Syllabus CT 5440 (Geohydrology 2)

Your own Finite Difference Groundwater Model in Matlab
(CT5440 exercises)
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1 Abstract

This document explains the theory behind numerical groundwatdeling and how to
make finite difference groundwater models in Matlab (Mahworks ®). It is an
exercise in the course CT5440, Geohydology 2. It aims pndweide a relevant insight in
numerical groundwater modeling and focuses on finite diffe¥enodels. The structure
is general and largely also valid for other numericall@hdypes such as finite element
models and surface water models.

The models will be built by the student in Matlab. Themibe a combined flat and
radial symmetric model, one for steady-state and onedosient flow. The examples
serve to demonstrate what may be done with them andoad$mw their accuracy with
some pitfalls and tricks.

The models are small Matlab functions, elegant yetgofulv They should provide a
thorough insight and practice in numerical modeling iregalin With these tools you will
be able to do quite sophisticated modeling. And yet, a 3D nwdet given. To make
one is easy and straightforward and left to the stu@nhtnodels do not much good to
this course and your experience, because much more tioid then go into more
complicated data handling and visualization, especially twétnsient computations
(yielding 4D arrays). If you really have to do detailedional transient 3D modeling
with all ins and outs, | suggest using a regular modeldlatupled to a GIS, so you can
make use of maps and other database information.

Even though you could do all of your modeling in Matlab (enegnonal 3D multilayer
transient modeling), a regular GIS based approach maghbgable using models that
have been widely applied and intensively tested in pectic

Yet, knowing how to use these handy Matlab modelssgyeel a powerful tool to deal
with many practical groundwater problems in a very shio.tlt also comes in handy if
you may ever need to check a large model.

The syllabus treats the theory without unnecessary dethdsvs how it works in Matlab

and also shows how to get started with Matlab. You rogy parts of Matlab code
directly from this word file whenever necessary, ¢theamake everything yourself.
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2 Numerical groundwater modeling

We will first give a general description of groundwaterdelong and then derive an
actual model, which will finely be converted into a findiference model by choosing
the network and the way the conductances between mddedieecomputed. The
general overview is true for all kinds of numerical mede/e will follow the general
approach as long as possible as that provides the besit iasdjthe least clutter.

2.1 General overview numerical models

Numerical models, whether Finite Element or Finitéddénce Models divide the area to
be modeled into elements or cells with given propeamesnodes (or cells) where the
head will be computed (Figure 1). In the Finite Elementhidéthese cells may be of
arbitrary shape, while the shape in the Finite Diffeeedethod is more limited, for
instance regular hexagons or rectangular.

9|7 |9|e
o
o
°
o
o | o |[o|ofe o
0 [0 [o]opo 0

Figure 1: Difference model meshes (grid). The leftdure shows a finite element triangular network
with the nodes at the element corners. The centeigiire shows a hexagonal finite difference network
with nodes in the center of hexagons. The ight figurénsws a rectangular finite difference network
with nodes in the center of the rectangles (called ¢g). A rectangular finite difference network with
nodes at the cell corners is also possible, but ngtown here. Area properties will be give for
elements/cells, heads and flows in and out of the maddkill be computed for the nodes.

The locations where the heads are going to be computéakei.eodes may be the corners
of the cells/elements or their center. We will makiinite difference model that
subdivides a rectangular area ibhtprows and\x columns, where the columns and rows
may be of any size. We will compute the head in théecari these rectangles (see right-
hand picture of Figure 1). This method is straightforwaesy to understand and easy to
implement and successful, because the same approach isyude world’s most

famous and most use groundwater model, i.e. MODFLOW dittieed States
Geological Survey (USGS) (McDonald & Harbaugh, 1988).

After any of the possible derivations for the model equatiettiser in the finite element
or finite difference method (abbreviated to FEM or FD¥g final result comes down to
a system of equations, each of which is a water bakan@node of the model. This
system of equations represents all nodal water balawbésh must be simultaneously
fulfilled. This is achieved by solving the system, i.e. patmg the heads in the nodes,
such that all nodal balances are matched simultaneously

The FDM directly writes out the water balance far tiodes, while the FEM takes a
more general approach by requiring the governing partial ditieteequation (which is a
water balance on infinitesimal scale) to be optimallfilled within all of the elements.
The cost of the FEM is more complication in derivihg equations and setting up the
model, but the bonus is definitely more flexibility ireelent shapes.
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2.2 Deriving and assembling a numerical model

In the end, any model yields a set of water balancesfayreach node. This is true for
the FEM, the FDM as well as for any surface water rhodevhich the elements are
replaced by links. So the number of equations, as wéileasumber of unknowns, equals
the number of nodes. A finite difference model of 1000 ramg 1000 columns thus has
a million equations with a million unknowns. This ibat is required to compute a one-
layer model of 1000 by 1000 m on 1 m resolution.

Figure 2 shows some of the nodes of an arbitrary modebre node, numberthe
adjacent nodes are shown to which it is directly coteaethrough intermediate elements
(FEM), intermediate cells (FDM) or connecting linkarface water model). The only
difference between these types of model is the waghioh the connections are
computed. So most of the discussion about modeling and mosuction can be done
without bothering about these specific details. This késpsliscussion general and
prevents us from getting lost in the detalils.
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Figure 2: A model node with its surrounding connected @ighbors

Just as general is, that the flGdy from node in the direction of adjacent noglavith
(still unknown) headg} and ¢, respectively, is described by

1
R
where C; [(m®d)/m] is called the conductance and its reciprd€als the resistance

[m/(m?/d)]. This is true even for a surface-water mobeljt that in that cas€; will
depend on the flow itself and therefore must bemaed iteratively.

Qii:Qj(¢?—¢J): (¢_¢?) ()

The physical meaning of the conductance is obvibusthe flow of water from node
to nodej in case the head differenge- ¢, equals 1.

The water balance of an arbitrary naode the numerical model is described by the
following equation

5 Q=Q @

J=Li#

whose left-hand side represents the flow from ndtieough the model towards its
connected neighbors, and the right-hand side egoalgflow “from the outside world”
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through node. This is indeed a nodal water balance for a ststalg model. We will
deal with transient models later. The nodal inflQv(nodal outflows or extractions are

just negative values &), is the total of all present sources of watentitte outside

world into this node (negative if extractions)cétmbines recharge, injections wells,
leakage, drainage and so on.

Using the conductances, the nodal water balancentes:

j=N

Ci(4-4)=Q ©)

j=L,j=#
Notice thati andj run over all the nodes of the model. This meaasiththis expression
nodei may be connected with all other nodes of the mddetourse it is only connected
to its direct neighbors. Therefore, most of thedrartancesC; are zero. In case a node
hasn connecting neighbors, only+1 of these coefficients are non-zero for each node.
Therefore, of a model &y rows byN, columns, heavindl,* N, nodes, each line only has
(n+1)/(Ny*Ny) nonzero coefficients. For4 as is the case of a 2D one-layer model, and
N,= N,=1000, only 5/100000=0.0005% of the coefficients @onzero. The matrix
containing the coefficients is therefore extrensdgarse. We will make use of this when
storing the system matrix and solving the model.

Writing out the above balance equation yields

—Q@eq%<ﬂ{§3q%~f¢N@1—@%=Q @

jLjA

Usinga; as general matrix element or matrix coefficiestead of the specific
conductance, then (4) can be written as a geneearlequation

au¢1+ﬂz¢z+---+%¢ﬁ ---+@N7ﬁ171+ %ﬁv = Q (5)

in matrix form

N

284 =Q (6)

j=1

where

a4 =G @)
j=N =N

a; = z Qj =- q (8)
j=1,j= j=1j #

2.3 =0 (9)
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The physical meaning of diagonal matrix elemants the amount of water flowing

from nodei to all its adjacent nodes if the head in nodeexactly 1 higher than that of
its neighbors.

The equation above is equivalent to the matrix Bona
A*®d=Q (10)

With A the square system matrix holding the entries (ratementsg, as defined.

Bothi andj may take values from 1 tdy* Nx. Therefore, the size @f is Ny* Nx rows by
Ny*Nx columns, which may be really huge.is the column vector of still unknown
heads (lengtiNy*Nx) andQ the column vector of nodal inflows (lengtly* Nx).

To fill the system matrix, all we have to do is qmute the conductances between all
connected nodes given by their indic@sdj and put their negative value into the matrix
at locationi,j. When done, the coefficients for the diagoragl.are computed by

summing the other coefficients in the line of thatrx representing this node (see eq (7))

The model is based on the water balance of itssididee flow between the nodes is
determined by the properties of adjacent modes @sllwell and their head difference.
This intercellular flow is determined by Darcy’ sMaising the heads of adjacent cells and
the conductance between them. We will first consiide model’s boundary conditions.

2.3 Boundary conditions

Boundary conditions connect (constrain) the modelfor that matter, the partial
differential equation) to the outside world. Weeally met one type of boundary
condition, namely the given inflow of the nodeseTdther type has to do with fixation of
heads. We treat this in a general way, i.e. byingribut how fixed heads in the outside
world connect to nodes of the model through a t&si®, or rather a conductance
(inverse resistance). Heads that are directly fbeeabdes then become a limiting case in
which the resistance approaches zero or, revemsbbre the conductance approaches
infinity.

2.3.1 General head boundaries

Consider flowQey; from the external world with fixed hedgthe model nodehaving an
unknown heads . This flow through conductandg equals

Qexi = Ci (¢| - h) (11)
This flow can be simply added to the right-hancafithe model equation to give

N

zaij¢j+Qi¢?:Q+c(ih_¢) (12)

j=1j#j
in which the diagonal was taken out of the matoixdiarity in the sequel.

The external flowQ

i = Ci (4, — h) represents inward flow (positive if inward), jlike
the given inflowQ..
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This way, each model node may be connected toutside world having arbitrary fixed
heads (lakes, rivers and so on).
The constant pai€ ) functions exactly like a fixed injection. The \atle part,C 4,
may be put to the left-hand side of the equatitelding

N

z aij¢j +(Q+Q)¢=Q+Cih (13)

j=1j#j

This comes down to adding to the diagonal matrix entryg, — g + G .

In matrix form for Matlab

(A +diag(C))®=Q +C.*h (14)

Where diag(C) is an N x N diagonal matrix with the elemer@s This is indeed
equivalent to adding. to the diagonal elemends.

The boundary conditions explained in this sectiensm-called general head boundary in
Modflow jargon. Fixed-head boundaries are dealhuitther down.

Modflow has two variants of these general head Barties: drains and rivers. Drains
differ in that they only discharge when the heaabieve drain level while river head
boundaries differ in that the head below the r{ver in the model) does not affect the
infow when it falls below the river bottom. In thease the river bottom is used.

Drains and rivers thus make the model non-linedaheyg imply a switch which depends
on the head itself. Such conditions are most effiky implemented using iterative

matrix solvers, so that the conditions can be wgatlduring the solution process. Here we
ignore this efficiency, we will use Matlab’s standlanatrix solver (backslash operation).

2.3.2 Drain boundaries

Drain works as general head boundaries if the fsealdove the drain elevation, while the
discharge of the drain is zero when the head li@llsw this elevation. For the drains we
thus need a drain elevation, i.e. a vector FD twe#te drain conductancé€s.

The switch may be implemented as a Boolean vedtpdefined for drains to be 1 if

¢>h, and 1ifg<h,:

Hy=(®>h,) (15)
Hence, the drains are implemented as follows:
(A+diag(C+C,.*H,))®=Q +C.*h +C ,*H *h (16)

2.3.3 River boundaries

River boundaries are also general head boundariles@ as the head remains above the
bottom of the river. When it falls below the bottotime infiltration is assumed to pass
through the unsaturated zone without suction froenfallen head. So
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QR:hR_¢7 ¢2h8
QR:hR_hB7 P < hB
Or

QR = CR(hR_¢)(¢Z hB)+ CR( hR_ hlg(¢< hg

Qq = Co(he—9) (42 hg)+ Cy h— h)(1-(42 hy)

Qs =CrHghg— CeHg+ Che Cthy CHhg CH b
Qr= CR( he— hB)_ CRHR(¢_ hB)

WhereH =(¢>hy)

Similarly rivers can be implemented as follows

(A+diag(C+Cy.*H +C o *H ))®=Q +C.*h +C *H*h +C.* ( h J+C .5 H.%h

(17)
The model then includes al general head, drain and rivdboundaries.
2.4 Solving the model and checking the results
From this the heads may be solved in Matlab sirbglthe backslash operator:
® =(A +diag(C))\(Q +C.*h) (18)

C.*h uses Matlab’s “.*” operator, which stands for edeiby-element multiplication
instead of matrix multiplicationC.*h is therefore a column vector with elements.

The latter system equation, which solvesfor the heads @ isthe complete system
eguation (i.e. the complete model) including all its boundaries.

Now with the heads computed, we may calculate ¢henflow of the nodes by the
following matrix multiplication

Q,=A*® (19
Which must be zero when summed over the entire mode

sum(Q,,)=0 (20)
This is an easy check.

We may compute the inflow from all external fixeeal sources (negative if the flow is
outward) from

th:A*(D_Q (21)

As already explained, most of the possible intedah@onnectionss|) are zero, so that
the final system matrix tends to be extremely sparsis too is valid for all numerical
models. To prevent having to deal with the zerasvier 99% of the system matrix,
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Matlab offers sparse matrices and sparse matrititurs. These sparse matrices work
exactly like ordinary matrices and ordinary maftirctions, but sparse matrices only
store and deal with the non-zeros elements. Spaagces make computing large
models feasible on a PC.

2.5 Dealing with fixed heads (Dirichlet boundaries)

What we did above is using so-called general-heanhdaries, i.e. fixed heads in the
outside world that connect with the model througloaductance (or resistance). The
general head boundaries were extended to spemifitsfof general head boundaries, the
so-called drains and river boundaries. However tmaglels define directly fixed-head
boundaries, separately (and in addition to) theawés of the general head boundaries
mentioned.

One way to deal with fixed head boundaries is tghotlne use of a very last conductance
in applied general head boundaries, Ce— +oo .

So let us use an arbitrary conductaicevhich a very high value conductance (in
practice take a value of T0or so) representing an infinite value@f

Then for the fixed head nodes we have

M=

ap +(q +I)g =Q+Ih (22)

Il
Ly

j=Lj#
Becausd” — « and sol > ‘aﬁ ‘ , then by dividing the left and right hand sideIbythis

equation reduces to
¢ ~h (23)

This may be all what is needed to fix these headstavorks well in Matlab; ifl" = 10"
or so, Most of the time, Matlab has no difficultysolving the system, while a very
accurate result is obtained.

2.5.1 Including fixed head boundaries directly

Rather than using an arbitrary large conductanaapéement fixed heads, we may
directly implement them. This improves the conditaf the matrix and it reduces the
amount of work, because the fixed heads nodes tan& to be computed at all, which
reduces the computational size of the model.

Let the model be described by
ATD=Q (24)(25)

Let the vector of these cell numbers with fixeddsebel 1, and let the vector of the
remaining cells numbers Ibesuch that the union éfandl«, comprises all cell numbers.

ThenA(:,I fh) represents all columns # which will be multiplied by a fixed head. The

fixed heads are represented by the vedtfr,, ). Hence,A (5,1 ,)*®(l ,,) is a constant
vector which may be put directly to the right-hadie of the matrix equation, leaving the
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remaining columnsﬂ\(:,l ) to the left hand side to be multiplied with theneening non-
fixed heads®(1). This changes the model to:

AGHO1)=Q A () ) ®( 4) (26)

Because we only have to compute the heads atdosatiwe get the reduced system of
equations. The rows corresponding to the fixed s@aaly also be eliminated as the fixed
heads need not to be computed at all. This resuttee following matrix equation:

AT @()Q ()4 (1 ) ai ) -

Hence the right hand side contains the constautshenleft hand size contains the
remaining equation (rows and columns), after remgp¥hose corresponding the fixed
heads. The result is a computationally smaller riadat moreover is better conditioned.
The model also can be up to ten times faster wetéain circumstances.

So, the unknown heads become

d(1)=A(] )\@ ()A |(|, fh)*cﬂ( fh)) (28)

If we initialize the head matrix with the fixed liematrix, the fixed head values are also
contained in the head matrix. If the fixed headriraiontains NaN'’s in all non-fixed
head cells these cells are easily found

Ifh=Nodes(~isnan(FH));
| =Nodes( isnan(FH));
The nodal flow can be computed by

Q=A*®; (taken over all cells, including the fixed heatls)e This gives the injection
flow into each of the cells.

2.5.2 Inactive cells

In a large model, often substantial parts are imact.e. represent bedrock or other parts
without groundwater. The computation time may dessantially reduced if such cells
are excluded beforehand. In practice it shouldtiz@ghtforward to find such cells from
the input, as they represent cells where no waeiflow or be stored, hence cells with
all conductivities and the storage coefficient dqaaero. In Matlab these cells may be
found as follows

Active cells that have a fixed head (preventingexifrom input of fixed heads in non-
active cells):

ln=(Kx>0K ,>0K ,> 0§ > Q &®, = NaN)
Active cells that are not fixed head (these ceaigehto be computed)

l,=(Kx>0K ,>0K ,> 0§ > Q &®,==NaN)

(29)

(30)
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In Matlab in 2D steady-state (omitting Kz and S)

Ifh=Nodes((Kx>0 | Ky>0) & ~isnan(FH)); % activexéid heads 2D
la=Nodes((Kx>0 | Ky>0) & isnan(FH)); % actimen fixed heads 2D
Matrices Kx, Ky,FH all have size (Ny,Nx).

The remaining cells are the active cells, denotethé cell number vectds.

All we need to do is exclude these non-active celtich reduces the model to the
number of active cells minus the number of fixeddeells

A ) @0 )=Q ()AL o d( ) (31)

This way, we have now reduced our model by botHikeel head and the inactive cells.
Solving for the active, non fixed head cells yields

O(1)=A 0 R ()AL w)ra( )

The equation expresses that we only use the amtiddixed head parts of the
information; hence we still have the entire magiead vectors available and thus may
immediately compute the nodal water balances from.

(32)

To compute the cell-inflows to all active cellsluinding the fixed-head cells, we use all
active cells (2D steady state, leaving out Kz apnd S

l,=(Kx>0K >0  (33)
And compute
Qla)=A(lu) u)*@( .) (34)
In Matlab
lal=Nodes(Kx>0 | Ky>0);
Q=zeros(size(Phi));
Q(lactl)=A(lactl,lactl)*Phi(lactl);
The non active cells will have Q=0;

2.6 Finite difference modeling

Until now, everything said was true for all numatimmodels and nothing specific has
been said or done for finite difference modeling.

What remains to be done is the computation of timelactances. This is specific for each
method. We also need a mesh (model network ortlgaiddivides the model area in
parts). The grid type is more or less specifictifi@ method employed. The model grid
determines the number of connections between theidual nodes.

We will deal with a 2D (1 layer) rectangular gridith rectangular cells) with nodes
(head points) at the cell centers (right-hand p&ta Figure 1). In such a model, the flow
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from one nodei, to its neighborj, first passes half a cell with the conductivity (or
transmissivity) ki, of the first cell and then half a cell with thencluctivity (or
transmissivity) k;, of the receiving cell. This is flow through twaedia placed in series,
for which resistances add up (not conductance®xefbre, we compute the resistance to
the flow between the two nodes and then take wsrge to get the conductance.

.0 —Q = o Ay

AX AX

Figure 3: ResistanceRx=0.9Rx;+0.5Rx; for flow from node i toj. Where Rx; and Rx; are the
resistances for flow through an entire cell irk-direction

LetDx be row vector with column widths aby a column vector with cell heights
(width iny-direction) andkx,ky the 2D matrices with the with the horizontal andieal

cell conductivities respectively. The resistanceveen adjacent nodesxrdirection then
becomes:

Rx=0.5*(1./Dy(:,1:end— 1)) *Dx(:,1:end- 3 .kx( :,1:ene- J+ .
0.5%(1./Dy(:,2:end ))*Dx(:,2:end ).kx(:2:end ) )
The conductances between these nodes is thenlgyven
Cx=1./Rx (36)
Likewise for the resistance between adjacent nodeslirection gives
Ry =0.5*Dy(1:end-1)*(1./DX1:end- 1)) .ky( 1:end Ly+ .
0.5*Dy(2:end ,)*(1./Dx2:end ,)).ky(2:end ,) N
and
Cy=1./Ry (38)

Note that here it is assumed tBytis a column vector andx a row vector. Multiplying
a column vector of lengtNy with a row vector of lengthix yields a matrix of size
Ny*Nx with elements equal to the product of the corradpay elements of the column
and the row. In this case these elementsigdy anddy/dx respectively.
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2.7 Numbering cells (nodes)

In equations (3) through (13) indiceandj were used to denote connected cells (or
nodes). To allow numbering of cells in our moded, need to generate such cell
numbers, which can be arbitrary, as is the caadfimte element model. The only
requirement is that the numbers are unique.

When numbering cells of a finite difference model will, of course, exploit the regular
mesh structure. In Matlab it is straightforwarcdyemerate a vector of increasing numbers
starting with 1 and ending witNyx Nx, which is the number of cells in the model (We

will have Nyx Nxx Nz cells in a 3D model):
Nodes=1.. Ny Ny

Next we fold this vector into the shape of the mapliel with its Ny rows and\x
columns. This is done using Matlab’s reshape foncti

Nodes= reshafg.. Ny Nx Ny N (39)
This way, the variabldlodes is the matrix holding the cell numbers. The nunidfean
arbitrary cell within the grid, say rojand column, is now obtained from
cellNumber=Node$()

2.8 Assembling the system matrix

In equations (3) through (13) the indices refecdtls that are connected. Herges the
coefficient (i.e. the negative of the conductarme)veen the cellsandj, which, of
course, are just adjacent cells.

The system matrix elemeay is the negative value of the conductance betweeset
cellsi andj, where the first index refers to the equation nembe. the cell for which the
water balance is computed, and the second indexfers to an adjacent cell, to which it
is connected. Clearly=a;, which makes the system matAxsymmetric.

To put a coefficient (negative of the conductarateghe correct position in the system
matrix, we need its value and its indicesd;: i.e. the tripld,j,a;.

This is now straightforward with the available nwerhg.

We may generate the West-East cell pair indicels thigir corresponding coefficients as
follows:

[Nodes(:,1:end-1), Nodes(:,2:end), -(

(40)
Writing
l,=Nodes(:,1:end-1 (41)
|.=Nodes(:,2:end, (42)
we could write this more compactly as
[lw e -Cl (43)
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With

| ,=Nodes(1:end-1,: (44)

|s=Nodes(2:end,:, (45)

we may write the North-South pairs as
[y Is -C,]
We may put all combinations in a single matrix
[y e Cl ...
e 1y -C.l...
[y 1s -CL;-.. (47)
[Is 1y -C,]...
]

Where the “..” is Matlab’s line continuation and the “;” placesat follows in
subsequent rows of the matrix.

(46)

The problem with the last expression is that theestded matrices are not column
vectors but matrices having the shape of the maéekhe |y Iz and G being of size

Nyx( Nx-1) and the, Is and G of size(Ny—1)x Nx. We can turn them into column

vectors by using the Matlab’s (:) operator. Thigigor shapes matrices of any shape
into their equivalent column vectors.

Hence,

[Dw() 1eC) -Co()]; -
) Tw () ()
) -Cy()]

) -C,

()]

E(:

N (:
[Is(:
]

does the job.

=

[l
[l I (: (48)
()

=z

The number of rows in this three-column matrixhiss
2Ny(Nx=1)+ 2( Ny-1) N»

This completes all the connected nodes in this 2ideh

Because the matrix is symmetric, we could skipEhet-West and South-North pairs and
exploit this symmetry. We will show this below.

The three-column matrix above represents threenuokectors with elementg,a; and
J,1,a; respectively. These triples contain all non-zdemnents of the system matrix with
their position, except the diagonal elements. akted may be readily computed by
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Nodes

3= 3

R (49)

To generate the sparse system matrix, we haveetthesMatlab functiosparseand pass
it the indices and the matrix element value. Howgsparse requires the columngand
a;j to be specified as separate vectors. This is eawdilly done as follows:

A=sparsg 1,(); 1) TnG)s 1sCh-

[ 1) tw()r TG P (e

[-C.(); -C.(); -C,(); -C,().-- (50)

Ny* NXx...

Ny* NXx...

5* Ny* NX
where the last three arguments of this functioharal the size of the system matrix and
the number of non-zero elements respectively @now for a 2D finite difference
mode). The first three arguments are respective\ycolumn of indices, the column gf
indices and the column of corresponding matrix taiehts, i.e. the negative values of
the conductances. The minus sign is a sign chtigaplies that the flow from a node to
its surrounding neighbors is positive, and so isgaction into the model which must
deliver this net flow from a node to its neighbdfience, extractions such was water
supply wells are negative, as is evaporation, wigitdarge is positive. This sign

convention is easily remembered as any flow ineorttodel gives rise to increasing water
levels and vice versa.

Notice that in the actual model listed further beloe use an equivalent Matlab form to
enter this three column matrix which is just anreiee in reading Matlab matrices.

An alternative to expression (50) is using only W& and N-S pairs and exploiting the
matrix symmetry:

A=sparsg 1,(); G-
[ () Ts()ls-
[-C,(); =C, ()l;-- (51)
Ny* NXx...
Ny* NXx...
2Ny* NX
And then due to symmetry construct the system matsm this one and its transpose
A=A+A" (52)
Having come so far, we only have 4 matrix elem@etsrow and still miss the diagonal

matrix elements;. These diagonal matrix elements may be putAntesing the function
spdiagsas follows
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A =spdiag$— suifi,2),0A ) (53)

Where the 0 means zero-offset from the diagonaiaifix A, in which to put the
diagonal,—sunfA, 2). We need Matlab’s functiospdiagsinstead of its equivalemtiags

because we work with sparse matrices.
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3 The actual model in Matlab

The model will be a Matlab function accepting tleeded arguments and yielding the
heads and the computed nodal flows. This functesides in an “m.file” which is
Matlab’s text file storage of scripts and functidraving extension “.m”. A second m.file
will be a Matlab script, which is just set of commda in a file. This script will be used to
set up the model, specify its boundary conditiead,the function (i.e. the actual model)
and finally visualize the results by contouring teemputed heads.

To make the model in Matlab, launch Matlab brovesthe directory where you want to
store the “m.files” of this model.

Then start with opening a new file by pressingdbeect icon of the Matlab editor and
immediately save it with the desired model namejistancedmz2 “fdmz2.ni will be the
file name given by Matlab arfdm2the name of the Matlab function it contains.

The first line infdm2.mgets the function name, and its (multiple) ougmd inputs. All
inputs are matrices and vectors to be definedarsthipt that we will use to call the
model.

To write the calling script, open another new fiave it with the namentfodelscript for
example.

The model will be called from this script as follew
[Phi,Q]=fdm2(x,y,kx,ky,FH,FQ);

However, since the model does not yet exist arghse debugging we use the model file
as a script. So, “comment out” this call as folldvysprefixing a “%” and further prefix
the call to the filfdm2.m

fdm2; % [Phi,Q]=fdm2(x,y,kx,ky,FH,FQ);
This command (call) will simply run the lines irethile fdm2.mas typed-in commands.

To set up an arbitrary trial model of ten colummattare 10 m wide and twelve rows that
are 6 m high, place the following lines in the migdapt before the call of thielm2file

x=-100:10:100; y=(100:-10:-100)’; % x hor, y ve
Dx=diff(x); Dy=abs(diff(y)); % compute column an
Nx=length(Dx); Ny=length(Dy); % compute siz
xm=0.5*(x(1:end-1)+x(2:end)); % coordinates
ym=0.5*(y(1:end-1)+y(2:end)); % coordinates
Kx=10*ones(Ny,Nx); Ky=5*ones(Ny,Nx); % conduct. (t
FH=NaN*ones(Ny,Nx); FH(:,end)=0; % fixed head
FQ=zeros(Ny,Nx); FQ(2,3)=-2400; % fixed flow

N=0.001; % recharge (0.001 m/d)

Q=Q+N*Dy*Dx; % add recharg
fdm2; % [Phi,Q,Qx,Qy]=fdm2(x,y,kx,ky,FH,FQ);
contour(xm,ym,Phi); % contour the
%surf(xm,ym,Phi); % if you like
xlabel(’x in m’); ylabel(’y in m’); title(head con

% Some checks

sum(sum(Q)) % overall model water balance
sum(Q(:,end)) % total outflow across right h
sum(Q(find(~isnan(FH))) % total flow over all fixed
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This completes the model script. It sets up theehdanensions, the cell properties,
fixed head and flow boundaries for all nodes amd the model. Finally it contours the
heads and computes some integrated flows. Noté¢htbdteads are computed for the cell
centers, so that we need to compute those centdrs f

Now let’s focus on the model and the model sddpt2.m The first line should be the
function heading
function [Phi,Q,Qx,Qy]=fdm2(x,y,kx,ky,FH,FQ)

It defines a function callefilm2with arguments to be passed to it (and will baloc
inside the function). It also defines its outpuhieih may be multiple as is the case here,
where we will obtain the computed heads, the coetubdal flows, the computed
horizontal flows across cell faces and the compuggtical flow across cell faces.

To start, comment this line out, because duringctivestruction of the model we will run
the file as a script to ease debugging

% function [Phi,Q,Qx,Qy]=fdm2(x,y,kx,ky,FH,FQ) % “%” is used to

comment out

When run as a script, the parameters are not ldeaparameters in the model script and
visible infdm2as well as the parameterddm?2in modelscript This will be no longer
the case when the first line idm2.mis a proper function definition (function header).

Below the function definition line, insert a numleércomment lines (i.e. all starting with
“0”) to provide the information that Matlab giverhenever you type

>>help fdm2

in the command window.

function  [Phi,Q,Qx,Qy,Psil=fdm2(x,y,kx,ky,FH,Q)
% function [Phi,Q,Qx,Qy,Psi]=fdm2d(x,y,kx,ky,FH,Q)

% 2D block-centred steady-state finite difference m odel

% x,y mesh coordinates, kx,ky conductivities

% FH=fixed heads (NaN for ordinary points), Q=fixed nodal flows

% Phi,Q computed heads and cell balances

% Qx is horizontal cell face flow positive in posit ive x direction

% Qy is vertial cell face flow, postive in posit ive y direction

% Psi is stream function assuming bottom of model i s zero (impervious)

% TO 991017 TO 000530 001026 070414 080226

x=x(:)"; Nx=length(x)-1; dx=diff(x); xm=0.5*(x(1:en d-1)+x(2:end));
y=y(:); Ny=length(y)-1; dy=abs(diff(y));
Nodes = reshape(1:Nx*Ny,Ny,Nx); % Node numbering

IE=Nodes(:,2:end); IW=Nodes(:,1:end-1);
IS=Nodes(2:end,:); IN=Nodes(1:end-1,:);

warning( ‘'off ,‘all' ); % allow division by zero for inactive cells
RX=0.5*(1./dy)*dx./kx; Cx=1./(RX(:,1:end-1)+RX(:,2: end)); % hor conductances
RY=0.5*dy*(1./dx)./ky; Cy=1./(RY(1:end-1,:)+RY(2:en d,:)); % vert conductances

warning( ‘'on' ,‘'all' ); % restore warning message

A=sparse([IE(:);IW();INCG);IS()],

[IWE)IEC)ISC)ING)],

-[Cx();Cx();Cy():Cy ()],

Ny*Nx,Ny*Nx,5*Ny*Nx); % System matrix
Adiag= -sum(A,2); % Main diagonal
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IAct =Nodes( kx>0 | ky>0);
IActl=Nodes((kx>0 | ky>0) & isnan(FH));
Ifh =Nodes((kx>0 | ky>0) & ~isnan(FH));

Phi=FH(:); % make sure Phi and Q are column vector
Q =FQ(:); % in case the groundwater problem is a

% solve
Phi(lActl)=spdiags(Adiag(IAct1),0,A(IActl,IAct1))\(
Q(IAct) =spdiags(Adiag(lAct ),0,A(IAct ,lAct ))*

Phi=reshape(Phi,[Ny,Nx]); % reshape back to shape
Q =reshape(Q ,[Ny,Nx]); % same for Q

Qx=-Cx.*diff(Phi,1,2)*sign(x(end)-x(1)); Qx(isnan(Q
Qy=-Cy.*diff(Phi,1,1)*sign(y(end)-y(1)); Qy(isnan(Q

Psi=[flipud(cumsum(flipud(Qx),1));zeros(size(Qx(1,:

% active cells
% active cells but not fixed heads
% active cells with fixed heads

s, otherwise it won't work
single row.

Q(lActl)-A(IActd,Ifh)*Phi(lfh));
Phi(lAct ); % nodal flows

of original model

x))=0; % horizontal cell face flows
y))=0; % vertical cell face flow
M % Stream function

%

The model must be set up and debugged line byTihis.is done by selecting one or
more lines, running them by pressing F9 and checitithey are correct. Once all lines
run smoothly and correctly, remove the commenh@first line of the fdm2 file. This
makes the file a function. Also change the cathsfile fdm2into a function call. So

fdm2; % [Phi,Q,Qx,Qy,Psi]=fdm2(x,y,kx,ky,FH,FQ

becomes

[Phi,Q,Qx,Qy,Psi]=fdm2(x,y,kx,ky,FH,FQ); % call th

); % call the model

e model

Then the model can be run with any changed input.

Note: There are no error checks in the model. iBhis keep the file short. You may add
checks that verify the size of the input matriced sectors with respect to the model

dimensions implied in the andy.

3.1 Exercises

1 Prove that your model is correct, by compaitsgesults with analytical solutions

--- Compute the heads in a 1d model with recharge

The analytical solution can be found in Geohydrglbg

¢ :TnD(LZ —x?) with L and x are measured from the water divide to thedary

% script to compute this case and compare with anal

ytical solution

kD=100; % transmissivity to be used

L =200; % half width of model

x=-L:5:L; % generate x-coordinates for mesh

y=[10 -10]; % one row suffices because problem is 1D
xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x); ength(dx);
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);

kx=kD*ones(Ny,Nx); ky=Kkx;
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FH=NaN*ones(Ny,Nx); FH(:,[1,end])=0.0; % Fix left and right head
n=0.001; FQ=n*dy*dx; % Set recharge
[Phi,Q,Qx]=fdm2(x,y,kx,ky,FH,FQ); % Run model
fi=n/(2*kD)*(L.A2-xm."2); % Analytical solution
plot(xm,Phi, ™+ xmJfi, b ); % Plot results

titte(  'compare model with phi=n/(2kD)(L"2-x"2)' );

xlabel(  'x[m]" ); ylabel( 'Phi [m]' );

legend( 'model' , 'analytical );

compare model with phi:n/(2kD)(L2-x2)

T T
+  model
analytical [

0.2

0.18

0.16 + *

0.14 _

0.12 b

0.1 f

Phi [m]

0.08 *

0.06 b

0.04 _

0.02 *

oL 1 1 1 1 1 1 I ol
-200 -150 -100 -50 0 50 100 150 200
x [m]

Figure 4 Comparison between model and analytical solutiorthe match is not perfect due to the fact
that the exact locations of the outer cells in the mad do not coincide with —L and L, the exact
location of the outer nodes is in the cell centerge below to solve this.

As is clear the numerical and analytical solutidasnot match completely. This is due to
the fact that the boundaries nodes of the numemioalel are not at —L and L but at the
cell centers with is at —L+2.5=-197.5 m and at 5=2.197.5 m.

To solve this you may add a very thin outer cebath ends
or set
X=-L-2.5:5:L+2.5; % generate x-coordinates for mesh

This will yield the perfect match between model andlytical solution
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--- Compute the heads in a 1d model with leakagaricaquifer below an aquitard, while
above the aquitard the head is maintained at Zé&® flow is symmetrical witkx=0 in

the center. All heads are relative to the mainthiwater level above the aquitard while
the head ax=L andx=-L is maintained a#l.

_H cosh(x /4)
~cosh(L /4)
This problem is a 1-d problem which may be solvedvn rows representing the cross

section with the first layer being the aquitardhariisistance ¢ and the second being the
aquifer with given transmissivityD.

% Cross section through polder with fixed head H at both sides
L=1000; kD=1600; c=100; lambda=sqrt(kD*c); % +/- Xsec of Bethune polder
X=[-L-5:10:L+5];

y=[0 -10 -40];

xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x);  Nx=I ength(dx);
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);
k=[dy(1)/c kD/dy(2)]; % conductivities from c, kD and thickness
kx=k*ones(1,Nx); ky=kx;

H=-2.75; % head at left and right boundary
FH=NaN*ones(Ny,Nx); % NaN matrix to store fixed heads

FH(1,:)=0; % head above aquitard

FH(2,[1,end])=H; % head at left and right boundary
FQ=zeros(Ny,Nx); % matrix to store fixed Q's
[Phi,Q,Qx]=fdm2(x,y,kx,ky,FH,FQ); % run model
fi=H*cosh(xm/Lambda)./cosh(L/Lambda); % analytical

plot(xm,Phi, '+ xmfi, ‘b );

titte(  'compare model with phi=H*cosh(x/lambda)/cosh(L/lam bda)" );
xlabel(  'x[m]" ); ylabel( 'Phi [m]' );

legend( ‘fixed head' , 'model' | 'analytical’ );
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Figure 5: Comparison between model and analytical solutioof cross section through polder.
Obviously there is a big difference between the tw&ee text below to solve.

The outcome of the script is given in the figurewad The model results for both layers
are shown. The first is the fixed heads in thel&ypr and the second are the computed
heads in the second layer. Clearly, the model isafecompared with the analytical
solution. Again this is due to the fact that thedelanodes are in the center of the cells
and therefore in the center of the layer. The tasce to vertical flow between the model
and the bottom of the first layer is therefore dmiyf of that between the top and the
bottom of this layer. To solve this, you may ughia layer on top and specify the head
in that one. Or you may double the thickness ofitiselayer so that the resistance
between the node and the bottom of this layer sgbhal desired value. Or you just half
the conductivity of the first layer to get the samasult. So, in the last case do this

k=[0.5*dy(1)/c kD/dy(2)]’; % conductivities from c, kD and thickness

--- Compute the drawdown due to well in the certerners

The drawdown due to a well with extracti@nin the center of a circular island with
radiusR around which the head is maintained at a value m=ds

S= Q In (—Rj
27kD r

--- recharge on a square island of half length ith @iven parameters
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This is simple, generate coordinates, set FH=0gaddi4 boundaries, add recharge to the
nodes and run the model.

L=200; dL=5; kD=150; R=170; n=0.001;
x=-L-0.5*dL:dL:L+0.5*dL;

y=flipud(x’);
xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x);  Nx=I ength(dx);
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);

kx=kD*ones(Ny,Nx); ky=Kkx;

FH=NaN*ones(Ny,Nx);

FH([1,end],:)=0; FH(:;,[1,end])=0; % all boundaries 0

FQ=n*dy*dx; % recharge as nodal flows
[Phi,Q]=fdm2(x,y,kx,ky,FH,FQ); % run model

contour(xm,ym,Phi);

title(  ‘'recharge on square island' ); xlabel( X [m]"); ylabel( y[m]" );

recharge on square island
200 T T T T T T

150

T

100

T

&
o
T

-100 -

-150 -

_200 i i i i i i [
-200 -150 -100 -50 0 50 100 150 200

Figure 6: Recharge on a square island, contours may be ldbd (seehelp contour in Matlab and how
to useclabel, you may also use colorbar to get a colorscale dasp colorbar in Matlab)

--- Recharge on a circular island

Problem with the rectangular island is that thered easy analytical solution for it.
Therefore to proof our model is correct, let's catgpthe head in a circular island with
the same model.

The analytical solution is derived from the partidferential equation and boundary
condition thath=0 for r=R.
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—erkD@:nyzrz, > h:L(Rz—rz)
dr 4kD

Below is the same script as before, only the boyndandition is changed. What we do
we set all nodes where=R equal to zeroR is here the distance from pokt0, y=0 and
R the given radius of the model. Given the coatdia of the nodesn (row vector) and
ym (column vector), we can compute a matrix withglze of the Nodes containing the

distance in each cell as follows:

r=sqrt((ym*ones(size(xm))).*2+(ones(size(ym))*xm).» 2);

and then set the fixed head FH equal to zero inakes for whichi>=R:
FH(r>=R)=0;

Hence

% Head in circular island with recharge

L=200; dL=5; kD=150; R=170; n=0.001;
x=-L-0.5*dL:dL:L+0.5*dL;

y=flipud(x’);
xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x);  Nx=I ength(dx);
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);

kx=kD*ones(Ny,Nx); ky=Kkx;
FH=NaN*ones(Ny,Nx);

r=sgrt((ym*ones(size(xm))).*2+(ones(size(ym))*xm).» 2); %Distance
FH(r>=R)=0;

FQ=n*dy*dx; % recharge as nodal flows
[Phi,Q]=fdm2(x,y,kx,ky,FH,FQ); % run model

contour(xm,ym,Phi);

title(  ‘'recharge on circular island’ ); xlabel( X [m]"); ylabel( 'y [m]'
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recharge on circular island
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Figure 7: Head in circular island of R=170 m with recharge
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To compare this with the analytical solution, gl head through the center together

with the analytical solution. So add these lines

figure

fi=n/(4*kD)*(R."2-xm."2);

plot(xm,Phi(xm==0,:), ™+ xmJfi, b );
legend( 'numeric’ , 'analytic' );

titte(  '‘compare model with Phi=n/(4kD)*(R"2-r"2)'
ylabel(  'Phi [m]' )
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compare model with Phi:n/(4kD)*(R2-r2
0.05 \ \ \
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Figure 8: Comparison between model and analytical solutio Obviously there is a small difference.
See text below how to solve this.

The figure above shows a small difference betwherhead through the center of the
model and the analytical solution. Is this modedmg? No and yes. It is correct but just a
little inaccurate. If we reduce the size of thensats to 2 m and we’ll see that the
difference between the two models has completeslgmtieared. So the model is correct
after all, but for this computation we need a seratkll size, which will be due to the

fact that square or rectangular cells do not nicgdych with circular shapes like the
boundary of the island and especially the true lveadours.

--- Show the effect of anisotropy?

Anisotropic situations can be readily computedhd tain conductivities align with the
andy axes of the model grid. Just try it. Howeversihot straightforward to apply
anisotropy in arbitrary directions, unless the nigpliel can be rotated to align with the
main conductivity directions. In the finite elemen¢thod, anisotropy in arbitrary
direction in each cell is natural. In the finitéfeience model it is generally limited to the
main directions of the grid itself. There exist lemer several methods to apply
anisotropy in rectangular grids. This is beyond tlourse.

--- Generate and solve a complex cross sectionavijiven boundary condition at the top

To model a cross section, the y direction is sinmpyarded vertical. Nothing changes,
except that in cross sections we pass the condtiesiof the cells, while in flat aquifers
we pass the transmissivities instead. For the mibemakes no difference. Because
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cross sections combine so nicely with streamlimesskip this till after we implemented
these streamlines.

5 Generate a random conductivity field and complgeheads given fixed head
boundaries.

A random conductivity field may be generated ughmgrand(Ny,Nx) function.
6 Generate a river through your model and comphédreads with recharge

Ariver is a set of lines with fixed heads or hetlid are fixed through a resistance,
which are called “general head boundaries” in Mathormally assigning rivers to a grid
is a GIS action. The river has to be intersectat thie model cells. For each cell the
intersecting surface aréa[m?] is computed and converted into a conductaber’/d]
using the bottom resistancgd] of the riverC = A/ ¢c. So we skip this GIS action for
now.
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4 Stream lines

Streamlines are lines of constant stream-functadne: Flow lines are lines followed by
particles. Therefore, flow lines have to be comg@uig tracing particles, but streamlines
(if they exist) can be computed by contouring tiieam function, without tracing.
However, the stream function is only defined in &Bady-sate flow without sources and
sinks (and leakage or recharge for that matteprawtice, individual sources and sinks
can be dealt with and will look similar to wellstime 2D image.

Because our model is 2D, streamlines will ofterabefficient manner to show the flow
in a quantitative way. A very powerful charactecistf streamlines is that the flow is
known between any pair of points in the model. kentthe flow between any pair of
streamlines is constant and equal to the differeftke stream function values.

With respect to the stream function, any streaminag be designated the zero line, after
which the values of all other streamlines are fixBae stream function can be computed
by integrating the flow across an arbitrary lindtiog streamlines. Assuming the bottom
of the model is a streamline, we can compute tigast function easily by integrating the
horizontal flow across cell faces from the bottantite top of the model.

Mathematically

ymax

w= | a(y)dy (1)

ymin

When we use the horizontal flow across the cettdaas an extra output of the model, we
just cumulate these along the cell faces upwan fiee bottom of the model. This gives
the stream function values at all cell corners thetnodes). This stream function may
subsequently be contoured, which yields streans.line

To implement the stream function, open a new Mdilaland save it asPsi.ni. Type
the following and save again

function  P=Psi(Qx)

% P=Psi(Qx)

% Stream function assuming bottom is stream line

% size of Psi is Ny+1,Nx-1, to contour is do

% contour(x[2:end-1),y,Psi(Qx));

P=flipud(cumsum(flipud([Qx;zeros(1,Nx)1)));

It does the following. It receives the horizontalfs across the cell faces, which is the
third output to the model. It adds a line of zettws®ugh the bottom, because this will be
the starting stream line with stream function vadaeo. Then we want to cumulate this
matrix vertically from the bottom upward. Matlal®smsuni.) accumulates matrices (try
it), but starts at the top working downward. Soflgethe matrix up-down before calling
cumsum(..)When done wéipud(..) again to put it right.

Next, add the following lines to your script file

contour(x(2:end-1),y,Psi(Qx)); % streamlines
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The values of the stream function is the flow betmvany point and the bottom of the
model. If you want that in specific steps of sagiedB.1 ni/d, just specify the contours,
for instance

contour(x(2:end-1),y,Psi(Qx),[0:dPsi:max(Psi(Qx(:)) )); % streamlines

Seehelp contounn Matlab for details.

Clearly, if the left hand boundary if you modelsistreamline, you may just as well
integrate the vertical flow across horizontal ¢atles along the horizontal lines.

4.1 Exercises streamlines

1 A symmetric cross section through a long buildiritph sheet pilings 15 m deep at

x=20 m. Dewatering wells are placed inside thisesipding between 6 and 11 m depth.
Compute the necessary extraction to dewater tHey@tm. The aquifer is semi-
confined. All elevations are relative to the fixeelad at the top. The sheet piling is
between x=19.9 and x=20 m, and z=0 and z=-15 meuatiductivity kw=0.0001 m/d.
Wells are between x=19.8 and 19.9 m and betwedhad z=-11 m and are modeled as
an extraction line in this cross section. The layae given as in the Matlab script below.

The results are shown in the two figures. One shibe/$otal cross section and the
second one a detail. This detail demonstratesttearslines and the head lines in this
cross section in the neighborhood of the wellsthiedsheet piling. It clearly shows how
the groundwater flows underneath the 15 m deept glileey towards the wells at the
inside of this sheet piling between -6 and -11 e €xtraction is 8.67 7, which can

be computed by summing tkEover the wells. Alternatively one may compute ¢he
entering the model through the first layer (sum(Q)). We set the FH of the wells at -5
m. The head in the center immediately below thédimg pit is then -4.6 m. By setting
FH in the wells to -5.4 will make sure the drawdowrder the building pit is the required
5 m. The extraction will then be 9.38/th This demonstrates the influence of partial
penetration.

Partial penetration means that the well screen pahetrates part of the aquifer
thickness. This implies that the drawdown is latgpan in the case of a fully penetrating
screen. Partial penetration is the usual caseav®e well money or to prevent upcoming
of brackish water from below. If a building pit ntde put dry, only the head at its
bottom needs to be lowered, not at the bottomeatjuifer, which may be 100 m or
more thick. Using short screens then reduces tlwianof water that needs to be
extracted.
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Half cross section through building pit with sheet pilings
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Figure 9: Building pit cross section with partially penetrating sheet piling and extraction wells at the
inside

Half cross section through building pit with sheet pilings

z [m]

x [m]

Figure 10: Detail showing the streamlines underneath th&5 m deep sheet piling towards the
partially penetrating wells at its inside between 6 and1 m depth
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This is the script to create the cross section. eituthe detailed one by zooming first
horizontally and then unrestricted (select zoomtéwed right mouse button for options).
To get you figure in word, use “edit copyfigure”atlab in the menu of the selected
figure and then paste it in Word or PowerPointasal
layers={ % specify layers

‘clay’ 0-5 0.02 % material, top, bottom k

'sand" -5-50 20

‘clay’  -50-60 0.01

'sand’ -60 -200 30

%
XW  =[19.920 ];yW =[O0 -15]; kW=0.0001,;
xWells=[19.8 19.9]; yWells=[-6 -11]; FHWells=-5;

% the column and row coordinates are refined where needed to have
% a very detailed result (top and bottom of wells a nd sheet piling
% just add coordinates then apply unique to sort ou t
X=unique([0:2:18, 18:0.2:22 19:0.1:21, 22:2:40, 40: 10:100,...
100:25:250, 250:50:500, 500:100:1000]); % fin e mesh where needed
L=[-5 -50 -60 -200]; % layer boundaries for genera ting y values
y=[0-0.01 L, L+0.01, -5:-0.1:-7, -7:-0.5:-14, -15: -0.1:-16, ...
-16:-0.5:-19.5, -19.5:-0.1:-20.5, -20.5:-0.5:-25, - 25:-5:-50];
y=sort(unique(y), ‘descend’ )'; % Unique + sort downward
xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x);  Nx=I ength(dx);
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);

% get k values from specified layers
kx=zeros(Ny,Nx);
for i=1l:size(layers,l1);
kx(ym<=layers{i,2}&ym=>layers{i,3},:)=layers{i,e nd};
end

% set k in sheet piling to its given value
kx(ym<yW(1) & ym>yW(2), xm>xW(1) & xm<xW(2))=kW; k y=kx; % deep wall

FH=NaN*ones(Ny,Nx); FH(1,:)=0.0;

% set fixed head in wells to its given value
FH(ym<yWells(1) & ym>yWells(2), xm>xWells(1) & xm<x Wells(2))=FHWells;

FQ=zeros(Ny,Nx); % no fixed Q this time

[Phi,Q,Qx]=fdm2(x,y,kx,kx,FH,FQ);

close all %::::::::::::p|otting e e —=————===
contour(xm,ym,Phi,-5:0.2:0, b );

hold on

contour(x(2:end-1),y,Psi(Qx),20, ™)

for i=1l:size(layers,1)
plot([x(1) x(end)],[layers{i,2},layers{i,2}]);
end
title(  'Half cross section through building pit with sheet pilings' );
xlabel(  'x[m]" ); ylabel( 'z[m]" );

% ====water balance and computed head below pit === EES
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sum(sum(Q(ym<yWells(1) & ym>yWells(2), xm>xWells(1) & xm<xWells(2))))
sum(sum(Q(1,))) % infiltration through top of model

sum(sum(Q)) % overall water balance

Phi(ym<-5 & ym>-6,1) % head below building pit

Clearly this can just as well be done for a rasjehmetric model, which we develop
next. In fact, we only have to add tH& argument in the model-call and the same
problem will be computed for a circular building.pWothing else needs to be done.

[Phi,Q,Qx]=fdm2(x,y,kx,kx,FH,FQ, ‘radial’ );

The result for the detail is shown below

Half cross section through building pit with sheet pilings

|

A
.-
P
||
\

S
B
Nl

=SS

1~
5

N

15 F

7
H
—1]
==
e
%

|

|

|

|

|

|

|

|

1\
251 A \

z [m]

35+

45 &

30
x [m]

10

Figure 11: Same as above but for radial symmetric flow.

The extraction is now 5250%d (not nf/d !) with the fixed head in the wells -6.7 m to
reach a drawdown of 5 m in the center of the pit.

Extractions in a cross section look like wells, dogse the streamlines to the extraction all
connect with the top of the model. These are sle@¢&iranch cuts and are unavoidable,
as the stream function is multi-valued in the aafsextractions or injections within the
domain. This is, in fact, is nice for cross section

To make wells sharp, narrow the exaction columr shat you only see a line of a
column of the width of the borehole of the well.

3 Add the stream lines to the 5-layer cross seafoour pumping test
This gives a good view on the origin of the watad ¢he paths it takes toward the well.
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7 Make a 5 layer vertical semi-confined cross secéind show the heads in all layers if
layer 4 is pumped

A multi-layer semi-confined model in a cross sett®readily made with the Matlab
model. The grid rows now represent layers. The gotidty of the layers determines if
they represent (work as) aquifers or aquicludes. fidad in the top layer is fixed. At
other locations in the aquifers fixed heads or $onay be specified. This may also be
done for the boundaries of the layers.

4 Color your cross section according to the conditiets before contouring this will
yield a publication-ready picture.

Usingsurface(x,y,kx)he conductivities are colored and thus visualthesstructure of
the model and make for instance the layers in sscsection clearly visible. To remove
the grid lines between the cells wstading(‘flat’).

To overlay this with the contours, we may needxraeaxis to draw them and place this
axis on top of theurfaceto show them together.

First set up an axis with the correct scales, ¢byaxis in the same figure. Then draw
the conductivity surface in the first axis. Remdive axis, so that only the surface is
visible. Switch to the second axis, draw the corg@nd make the canvas transparent to
show the underlying surface.

fl=figure;

al=axes;

set(al,’xlim’,[x(1),x(end)], ylim’,[min(y),max(y)])
xlabel(*x in m’); ylabel(‘z in m’); title(‘cross s&tion);
a2=copyobject(al,fl);

axes(al);

surface(x,y,kx); shading(‘flat’); set(gca, visibl&sff’);
axes(a2);

contour(xm,ym,Phi);

hold on;

contour(x(2:end-1),y,Psi(Qx));
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5 Radial symmetric finite difference model

An example of the results of a radial symmetric elddhs already been shown above.
Very often we have to deal with radial symmetranfs, for instance to wells. Therefore,
it comes in handy to have also a radial symmetadehthat is extremely accurate, more
accurate than computing radial symmetric flow wiié previous model by multiplying
the kx with the distance to the left size of the model:

Kx=2* pi* xnf kx

Ky=2* pi* xnt ky

Using a flat model this way to compute a radial Byatric flow is course a possibility
and a good exercise to compare it with a trulydsatasymmetric model developed

hereafter by converting our flat model into a rbdianmetric one, or rather one that can
serve both flat and radial symmetric flow problems.

However, in order to convert our model into a rasjegnmetric one we have to alter its
conductances. But in doing so we are not goingesirdy the flat model that we already
developed; instead the model is going to work fithiradial symmetric and flat cases.
Keeping both situations in a single Matlab functieduces maintenance in the future.

To make the model work for radial symmetric sitoasi, the only thing to do is compute
the resistance between adjacent nodes.

We know that for radial symmetric horizontal flowttveen two radii the logarithmic
analytical solution is valid, from which the resiste against horizontal radial flow is
readily derived:

Q[ __2zkD _$—¢, In(r,/r)
¢l_¢2_27sz|n(rlj_>Q_In(rzlrl)(qﬁl #) >R = Q  2zkD

Therefore, the resistance between two adjacentsnogisomes

= In (ri+l/rm,i) n In (rm,iJrllr i+l)
e 27k Dy 2k, Dy

2 Cr,ij+1:1'/Ri,i,+l

The vertical resistance for entire cells equal
Dy

Rz= — Rz=0.5 Rel: end 1)+ 2: en
”(rnlz_riz)kz ( é ) IR »
Or in Matlab:
RX=(1./dy)*log(x(2:end-1)./xm(1:end-1))./(2*pi*k x(:,1:end-1))+
(1./dy)*log(xm(2:end)./x(2:end-1)) ./(2*pi*kx (:,2:end));
RY=0.5/pi*dy*(1./(x(2:end)."2-x(1:end-1)."2))./k y;
Cx=1./RX;

Cy=1./(RY(1:end-1,:)+RY(2:end,>));
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To add this to our model without destroying whataiready have, implement it inside
the following if statement

If nargin== 7

RX=(1./dy)*log(x(2:end-1)./xm(1:end-1))./(2*pi*k x(:,1:end-1))+
(1./dy)*log(xm(2:end)./x(2:end-1)) ./(2*pi*kx (:,2:end));

RY=0.5/pi*dy*(1./(x(2:end)."2-x(1:end-1).2))./k y;
Cx=1./RX;
Cy=1./(RY(1:end-1,:)+RY(2:end,>));

else
RX=0.5*(1./dy)*dx./kx; Cx=1./(RX(:,1:end-1)+RX(: ,2:end));
RY=0.5*dy*(1./dx)./ky; Cy=1./(RY(1:end-1,:)+RY(2 :end,’));

end

nargin is the number of input argument of a Maflaiction that is always known within
the function. Therefore if the function/model idled with 7 arguments instead of with
the ordinary 6, it uses the conductances thatale for radial symmetric flow and
otherwise those for a flat model.

To let a function call
[Phi,Q,Qx]=fdm2(x,y,kx,ky,FH,FQ)

compute the radial symmetric solution, add an eahjitseventh dummy argument, for
instance the string ‘radial’)

[Phi,Q,Qx]=fdm2(x,y,kx,ky,FH,FQ, radial’)
And it will do so.

Clearly, when setting up radial symmetric modelg woll often use r instead of x and z
instead of y etc. In such a script you are likelgée a call like this

[Phi,Q,Qr]=fdm2(r,z,kr,kz,FH,FQ, radial’)
But for the function that is called this makes riffedence.

The model is now ready to compute both flat andgafaymmetric groundwater flow
cases and is, therefore, quite flexible.

5.1 Exercise radial symmetric model

Show that the model is correct using analyticalsohs. Plot the head and the flow
contours (stream function)

1 --- compare with Thiem

Thiem is confined radial symmetric flow with fixdeead boundary at distanBe The
analytical solution for the drawdoveis

S= Q In [—Rj
27kD r

2 --- compare with De Glee
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De Glee’s radial symmetric stead-state flow tolly foenetrating well in a semi-confined
aquifer has the analytical solution:

S= Q
27kD
second kind and zero order.

K{%j with 2 =+vkDc andK,(...) the well-known Bessel function of

We may compute this flow with the model in radiadde and compare with the
analytical solution

Qo0=-2400; kD=500; c=350; lambda=sqrt(kD*c);
x=logspace(0,4,41); y=[0,-1,-2];

xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x);  Nx=I ength(dx);
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);

kx=[0.5*dy(1)/c; kD/dy(2)]*ones(size(xm)); ky=Kkx;
FH=NaN*ones(Ny,Nx); FH(end,end)=0.0;
FQ=zeros(Ny,Nx); FQ(end,1)=Qo;
[Phi,Q,Qx]=fdm2(x,y,kx,ky,FH,FQ, 'radial’ );
close all
fi=Qo/(2*pi*kx(end,1)*dy(end))*log(xm(end)./xm);

plot(xm,Phi(end,:), ™ ooxmfi, b+ );
legend( ‘analytic' , 'numerict  ,4);
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Compare model with DeGlee s=Q/(2pikD)Ko(r/lambda)
0 — T e : e

drawdown [m]
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Figure 12: Comparing the model in radial mode with the emi-confined flow solution for steadhy
state extraction from a well (De Glee).

3 --- Compare vertical anisotropy
This is straightforward
4 --- Compare with a circular island with recharge

The analytical solution has already been givenhénradial symmetric model the
recharge in the top of the columns of the crossmeds

FQ(1,:)=pi*(r(2:end).*2-r(1:end-1).A2)*n;
5 --- Compare with a circular island in semi-coefiraquifer

In the semi-confined aquifer, the top is an aqditaith a fixed head above it. In the
Matlab model, we may use the aquitard as the tgy.l8ut then the fixed head is in the
center of this layer. The resistance of the agdiibanst than be generated by the half
thickness of the top layer (between the node aadtitom of the cell). If the resistance
of the aquitard ig, and the thickness of the top layeHisthen the vertical conductivity
in this top layer must be set tg =0.5H /c.

We may also use an extra layer on top of the aqurfake it very thin and specify the
head in this thin top layer. In that case the catidiy of the top layer must be set to
k,=H/c.

This is the only thing necessary to model a semfined aquifer with the radial
symmetric model.
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6 --- Compute pumping test in layer 4 of 5 layerdelo
This is trivial with the model.
7 --- Compute effect of partial penetration

As stated before partial screen penetration oathefer is the rule rather than the
exception when installing wells.

Measuring from above Measuring from below
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Figure 13: Partial penetrating wells with variables used irthe formula

In Matlab one may compute both situations and sigbthe two to get the extra
drawdown and then compare it with the analyticaiola.

The extra drawdown caused by partial penetratienbean derived in the past and is
given in several books on hydrogeology or pumpéesj &nalysis (e.g. Kruzeman & De
Ridder, 1997):

As= sz%% n: {%{Sin[ nfz(ZB— Z)j —Sin[ nfz(ZS— Z)ﬂ CO{ nﬁ(ZD— Z)jK"[ngr j}

This drawdown is relative (has to be added to)tlasvdown for fully penetrating wells.
It was derived for a uniform extraction along thelivgcreens in a homogeneous aquifer.

This formula is valid for uniform extraction alotige screen. This is readily implemented
as the boundary condition for the well. In the &@de, the boundary is rather a fixed
head along the screen. This too is readily modelddthe Matlab model. The drawdown
along the screen will than vary.

To check the model with respect to partial penetmatcompute the drawdown with a
fully and with partially penetrating well. Subtrabe two drawdown matrices. This
difference, which is also a matrix of the sizeltd model, can be compared with the
analytical solution.

figure
ds=0; Z=0; D=sum(dy(2:end)); % ds is partial penet ration
for i=1:50 % analytical solution partial penetration

ds=ds+1/i*(sin(i*pi*(ZS(1)-2)/D)-sin(i*pi*(ZS(2) -Z)/D))
*cos(i*pi.*(ym*ones(size(xm))-Z)/D)
*besselk(0,i*pi.*ones(size(dy))*xm/D);
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end
ds=ds*Qo/(2*pi*kD)*(2*D/(pi*(ZS(1)-Z2S(2))));
contour(xm,ym,ds)

title(  'dspp penetration contours' );
set(gca, ‘'xscale’ ,'log" )

5.2 Houskeeping with function modelsize(x,y)
To ease initializing the model, a small househgdimction may be applied like
[X,y,xm,ym,dx,dy,Nx,Ny]=modelsize(x,y)

It makes sure& andy are in the right order, sorted and contain no idaf# values, so that
the coodinates may be given in any order. It tremputes the centers of the cels)
andym, and given the size of the modéy, Nx, i.e. the number of rows and the number
of columns of the model. Using this simple functamids clutter in your scripts.

function  [x,y,xm,ym,dx,dy,Nx,Ny]=modelsize(x,y)
%[xm,ym,dx,dy,Nx.Ny]=modelsize(x,y)

% compute size of model and put x and y in correct order
x=unique(x()");
y=sort(unique(y(:)), ‘descend’ ); % first row is highest coordinated

xm=0.5*(x(1:end-1)+x(2:end));
ym=0.5*(y(1:end-1)+y(2:end));
dx=diff(x);

dy=abs(diff(y));

Nx=length(dx);

Ny=length(dy);
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6 Transient modeling

With the previously developed models, all ingretBeare already in place. The transient
water balance during a given time step of lengthreads

a4 +Gi=Q+Gh-g At (2)

This is the same as before, a complete model imgluts boundaries, but now with the
storage added to the balance. The left part ildleoutward of node; the right-hand
side says where this water comes from: injection the node, a fixed head boundary

and a release of storage over the considered tape#’ is the nodal head at the end of
the time step ands™ is the head at the beginning of the time steps Tibad represents

the initial condition necessary in all transientdating. It is either the initial head at the
start of the model or the head at the end of tegipus time step. In any case, it is always
known during the simulation.

All other heads and the flows have to be averagieesdor the duration of the current
time step and are still unknown.
C, contains the storativity and the cell dimensiamg] will be considered further down.

The computation of this coefficient is specificthe numerical method, in our case finite
differences.

Here we encounter two unknowns,and ¢ . We will only be able to resolve this

situation if we assume some relation between tloe Rar instance that the head change
during the time step is linear and that the averagals are those at time given by some

valuet =t~ + At where0< @ <1, so that

b4 =0(¢ -9 ) >4 -4 =20 (3)
and therefore,
Y84 +Gh=Q+C —i(«ﬁ ¢) (4)

OAt

Exactly like we did with the general fixed headg, iwave the fixed part at the right-hand
side and put the variable part to the left hand sid

Dag +Gg+ icé Q+ C.+073t'¢* (5)

The left-hand side is equivalent to addiigand C,,/(At) to the diagonal matrix

coefficient. The right-hand side is equivalent fpeamanent inflow into the node during
this time step. In Matlab/matrix formulation

. C 1
A+diag| C+—= | |*®=Q+C*h+—C * @ 6
[ g( HAtD Q oAt~ ° (®)
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This represents the complete transient model, including itsinitial and boundary
conditions.

Hence, to solve this model in Matlab for the tinheps

. C 1
d=|A+d C+—=||\ C*h+—C,* D 7
[ + |ag( +HAtD [Q+ +0At s j (7)

This yields average heads during the time stepe(bas the chosen value®y. The head
at the end of the time step requires a separatpuation step:

q>*=q>+1(q>—q>)=3q>+(1——qu> (8)
0 0 0

Then, by settingb™ =®" we enter into the next time step, with the headbeaend of
the previous time step are the initial heads ot one.

The value of¢ is called the implicitness of the solution.=0 is called explicit and

6 =1 is called fully implicit. Values above 0.5 yielthble solutions (without artificial
oscillations).@ = 0 requires small time steps in order to preventliasicin. On the other
hand computation steps are cheap because it doesguire any solution of a system
matrix. A value of 1 is called fully implicit. It ay be less accurate in case of larger time
steps, but it is rock-stable. Notice that MODFLOWStjuses? =1 without any choice for
the user. An optimal value for finite element medetems? = 2/3. Anyway, all values
aboved = 0.5 yield unconditionally stable solutions. In praeti@ may be most simple
to used =1, which implies that the average flows and headsduhe time step are well
represented by those at the end of the time stepn@he success of MODFLOW there
seems to be no real objection agaifistl. 8 =1 makes the second step to update the
heads at the end of the time step obsolete bedaweskices to

O =] (9)
The only thing to be elaborated are the value€ offFor the flat finite difference model
these equal

Cs=SAXN (10)
Where S, is specific yield (water table storage) afdis the specific storage, which
requires the thickness of the model cell to bemive

As can be seen, each cell is given both a spaadld (in case it has or gets a free water
table) and an elastic storage for the saturated Ipasur simple models we will not deal
with variable aquifer or layer thickness during fiaulation, although this is quite
straightforward to implement.

For the radial symmetric model the storage coeffits equal
Co=n(r?,—r%)AyS, (11)

In practice,S, will be specified for the top cells with a freetemtable and Ss for all
deeper cells.
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What has to be changed to the model to make isizrat®?

The function call has to be extended with timeregge coefficients and initial heads,
while & may be specified or just set to a default value.j\gt keep? as an internal
parameter of the model. Here is the transient model

function  [Phi,Qt,Qx,Qy,Qs]=fdm2t(x,y,t,kx,ky,S,IH,FH,FQ,rad
% function [Phi,Q,Qx,Qy,Qs]=fdm2(x,y,t,kx,ky,S,IH,F
% 2D block-centered transient finite difference mod
% IH=initial head [L]

% FH=fixed heads (NaN for ordinary points) [L]

% FQ=fixed nodal flows [L3/T] constant in this mod
% Phi [L3] output heads 3D matrix, all time steps

% Qt [L3/T] to adjacent nodes during time step =-St
% Qx [L3/T] is hor cell face flow time step averag

% Qy [L3/T] is vert cell face flow time step averag

% Qs [L3] is nodal storage change, time step total!
% TO 991017 TO 000530 001026 070414 070426

theta=1; % implicitness

x=x(:)"; Nx=length(x)-1; dx=diff(x); xm=0.5*(x(1:en
y=y(:); Ny=length(y)-1; dy=abs(diff(y));
t=t(:); Nt=length(t)-1; dt=diff(t);

Nodes = reshape(1:Nx*Ny,Ny,Nx);
IE=Nodes(:,2:end); IW=Nodes(:,1:end-1);
IS=Nodes(2:end,:); IN=Nodes(1:end-1,:);

% resistances and conductances

If nargin==10
RX=(1./dy)*log(x(2:end-1)./xm(1:end-1))./(2*pi*k

(1./dy)*log(xm(2:end)./x(2:end-1)) ./(2*pi*kx

RY=0.5/pi*dy*(1./(x(2:end)."2-x(1:end-1).2))./k
Cx=1./RX;
Cy=1./(RY(1:end-1,:)+RY(2:end,:));
Cs=pi*dy*(x(2:end)."2-x(1:end-1).72).*S;

else
RX=0.5*(1./dy)*dx./kx; Cx=1./(RX(:,1:end-1)+RX(:
RY=0.5*dy*(1./dx)./ky; Cy=1./(RY(1:end-1,:)+RY(2
Cs=dy*dx.*S;

end

A=sparse([IEC:);IW();INCG);IS()],
[IWE)IEC)ISC)ING)],
-[CX(1);Cx(:);Cy();Cy ()],
Ny*Nx,Ny*Nx,5*Ny*Nx);

Adiag= -sum(A,2);

C=zeros(size(FH)); C(~isnan(FH))=1e10;
FH(isnan(FH))=0;

Phi=NaN*zeros(Ny,Nx,Nt);

Qt =NaN*zeros(Ny,Nx,Nt-1);
Qx =NaN*zeros(Ny,Nx-1,Nt-1);
Qy =NaN*zeros(Ny-1,Nx,Nt-1); % storage vert face flows
Qs =NaN*zeros(Ny,Nx,Nt-1); % storage for head matrix
Phi(:,:,1)=IH; Store in initial head as Phi at t=0

for it=1:length(dt)
Fi=spdiags(Adiag+C(:)+Cs(:)/(dt(it)*theta),0,A)\.
(FQ()*+C(:).*FH(:)+reshape(Cs.*Phi(:,:,it)/dt(i

Phi(:,:,it+1)=reshape(Fi,Ny,Nx)/theta-(1-theta)/t
Qt (:,;,it) =reshape(spdiags(Adiag,0,A)*Fi,Ny,Nx
Qx (:,:,it) =-Cx.*diff(reshape(Fi,Ny,Nx),1,2)*si
Qy (:,:,it) =-Cy.*diff(reshape(Fi,Ny,Nx),1,1)*si
Qs (:,5,it) =-Cs.*(Phi(:,:,it+1)-Phi(:,:,it))/dt

end

Olsthoorn

% storage for head matrix
% storage nodal flow matrix
% storage hor face flows

ial)
H,FQ,radial)
el

el

[Ny,Nx,Nt]
orage+inflow
e [Ny,Nx,Nt-2]
e [Ny,Nx,Nt-1]
! [Ny,Nx,Nt-1]

d-1)+x(2:end));

% Node numbering

x(:,1:end-1))+
(:,2:end));
Yi

,2:end));
:end,?));

% System matrix
% Main diagonal

% fixed heads using huge number

t)/theta,Ny*Nx, 1)):

heta*Phi(:,:,it);

);

gn(x(end)-x(1)); % m3/d
gn(y(end)-y(1)); % m3/d
(it);
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The water balance can be checked as follows
N
Qt = z Cij (¢| _¢j )= inxed +Qtrough fixed head+Q storag (12)
j=1,j=

Q: is thus the inflow to a node averaged over the step. This is the flow towards its
adjacent connected nodes. It balances with thendived inflows from the outside
world, Qsixeq, the inflow from the outside world through anydtkhead nodes and the
release of storage (see model code).

QStorage= -C S(CDJr - ®7)/dt (13)

The ouput flows are all averages during for eatie tstep. That is also true for the
Qstorage It iIs computed as the release, see equation adelmode. The total release
from storage for a node over the entire time steg equals

Qdt=-C (¢ —¢ ) dt

To check this water balance, for a model with mediheads and only fixed flows,

dt=diff(t);
St=zeros(length(dt)); % Vector to store total stora ge per time step
for it=1:length(dt)

St(it)=sum(sum(Qs(:,:,it)))*dt(it); % =FQ+Qfrom FH+QStoreRelease
end
sum(St(:)) % show total storage release over entire period
sum(FQ(:)*sum(dt) % Qw is well flow show total infl ow from fixed flows

These two show the equal.
In the case of fixed head cells we may computdixiee head cell inflows from

Qg () =Q, () ~Q fred () -Q Stofage(:)

6.1 Exercises transient model
Prove that the model is correct

0 --- Check the water balance

To check the water balance, the storage must hediedt. Check for your self which
flows must add up to zero

1 --- Compare the model with Theis’s solution

Theis’s solution is for a fully penetrating wellanconfined aquifer. The well-known
solution for the drawdown is

2
o Q, E rs
47kD 4kDt

With E, the exponential integral or Theis’s well functidm.Matlab, for time t(i)

Olsthoorn Page 44 of 66 3/15/2009



CT5440 Exercises, make your own finite differenaael in Matlab

S=Qo/(2*pi*kD).*expint(r.2.*S./(4*kD*t(i)));

% Compute radial transient model compare with Theis analytical solution
rw=0.1; k=10; Ss=0.0001; Sy=0.1; Qw=-2400; t=logspa ce(-3,2,51);
r=logspace(log10(rW),4,41);

z=[0, -20];

[r,z,rm,zm,dr,dz,Nr,Nz]=modelsize(r,z); % small household function

K=k*ones(Nz,Nr);
S=Ss*ones(Nz,Nr); S(1,:)=Sy/dz(1); % combine Ss and Sy (spec yield)

FH=NaN*zeros(Nz,Nr); % fixed head not necessary for transient flow
IH=zeros(Nz,Nr); % initial heads are always essential
FQ=zeros(Nz,Nr); FQ(1,1)=Qw; % extraction at r=rm(1)
kD=k*sum(dz); SY=sum(S(:,1).*dz); % kD and S for analytical comp
fi=Qw/(4*pi*kD)*expint((1./(4*kD*t"))*(rm.~2*SY)); % analytical
[Phi,Qt,Qr,Qz,Qs]=fdm2t(r,z,t,K,K,S,IH,FH,FQ, radial' );  %run model
close all; figure; hold on % start visualisation
for it=2:length(t)

plot(rm,Phi(1,:,it), X' ); % numerical as crosses
end
plot(rm,fi); % analytical as function of rm, lines
titte(  'Theis drawdown as function of r for different time s');
xlabel(  'r[m]" ); ylabel( 'dd [m]" );
set(gca, ‘'xscale’ ,'log' ); % use log scale
figure; hold on
for ir=1:length(rm)

plot(t,squeeze(Phi(1,ir,:)), 'X-"); % must use squeeze if 1 layer
end
plot(t,fi'); % analytical as function of time, lines
title(  'Theis drawdown as function of t for different time s');
xlabel( 't [d] ); ylabel( 'dd [m]" );
set(gca, ‘'xscale’ ,'log" ); % use log scale
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Theis drawdown as function of r for different times
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Figure 14: Drawdown as function of distance to the wefbr different times (x = numerical, lines are

analytical solution according to Theis

Theis drawdown as function of t for different times
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Figure 15: Drawdown as function of time for various disances to the well (numeric X, line analytical

Theis solution)
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The pictures show the accuracy of the model. Theaineeems to be off for very small
times only. This is because the model starts vatlo mitial heads at a very non-zero
time, while the analytical solution is only zerozato time. This difference can be
completely removed by using the analytical soluabthe initial time as initial heads.

2 --- Compare the model with Hantush’s solution
Hantush’s solution concerns the drawdown due teladiwa semi-confined aquifer:

o )-Bedoa (i) Jo

It may be implemented by writing a function thatress out the integration

Q, ( r j r’s
S=—— — |, U=
47kD V| A 4kDt

3 --- Compute delayed yield

Delayed yield may result from the drawdown aboeeatuitard that is caused by the
leaking through the aquitard. It also results fritvea combination of elastic storage and
water table storage in the same unconfined aqurigially the drawdown is due to

elastic storage, which expands fast. Slowly theewitble will determine the drawdown
and will show up at a later time. The combined dfawn curve shows two theis-curves

in series, the first one determined by the elatticage, the second one by the water table
storage. In Matlab is it readily modeled by givedcells a small elastic storage
coefficient and only the top layer cells a largee pthe specific yield. Compute the time-
drawdown curve and compare it with the two Theives

4 --- Compute well bore storage (Boulton)

The storage inside the well changes the drawdowrtlghafter the start of the pump. It
may be implemented by modeling the well casingiekfyl. A thin column may be given
a zero horizontal conductivity to represent theempus well casing. Then the top cell
inside the casing is given a storage coefficientaktp 1. To represent the free water
inside the screen and the casing, use a largeakconductivity. The extraction may
then be from any of the cells inside the screeth@rcasing. The large vertical
conductivity inside the well makes sure the heatiessame throughout the well screen
and casing. The result should be compared witlatia¢ytical solution given by Boulton.
A practical manner is comparing it with curves Bworulton in Pumping Test Books (e.g.
Kruzeman & De Ridder, 1970, 1995)
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Figure 16: A large diameter well

Consider a large 5 m radius dug well that is alse &eep in a 20 m deep aquifer. The
specific yield is 5% and the extraction 130 m3/d, 1000 people using 70 I/d plus 600
cattle using 100 I/d. What will be the drawdowrthis well? Is it sustainable?

To analyze this situation, make an radial symmenaclel, 20 m deep. Use a
logarithmically increasing grid size with distar(say logspace(-1,4,41), such that the
drawdown will not reach the outer boundary of tredel) and say 20 layers of 1 m
thickness vertically. Then refine around the diaanef the well and around its bottom, to
accurately compute the concentrated flow in thigone

In the well use a very high conductivity, day k=000so that the well will obtain a
uniform head like in the reality. The extractionyniee put in an arbitrary model point
inside this well. Then apply the storage coefficknthe model cells. All cells may be
given the specific elastic storage coefficient byadilt. However, specific yield is
different. It applies to the topmost cells only amel must use it there as a kind of elastic
storage for the top row of cells. To do this, Ggdz for this row as storage coefficient.
That is, do this for all top row cells and usdzL{i.e. §=1) for the cells representing the
inside of the well.

rw=5; zW=-5; R=10000; k=1; Ss=0.0001; Sy=0.05; Qw=- 130;
r=[logspace(0,log10(R),50), rwW+[-0.5 -0.25-0.1 0 0 .10.250.5 1]];
z=[0:-1:-20, zZW+[-0.5 -0.25 -0.1 0 0.1 0.25 0.5]];

t=logspace(0,3,31);

[r,z,rm,zm,dr,dz,Nr,Nz]=modelsize(r,z);

K=k*ones(Nz,Nr); K(zm>zW, rm<rW)=10000;
S=Ss*ones(Nz,Nr); S(1,:)=Sy/dz(1); S(1,rm<rW)=1/dz( 1);
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FH=NaN*zeros(Nz,Nr);

IH=zeros(Nz,Nr);

FQ=zeros(Nz,Nr); FQ(1,1)=Qw;
[Phi,Qt,Qr,Qz,Qs]=fdm2t(r,z,t,K,K,S,IH,FH,FQ, radial' );

kD=k*sum(dz); SY=sum(S(:,end).*dz);
fi=Qw/(4*pi*kD)*expint((1./(4*kD*t(:)))*(rm."2*SY))

close all

plot(rm,squeeze(Phi(1,:,3)), '+ ,rmJfi, =" ); hold on

titte(  'Drawdown insize pp large diameter well, compare wi th Theis' );
xlabel(  'r[m]" ); ylabel( 'dd [m]" );

set(gca, ‘'xscale’ ,'log' );

figure

plot(t,squeeze(Phi([1,end],1,:)), + G, 1), )

set(gca, ‘'xscale’ ,'log' );

legend( 'in well' , 'below well, bottom aquifer' , 'Theis' );

titte(  'Drawdown in partially penetrating large diameter w

xlabel( ‘t[d] );ylabel(  ‘dd[m]' )

set(gca, ‘'xscale'

, log™);

Example of a large diameter well

Drawdown insize pp large dlameter weII compare with Theis

ell, compare with Theis'

0 (- I 71 7\7 L;‘ - l Y Y Y
T \ L T T TCTTHTTTT + f‘zk_':<k, — :
+++++++HW +f%$$i§§ o
IR 097 %/( 27 i
1 +++++++4+$+ 794771 ‘ 1
+++++++%§ G z
2 st g B 4
3b ﬁ sy arsse i
ko] v 1% / A
© _4 A -
7 % o
L / ‘j:
5 j
W \ara i viiamt |
ra .
daRERR
_7 [ S| L L Lol L Lok L Loy
10’ 10" 10° 10° 10
r[m]

Figure 17: Drawdown (numeric +) along z=0 through well ad at top of aquifer. Comparison with
Theis solution (lines). The horizontal lines is théead inside the well (5 m radius)
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Drawdown in partially penetrating large diameter well, compare with Theis

0
+ I T : \
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Figure 18: Drawdown inside large diameter well, belowtiat the bottom of the aquifer and

comparison with Theis solution (this drawdown is qui¢ substantial). The drawdown inside and

below the well is less than Theis, because the largamheter compensates the partial penetration. The
drawdown at the bottom of the aquifer is much less thamside the well due to partial penetration.
Initially the drawdown in the well is less than Theis ad declines more or less linearly due to the large
storage inside it.

To check the water balance, see if the total etitmadrom the well over the entire period
matches the water released from storage

dt=diff(t);

St=zeros(length(dt));

for it=1:length(dt)
St(it)=sum(sum(Qs(:,:,it)))*dt(it);

end

FromStorage=sum(St(:))

Injected =Qw*sum(dt)

Matlab gives:
FromStorage = 1.2987e+005

Injected = -129870

These are indeed the same and equal the totateatraNow check with the given well
extraction (-130 riid * 999 days)

>> Qw*sum(dt)
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ans = -129870
Which indeed matches the given infiltration (exti@t = negative infiltration)

To visualize the flow, compute the steady-state ehod

FH(:,end)=0; % now we must have some boundary fix ed
[Phi,Qn,Qx]=fdm2(r,z,K,K,FH,FQ, 'radial' ); % steady state model
contour(rm,zm,Phi); hold on % head lines
contour(r(2:end-1),z,Psi(Qx)); % stream lines

set(gca, ‘'xscale’ ,'log' ); % log scale

title(  'large diameter well' ); xlabel( r [m]' ); ylabel( 'z[m]" );

large diameter well

AN |

z [m]

L Lo L R S S| | L Lol Lo

10" 10° 10°

r(m]

Figure 19: The contours of the steady-state computationith fixed head at R=10000. Inside the wells
the stream lines continue to the point of extractionNotice the logarithmic scale used to visualize the
situation

5 --- Compute the effect of a shower of rain oraecpl of land compare with analytical
solution

A shower of rain on a parcel of land cause the matée raised instantaneously, but the
head at the edges of the parcel remains equagtditith level. This comes down to an
immediate drawdown at the edges of the parcel, lwhiogresses into the parcel, initially
fast becoming slower and slower over time.
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To model this in Matlab, set the fixed head inditehes equal to zero and use an initial
head equal to/S,, wheren is the shower in mm arfg the specific yield. Then follow the
drawdown over time. Used increasing time stepsacktthe fast initial drawdown well.

t=logspacé-3,3,61) % logarithmically increasing series sitgrat10®, ending at 19in
60 steps (61 values, 10 per log cycle).

Compare the results with the analytical solution

T

y

WhereL is the half-width of the cross section throughphecel (Carslaw & Jaeger,
1959, p97, eq 8; Verruijt, 1999, p87).
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7 Model wrapping

Having a transient model, the steady-state versaonbe created by running the transient
model with the proper input. This would make thamenance of a separate steady —
state version of the model obsolete. On the othrd ha transient model requires more
input and is more complicated to use. A good cormize may then be to make a
wrapper around it, that looks like a steady-stadeleh but all it does is augmenting the
input with dummies and then call the transient nhadth its complete input. The use
then only bothers with the wrapper as if it wergteady-state version of the model.
Working with wrappers may easy model usage andeasame time reduce maintenance
as only a single model has be updated. This isce&dfyeimportant as models get more
complicated.

function  [Phi,Q,Qx,Qy]=fdm2wrap(x,y,kx,ky,FH,FQ,radial)

% function [Phi,Q,Psiy,Psix]=fdm2(x,y,kx,ky,FH,FQ,r adial)

% 2D block-centred steady-state finite difference m odel

% x,y mesh coordinates, kx,ky conductivities

% FH=fixed heads (NaN for ordinary points), Q=fixed nodal flows

% Phi,FQ computed heads and cell balances

% Qx is horizontal flow direction increasing column number

% Qy is vertial cell wall flow in directin of incre asing row number

% TO 991017 TO 000530 001026 070414

Dummy=zeros(size(FQ)); tDummy=[0 1];
[Phi,Qt,Qx,Qy]=fdm2t(x,y,tDummy,kx,ky,Dummy,Dummy,F H,FQ,radial);

Phi=squeeze(Phi(:,:,end));

Q =squeeze(Qt);

Qx =squeeze(Qx);

Qy =squeeze(Qy);

% squeeze eliminates one dimension if it has lebg8D>2D
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8 Particle tracking (flow lines)

Particle tracking is one of the functions most useal groundwater model. Contrary to
stream lines that require steady-state 2D flow ewitrsources and sinks, particles may
always be tracked to create flow lines. Clearlytipkes starting at the same location may
not follow the same path if released at differémes in a transient model. In the random
walk technique particles are even given a rand@plaiement at each time step to
simulate dispersion, which alters the path of irdlial particles in an unforeseen manner,
thus simulating dispersion.

Particle tracking in finite difference models istgustraightforward. The flows
perpendicular to the cell faces are known andgfbee, the specific discharge at theses
faces may be approximated by dividing by theiracefarea. Average. As the porosity in
the cells at either side of a cell face may difsermay the groundwater velocity
perpendicular to the cell face, even though theiipalischarge does not.

In finite difference modeling, the flow i y andz direction, which is parallel to the axes
of the model, is linearly interpolated between diabpposite cell faces. This implies that
the flow inx-direction (and velocity for that matter) is onlyumction ofx, the velocity in
y-direction only a function of and the one iz-direction only depends an This is
consistent with the model assumptions and largeiplgfies the analysis. However, for
large cells it may not be accurate. So it may lmessary to use smaller cells where large
variations in velocity occur in value and directi@n the other hand the elegance of this
approach is that the divergence remains zero @llalhis means no water is lost, so that
the flow paths by themselves are consistent.

To show this, take the divergence for an arbitomt within a 3D cell without sources
and sinks. This divergence must be zero:

0
aqX+ qy+8qX=0
oX oy 0z

Written out in the flows generated by the modeldarell with sizeAx, Ay, Az gives

(14)

QXZ _Qxl QyZ B le sz - Qﬂ _ _ B B B
ooynz  awpz angz 0 Qe Qat Qe Qut Qe Q=0 (15)

which must be true because it is the cell's wasdarice (without internal sources).

To analyze particle tracking within de realm of FDWither, consider the average
velocity at cell faces, computed from the flowspg@erdicular to the cell faceQ{ andQy)
and the porosity: of the cell. In 2D, the velocity in a cell with sity & may be
computed for the local flow ir andy direction. For generality we also have to consider
the thickness of the cel, perpendicular to they plane.

1Q.,_19

V=X y = 16
“ eHAy 7 gH Ax (16)

Within a cell the flow is interpolated between tbéathe opposite cell faces
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Qy+_ny
Qx+ Q,, Q/=Q7+(y_ y)—

Q=Q +(x=x)=—= vy

Qx _ Q, +(X )Qx+ Q AXQe ( 7) Qe Qe

X —

5HAy_5HAy 5HAXAy eV eV
Qy Q Qw_Qw ka Qﬁ_ Q
— — — + _
Y gHAX eHAX =) cHAXAY &V (¥-¥) eV

In which the indices + and — refer to the sidethdf cell.

HenceAx=Xx — X Ay=Yy-Yy

(17)

(18)

By dividing by eHAy and ¢H Ax within the cell we obtain the groundwater velasti

Qx _ Q, +(X )Qx+ Q,

X —

eHAY &HAy sHAXAY

Q Q, Q.- Q
T (Y=Y )—

sHAX  sHAX eHAXAY
Or,

Vie = Ve . VY+ — VY*

V=V +—(x-Xx); \ =\ +——2%
X X— AX ( *) y \<F Ay ( y_ y)
With
ax=%=—v”_vx’ and a =dvy=vy+—v%

dx dx Y ody dy

This simplifies to

V=V, + ax(x— >s).aﬂdVy =V + ax( y=- Y)

Working this out in terms of particle displacemgietds

dx:v +a,(X-X); dy

a X ' dt:Vyf+ay(y_yf)

We leave out thg-direction for now to limit the length of this pape

Integration yields

d(v_+a,(x=x))
Ve +a,(x-x)

=adt > In(v,_+a,(X-x))=a,t+ C
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With x=x, att=t, C may be computed, giving

ln{V*m*(X_x)}ax(t—to) (25)

Ve +a, (X%—X)

This equation is useful to compute at what timepdwicle hits a cell face given its initial
position in the cell. Clearly, its velocity musttrize zero (denominator), neither must the
velocity at the target position be zero (numeratornust the fraction be negative
(which means opposite velocities at current angetapositions, implying a water divide
in between).

Reversing this formula yields the position of tiztle at a given time

V, v,
X=X +|==+(X%—X) [expla,(t-=1))—— (26)
5 1) o (- )
Which may be rewritten in relative coordinates
X— X Y V,
u= —=| == ex t—t))——==, with Av=Vv,_—V 27
~ [Avwoj pler(t-1)) =25 wi -V (27)

This gives the relative position in the cell atemvtime starting at an arbitrary initial
positionx, in the cell at timé,. For this to work, the only condition is that =0 in

which case the velocity is constant and the nevtiponecomes.

X=X
v,

X

X=X+ V(t—1t) or t—t = (28)
The model must capture this situation as it needsé an alternative formula to compute

the velocity at another location or the time totgesome other locations (i.e. the cell
face).

If
V +a,(x=X) <0
Ve +a, (%—x)

The logarithm does not exist. The reason is thavéhocity at the target locationis
opposite to that at the current locatigrso that the particle never reaches the target
location. This happens if there is a water divideneen the current and target locations.
In this case no time can be computed. On the didned the position of the particle may
then be computed for any time up to infinity. le tmodel these situations must be
captured.

The model
The logic of the particle tracking model is asdalk:

First compute the velocities at the upstream anghdtream sides of all cells, both in x
and y direction, using the cell face flows at tb# mterfaces and the porosities of this
cells.
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Then, given an arbitrary poisg, yp, find in which cell it is and start tracking dugia
given time steT

In case the velocity is zero the point remainssaposition and the time moves on to
t+DT. Particle position and cell index remain unchanged

If the velocity is negative, compute movement atipke in the direction of the upstream
cell face:

If the velocity is constant, use the appropriatenfola. Compute the timet to reach the
cell face. If this time exceed3T, useDT instead and compute the new particle position
usingDT. Don’t update the cell index.

Else check the velocity direction at the targel feele and see if the particle will ever
reach it. If so, compute the tindé until the hit. Provisionally update the particlesftion
to this cell face and reduce the cell index forthadirection by 1. Now check iit>DT to
see if the targdDT is reached before we hit the cell face. If thighis case, useT
instead and compute the particle position ugiig Don’t update the cell index.

If the particle will never reach the upstream tadle, usédT and compute the particle
position afteDT. Don’'t update the cell index.

The same logic is used for the downstream cell fiatlee case the velocity is positive.
The same logic also applies for the y-direction.

Finally we have a provisional new positigpN ypN with provisional change of cell
indix dic, djc (both -1, O or +1) irx andy direction respectively and two timdt anddt,
that meet the criteria in both tkeandy direction respectively.

The smallest of the two determines the final pkrrtigpdate. In case thisds, than the
valuesxp=xpN, ic=ic+dic anddt=dtx will hold and the y-position of the particle haslte
recomputed using the nadt. In case the smallest of the twaltg it is the other way
around.

Clearly,dt may be smaller than the initial target time 4Ddp as a cell face is hit much
sooner. ThelT is reduced byt and the procedure is done all over again, caubimg
particle to move through the next cell. This ise&jed untiDT has become zero. This
makes sure that the particle position at given fpoiats will be stored together with the
positions and times that a particle crosses cedda

The procedure is repeated with a new time sted,alhhave been worked through.

Because the cell face flows at the outer boundzsgd of the model are always zero in
the finite difference model, particles can neverape the model and need no special care
in that respect. However, particles will enter agtion cells, where they would simply
slow down indefinitely as, because such cells bel@vhaving a water divide inside (or a
distributed extraction over the cell area). Therefd is better to capture particles
entering cells that have an extraction which isdmelya given fraction of the throughflow
of the cell. This is the same approach as MODPATH.

The extraction is provided by the output of fdm2 éime throughflow is computed as the
sum of the absolute values of the flows acros4 edéll faces. This threshold fraction may
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be set at 15% or so. So the loop is broken ofbas ss the particle enters a cell being a
sink according to this criterion.

To allow dealing with the andy (and possibly the-axis) in the same manner, so that
the program uses the same logic for the three axesmust guarantee that the cell
indices are aligned (increase) with the positivis-airection. This is checked in the
beginning and if necessary the concerned matrieesipped accordingly left-right or
upside-down.

To allow backward tracing, the matric®s andQy are multiplied by -1. Backward
tracing is signaled by using negative times initipeit.

The implementation is such that the functidmpathis called after the model has been
run and the necessary nodal and cell-face flowicggticomputed. The extra information
that thefdmpathneeds is the porosity of all cells and eitherttiekness of each cell or
the sign that the model be computed in radial tashi

[XP YP TP]=fdmpath(x,y,DZ|radial,Q,Qx,Qy,por, T,[mar kers])

Use the x,y,Q,Qx and Qy matrices that are the autpidm?2
Make sure the size of the porosity matrix equadssibe of Q or use a scalar.

Make sure that the absolute values of the timeesédriare increasing. Use negative
values for backward tracing. You don’t need totstath a zero first time.

The third argument is either a matB¥ of the cell thicknesses or a string such as ‘R’ or
‘radial’ to indicate the radial symmetric case. foay use a scalar f@Z. An empty
matrix [] will be regarded the same @g=1.

In the case of radial flow the horizontal and \aativelocities at the cell faces are
computed as

and vV =L (29)

The optional markers is a string consisting oklettthat are valid Matlab marker
indicators. The default is (see doc marker).

'+0*.xsdph”v<>'

There will be a marker plotted in the paths formegiwen time (except zero) according to
this list of markers, which is repeated of there raore times than markers given. For
instanceoooop’ gives you four ‘o-markers’ and each fitilp’=pentagon

When the model is run, it picks up the currentf@(assuming it is a contour plot
generated after running the model) by letting yiick@t a point in it (left mouse button).
The program will immediately compute and show tbe/fpath with the markers (No
markers will be visible if the particles leave thedel before the first time is reached).

You can repeat this as long as you like.

To stop use the right-hand mouse button. Uporthieigrogram stops and yields the XP,
YP and TP coordinates of all the generated linbesé& points and times include all
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points where particles crossed cell borders anplaatits at the given times. The
individual lines in these matrices are separated BaN (“Not a Number” value). The
coordinates at the given times can be picked otliesfe matrices:

for it=1:length(T)

I=find(abs(TP-T(it))<1e-6);

plot(XP(1),YP(l),’0";
end
As with all Matlab functions, you can always gelphiy typing
helpfdmpath
fdmpathhas a self test built in. It will be run if youpty
fdmpath

Finally, it is a good exercise to work this out faansient flow. In that case the flows are
dependent of the time which requires some extraélkmeping. It is also a good exercise
to work this out for 3D, possibly 3D and transiertis is not very difficult, but the
convenience will be much less due to more diffisigtialization and data handling. If
you really need to do a complicated 3D transiendi@ling project, rather use standard
software with an advanced user interface with emsgy and management of the input,
output and visualization. Having said all this, tugrent modeling provided in this
syllabus comprise a practical, powerful and effitimmodeling toolbox with many uses
for practical real-life groundwater modeling.

8.1 Checking the particle tracking
To check the particle tracking use some converageatytical solutions

A cross section, thicknes$ porositye and recharga, with a water divide at=0 center
obeys the following relations

dx nx dx n n .
g ng—>n(x) v +C(wi b, = %)

n n
In(XO)Zg—HtO-i-C—)C:In()S)—g—HtD (30)
X n n
In (—J =8—H(t—t0)—> X = xoexp(g—H(t—to)j

This can be used to check the travel time in thdehm two directions.

Another simple check is a well in a confined aquiféere we have

Qt

Qt=¢HzR —> R=
reH

(31)

So set up a model, run it, contour the resultsfdmpath and check its results by
clicking a point near the well
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%% radial flow to a well, check fdmpath:
clear all ;close all ;
Qo0=2400; por=0.35

x=logspace(-1,4,51); y=[0 -1 -2]; % need 2 y layers to contour
[x,y,xm,ym,dx,dy,Nx,Ny]=modelsize(x,y); % houseke eping
k=10*ones(Ny,Nx); % conduct ivity
FH=NaN*ones(Ny,Nx); FH(:,end)=0; % fixed h ead boundary
FQ=zeros(Ny,Nx); FQ(:,1)=Qo.*dy./sum(dy); % divide Q over the 2 layers
[Phi,Q,Qx,Qyl=fdm2(x,y,k,k,FH,FQ); % run mod el fdm2
contour(xm,ym,Phi,30); set(gca, 'xlim" [0 3000]); % contour results
T=3650; % time series (one point only)
[XP YP TP]=fdmpath(x,y, 'radial’ ,Q,0Qx,Qy,por,T, '0" ); % run fdmpath
R=sqrt(Qo*T(end)/(pi*por*sum(dy))) % check this yields 1996 m

8.2 Listing of fdmpath

function  [XP YP TP]=fdmpath(x,y,DZ,Q,Qx,Qy,por,T,markers)

% [XP YP TP]=fdmpath(x,y,DZ,Q,Qx,Qy,por,T,markers,[ radial])

% 2D particle tracking.

% To use: generate a 2D steady state model, launch this file and on the

% pictures click for a starting point. The line wil | be immedidately drawn
% Repeat this for more lines. Click te right hand b utton to stop

% type fdmpath for selftest and demo
% x y mesh coordinates

% DZ thickness of the cells (if empty, 1 is used, m atrix not needed)
% if DZ is a character string radial flow is assume d so use 'radial’ or so
% for DZ in case a radially symmetric flow is desir ed

% Q Qx Qy output of fdm2 (steady state only)
% por matrix of porosities (scalar is enough)

% T time points where markers is desired, O not nec essary, will be added

% use negatigve times values to trace backward in t ime

% markers is a series of markers for the consecutiv e times

% e.g. '>+o*.xsdph”v<'

% XP YP TP coordintates of flow paths, there is a [ NaN NaN NaN] between

% consecutive tracks.
% TO 070424 070501

if nargin==0; selftest; return ; end
if nargin<9

markers= '+0*.xsdph”v<>'
end

Lm=length(markers);

Nx=length(x)-1; Ny=length(y)-1;

if isempty(DZ), DZ=ones(Ny,Nx); elseif isscalar(Dz), DZ =DZ *ones(Ny,NXx); end
if isscalar(por), por=por*ones(Ny,Nx); end
%first make sure the positive direction of the grid is aligned with the positive x and y
directions

if sign(x(end)-x(1))<0, x=fliplr(x); Q=flipIr(Q); Qx= fliplr(Qx); Qy=flipIr(Qy);
Dz=fliplr(DZ); por=fliplr(por); end

if sign(y(end)-y(1))<0, y=flipud(y); Q=flipud(Q); Qx= flipud(Qx); Qy=flipud(Qy);
DZ=flipud(DZ); por=flipud(por); end

dx=diff(x); dy=diff(y);

% then check which cell are sinks

if T(end)<T(1) % if times negative then track particles backward i n tme
Qx=-Qx;
Qy=-Qy;
T=-T,

end

sinkfrac=0.15;
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Qthrough=zeros(size(Q));

if ~isempty(Qx)
Qthrough=Qthrough+[zeros(size(Qx(:,1))),abs(Qx)

end

if ~isempty(Qy)
Qthrough=Qthrough+[zeros(size(Qy(1,:)));abs(Qy)

end

sink= Q < -sinkfrac*Qthrough;

if ischar(DZz)
if ~isempty(Qx)
A=dy*2*pi*x;
vx2=[Qx, zeros(size(Qx(:,1)))]./(A(:,2:end)
vx1l=[zeros(size(Qx(:,1))), Qx]./(A(:,1:end-
ax=(vx2-vx1)./(ones(size(Qx(:,1)))*diff(x))
end
if ~isempty(Qy)
A=ones(size(dy))*(pi*(x(2:end).~2-x(1:end-1
vy2=[Qy; zeros(size(Qy(1,:)))]./(A.*por);
vyl=[zeros(size(Qy(1,:))); Qyl./(A.*por);
ay=(vy2-vyl)./(diff(y)*ones(size(Qy(1,:))))
end

else
if ~isempty(Qx)
vx2=[Qx, zeros(size(Qx(:,1)))]./((dy*ones(s
vx1l=[zeros(size(Qx(:,1))), Qx]./((dy*ones(s
ax=(vx2-vx1)./(ones(size(Qx(:,1)))*diff(x))
end
if ~isempty(Qy)
vy2=[Qy; zeros(size(Qy(1,:)))]./((ones(size
vyl=[zeros(size(Qy(1,:))); Qy]./((ones(size
ay=(vy2-vyl)./(diff(y)*ones(size(Qy(1,:))))

end
end
XP=([]); YP=([); TP=([l);
while 1
[Xp, Yp, button]=ginput(1); if button~=1;
stream lines
DT=diff(T(:)); if T(1)~=0, DT=[T(1);DT];

for ip=1:length(Xp);
Xp=Xp(ip); yp=Yp(ip); t=T(1);
XP=[XP;NaN;xp];
YP=[YP;NaN;yp];
TP=[TP;NaN; t];
iLast=length(TP);

ic=find(x<xp,1, last' );
je=find(y<yp,1, last' );
for idt=1:length(DT);
dt=DT(idt);
while dt>0
if isempty(Qx)
dic=0; dtx=dt;
else

[xpN,dic,dtx]=postime(xp,x(ic),x(ic+1),vx1(jc,ic),v
end

if isempty(Qy)
djc=0; dty=dt;
else

[ypN,djc,dty]=postime(yp,y(jc),y(jc+1),vyl(jc,ic),v
end

[ddt,i]=min([dtx,dty]);

Olsthoorn
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]+[abs(Qx),zeros(size(Qx(:,1)))];

1+[abs(Qy);zeros(size(Qy(L,:));

% then the flow is radial symmetric

*por);
1).*por);

):"2));

ize(dx))).*por.*DZ);
ize(dx))).*por.*DZ);
(dy))*dx).*por.*DZ);

(dy))*dx).*por.*DZ);

break ; end % get starting points for

end

% to later plot only this line

x2(jc,ic),ax(jc,ic),dt);

y2(jc,ic),ay(jc,ic),dt);
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switch i
case 1
if ~isempty(Qy)
Xp=XpN;

yp=pos(yp,y(jc),vyl(c, ic),ay(jc,ic),ddt);

end
ic=ic+dic;
case 2
if ~isempty(Qx)

xp=pos(xp,x(ic),vx1(jc, ic),ax(jc,ic),ddt);

yp=ypN;
end
jc=jc+djc;
end

dt=dt-ddt; t=t+ddt;
XP=[XP:xp]; YP=[YP;yp]; TP=[TP:t];
if length(XP)>20000; break ; end

if dt==0
m=mod(idt,Lm); if m==0, m=Lm; end
line(xp,yp, 'marker’ ,markers(m)); hold
end

if sink(jc,ic);
break ; % from while
end

end

if sink(jc,ic);
break ; % from for
end
end
line(XP(iLast:end),YP(iLast:end), ‘color'  ,'g" ),
end
end
XP=[XP;NaN]; YP=[YP;NaN]; TP=[TP;NaN];

function  [xp,dic,dt]=postime(xp,x1,x2,v1,v2,ax,Dt)
EPS=1e-6;

v=v1+ax*(xp-x1);
if abs(v)<EPS

% ic=ic
dt=Dt; % immediately jumpt to end of time step
dic=0;

return ; % X remains same location

end

if v<O % point moves to face at left side
if abs(ax)<EPS % v will be constant
dt=(x1-xp)/v;
if dt>Dt
dt=Dt;
Xp=xp+v*dt;
dic=0;
else
Xp=x1,;
dic=-1,
end
elseif v1>=0 % point will never reach left face
dt=Dt; % immediately jump to end of time step
Xp=pos(xp,x1,v1,ax,dt); % compute position at Dt
dic=0; % ic=ic
else
dt=tim(xp,x1,x1,v1,ax);
if dt>Dt
dt=Dt;
Xp=pos(xp,x1,vl,ax,dt);
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dic=0;
else
Xp=x1,;
dic=-1;
end
end
end

if v>0
if abs(ax)<EPS
dt=(x2-xp)/v;
if dt>Dt
dt=Dt;
dic=0;
Xp=xp+dt*v;
else
Xp=X2;
dic=+1;
end
elseif  v2<=0
dt=Dt;
Xp=pos(xp,x1,v1,ax,dt);
dic=0;
else

dt=tim(xp,x2,x1,v1,ax); % CHECK

if dt>Dt
dt=Dt;
Xp=pos(xp,x1,vl,ax,dt);
dic=0;
else
Xp=X2;
dic=+1;
end
end
end

function  xp=pos(xstart,x1,v1,ax,dt)
EPS=1e-6;
if abs(ax)<EPS
vx=v1+ax*(xstart-x1);
Xp=xstart+vx*dt;
else
xp=x1+(v1l/ax+(xstart-x1))*exp(ax*dt)-vl/ax;
end

function  dt=tim(xstart,xtarget,x1,v1,ax)
dt=1/ax*log((v1+ax*(xtarget-x1))/(vl+ax*(xstart

function  selftest
help fdmpath
clear all ; close all
y=linspace(-2500,2500,22);
x=linspace(-2500,2500,22);

[x,y,xm,ym,dx,dy,Nx,Ny]=modelsize(x,y);
DZ=50;

k =10;

n=0.001;

kx= ones(Ny,Nx)*k*DZ; ky=kx;

FH=zeros(Ny,Nx)*NaN; FH(:;,[1,end])=0; FH([1,en

FQ=n*dy*dx;
[Phi,Q,Qx,Qy]=fdm2(x,y,kx,ky,FH,FQ);
contour(xm,ym,Phi); hold on

%Track particles
por=0.35; DZ=50;
t=[60 365 3650 25*365 100*365];
[XP,YP,TP]=fdmpath(x,y,DZ,Q,Qx,Qy,por,t,

Olsthoorn
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9 Examples

Some examples have already been given and an tedimimber of other ones can be
given. Below one that shows the how detail canrbgige and how radial and flat flow
can be done easily. It demonstrates the use afdayel the input of wells and walls at a
specific location. The detail can be seen in tgaré by zooming in near the sheet piling
(deep wall) of this building pit (preferably horiz@ally zoom first until the x an dy scale
are about equal and the apply regular zoom. (see options under the right mouse

button after selecting a figure in Matlab).

%% Circular building pit with partially penetrating

% The flow near the extraction and the tip of the s

% detailed. There is a semi-confined top layer and

% try to zoom in near the sheet piling. (horizontal

% the vertical and horizontal scales are more or le

% regular zoom to zoom furhter (zoom options are un

% button)

% To change to a regualr (not radial cross section)

% the call to fdm2 and replace ‘'radial'in fdmpath t

% section of 1 m thickness). Also change the times

% markers, because that will be much reduced compar

clear all ;close all

layers={
‘clay’ 0-5 0.02
'sand"  -5-50 20
‘clay’  -50-60 0.01
'sand'  -60-200 30

h
XW  =[19.920 ]; yW =[0 -15]; kw=0.0001;
XWells=[19.8 19.9]; yWells=[-6 -11]; FHWells=-6.7;

x=[0:2:18, 18:0.2:22 19:0.1:21, 22:2:40, 40:10:100,
500:100:1000];

L=[-5 -50 -60 -200];

y=[0-0.01 L, L+0.01, -5:-0.1:-7, -7:-0.5:-14, -15:
20.5, -20.5:-0.5:-25, -25:-5:-50];

% house keeping makes sure that points in vectors x
[X,y,xm,ym,dx,dy,Nx,Ny]=modelsize(x,y);

kx=zeros(Ny,Nx);
for i=1:size(layers,1);
kx(ym<=layers{i,2}&ym>layers{i,3},:)=layers{i,e
end
kx(ym<yW(1) & ym>yW(2), xm>xW(1) & xm<xW(2))=kW; k
FH=NaN*ones(Ny,Nx); FH(1,:)=0.0;
FH(ym<yWells(1) & ym>yWells(2), xm>xWells(1) & xm<x
FQ=zeros(Ny,Nx);
%[Phi,Q,Qx,Qy]=fdm2(x,y,kx,kx,FH,FQ,'radial');
[Phi,Q,Qx,Qy]=fdm2(x,y,kx,kx,FH,FQ);
contour(xm,ym,Phi,-5:0.2:0, 'b" ); hold on
contour(x(2:end-1),y,Psi(Qx),20, ™)
for i=1:size(layers,1)
plot([x(1) x(end)],[layers{i,2},layers{i,2}]);
end

% check water balance

sum(sum(Q(ym<yWells(1) & ym>yWells(2), xm>xWells(1)
sum(sum(Q(1,3)))
sum(sum(Q))
Phi(ym<-5 & ym>-6,1)
title(  'Half cross section through building pit with sheet
xlabel(  'x[m]" ); ylabel( 'z[m]" )

Y%particle tracking
por=0.35;

Olsthoorn

% material, top, bottom k

wells inside sheet piling
heet piling is very

an aquifer.

ly zoom in first until

ss equal, the use

der the right mouse

remove 'radial’ form
o1 (i.e. DZ=1, a cross
for the particle track
ed to radial flow).

% dimension and props of sheet piling
% locaton of wells, their fixed heads

100:25:250, 250:50:500,

-0.1:-16, -16:-0.5:-19.5, -19.5:-0.1:-

and y are unique and ordered

nd}; % layer conductivities

y=kx; % put sheet piling in k matrix
% semi pervious top layer

Wells(2))=FHWells; % wells in FH
% no given flows

% radial computation

% flat computation
% head contours
% 20 stream lines

% plot line above an below each layer

& xm<xWells(2)))) % extraction

% infiltration through top of model
% overall water balance
% head below building pit

pilings' );
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t=-365*%(0:5:50);
%[XP,YP,TP]=fdmpath(x,y, radial',Q,Qx,Qy,por.t,"...
[XP,YP, TP]=fdmpath(x,y,1,Q,Qx,Qy,por,t,

'
°
‘e | %
. -100 ‘,‘ o N .ﬁ S5 °
N \ . ) e °
| e S
-120- | @ . L)
\ °
| e ®e
| w
-140+ | .
-160 - \
-180 + ~___

p"); % radial
L.p' ); % flat

I ! I I ! I I
100 200 300 400 500 600 700

X [m]

|
800

[
900

Figure 20: Cross section (flat) with heads, streamlineand some particle tracks, obtained by clicking
on the figure when fdmpath is running (backward traces asimes were negative, see input above).
There is great detail near the sheet piling where alhe streamlines converge, which can only be seen

by zooming in.
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