.348

Obj. ID σt

[km]
σn

[km]
σh

[km]
σvt

[km/s]
σvn

[km/s]
σvh

[km/s]

22222 0.104 0.556 0.139 5.59·10−6 1.10·10−6 1.48·10−6

Each of the encounters detected during the screening stage should undergo a de-

tailed conjunction analysis through the RSE and IDSS modules. For this analysis, the

first step is the propagation of the orbit and the uncertainty to the TCA using the

RSE. However, the uncertainties in Table 10.7 are merely presumed [Klinkrad et al.,

2008], and therefore far from being well-characterised. More in general, the values

of uncertainty associated with the other objects in the catalogue lack details on how

they were obtained. Hence, epistemic uncertainty is introduced on the covariance to ac-

count for this lack of information by parameterising Σ0 using two epistemic parameters
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λ0 = [λ0−1, λ0−2]. The covariance parameterisation reads as follows

Σ0(λ0) =

 λ0−1Σ0(1 : 3, 1 : 3) 03×3

03×3 λ0−2Σ0(4 : 6, 4 : 6)

 . (10.15)

The epistemic parameters scale respectively the position and velocity blocks of the

reference covariance Σ0 computed as above. The bounds considered for these multipli-

ers are λ0−1, λ0−2 ∈ [1/52, 52], that is, they can change the reference 1σ uncertainties

by roughly shrinking them up to 1/5, or expanding them by a factor of 5.

In general, immediately after the ACS catalogue screening, no more observations

are available for the objects involved in the encounter. Thus, a single prediction step

is performed by the RSE. The outputs of this module are the bounds on the mean and

covariance elements of the miss distance in the impact plane. This information, along

with the time to the TCA, represents the inputs the IDSS uses to make the decision.

The threshold values used by the IDSS are included in Table 10.8.

Table 10.8: IDSS thresholds values for the robust screening scenario.

Variable Units Value

T1 [days] 2
T2 [days] 4
PoC0 [-] 10−6

Pl0 [-] 0.5
A∗

0 [-] 0.1
HBR [m] 0.3

Due to the large propagation time interval (more than 6 days) and the initial uncer-

tainty (both, aleatory and epistemic), the miss distance and relative position covariance

intervals in the impact plane are very large (Table 10.9) and, as expected, the IDSS

outputs a Class 3 : the event is affected by such a degree of uncertainty at this step

that no confident decision can be made. Thus, new measurements are allocated.

In this work, the observations are simulated within the RSE. The measurements

are simulated using the debris reference trajectory and then adding the sensor errors,

drawn from a zero-mean normal distribution with diagonal covariance Σy, whose non-
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Table 10.9: Bounds output by the RSE if no observations available.

Variable Units Lower bound Upper bound

µξ [km] -1.830 -0.7759
µξ [km] -23.939 36.722
σ2ξ [km2] 3.203 5.698

σ2ζ [km2] 1.915·103 5.9448·104
σξζ [km2] -289.981 15.682

zero elements are: 1σyaz = 10 arcsec and σyel = 10 arcsec. Similarly to the uncertainty

in the initial position, epistemic uncertainty on the observations is added to quantify

the lack of detail on the observation sensors. The epistemic uncertainty is considered

on the noise covariance by means of two parameters λy = [λy−az, λy−el], which range in

the interval λy−az, λy−el ∈ [1/52, 52], in line with diverse 1σ values found in literature

[Bennett et al., 2015,Li et al., 2016].

As mentioned above, the primary satellite is assumed to be perfectly known, so

the observations refer only to the secondary object. Ten observations are simulated,

evenly distributed between the initial epoch and one day before the TCA. Again, the

initial state and uncertainty of the objects are propagated to the TCA, although in

this case, the position is updated sequentially with the information provided by the

measurements. The robust bounds of the new impact plane variables are included

in Table 10.10. These bounds along with the new time to the encounter (1 day) are

inserted in the IDSS, which classify the event as potential high-risk, proposing a CAM

design and execution as the best action.

Table 10.10: Bounds output by the RSE when 10 measurements are re-
ceived. The time to TCA after the last observation is 1 day.

Variable Units Lower bound Upper bound

µξ [km] -2.0408·10−2 -1.1596·10−22
µξ [km] 0.6783 1.20140
σ2ξ [km2] 2.0571·10−11 2.1102·10−4

σ2ζ [km2] 9.7038·10−4 5.81921·10−2

σξζ [km2] -2.0504·10−4 1.2473·10−3
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Avoidance collision strategy

This decision activates the CAM module, which computes a list of optimal manoeu-

vres. Seven possible CAMs are computed, executed half an orbit before the encounter

position, for the 9 revolutions before the encounter, but the last two revolutions,

θm ∈ Θm = {kπ} with k = 5, 7, 9, ..., 17. The maximum capacity of the thruster is

10 cm/s. The only criterion considered to sort the proposed CAM options is the dis-

ruption of the orbit (i.e. time away of the nominal orbit before the encounter), thus

the later manoeuvres are ranked first. For more information on other criteria, see

Chapter 6. Table 10.11 includes the list of manoeuvres, expressed in the manoeuvrable

satellite’s < T,N,H > reference frame.

Table 10.11: List of ranked possible manoeuvres, expressed in the satellite’s
< T,N,H > reference frame. The last column includes the Classm of the
event after the manoeuvre.

Alternative Position
(θm) [rad]

Impulsive CAM
(δv) [m/s]

Classm

δvt δvn δvh

CAM 1 5π 9.9994·10−2 -1.0527·10−4 0 5
CAM 2 7π 9.9997·10−2 -7.4706·10−5 0 5
CAM 3 9π 9.9998·10−2 -5.7745·10−5 0 5
CAM 4 11π 9.9998·10−2 -4.6958·10−5 0 5
CAM 5 13π 9.9999·10−2 -3.9492·10−5 0 5
CAM 6 15π 9.9999·10−2 -3.4018·10−5 0 5
CAM 7 17π 9.9999·10−2 -2.9830·10−5 0 5

The different CAM alternatives are evaluated in order of priority. First, the risk

associated with the encounter after implementing the manoeuvre is computed. The

encounter after the first manoeuvre is re-classified as Class 5 (Table 10.11), meaning

the new orbit is safe. Then, the new ephemerides are computed and further analysis is

performed using the One-vs-All mode of the ACS to detect possible future conjunctions

with other catalogued objects. Note, that in case the first alternative would not have

reduced the risk of the event to Class 4 or 5, the next alternative would have been

chosen.

The model used to predict future encounters in the One-vs-All ACS mode is de-
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scribed in more detail in Section 10.1.5. This mode takes the newly computed ephemeris

of the manoeuvred object and the ephemeris of the other catalogued objects over a 1-

day period after the CAM as input, and predicts the evolution of the impact parameter

for each possible conjunction pair over a 3-day screening period. The threshold on the

impact parameter chosen to identify encounter events was set to 20 km.

The first CAM implemented already reduces the risk of the current encounter and,

according to the One-vs-All, does not generate further encounters. This means that

the system proposes the manoeuvre to the operators. In case the operators decide to

execute it, the catalogue has to be updated accordingly. Once this first encounter is

addressed, the system automatically starts the analysis of the next pair found by the

All-vs-All module.

10.4 Chapter summary

This chapter introduced CASSANDRA, an intelligent agent to support operators with

SEM/STM problems. It reflects the application of the methodologies and applications

presented in this work, bringing them together to solve a common problem. Within

the context of this work, CASSANDRA should be understood as the middle step from

the theoretical developments introduced here and their applicability to the real world.

CASSANDRA has a modular architecture, with tools dedicated to specific problems.

This chapter detailed those modules used during this chapter. More specifically, the

ACS, RSE, IDSS and CAMmodules were presented, with the latest two synthesizing the

development introduced along this work: the DSt framework for conjunction analysis

and CAM computation, the application of AI for Conjunction Assessment Risk Analysis

and the multi-criteria decision making applied to avoidance strategies.

Two integration examples of those modules showing the functionality of CASSAN-

DRA were presented. The first aims to close the loops of state estimation and ob-

servation update in the context of close encounter, conjunction decision-making and

CAM allocation, including the robust reevaluation of corrected orbits accounting for

uncertainty. An example was proposed with both a Collision and a No Collision en-

counter, detailing the steps required to be executed by each module. These examples
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highlight the importance of receiving new measurements to update the uncertainty of

the event and the availability of the system to provide robust solutions to handle that

uncertainty.

The second integration example extends the previous case by adding the screening of

the catalogue. Thus, the system can predict conjunctions among the different objects

in the catalogue and individually assess all of them following the previous process.

Moreover, it is also able to evaluate the impact of an avoidance manoeuvre on the

background population and analyse if a better alternative is available, bearing in mind

the overall catalogue safety.
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Conclusion

The main objective of the thesis was to improve the automation and robustness of

Space Traffic Management (STM) tasks by implementing Artificial Intelligence (AI)

techniques and modelling and quantifying the epistemic uncertainty involved in Con-

junction Assessment Risk Analysis (CARA) and Conjunction Avoidance Manoeuvre

(CAM) design. The aim is to enhance space safety by improving the STM in the con-

text of the New Space, using new available theories and techniques, to ensure a safe and

sustainable use of space. The aim of the thesis was met and the list of objectives listed

in the introduction of this work were addressed in the different chapters compounding

this thesis.

Part I included all theoretical contributions and the methodology proposed to ad-

dress most of the objectives listed above. Each chapter was dedicated to one objective

or one sub-objective: evidence-based conjunction risk assessment framework, Conjunc-

tion Data Messages (CDMs) epistemic uncertainty modelling, robust CAM design, and

robust CAM decision-making support.

Chapter 3 introduced an evidence-based framework to account for mixed uncer-

tainty on the objects’ state vector for CARA. This framework allows quantifying both

aleatory and more importantly, epistemic uncertainty, which has been usually left aside

on conjunction assessment approaches. The proposed framework uses Dempster-Shafer

theory of Evidence (DSt) to quantify uncertainty by quantifying the uncertain variables

defining the geometry as intervals instead of well-defined variables, which quantify the
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epistemic uncertainty affecting them based on the available information or the reliabil-

ity of the sources (e.g. sensors, dynamic models, aleatory uncertainty quantification).

The proposed approach models the aleatory uncertainty using a probabilistic approach

(e.g. Gaussian distribution), and the epistemic uncertainty by quantifying the uncer-

tainty on the distribution parameters (i.e. expected value and covariance matrix) with

the width, number and overlapping of intervals for each variable. This approach is

agnostic of the distribution function and can be applied to any generic distribution. In

this work, the focus was on Gaussian distributions to facilitate the comparison with

probabilistic-based CARA approaches using the Probability of Collision (PoC) defini-

tion derived from the fast encounter hypothesis. However, a more complex distribution

can be used to define the aleatory uncertainty, and DSt will be applied similarly to the

new parameters defining the distribution. The proposed approach uses DSt’s combi-

nation rules to combine information provided by different sources of information. The

combination rules give a means to address uncertain information coming from differ-

ently reliable sources of information (e.g. due to different sensors’ quality or different

uncertainty propagation models) within the context of DSt. More specifically, the mix-

ing rule is employed, which allows for handling the conflict information that is expected

in conjunction risk assessment. Finally, the evidence-based framework provided met-

rics to evaluate the confidence in the correctness of the value of a desired variable

(e.g. PoC): the Plausibility and Belief functions. Based on the information extracted

from these two metrics regarding the confidence in a given value provided the available

information and the uncertainty affecting that information, some evidence-based clas-

sification criteria were proposed. The main contribution of those approaches, despite

their differences, is the inclusion of a new category overlooked by pure probabilistic ap-

proaches: an “unknown” or “uncertain” class indicating the lack of evidence to make

a confident decision. These classification criteria were compared with a probabilistic

approach using exclusively the value of the PoC, highlighting the importance of ac-

counting for epistemic uncertainty and considering a new class indicating the need for

new observations.

Chapter 4 presented a methodology that extends the framework introduced in the
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previous chapter to address the epistemic uncertainty in the CDMs. The CDMs are the

current standard to communicate conjunction information among operators. However,

they contain some sources of information not explicitly quantified in the message itself,

which complicates the proper representation of the uncertainty distributions: observa-

tion errors of the sensors used (or even the quality and number of sensors), dynamic

models employed for propagation or the parameters uncertainty, and the uncertainty

approximation, assuming a multi-variate Gaussian distribution for the state vector un-

certainty at the encounter, even though it is well known it is not an accurate model.

The proposed methodology assumes the CDMs are samples drawn from an unknown

distribution but no assumptions are made on the distribution itself. Instead, a bounding

region among the provided samples is built using Dvoretzky-Kiefer-Wolfowitz (DKW)

inequalities which includes all compatible distributions with the available information

given a certain confidence interval. The bounded region can be interpreted as a p-box,

quantifying the epistemic uncertainty affecting the sequence of CDMs of the specific

encounter. Using the equivalence between p-boxes and DSt structures, the methodol-

ogy presented in that chapter derived the set of intervals associated with the sequence

of CDMs employed for the evidence-based classification criteria presented before. The

methodology was subjected to a sensitivity analysis to understand the main parameters

driving the interval quantification. The confidence interval that determines the width

of the DKW band and the number of intervals to discretise the p-boxes are the main

parameters affecting the degree of confidence on the value of the PoC when computing

the Plausibility (Pl) and Belief (Bel). The other parameters have a smaller impact. In

any case, the main structure of the curves indicating the degree of uncertainty is mainly

unchanged regardless of the values of the parameters. Finally, the improvement in the

robustness of the CARA analysis was shown by studying the effect of wrongly com-

puted CDMs within a sequence. Due to the analysis of the whole sequence, the method

is resilient to poor-quality information by automatically assigning greater weight to

information coherent with the rest of the available information.

Chapter 5 proposed a method to compute robust CAM under the evidence-based

framework accounting for aleatory and epistemic uncertainty. The CAM design is based
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on a linear approximation of the effect of a manoeuvre on the relative position at the

impact plane. From this approximation to compute the effect of impulsive manoeuvres,

the robust manoeuvres are proposed by solving a min-max optimisation problem. The

minimisation part of the problem computes the optimal manoeuvre that minimises

the PoC of a given encounter geometry (relative position and uncertain ellipsoid).

The properties of the linear approximation are exploited, so the optimisation problem

can be solved by finding the eigenvalues of a matrix accounting for the covariance

matrix and the state transition matrix of the liner problem. This solution was proven

to provide accurate results when compared to the optimal manoeuvre obtained by a

Monte Carlo run. The maximisation problem aims to address the epistemic component

of the problem. When defining the uncertain geometries with intervals, the uncertain

ellipsoids become a set of ellipsoids. Thus, a robust optimal CAM should minimise the

PoC of the worst-case ellipse, that is, the ellipse in the set with the maximum PoC.

The proposed methodology can cope with fixed thrust manoeuvres or optimise the

manoeuvre magnitude subject to reduce the risk below a given threshold. The method

was extended to handle the low-thrust scenario as well. The proposed approach for

Low-Thrust (LT) manoeuvres assumes the direction of an equivalent optimal impulse

manoeuvre executing at the midpoint of the thrust arc and then optimises the arc

length, the thrust magnitude, or both simultaneously.

The last chapter of Part I, Chapter 6 proposed a decision support system to assist

operators in the planning and designing of avoidance strategies. From the method

introduced in the previous chapter, given a high-risk encounter, several robust optimal

CAMs could be obtained based on the manoeuvre position, the returning strategy to

the original orbit or the risk and thrust thresholds. The proposed approach evaluates

the possible alternatives against certain criteria, which usually are contradictory, to

provide the operator with the best alternatives to maximise the reward on the most

relevant criteria. This approach is based on Multi-Criteria Decision-Making (MCDM),

which allows to weight of the criteria according to the operator necessities and provides

a ranking of the preferred solutions. If the encounter involves other satellite operators

by a different agent, its avoidance strategy may influence the preferred option. Thus,
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the proposed decision support system for manoeuvre planning was enhanced with a

non-cooperative capability to address this problem. This scenario represents a classical

game theoretic scenario, where the best overall outcome is an alternative where no agent

loses, even if it does not represent the preferred alternative if not considering the other

agent’s decision. Using Game Theory, these stability points are searched on the space

of possible alternatives, thus an earlier manoeuvre may be the desired action finally

selected by both agents to avoid a potential collision, although individually, they would

prefer to be the other spacecraft which manoeuvres. The influence of the agent risk and

cost perception was analysed to see the variation in the preferred output in different

scenarios. These two approaches extended the whole evidence-based framework from

the conjunction assessment in Chapter 3 and Chapter 4 to the optimal CAM design

in Chapter 5 and the avoidance strategy planning. The whole framework improves the

robustness of the system by accounting at all stages for both aleatory and epistemic

uncertainty and facilitates automation with the proposal of the decision support system.

Part II proposed some application of the evidence-based framework on some STM

problems, including the verification of the methodologies on real data, the application

of AI, and addressing the multiple encounters scenario. Thus, the rest of the objec-

tives listed in the introduction were addressed in these chapters, and the increase in

automation and robustness on STM was also tackled in this part of the thesis.

Chapter 7 applied the methods proposed in Part I on real operational scenarios

to provide robust conjunction risk assessment. Real sequences of CDMs were provided

by two Space Agencies, ESA and CNES, along with their course of action under those

events. First, the chapter introduced an update on the evidence-classification criterion

to account for the uncertainty of the events based on the total gap between the Pl and

Bel curves instead of the vertical gap at the PoC threshold, allowing for better capture

of the total uncertainty and avoiding being affected for narrow jumps (small horizontal

gap) in low-conflict events. From this modification, a methodology to establish the

values of the epistemic threshold was proposed, aiming to select the value of Pl0 that

reduces the number of missing encounters or False Negatives, and the value of A0 that

minimises the number of false alerts or False Positives. The robust conjunction risk
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assessment method was then applied to some real events provided by ESA and to an

additional event provided by CNES. The three cases from ESA represent the three

main possible outcomes of the analysis: low-risk, high-risk and uncertain scenario.

When information on the sequence is coherent and not affected by further uncertainty,

the outcome of the system matches the ESA’s decision: a manoeuvre in the high-risk

case, and not take further actions in the low-risk case. However, the proposed approach

provides further insight when the sequence shows uncertainty or variability, indicating

to the operator that any possible decision lacks complete support from the available

information. When using CNES example, two further conclusions were obtained. On

the one hand, the proposed approach was compared with the Scaled PoC (sPoC)-

based methodology employed in the decision-making of this event, showing consistent

decisions were provided by both methods. On the other, when comparing this case and

the last example of ESA’s events, it can be concluded that a further visual inspection of

the Pl and Bel shape on cases affected by epistemic uncertainty can give more insights

on the further evolution of the risk associated with the event. To finalise the validation

process, the evidence-based framework was tested on a database of real events along

several years of operations of an ESA mission to provide a statistical analysis of the

system response. The number of CAM proposed from both approaches are in the same

range, but the cases classified as uncertain requiring potential actions obtained from

the evidence-based framework clearly exceed those identified by ESA as escalating

events. On the one hand, no operational constraints were considered in the robust

approach that may decrease this number and so may do the further visual analysis of

the uncertain cases suggested from the previous analysis, but on the other hand, this

may suggest that relying only on the last CDM without any confidence analysis may

be too optimistic.

Chapter 8 presented some implementations of Machine Learning (ML) techniques

aiming to automatise the methods proposed in the methodology section of the thesis

by the construction of surrogate models that allow speeding up the steps involved.

Three different AI approaches were proposed to address the methods introduced in the

three first chapters of Part I: automatically classify events based on the evidence-based
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framework, improving the decision-making accounting for the robust CAM, and pre-

dicting the best action given a sequence of CDMs. Overall, it can be said that ML

techniques, and more specifically, Artificial Neural Networks (ANN), Deep Learning

(DL) and bagging methods (Random Forests, RF, and Light Gradient Boosting Ma-

chine, LGBm), provide very good accuracy on the task of robustly classify risky events

given the uncertain geometry. However, it is important to note the difference in perfor-

mance if the system is tested on synthetic or real data. Synthetic datasets are useful

for the training process since they allow complementing real datasets, especially in the

case of unbalanced scenarios, to improve the model performance both in the synthetic

and real databases. Moreover, being able to train on a virtual database allows for be-

ing independent of the availability of real observations. Real data, on the other hand,

are more scarce and present a strong unbalanced distribution favouring less interesting

low-risk conjunctions. Although balancing techniques helped to compensate for this

situation, the difference in the structure of the database makes it hard, in general, to

extrapolate the prediction capabilities of models trained on synthetic databases. Ad-

ditionally, generating a representative virtual database may be hard, considering the

number of sources of error and unknown parameters required to mimic real observations

or real sequences of CDMs. Thus, as a conclusion of the application of AI for robust

conjunction risk assessment, it can be said that ML techniques can provide very good

results on the classification of risky events, but there is plenty of room for improve-

ment both, from the available data (considering better synthetic databases or training

on mixed datasets) and from the ML architectures, with this work just indicating the

most promising techniques, without entering on the details of the models selection or

their hyperparameter tuning.

Chapter 9 addressed the problem of multi-encounter events by extending the De-

cision Support System (DSS) methodology implemented in Chapter 6. The chapter

addressed the problem from two different perspectives: a single satellite facing sub-

sequent encounters, or several satellites belonging to the same constellation facing an

encounter with the same object. In both cases, the multiple events can be considered

as a collaborative scenario, so the MCDM approach was employed. In this chapter,

Robust AI for STM Luis Sánchez Fernández-Mellado 321



Chapter 11. Conclusion

the flexibility of the method was shown by adding more alternatives and more criteria

to the analysis without requiring any modification of the approach. The subsequent

encounter scenario was addressed by adding to the avoidance manoeuvre of the indi-

vidual encounter, alternatives with the possibility of avoiding every encounter either

with a single manoeuvre or with multiple manoeuvres. The effectiveness of the MCDM

methodology was shown with two opposite scenarios, differing on the location in the

orbit of the encounters compounding the multiple events. Each case required a different

avoidance strategy, which was well detected by the DSS. The second case proposed a

problem likely occurring in the New Space context, involving a constellation in Low

Earth Orbit (LEO) that had to keep the configuration that provides the best service

without affecting space safety. Thus, the returning strategy to the original configu-

ration was included in the alternatives and additional criteria referring to the total

cost of the combined manoeuvres and the constellation figure of metric subject to the

returning strategy were also considered. Different scenarios were addressed modifying

the importance of the criteria. The proposed applications showed the improvement on

STM that the proposed DSS extended capabilities can bring, being able to address the

more complex scenarios of multiple encounters.

Finally, Chapter 10 presented an intelligent agent, CASSANDRA, to address

complex Space Environment Management (SEM) and STM problems combining the

different methods proposed along this work, and other related works, including AI

and ML techniques for providing an automated and robust solution to complex space

safety tasks and involving different knowledge areas. The proposed agent has a mod-

ular structure, where each module addresses specific tasks (observations, uncertainty

propagation, catalogue screening, CAM design, decision-making...). The modular ar-

chitecture adds flexibility to the agent so that only the required modules are activated

when necessary. It also reduces the amount of interaction among them, only requiring

the definition of the inputs and output. A modular architecture allows the inclusion

of new modules as well in case new problems are wanted to be solved. This agent

illustrated how the work introduced in this thesis can be integrated into broader space

safety projects. The chapter showed the integration into a single framework of algo-
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rithms developed in this work with other methods to address uncertainty propagation

and intelligent screening propagation to address a more complex problem than those

tackled by the individual algorithms. Two specific applications of CASSANDRA were

shown in the chapter. The first one addressed the problem of robust conjunction risk

assessment and CAM design providing observations affected by uncertainty (aleatory

and epistemic). Three modules are involved: the Robust State Estimator (RSE) that

provides an estimate of the propagated state and the associated uncertainty, propa-

gated with a Robust Particle Filter; the Intelligent Decision Support System (IDSS)

that includes the evidence-based framework to provide robust decisions, and the CAM

module to provide robust optimal manoeuvres if required. This example showed the

capacity of the system to close the loop from observations to uncertainty propagation,

conjunction assessment and collision avoidance. Different scenarios were proposed, in-

cluding a near-missed encounter and a conjunction event. In both cases, due to the

uncertainty affecting the observations, new measurements were required by the IDSS.

In the collision scenario, a robust CAM was proposed and its effect was evaluated

ensuring the effective reduction of risk. The second integration example proposed in

the chapter presented a more complex pipeline and it is an extension of the previous

scenario. The aim was to provide robust conjunction assessment to a whole catalogue.

The pipeline of the previous scenario, including the RSE, IDSS and CAM modules was

extended by including the ML-based Automated Conjunction Screening (ACS) module,

with its two modes: All-vs-All and One-vs-All. Additionally, the examples showed also

the integration of the MCDM-based DSS to propose the best manoeuvre accounting

for the effect on the background population, that is, finding new potential encounters

with the rest of the objects on the catalogue. Thus, this scenario shows the capacity of

CASSANDRA to analyse a whole catalogue to detect potential conjunction given the

set of Two Line Elements (TLEs) (although raw observations or CDMs would follow

a similar approach) and to propagate the uncertainty, propose avoidance measurement

and evaluate their impact on the background population
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11.1 Recommendations

Next, some future developments are indicated that would help improve the maturity,

applicability, and efficiency of the methods presented, as well as overcome some limi-

tations currently affecting them.

The evidence-based framework was presented assuming the fast encounter hypoth-

esis. The method is not limited to these assumptions, thus it would be desirable to

implement a robust analysis to situations when one or more of these assumptions do

not apply. First, Gaussian assumptions should be dropped. It is well known that the

object’s uncertain distribution does not remain the Gaussian after orbit propagation

under non-linear dynamics, which affects the actual risk of the event. Gaussian Mixture

Models could be used for modelling the uncertainty. This approach allows a more com-

plex representation of the uncertainty, closer to the actual situation, and still provides

the same kind of inputs to the evidence-based system, that is, the expected values and

the covariance matrices of the Gaussian distributions. If dropping the fast encounter

hypothesis, a new computation of the PoC or new metric risk should also be adopted.

Different efforts are addressing the relaxation of some of the assumptions, like assuming

uncertainty on the velocity, assuming more complex shapes of the objects or assuming

encounters expanding through longer periods. In any case, it should be advisable to

implement a dilution-free metric even if no epistemic uncertainty is modelled. This

dilution-free metric should not decrease if poorer quality information is provided (no

reduction of the risk metric when increasing the covariance). The proposed method

should be able to cope with this approach with no great modifications. The inputs

can be modelled interval-wise similarly, and the Pl and Bel curves would refer to the

new risk metric. From a more practical point of view, improving the optimisation step

on the computation of the Pl and Bel , which currently represent the slower step of

the process, should enhance efficiency and allow increasing the number of intervals per

variable for better quantification of the epistemic uncertainty.

Related to this aspect, the robust classification system can be improved by replacing

the risk metric with a dilution-free metric. The current approach is robust in the
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sense that it accounts for epistemic uncertainty, a necessary step to avoid dilution

of probability. However, if all CDMs in the sequence, for example, falls within the

dilution region, the proposed approach will not be able to provide information about

this circumstance. A possible and relatively straightforward improvement of the model

would be to use any of the metrics included in Appendix A or other similar ones so that

confidence is obtained on a dilution-free variable, adding an extra layer of robustness

to the methodology.

There is room for improvement in the design of robust collision manoeuvres. The

current approach is based on a linear model assuming Keplerian motion. Thus, account-

ing for perturbations on the effect of the manoeuvre should be a desirable development.

Regarding the automation capabilities and considering future on-board uses, the min-

max optimisation problem can benefit from a more efficient implementation that speeds

up the computation process and, more specifically, the maximisation step (the compu-

tation of the worst case on the uncertain variables space) and the optimisation of the

magnitude, which currently are the more expensive steps. Further developments on the

CAM design involved the automation of the design stage, implementing AI techniques

as reinforcement learning to automatically provide safe avoidance strategies from the

encounter geometry or the objects’ state vector and uncertainty.

The framework was proven to be able to ingest CDMs, yet, it is possible to improve

the model further. One improvement would be implementing methods to ingest other

protocols or, even better, raw observations, which are expected to be more available in

the future with the appearance of new commercial observation product providers. Also,

computational efficiency can be gained with faster optimisation implementation on the

p-box computation. Alternatively, the proposed ML approach may be a fast option

to skip the explicit computations required in this step. The current implementation

assumes independence on the input variables. Thus, addressing the dependency among

variables (i.e. covariance matrix elements) when building the Focal Element (FE) and

computing the PoC will probably be a more precise and formal approach.

After validating the methodology on real data and proposing a classification crite-

rion and a threshold tuning method, further analysis of the preferred values for these
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quantities should be performed. This may include a statistical approach similar to the

one carried out by operators to determine the value of the PoC on their missions, based

on the number of estimated encounters and a trade-off between the avoided and ac-

cepted risk. However, this should require access to statistical models or real databases.

Regarding databases, the validation on real scenarios showed the method effective-

ness in providing conjunction assessment in high-risk, low-risk and uncertain events.

However, events in this last category require further analysis to develop an automated

method to discern the event typology regarding the uncertainty (that is, the shape of

the Pl and Bel curves), to be able to differentiate cases possessing actual high-risk, low-

risk or trends on the risk evolution. Very related to this are the results concerning the

statistical analysis of the database of CDMs. The results indicated that the number of

proposed CAMs were in line with the actual manoeuvres implemented. However, there

is a considerably higher number of cases catalogued as uncertain (which potentially re-

quires a CAM) than escalated events in the real operational situation. Further analysis

is advised accounting for the operational restrictions taken into consideration in the

real scenarios to discern whether the proposed method is too cautious or the current

operational implementations based on the last CDM computes risk are too permissive.

The application of ML techniques for robust conjunction assessment was proven

successful. Different techniques were applied to predict the best action to be taken by

the operators under conjunction scenarios. These implementations were proposed as

proof of concepts more than final proposals, including a search of hyperparameters and

a comparison of techniques. In any case, a more formal and systematic approach should

be taken to decide which is the best approach. Moreover, the best approach may be

application-dependent, for example, an on-board system may require faster execution

or even faster training times, while critical applications may be preferred to have higher

reliability despite longer training and prediction times. An interesting aspect provided

by ML models not exploited in this work is the probability of the prediction, that is,

the relative probability distribution the system assigns to the possible outcome labels.

While the final decision will require a single class to be provided, a better insight

into the probability distribution of the prediction may anticipate complex scenarios,
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like the different typologies of Uncertain events mentioned before. Bayesian Networks

can contribute to the exploitation of this information. A fundamental aspect affecting

the AI systems in this work is the lack of data. Conjunction databases are strongly

imbalanced, making it harder to predict the minority class, which also represents the

event of interest (collision or high-risk). The alternative of using synthetic or mixed

databases has a lot of potential, as shown in this work, however, these data must be

realistic to allow the system to extrapolate to real information, which is not always an

easy task. Greater gains in performance may be obtained with a populated, balanced

and quality database than with model complexity. Thus, more effort into building such

datasets, both synthetic and from real missions, should be made. The results of this

work can be taken as the first stage through an AI-based STM system. Thus, more

techniques can be implemented to replace current tasks, like automated CAM design,

or to reduce workload, like predicting new CDMs anticipating the risk assessment.

Another aspect treated in this work involving AI is CASSANDRA. The complexity

and variability of problems related to STM tasks require that its automation has to be

carried out by a complex system. CASSANDRA represents the beginning of such an

intelligent agent, but further developments are required. Currently, AI techniques have

been applied to different modules. The aim is that in the future, the whole system will

work autonomously, powered by an AI assistant that autonomously assigns tasks to the

different modules according to the proposed problem and interacts with the operator

to translate commands into instructions understood by the modules or interpret the

outcomes provided by the system.

Finally, the framework proposed in the thesis, which is applied to operational STM,

may be extended to address other space safety scenarios. The CASSANDRA agent

presented in this thesis showed how the algorithms introduced in the thesis can be

integrated with other methodologies to address more complex space safety problems.

Similarly, this can be extended to other scenarios. On the one hand, the longer sus-

tainability of the Earth’s environment could be addressed by modifying the current

pipeline to handle longer time intervals. The current implementation uses operational

information (PoC, CDMs...) which refers to short periods. Thus, it would be required
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to redefine the risk metrics, uncertainty quantification or inputs provided. On the

other hand, the parallelism between STM and Earth protection could be exploited

to provide an equivalent system to address the deflection of Near Earth Objects (e.g.

CASSANDRA-4NEO). An AI-based decision support system inspired by the IDSS pre-

sented in this work could be used to provide the best decision to address an asteroid

approximating the Earth, an equivalent CAM module would compute the optimal de-

flection strategies, MCDM techniques could be used to rank them according to the

specific restrictions, and DSt can be used to model the expected lack of knowledge

affecting most of the object or the deflector parameters, especially in the earlier stages.

Finally, the proposed methodologies and applications were developed having in mind

the ground segment part of the STM, but future satellites are likely to have a greater

level of autonomy in their operation, especially those included in constellations with

thousands of satellites. Improving the computational efficiency and guaranteeing the re-

liability of the AI models would allow the creation of a lighter version of CASSANDRA

to be implemented onboard satellites for real-time conjunction analysis and avoidance.
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Appendix A

Dilution-free metrics

Currently, the most common metric used to evaluate the risk possessed by an encounter

is the Probability of Collision (PoC). It is very popular among operators, especially un-

der the fast encounters hypothesis, is easy to compute and only requires information

on the relative position of the objects involved in the encounters and their covariance

matrices. However, it suffers from the dilution of probability, a counterintuitive phe-

nomenon that suggests a safer encounter when evaluating the conjunction with poorer

data (bigger covariance matrix), as explained in Chapter 3. The root of this problem

is the lack of a model for the epistemic uncertainty when computing the PoC [Balch

et al., 2019]. However, note that if all the Conjunction Data Messages (CDMs) of a

sequence falls in the dilution region, the evidence-based classification system proposed

in the main body of the thesis would not be error-free.

Thus, a dilution-free metric should be used whose main characteristic is the non-

decreasing phenomenon when increasing the size of the uncertain ellipsoid. [Balch,

2016] proposed two dilution-free metrics: the red and blue-Plausibility of Collision

(rPloC, bPloC), explained below. This appendix shows a preliminary implementation

of this kind of metrics on the robust evidence-based framework presented in the main

body of the thesis. The further development of that approach, left for future work,

would provide a robust dilution-free conjunction assessment modelling both aleatory

and epistemic uncertainty.

Robust AI for STM Luis Sánchez Fernández-Mellado 330



Appendix A. Dilution-free metrics

A.1 Dilution of probability and epistemic uncertainty

The lack of a model for epistemic uncertainty in collision risk assessment lies behind the

probability of dilution problem. In this thesis, the Dempster-Shafer theory of evidence

was used to model this type of uncertainty, while other authors proposed different, yet

equivalent approaches. For example, [Balch, 2016] proposed using Possibility theory

and random-to-fuzzy transformations to avoid this problem.

According to this approach, Possibility theory’s concepts of Necessity and Possibil-

ity, which he renamed Plausibility and Confidence, are employed to bound the possible

values of PoC. In this sense, those concepts are equivalent to the Dempster-Shafer

theory of Evidence (DSt)’s terms of Plausibility and Belief employed in the main body

of this thesis. Similarly, the author in [Balch, 2016] uses the concept of possibility func-

tion, r : R → [0, 1], from which to obtain the Plausibility and Confidence of a desired

variable or set similarly as basic probability assignments (bpas) and Focal Element

(FEs) are employed in DSt:

PlausX(A) = max {r(x) : x ∈ A}

ConfX(A) = 1−max
{
r(x) : x ∈ AC

} (A.1)

with A ⊂ Ω an event or set of values, Ω the set of all possible values, and AC the

complement of A.

Finally, the dilution-free metrics introduced in [Balch, 2016] employed the same

concept of impact plane defined in Eq. (5.9), introducing additional rotations and

transformations. Thus, the impact plane reference frame < ξ, η, ζ > centred at the

Hard Body Radius (HBR) is rotated to be aligned with the axes of the combined

uncertainty ellipse, < X ′, Y ′, Z ′ > (Fig. A.1):

 x′

y′

 = RT

 ξ

ζ

 (A.2)

with RT the rotation matrix with the normalised eigenvalues of combined covariance

matrix projected in the impact plane, Σ. The resulting reference frame is then displaced
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to be centred at the ellipse instead of the HBR, < X ′′, Y ′′, Z ′′ >:

x′′ = x′ − x′0

y′′ = y′ − y′0

(A.3)

where (x′0, y
′
0) are the coordinates of the ellipse centre in the rotated reference frame.

Figure A.1: Encounter geometry and different reference frames in the
impact plane used to compute the PoC and the dilution-free metrics.

A.2 Red Plausibility of Collision

This metric is introduced in [Balch, 2016] as a non-decreasing metric to substitute the

PoC in conjunction risk assessment. It is a likelihood-based approach applied in a

normalised impact plane centred in the combined uncertain ellipse. In the normalised

impact plane the reference frame axes, < Ξ1,Ξ2 >, are aligned with the ellipse’s axes

and the ellipse becomes a circumference (Fig. A.2).

In this space, the HBR becomes an ellipse centred at (x′0/σ
′
x, y

′
0/σ

′
y), whose semi-

major axis is R/σ′x and the semiminor axis Rσ′y, being parallel to < ξ1, ξ2 >. R is
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Figure A.2: Normalised reference frame in the impact plane used to com-
pute the rPloC.

the size of the HBR, σ′x and σ′y are diagonal terms of covariance matrix expressed in

< X ′, Y ′ >.

The resulting metric results in:

rP loC = max

(
rΞ−1Ξ2(ξ1, ξ2) :

(
ξ1 + x′0/σ

′
x

R/σ′x

)2

+

(
ξ2 + y′0/σ

′
y

R/σ′y

)2

≤ 1

)
= e(−

1
2
ρ̂2)

(A.4)

where ρ̂ is the smallest distance from the centre of the normalised ellipse to the ellipse-

shaped HBR, and rΞ1,Ξ2(ξ1, ξ2) = e
1
2
(ξ21+ξ22) is the possibility function that indicates

the probability of randomly drawn a less likely point in the plane than the pair under

inspection (ξ1, ξ2).

This metric grows asymptotically to one when uncertainty increases (ρ̂ tends to

zero) and it values one (rP loC = 1) if the ellipse covers the centre of the HBR. This

approach would be the expected behaviour of a metric indicating the risk of a collision

when the event is driven by a lack of knowledge of the provided information: the poorer

Robust AI for STM Luis Sánchez Fernández-Mellado 333



Appendix A. Dilution-free metrics

the quality of the information, the greater the plausibility of a collision happening due to

accurate knowledge of the event. However, from the point of view of the classification

system and confidence quantification proposed in the main body of the thesis, this

approach leads to over-conservative results (with respect to PoC [Balch, 2016]) as soon

as some pieces of information fall in the dilution region or all the pieces of information

are not coherent among each other (creating FEs with elements falling in the dilution

region), making it difficult to extract useful outcome for the operators.

A.3 Blue Plausibility of Collision

This Blue Plausibility of Collision also presents a dilution-free asymptotic value, tending

to the maximum value of the PoC (for a given miss distance and HBR), instead of the

more conservative value of one of the red Plausibility of Collision. This metric presents

closer values to the PoC when not in the dilution region, making it easier to relate with

approaches based on this more common metric.

The Blue Plausibility of Collision uses the Cumulative Distribution Function (CDF)

of the distance, F∆(d) with d =
√
x′2 + y′2, to build the possibility function (Fig. A.3):

r∆(d) =


F∆(d)/F∆(D), if d ≤ D

(1− F∆(d))/(1− F∆(D)), if d > D

(A.5)

where D is the distance between the centre of the HBR and the centre of the ellipse

and R is the size of the HBR. From here, the bPloC is defined as:

bP loC = max (r∆(d) : d ≤ R) =


F∆(R)
F∆(D) , if R ≤ D

1, if R > D

(A.6)

A.4 Comparison of metrics

In the next figures, the behaviour of the dilution-free metrics presented in the appendix

is compared with the PoC.
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Figure A.3: Distance distribution for different values of the miss distance. (a) pdf, (b)
CDF.
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Figure A.4: Evolution of the conjunction assessment metrics with the covariance matrix
for different values of the covariance matrix (with σ′x = σ′y). (a) Probability of collision,
with dilution region, (b) Dilution-free Red Plausibility of Collision, (c) Dilution-free
Blue Plausibility of Collision.

Fig. A.4 show the evolution of the rPloC and the bPloC as a function of S/R

(the ratio between the ellipse size and the HBR), which measures the quality of the

information, for different values of D/R (the ratio of the miss distance over the HBR),

which indicates the proximity of the objects (D/R < 1 indicates the relative position

is smaller than the combined size of the objects). It can be seen that for D/R < 1,

bot metrics equal one, no matter the covariance matrix. For D > R, both functions

present an increasing behaviour, asymptotically increasing with the covariance matrix

to one for the rPloC, and to the maximum PoC for the bPoC. Both metrics are free of

dilution, with the red metric showing a more conservative approach.
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Figure A.5: Comparison of the evolution with the covariance matrix for different values
of the covariance matrix (with σ′x = σ′y) of the PoC (black) with the free-dilution metrics
(rPloC in red and bPloC in blue).

Fig. A.5 shows the behaviour of those metrics with the size of the covariance com-

pared with the evolution of the PoC for different values of the miss distance. It can

be seen how the bPloC shows a closer behaviour to the PoC than the rPloC, which

increases more quickly towards one when entering the dilution region.

A.5 Introduction to dilution-free robust conjunction as-

sessment

Finally, these metrics can be applied to the robust evidence-based framework proposed

in the main text of the thesis. When accounting for both aleatory and epistemic

uncertainty in the state of the objects involved in space conjunction, the uncertain

encounter geometry would provide sets of ellipses from where a set of FEs can be

obtained. In the same way, the minimum and maximum value of the PoC on each

FE allowed to build the Plausibility (Pl) and Belief (Bel) curves in Chapter 3, the

minimum and maximum rPloC and bPloC on each FE can be obtained to obtained

dilution-free Pl and Bel curved.
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Figure A.6: Uncertain geometry of the encounter use to compute the Pl and Bel of the
dilution-free metrics.

Fig. A.6 shows the uncertain geometry used to compute the Pl and Bel curves in

Fig. A.6. In this last figure, the confidence curves are obtained for the three metrics

considered in the appendix: the PoC, as in the rest of the thesis, and the rPloC and

bPloC. The three cases show a high degree of uncertainty due to the disparity in the

uncertain ellipses from the sequence of CDMs. But more interesting are the differences

in the shape and values of the curves. The PoC present a low value of Bel and a

higher value of Pl up to 10−4, when it experiences a sharp drop. The Pl of the rPloC,

however, remains high up to values rP loC ∼ 1 to one and the Bel is greater than zero

for rP loC < 0.1, indicating some of the ellipses, or some of the possible ellipses from

the FEs, fall in the dilution region. Being an interesting piece of information, due to its

great sensitivity to dilution, it does not allow extracting more detailed information to

indicate the operator how to react. Finally, the curves for the bPloC are more similar

to those of the PoC, which shows the less conservative approach towards dilution of

this metric. There are two important differences concerning the PoC behaviour. First,

the values at which the Pl falls are slightly bigger, especially after the small step at

Pl ∼ 0.65, which indicates some of the ellipses are close but to the right of the dilution
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Figure A.7: Plausibility and Belief curves for PoC (black), red PloC (red) and blue
PloC (blue).

region (see Fig. A.5 to see the comparative behaviour of PoC and bPloC). Second, the

Pl curves present a tail that grows to values of bP loC ∼ 10−2, which suggests that part

of the ellipses fall in the dilution region.

Further analyses are encouraged to implement the bPloC as a dilution-free metric

within the robust evidence-based classification criteria introduced in the main body of

the thesis.
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Geometries for conjunction

classes

Figs. B.1 to B.4 shows representative examples of conjunction events for each of the

families of geometries described in Table 3.4, but the set Geo. 1, which is shown in

Fig. 3.8.

Tables B.1 to B.3 detail the outcome shown in Figs. 3.9 to 3.11, respectively, where

the Evidence-based criteria presented in Tables 3.3, 3.6 and 3.7 (Criterion 1, Criterion

2 and Criterion 3, respectively) are compared with a purely Probabilistic classification

criterion. The results are broken down by geometry families.
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(a)

(b)

Figure B.1: Representative scenario of a single case of Geo. 2 : (a) en-
counter geometry, (b) the associated Bel and Pl curves.
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(a)

(b)

Figure B.2: Representative scenario of a single case of Geo. 3 : (a) en-
counter geometry, (b) the associated Bel and Pl curves.
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(a)

(b)

Figure B.3: Representative scenario of a single case of Geo. 4 : (a) en-
counter geometry, (b) the associated Bel and Pl curves.
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(a)

(b)

Figure B.4: Representative scenario of a single case of Geo. 5 : (a) en-
counter geometry, (b) the associated Bel and Pl curves.
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Table B.1: Classification distribution (in percentage) by sets using a crite-
rion based only on PoC value and using E-b Criterion 1.

ˆPoC based Evidence based

Set Number
samples

Col.
%

NoCol.
%

HR
%

LR
%

NtKn.
%

Total 3000 47.2 52.8 2.8 5.8 91.4
Geo. 1 600 96.3 3.7 0.0 0.0 100
Geo. 2 600 0.0 100 0.0 21.8 78.2
Geo. 3 600 66.7 33.3 14.0 0.0 86.0
Geo. 4 600 0.0 100 0.0 7.3 92.7
Geo. 5 600 72.8 27.2 0.0 0.0 100

Table B.2: Classification distribution (in percentage) by sets using a crite-
rion based only on PoC value and using E-b Criterion 2.

ˆPoC based Evidence based

Set Number
samples

Col.
%

NoCol.
%

HR
%

LR
%

NtKn.
%

Total 3000 47.2 52.8 11.1 75.7 13.1
Geo. 1 600 96.3 3.7 39.5 10.3 50.2
Geo. 2 600 0.0 100 0.0 100 0.0
Geo. 3 600 66.7 33.3 16.2 68.3 15.5
Geo. 4 600 0.0 100 0.0 100 0.0
Geo. 5 600 72.8 27.2 0.0 100 0.0

Table B.3: Classification distribution (in percentage) by sets using a crite-
rion based only on PoC value and using E-b Criterion 3.

ˆPoC based Evidence based

Set Number
samples

Col.
%

NoCol.
%

C1
%

C2
%

C3
%

C4
%

C5
%

Total 9000 47.2 52.8 8.1 7.4 8.8 25.2 50.5
Geo. 1 1800 96.3 3.7 29.9 23.6 34.4 3.4 6.9
Geo. 2 1800 0.0 100 0.0 0.0 0.0 33.3 66.7
Geo. 3 1800 66.7 33.3 10.6 10.8 10.3 22.7 45.6
Geo. 4 1800 0.0 100 0.0 0.0 0.0 33.3 66.7
Geo. 5 1800 72.8 27.2 0.0 0.0 0.0 33.3 66.7
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Algorithms for robust optimal

collision avoidance manoeuvres

This appendix includes the algorithms required to compute the robust optimal Con-

junction Avoidance Manoeuvre (CAM), both in the impulsive and in the Low-Thrust

(LT) scenarios.

C.1 Min-max impulsive optimisation algorithm

This section includes the algorithm to compute the impulsive robust optimal manoeuvre

under aleatory and epistemic uncertainty under a constant magnitude of the impulse,

δv0.
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Algorithm C.1: Impulsive for robust optimal CAM with constant magnitude.

1 Initialise ϵPoC ,∆PoC, δvmax

2 S = []

3 for fe ∈ FE do

4 ufe = argmaxu∈Υfe
(PoC)

5 S = S+Σ−1
fe

6 end

7 Compute PoC1 with Eq. (3.1)

8 while ∆PoC > ϵPoC do

9 T = QTTSTQ

10 Compute δvopt with Eq. (5.17)

11 Compute deflection δxb with Eq. (5.1)

12 S = []

13 for fe ∈ FE do

14 Add δxb to the Focal Element (FE) limits on b parameter components:

15 ufe = ufe + [δxb(1), δxb(3), 0, 0, 0]

16 ufe = ufe + [δxb(1), δxb(3), 0, 0, 0]

17 ufe = argmaxu∈Υfe
(PoC; δxb)

18 S = S+Σ−1
fe

19 end

20 Compute PoC with Eq. (3.1)

21 ∆PoC = abs(PoC − PoC1)

22 PoC1 = PoC

23 end
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C.2 Min-max impulsive magnitude optimisation algorithm

This section includes the algorithm to compute the impulsive robust optimal manoeuvre

with optimal impulse magnitude to reduce the Probability of Collision (PoC) under a

desired threshold, PoC0.
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Algorithm C.2: Impulsive robust optimal CAM with optimised magnitude.

1 Initialise ϵPoC ,∆PoC, δvstep

2 S = []

3 for fe ∈ FE do

4 ufe = argmaxu∈Υfe
(PoC)

5 S = S+Σ−1
fe

6 end

7 Compute PoC1 with Eq. (3.1)

8 while ∆PoC > ϵPoC do

9 T = QTTSTQ

10 Compute dopt with Eq. (5.17)

11 δvopt = δvmax

12 Compute PoC with Eq. (3.1)

13 while PoC < PoC0 do

14 δvopt = δvoptdopt

15 Compute deflection δxb with Eq. (5.1)

16 S = []

17 for fe ∈ FE do

18 Add δxb to the FE limits on b parameter components:

19 ufe = ufe + [δxb(1), δxb(3), 0, 0, 0]

20 ufe = ufe + [δxb(1), δxb(3), 0, 0, 0]

21 ufe = argmaxu∈Υfe
(PoC; δxb)

22 S = S+Σ−1
fe

23 end

24 Compute PoC with Eq. (3.1)

25 δvopt = δvopt − δvstep

26 end

27 ∆PoC = abs(PoC − PoC1)

28 PoC1 = PoC

29 end
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C.3 Low-thrust collision avoidance manoeuvre optimisa-

tion

In this section, the algorithm to compute the robust optimal avoidance manoeuvre in

the LT scenario is presented.

Algorithm C.3: LT robust optimal CAM.

1 Initialise δvmax, εmax, θm

2 Stage 1: Optimal direction, acceleration magnitude and arc-length:

3 δvopt = δvmax

4 dopt|θm , using Algorithm C.1

5 ∆θm = 2 (θc − θm)

6 θmf = θc

7 θm0 = θmf −∆θm

8 ∆tb = f1(∆θm, θm, θc)

9 εopt = εmax

10 Stage 2: Deflection at b-plane, δxb:

11 Propagate modified orbit to Time of Closest Approach (TCA):

12 if θmf = θc then

13 Use Fable with εopt and dopt from θm0 to θc

14 else

15 Use Fable with εopt and dopt from θm0 to θmf

16 Propagate coast-arc (ε = 0) from θmf to θc

17 end

18 Compute deflection:

19 Project state on b-plane

20 Nominal miss distance after CAM: reLT

21 δxb = reLT
− re0

22 Stage 3: Worst-case scenario after CAM:

23 uWCLT
= uWC + [δxb(1), δxb(3), 0, 0, 0]
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C.3.1 propellant saving optimisation: acceleration reduction

The following algorithm includes the variant to compute the robust optimal LT CAM,

optimising the propellant consumption by minimising the magnitude of the acceleration.

Algorithm C.4: LT robust optimal CAM. propellant saving via min. accel-

eration.

1 Initialise δvmax, εmax, δε, θm, PoC0

2 Call Algorithm C.3

3 if PoC < PoC0 then

4 while PoC < PoC0 and εopt > 0 do

5 εopt = εopt − δε

6 Call Stage 2 and Stage 3 of Algorithm C.3

7 Compute PoC = f(εopt,uWCLT
,dopt,∆θm)

8 end

9 end

C.3.2 propellant saving optimisation: burning-time reduction

The following algorithm includes the variant to compute the robust optimal LT CAM,

minimising the burning-time to optimise the propellant consumption.

Algorithm C.5: LT robust optimal CAM. propellant saving via min.

burning-time.

1 Initialise δvmax, εmax, δθ, θm, PoC0

2 Call Algorithm C.3

3 if PoC < PoC0 then

4 while PoC < PoC0 and εopt > 0 do

5 θm0 = θm0 + δθ

6 θmf = θmf − δθ

7 ∆θm = θmf − θm0

8 Call Stage 2 and Stage 3 of Algorithm C.3

9 Compute PoC = f(εopt,uWCLT
,dopt,∆θm)

10 end

11 end
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Appendix D

Machine learning

hyperparameters

Table D.1 shows the hyperparameters chosen for the best model of each technique on

each of the four training scenarios detailed in Section 8.1.

Table D.2 includes the hyperparameters for the Artificial Neural Network (ANN)

and the Random Forest (RF) best models for the case in Section 8.2.

Finally, Table D.3 shows the hyperparameters of the best models for the different

techniques used in Section 8.3, both training in the synthetic and in one of the real

databases.
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Table D.1: Hyperparameters of the best model of each technique on each
of the four training scenarios in Section 8.1.

ANN

System 1 System 2
DB11 DB21 DB11 DB21

Number of neurons
in hidden layer

100 100 50 100

RF

System 1 System 2
DB11 DB21 DB11 DB21

Number of trees 50 100 200 400
Maximum depth of tress ‘None’ ‘None’ ‘None’ ‘None’

Min. number samples
at leaf node

1 1 1 1

Min. number samples
to split node

20 2 2 2

Number features when
looking for best split

‘auto’ ‘auto’ ‘auto’ ‘auto’

KNN

System 1 System 2
DB11 DB21 DB11 DB21

Number of neighbors 1 1 20 20
Weight function ‘uniform’ ‘uniform’ ‘uniform’ ‘uniform’

Leaf size 30 30 30 30

SVM

System 1 System 2
DB11 DB21 DB11 DB21

Decision function of shape ‘ovo’ ‘ovo’ ‘ovo’ ‘ovo’
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Table D.2: Hyperparameters of the best model of each technique on the
example in Section 8.2.

ANN

Number of neurons
in hidden layer

100

RF

Number of trees 100
Maximum depth of tress ‘None’

Min. number samples
at leaf node

1

Min. number samples
to split node

2

Number features when
looking for best split

‘auto’
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Table D.3: Hyperparameters of the best model of each technique trained
on the synthetic and in the real databases in Section 8.3.

RF with intervals

Trained in Synthetics DB Trained in Real DB

n estimators 200 50
max depth ‘None’ ‘None’

min samples split 2 2
min samples leaf 1 1
max features 0.5 0.5

RF with CDMs

Trained in Synthetics DB Trained in Real DB

n estimators 200 50
max depth ‘None’ 50
min samples split 2 2
min samples leaf 10−7 10−7

max features 0.5 0.5
Lag step 3 0

LGBm with CDMs

Trained in Synthetics DB Trained in Real DB

n estimators 10 5
max depth 7 2
subsample 0.7 0.1
colsample bytree 0.8 0.8
boosting type ‘rf’ ‘gbdt’

Lag step 4 1

Autoregresive LGBm

Trained in Synthetics DB Trained in Real DB

n estimators 10 10
max depth 7 2
subsample 0.7 0.7
colsample bytree 0.8 0.8
boosting type ‘gbdt’ ‘gbdt’

Lag step 1 2

Transformers

Trained in Synthetics DB Trained in Real DB

depth 2 1
attn dropout 0.1 0.2
res dropout 0.3 0.2
wd 0.1 0.1
n epochs 25 25
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Merz, K., Bridges, C. P., and Güneş Baydin, A. (2021). Kessler: a machine learn-

ing library for spacecraft collision avoidance. In 8th European Conference on Space

Debris. ESA/ESOC, Darmstadt, Germany.

[Acciarini et al., 2020] Acciarini, G., Pinto, F., Metz, S., Boufelja, S., Kaczmarek, S.,

Merz, K., Martinez-Heras, J. A., Letizia, F., Brdiges, C., and Baydin, A. G. (2020).

Spacecraft collision risk assessment with probabilistic Programming.

[Aglietti et al., 2019] Aglietti, G. S., Taylor, B., Fellowes, S., Tye, D., Cox, C., Zarkesh,

A., Mafficini, A., Vinkoff, N., Bashford, K., Salmon, T., Retat, I., Burgess, C., Hall,

A., Chabot, T., Kanani, K., Pisseloup, A., Bernal, C., Chaumette, F., Pollini, A., and

Steyn, W. H. (2019). RemoveDEBRIS: An in-orbit demonstration of technologies

for the removal of space debris. The Aeronautical Journal, 124(1271):1–23. DOI:

https://doi.org/10.1017/aer.2019.136.
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V., and Camacho, D. (2022a). An intelligent system for robust decision-making

in the all-vs-all conjunction screening problem. In 3rd IAA Conference on Space

Situational Awareness (ICSSA). Tres Cantos, Madrid, Spain.

[Sánchez and Vasile, 2020a] Sánchez, L. and Vasile, M. (2020a). AI for autonomous

CAM execution. In 71st International Astronautical Congress (IAC). The Cyber

Space Edition. Paper number: IAC–20–A6,2,12,x58045.

[Sánchez and Vasile, 2020b] Sánchez, L. and Vasile, M. (2020b). On the use of ma-

chine learning and evidence theory to improve collision risk assessment. In 2nd IAA

Conference on Space Situational Awareness (ICSSA). Washington DC, US.

[Sánchez and Vasile, 2021a] Sánchez, L. and Vasile, M. (2021a). CASSANDRA: Com-

putational Agent for Space Situational Awareness aNd Debris Remediation Automa-

tion. In Stardust-R – Second Global Virtual Workshop (GVW-II). Darmstadt, Ger-

many.

[Sánchez and Vasile, 2021b] Sánchez, L. and Vasile, M. (2021b). Constrained optimal

collision avoidance manoeuvre allocation under uncertainty for subsequent conjunc-

tion events. In 72nd International Astronautical Congress (IAC). Dubai, EAU.

[Sánchez and Vasile, 2021c] Sánchez, L. and Vasile, M. (2021c). On the use of machine

learning and evidence theory to improve collision risk management. Acta Astronau-

tica, 181:694–706. DOI: https://doi.org/10.1016/j.actaastro.2020.08.004.

[Sánchez and Vasile, 2023] Sánchez, L. and Vasile, M. (2023). Intelligent agent for

decision-making support and collision avoidance manoeuvre design on Space Traffic

Management. Advances in Space Research, 72(7):2627–2648. DOI: https://doi.

org/10.1016/j.asr.2022.09.023.

[Sánchez et al., 2019] Sánchez, L., Vasile, M., and Minisci, E. (2019). AI to support

decision making in collision risk assessment. In 70th International Astronautical

Congress (IAC). Washington DC, US. Paper number: IAC–19–A6,IP,20,x53728.

Robust AI for STM Luis Sánchez Fernández-Mellado 390

https://doi.org/10.1016/j.actaastro.2020.08.004
https://doi.org/10.1016/j.asr.2022.09.023
https://doi.org/10.1016/j.asr.2022.09.023


Bibliography

[Sánchez et al., 2020] Sánchez, L., Vasile, M., and Minisci, E. (2020). AI and space

safety: collision risk assessment. In Schrogl, K.-U., editor, Handbook of Space Secu-

rity, pages 941–959. Springer, Cham.

[Sánchez et al., 2024] Sánchez, L., Vasile, M., Sanvido, S., Merz, K., and Taillan, C.

(2024). Treatment of epistemic uncertainty in conjunction analysis with Dempster-

Shafer theory. In press. DOI: https://doi.org/10.1016/j.asr.2024.09.014.

[Sánchez et al., 2022b] Sánchez, L., Vasile, M., and Taillan, C. (2022b). Close en-

counter decision-making: comparing CASSANDRA and CNES operational pro-

cesses. In 2nd Stardust Final Conference (STARCON-2). ESA/ESTEC, Noordwijk,

The Netherlands.

[Sanvido, 2023] Sanvido, S. (2023). Private communication. ESA Space Debris Office.

23 February 2023.

[Schutz et al., 2004] Schutz, B., Tapley, B., and Born, G. H. (2004). Statistical Orbit

Determination. Elsevier. ISBN: 978-0-12-683630-1. DOI: https://doi.org/10.

1016/B978-0-12-683630-1.X5019-X.

[Scikit-learn, 2021a] Scikit-learn (2021a). Python Scikit learn library. KNN Classifier.

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.

KNeighborsClassifier.html.

[Scikit-learn, 2021b] Scikit-learn (2021b). Python Scikit learn library. RFF Ensem-

ble Classifier. https://scikit-learn.org/stable/modules/generated/sklearn.

ensemble

. RandomForestClassifier.html.

[Scikit-learn, 2021c] Scikit-learn (2021c). Python Scikit learn library. SVM Classifier

(SVC). https://scikit-learn.org/stable/modules/generated/sklearn.svm.

SVC.html#sklearn.svm.SVC.

Robust AI for STM Luis Sánchez Fernández-Mellado 391

https://doi.org/10.1016/j.asr.2024.09.014
https://doi.org/10.1016/B978-0-12-683630-1.X5019-X
https://doi.org/10.1016/B978-0-12-683630-1.X5019-X
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors
KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble
RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC


Bibliography

[Sentz and Ferson, 2022] Sentz, K. and Ferson, S. (2022). Combination of evidence in

Dempster-Shafer Theory. Technical report, Sandia National Lab., United States.

DOI: https://www.osti.gov/biblio/800792.

[Serra et al., 2016] Serra, R., Arzelier, D., Joldes, M., Lasserre, J. B., Rondepierre, A.,

and Salvy, B. (2016). Fast and accurate computation of orbital collision probability

for short-term encounters. Journal of Guidance, Control, and Dynamics, 39:1–13.

DOI: https://doi.org/10.2514/1.G001353.

[Shafer, 1976] Shafer, G. (1976). A mathematical theory of evidence. Princeton Uni-

versity Press, Princeton, NJ, 1 edition. ISBN: 9780691100425.

[Shen, 2020] Shen, D. (2020). Satellite Systems-Design, Modeling, Simulation and

Analysis, chapter Game theoretic training enabled deep learning solutions for rapid

discovery of satellite behaviors. IntechOpen, Rijeka. DOI: https://doi.org/10.

5772/intechopen.92636.

[Shen et al., 2019] Shen, D., Lu, J., Chen, G., Blasch, E., Sheaff, C., Pugh, M., and

Pham, K. (2019). Methods of machine learning for space object pattern classifi-

cation. In 2019 IEEE National Aerospace and Electronics Conference (NEACON).

Piscataway, New Jersey, US. DOI: https://doi.org/10.1109/NAECON46414.2019.

9058182.

[Shim et al., 2002] Shim, J. P., Warkentin, M., Courtney, J. F., Power, D. J., Sharda,

R., and Carlsson, C. (2002). Past, present, and future of decision support technol-

ogy. Decision Support Systems, 33(2):111–126. DOI: https://doi.org/10.1016/S0167-

9236(01)00139-7.

[Siew et al., 2023a] Siew, P. M., Smith, T., Ponmalai, R., and Linares, R. (2023a). Scal-

able Multi-Agent Sensor Tasking Using Deep Reinforcement Learning. In Proceed-

ings of the Advanced Maui Optical and Space Surveillance Technologies Conference

(AMOS). Maui, Hawaii, US.

[Siew et al., 2023b] Siew, P. M., Solera, H. S., Roberts, T. G., Jang, D., Rodŕıguez-
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