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Abstract

mfLab is an open software environment for effective groundwater modeling
by combining Matlab with the MODFLOW suite of groundwater simulators.
A working copy can be obtained from http://code.google.com/p/mfLab by
a checkout with Subversion.

mfLab stands for “MODFLOW Laboratory”. As such it generates input
files for the MODFLOW family of programs, i.e. MODFLOW, MT3DMS,
SEAWAT and others, as well as related packages to perform any kind of
groundwater simulation. The input files for these codes are generated using
the Matlab routines that are the foundation of mfLab. This is done after
the model has been defined in the Matlab environment. Other mfLab rou-
tines read in the binary output produced MODFLOW etc. and will be post
processed and visualized in Matlab. mfLab can also read legal input files of
the MODFLOW family made by external programs such as GUI’s. There-
fore, existing models made by others can be readily read in, visualized and
analyzed.

mfLab will not be limited to the Matlab environment, although I will
stick to it for practical reasons, which are that the University of Technology
Delft, where I teach, has a site license so that all students and staff have free
access to it and are familiar with it.

I invite anyone interested to join further development and extension of
mfLab with the ambition to provide full and efficient access to the whole
set of MODFLOW-related programs and their packages, so as to remove
any limitations with respect to exploitation of this wealth of groundwater
simulators.

I also invite anyone to join porting mfLab to and from other open-source
scientific programming and visualization environments like Octave, Scilab

and Python (see URLs at the end of this abstract).
mfLab is available as freeware under the GNU free software licence http://-

code.google.com/p/mfLab, where you can download your working copy by a
so-called checkout in svn (Subversion version control program). Subversion
comes installed on the Mac; Windows users are advised to install Tortoise

svn to that end, which is a beautiful user interface to svn used by Google to
service its free-software site http://code.google.com.

Useful URLs: http://code.google.com/p/mflab/, http://water.usgs.gov/-
software/lists/groundwater/, http://www.octave.org, http://www.scilab.org/,
http://www.python.org/, http://www.mathworks.com/, http://subversion.tigris.org/,
http://www.tortoise.sourceforge.net,



Chapter 1

Introduction

The MODFLOW family of groundwater simulation programs, abbreviated
in this document to mf++, and their related packages comprise the different
versions of MODFLOW (known as mf96, mf2k, mf2005 ), and related pro-
grams like MT3DMS, SEAWAT etc., and all the packages developed for them
to add processes and different types of boundary conditions. These programs
provide an unrivaled groundwater simulation suite of codes capable of mod-
eling virtually every groundwater situation. These programs, executables as
well as their source code, are freely available, which made them the most
widely used groundwater models worldwide. Their openness and versatil-
ity has mobilized a large active user community in practice and research.
Many have contributed extensions, adding to their versatility. The biannual
MODFLOW conferences held at the Colorado School of Mines bring people
together exchanging experiences, views, additions and developments. The
open-source philosophy has caused that there is no foreseeable end to the de-
velopment of the mf++ suite of programs and packages. mf++ keeps well up
with developing practical needs, such as calibration, uncertainty predictions,
density driven flow, heat flow and transport, including chemical processes,
groundwater management, karst groundwater, groundwater-river interaction
just to name a few. Hence, it is a good source for teaching students the
internals and possibilities of groundwater simulation.

At the same time, using the software in practice may be overwhelming,
especially at first sign. Construction of input files often seems a challenge.
The large number of oftentimes cryptic parameters and switch flags that
need to be understood seems embarrassing. Without some tool to handle the
complex input requirements one inevitably feels lost. To make groundwater
mf++ modeling accessible, many commercial graphical user interfaces, so-
called GUIs, have been developed. While these fulfill an excellent job, they
have limitations, which we intend to overcome with mfLab. To name a few:
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• Each GUI has its personal complexity. There is no general standard.
Learning one does not mean knowing the other.

• Some GUIs are rather expensive, making them inaccessible for students
or for use in developing countries.

• Free GUIs like PMWIN are very useful, but somewhat outdated as
current support is limited to only their recent commercial version.

• GUIs tend to lock-up users and limit them to only their implemented
options.

• GUIs generally offer limited access to the the underlying simulators.
They may hinder specific use and visualization. GUIs are generally
unsuitable for research, but may be excellent for projects.

• GUIs tend to lack model-version control and, therefore, quality assur-
ance is sometimes impossible or insufficient.

• GUI’s tend to store all grid files, which takes up a lots of hard disk
space and represent, in fact, tons of redundant data. mfLab only needs
to store the 2 mfiles mf_adapt.m and mf_analyze.m and the Excel
workbook <‌<basename>‌>.xls with the parameters, which usually is
at most several hundred kilobytes small, regardless of the size of the
model that these files generate.

Quality control requires the work flow to be completely documented and
tractable. A GUI that does not register all changes the user made to the
model is insufficient for quality control.

mfLab aims to provide efficient and unlimited access to mf++ codes and
packages while providing full reproducibility. This is considered indispensable
for research as well as in everyday modeling practice. To achieve this, I chose
the Matlab environment for its implementation. This way, Matlab’s open
high-level programming and visualization environment is exploited.

Matlab’s only disadvantage is its fairly high price. However, there are
freeware alternatives, namely, Scilab, Octave, Python and possibly others.
I strongly stimulate porting mfLab to these environments. Porting to Oc-

tave and Scilab should be simple as they are almost line by line compatible.
However, my choice for Matlab has been a practical one, as the TUDelft
(www.tudelft.nl/en/), where I teach, has a Matlab site license. So all its stu-
dents and many of its staff have experience with it. For short, mfLab is fully
available under the GNU free software v3 licence from http://code.google.com/p/-
mflab. Use svn (see subversion.tigris.org) to get your working copy from the
code.google.com server.
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Chapter 2

How does mfLab work?

2.1 Basic philosophy
To construct an mf++ model, we have to define its grid, conductivity matri-
ces, boundary conditions and so on, and then generate the necessary input
files for the particular simulator codes. Matlab has a workspace in which
the arrays that comprise a finite difference model can be readily constructed,
tested visualized and documented. At the same time this construction is
stored in a script (a so-called m-file), so that a simulation can be reproduced
at any moment in the future.

This allows reproducible improvements along with the progress of a project,
which is an essential feature of this environment. The expression strength
of Matlab allows building a model in just a few lines, which keeps model
construction conceptually simple, on which model size has no effect. It is as
straightforward to build a 1000x1000x100 cell model as one of 10x10x2 cells.
Matlab helps transparent construction of arbitrary complex models, which
read data from databases, pre-process it as required to prepare the 3D model
arrays.

Once the model is constructed, mfLab generates the input files needed to
run the mf++ programs and launches the target executables.

After the program(s) have finished, mfLab will read their (often binary)
output making the results available in the Matlab environment, where it is
post-processed and visualized, utilizing once again the strength and versatil-
ity of Matlab.

Users of mf++ programs are often overwhelmed by the large set of cryptic
(hard to remember) parameters and flags necessary to fine-tune these models.
Dealing with them in a consistent and manageable way is a prerequisite for
every modeling environment. mfLab solves this by using an Excel workbook
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as a general multi-page container for these parameters. (Excel is proprietary,
by at this moment I’m not aware of viable alternatives, although Open Office
may be an option). The Excel workbook has many advantages: It is multi-
page and, therefore, suitable to store sets of parameters in an ordered and
accessible way. It is present on virtually every desktop worldwide and almost
every world citizen knows how it works. Excel is also directly accessible from
Matlab. Moreover, it is convenient because Excel by itself is an environment
in which one can do any computations, copy and document the parameters
it stores.

Further, the mf++ parameter labels stored in the Excel workbook carry
their explanation in the form of regular Excel comments, which pop up when
hovering over them with the mouse. This way, this parameter workbook
also serves as manual by making sure the user has the relevant parameter
information always at hand.

mfLab reads out this workbook, but only fetches the parameters necessary
to generate the input for the particular mf++ target models. Because most
parameters will not change between projects, you seldom need to worry about
parameters between runs.

A model in mfLab normally consists of 3 local files. Two of them are
Matlab m-files containing Matlab code, and the third one is the mentioned
Excel workbook. The two local m-files have fixed names: mf_adapt.m and
mf_analyze.m, while the Excel workbook has a local name of your choice
indicated further as <‌<basename>‌>, hence <‌<basename>‌>.xls.

The <‌<basename>‌> is set as the first line in mf_adapt.nl. All mf++

input files generated by mfLab are given the same <‌<basename>‌> but get
a different extension, which indicates their type (for example .dis, .bas, .wel,
.drn, .riv, .chd, .lpf, .hds, .bgt etc). These extensions can be freely chosen, but
it is wise to use some standard as indicated between the previous parentheses.

However, at any moment all mf++ input and output files may be re-
moved from the directory, only keeping the mentioned three to reproduce
the simulation entirely at any point in the future. This not only is transpar-
ent, it also saves tremendous redundancy and gigabytes of disk space, and
therefore, facilitates quality control tremendously.

The model itself is constructed within the Matlab script mf_adapt.m.
You make this script yourself; it is specific to the model. However, different
models will likely have similar scripts. Therefore, it is always a good idea to
copy an example from with to start.

The script mf_adapt.m may be just a few lines for a simple model. It
may also be complex, accessing different external databases and GISes, carry
out a lot of pre-processing etc and running external programs like statistical
codes to prepare the required input. However, realize Matlab scripts like
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mf_adapt.m are built the Matlab way, i.e. they are developed, tested and
documented interactively line by line, expression by expression, so that at no
point the process becomes overwhelming.

Matlab’s internal debugger is an extra great tool when stumbling over
errors and unexpected results. It allows setting breakpoints and verifying
and testing the status of the workspace at any point during the execution.

The mfLab/Matlab environment facilitates another debugging method,
which can hardly be overestimated, especially when dealing with real-world
models of great complexity, which tend to be inherently difficult to under-
stand and verify; in mfLab/Matlab it is straightforward to simplify the model
constructed in the mf_adapt.m script to the extent that it becomes amenable
for verification, for instance by comparing its results with analytical solutions.
This can be done by adding few lines to the end to mf_adapt.m, without
touching the just constructing model. Once the simplified model is verified,
these lines can be removed one by one, thus retracting step by step to the
original complex model without ever touching it. Such lines may for instance
replace a complex conductivity or recharge distribution by a uniform one, or
it may switch off all wells but one etc, anything necessary to allow verifying
the model.

Also, if constructed correctly, the model can be run with a different com-
putational grid. This facilitates rapid development and may drastically re-
duce computation times, postponing runs of the full grid to the production
phase, when the model has been completely verified. mfLab facilitates build-
ing your model directly from databases with no presumptions with respect
to the computational grid.

While mf_adapt.m is used to construct the model, it is analyzed using
the script mf_analyze.m. mf_analyze.m is also a local Matlab script specific
to the model. It reads out the results (head, draw-down, concentrations etc),
extracts specific portions of it as required, interprets it (for instance by com-
puting a zone-budget) and visualizes the results. mfLab has the functions
to read out the unformatted files produced by mf++ models. It can even
extract portions of it precisely, so that it is not necessary to load a complete
2 GB output file and, as a consequence, exhaust your computer’s memory.
Precise extraction is also much faster than loading a complete file. The pow-
erful visualization functions of Matlab can be readily used in mf_analyze.m

or are embedded in provided mfLab functions to reduce complexity for the
groundwater modeler and better target his/her requirements. As is the case
with mf_adapt.m, the best way is to start with the mf_analyze.m script of
a similar model, which will be 90% or so reusable. The examples that come
with mfLab are a good start.

The Excel workbook containing the simulation parameters has a number
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of worksheets dedicated to specific types of parameters. There is a work-
sheet called NAM, MFLOW, MT3D, SEAWAT, PER, LAY, WEL, DRN,
RIV, GHG and some more. These worksheets are described elsewhere in
this manual. This Excel workbook has the name <‌<basename>‌>.xls and is
local. As is the case with the two scripts mf_adapt.m and mf_analyze.m,
the contents of <‌<basename>‌>.xls hardly changes between models, so that
starting with an existing one is the best way to start a new model. Chances
are that, except the stress periods and number of layers little has to be
changed between models.

The Excel workbook will generally contain many more parameters than
is needed by a specific model. It may for instance contain the parameters
for MT3D and SEAWAT, while one only wants to run MODFLOW. This
does not matter for mfLab as it only extracts the parameters it needs for
the target model. The advantage to have all possible parameters for all
possible packages in the workbook is, that these packages and models can be
readily switched “on” or “off” without changing the workbook. This keeps the
workbook general. You are free to add whatever you like to the workbook,
as mfLab only extracts what it needs. This facilitates documentation and
experimentation. One way to experiment is to for instance copy an entire
worksheet like MFLOW to MFLOW(2) and change MFLOW as desired.
MFLOW(2) keeps the old MODFLOW parameters while in the new run
mfLab only extracts the parameters from the worksheet MFLOW. On the
other hand if you only want to see the parameters and sheets for the model
you are now constructing, just hide the worksheets, columns and lines to
remove distracting clutter from sight without deleting anything from the
workbook. Hence using a workbook as a multi-page parameter container is
quite flexible and helpful.

Then, finally how does mfLab work and how to make it work?
You can use all Matlab’s and mfLab’s functions to further rework, show

or analyze the results in an interactive way. Adding your refined lines to the
mf_analyze.m makes sure your analysis is automatically executed in every
future run.
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Chapter 3

How to get mfLab to work?

3.1 How to get your mfLab copy?
A complete working copy of mfLab can be obtained using by a checkout at
http://code.google.com/p/mflab by means of Subversion (svn) version con-
trol software (see http://subversion.tigris.org) used by Google to service its
open software development and distribution site http://code.google.com. To
checkout, you must have svn installed on your computer . Svn comes pre-
installed on Macs and most UNIX systems, but Windows users must down-
load it from the tigris.org site just given.

Subversion is a great tool for general version control of anything you work
on, like projects, software and reports, dissertations and so on. Therefore,
there is little reason to hesitate installing it if you do not yet have it. The
fact that Google selected it for its code.google.com server to provide users
and developers easy version and release control says something. Windows
users may want to download the beautiful Tortoise Subversion user interface
from the same tigris.org site. From that site, you may also want to download
a copy of the free subversion book, which can also be obtained in printed
form O’Reilly publishers. The book will be most useful for Mac and Unix
users who generally type subversion commands in their terminal application.
Tortoise users on Windows will enjoy its great user interface, which can be
more intuitive. For an introduction, refer to the tutorial in the mentioned
book. It’s worthwhile to get familiar with svn.

To see how to check out (svn jargon for downloading your working copy)
look under the source tab on http://code.google.com/p/mflab for the check-
out command. From the terminal application on the Mac or Unix or from
the dos prompt in Windows make sure you first navigate to the directory
where you want your working copy to land, and then type the checkout com-
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mand. In Tortoise look at the instructions. This should be straightforward
and probably more convenient for most users than using terminal or the dos
command window.

Except for this user guide, there are no download packages on the site.
This user guide in only to get you going. Checking out through svn to get a
mfLab working copy is really much better than downloading a copy in a zip
for tar file as svn frees you of having to bother about future updates. Just
typing svn update from any directory in your working copy next time tells svn

to download only what has changed since your last checkout to update your
working copy. With Tortoise these updates will be even easier and perhaps
more transparent.

3.2 The mfLab directory structure
The svn checkout will download a working copy of mfLab onto your computer.
The directory structure will be as follows:

mfLab

doc
bin
mfiles

read

write

gridcoords

etc

fdm

examples

mf2k

mf2005

mt3dms

swt_v4

swi

- extra directories may be added in the fu-
ture

doc contains this user guide. It also contains additional information, such
as how to compile the source files of mf++ models on the Mac.
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bin contains copies of the executables. It is a convenient location to store
them. If you dislike copying executables to this location, you could
replace the with links (aliases on the Mac or shortcuts on Windows) to
them.

mfiles contains several directories to categorize more or less the actual Mat-
lab functions that comprise mfLab.

mfiles/read contains the mfLab functions (Matlab mfiles) to read mf++

input files back into in the Matlab workspace. This allows reading any
original MODFLOW, MT3DMS, MOCDENSE or SEAWAT model ob-
tained from whatever source or colleague. These files will be extended
in the future when useful.

mfiles/write contains the mfLab functions to write (generate) the mfiles for
mf++ programs. It also contains the mf_setup.m script, which is the
backbone of mfLab. These files will be extended with any new package
added to mfLab.

mfiles/grid contains mfLab functions that relate to the computational grid
and to handling coordinates.

mfiles/etc contains mfLab functions that do not logically fit under the other
directories

mfiles/fdm con stains some finite difference models written entirely in
Matlab. These are used in lectures in groundwater modeling at the
TUDelft. They can also be useful to check MODFLOW output.

examples/mf2k contains examples pertaining to MODFLOW 2000 (mf2k)

examples/mf2005 contains examples pertaining to MODFLOW 2005

examples/mt3dms contains examples pertaining to MT3DMS

examples/swt_v4 examples pertaining to SEAWAT (version 4)

examples/swi examples pertaining to the SWI (salt water intrusion)

3.3 Make mfLab known to Matlab
Once you have mfLab on your computer, you have to make it known to Mat-
lab. The simplest way is to navigate in Matlab to the directory mflab/mfiles.
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Then type mfsetpath to run the script which set the paths to the mfile di-
rectories of mfLab and also replaces the path to the executables in the script
mflab/mfiles/write/setExcutables.m to the mflab/bin directory on your cur-
rent system.

If this runs without complaints, this is all you have to do.
If it doesn’t work you have to add the mfLab’s mfile directories to Mat-

lab’s search path yourself. This can be done using the addpath(<‌<path>‌>)
function in Matlab as shown below (you may also look in the file mfset-

path.m).:

addpath(’C:\GRWMODELS\mflab\mfiles\read’);

addpath(’C:\GRWMODELS\mflab\mfiles\write’);

addpath(’C:\GRWMODELS\mflab\mfiles\gridcoords);

addpath(’C:\GRWMODELS\mflab\mfiles\ect);

addpath(’C:\GRWMODELS\mflab\mfiles\fdm);

Here, “C:\GRWMODELS” will be different on your computer so you must
replace it accordingly.

Instead of typing in these lines every time you invoke Matlab, it’s far more
convenient to store them in a so-called shortcut in the shortcut toolbar at the
top of the Matlab screen (see figure). Next time you want to use mfLab in
Matlab just push this shortcut button. The figure shows Matlab’s shortcut
toolbar and my shortcut mfpaths. To run the shortcut, just press it with the
mouse. The figure also shows the opened shortcut mfpaths. It contains an
addpath command (addpath call) for every mfiles directory that Matlab needs
to know about. The P used in these calls is just a string holding the name of
the path to the mfiles directory, like: P=’Z:/GRWMODELS/mflab/’. This
string is outside the visible part of the shortcut window shown in figure 3.2.

To check whether mfLab finds its functions and will work type which

mf_setup in Matlab’s command window. Matlab will then show if and if so
which mf_setup it finds and will use when it is called.

3.3.1 Make the location of the executables known to mf
_setup

To launch the mf++ executables, mfLab, i.e. its script mf_setup has to know
about them. Therefore, mf_setup calls the script “setExeculables.m” which
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Figure 3.1: Make a shortcut on the shortcut toolbar to set the paths to the
mfLab directories

is shown in figure 3.2. This script resides in the mflab/mfiles/write directory
together with mf_setup.m.

If running mfsetpath went smoothly, the path to the executables in mflab/bin

has already been replaced by the current one, so you should be all set and
don’t have to do anything at all. In case you run on both a mac and PC, you
may have to run mfsetpath both from the mac operating system and from
Windows to replace the path to the executables for both operating systems in
the file setExecutables.m. This is because the same directory has a different
path from the perspective of the two operating systems. But you don’t have
to bother if you run on only a single OS.

If mfsetpath didn’t work out as it should, you must replace the path to
the models in setExecutables.m yourself.

Once you checked out your working copy of mfLab from http://code.google.com/p/-
mflab by svn, exclude the file setExecutables.m from future downloads. This
ensures that new versions don’t override your directory settings, so that fu-
ture releases are guaranteed to work immediately without change having to
redo the path setting.

If you dislike copying executables to the mflab/bin directory, replace the
executables with a link (alias, shortcut) to the ones you want to use instead.

11



Figure 3.2: Contents of the script setExecutables.m called from mf_setup.m

line +/- 142

3.4 How to run mfLab?
Once the paths have been set, navigate (“cd ”) to your project directory and
start working with mfLab by building your model in mf_adapt.m invoking
mf_setup or generate the input files for the target groundwater models and
subsequently run the mf_analyze.m script to analyze and visualize the re-
sults. But first you have to make the location of the mf++ executables known
to mfLab.

Having your mf_adapt.m, mf_analyze.m and <‌<basename>‌>.xls in a
local directory, you invoke mf_setup from within the Matlab command win-
dow. Of course, Matlab has to be able to find this script as well as all other
mfLab functions necessary to generate the input files for the target mf++

programs. This is explained above under “how to make mfLab work?”. But
assuming for now that the required paths are set correctly, mf_setup.m will
run. It is the backbone of mfLab. Unless you are developing new features to
it or encounter a bug, you should not have to change it in any way.

mf_setup executes mf_adapt.m, from which it gets the <‌<basename>‌>

of the current model. It then builds the model arrays following the instruc-
tions in the scrip in mf_adapt. mf_setup reads out the <‌<basename>‌>.xls

file to retrieve the required parameters, including stress periods and layer
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characteristics. It then starts generating the input files for the target mod-
els. It knows the target models and packages from the NAM worksheet in
the <‌<basename>‌>.xls workbook.

If everything runs fine, you end up with the local directory full of input
files for the target models. All these files have the same basename. Their
different extensions indicate their function as defined in the NAM worksheet.

Next to that, mfLab generates so-called name files, that is, files the a
“.nam” extension. These name files list the packages and files to be used
by the target executables. The file mf2k.nam will always be among them.
It is the name file required by mf2k and mf 2005. If, on the other hand,
MT3DMS is to be run, then the name file mf3dms5.nam is also generated.
In case SEAWAT is to be run, you will find the name file swt_v4.nam as
well.

The reason for generating several name files is, that the input files required
by SEAWAT also suffice to run MT3DMS and MODFLOW. So, having the
set of name files available facilitates debugging. For instance, if SEAWAT
stumbles, you can still try to run MT3DMS with its own name file. If that
doesn’t work, then something may be wrong with the MODFLOW files,
so try to run MODFLOW using its own name file. No additional files are
required because all the necessary files and the name files have already been
generated by mf_setup.

mf_setup also generates three batch files (files with a “.bat” extension):
mf2k.bat, mt3dms5b.bat and swt_v4.bat which will invoke the executables by
simply double clicking on them (under Windows).

To see how to run individual mf++ target models, refer to the last lines
of the mf_setup script. The function system(...) at the end of this script
executes a command in the underlying operating system directly from Mat-
lab. So select the desired one and press shift F7 on the Mac or press F9 on
Windows to execute it directly from the Matlab editor.

mf_setup tries to figure out which target models are to be run. It does
this by looking at the packages that are “on” in the NAM worksheet. If
the SEAWAT-specific VDF package is “on”, mfLab assumes you want to run
SEAWAT. If this is not the case, but the MT3DMS-required package BTN is
“on” in the NAM worksheet, mfLab assumes you want to run MT3DMS. In
case the SWI (salt water intrusion) package is “on” in the NAM sheet, mfLab

presumes you desire to run MODFLOW with the SWI package “on”. If non
of these are “on”, mfLab will just launch MOFLOW2000 (mf2k).

As said before, you can always run a specific mf++ model by running the
concerned system(...) expression at the end of mf_setup.m.

Finally, once the specific mf++ model has come to normal termination,
launch mf_analyze to extract, analyze and visualize the results.
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3.5 Debugging
A model is best set up iteratively while use is made of error messages to
figure out which data are still necessary. Generally, only mf_adapt needs to
be changed. mf_setup should not be touched unless you need to resolve an
error in the code or you are adding new features to mfLab.

To optimize visualization you may have to adapt the script mf_analyze.m.
This too is best done iteratively.

When errors are encountered (and even if only warnings are thrown by
Matlab), it helps to switch on the debugger from within the toolbar of the
Matlab editor. In the menu set “always stop if errors”. You may also set
“always stop if warnings”. If Matlab stumbles over an error it will immediately
stop and show you where the problem arose. You can then solve it or, better,
first investigate the problem by inspecting the parameters in the environment
where the error occurred. You can walk down the stack along which the error
happened to trace it source. In Matlab you may explore any expression to
find out what the problem is before resolving it and starting anew. As long
as you see the K>‌> prompt you are in debugging mode, which may imply
you are somewhere deep down in the calling stack inside the environment
and scope of a local function. Type dbquit to get out and start again.

As said before, if everything runs fine including the visualization, but you
don’t understand the outcomes, you have a conceptual problem to resolve
and need to put your model on the workbench. An effective way may be
to add a few lines at the end of mf_adapt to simplify your model so that
it becomes comprehensible and amenable to for instance comparison with
analytical solutions. For instance, you could set all conductivities to a fixed
value k wiht the following Matlab instruction:

K(:,:,:)=k

thus simplifying your complex model to a simple rectangular box. This can
be done with other parameters and boundary conditions alike:

STRTHD(:,:,:)=0;

It is always advised to inspect the global and list files <‌<basename>‌>.glo

and <‌<basename>‌>.lst to see how the model performed and whether or not
it converged and the water balance was closed sufficiently. These files are
crucial in case the executable crashes somewhere during the run. This then
happens completely outside Matlab and the mentioned files may be your only
resource to start your search for the cause. Finding the cause may be hard at
times. A good approach is also to carefully inspect the input files produced
by mfLab to make sure they are correct.
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Some errors that have occurred (but may by now be tackled by mfLab

issuing a comprehensible error message regarding the cause):
Same unit number for different files. (is now checked by mfLab and an error

is issued before running MODFLOW)
Running MT3DMS with the specified output time vector TIMPRS starting

at zero makes MT3DMS hang without warning. This is now tackled by
mfLab by removing this zero from the vector if it occurs.

Replacing an input file with one from the examples downloaded form the
USGS but having a different unit number (make sure that unit numbers
match).

Running a model of tiny dimensions so that some of the floating point num-
bers became zero due to the applied FORTRAN format like F12.2 (tackled
but this might happen at other locations).

Assigning a full 3D matrix to the DELC or DELR vectors in mf_adapt, so
that MODFLOW tried to construct a really huge model that made the
computer hang (tackled).

Matlab’s g (general) number format sometimes does not fit in the 10 space
wide fields required by the fixed format input files of WEL, DRN, RIV,
GHB and CHD. The g format is great as it always guarantees the re-
quested accuracy in the most efficient way. However, the Matlab’s imple-
mentation may just take 12 spaces if it needs them, even if it was ordered
to use only 10. This may happen at arbitrary locations in the generated
input files. I have tried to capture this in a somewhat sophisticated way
in the writing routine, but this is actually something that Matlab should
have solved a long time ago. I consider it a nasty Matlab bug. I’m not
certain at this point that it can never ever happen again, but I did my
best to prevent it.

3.6 Reading out the Excel workbook on differ-
ent platforms

The Excel workbook <‌<basename>‌>.xls containing the model parameters
is read out by mfLab using Matlab’s function xlsread. xlsread will only run
trouble-free on Windows systems that have Excel installed (actuall have the
Excel com server). On systems without Excel and on non-Windows com-
puter systems, i.e. systems without the Excel com server, xlsread has to be
run in so-called “basic” mode, which provides less capabilities to read out
workbooks. However, this is not a big deal. First, mfLab only needs to read
entire worksheets of a workbook, which is possible in basic mode. Second,
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mfLab automatically runs xlsread in “basic” mode on non-Windows systems,
so that users do not have to worry about it. However, original Excel work-
books read by xlsread in “basic” mode may still cause trouble, as the error
message shown in the figure below shows.

Figure 3.3: Error reading xls workbook on non windows system due to in-
compatible Excel file

This is due to the fact that the xlsread “basic” mode has never been
updated by the Mathworks in Matlab since Excel version 05/95. In “basic”
mode, xlsread cannot read more than 3 worksheets from workbooks generated
by recent Excel versions. The solution (or workaround) on non-Windows
systems and on Windows systems without the Excel com server installed,
the Excel workbook has to be saved as an Excel 05/95 file. I have done this
with the Excel workbooks of all examples provided with mfLab to ensure
that they will work also on non-Windows computers without any changes.
Saving Excel files in this format has no consequences, except that Excel asks
if you are sure you want to save in that old format. Just press “yes” if you
intend to run on non-Windows systems or on systems without the Excel com
server. Else, say yes or just save in any of the more recent format.

One of the things that do not work with the Excel 05/95 is conditional
formatting. This was used in the NAM worksheet to to automatically let
lines turn green for those packages that are “on”. As an alternative I have
now replaced this feature with a left arrow like “<====” popping on to the
right of each line with its package “on”. A little less nice but it works almost
as well. Alternatively, you could use filter, to make only the “on” lines visible.

Since xlsread is probably one of the most used functions of Matlab, the
Mathworks should have updated it a long time ago. Hopefully they will
finally do so with the next release, the importance of the function and the
price of Matlab is high enough to warrant this.
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3.6.1 Using xlsread

In Matlab, xlsread is called as follows when aiming to read Excel worksheets.
Note that the behavior on Windows and non-Windows computers is a bit
different. First, on computers without the Excel Com Server, run xlsread
in “basic” mode (see below), on Windows computers leave out the “basic”
argument, so the Excel Com Server will be used.

Next, on non-Windows computers (in basic mode), the Raw and Txt
arrays include the columns to the left of the first empty and non-numeric
Excel cell respectively, whereas in Windows computers they do not. On
non-Windows computers the Raw array also contains the empty rows above
the first non-empty cell of the Excel worksheet, whereas under Windows the
Raw array does not. In short, on Windows computers the Num, Txt and
Raw array never contain rows and columns outside the range in the Excel
worksheet that respectively are empty, have no numeric values or have only
numeric values.

To make sure that the behavior is the same on different computer plat-
forms, line up the Excel worksheet data so that the range containing non-
empty cells matches with Excel worksheet cell “A1”. With this in mind
xlsread is an extremly powerful function. Hopefully the Mathworks will one
day see how useful it is and make sure that its behavior is exactly the same
on all platforms.

3.6.1.1 On Windows computers with the Excel Com Server in-
stalled (Excel installed)

[Num,Txt,Raw ]=xlsread(excelfilename,sheetname); % on windows machines
with the Excel Com Server

excelfilame is the name of the Excel file with or without extension (.xls,
.xlsx)

sheetname is the name of the worksheet in the Excel file.
Raw is a cell-array whose contents matches the rectangular range in the

Excel excel sheet which just inclodes all non-empty cells.
Txt is a cell-array whose contents matches the rectangular range in the

Excel worksheet, which just inclues all non-numeric cells. Numeric cells
within this range become empty cells in the Matlab cell array.

Num is a numeric array whose contens matches the rectangular range in
the Excel worksheet, which just includes all numeric cells. Non-numeric cells
within this range become NaN (Malab’s numeric “Not a Number”).
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Usage Having read the arrays Num, Txt and possibly Raw proceed as
follows:

If the table has headers and no first column of labels Head-
ers=Txt(1,:); clear txt

If the table has a a first colum of labels and a top row of headers
Headers=Txt(1,2:end);

Labels =Txt(2:end,1); clear txt
Then the labels will match the lines in the Num array and the Headers

will match its columns.

3.6.1.2 On Mac and other computers without Excel Com Server

[Num,Txt,Raw ]=xlsread(excelfilename’sheetname,’basic’);
The behavior of xslread on the Mac is a little different. The Raw and Txt

arrays now comprehend the range of of cells in the Excel worksheet between
cell A1 (upper left) and the last non-empty, or text cell, where the Num array
still contains onlye the range of the Excel worksheet that has any numeric
value in it.

Raw is a cell-array whose contents matches the rectangular range in the
Excel excel worksheet between the left most corner (cell A1) and the last
non-empty cell.

Txt is a cell-array whose contents matches the rectangular range in the
Excel worksheet, which includes all non-numeric cells and which starts in
the first column and at the row of the first non-numeric cell. Numeric cells
within this range become empty cells in the Matlab cell array.

Num is a numeric array whose contens matches the rectangular range in
the Excel worksheet, which just includes all numeric cells. Non-numeric cells
within this range become NaN (Malab’s numeric “Not a Number”).

Usage Having read the arrays Num, Txt and possibly Raw proceed as
follows:

If the table has headers and no first column of labels i=find(~isnan(Num(1,:)),1,’first’);
Num=Num(:,i:end);
Headers=Txt(1,i:end); clear Txt;
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If the table has a a first colum of labels and a top row of headers
i=find(~isnan(Num(1,:)),1,’first’);

Num=Num(:,i:end);
Headers=Txt(1,i:end);
Labels=Txt(2:end,i-1); clear Txt
Then the labels will match the lines in the Num array and the Headers

will match its columns.

3.7 Reading unformatted output from MOD-
FLOW, MT3DMS and SEAWAT on non-
Windows computers

It seems incredible in 2010 that FORTRAN compilers have no standard for
the unformatted files they produce. This means that if MODFLOW is com-
piled with two different FORTRAN compilers both executables may produce
unformatted output files of heads, draw-downs, and budget flow terms, as
well as concentrations files that are different for the same problem. The
USGS tries to make sure that the unformatted files produced by the Win-
dows executables on down-loadable from their site only contain the bytes
instructed by the code and that the include no extra brand specific “compiler
features”. However success is not guaranteed when using “standard FOR-
TRAN”, it just isn’t standard from the point of view of their unformatted
output. No doubt, Matlab can readout any unformatted file, but to make
sense of it, it needs to know its structure.

mfLab’ s unformatted file read functions readDat, readBud and readMT3D,

which are used to read out the unformatted output files con tainting the
computed heads, draw-down, budget and concentrations have been crated
to tackle some of this potential incompatibilities. So normally it should not
matter from which executable the unformatted output files stem for these
functions to be able to read them properly. However, there is no guarantee
that it will work with code from any FORTRAN compiler.

The functions start assuming that these files are binary, i.e. that they
contain no extra bytes other than instructed by the FORTRAN code. This is
what the USGS codes prefer and is standard for their Windows executables.

If this does not work, these functions try to figure out what’s different
compared to this standard. It assumes that there will be an extra number at
the start and end of every record that the code writes and it tries to figure
out how many bytes this number occupies. Until now this works well.

It does so by assuming that there are no extra bytes. It then tries to read
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the first data label. If there are extra bytes in the file, the first bytes of the
so read label are incorrect. It then relies on the experience of all unformatted
files encountered until now, that the label is preceded by a null-byte. Hence
it looks for the position of the last null byte in the read label. If there are
no null bytes, than it’s a standard USGS binary file, if there are null bytes,
then the position of the last one provides the number of extra bytes in front
of each record. The function then assumes that there are an equal number
of extra bytes at the end of each written record, it checks to see of, using
these bytes the file length is an integer multiple of a complete layer record,
and, if so, proceeds reading taking into account these extra bytes. Normally,
these extra bytes contain the Lent of the record, which may be useful to jump
from record to record in cases where nothing is known about the file structure
beforehand, so it then is a feature, but mfLab knows the file structure and
simple ignores such bytes in reading the unformatted files. Clearly, if the
programs are compiled with FORTRAN compilers using yet another scheme
of undocumented features, it likely won’t work. Also, if, for some reason the
byte just before the first data label in the file is not a null-byte, this procedure
will also fail. But generally users don’t have to worry about the structure
of the unformatted files, because output from MODFLOW and MT3DMS
produced on a Windows computer can now also be read on a Mac or Unix
computer and vice versa.
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Chapter 4

Setting up a model in Matlab (see

mflab/examples/mf2k/ex1)

4.1 The problem
The best way to show the working of mfLab is to look at a simple example.
We use the example ex1 in the mfLab/examples/mf2k directory. This is
actually the first example worked out in the MODFLOW-2000 (mf2k) manual
(Open-File Report 00-92, see figure 4.1). It is described in the manual of
MODFLOW2000 (mf2k) shown below on page 89ff. The example is historic;
it was also used in the original manual of MODFLOW-88 [4].

http://water.usgs.gov/nrp/gwsoftware/modflow2000/modflow2000.
html]

The situation to be modeled is shown on the cover page of the mentioned
manual. The model network and its data are shown in Fig.4.2. It consists
of 3 aquifers that are separated by 2 aquitards. The model has 15 columns
and 15 rows. The cells are all 5000x5000 ft size. The heads at the left
boundary are fixed in the first two aquifers. Recharge on the phreatic aquifer
is 3e10−5 ft/s. There is an east-west orientated drain in the first layer in row
8 spanning cells 1 to 10. The first layer has a free water table. Therefore,
it has no transmissivity but a conductivity (i.e. K=0.001 ft/s), while the
transmissivity is dynamically computed by MODFLOW by multiplying it
with the actual wetted thickness of the layer, which is not known beforehand.
The transmissivities of the confined second and third aquifers are T = 0.01
and T = 0.02ft

2
d respectively. The flow is in steady state.

The objective is to compute the elevation of the water table, the heads
in the aquifers and the discharge through the fixed-head boundaries and the
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Figure 4.1: USGS: Open file report - MODFLOW2000 User Guide

Figure 4.2: Model of example 1
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drain.

4.2 Building the example model, mf_adapt
Navigate to the directory in which you want your model. Make a new direc-
tory if necessary. While you may have copied a directory of an earlier model
to start with, we assume for now that we start from scratch (which we never
do in practice). In that case open a new mfile and save it under the name
mf_adapt.m.

We may start with specifying our model grid. This can be done by spec-
ifying the coordinates of the grid lines xGr and yGr.

xGr=(0:15)*5000;
yGr=(0:15)*5000;
Then we may compute the cell center coordinates, the cell sizes and num-

ber of cells using a convenient mfLab function modelsize:

modelsize() [xGr,yGr,xm,ym,Dx,Dy,Nx,Ny ]=modelsize(xGr,yGr);
It should be clear that all variables are vectors.
Look in the function modelsize (or its 3D counterpart modelsize3 ) to see

what it does. Modelsize() makes sure that the xGr, xm and Dx are row
vectors and the yGr, ym and Dy are column vectors. Also, xGr is increasing
while yGr is decreasing. This ensures that the top line of a printout of
a model layer (or when you scroll the model layer matrix on the computer
screen) corresponds with the highest yGr coordinate, as you would intuitively
expect it.

Furthermore, the elements in xGr and yGr after having past modelsize()
are sorted and duplicates are removed. This means that you may provide
grid coordinates in any order and including duplicates. This something is
very convenient, for instance, if a mixture of grids and finer sub-grids around
individual objects have to be specified and united into a single grid. So
modelsize() is a convenient grid housekeeping function which also prevents
cluttering of the mf_adapt script with unnecessary detail when used.

modelsize() also yields the coordinates of the cell centers, xm and ym, the
size of the cells, Dx and Dy and the number of cells of the model, Nx,Ny

Some of the convenience of using of the grid housekeeping function mod-

delsize() may be seen from using modelsize() to also shift the coordinates
such that 0.0 becomes the center of the model. This may be one using the
mean function:

[xGr,yGr,xm,ym,Dx,Dy,Nx,Ny ]=modelsize(xGr -mean(xGr),yGr -mean(xGr));
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modelsize3 () modelsize It has a 3D variant modelsize3, which works as
follows:

[xGr,yGr,zGr,xm,ym,zm,Dx,Dy,Dz,Nx,Ny,Nz ]=modelsize3(xGr,yGr,zGr);
Having the finite difference network coordinates, we may now define the

IBOUND array to tell MODFLOW which cells are active and which cells
will be treated as having a fixed head. (mfLab uses the IBOUND array to
determine the size of the model).

IBOUND-array IBOUND=ones(NY,NX,NZ );
IBOUND(:,1,[1 2])=-1; % first column in first 2 layers have fixed head
IBOUND has the size of the model and all values one. In the second step

the fixed head cells of IBOUND are set to -1 as is required by MODFLOW.
These are the cells in all rows, the first column and layers 1 and 2.

Orientation of Matlab arrays compared to MODFLOW arrays Note
that all 3D arrays in mfLab are [Row, Column, Layer ] oriented. This is the
natural orientation in Matlab and is really most convenient and general to
use, especially in the Matlab environment. For Matlab the Rows are the first
dimension, the Columns are the second dimension and the Layers are the
third dimension, always !!

This implies that Ny (the rows) always comes first in the array specifica-
tion, followed by Nx (the column), and finally the Nz (vertical direction). In
MODFLOW, on the other hand, the orientation is Layer, Row Column. This
seems confusing at first, but sticking in Matlab with its natural orientation
(Row, Column, Layer) facilitates anything you do and soon becomes natural.
It’s also the sequence used in mathematics and linear algebra.

Writing the arrays correctly to the input files for MODFLOW is dealt with
by the mfLab using the functions that you can find in the mfLab/mfiles/write

directory. But you should never have to deal with them.

Other arrays necessary for the model We may now proceed specify-
ing the other necessary arrays to define our first model. To see how this
is done refer to the example in the directory mflab/examples/mf2k/ex1 ; the
mf_adapt.m script is completely and extensively documented using inter-
laced comments (text starting with a %).

What variables must be specified? In general, exactly those variables
that are required by MODFLOW and the other programs you want to run.
mfLab does its most to stick as closely to the original manuals as possible.
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For instance, if the BCF packages is use, you may have to specify trans-
missivities, called TRAN in the manual and so mfLab expects to find an
(Nrow,Ncol,NLay) sized matrix called TRAN in the workspace. If instead,
the LPF package is to be used, as specified in the NAM worksheet of the ac-
companying workbook, then, according to the original manual, the user has
to specify HK which are the horizontal conductivities. Hence, mfLab expects
to find a 3D array HK in the workspace when it wants to write out the input
file for this LPF packages, and so on. If the required array are missing, an
error is issued and the program will stop.

The names mfLab looks for can be found in the top of the mf_setup.m

script, directly after the call to mf_adapt. mf_setup is the script to launch
mfLab. In general, mf_adapt defines the grid and all 3D matrices constituting
the model (see figure 4.3). Fine-tuning parameters and the specification of
stress periods and layer properties (such as layer type and wettability) are
in the accompanying workbook <‌<basename>‌>.xls, hence, in the current
example case in the worksheet ex1.xls.

4.3 The accompanying Excel workbook ex1.xls
Every mfLab model has consists of at least three files, mf_adapt to construct
the model, mf_analyze to extract, interpret and visualize its results and
the workbook <‌<basename>‌>.xls to hold model parameters as well as the
definition of the stress periods and the layers parameters (such as layer type,
wettability and so on). It also has a worksheet NAM which defines which
packages are to be included in the run and which files are associated with
each package. Packages can be switched on and off on this worksheet, by
changing the switch on each line from 0 to 1 and vice versa.

Note that basename is defined near the top of mf_adapt.m. This base-
name defines the basename of all input files, including the accompanying
workbook. However the local files mf_adapt.m and mf_analyze.m are al-
ways named the same for every model. Therefore, there can be only one
model in a single directory.

The workbook contains many worksheets with names that mfLab looks
for when seeking the required parameters. These names must not be changed.
Neither must the names be changed of the parameters on the sheets. Any-
thing else can be changed and you may add as many sheets and information
as you like, because mfLab will only try to extract exactly those parameters
and values it needs for a particular model.

Instead of describing exactly the contents of the workbook at this point,
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Figure 4.3: First part of script mf_adapt defining the model
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refer to the the worksheet description elsewhere in this user guide.

4.3.1 Inspecting the accompanying Excel workbook

The workbook contains parameters relating to the model. These parame-
ters are arranged in worksheets within the workbook. Figure 5.2 shows the
different sheets as they appear at the bottom of the Excel screen.

Not all the worksheets NAM, MFLOW (MODFLOW), MT3D, PER (stress
periods), LAY (layers) etc. are necessary for this simulation.

The example problem is specified in feet and second. MODFLOW doesn’t
care as long as the dimensions are used consistently across all inputs (i.e.
recharge must thus also be specified in feet/s rather than in/day or in/year).
However for printed output it may be convenient to see the correct dimen-
sions. These can be specified by changing the top two parameters, ITMUNI
and LENUNI in the MFLOW worksheet shown is the figure. The comment
that pops up when clicking the cells explain the meaning of these values.
Other parameters can be set in the same way.

The worksheet MT3D is not needed here. it has the same structure as
the MFLOW sheet, but it was held separate because of the large number of
specific transport parameters required by MT3D.

The worksheet PER (see fig.5.6) contains the information regarding the
stress periods.

Instead of the MODFLOW text values ’SS’ or ’TR’ to indicate that the
computation in a given stress period is steady-state or transient, mfLab uses
the column ISTRAN (=is transient’) with an easier to handle numeric value
1 to indicate transient and 0 to indicate of steady-state flow in each stress
period.

The PER worksheet also contains output control information (see section
describing the PER worksheet).

The worksheet LAY (see figure 5.7) contains the parameter information
for the layers of the model. The structure of the worksheet LAY is similar
to that of the worksheet PER.

The sheets for WEL, DRN, RIV, GHB and CHD are all structured sim-
ilarly as a list (see figures 5.8 and 5.9). The first row of these worksheets
contains the names of the columns. The first column is the stress period
number. It is followed by the layer, row and column number and, finally, the
necessary values.

mfLab requires the stress period number in the first column. This is to
unambiguously recognize each specified line and to allow counting lines per
stress period by simple selection based on the stress period number.
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4.4 Post-processing and visualizing with mf_analyze
If everything runs fine and the executable terminates normally, model output
has been written to output files as specified in the NAM worksheet and the
file unit numbers near the top of the MFLOW worksheet. We then use a
script called mf_analyze to read, interpret and visualize these outputs. Of
course, this script can be given an arbitrary name, but throughout mfLab

the name mf_analyze is used (figure 4.4).
It is possible to invoke mf_analyze automatically after running the mod-

els. While this may be convenient for production runs, it is generally not a
good idea when the model is still under development. It is then preferred to
let the model finish first, and check to see that it has terminated normally
before invoking mf_analyze. If not, you may end up inadvertently using
the output of some earlier run, because the most recent run has failed and,
therefore, has produced no or wrong output. This can be confusing at times.
So, at least in the development phase, it is advised to first invoke mf_setup,
then check for normal termination of the mf++ executable and then use
mf_analyze to interpret and visualize the results.

The script mf_analyze is always tailor made, i.e. specific to the model in
question. Anything necessary to optimally visualize and interpret the results
of the model are put in. The best way to make your own mf_analyze is to
copy an existing one to your project directory and edit it. There is an almost
unlimited versatility possible using all of Matlab visualization and animation
functions. The possibilities may seem overwhelming at first. But starting
from one of the examples is always a good idea. The scripts will not vary
too much between the various examples. Some may visualize using contours
in the plane of aquifers, others may focus more on cross sections and or
show transient dynamics of heads and concentrations at specific observation
points or animation. Matlab functions often used for this visualization are
contour(), contourf () surf (), surface(), slice(), movie(), quiver() and so on.
See the examples.

However, you always have to read in the output produced by the mf++

models. mfLab provides a number of functions to read the unformatted files
produced by MODFLOW, MT3DMS and SEAWAT. You will likely always
need the corresponding functions readDat, readBud and readMT3D to read
the contents of these unformatted files into the Matlab workspace. These
functions, however are very flexible; they allow reading out any portion of
these files and do it fast. With them, you don’t have to load a 2GB output
of MT3DMS in memory entirely and run out of computer memory. See the
description of the options elsewhere in this user guide.

Once loaded into the Matlab workspace you can do anything with the
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data, of which visualization with one or more of the mentioned Matlab func-
tions is just one possibility.

Figure 4.4: Top of script mf_analyze.m

Finally one may use the results of the budget file read by readBud in
many ways. Of course, it is possible to run the MODFLOW companion
USGS program ZONEBUDGET, which also requires the budget file or use
the budget file data directly in Matlab:

Reading the budget file results in a structure array in Matlab’s workspace,
which contains the read data. The length of this array is equal to the number
of snapshots saved into this file. This Matlab structure array, or “struct” for
short, also holds exactly which time, stress period and time step number each
snapshot refers to. It further holds the labels that the file contained, which
specify the type of data read. It finally contains the data itself. As the user
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can specify exactly which rows, columns and layers in which arbitrary order to
be read, the struct also shows the numbers of these rows, columns and layers.
Hence, the struct generated by readBud in the Matlab workspace contains all
possible information regarding the budget data produced by MODFLOW.

The same is true for the struct arrays generated by readDat and readMT3D.
All three reading functions are similar, but there are small differences to
cope with the exact specification of the unformatted output files produced
by MODFLOW and MT3DMS. The options of the reading functions can be
seen by typing

help readDat
help readBud
help readMT3D
in the Matlab workspace.

This structure of the struct can be inspected in the usual Matlab way.
For example: If the budget file is read in to the struct B by invoking

B=readBud(’ex1.bgt’ )
Then B(i) is snapshot i.
length(B) is the number of snapshots in the struct array.
B(i).totim is the simulation time until this snapshot
B(i).period is this snapshots stress period number
B(i).tstp is this snapshots time step inside this stress period
B(i).label is the list of labels contained in this snapshot

If label 3 is the item you want, then
B(i).term{3} is the 3D array containing the flow terms indicated by label

3
To get specific rows, columns and layers form this flow terms array:

B(i).term{3}(rows,cols,layers), where rows is a list of layers (or all “:”),
cols a list of columns and layers a list of the layers you want to use.

B(i).rows is the list of rows in the struct, which correspond to the ones
selected from the budget files or all rows in the file if the rows were not
specified to readBud.

B(i).cols and B(i).lays similarly contain the columns and rows obtained
form the budget file.
Hence, any information can be extracted form this struct array.
To see all times in this struct array, type

[B.totim]
whiteout indices. Anything the standard powerful Matlab way.
Without wanting to give a course in Matlab here, some possible a little

more advanced use of the budget struct will be shown now. For instance, to
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Figure 4.5: Water table shown as surface

Figure 4.6: Head contours of the three aquifers
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get the total net outflow during snapshot i through drains cells into a variable
QDRN, we could type

QDRN=-sum(B(i).term{strmatch(DRAINS,B(i).labels)}(:); % also no-
tice the - sign here to get discharge as infiltration is positive in MODFLOW.

But, of course, since we have only a single time step in this example,
i can only be 1. There are several other examples of such water balance
computations

Perhaps interesting is the computation of the in and outflow through
constant head cells:

Q_CH=B.term{strmatch(‘CONSTANTHEAD’,B.labels};
Q_CHin =sum(Q_CH(:)<0); % total extraction
Q_CHout=sum(Q_CH(:)>0); % total injection
Notice that this manner is a little different from what‘s in the script

mf_analyze.m, but works just as well.
You may use the Matlab standard function spy to see where the different

drains, rivers and well are in the model.
A way to obtain the water balance of a zone is indicated at the end of

mf_analyze.
These lines are just to show the flexibility and versatility of the Matlab

environment to compute useful results from data contained in arrays.

Figure 4.7: Bottom of m script mf_analyze.m

Some of the outputs that mf_analyze produced from the output files of
the example are shown in the figures 4.4 and 4.7ibelonging to this section.
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Notice that the structs produced by readDat (reading heads and draw-
downs) and readMT3D (reading MT3DMS concentrations) are similar to the
one produced by readBud, but simpler. The same technologies apply with
some small adaptations that are obvious when inspecting the contents of
these structs and the way they are used in the mf_analyze examples.
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Chapter 5

Short description of the

worksheets in the Excel workbook

5.1 The Excel workbook used by mfLab
Groundwater simulation codes like MODFLOW, MT3DMS etc. require
many parameter values to be set to guide the simulation. Some parame-
ters are set for en entire simulation run, such as the file names to be used
and the maximum number of particles in the MOC-procedure for MT3DMS.
Some parameters, although fixed per simulation, may differ between the lay-
ers of the model, such as the layer type and the wettability of a layer. Other
parameters will differ between stress periods within the simulation, such as
the stress-period length and the number of time steps within each stress pe-
riod. In general, each model (MODFLOW, MT3DMS, SEAWAT etc) and
each package within a model (WEL, GHB, SWI etc) requires parameters to
be specified. mfLab assembles these parameters conveniently in a single Excel
workbook, where they are arranged in different worksheets. Figure 5.1shows
different worksheets in an an accompanying mfLab workbook.

Figure 5.1: Bottom of Excel screen showing the tabs of the different work-
sheets in an accompanying mfLab Excel workbook

This Excel workbook can thus be regarded as a multiple-page parameter
container. The workbook separates the actual construction of the model from
the simulation parameters, which are often the same between simulations.
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As new packages and models are added to mfLab their parameters are either
added to existing worksheets in the Excel workbook or obtain a separate new
worksheet with a clear name, whichever works best and whichever provides
the best overview to the user.

More worksheets may be added as new modelling capabilities are added to
mfLab. Further, the user may add extra worksheets to his/her convenience.
This may be practical for parameter handling and for linking such parameters
with other project data chosen to be stored in the same workbook. Any Excel
function and functionality may be used without affecting mfLab as long as it
can find the worksheets it needs and the required parameters in them.

Also, there is no need to remove worksheets and parameters that are not
required in a particular simulation. In fact, it is discouraged to delete such
information, as a project may be extended later and require it then. A good
alternative to removing sheets and parameters is hiding them using standard
Excel functionality.

There are several main worksheet categories, those that set parameters
pertaining to the entire simulation and the entire model, those pertaining to
stress periods and those pertaining to layers.

When intending to build a new model, start with copying the mf_adapt,
mf_analyze and Excel workbook from an old (similar) model, rename the
worksheet accordingly to the basename specified at the top of mf_adapt and
change the files into your new model.

The most extended worksheet can always be found as parameters. xls in
the mfLab directory.

5.1.1 Worksheets pertaining to the entire simulation

Worksheets pertaining to the entire simulation and model, generally show a
vertical list of package names in the first column, a list of the actual parameter
name in the second column and the actual parameter value in the third. The
fist column is not used, it merely identifies the package/module that uses the
parameter. The second column is used by mfLab to look-up the parameter
value next to it. Parameter names are generally unique across MODFLOW
packages so that only the second column is necessary for this look-up.

The third column contains the sought parameter value. Some parameters
may have a list of values. In those cases adjacent columns in the same rows
are used to store the values. An example is the requested output times for
MT3DMS in the MT3D worksheet.

Rows and columns not needed by a particular simulation are ignored. The
user can, therefore, store any additional information on worksheets, without
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affecting mfLab as long as the first three columns contain package name,
parameter name and parameter value.

Open lines are also ignored as well as any lines with unrecognized param-
eter names as long as the names that mfLab is looking for are present.

Generally also, each parameter name cell in the worksheets have a com-
ment attached describing the meaning the parameter. This comment is
mostly taken verbatim from the manual of the program or package that
uses the parameter in question.

5.1.2 Stress period parameters

All parameters pertaining to stress periods are contained in the worksheet
PER. See the description of this worksheet further down. The parameters
pertaining to stress periods, regardless of the package that requires them, are
stored in this worksheet PER. The first line of this sheet contains the package
name and the second the parameter value that is used. Subsequent lines
define each stress period. There are various options to define stress periods
efficiently as described below under the description of worksheet PER.

5.1.3 Layer parameters

All parameters pertaining to entire layers are contained in the worksheet LAY
regardless of the package that uses them. The fist line in this sheet contains
the names of the packages; the second line holds the actual parameter names.
Subsequent lines define the layers in the model.

There are various ways to define many layers efficient;y. See the descrip-
tion of worksheet LAY for details. The parameters in question are those
that can be set on a per layer basis such as layer type and wettability. Note
that cell-by-cell values are always defined in mf_adapt. Sometimes there is
a choice to either define a parameter on a per layer basis in the worksheet or
on a cell-by-cell basis in mf_adapt. For instance, the diffusion coefficient for
MT3DMS can be defined on a per layer and on a cell-by-cell basis. In such
cases the layer definition contains a switch, based on which mfLab looks for
the values in mf_adapt or in the worksheet.

5.1.4 Boundary condition parameters

More or less historically mfLab has different worksheets to store boundary
condition parameters such as WEL, RIV, DRN, GHB, CHD, PNTSRC. Each
of them contains a single row of column headings at the top, which are
followed by the actual parameter values. Each such row always starts with
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stress period number followed by a layer, row and column number. To the
right of the column number follow the actual parameter values such as the
flow for WEL, head and conductance for DRN etc. PNTSRC is needed by
the SSM package of MT3DMS (and SEAWAT).

mfLab will look in these sheets only when the package requiring the data
is active. Packages are activated in the NAM worksheet, see below. Even
if the package, such as WEL, is active, the user has the choice to defined
the data in this worksheet or directly in mf_adapt or both. Any mixture is
allowed, see description below.

Notice that the stress period number is required as the first column of
all mentioned boundary conditions while this is not the case in the mf++

programs. However, mfLab requires the stress period number to identify
each line uniquely as belonging to a given stress period; it allows the user
to specify the data lines in any order as they will be sorted after reading
anyway.

5.2 Nam worksheet
The NAM worksheet, an example of which is shown in figure 5.2, is used to
generate the name files that all mf++ programs require. The NAM worksheet
has a line for each package that mfLab knows about. However, only the
packages that are active, that is, the ones that are “switched on”, will be
used to generate name files.

The lines on this worksheet are in arbitrary order and blank lines are
ignored as is any line with an unknown package name. The switch is in
column 4. Use 0 to switch a package off and use 1 (or non zero) to switch it
on.

In the future switch values >0 may be read as a scenario number with
respect to the parameters of this package during the current run. For the
time being any value >0 means that the package is on.

The columns in this NAM sheet are as follows:

A Package name as defined by the program (BAS6, ADV etc). See
manual pertaining to the original external-party program. These
package names are the exact names defined in the mf++ manuals.

B FORTRAN file unit number to be associated with the files. The
choice of the unit numbers is free, but they must be unique within
the set of active packages. mfLab will signal duplicates with an
error message.
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C The extension used for the input file generated for this package.
Notice that mfLab gives all files of the project the same basename
as specified in mf_adapt.m followed by the extension given in this
column for each package. The choice of the extensions is free,
but they must be unique. Of course, it is wise to apply some
convention for them (OC for output control, HDS for head, BAS
(or BAS6) for the basfile etc).

D Flag giving the active status of the package. The flag has the
following meaning:

>0 Package is active.
0 Package is off, not used in the simulation
<0 (Only for VDF package, that is SEAWAT’s Variable

Density Flow package, means that the name file for
SEAWAT is generated, but that the VDF package
itself will not be used. This allows running SEAWAT
as if it were MT3DMS, i.e. with density flow switched
off.

- The future the flag may be interpreted as a scenario
number such that if for a package a value of say 3
is used, mfLab will use the third value to the right
of the parameter labels pertaining to this package.
Currently it will only use the value immediately next
to the parameter number.

E: Description of package (optional, ignored by mfLab)

F etc., ignored

To switch one on the package the value in the fourth column from 0 to 1.
mfLab will try to generate an input file for every package that is “on”. The
active packages are marked green in figure 5.2.

The packages with DATA or DATA(BINARY) in the left column desig-
nate output files of the model. When BINARY is included, the output file
will be unformatted. Currently mfLab can only read back in unformatted
files using its functions readDat, readBud and readMT3D (see mf_analyze.m

in any example directory). However, formatted output files are seldom used
in practice.
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Figure 5.2: NAM worksheet
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The package name in the left column must obey exactly to the name
prescribed by the code, e.g. BAS, BAS6, BCF, BCF6 etc. (see manual of
mf2k, MT3DMS, SEAWAT etc).

5.2.1 MFLOW worksheet

This MFLOW worksheet in the Excel workbook contains all MODFLOW
parameters that are constant during an entire simulation (see figure 5.3).
The various packages that require the parameter are mentioned in the left-
most column. The actual parameter name is in the second column and the
actual parameter value in the third. Some parameters need more values; they
will be placed in subsequent columns on the same row.

Figure 5.3: Part of the MFLOW worksheet
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This worksheet also contains parameters for other packages like SWI
(meaning Salt Water Intrusion) because the parameters refer to the entire
simulation when run. Parameters are kept together as much as possible to
prevent an unwieldy extension of the number of worksheets.

Each cell that holds a parameter name has a comment attached to it ex-
plaining what the parameter is. These comments are mostly taken verbatim
from the respective mf++ manual(s)

The parameters for the Salt Water Intrusion package (SWI) are also found
on this worksheet.

5.3 MT3D sheet
The MT3D worksheet contains the parameters that are constant during an
entire MT3DMS simulation. Part of it is shown in figure 5.4. The structure
is the same as that of the MFLOW worksheet.

The TIMPRS parameter on the MT3D sheet may contains a series of
numbers representing simulation times at which MT3D output is required.
This parameter is active if NPRS>0. NPRS is then the number of times to be
read for the TIMPRS. mfLab will only read as much as TIMPRS time values.
A negative value of NPRS is interpreted as the transport-step frequency at
which output is desired. In that case values of TIMPRS are ignored.

This frequency pertains to the transport time steps within a stress period,
that is, the counter will be reset after every stress period. MT3DMS will
always produce output at the end of a stress period, except when TIMPRS
is set explicitly.

Synchronizing output of MODFLOW and MT3DMS, even within SEA-
WAT, which integrates both, can be an issue. To synchronize output of
MODFLOW and MT3DMS use a large value for the transport step out-
put frequency NPRS as well as for the output parameters IHDDFLG and
ICBCFLG in the PER worksheet. This will cause output for both the MOD-
FLOW and MT3DMS at the end of every stress period. Then set the stress
period lengths in the PER worksheet to force output on the desired times.

5.4 SEAWAT worksheet
The worksheet with the name SEAWAT contains the parameters for the Vari-
able Density Flow package (VDF) and the Viscosity Package (VSC) which
SEAWAT version 4, (swt_v4 ) implements. Refer to the SEAWAT manual
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Figure 5.4: MT3D worksheet for one of the MT3DMS examples
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for a description. To easily scope with more species, we need more than one
numerical value for some of the parameters (see figure below).

5.5 PER (specification of stress periods, includ-
ing output control OC)

The worksheet PER defines the stress periods and their parameters. Like
the LAY worksheet to be discussed hereafter, the PER sheet is arranged
horizontally, that is, with one stress period defined per line. The top line of
the sheet holds the name of the package (or packages) requiring the parameter
in question. The parameter name is in the second line. Line 3 and further
contain the stress-period parameter values. Each cell with a parameter name
has a comment attached that explains it. This comment is usually taken
verbatim from the mf++ manual that defines it.

Each subsequent line defines a (set of) stress period(s).
mfLab allows much flexibility in defining the these stress periods using

the following rules:

1. Stress periods are sorted by mfLab so their order in the worksheet does
not matter.

2. The highest specified stress-period number in the worksheet is taken
the number of stress periods to be used by the model in the simulation.
The stress period number is in the first column of this worksheet.

3. Lines with stress period numbers <1 are ignored. This allows to switch
off stress periods easily.

4. Missing stress periods are filled in by mfLab prior to generating the
input files for the mf++ programs. This is done backward, implying
that the next specified stress period is used to fill in its predecessors.

5. If stress periods are defined more than once (i.e. several lines have the
same stress period number), then the first of them wins (as a conse-
quence of filling in the missing periods backward).

Hence, if stress periods 5 15 15 and 100 are specified, where 15 stress period
number 15 is a duplicate, then stress periods 1-5 are equal to defined stress
period 5, further, stress periods 6-15 will be equal to the first of the two
encountered stress periods line with period number 15, and stress periods 16
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Figure 5.5: SEAWAT worksheet in the Excel workbook of the Coast example
for SEAWAT

Figure 5.6: part of the PER worksheet, also showing a comment explaining
the meaning of the variable TSMULT
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to 100 will have the values defined for stress period 100. And the number
of stress periods in the model will be equal to the highest stress period
number encountered on the PER worksheet, which is 100 in this hypothetical
example.

Output control (OC-package): The PER sheet also contains the param-
eters for output control. This contrasts with the specifications in the MOD-
FLOW manual, which requires that output control be given per TIME STEP
step and not per STRESS PERIOD. However, for practical reasons, namely
to prevent the clutter and confusion of yet another worksheet with a separate
(potensially very long) list which has to be managed separately, as well as
to prevent the often very large number of lines required for output control,
namely the number of stress periods times number of time steps within the
stress periods, there is no separate OC worksheet in mfLab. Instead, the
option of the parameters IHDDFLG, IBUDFLG and ICBCFLG have been
extended in mfLab relative to the options provided by MODFLOW. In mfLab

a value <> 0 means that output regulated by the particular flag will be pro-
duced at that time-step interval within each stress period. This interval is
taken as the absolute value of the particular parameter. mfLab makes use
that is, there will always be output at the end of every stress period, but
within a stress period output is produced only at the given frequency. So,
to make sure you only have output at the end of each stress period (unless
the flag is given value 0 indicating no output for the current stress period).
Hene, to just obtain output at the end of each stress period use a large value
for these parameters, larger than the number of time steps in the stress pe-
riod. Use the value 1 for these two parameters if you want heads and budget
output at every time step. With these data and rules mfLab generates the
OC-control file, which will have tow lines for every time step.

Semantic extensions have also been implemented for all parameters start-
ing with “IN”. These parameters indicated whether a layer of values the re-
spective parameter must be read for this stress period or whether the values
of the previous stress period will be used. Hence INSURF thus refers to
SURF, INEVTR to EVTR, INEXPD to EXPD and INIEVT to IEVT and
likewise for the paremeters pertaining to the RCH package i.e INRECH to
RECH and INIRCH to IRCH. These parameters have the following meaning:

if <0 the values of the concerned parameter of the previous period will
be reused and nothing is read

if =0 the values will be obtained from the MATLAB workspace and the
concerned parameter, i.e. SURF, EVTR, EXPD ,IEVT, RECH and or IRCH
must be provided in the Matlab workspace. See below.

if >0 the value of the corresponding parameter in the worksheet LAY will
be used for this stress period for all cells.

45



To provide one of the parameters SURF etc in the matlab workspace do
the following. You must provide either a cell array with one cell per stress
period or a 3D array with one array layer per stress period. This must be a
3D array. The length of the cell array must be at least as long as the highest
stress period number that require its values. The same is true for the length
of the 3rd dimension if a 3D array is used instead. The cell array has the
advantage that those cells can be left empty that correspond to stress periods
for which no values from the workspace are required, i.e. for those periods for
which the corresponding “IN-parameter” is non-zero (that is previous values
are reused or value is obtained from the Excel worksheet). This is because
mfLab will only look at the cells corresponding to the layers for which the
IN-parameter=0. In case a 3D array is preferred then ony the array layers
corresponding with stress periods for which the IN-parameter is zero are
used. The other values are immaterial. It is a good habit to use NaNs, as
errors will immediately appear.

If a cell has only one value, mfLab assigns it to all cells af if a layer
of values were given. The same is true if a 3D array is used. If the first
and second dimensions are 1, mfLab, considers the value as a layer value.
However, the array must be 3D for mfLab to decide which values in the array
correspond to each stress period. You may trun any array in a 3-D one using
the reshape or permute functions in Matlab. For instance if a is A vector
then

A=reshape(A,1,1,length(A)) or A=permute(A,[3,2,1])
will do the trick.

Filling in a cell array may be done as follows
A=cell(NPER,1); % note the 1, as otherwise the array will be NPERxN-

PER instead of NPERx1
for iPer=1:NPER, A{i}=your values for this stress period; end
–
The EVT package requires the specification of SURF and EXPD, i.e.

the elevation (according to the applied datum) above which the EVT equals
the maximal value, specified as EVTR, and the depth below this surface at
which evapotranspiration ceases. To make the EVT package work, SURF
and EXPD must at least be specified for the first stress period, after which
the can be reused using the value -1 for INSURF and INEXPD. To facilitate
specifying the stress periods in mfLab, it will interpret the value in the SURF
variable for the first stress period even if INSURF is -1 (the reuse option).
The same is implemented for the EXPD value. If the INEXPD is -1 in
the first stress period it will set EXPD to the value specified in the column
EXPD. Defining the semantics this way, allows using only one stress period
line in the worksheet to specify any number of stress periods (by setting the
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IPER variable in the first column to the desired number of stress periods.
For further convenience
if INSURF(1)=-1 then SURF(1) is SURF elevation
if INSURF(1)=-2, then SURF(1) is distance of SURF above top of model

(use negative value for distance below top of model)

5.6 LAY (specification of layer information)
The worksheet LAY is also oriented horizontally, like the worksheet PER.
Worksheet LAY contains the parameters pertaining to the layers in the model
which are specified on a per layer basis. The structure is the same as that of
the PER sheet, but, of course, in this sheet each row gives the information
of a specific layer.

Figure 5.7: Part of the LAY worksheet, also showing the comment attached
to the parameter LAYCBD

Only unique layers have to be specified. To allow this, the layer number in
the first column of this sheet is obligatory. mfLab uses it to target given layer
properties exactly. This way of specifying layers puts maximum flexibility in
the hands of the user. The rules that mfLab implements are as follows:

1. The specified layers will be sorted prior to generating the input files of
mf++ programs. Therefore, the order in which layers are specified in
this worksheet is unimportant.

2. Each specified worksheet line targets the layer according to its layer
number

3. If duplicate layer numbers are encountered, the first one will be used
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4. If layers with number > NLAY are specified, the first one >= NLAY
will be used to start filling in the layer properties backward, i.e. starting
with the highest one. Note that mfLab deduces the number of layers in
the model from the number of layers in the IBOUND array, not from
the LAY worksheet.The highest specified layer number must be greater
than or equal to the number of layers in the model (=size(IBOUND,3)

5. Lines with layer numbers <1 are ignored. This allows layers to be easily
switched off.

6. Missing layers will be filled in by mfLab backward, using the values the
next higher one specified by the user.

So, in practice, if all layers are unconvertable (i.e. LAYCON=0) and they all
have the same layer properties, then supplying only one layer suffices and its
number must be greater than or equal to the number of layers in the model.
If the first three layers are convertible, and layer 4 to 20 are the same as are
layers 21 to 40, then specify only the layers 3, 20 and 40. The rest will be
filled in by mfLab working its way back from the highest one.

Some of the parameters like WETDRY in the LAY worksheet can be
specified directly in mf_adapt. This allows specifying cell-by-cell values in-
stead of just one value for an entire layer. To invoke/use the parameter for
WETDRY in the Matlab workspace, set the parameter WETDRY in the LAY
worksheet equal to zero. In that case, if there exists a parameter WETDRY
in the mf_adapt workspace of Matlab, then that parameter will be used.
This parameter must be named WETDRY and is a cell array with one cell
per layer in which the desired values are stored as a Ny*Nx layer array.
The parameter WETDRY must have at least as many layers as the highest
convertible layer number (LAYCON<>0 in the LAY worksheet). The cell
number must correspond to the layer numbers. If a layer has a single value
that value is used for the entire layer. But only the layers are used that are
both convertible, of which LAYWET<>0 and which have WETDRY==0. If
WETDRY==0 but there exists no WETDRY parameter in mf_adapt, then
MODFLOW’s method is followed, meaning that rewetting will not take place
(WETDRY=0).

5.7 Boundary conditions (WEL, GHB, RIV, DRN,
CHD)

The workbook provides worksheets for each of the boundary condition op-
tions, i.e. WEL, DRN, RIV, GHB and CHD. These sheets all have the same
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structure, namely [stressPeriod, Layer, Row, Col, parameter-values]
mfLab will only look for these worksheets if their respective package is

“on” in the NAM sheet.
Each of these boundary condition types can also be directly specified in

mf_adapt or in both mf_adapt and these worksheets. mf_adapt will merge
them. A zero number of boundary conditions are allowed, but a more effective
way is to switch off boundary types that are not needed in the simulation.
This is done in the NAM sheet.

Figure 5.8: WEL worksheet of example ex1

Figure 5.9: DRN worksheet of example ex1.

49



To specify boundary conditions in mf_adapt, a list array has to be defined
in the Matlab workspace with the required structure. This structure is the
same as described in the MODFLOW manual, except that mfLab requires
that each line is preceded with the stress period number. This makes each
line unique and guarantees unambiguous interpretation of the input lines.

The structure necessary for each boundary condition list can be readily
seen from the labels in the respective worksheets.

The following rules apply:

1. If no boundary conditions are specified for a given stress period, then
these boundaries are off in this period.

2. If a negative stress period number is used, then the boundaries of the
previous stress period are reused and layer, row and column numbers
of such lines are ignored (so any values can be filled in, I suggest to use
zeros.

3. If both negative and positive stress period numbers are specified for
the same period, then only the negative one will be used by mfLab.

Up to 5 auxiliary parameters may be specified, according to the official man-
ual. Such parameters if specified will also be read by mf_setup.

Because the number of boundary condition cells can be enormous, the
spreadsheet may not always be the most convenient way to store these con-
ditions.

The specify these boundary conditions directly in mf_adapt use the struc-
ture shown in the worksheet. The names of the list/array variables mf_setup
expects to find for these parameters in the workspace are WEL, DRN, RIV,
GHB, RIV respectively. mf_setup will simply merge the boundary conditions
found in the various worksheets with those it encounters in the workspace at
the time of mf++ input file generation.

This merging may be convenient when most of a large set of boundaries
are constant between scenarios and some are not. In such cases one may for
instance put the cells to be changed the spreadsheet and leave the large list
to be handled by mf_adapt intact.

According to the SEAWAT version 4 manual ([9], p12-14) two auxiliary
parameters can be specified with the CHD package. CHDDENSOPT and
CHDDENS. These allow specification of the prescribed head boundary in
terms of saltwater density. Please refer to that manual for details. CHD-
DENSOPT and CHDDENS are active automatically when they exist in the
workspace of Matlab. See the Elder example for how to make effective use
of them in mfLab.
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5.8 PNTSRC (SSM package)
The SSM module of MT3DMS (and therefore also SEAWAT) requires specifi-
cation of all sources and sinks, at least the sinks. As described in the previous
section. The point sources, PNTSRC, have the following list structure.

[stressPeriod, Layer, Row, Column, CSS, ITYPE, CSSMS(1..NCOMP)]
CSSMS(1..NCOMP) may be omitted if only a single species is involved

in the model. In that case, CSS is used as the concentration of the involved
species. If more than one species is modeled, then CSSMS(1..NCOMP) needs
to be included, where NCOMP the number of species. In these cases CSS is
ignored but still needs to be specified according to MT3DMS.

The worksheet PNTSRC is almost identical to that of the boundary,
conditions WEL, DRN, RIV, GHB and CHD. Here too, each line starts with
the stress period number followed by the Layer, Row and Column indices and
finally the parameters values. ITYPE indicates the type of point source as
specified in the MT3DMS manual for the SSM package. In general, each flow-
model boundary condition through which non-zero concentration may enter
the model requires a counterpart in the PNTSRC list of the SSM package,
except drains, because drains can only discharge. See the documentation of
SSM in the MT3DMS manual.

Like it is the case with the boundary conditions WEL, DRN, RIV, GHB
and CHD package of the flow model, PNTSRC entries may be defined in the
both in the worksheet and in mf_adapt.m directly; the data will be merged
before mfLab generates the input file for the SSM package.

MT3DMS (and SEAWAT for that matter) can model simultaneous trans-
port of up to 100 species each with its own properties and retardation. To
view an example of MT3DMS/SEAWAT use with more than one species see
”Coast”, which uses temperature as a second species next to density.

5.9 HUF worksheet (Hydrogeologic Unit Flow)
The HUF package is an alternative to BCF and LPF, it defines the sub-
surface in terms of hydrological units that are independent of the layers of
the model. It, therefore, needs a layer definition separate from that of the
computation grid. mfLab’s HUF implementation is still under development
and not well tested. HUF has to be defined totally in terms of parameters.
The parameters needed in the HUF sheet are the parameter name for each
hydrological unit and the horizontal and vertical anisotropy value pertaining
to each hydrological unit. The top and bottom of each hydrological unit
must be defined by mf_adapt. And in the HUF package must be switched
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“on” in the NAM worksheet, while both the BCF and LPF packages must be
switched “off”.

5.10 BTNOBS worksheet
The BTNOBS allows the specification of concentration observation points.
It only requires the layer, row and column numbers of cells for which a
concentration over time output is desired during a MT3DMS scenario. The
course of concentration at these observation cells can then be analyzed at
a later time. There is a function readObs to read the produced observation
data into Matlab for visualization.
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Chapter 6

Mfiles (Matlab code)

6.1 Generalities
The mfiles are Matlab functions and sometimes Matlab scripts, which, to-
gether, comprise mfLab. The mfiles have been arranged in directories in a
more or less logical way to prevent clutter as much as possible. The different
mfile directories contain functions that may be useful for model generation
and interpretation. Some help with the handling of coordinates and compu-
tation grids. Other functions may be more generally applicable.

The mfiles/write directory contains the mfiles mf_setup.m and all mfiles
that generate the input files for the mf++ target models. Each time a new
package for one of these models is to be implement in mfLab, a new write func-
tion must be made together with a new accompanying block in mf_setup.m
which gathers and assembles the parameters required by the write function.

The best way is to start writing a function for a new package it to start
with one that is similar to the new one to be implemented. The result will
then be obtained faster and will require less debugging. Keeping functions
similar and elegant causes fewer headaches during development and, espe-
cially, during debugging at some point in the future.

The philosophy of reusing code and keeping code similar has been applied
in mfLab as much as possible. This way, the input files for the WEL, GHB,
DRN, RIV and CHD packages are generated by the same routine, write-

BCN.m (BCN stands for Boundary Condition). Other write functions for
other packages like recharge an evapotranspiration have been kept as similar
as possible as is the case with the function that write the input files for the
BCF and LPF packages for MODFLOW.

One output file that does almost all the work, the array writing function
warray.m. It is named after the rarray (array reading function) used by
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MT3DMS to read real arrays. It is used to write both the arrays tot to
the int put files of the MODFLOW and the MT3DMS packages, regardless
whether the arrays contain integers or floating point numbers of whether
the arrays is written as a list of full 2D layers, regardless whether the array
should be written with a or without an array header; warray does it all.

This guarantees that all functions that need to write out arrays will use
the same routine, which makes mfLab robust.

All writing by mfLab is done in fixed format. This may seem counter
intuitive (even to myself at the beginning), but, as a matter of fact, it proves
to be very robust and it is backward compatible. The robustness stems
from the experience that with fixed formats odds that things accidentally go
“right” are very small. This is necessary to find bugs with most certainty.
A disadvantage with using fixed formats is that the MODFLOW develop-
ers simply allowed too little space for many variables. While floating point
numbers requires least 12 spaces to guarantee sufficient accuracy under all
circumstances, many variables in MODFLOW and MT3DMS fixed format
are granted only 10 spaces.. Hopefully this will change in the future.

Wat follows is a description of some (not all) of the mfiles that come with
mfLab. The main idea is that these descriptions serve to make the user aware
of their existence and usefulness.

We will discuss the mfiles directory by directory.

6.2 mfiles/gridcoords: strmatchi, cellIindex, cellInd-
ces, rd2wgs, wgs2rd

[E.N]=rd2wgs(xrd,yrd) translates “Rijksdriehoekscoordinaten” (Dutch Na-
tional Coordinates) to wgs world global system 1984 coordinates used
by Google Earth. I obtained the routine from a colleague of TNO in
Utrecht. I translated it to Matlab code and tested it.

[xrd,yrd]=wgs2rd(E,N) translates wgs84 coordinates to rd coordinates.
As it is impossible to deduce from the rd2wgs code how to invert the
function, I implemented it as an optimization problem in which the wgs

coordinates are known and the rd2wgs function is available.

idx=strmatchi(name,names,opt) is used to find the labels read from the
worksheets and get the corresponding column or row index to then
grab the correct numerical values. It has some extra flexibility beyond
Matlab’s own strmatch. The arbument opt is used to prevent an error
message when strmatchi fails.

54



I=cellIndex(ix,iy,Nx,Ny) Compute global index of 2D array (same as
Matlab’s sub2ind)

I=cellIndex(ix,iy,iz,Nx,Ny,Nz) Compute global index of 3D array (same
as Matlab’s sub2ind)

LRC=cellIndices(I,dims,’LRC’) yields the individual COL ROW and
LAY indices of a an array whose dimensions are known and a list of
global array indices are given. The latter are obtained using the find
function and some logical condition, like I=find(IBOUND==-1), then
LRC=cellIndices(find(IBOUND==-1), size(IBOUND),’LRC’) immedi-
ately yield the corresponding list of Layer Row Col indices that are
required to specify boundary conditions WEL, DRN, RIV, GHB and
CHD. A little more advanced than Matlab’s ind2sub.

[X,Y,well]=make_grid(well,aroundAll,aroundEach,dmax,dmin,factor)
Generates a finite difference grid taking into account the location of
wells in struct well desiring a local, more detailed grid, a desired dis-
tance to the model boundary, a maximum and minimum cell size, and
a factor by which the local grid around each well increases. After gen-
erating the grid, it is cleaned up such that no cell will be smaller than
the prescribed argument dmin.

6.3 mfiles/read, readDat, readBud, readMT3D
This directory contains the functions used by mfLab to read files. The func-
tions always used in any mf_analyze are readDat, readBud and readMT3D

because they can read the unformatted files produced by MODFLOW (bud-
get, heads, draw-downs) and by MT3DMS (concentrations). These functions
are similar in their use and also in the options they offer to pick out precisely
the data that are required for the interpretation and visualization. Some
examples of simple and advanced use have been given earlier in section 4.4.

H=readDat(fname[,periods[,tsteps[,lays[,rows[,cols]]]]]]) read heads,
draw-down or SWI zeta file into convenient struct

B=readBud(fname[,labels[,periods[,tsteps[,lays[,rows[,cols]]]]]]) read
MODFLOW’s budget file into convenient struct

C=readMT3D(fname[trpstps[,lays[,rows[,cols]]]]]]) reads MT3DMS con-
centration file into convenient struct
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The directory further contains all the functions necessary to read input files
for MODFLOW, MT3DMS, SEAWAT and MOCDENSE. These files are used
to read in a complete existing model as defined through it’s input files into
the Matlab workspace. It is therefore possible to read in any existing model,
regardless of source into the workspace and to start modeling from it.

6.4 mfiles/write
This directory con stains all routines that generate input files for target
models. It also contains mf_setup.m, the backbone of mfLab.

6.5 mfiles/etc
Various useful functions.

6.6 mfiles/fdm directory, modelsize, modelsize3,
fdm2, fdm3, fdm2t fdm3t

This directory contains a set of complete finite difference models entirely
written in Matlab. They are used in a modeling course at the TU-Delft,
in which students build their own finite difference models in Matlab. The
course is included in the pdf file in this directory and should be sufficient
to get acquainted with these models. The models allow extremely compact
groundwater modeling in Matlab but don’t supply the wealth of options
included in regular MODFLOW. However, these models can be very useful
for fast modeling and verification of the MODFLOW model or with analytical
solutions. Included are models for 2D, axial symmetric, 3D, steady and
transient as well as density flow and finally particle tracking. See the manual
for instructions.

[xGr,yGr,xm,ym,Dx,Dy,Nx,Ny]=modelsize(xGr,yGr) is a useful grid
housekeeping function that is used in almost every model. It guaran-
tees that grid lines are sorted and oriented into the correct dimensional
direction and that all coordinates are unique with duplicates removed.

[xGr,yGr,zGr,xm,ym,zm,Dx,Dy,Dz,Nx,Ny,Nz]=modelsize3(xGr,yGr,zGr)
same but includes the third dimension

Below follow most of the finite difference models that the directory contains.
These are small jewels. Use help file name to get specific information on their

56



usage. Phi is the computed head, Qx,Qy,Qz are the flows across the cell walls,
Qt is storage in the cells during a time step and Psi is the stream function.
x,y,z are grid coordinate vectors, t is time, kx,ky,kz are the cell-by-cell con-
ductivities, FH the fixed heads and NaN elsewhere (no IBOUND necessary),
FQ are the prescribed flows (injection positive),S is primary storage, Ss is
specific storage and IH is initial head. Gamma is the relative density, that
is: (rho-rhof)/rhof.

[Phi,Q,Psi,Qx,Qy]=fdm2(x,y,kx,ky,FH,FQ) Steady state 2D finite dif-
ference model written entirely in Matlab

[Phi,Q,Qx,Qy,Qz]=fdm2(x,y,z,Kx,Ky,Kz,FH,FQ) Same but 3D, writ-
ten entirely in Matlab

[Phi,Qt,Qx,Qy,Qs]=fdm2t(x,y,t,kx,ky,S,IH,FH,FQ,varargin) Transient
2D finite difference model written in Matlab

[Phi,Q,Qx,Qy,Qz]=fdm3(x,y,z,kx,ky,kz,FH,FQ) Transient 3D finite dif-
ference model written in Matlab

Phi,Q,Psi,Qx,Qy]=fdm2dens(x,y,kx,ky,FH,FQ,gamma) Steady state
2D finite difference model with density flow

[XP,YP,TP]=fdm2path(x,y,DZ,Q,Qx,Qy,por,T,markers,XStart,YStart)
Particle tracking in a 2D steady state finite difference model
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Chapter 7

Examples

7.1 Overview
A number of mfLab examples is available in the directory mfLab/examples.
There are sub-directories for mf2k, mt3dms, swt_v4 and swi . More are to be
added and some of them are still under construction today (091207). Each
example resides in its own directory and each such directory always contains
3 files

1. mf_adapt.m – the Matlab (c) m-file in which the model is created in
terms of Matlab (c) arrays;

2. mf_analyze – the Matlab (c) m-file that extracts the results of the
model and visualizes them (and perhaps does extra processing or in-
terpretation);

3. <‌<basename>‌>.xls, the xls (Excel) file holding parameters and in-
formation on stress periods and layers. <‌<basename>‌> is the name
given to the model. This name is arbitrary and is stated at the top of
mf_adapt.

As mf_adapt and mf_analyze are local and always named the same, you
should (could) not keep more than one model in a single directory.

You can launch the simulation by typing mf_setup in the command win-
dow of Matlab. After mf_setup has finished type mf_analyze.

Of course you could immediately type

mf_setup; mf_analyze

in the command window to have mf_analyze follow mf_setup automatically.
However, this is useful only if you are sure that the models that are
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launched at the end of mf_setup (MODFLOW, MT3DMS, SEAWAT
etc) will terminate normally. If not, mf_analyze will fail as it misses all
or some of the model output.

All examples are documented directly in their mf_adapt.m file, where the
problem and the approach are explained as comments that is interlaced
with Matlab code.

It is also good to realize that each part of the code can be run by using the
cell approach of Matlab (run each section of the code marked by %%).
But also, that you can also run each line or even part of it separately
to see what exactly it does; and, you can change code, add your own
etc. In short there is ample opportunity to experiment and adapt to your
personal wishes.

Moreover, to start a completely new model, the best approach is to copy a
directory of a model that has some similarities with the one you want to
construct and then adapt it. This is probably essential with respect to
the model’s workbook, holding the parameters. Most of the time chances
are that you hardly need to make any changes to it, except for the specifi-
cation of your stress periods and your layers (even the layers seldom need
change between models, as the actual hydraulic parameters, like porosity,
conductivity, storage coefficient, start concentration, are always specified
in mf_adapt and never in the worksheet).

All examples should run if you do the following:
Make sure that the directories of the m-files are known to Matlab (c) (use a

shortcut in the toolbar on top of the screen)
mfLab/mfiles/write

mfLab/mfiles/read
mfLab/mfiles/etc
mfLab/mfiles/gridcoords

Make sure that the MODFLOW directory specified in mfiles/write/mf_setup.m
points to the correct directory on your system.

The same must be true for MT3D, SWI and SEAWAT and possibly other
directories.

In Matlab cd (change dir) to the directory of the example you want to run,
say
mfLab/examples/mf2k/ex1

and type in the command window
mf_setup

followed by (if all goes well)
mf_analyze

Or type:
mf_setup; mf_analyze
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on one line to run both file in sequence without a pit stop in the middle.

7.2 examples/mf2k
This directory (for the time being) contains only one example, called ex1 (see
further down). The main reason not to present more examples here, although
there may be more in the future, is that the examples given for MT3DMS
and SEAWAT are, implicitly, also MODFLOW examples. MT3DMS needs
all MODFLOW files and SEAWAT needs the same files as does MT3DMS
+ one extra. Therefore, if mfLab generates files for SEAWAT it generates
not only the name file for SEAWAT, swt_v4.nam, but mt3dms5.nam and
mf2k.nam as well. Hence, in case of a SEAWAT model you can run MT3DMS
immediately, which creates a solution without any density effect, and you can
run mf2k directly. This may help debugging and it may be worthwhile to
compare the solution with and without density effects.

7.2.1 ex1

The example in this examples/mf2k/ex1 directory is a simple case that was
presented in the original MODFLOW manual of [4], Appendix D. It was
reused in the manual of MODFLOW2000, generally referred to as mf2k ([5]).
In the manual it is solved both with and without the parameter options that
were introduced with mf2k to facilitate calibration using its internal sen-
sitivity and parameter optimization process. These parameters and these
calibrating processes have been left out of the most recent version, MOD-
FLOW2005 so they will be obsolete in the future, i.e. replaced by external
programs UCODE and PEST. The provide example does not use the pa-
rameters. In general they are considered too complicated to use and not
needed in the Matlab environment. However, the parameter options have
been implemented in mfLab, but not really tested to date.

The example is fully documented in its mf_adapt.m file. Please refer to
that file for further information.

7.3 Calibration with PEST

7.3.1 Example ex1pest in examples/mf2k/ex1pest

This example is the same situation as that in ex1. It is from the mf2k manual.
As in that manual we use the LPF package instead of the BCF packge. That
is, instead of transmissivities, we specify horizontal conductivities HK and
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vertical conductivities VK and instead of VCONT between the aquifer we
specify teh VKCB, the vertical conductivity of confining units between layers,
when present.

The change from BCF to LPF is straightforward and documented in the
script mf_adapt.m on that directory. It follows the mf2k manual in this but
does not use the parametr functionality of mf2k.

7.3.1.1 Calibration by PEST

More interesting is the calibration using PEST done in that directory as well
to demonstrate the use of PEST in the mfLab environment. PEST can be
downloaded from

http://pesthomepage.com
Setting up PEST requires the construction of a number of files (template files,
instruction files, and the PEST control file. In these a number of parameter
values must be specified as explained in the PEST manual. In order to make
remembering parameters easier, I put the more pertinent ones, that is, the
ones that hardly need to be changed between models, in an extra worksheet
called “PEST” in the workbook of this example. The parameter names in
that worksheet all have an Excel comment attached to them which describes
their function. This is the same as in the other worksheets.

Other PEST variables pertain to the specific case because they depend
on the actual parameters and obsrvations, and will vary from one case to the
next. These variables, therefore, will have to be edited for every model. In
order to facilitate making the required pestfiles including editing, I wrote the
script

genpestfiles.m
which is in the same directory.

This script specifies the basename of this case by reading the file name.mat

that mf_adapt already generated. It further holds the specification of the
parameters, of the parameter groups, the observations and the files pertaining
to them. The meaning of each of the parameter is written as comments near
the locations where they are needed in the file. Their possible optons are
given on the spot and need not be remembered. It should, therefore, be
straightforward to adapt genpestfiles.m to a new situation.

Once pertinent parameters in the worksheet have been adjusted (if deemed
necessary), and the file genpestfiles.m has been adapted to match the current
case, you can run genpestfiles.m in Matlab to obtain the required pestfiles.
The pestfiles can (should) be checked by the check facilities PESTCHEK,
TEMPCHEK and INSCHEK that come with PEST.

To run PEST use is made of three simple files run.m, run.bat and pestrun.bat
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• The file pestrun.bat is a DOS batch file that runs PEST with the [base-
name].pst file as argument. This one line was put in a batch file to
allow prepending the path to the PEST executable as an alternative of
setting the path on the Windows environment.

• The file run.bat is the batch file that launches Matlab with the mfile
run.m as its argument. This will start up the model construction and
run the models.

• The file run.m is the Matlab script that Matlab reads and executes
when Matlab is loaded, and does the following:

1. set the paths in the Matlab environment, so that subsequent subse-
quentn instructions can find the mfiles belonging to mfLab.

2. to run mf_setup.m (which, as always, runs mf_adapt.m, generates the
model input files and runs the model itself (or models themselves))

3. to exit Matlab when finished.

In the example, some parameters are adjustable and some are fixed. During
the parameter estimation process, PEST concludes that the correlation be-
tween some of the parameters is 1.0 (one). Therefore, the parameters that
have been chosen for are not estimatable with the given small number of
observations. So, some parameters should be kept fixed or tied to other pa-
rameters, or more observations be acquired. Nevertheless, it is astonishing
that PEST is able, even in this badly conditioned case, to optimze the pa-
rameters to almost their true values, which are attained with all parameters
are equal to 1.

7.3.1.2 How does the caibration with PEST work in the mfLab
environment?

Matlab already parameterizes the construction of any model. It is, therefore,
relatively easy to include any set of parameters directly in this construction.
There is no need to use the parameter functionality of mf2k, nor is there any
ned to adapt input files of whatever the model to accommodate PEST. In
Matlab, we work, therefore, with a single model input file, which is a simple
list of values of the parameters we with to deal with. PEST generates this
list using the parameter values it computes in the calibration process. PEST
does so with using the template file for this model input file. This template
file is also the simplest template file that is possible, because it only needs to
tranform the list of parameter values of PEST into an equal list of parameter
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values in the model input file. In fact, in the mfLab environment, we strictly
speaking do without every template and use PEST’s parameter list directly.
But to stay in line with the PEST procedures, we use the simplet one that
is possible.

Matlab then calls mf_setup.m, which in turns calls mf_adapt.m, which
reads the parameter file (the model input file) and assigns the values to the
parameters in mf_adapt.m. mf_adapt then generates the model arrays using
these parameters. When done it hands back control to mf_setup. The script
mf_setup.m continuous and constructs all the input files for the models to
be run as usual. mf_setup then calls the required models, in this case only
MODFLOW (mf2k). When the model has finished, it hands over control to
mf_analyze.m. This mfile reads the binary (and possibly other) output files
of the model and extracts the computed observations for this run. Computed
observations are the values at the locations of the observations and whatever
other required information suh as discharges. These computed observations
are written to the model output file in the form of a simple list of values.
This list with computed observation values is the only file that PEST cares
about. PEST extracts these values using a PEST instruction file.

It then and decides what to de next. Normally implies running the model
again, so that the described cycle is repeated for as long and often as PEST
considers necesary to optimize the parameters.

7.3.1.3 Remarks

Essential ingredients turned out to be:

• the -wait option in the comment to let the batfile run.bat wait until
matlab was finished. The total command line to run matlab in batch
mode is:

• matlab -wait -nosplash -nodesktop -r run.m -logfile run.log (option -
minimize is optional)

• This command line does not work as the command line specified in the
PEST control file, as the command PEST issues to run the models.
This command must be encapsulated in a batch file, see run.bat.

• The mfile run.m conveniently sets the mfLab paths in matlab, invokes
mf_setup and exits when ready. Due to this, nothing has to be changed
to mf_adapt.m to accomoated PEST, except to use the desired param-
eters to construct the model arrays.
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• The parameter AFTERMFSETUP was defined in mf_adapt and im-
plemented in mf_setup.

IT is used as AFTERMFSETUP=mf_analyze to ensure that mf_analyze

will be run immediately after the models have finished.
mf_analyze utilizes the existense of absence of the variable AFTERMF-

SETUP to decide whether or not it runs under PEST. If under PEST it just
gets the computed observations and des not care about vizualizing the output
or do other things. This way, no extra mfiles are requried ot run PEST.

I tried JACUPDATE=999 as advocated in the manual, but this led to
PEST hanging, maybe in an endless loop. Setting it to 0 caused normal
behavior of PEST and normal termination.

7.4 Boussinesq, unconfined sloping base aquifer
This examples explores the difference between the MODFLOW way of mod-
elling a sloping base unconfined aquifer with the exact analytical solution,
which solves the Boussinesq equation (Steward, 2007) for uniform discharge
(no recharge). In MODFLOW a sloping base aquifer is by stepwize adapta-
tion of the top and bottom of the layers according to the base of the aquifer.
This way ,the model becomes a staircase. The governing partial differential
equation, according to Boussinesq is however has been solved analytically
(Steward, 2007) and can, therefore, be compared with the numerical solu-
tion.

We will first explore the analytical solution.
Darcy’s law combined is

Qx = Qs = −kh
∂φ

∂s

The discharge is uniform, therefore, Qx is constant. Further, Qx = Qs. The
aquifer which has inclination angle θ (positive when the slope is upward in
the x− or s-direction, see figure 7.1, so that ∂B/∂s = sin θ . The stream
lines are essentially parallel to the base of the aquifer. Therefore, there is
no head loss perpendicular to the bas, along n. With a water thickness h
measured along direction n, the head equals

φ = B + h cos θ

Hence, Darcy for the inclined aquifer in it natural s − n coordinates
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Figure 7.1: Groundwater flow on a slopt Boussinesq (1879)
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beomes

Q = −kh
∂ (h cos θ + B)

∂s
(7.1)

Q = −kh

�
cos θ

∂h

∂s
+ sin θ

�
(7.2)

On the other hand, when the Dupuit assumption is strictly appied, then
one assumes h � H and ds � dx and φ � H + B . This is, in fact, three
times incorrect. Nevertheless, this leads to

Q = −k
∗
H

�
∂H

∂x
+ tan θ

�
(7.3)

If k = k
∗ then both equations differ and more so the larger |θ|. Both

equations can be made equivalent by setting (Steward, 2007)

k
∗ = k cos2

θ (7.4)

This is clear from

Q = −kHcosθ
∂H cos θ

∂s/ cos θ
− kH cos θ cos θ tan θ

= −kh cos θ
∂h

∂s
− kh sin θ

This replacement was frst made by Steward (2007). It efficiently converts
models and solutions based on three Dupuit-like assumptions to the Boussi-
nesq equation in s− n coordinates, which only assumes that streamlines are
parallel to the base of the aquifer. The so-called normal depth, that is, the
depth on a long slope with inclination angle θ given uniform discharge Q is
obtained by setting ∂h/∂s = 0 or ∂H/∂x = 0. Hence,

h0 =
Q

k sin θ
, H0 =

Q

k∗ tan θ
(7.5)

Both equations are equivalent if k
∗ = k cos2

θ.
Continuity with recharge and storage N leads to the governing partial

differential equation

∂Q

∂s
= N cos θ − S cos θ

∂h

∂s
,

∂Q

∂x
= N − S

∂H

∂x

Where we take S to be the projection of the storaga on the horizontal
plane. These expressions which are both equivalent because dx = ds cos θ.
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This implies that models based completely on the Dupuit assumption, which
include finite difference models like MODFLOW can be corrected by setting
conductivity as in (7.4). Steward futher prooves that stepped models, in
which the bottom of the aquifer varies in steps approach models with truly
sloped bottoms as the stepsize is further and further reduced. However the
correction of the condutivity remains essential. The advantage of the correc-
tion given by Steward (2007) is that models like MODFLOW can be made to
yield very accurate results for even steep slopes if we correct the conductivity
according to (7.4).

Note that the correction also holds for confined flow conditions. In the
s− n coordinate system we would have

Q = −kh
∂φ

∂s
, Q = −k

∗
H

∂φ

∂x
(7.6)

where h is the now fixed aquifer thickness measured perpendicular the
the flow (parallal to floor and bottom of the aquifer) and H the now fixed
aquifer thickness measured vertically along the z-axis. Hence, for a sloping
aquifer of constant thickness, H = h/ cos θ, while with dx = ds cos θ, leading
to

Q = k
∗ h

cos2 θ

∂φ

∂s

which means that the right (MODFLOW) expression of (7.6)is equivalent
to the left one if we set k

∗ = k cos2
θ .

In conclusion, the conductivity of the layers a stepped finite difference
model should generally be corrected by (7.4). This error due to ignoring the
\cos^ \theta is only 3% for a10 degree slope, 12% for a 20 degree slope and
25% for a 30 degree slope and 50% for a 45 degree slope. So, generally it is
of little importance. Nevertheless a correction is possible, wich can be made
beforehand using the local inclincation of the slope of the aquifer (bottom)
which should be obtained from its elevation, in both x- and y-directions.

Polubarinova Kochina (1962) developed an analytical solution based on
(7.3) for uniform discharge , which can now be used in corrected form as
follows (7.4):

ln
H

H0
− 1

H1
H0
− 1

+
H

H0
− H1

H0
= −B −B1

H0
= −(x− x1) tan θ

H0
(7.7)

Steward (2007) derived an analytical solution in s− n coordinates, yielding

ln
h

h0
− 1

h

h1
− 1

+
h

h0
− h1

h0
= −B −B1

h0 cos θ
= −(s− s1) sin θ

h0 cos θ
(7.8)
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and h0 and H0 the normal depths according to (7.5) and h1 is known at
s1, while H1 is known hat x1. These equations are implicit in h but explicit
in x and s respectively. Hence, computing s as a function of h or x as a
function of H may be the easiest computational approach.

The possible solutions are shown in figure 7.2. The left figure shows that
when the specified head is above h0, line b, the head will become more and
more hoirzontal downstream and will never approach h0. Physically this is
because downstream of any point where h1 > h0 the aquifer thickness is larger
than h0 and, given the uniform discharge matches the slope, the gradient
must be less than this slope. Hence, downstream of this point the head must
flatten more and more to match the given uiniform discharge. This is shown
in the left picture of the figure. On the other hand, downstream of a point
where h < h0 (line a and point A) there can be no solution. This is because
both h and the head gradient are smaller than those necessary to discharge
Q, namely h0 and the aquifer base slope. Therefore, the discharge can never
be obtained downstream. What happen if a fixed head is maintained lower
than h0 indicated in the figure is that the discharge will be smaller, so that
it exactly matches the aquifer slope and the head downstream everywhere
equals h1, because no more water can flow downward than the quantity that
corresponds to h1. Of course, the actual slope may be smaller if a head is
also maintained not to far downstream.

The figure to the right focuses on h upstream of point A. Both curves are
physically possible. The lower than h boundary conditon, line a, and hence
flow-through area is compensated for by a head gradient that is steeper than
the slope of the base of the aquier. Further upstream the head will approach
that corresponding to the normal depth.

7.4.0.4 Comparion with analytical solution

The analytical solutions (7.8) and (7.7)are implicit in the head and explicit
in the distance from the point where the head is know. We will therefore,
compute the distance as function of ξ = h/h0 it as

x− x1 =
h0

tan (−θ)

�
ln

ξ − 1

ξ1 − 1
+ ξ − ξ1

�
(7.9)

Where ξ1 = h1/h0. A solution is only possible if both ξ and ξ1 are positve
or negative, i.e. h and h1 both greater than h0 or both smaller than h0.
There are two fundamental cases, one is ξ1 < 1 and the other is ξ1 > 1. In
the first case 0 ≤ ξ ≤ 1 in the second case∞ ≥ ξ ≥ 1. In the frist case ξ < ξ1
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Figure 7.2: Boussinesq solution for uniform discharge. Left: downstream
from point A. Right: Upstream of point A.

Figure 7.3: Numerical solution using k = 0.2 m/d , tan (slope)=1/2, Q =
5 m2

/d, boundary 2 × H0 and 0.2 × H0, 1000 cells of 1 m, Picture left:
Situation downstream of point where h > h0. Picture right, head upstream
of point where h > h0 and where h < h0.
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is upstream of point A and ξ > ξ1 downstream. In the second case ξ > ξ1 is
upstream and ξ < ξ1 downstream of point A. The solution is computed for
the case ξ1 = 2 and ξ1 = 0.5, and shown in figure (7.5).

The solution gives the head for an inifnitely long downward slope, so that
in any case the head will ultimately be equal to h0 ξ = 1. There must be
another solution valid for an infinitely long upward slope, where the head far
upstream equals h0 an, and deviates near point A to adapt to the boundary
condition at A.

The analytical solution is shown in figure 7.5; the mfile which generated
the figure is shown in figure 7.4. For easy comparison with the numerical
results in figure 7.3, the same numerical values were used while the solution
was superposed on the slope.

In the analytical solution given in figure 7.5we chose a bounary conditions
H=0.5H0 and H=2H0 at x=0. The two curve inlcudes the three numerical
cases if considered relative to the point x = 0 where h = h1 is given.

Finally, the analytical solution makes it possible to show the water depth
in dimensionless form

s− s1

h0
tan (−θ) = ln

ξ − 1

ξ1 − 1
+ ξ − ξ1 (7.10)

which reveals over what distance the boundary has effect on the head (see
figure 7.6).

The numerical solutions have been obtained using fdm3 and the m-files in
the example directory examples/mf2k/Boussinesq. To obtain them we adapt
the top of the aquifer to the head elevations a number of times, until the the

Figure 7.4: Computation of analytical solution in Matlab
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Figure 7.5: Analytical solution of Steward (2007), i.e. equation (7.8).

Figure 7.6: Analytical Boussinesq solution in in dimensionless form
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head and aquifer top no longer change.

7.4.0.5 Numerical solution in mf2k

The file mf_adapt to set up the model to compute the Boussinesq solution
with mf2k also runs the Matlab function fdm3.m in the mfiles/fdm directory
of mfLab. The fdm is a 3D steady-state finite element model that is great
for testing purposes and many other things. In this case it was used to
experiment with the set-up until the analytical solution was reproduced. The
fdm3 model is run completely inside Matlab. It is iterated while adapting the
top of the aquifer after each run, until top and head converged to the solution
of the Boussinesq equation. But mf_setup continuous issueing the input file
for mf2k and runs it. The result obtained with mf_analyze is plotted as red
dots over the blue curves produced by fdm3. There is no difference between
the two. Hence the Boussinesq solution can well be computed using mf2k
through mfLab. The results are shown in figure 7.7. The blue lines produced
by fdm3 are completely covered by the red dots which are the plot of the
results from mfd2k.

7.4.0.6 Varying slope inclination

Figure .. gives the situation for a water table aquifer on a slope with variable
inclination. This case was also computed both with fdm3 and mf2k through
mfLab. In mf_adapt set A to 0 to get a straight slope.

7.5 Boussinesq with recharge, cell rewetting prob-
lems

We may compute the flow on a sloping aquifer with recharge. Doing so,
we stumble over notrious convergence problems due to the rewetting pro-
cedures implemented in MODFLOW. Wetting convergence problems have
been an long standing headache for many modellers and even after 30 years
of MODFLOW, these have not be tackled adequately in the official version.
Hence, others have tried to overcome at least some of them (Doherty (2001),
Painter et al (2008)). Doherty’s approach allows to achieve convergence be it
not completely satisfactorily as we shall see. First we give some hints regard-
ing how to deal with portions of the model that run dry during a simulation
and may be alternatingly dry and wet during the iterations of the solver, and
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Figure 7.7: Head computed with mf2k through mfLab (red) and fdm3 (blue)
for uniform discharge of 5 m2

/d and head boundary condition at right-hand
side of 2H0 and 0.05H0 respectively, with H0 the normal depth and k =
0.2 m/d.

Figure 7.8: Contant groundwater discharge on a sloping base
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thus prevent convergence and possible cause spurious uncertain en somtimes
even wroing results.

7.5.1 Wetting

Convergence Options for MODFLOW with the wetting cells option on.
This is especially importanf for automated parameter estimation. Op-

timal parameter values can only be determined if MODFLOW produces a
stable solution for all (intermediate) iterations. Cells going dry duing any
iteration is a the known major cause of trouble, that is failure to converge.
When this happens, a successful run may be posible by tweaking some conver-
gence options. (Some non-USGS versions of MODFLOW have extra options
as the ones added by John Doherty to the GMS-version. An important one is
to not stop on non-convergence. A proably trivially simple one to implement
in the USGS version as well. Another obvious options, added by Doherty
to the GMS version is to assign bottom elevation to dry cells. This could
be extended into “assign predetermined elevation to dry cells, where the user
supplies a 3D array with these elevations, which could the bottom elevation
of all cells or just the bottom elevation of the model, for example. All we
can say, that MODLFOW is in strong need of some useful extra options to
handle these nasty dry cells. A similar option in GMS lacking in the standard
version is to just prevent cell drying.

Richard Winston, MODFLOW expert of USGS gives some additional
instructions valid for the standard MODLFOW version:

1. Cells you know should never become wet, should be made inactive.

2. Adjust the value of the wetting threshold in WETDRY. (Higher is more
stable but may be less accurate.)

3. Decide which neighbors will be checked to decide if a cell should be
wetted using WETDRY. Often it is better to allow only the cell beneath
the dry cell to rewet it.

4. You can use IHDWET to determine which equation is used to specify
the head in newly wetted cells.

5. You can vary the wetting factor WETFCT.

6. In steady-state conditions you can adjust initial conditions to values
that are close to your best guess of the final conditions to improve
stability.
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7. You can choose a different solver. The SIP, PCG1, and PCG2 solvers
will work with the wetting capability. The SOR solver doesn’t work
well with the wetting capability. Note that cells can not change between
wet and dry during the inner iterations of PCG solvers.

8. When using the PCG2 solver, you can set RELAX in the range of
0.97 to 0.99 to avoid zero divide and non-diagonally dominant matrix
errors. (However, this is an infrequent cause of instability. If such
an error occurs, PCG2 prints an error message in the output file and
aborts the simulation.)

9. When using the PCG2 solver, you can set DAMP to a value between
0 and 1.

10. Unrealistically high conductances on boundary cells can contribute to
instability. Check the conductances in the Drain, River, Reservoir,
Lake, Stream, and General-Head Boundary packages. In the Evapo-
transpiration check the EVT Flux Stress[i] and EVT Extinction Depth
which together control the conductance of evapotranspiration cells.

11. The two most important variables that affect stability are the wetting
threshold and which neighboring cells are checked to determine if a cell
should be wetted. Both of these are controlled through WETDRY. It
is often useful to look at the output file and identify cells that convert
repeatedly from wet to dry. Try raising the wetting threshold for those
cells. It may also be worthwhile looking at the boundary conditions
associated with dry cells.

12. Sometimes cells will go dry in a way that will completely block flow to
a sink or from a source. After that happens, the results are unlikely to
be correct. It’s always a good idea to look at the flow pattern around
cells that have gone dry to see whether the results are reasonable.

13. Related Links: Running MODFLOW Post Processing Solver Packages

7.5.2 Doherty’s approach

John Doherty (2001) the maker of PEST parameter estimation package, con-
cludes, like many others that wetting rewetting has been and still is probably
the most frustrating part of MODFLOW, as it often prevents convergence
when cells alternate between dry and wet during the iteration process. Re-
garding parameter optimization, the discontinuity of the sensitivities due to
this often prevents convergence of the parameter optmization process entirely.
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Dehorty (2001) therefore made some simple adaptations to MODFLOW to
prevent cells from going dry altogether and to guarantee cell-transmissivity
continuity, even when the head falls below its bottom.

Next to the numerical necessity, he claims and rightfully so, that aquifers
in reality never run completely dry, as the physical system merely becomes
unsaturated. This implies, that the porous medium will still be capable of
transporting water when head is negative, be it at a much reduced conduc-
tivity.

We may add to this, that if the head in an aquifer is exactly at its bottom
elevation, there still exists a full capillary zone capable of transporting water
at saturated conductivity. Only when the head falls further below the bottom
of a layer than the thickness of its capillary zone, are we thrown back to full
unsaturated conductivity and transmissivity. From this perspective, dry cells
are generally physically incorrect.

Doherty (2001) add an exponential relation between head and elevation
above the cell bottom, which is also valid when the head falls below the cell
bottom and hence, mitigates the usuallinear relation that would yield a hard
zero conductivity when the head is at or below the cell bottom. He claims
that this solves wetting frustration in a wide range of situations.

Doherty (2001) sets the horizontal cell transmissivity is to

T = Kd0e
− d

δ1 + K min (d, D) ; B > 0

T = Kd0e
d
δ2 ; B ≤ 0

in which d0 might be interpreted as the capillary zone thickness, d1 is
a thickness determining how fast the exponential term decays with wetted
cell thickness B and d2 determines how fast the conductivity drops when the
head is below the cell bottom (B ≤ 0).

Expressed in this way, d0, d1 and d2 all have dimension [L] and all have
positive values. Note that the way this is expressed here differs a little
from the way applied by Doherty, but the idea here is to use physically
interpretable parameters as much as possible.

To make the derivative of the cell transmissivity continuous across d = 0,
gives

�
∂T

∂d

�

d=0

= −K
d0

δ1
+ K = K

d0

δ2

hence,

d0

d1
+

d0

d2
= 1
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Therefore, the requirement that all variables in thi equation are positive,
implies that both d1 > d0 and d2 > d0 implies that δ1 < d0. We might, choose
d1 = d2 = 2d0. However, to deal with heads that during initial iteration fall
below the bottom of the aqufier, it seems wise to chose d2>d1 so that the
decline of the conductivity for heads below the aquifer bottom is not that
fast. This mitigates non-linearity.

Using this approach we have

T = Kd0e
− B

d1 + K min (B, D) ; B > 0

T = Kd0e
B
d2 ; B ≤ 0

In order to achieve convergence we have experiment with both d0 and d2,
note that d1 is fixed once we chose the former two.

Another important factor in achieving convergence is to update the con-
ductivity mildly by choosing a weighed average between the last value and
the current update.

k = βkold + (1− β) knew

where 0 < β ≤ 1.

7.5.3 Example

The above suggets that we need Doherty’s special version of MODFLOW to
apply his approach in mfLab. We don’t have this version (it is included in the
GMS user interface). However we can still use his apprach when we simulate
the situation by means of the fdm3 model available in the mfiles/fdm folder
of mfLab. The file fdm3.m is a matlab function, which in fact is an entire
steady-state 3D finite difference model that can reasily be run. However, this
model does not by itself correct cell thicknesses according to their wetting
percentage. We can however place this function inside a loop and each time
when it computed the new heads, we can correct the conductivities accoring
to Doherty’s approach described above. This is done in the script mf_adapt
in the Boussinesq directory.

The model is single layer on a decending bottom with sinusoidal waves
in it. Hence there are steep and less steep intervals along the slope. On the
steep portions, we expect the wetted thickness to be much less than on the
more horizontal portions. The head at the right side of the model is 10 m
above the base of the aquifer there. Further recharge is given.

The slope to be modelled has a given recharge and a fixed head boundary
condition downstream at the bottom of the slope. The computations will be
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done with three magnitudes of the recharge, 0.001, 0.01 and 0.1 m/d. The
Doherty coefficients that worked well are d0 = 2.5 m , d2 = 5d0 from which
d1 follows. Clearly, these parameter values are much larger than perhaps
desirable. As a consequence the head will easily fall below the aquifer bottom,
because the conducitivity does not fall that fast with distance of the head
below the cell bottom. Nevertheless a smooth head curve is obtained, as
well as the numerical value for the transmissivity along the slope. Dividing
this tranmissivity by the conductivity provides a good approximation of the
local thickness of the saturated zone, which, if desired, can be added to the
elevation of the aquifer bottom to obtain a better approximation of the water
table.

The example deals with a slope aquifer bottom that varies in angle and at
some points get really steep (1:1). The water table head has been computed
for the data pertaining to the aquifer (conductivity) and three values of
recharge/infiltration of respectively 0.001, 0.01 and 0.1 m/d.

Figure 7.9 shows the computed head and water table along the slope for
0.001, 0.01 and 0.1 m/d recharge. The left picture is the one computed with
the Doherty settings as described. The right picture shows the corrected
values. The saturated thickness has obrained from the computed transmis-
sivity of the left figure devided by the conductivity of the aquifer material
and adding this saturated thickness to the bottom of the aquifer.

It is clearly seen that the computed head, especially for the 0.001 m/d
case, lies at least partly below the bottom of the aquifer, which was allowed
by and a consequence of Deherty’s method. It might loosely be seen as
unsaturated conditions causing the head to fall below the bottom of the
aquifer. The right picture shows the corrected values. As can be seen, it is

Figure 7.9: Water table above a sloping aquifer base with recharge (see text)
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hard to discern the curves for the lower Precipition rates from the bottom
elevation of the aquifer. This implies that the saturated thickness is small
compared to the vertical scale of this figure. The blue line, beloging to the
lowest recharge rate of only 0.001 m/d, is always close to the bottmo of
the aquifer. However, if the recharge is made 10 times as high, deviations
occur at the horizontal plateau of te drawn slope. On the steeper portions
of the slope, the head is still very near the aquifer bottom at the scale of the
drawing. Only in the third case with again a ten times higher recharge, is
the head lifted over several tens of meters above the sloping base along its
entire length. Here we see no difference between the uncorreced and corrected
situtiations of the water table.

Notice these model runs while mimicking Doherty’s approach was en-
tirely implemented in Matlab using the Matlab function fdm3.m. No further
attempts were done to compute this case in Modflow because of the experi-
enced problems with dry cells. The coputations could be easily done using
Doherty’s adapted Modflow code. Because I don’t have that code, I mimicked
it entirely in Matlab, which turned out to be successful.
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Chapter 8

examples/mt3dms

What follows is a selection of of the Benchmark examples in the manual
of MT3DMS ([12], [13]). The description is kept as short as possible and
will be partly insufficient. Please refer to the original manual and the script
mf_adapt in the example directories for details and the used numbers.

8.1 1D-Uniform
This example concerns one-dimensional transport in a uniform flow field. The
example is divided into 4 cases. Advection only (a), advection and disper-
sion only (b), advection dispersion and sorption (c), advection, dispersion,
sorption and decay (d). Figure 8.1 shows the development over time for the
four cases. The four cases have been computed in a single run, by setting
the properties of the for layers according to the requirement of each case and
setting vertical dispersivity to zero, so that no exchange between the four
layers was possible during the run.

8.2 1D-Nonlinear
This example concerns one-dimensional transport with non-linear sorption.
Both Langmuir and Freundlich sorption has been computed with mfLab.
Figure 8.2 shows the development of the concentration curves over time with
Langmuir sorption. Figure 8.3is another way of showing the results, it is the
computed breakthrough at a fixed point. See description in the MT3DMS
manual and the script mf_adapt for details and numerical values.
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Figure 8.1: 1D-Linear: The four cases as described above. See mf_adapt in
the example directory for numerical values

Figure 8.2: 1D nonlinear: Concentration curves at many times during the
transport
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Figure 8.3: 1D-nonlinear: Breakthrough of the concentration at a fixed point
(x=8 cm) for Langmuir nonlinear sorption

8.3 2D-Uniform
This example concerns two-dimensional flow in a uniform flow field in a rel-
atively thin aquifer of infinite extent. Instantaneous vertical mixing can be
assumed. The injection rate is negligible compared with the ambient ground-
water flow. The model consisting of 46 columns, 31 rows and 1 layer with
no-flow boundaries at the north and south and a given ambient flow from
west to east. This ambient flow is implemented with a fixed head at the
east side of the model and a fixed inflow at the west side. See the original
MT3DMS manual and mf_adapt in the example directory for details and
the numerical values that were used. Figure 8.4 shows the concentration
contours after 365 days of injection as compute with the MOC procedure. It
requires merely a change of the MXELM parameter on the MT3D worksheet
in the accompanying workbook to obtain the results with a different advec-
tion computation method. Figure 8.4 shows the spread of the contaminant
after one year and 8.5 shows the concentration over time at various points of
the grid.
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Figure 8.4: Concentration contours after 365 days of injection

Figure 8.5: 2D-Uniform: Evolution of the concentration at different locations
in the grid
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8.4 2D-Diagonal
The example concerns two-dimensional flow in a diagonal flow field (see figure
8.6). This example is similar to the previous one, except that the direction
of the ambient flow is at 45 degrees with the x-axis. The grid measures 100
columns by 100 rows of 10 by 10 m cells. The groundwater seepage is 1
m/day. To maintain this ambient flow, the required gradient was computed
and used for the initial head field. This gradient was fixed at all boundaries of
the model by setting the IBOUND value for the boundary nodes at -1 (fixed
heads). Porosity is 0.14, longitudinal dispersivity 2 m, transverse versus
longitudinal dispersivity is 0.1. The figure shows the relative constituent
concentration after 1000 days injection at 0.01 m3/day computed using the
TVD method for advection. Other computation methods are immediately
compared by changing the MXELM parameter on the MT3D sheet.

8.5 2D-Radial
The MT3DMS manual gives an example concerning 2D transport in a radial
flow field. Solute is injected in a fully penetrating well. The problem is in-
tended to test the accuracy of MT3DMS as applied to a radial flow system.
Figure 8.7 and 8.8. The assumptions are: constant injection, negligible am-
bient groundwater flow, aquifer is isotropic and homogeneous and of infinite
extent and the flow field is steady state. Injection starts at t=0. The figures
show the (relative) concentration after 27 days. Refer to the original manual
of MT3DMS and to the script mf_adapt in the example directory for details
and the numerical values used.

8.6 Salt test
This example was inspired by salt dilution tests done in extraction galleries
in the Amsterdam Water Supply Dunes, Netherlands. The capacity of the
18 extraction galleries, 50 year old, 600 m long, concrete, gravel enveloped,
29-40 cm diameter “drains” has been investigated recently. Salt dilution tests
have been used to measure the discharge at points in the galleries with an
observation stand pipe. These points, however, are concrete boxes as shown
in figure 8.9. Salt was entered in one of the upstream stand pipes and the
electrical conductivity was measured continuously at downstream standpipes.
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Figure 8.6: Diagonal flow field: Relative distribution of constituent after
1000 days injection in a uniform diagonal flow field

Figure 8.7: Injection with radial flow: distribution of constituent after 27
days of injection
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Figure 8.8: Injection with Radial flow: distribution of constituent after 27
days injection

Hence these sensors were always inside a box. The question was, to what
extent the result depends on the location of the sensor in the box.

To this end a 3D model was made of 15x15x45 cells of size 4x4x4 cm
each. The center 15x15x15 cells represent the box and the front side 5x5x15
cells and the back-end 5x5x15 cells represent a piece of the upstream and
downstream gallery, which have a square cross section in this model. The
cells surrounding the gallery have been made inactive.

Flow is prescribed at the left boundary and a constant head at the right
hand side. Simulation divided into 3 stress periods. The first two are 5
seconds long and the last one 190 seconds. Salt is injected during the second
stress period and traced through the model. The computed concentration
in any model cell can be (has been) used as in a dilution test to compute
the flow though the model. The idea was to determine to what extent the
discharge is measurable with a sensor in any location of the model. The
simulation yields nice pictures and as answer that any location is suitable.

Figure 8.12discharge measured at all points in the model. It shows that
only near the injection point a sensor would not yield the correct total dis-
charge through the model, which is due to a lack of mixing around the injec-
tion cell itself. Shown are iso-discharge surfaces, where discharge is the the
discharge resulting from the salt-dilution test interpretation from a virtual
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Figure 8.9: Drawing of gallery with connection box and standpipe for obser-
vations

Figure 8.10: Salt dilution test: Salt distribution in the model after 200 sec-
onds
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Figure 8.11: Salt dilution test, break-through curves for specific observation
locations in the network

sensor in every cell of the model.
Clearly, this model cannot really simulate the real situation, in which the

flow is turbulent with whirls and, therefore, incomparable with the laminar
flow simulated by MODFLOW and MT3DMS. Nevertheless it was a nice
modelling exercise. It shows how efficiently such a 3D model can be built.
It also shows some forms of post-processing, in this case analyzing the salt
dilution test. It demonstrates the use of observation points in MT3DMS as
well as the power and flexibility to analyze the dilution test for all cells of
the model simultaneously.

To obtain a more realistic result, one for turbulent flow in the pipes
and box, the model should be redone by a modelling package such as the
multi-physics program Comsol, (www.comsol.com) which is able to solve the
Navier-Stokes equations directly.
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Figure 8.12: Salt dilution test, isoplanes showing in which part of the model
the test would reveal a total flow less than the real total flow
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Chapter 9

examples/swt_v4

A series of Benchmark samples presented by [9] have been implemented in
mfLab and are presented in this directory. The examples are fully docu-
mented in their mf_adapt.m file.

9.1 The classic Henry problem
The classic Henry problem is presented and fully documented in the file
mf_adapt.m. The files and the unit numbers have been chosen such that files
can be exchanged one by one with the those in the corresponding example
that comes with swt_v4 as downloaded from the USGS site. This has helped
me a lot with debugging.

Figure 9.1 shows the situation after 2 days (it is a very small problem with
very high conductivity and a large discharge). I added the head contours
(red vertical lines) and the stream function (curved yellow lines). Where the
density is constant flow and head lines are perpendicular if the horizontal
and vertical scale are equal. The stream function is obtained by integrating
the horizontal specific discharge from the bottom of the model upwards. So
each stream line represents the same total discharge between the bottom of
the model and the line in question. Stream lines are also valid in density
flow problems as long as the divergence of the flow is zero, which is the case
in this vertical cross section. Integrating the horizontal discharge is done by
summing the FLOWRIGHTFACE from the budget files along the verticals.
The stream function is of great value especially in cross sections. The specific
discharge can be readily determined from the stream lines in figure 9.1. As
the stream lines show, salt water flows inward in the lower part of the right
hand boundary. This flow is maintained by dispersion in the model, due to
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Figure 9.1: The Henry problem, freshwater heads (red), streamlines (yellow)
and density as filled contours

which there is a continuous discharge of salt water from the model that is
compensated by the mentioned saltwater inflow at the lower part of the right
hand boundary.

I have made some changes to the approach by [9]. In the first place, I used
steady-state solution. Secondly, because the CHD package is used to specify
the fixed-head boundary we don’t need to specify where heads are fixed in
IBOUND (no -1 cells in IBOUND). Thirdly, I included the CHDDENSOPT
described by [9]pages 12-14.

9.2 The classic Elder problem
The classic Elder problem describes the flow in a cross section due to a
high salinity at the top, which is caused by diffusion of salt from a fixed
source. One of the results are shown in figure 9.2. The problem is extensively
documented in the mf_adapt.m file on the example directory.

9.3 Hydrocoin
The hydrocoin problem has been somewhat difficult as the GCG solver would
not converge with the Cholesky decomposition method. However, it did
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Figure 9.2: Result of Elder problem

converge with SSOR (see parameter PERCEL in the MT3D worksheet). It
finally worked with good results that are shown in figure 9.3. I added some
extra density lines compared to the figure in the SEAWAT manual and,
especially the stream lines which are caused by the prescribed head at the
top and which are influenced in the right half of the cross section by the
density of the water that flowed over the salt dome at the bottom of the
cross section The example is documented in its mf_adapt.m file.

9.4 Coastal flow
Figure 9.4shows the results of the coastal flow problem presented by [9], p23ff.
The vertical cross section is bounded by the Ocean at the right while fresh
water flows inward from the left. The ocean water has a temperature of 25C
and the fresh water of 5C. The cross section is originally filled with cool ocean
water, which is gradually displaced by the inflowing warm fresh water. The
displacement is subject to density flow and viscosity variations due to the
different temperatures. The displacement is shown in 4 steps of 10000 days.
Langevin focuses in his figures mainly on the end situation, that is 400000
days in his computations. The figures here focus more on the dynamics of
the displacement.

I added the stream function / stream lines and the point-water head lines
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Figure 9.3: Results of hydrocoin example t=146000 d

as an extra illustration. The head lines show clearly the position of the
interface. The blue lines are the 5, 50 and 95% salinity lines and the black
vertical lines the 5, 50 95% temperature lines between the 5C of the fresh
water and the 25C of the ocean water. Due to the exchange of heat between
water and solids, the temperature displacement is about half as fast as the
salt displacement. Also, the heat conduction causes a broader band between
the 5 and 95% lines than is the case with the salinity.

The effect of the viscosity on the flow is signaled by the curvature of the
read head lines as they cross the temperature change zone.

The problem was neatly encapsulated in mfLab by taking up the entire
table of data used by Langevin in an extra worksheet in the workbook. The
worksheet was named “TableLangevin”. The parameters for the layers could
then directly be linked to this table. mf_adapt reads from the table what
it needs to construct the model. This results in a very concise and intuitive
model definition. Please refer to the files mf_adapt.m, mf_analyze.m and
coastal_flow.xls in the example directory.

[9]build up this solution in 7 steps adding features from step to step.
The example added to mfLab whose results are shown here, has all the pro-
cesses and, therefore, is equivalent to example coast7 of [9]. One can easily
experiment with it. For instance, pressing the mt3dms.bat file that mfLab

generated will run the MT3DMS with the same data files. That is, with the
two species salinity and temperature, but without the density flow and vis-
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Figure 9.4: Coastal_flow problem presented by Langevin et al, 2008

cosity feedback on the hydraulic conductivity. If the reaction package RCT
is switched off in the NAM worksheet, there will be no delay of the tem-
perature front, because sorption (exchange between water and solids) is no
longer computed. One can also experiment with higher temperatures to see
when fingering occurs due to large viscosity contrasts and the less viscous
fluid displacing the more viscous one.
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Chapter 10

examples/SWI

SWI is the so-called Salt Water Intrusion Package (see http://bakkerhydro.org/ ),
which allows computation of density flow in existing models without redefin-
ing the grid. It works with interfaces, many of which may be defined, where
the density may jump at an interface (stratified flow) or may vary linearly
between two interfaces. There is no need to subdivide aquifers vertically,
the package computes the variable horizontal flow components caused by
the density distribution within the aquifers from the fresh-water head at the
cell centers and the actual density distribution as defined by the interfaces
and their positions. The package will track the position of these interfaces
over time. Computing salt water intrusion this way in a large-scale regional
model will cause very little computational overhead. In fact, it can be used
in an existing model without redefining the grid in any way. A disadvan-
tages is, however, that no dispersion can be taken into account (yet), salt
cannot pass interfaces. Yet, the SWI package is an extremely useful tool for
including density flow in many regional models. It is an virtually essential
tool next to SEAWAT, which does require vertical mesh refinement but then
computes dispersion correctly. SWI is free software. It can be obtained from
http://bakkerhydro.org/. In fact, what is obtained is a version of mf2k with
the package implemented. Hence, this version of mf2k can be used as your
general mf2k version as it contains all other USGS packages but adds SWI.
The accompanying manual also describes the examples. These examples
have been modelled with mfLab and are presented hereafter. The examples
are all documented using comments in their mfLab scripts mf_adapt and
mf_analyze. Please refer to these scripts for details.

The examples below are described rudimentary for now. Refer to the
manual from the mentioned website and the files mf_adapt in the example
directories that describe in detail the problems and the numbers used.
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10.1 SWI example 1, rotating interface
The first example is a rotating interface as shown in figure 10.1.

The interface positions computed with the mfLab implementation is given
in the second picture of 10.1, showing the position of the interface at 100,
200, 300 and 400 days.

The results match. The second picture does not show the initial interface.

10.2 SWI example 2, rotating brackish zone
Figure 10.2from the SWI manual shows the setup of the second example and
the results. The example concerns a rotating brackish front. The figure also
demonstrates that there is very little difference between the results computed
as a stratified density system and as a system in which the density varies
linearly between two given salinity planes.

The first figure is from the SWI manual showing setup (a), comparison
with SEAWAT (b) and comparison of the results of the stratified versus the
non-stratified option of SWI. The second figure shows the results as computed
via mfLab for the stratified option

The second figure of figure 10.2shows the results as computed through
mfLab for the stratified option. To run the non-stratified option requires
only changing the stratified switch in the accompanying worksheet for this
problem.

10.3 SWI example 3
The third example from the user manual of SWI is a two layer system in
which the top layers is in direct contact with the ocean floor at x<600 m. The
situation is shown in figure 10.3taken from the SWI manual. The figure shows
the initial interface position as a dashed line with the computed positions at
different times by continuous lines. See the SWI manual and mf_adapt in
the example directory for more details and the numbers used.

The second figure of figure 10.3 shows the results computed through
mfLab. See mf_analyze in the example directory for the methods used to
visualize the results.
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(a) from SWI manual

(b) mfLab results

Figure 10.1: Initial interface and position computed by SWI after 200 and
400 days

(a) SWI-manual

(b) mfLab

Figure 10.2: Results of brackish zone movement computed by SWI through
mfLab for the stratified option
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(a) SWI-manual, interfaces at 100 year intervals

(b) mfLab

Figure 10.3: Initial position and position of the interface at 100 year intervals
as computed through mfLab
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10.4 SWI example 4, coast with a well
Example 4, figure 10.4, concerns two coastal aquifers with a confining bet
in between where the top aquifer is in full contact with the ocean floor over
a distance of 300 m. The situation is thus similar to that of example 3.
However, there is a well inland extraction water. Due to the combined effect
of density flow and the extraction, the interface moves inland and finally
up-coning occurs as shown in the results in the lower part of figure 10.4. For
details and the used numbers see the description in the SWI manual and
mf_adapt in the example directory.

10.5 SWI example 5, square island with well
The fifth and last example in the SWI manual concerns a square island
surrounded by ocean. Its setup is shown in figure 10.5. Recharge causes a
fresh water lens to develop and maintain, while water is extracted somewhat
artificially over part of the area of the island as indicated in the figure below
that was taken from the SWI manual.

Deformation of the freshwater lens occurs due to extraction over the area
in the Northwest of the island. The problem is described in detail in the SWI
manual and also in the local mf_adapt script in the example directory.

Figure 10.6 shows the results as computed through mfLab. The figure
shows the contours of the elevation of both interfaces and in a cross section.
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(a) SWI-manual: setup, initial interfaces and results of intrusion and
extraction after 400 years

(b) mfLab

Figure 10.4: Interface movement and up-coning as computed through mfLab
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Figure 10.5: SWI example 5, problem from manual, square island with ex-
traction
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(a) mfLab, depth contours of the elevation of both interfaces after
1000 years

(b) 3D-cutoff showing the two interfaces after 1000 years in 3D

Figure 10.6: SWI ex5: Computation through mfLab visualized as depth
contours and 3D-cutoff
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Chapter 11

examples/mf2005

No examples yet. But I plan to include examples with the new interesting
Conduit Flow Package.
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