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ABSTRACT 
 
 

Efficient (~1%) electron cyclotron radio emissions are known to originate in the     

X-mode from regions of locally depleted plasma in the Earth’s polar magnetosphere. 

These emissions are commonly referred to as the Auroral Kilometric Radiation 

(AKR). Two populations of electrons exist with rotational kinetic energy to 

contribute to this effect. The downward propagating auroral electron flux which 

acquires transverse momentum and a horseshoe or half shell distribution in electron 

velocity space, due to conservation of the magnetic moment, as it experiences 

increasing magnetic field and the mirrored component of this flux. It is now thought 

that the transverse momentum in the descending distribution can give rise to a 

cyclotron maser instability.  

KARAT 2D & 3D particle in cell (PiC) simulations were used to enhance the 

understanding of results from a laboratory experiment built to reproduce the 

mechanisms of AKR generation. In these experiments the kilometric radiation was 

scaled to microwave frequencies by increasing the magnetic field strength. Results 

from the laboratory experiment demonstrated excitation of the TE0,1 mode of a 

cylindrical waveguide at 4.42GHz and the TE0,3 mode at 11.7GHz, consistent with 

the 2D PiC code simulations.  

3D simulations represent a significant extension to the previous work, as a two 

dimensional cylindrically symmetric simulation cannot account for waveguide 

modes with azimuthal structure. 3D simulations, as presented in this thesis, were 

therefore able to provide a representation of the full interaction, which more 

accurately describes the laboratory experiment. 3D PiC codes have been used to 

successfully simulate the interaction between these complex electron beams and 

electromagnetic radiation.  

These simulations have proven accurate in predicting the radiation modes and 

frequencies, polarisation and propagation behaviour. The simulations predicted wave 

excitation with efficiencies of ~2-3%, whilst the experiment measured conversion 

efficiencies of ~1-3%. They predicted excitation of near-to-cut-off TE modes (TE0,1 

at 4.42GHz and TE0,3 at 11.7GHz) consistent with the experiment and with the wave 

propagation and polarisation observed by satellites in the magnetosphere.  



VI 
 

Simulations were conducted and experimental investigation extended to investigate 

the potential for excitation of modes away from perpendicular propagation. These 

showed that at small increases of cyclotron frequency above resonance with a 

perpendicular wave mode yielded a preference for emission in a slightly backwards 

propagation regime, at some ~3% below the cyclotron frequency. Inclusion of a 

reflector for the backward wave raised efficiency to ~7%-11%, significantly above 

that observed in the absence of the reflector. This may have important implications 

suggesting AKR emissions may be able to avoid absorption in the upper hybrid stop-

band.  

R-X type emission was examined, showing efficient (up to 3%) emission into waves 

propagating at 55
o
 from the waveguide axis and polarised in dipole-like waves at 

very close to, but slightly below, the cyclotron frequency.  
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NOMENCLATURE 
 

Ao - Richardson’s constant (1.202 x 10
6 

Am
-2 

deg
2
) 

B - magnetic flux density 

c - speed of light (2.998 x 10
8
ms

-1
) 

C - capacitance  

D - electric displacement field  

e - electron Charge (1.602 x 10
-19

 C) 

E - electric field 

Ek - kinetic energy 

ET - thermal energy  

fco - cut-off frequency 

fe – population density function in phase space  

fUH - upper hybrid frequency 

fce - electron cyclotron frequency 

h - Planck’s constant (6.626 x 10
-34

Js) 

H - magnetic field intensity  

H - Hamiltonian   

J - current density  

Jo - Richardson-Dushman current density 

k - Boltzmann constant (1.381 x 10
-23 

m
2
kgs

-2
K

-1
) 

k - wavevector  
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/ - cut-off wavenumber component of the wavevector perpendicular to 

waveguide axis  

-  component of the wavevector parallel to waveguide axis  

mo - electron mass (9.109 x 10
-31 

kg) 

p - Perveance  

q - charge on a particle 

RE - Earth radii  

 - Larmor radius 

T - temperature  

Tc - cyclotron period  

v – velocity 

ve – expansion velocity  

- velocity component parallel to a magnetic field  

- velocity component perpendicular to a magnetic field  

vg  - group velocity 

V - potential  

vp -  phase velocity 

Z - impedance 

 

Greek symbols 

 - pitch factor of electron beam (v / v//) 

i – coefficient for the imaginary part of the X-mode dispersion relation. 

ck k

//k

Lr

//v

v
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- the ‘field enhancement factor’ 

 - Lorentz factor 

γA - adiabatic parameter  


0 - permittivity of free space (8.854x10

-12 
Fm

-1
) 

r – relative permittivity of a medium 

κ - resistivity  

λ - wavelength  

 - magnetic moment 


o - permeability of free space (4π x 10

-7
 NA

-2
) 

p -   p// / p = cos  , where  is the electron trajectory polar angle  

r – relative permeability of a medium 

ρ - phase space density  

ρc – cathode material density                  

ρq - charge density                  

 - i-th root of the differentiated Bessel function of order ‘m’ 

 - work function 

χ - height of surface potential barrier  

Ѱ - magnetic flux  

- angular frequency of electromagnetic radiation  

ωce - angular electron cyclotron frequency  

 - minimum frequency that can propagate in a waveguide                                                                                                                                                                                                                                                                                                                                             













im,'





offcut
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ωD - Doppler shifted cyclotron angular frequency   

0e
 
- non-relativistic electron cyclotron angular frequency 

ωL – angular Larmor frequency  

 - relativistic electron-cyclotron angular frequency 

ωp - angular plasma frequency  
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ACRONYMS AND DEFINITIONS 

 

AC - Alternating Current 

AKR - Auroral Kilometric Radiation, a non-thermal radio emission of very high 

intensity that is generated by the Earth’s Auroral zone.  

BNC connector - Bayonet Neill-Concelman Connector, the BNC (Bayonet Neill-

Concelman) connector is a common type of RF connector. It is used for coaxial 

cable which connects much radio, television and other radio-frequency electronic 

equipment. It is usually applied for frequencies below 3GHz.  

 

CARM - Cyclotron Auto-Resonance Maser  

                                                                              Classes of beam-wave instability 

CRM - Cyclotron Resonance Maser                                                                                                                                                      

 

CW - Continuous Wave, term describing an experiment which produces output 

radiation indefinitely. 

DC - Direct Current    

ECM - Electron Cyclotron Maser 

EE - Explosive Emission, a mode of electron emission from a cathode which 

involves the explosive sublimation/vaporisation of part of the cathode surface, 

commonly as a result of overheating of an enhanced emission site. 

EM - ElectroMagnetic  

FAST - Fast Auroral Snapshot Explorer Satellite, the second mission 

in NASA's Small Explorer Satellite Program (SMEX), is a satellite designed to study 

the Earth's aurora.  

FEL - Free Electron Laser, a free-electron laser, or FEL, is a laser that shares the 

same optical properties as conventional lasers such as emitting a beam consisting of 
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coherent electromagnetic radiation which can reach high power. It uses oscillation of 

free electrons in a periodic magnetic field as its gain mechanism.  

HT - High Tension, high voltage electricity, for example power supply systems       

>1kV may be referred to as an H.T. power supply. 

ID - Inner Diameter. 

LRL – Line – Reflect - Line - calibration technique used for Vector network 

analysers (VNA). 

MIG - Magnetron Injection Gun, a type of tri-electrode configuration used 

commonly in many C.R.M. experiments, viewed along the axis of symmetry they 

physically resemble a magnetron.  

OFHC - Oxygen Free High Conductivity - oxygen free high conductivity copper is 

produced under carefully controlled conditions to prevent any contamination of the 

pure oxygen-free metal during processing. Characteristics are high ductility, high 

electrical and thermal conductivity, good creep resistance, and low volatility under 

high vacuum.  

PiC - Particle in Cell, a particle in cell method refers to a technique used to solve a 

certain class of partial differential equations. PIC methods were already in use as 

early as 1955, even before the first Fortran compilers were available. In plasma 

physics applications, the method amounts to following the trajectories of charged 

particles in self-consistent electromagnetic (or electrostatic) fields computed on a 

fixed mesh.  

RAL - Rutherford Appleton Laboratory, the Rutherford Appleton Laboratory 

(RAL) is near Didcot in Oxfordshire. RAL supports research in areas including 

materials, light sources, astronomy and particle physics.  

RF - Radio Frequency, commonly taken to indicate the electromagnetic oscillations 

of frequency below ~1-3GHz. 

RMS - Root Mean Square, in mathematics, also known as the quadratic mean, is 

a statistical measure of the magnitude of a varying quantity.  
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SCL – Space Charged Limited, a regime in a vacuum diode in which the current 

only depends on the voltage and geometry and not the material properties of the 

cathode. 

SWR - Standing Wave Ratio, the ratio of the amplitude of a partial standing 

wave at an antinode (maximum) to the amplitude at an adjacent node (minimum), in 

an electrical transmission line. SWR is used as an efficiency measure for 

transmission lines, electrical  circuits that conduct radio frequency signals. It is used 

to assess the effective connecting of radio transmitters, receivers & 

distributing cable. VSWR – Voltage Standing Wave Ratio, The SWR is usually 

defined as a voltage ratio called the VSWR.  

TE - Transverse Electric, refers to solutions for bounded EM oscillations where 

there is no electric field in the direction of propagation. 

TM - Transverse Magnetic, refers to solutions for bounded EM oscillations where 

there is no magnetic field in the direction of propagation. 

TEM - Transverse ElectroMagnetic, refers to solutions for bounded EM 

oscillations where neither electric nor magnetic field is in the direction of 

propagation 

HV/UHV – (Ultra) High Vacuum, vacuum systems can be divided into subsections 

for different ranges of pressures as vacuum technology extends over more than 

fifteen orders of magnitude. UHV corresponds to 10
-8

mbar to 10
-12

mbar. The AKR 

experiment discussed within this thesis is under high vacuum: 10
-3

mbar to 10
-8

mbar. 

WG XX - WaveGuide, The British Standard definitions for rectangular waveguides 

for electromagnetic waves. The frequency range and physical dimensions are defined 

by the digits XX – e.g. WG 12; 3.95 - 5.85GHz.   

 

 

 

 

http://en.wikipedia.org/wiki/Voltage
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SATELLITES REFERRED TO IN THESIS 

The following passage summarises the satellite missions that have provided data for the 

evidence of AKR, this information is derived from NASA records.  

 

AKEBONO - The purpose of this mission was to investigate the particle acceleration regions above 

the auroral zone in order to develop a better understanding of the acceleration mechanism and of its 

relation to substorm phenomena. The spacecraft was spin-stabilized with a rotation rate of 7.5 rpm. 

The attitude was magnetically controlled with the spacecraft axis pointing to the sun. All onboard 

operations such as command and data acquisition were controlled by an onboard computer permitting 

automatic operations for a full week. The satellite control and main telemetry station is at Kagoshima. 

Launch Date: 21
st
 February 1989. 

 

CLUSTER - The Cluster II mission is an in-situ investigation of the Earth's magnetosphere using four 

identical spacecraft simultaneously. It will permit the accurate determination of three-dimensional and 

time-varying phenomena and will make it possible to distinguish between spatial and temporal 

variations. Cluster II's main goal is to study the small-scale plasma structures in space and time in key 

plasma regions: solar wind and bow shock, magnetopause, polar cusp, magnetotail, auroral zone. 

Launch date: 16
th

 July 2000. 

 

DE1 - Dynamics Explorer. This mission's general objective was to investigate the strong interactive 

processes coupling the hot, tenuous, convecting plasmas of the magnetosphere and the cooler, denser 

plasmas and gases co-rotating in the Earth's ionosphere, upper atmosphere, and plasmasphere. Two 

satellites, DE 1 and DE 2, were launched together and were placed in polar coplanar orbits, permitting 

simultaneous measurements at high and low altitudes in the same field-line region. The DE 1 

spacecraft (high-altitude mission) used an elliptical orbit selected to allow (i) measurements extending 

from the hot magnetospheric plasma through the plasmasphere to the cool ionosphere; (ii) global 

auroral imaging, wave measurements in the heart of the magnetosphere, and crossing of auroral field 

lines at several Earth radii; and (iii) measurements for significant periods along a magnetic field flux 

tube. Launch date: 3
rd

 August 1981.  

 

FAST - Fast Auroral Snapshot Explorer is the second of the Small-Class Explorer (SMEX) missions. 

Its purpose was to investigate the plasma physics of the auroral phenomena which occur around both 

poles of the Earth. This was accomplished by taking high data rate snapshots with electric and 

magnetic field sensors, and plasma particle instruments, while traversing through the auroral regions. 

Launch date: 21
st
 August 1996. 
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FREJA - The Freja spacecraft carried instruments to better understand: the processes responsible for 

transverse energisation of ions over the auroral oval; the nature of plasma cavities and their 

consequences for hot/cold plasma interactions; low-altitude electron/ion acceleration; the processes 

that germinate fine structures over the oval; wave phenomena and wave-particle interactions. The 

mission was jointly sponsored by Sweden and Germany, as a follow up to the Viking mission. It 

carried eight instruments to monitor the auroral phenomenon and processes. Launch date: 6
th

 

October 1992.  

 

GEOTAIL - The GEOTAIL mission is a collaborative project undertaken by the Institute of Space 

and Astronautical Science (ISAS) and the National Aeronautics and Space Administration (NASA). 

Its primary objective is to study the dynamics of the Earth's magnetotail over a wide range of distance, 

extending from the near-Earth region (8 Earth radii (Re) from the Earth) to the distant tail (about 200 

Re). The GEOTAIL spacecraft was designed and built by ISAS. Launch date: 24
th

 July 1992. 

 

HAWKEYE - The Hawkeye spacecraft (or Explorer 52) carried a payload of three scientific 

instruments: a plasma wave receiver, a fluxgate magnetometer, and a low energy proton-electron 

differential energy analyser. It was designed, built, and tracked by personnel at the Department of 

Physics and Astronomy, University of Iowa. The spacecraft was launched into a polar orbit with 

initial apogee over the north pole and re-entered on April 28, 1978 after 667 orbits or nearly four years 

of continuous operation. Launch date: 3
rd

 June 1974. 

 

IMAGE - Imager for Magnetopause-to-Aurora Global Exploration was a MIDEX class mission, 

selected by NASA in 1996, to study the global response of the Earth's magnetosphere to changes in 

the solar wind. IMAGE was launched March 25, 2000 into a highly elliptical polar orbit with initial 

geocentric apogee of 8.2 Earth radii and perigee altitude of 1000 km. IMAGE used neutral atom, 

ultraviolet, and radio imaging techniques to: (a) identify the dominant mechanisms for injecting 

plasma into the magnetosphere on substorm and magnetic storm time scales; (b) determine the directly 

driven response of the magnetosphere to solar wind changes; and, (c) discover how and where 

magnetospheric plasmas are energized, transported, and subsequently lost during substorms and 

magnetic storms. Launch Date: 25
th

 March 2000.  

 

IMP 6 – Interplanetary Monitoring Platform 6. The IMP-6 satellite was placed in an elliptical orbit 

with an apogee of more than 200,000 km. The 16-sided spacecraft was 182 cm high and 135 cm in 

diameter. The spin axis was normal to the ecliptic, with a spin period of 10.5 seconds. The satellite 

was powered by solar cells and chemical batteries. The spacecraft re-entered the Earth's atmosphere 

on 2 October 1974. However, the gamma-ray instrument failed on 26 September 1972.  

Launch date: 14
th

 March 1971. 
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IMP 8 - Interplanetary Monitoring Platform 8. IMP-8 was instrumented for interplanetary, 

magnetotail, and magnetospheric boundary studies of cosmic rays, energetic solar particles, plasma, 

and electric and magnetic fields. The objectives of the mission were to provide solar wind parameters 

as input for magnetospheric studies and as a 1-AU baseline for deep space studies, and to continue 

solar cycle variation studies. IMP 8 was built and operated at Goddard, and provided important space 

physics data as part of NASA's Sun-Earth Connection research program.  

Launch date: 25
th

 October 1973. 
 

 

ISS - International Space Station, the ISS is an internationally developed research facility that is being 

assembled in low Earth orbit. It serves as a research laboratory that has a microgravity environment in 

which crews conduct experiments in many areas of science, as well as astronomical and 

meteorological observations. Launch date: 20
th

 November 1998. 

 

ISEE - The Explorer-class mother spacecraft, International Sun-Earth Explorer 1, was part of the 

mother/daughter/heliocentric mission (ISEE 1, ISEE 2, ISEE 3). The purposes of the mission were: 

(1) to investigate solar-terrestrial relationships at the outermost boundaries of the Earth's 

magnetosphere, (2) to examine in detail the structure of the solar wind near the Earth and the shock 

wave that forms the interface between the solar wind and the Earth's magnetosphere, (3) to investigate 

dynamics of the plasma sheets, and (4) to investigate the effects of cosmic rays and solar flares in the 

interplanetary region near 1 AU. The 3 spacecraft carried a number of instruments for making 

measurements of plasmas, energetic particles, waves, and fields. The mission thus extended the 

investigations of the previous IMP spacecraft. Launch Date: 22
nd

 October 1977. 
 

ISIS 1 - An ionospheric observatory instrumented with sweep- and fixed-frequency ionosondes, a 

VLF receiver, energetic and soft particle detectors, an ion mass spectrometer, an electrostatic probe, 

an electrostatic analyser, a beacon transmitter, and a cosmic noise experiment. The sounder used two 

dipole antennas (73 and 18.7 m long). Launch Date: 30
th

 January 1969. 

 

ISIS 2 - An ionospheric observatory instrumented with a sweep- and a fixed-frequency ionosonde, a 

VLF receiver, energetic and soft particle detectors, an ion mass spectrometer, an electrostatic probe, a 

retarding potential analyser, a beacon transmitter, a cosmic noise experiment, and two photometers. 

Two long crossed-dipole antennas were used for sounding, VLF, and cosmic noise experiments. 

Launch Date: 1
st
 April 1971. 

 

POLAR – was a NASA science spacecraft designed to study the polar magnetosphere and aurora. It 

continued operations until the program was terminated in April 2008. The spacecraft remains in orbit, 

though it is now inactive. Polar is the sister ship to GGS Wind. Launch Date: 24
th

 February 1996. 

 

http://en.wikipedia.org/wiki/NASA
http://en.wikipedia.org/wiki/Magnetosphere
http://en.wikipedia.org/wiki/Aurora_(astronomy)
http://en.wikipedia.org/wiki/WIND_(spacecraft)
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PROGNOZ 8 - This spacecraft was a member of a continuing series to measure charged particles, 

plasma, magnetic fields and electromagnetic radiation. The study of solar UV, X-ray, and gamma-ray 

emissions was undertaken along with the monitoring of electrons and protons in interplanetary space 

and the magnetosphere. Launch Date: 25
th

 December 1980. 

PROGNOZ 10 - Designed to study the Earth's bow shock and interplanetary shocks. Carried out 

research in the structure of the quasi-parallel shock wave front, consisting of both the extended region 

of acceleration and the more narrow region of the magnetic field jump. Topics of interest included the 

number density and temperature of the plasma from which particles are injected into the acceleration 

region. It also studied other thin boundaries in the magnetosphere, magnetopause jumps of the electric 

field, and plasma parameters in the auroral magnetosphere. Launch Date: 26
th

 April 1985.  

VIKING - Viking Sweden, the first Swedish national satellite, was a polar-orbiting research satellite 

for exploration of magnetospheric phenomena which take place in the altitude range of 1-2 Earth radii 

above the auroral zones. The objective of the mission was to investigate the interactions between the 

hot collisionless plasmas and the cold collisionless plasmas on auroral zone magnetic field lines and to 

relate these processes to the detailed auroral characteristics. To investigate these phenomena, Viking 

Sweden was instrumented for simultaneous in situ measurements of fields, particles, plasmas, and 

waves. In addition, an ultraviolet imager recorded the auroras. Launch Date: 22
nd

 February 1986. 

VOYAGER 1 and 2 - Voyager 1 and 2 are a pair of spacecraft launched to explore the planets of the 

outer solar system and the interplanetary environment. Each Voyager had as its major objectives at 

each planet to: (1) investigate the circulation, dynamics, structure, and composition of the planet's 

atmosphere; (2) characterize the morphology, geology, and physical state of the satellites of the 

planet; (3) provide improved values for the mass, size, and shape of the planet, its satellites, and any 

rings; and, (4) determine the magnetic field structure and characterize the composition and distribution 

of energetic trapped particles and plasma therein. Voyager 1 launch Date: 5
th

 September 1977. 

Voyager 2 launch Date: 20
th

 August 1977. 


