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1 Abstract 

This document explains the theory behind numerical groundwater modeling and how to 
make finite difference groundwater models in Matlab (The Mathworks ®). It is an 
exercise in the course CT5440, Geohydology 2. It aims in to provide a relevant insight in 
numerical groundwater modeling and focuses on finite difference models. The structure 
is general and largely also valid for other numerical model types such as finite element 
models and surface water models. 

The models will be built by the student in Matlab. There will be a combined flat and 
radial symmetric model, one for steady-state and one for transient flow. The examples 
serve to demonstrate what may be done with them and also to show their accuracy with 
some pitfalls and tricks. 

The models are small Matlab functions, elegant yet powerful. They should provide a 
thorough insight and practice in numerical modeling in general. With these tools you will 
be able to do quite sophisticated modeling. And yet, a 3D model is not given. To make 
one is easy and straightforward and left to the student. 3D models do not much good to 
this course and your experience, because much more time would then go into more 
complicated data handling and visualization, especially with transient computations 
(yielding 4D arrays). If you really have to do detailed regional transient 3D modeling 
with all ins and outs, I suggest using a regular model that is coupled to a GIS, so you can 
make use of maps and other database information. 

Even though you could do all of your modeling in Matlab (even regional 3D multilayer 
transient modeling), a regular GIS based approach may be advisable using models that 
have been widely applied and intensively tested in practice. 

Yet, knowing how to use these handy Matlab models gives you a powerful tool to deal 
with many practical groundwater problems in a very short time. It also comes in handy if 
you may ever need to check a large model. 

The syllabus treats the theory without unnecessary details, shows how it works in Matlab 
and also shows how to get started with Matlab. You may copy parts of Matlab code 
directly from this word file whenever necessary, or rather make everything yourself. 
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2 Numerical groundwater modeling 
We will first give a general description of groundwater modeling and then derive an 
actual model, which will finely be converted into a finite difference model by choosing 
the network and the way the conductances between model cells are computed. The 
general overview is true for all kinds of numerical models. We will follow the general 
approach as long as possible as that provides the best insight and the least clutter. 

2.1 General overview numerical models 
Numerical models, whether Finite Element or Finite Difference Models divide the area to 
be modeled into elements or cells with given properties and nodes (or cells) where the 
head will be computed (Figure 1). In the Finite Element Method these cells may be of 
arbitrary shape, while the shape in the Finite Difference Method is more limited, for 
instance regular hexagons or rectangular. 

element

Node

  

 

Figure 1: Difference model meshes (grid). The left figure shows a finite element triangular network 
with the nodes at the element corners. The center figure shows a hexagonal finite difference network 
with nodes in the center of hexagons. The ight figure shows a rectangular finite difference network 
with nodes in the center of the rectangles (called cells). A rectangular finite difference network with 
nodes at the cell corners is also possible, but not shown here. Area properties will be give for 
elements/cells, heads and flows in and out of the model will be computed for the nodes. 

The locations where the heads are going to be computed i.e. the nodes may be the corners 
of the cells/elements or their center. We will make a finite difference model that 
subdivides a rectangular area into Ny rows and Nx columns, where the columns and rows 
may be of any size. We will compute the head in the center of these rectangles (see right-
hand picture of Figure 1). This method is straightforward, easy to understand and easy to 
implement and successful, because the same approach is used by the world’s most 
famous and most use groundwater model, i.e. MODFLOW of the United States 
Geological Survey (USGS) (McDonald & Harbaugh, 1988). 

After any of the possible derivations for the model equations, either in the finite element 
or finite difference method (abbreviated to FEM or FDM), the final result comes down to 
a system of equations, each of which is a water balance for a node of the model. This 
system of equations represents all nodal water balances, which must be simultaneously 
fulfilled. This is achieved by solving the system, i.e. computing the heads in the nodes, 
such that all nodal balances are matched simultaneously. 

The FDM directly writes out the water balance for the nodes, while the FEM takes a 
more general approach by requiring the governing partial differential equation (which is a 
water balance on infinitesimal scale) to be optimally fulfilled within all of the elements. 
The cost of the FEM is more complication in deriving the equations and setting up the 
model, but the bonus is definitely more flexibility in element shapes. 
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2.2 Deriving and assembling a numerical model 
In the end, any model yields a set of water balances, one for each node. This is true for 
the FEM, the FDM as well as for any surface water model, in which the elements are 
replaced by links. So the number of equations, as well as the number of unknowns, equals 
the number of nodes. A finite difference model of 1000 rows and 1000 columns thus has 
a million equations with a million unknowns. This is what is required to compute a one-
layer model of 1000 by 1000 m on 1 m resolution. 

Figure 2 shows some of the nodes of an arbitrary model. For one node, number i, the 
adjacent nodes are shown to which it is directly connected through intermediate elements 
(FEM), intermediate cells (FDM) or connecting links (surface water model). The only 
difference between these types of model is the way in which the connections are 
computed. So most of the discussion about modeling and model construction can be done 
without bothering about these specific details. This keeps the discussion general and 
prevents us from getting lost in the details. 

ija ij

 
Figure 2: A model node with its surrounding connected neighbors 

Just as general is, that the flow Qij from node i in the direction of adjacent node j with 
(still unknown) heads iφ  and jφ respectively, is described by 

( ) ( )1
ij ij i j i j

ij

Q C
R

φ φ φ φ= − = −  (1) 

where ijC  [(m3/d)/m] is called the conductance and its reciprocal ijR  is the resistance  

[m/(m3/d)]. This is true even for a surface-water model, be it that in that case ijC  will 

depend on the flow itself and therefore must be computed iteratively.  

The physical meaning of the conductance is obvious; it is the flow of water from node i 
to node j in case the head difference i jφ φ−  equals 1. 

The water balance of an arbitrary node i in the numerical model is described by the 
following equation 

1,

j N

ij i
j j i

Q Q
=

= ≠

=∑  (2) 

whose left-hand side represents the flow from node i through the model towards its 
connected neighbors, and the right-hand side equals the inflow “from the outside world” 
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through node i. This is indeed a nodal water balance for a steady-state model. We will 
deal with transient models later. The nodal inflow iQ  (nodal outflows or extractions are 

just negative values ofiQ ), is the total of all present sources of water from the outside 

world into this node (negative if extractions). It combines recharge, injections wells, 
leakage, drainage and so on. 

Using the conductances, the nodal water balance becomes: 

( )
1,

j N

ij i j i
j j i

C Qφ φ
=

= ≠

− =∑  (3) 

Notice that i and j run over all the nodes of the model. This means that in this expression 
node i may be connected with all other nodes of the model. Of course it is only connected 
to its direct neighbors. Therefore, most of the conductances ijC  are zero. In case a node 

has n connecting neighbors, only 1n+  of these coefficients are non-zero for each node. 
Therefore, of a model of Ny rows by Nx columns, heaving Ny*Nx nodes, each line only has 
(n+1)/(Ny*Nx) nonzero coefficients. For n=4 as is the case of a 2D one-layer model, and 
Ny= Nx=1000, only 5/100000=0.0005% of the coefficients are nonzero. The matrix 
containing the coefficients is therefore extremely sparse. We will make use of this when 
storing the system matrix and solving the model. 

Writing out the above balance equation yields 

1 1 2 2 , 1 1
1,

... ...
j N

i i ij ii i N N iN N i
j j i

C C C C C Qφ φ φ φ φ
=

− −
= ≠

 
− − − + − − = 

 
∑  (4) 

 

Using aii as general matrix element or matrix coefficient instead of the specific 
conductance, then (4) can be written as a general linear equation 

1 1 2 2 , 1 1... ...i i ii ii i N N iN N ia a a a a Qφ φ φ φ φ− −+ + + + + =
 (5) 

in matrix form  

1

N

ij j j
j

a Qφ
=

=∑  (6) 

where  

,ij j i ija C≠ = −  (7) 

1, 1,

j N j N

ii ij ij
j j i j j i

a C a
= =

= ≠ = ≠

= = −∑ ∑  (8) 

so that the sum taken over all matrix elements in a row (node) equals zero 

1

0
j N

ij
j

a
=

=

=∑  (9) 
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The physical meaning of diagonal matrix element iia  is the amount of water flowing 

from node i to all its adjacent nodes if the head in node i is exactly 1 higher than that of 
its neighbors. 

The equation above is equivalent to the matrix equation 

*Φ =A Q  (10) 

With A the square system matrix holding the entries (matrix elements) ija  as defined. 

Both i and j may take values from 1 to Ny*Nx. Therefore, the size of A is Ny*Nx rows by 
Ny*Nx columns, which may be really huge. Φ is the column vector of still unknown 
heads (length Ny*Nx) and Q the column vector of nodal inflows (length Ny*Nx). 

To fill the system matrix, all we have to do is compute the conductances between all 
connected nodes given by their indices i and j and put their negative value into the matrix 
at location i,j. When done, the coefficients for the diagonal, iia  are computed by 
summing the other coefficients in the line of the matrix representing this node (see eq (7)) 

The model is based on the water balance of its nodes. The flow between the nodes is 
determined by the properties of adjacent model cells as well and their head difference. 
This intercellular flow is determined by Darcy’s law using the heads of adjacent cells and 
the conductance between them. We will first consider the model’s boundary conditions. 

2.3 Boundary conditions 
Boundary conditions connect (constrain) the model (or, for that matter, the partial 
differential equation) to the outside world. We already met one type of boundary 
condition, namely the given inflow of the nodes. The other type has to do with fixation of 
heads. We treat this in a general way, i.e. by writing out how fixed heads in the outside 
world connect to nodes of the model through a resistance, or rather a conductance 
(inverse resistance). Heads that are directly fixed to nodes then become a limiting case in 
which the resistance approaches zero or, reversely, where the conductance approaches 
infinity. 

2.3.1 General head boundaries 
Consider flow Qex,i from the external world with fixed head hi the model node i having an 
unknown head iφ . This flow through conductance iC  equals 

( ),ex i i i iQ C hφ= −  (11) 

This flow can be simply added to the right-hand side of the model equation to give 

( )
1,

N

ij j ii i i i i i
j i j

a a Q C hφ φ φ
= ≠

+ = + −∑  (12) 

in which the diagonal was taken out of the matrix for clarity in the sequel. 

The external flow ( ),ex i i i iQ C hφ= −  represents inward flow (positive if inward), just like 

the given inflow Qi. 
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This way, each model node may be connected to the outside world having arbitrary fixed 
heads (lakes, rivers and so on). 

The constant part i iC h  functions exactly like a fixed injection. The variable part, i iCφ , 
may be put to the left-hand side of the equation, yielding 

( )
1,

N

ij j ii i i i i i
j i j

a a C Q C hφ φ
= ≠

+ + = +∑  (13) 

This comes down to adding iC  to the diagonal matrix entry, ii ii ia a C→ + . 

In matrix form for Matlab 

( )( ) .*diag+ Φ = +A C Q C h  (14) 

Where ( )diag C  is an N N×  diagonal matrix with the elements Ci. This is indeed 

equivalent to adding iC  to the diagonal elements aii. 

The boundary conditions explained in this section are so-called general head boundary in 
Modflow jargon. Fixed-head boundaries are dealt with further down. 

Modflow has two variants of these general head boundaries: drains and rivers. Drains 
differ in that they only discharge when the head is above drain level while river head 
boundaries differ in that the head below the river (i.c. in the model) does not affect the 
inflow when it falls below the river bottom. In that case the river bottom is used. 

Drains and rivers thus make the model non-linear as they imply a switch which depends 
on the head itself. Such conditions are most efficiently implemented using iterative 
matrix solvers, so that the conditions can be updated during the solution process. Here we 
ignore this efficiency, we will use Matlab’s standard matrix solver (backslash operation). 

2.3.2 Drain boundaries 
Drain works as general head boundaries if the head is above the drain elevation, while the 
discharge of the drain is zero when the head falls below this elevation. For the drains we 
thus need a drain elevation, i.e. a vector FD next to the drain conductances Cd. 

The switch may be implemented as a Boolean vector dH  defined for drains to be 1 if 

dhφ >  and 1 if dhφ < : 

( )d d= Φ >H h
 (15) 

Hence, the drains are implemented as follows: 

( )( ).* .* .* .*d d d d ddiag+ + Φ = + +A C C H Q C h C H h
 (16) 

2.3.3 River boundaries 
River boundaries are also general head boundaries as long as the head remains above the 
bottom of the river. When it falls below the bottom, the infiltration is assumed to pass 
through the unsaturated zone without suction from the fallen head. So 
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,

,
R R B

R R B B

Q h h

Q h h h

φ φ

φ

= − ≥

= − <
 

Or 

( )( ) ( ) ( )R R R B R R B BQ C h h C h h hφ φ φ= − ≥ + − <  

( )( ) ( ) ( )( )

( ) ( )

1R R R B R R B B

R R R R R R R R R B R R R R R B

R R R B R R B

Q C h h C h h h

Q C H h C H C h C h C H h C H h

Q C h h C H h

φ φ φ

φ

φ

= − ≥ + − − ≥

= − + − − +

= − − −

 

Where ( )R BH hφ= ≥  

Similarly rivers can be implemented as follows 

( )( ) ( ).* .* .* .* .* .* .* .*d d R R d d R R B R R Bdiag+ + + Φ = + + + − +A C C H C H Q C h C H h C h h C H h
 (17) 

The model then includes al general head, drain and river boundaries. 

2.4 Solving the model and checking the results 
 

From this the heads may be solved in Matlab simply by the backslash operator: 

( )( ) ( )\ .*diagΦ = + +A C Q C h  (18) 

.*C h  uses Matlab’s “.*” operator, which stands for element-by-element multiplication 
instead of matrix multiplication. .*C h  is therefore a column vector with elements i ic h . 

The latter system equation, which solves for the heads  Φ  is the complete system 
equation (i.e. the complete model) including all its boundaries. 

Now with the heads computed, we may calculate the net inflow of the nodes by the 
following matrix multiplication 

*in = ΦQ A  (19) 

Which must be zero when summed over the entire model 

( ) 0insum =Q  (20) 

This is an easy check. 

We may compute the inflow from all external fixed-head sources (negative if the flow is 
outward) from 

*fh = Φ −Q A Q  (21) 

As already explained, most of the possible inter-nodal connections (aij) are zero, so that 
the final system matrix tends to be extremely sparse. This too is valid for all numerical 
models. To prevent having to deal with the zeros in over 99% of the system matrix, 
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Matlab offers sparse matrices and sparse matrix functions. These sparse matrices work 
exactly like ordinary matrices and ordinary matrix functions, but sparse matrices only 
store and deal with the non-zeros elements. Sparse matrices make computing large 
models feasible on a PC. 

2.5 Dealing with fixed heads (Dirichlet boundaries) 
What we did above is using so-called general-head boundaries, i.e. fixed heads in the 
outside world that connect with the model through a conductance (or resistance). The 
general head boundaries were extended to specific forms of general head boundaries, the 
so-called drains and river boundaries. However, most models define directly fixed-head 
boundaries, separately (and in addition to) the variants of the general head boundaries 
mentioned. 

One way to deal with fixed head boundaries is through the use of a very last conductance 
in applied general head boundaries, i.e. iC → +∞ . 

So let us use an arbitrary conductance Γ  which a very high value conductance (in 
practice take a value of 1010 or so) representing an infinite value of Ci. 

Then for the fixed head nodes we have 

( )
1,

N

ij j ii i i i
j j i

a a Q hφ φ
= ≠

+ +Γ = +Γ∑  (22) 

Because Γ→∞  and so ijaΓ� , then by dividing the left and right hand side by Γ , this 

equation reduces to 

i ihφ ≈
 (23) 

This may be all what is needed to fix these heads and it works well in Matlab; if 1010Γ =  
or so, Most of the time, Matlab has no difficulty in solving the system, while a very 
accurate result is obtained. 

2.5.1 Including fixed head boundaries directly 
Rather than using an arbitrary large conductance to implement fixed heads, we may 
directly implement them. This improves the condition of the matrix and it reduces the 
amount of work, because the fixed heads nodes don’t have to be computed at all, which 
reduces the computational size of the model. 

Let the model be described by  

*Φ =A Q  (24)(25) 

Let the vector of these cell numbers with fixed heads be I fh and let the vector of the 
remaining cells numbers be I , such that the union of I  and I fh comprises all cell numbers. 

Then ( ):, fhA I represents all columns in A which will be multiplied by a fixed head. The 

fixed heads are represented by the vector ( )fhΦ I . Hence, ( ) ( ):, *fh fhΦA I I  is a constant 

vector which may be put directly to the right-hand side of the matrix equation, leaving the 
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remaining columns ( ):,A I  to the left hand side to be multiplied with the remaining non-

fixed heads ( )Φ I . This changes the model to: 

( ) ( ) ( ) ( ):, * :, *fh fhΦ = − ΦA I I Q A I I
 (26) 

Because we only have to compute the heads at locations I , we get the reduced system of 
equations. The rows corresponding to the fixed heads may also be eliminated as the fixed 
heads need not to be computed at all. This results in the following matrix equation: 

( ) ( ) ( ) ( ) ( ), * , *fh fhΦ = − ΦA I I I Q I A I I I
 (27) 

Hence the right hand side contains the constants and the left hand size contains the 
remaining equation (rows and columns), after removing those corresponding the fixed 
heads. The result is a computationally smaller model, that moreover is better conditioned. 
The model also can be up to ten times faster under certain circumstances. 

So, the unknown heads become 

( ) ( ) ( ) ( ) ( )( ), \ , *fh fhΦ = − ΦI A I I Q I A I I I
 (28) 

If we initialize the head matrix with the fixed head matrix, the fixed head values are also 
contained in the head matrix. If the fixed head matrix contains NaN’s in all non-fixed 
head cells these cells are easily found 

Ifh=Nodes(~isnan(FH)); 

I   =Nodes(  isnan(FH)); 

The nodal flow can be computed by 

* ;= ΦQ A  (taken over all cells, including the fixed head cells). This gives the injection 
flow into each of the cells. 

2.5.2 Inactive cells 
In a large model, often substantial parts are inactive, i.e. represent bedrock or other parts 
without groundwater. The computation time may be substantially reduced if such cells 
are excluded beforehand. In practice it should be straightforward to find such cells from 
the input, as they represent cells where no water can flow or be stored, hence cells with 
all conductivities and the storage coefficient equal to zero. In Matlab these cells may be 
found as follows 

Active cells that have a fixed head (preventing errors from input of fixed heads in non-
active cells): 

( ) ( )0 | 0 | 0 | 0 & ;fh y z FHx NaN= > > > > Φ ≠I K K K S
 (29) 

Active cells that are not fixed head (these cells have to be computed) 

( ) ( )0 | 0 | 0 | 0 & ;a y z fhx NaN= > > > > Φ ==I K K K S
 (30) 
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In Matlab in 2D steady-state (omitting Kz and S) 

Ifh=Nodes((Kx>0 | Ky>0) & ~isnan(FH));  % active fixed heads 2D 

Ia=Nodes((Kx>0 | Ky>0) &     isnan(FH));  % active non fixed heads 2D 

Matrices Kx, Ky,FH all have size (Ny,Nx). 

The remaining cells are the active cells, denoted by the cell number vector Ia. 

All we need to do is exclude these non-active cells, which reduces the model to the 
number of active cells minus the number of fixed head cells 

( ) ( ) ( ) ( ) ( ), * , *a a a a a fh fhΦ = − ΦA I I I Q I A I I I
 (31) 

This way, we have now reduced our model by both the fixed head and the inactive cells. 

Solving for the active, non fixed head cells yields 

( ) ( ) ( ) ( ) ( )( ), \ , *a a a a a fh fhΦ = − ΦI A I I Q I A I I I
 (32) 

The equation expresses that we only use the active and fixed head parts of the 
information; hence we still have the entire matrices and vectors available and thus may 
immediately compute the nodal water balances from. 

To compute the cell-inflows to all active cells including the fixed-head cells, we use all 
active cells (2D steady state, leaving out Kz and S): 

( )1 0 | 0a yx= > >I K K  (33) 

And compute 

( ) ( ) ( )1 1 1 1, *a a a a= ΦQ I A I I I  (34) 

In Matlab 

Ia1=Nodes(Kx>0 | Ky>0); 

Q=zeros(size(Phi)); 

Q(Iact1)=A(Iact1,Iact1)*Phi(Iact1); 

The non active cells will have Q=0; 

2.6 Finite difference modeling 
Until now, everything said was true for all numerical models and nothing specific has 
been said or done for finite difference modeling. 

What remains to be done is the computation of the conductances. This is specific for each 
method. We also need a mesh (model network or grid that divides the model area in 
parts). The grid type is more or less specific for the method employed. The model grid 
determines the number of connections between the individual nodes. 

We will deal with a 2D (1 layer) rectangular grid (with rectangular cells) with nodes 
(head points) at the cell centers (right-hand picture in Figure 1). In such a model, the flow 
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from one node, i, to its neighbor, j, first passes half a cell with the conductivity (or 
transmissivity), ki, of the first cell and then half a cell with the conductivity (or 
transmissivity), kj, of the receiving cell. This is flow through two media placed in series, 
for which resistances add up (not conductances). Therefore, we compute the resistance to 
the flow between the two nodes and then take its inverse to get the conductance. 

i j

ikx jkx

ix∆ jx∆

y∆

0.5 iRx 0.5 jRx

ijQ

 
Figure 3: Resistance Rx=0.5Rxi+0.5Rxj for flow from node i to j. Where Rxi and Rxj are the 
resistances for flow through an entire cell in x-direction 

LetDx be row vector with column widths andDy a column vector with cell heights 
(width in y-direction) and ,kx ky the 2D matrices with the with the horizontal and vertical 
cell conductivities respectively. The resistance between adjacent nodes in x-direction then 
becomes: 

( )( ) ( ) ( )
( )( ) ( ) ( )

0.5* 1./ :,1: 1 * :,1: 1 ./ :,1: 1 ...

0.5* 1./ :, 2 : * :, 2 : ./ :, 2 :

end end end

end end end

= − − − +Rx Dy Dx kx

Dy Dx kx
  (35) 

The conductances between these nodes is then given by 

1. /=Cx Rx  (36) 

Likewise for the resistance between adjacent nodes in y-direction gives 

( ) ( )( ) ( )
( ) ( )( ) ( )

0.5* 1: 1,: * 1./ 1: 1,: . / 1: 1,: ...

0.5* 2 : ,: * 1. / 2 : ,: . / 2 : ,:

end x end end

end x end end

= − − − +Ry Dy D ky

Dy D ky
 (37) 

and 

1./=Cy Ry  (38) 

Note that here it is assumed that Dy is a column vector and Dx a row vector. Multiplying 
a column vector of length Ny with a row vector of length Nx yields a matrix of size 
Ny*Nx with elements equal to the product of the corresponding elements of the column 
and the row. In this case these elements are dx/dy and dy/dx respectively. 
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2.7 Numbering cells (nodes) 
In equations (3) through (13) indices i and j were used to denote connected cells (or 
nodes). To allow numbering of cells in our model, we need to generate such cell 
numbers, which can be arbitrary, as is the case in a finite element model. The only 
requirement is that the numbers are unique. 

When numbering cells of a finite difference model we will, of course, exploit the regular 
mesh structure. In Matlab it is straightforward to generate a vector of increasing numbers 
starting with 1 and ending with Ny Nx× , which is the number of cells in the model (We 
will have Ny Nx Nz× ×  cells in a 3D model): 

1.. ;Nodes Ny Nx= ×  

Next we fold this vector into the shape of the model grid with its Ny rows and Nx 
columns. This is done using Matlab’s reshape function: 

(1.. * , , )Nodes reshape Ny Nx Ny Nx= ; (39) 

This way, the variable Nodes, is the matrix holding the cell numbers. The number of an 
arbitrary cell within the grid, say row j and column i, is now obtained from 

cellNumber=Nodes(j,i) 

2.8 Assembling the system matrix 
In equations (3) through (13) the indices refer to cells that are connected. Hence aij is the 
coefficient (i.e. the negative of the conductance) between the cells i and j, which, of 
course, are just adjacent cells. 

The system matrix element aii is the negative value of the conductance between these 
cells i and j, where the first index refers to the equation number, i.e. the cell for which the 
water balance is computed, and the second index, j, refers to an adjacent cell, to which it 
is connected. Clearly aij=aji, which makes the system matrix A symmetric. 

To put a coefficient (negative of the conductance) at the correct position in the system 
matrix, we need its value and its indices i and j: i.e. the triple i,j,aij. 

This is now straightforward with the available numbering. 

We may generate the West-East cell pair indices with their corresponding coefficients as 
follows: 

x[Nodes(:,1:end-1), Nodes(:,2:end), -C ]
 (40) 

Writing 

WI =Nodes(:,1:end-1);
 (41) 

EI =Nodes(:,2:end);
 (42) 

we could write this more compactly as 

W E x[I   I  -C ]
 (43) 
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With 

NI =Nodes(1:end-1,:);
 (44) 

SI =Nodes(2:end,:);
 (45) 

we may write the North-South pairs as 

N S y[I   I   -C ]
 (46) 

We may put all combinations in a single matrix 

W E x

E W x

N S y

S N y

[ [I   I   -C ]; ...

[I   I   -C ]; ...

[I   I   -C ]; ...

[I   I   -C ] ...

]

 (47) 

Where the “…” is Matlab’s line continuation and the “;” places what follows in 
subsequent rows of the matrix. 

The problem with the last expression is that the embedded matrices are not column 
vectors but matrices having the shape of the model; i.e. the IW IE and Cx being of size 

( )1Ny Nx× −  and the IN, IS and Cy of size ( )1Ny Nx− × . We can turn them into column 

vectors by using the Matlab’s (:) operator. This operator shapes matrices of any shape 
into their equivalent column vectors. 

Hence, 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

W E x

E W x

N S y

S N y

[ [I :   I :   -C : ]; ...

[I :   I :   -C : ]; ...

[I :   I :   -C : ]; ...

[I :   I :   -C : ] ...

]

 (48) 

does the job. 

The number of rows in this three-column matrix is thus 

( ) ( )2 1 2 1Ny Nx Ny Nx− + −  

This completes all the connected nodes in this 2D model. 

Because the matrix is symmetric, we could skip the East-West and South-North pairs and 
exploit this symmetry. We will show this below. 

The three-column matrix above represents three column vectors with elements i,j,aij and 
j,i,aji respectively. These triples contain all non-zero elements of the system matrix with 
their position, except the diagonal elements. The latter may be readily computed by 
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1,

Nodes

ii ij
j j i

a a
= ≠

= ∑
 (49) 

To generate the sparse system matrix, we have to use the Matlab function sparse and pass 
it the indices and the matrix element value. However, sparse requires the columns i, j and 
aij to be specified as separate vectors. This is now readily done as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

([ : ; : ; : ; : ],...

[ : ; : ; : ; : ],...

[ : ; : ; : ; : ],...

* ,...

* ,...

5* * )

sparse

Ny Nx

Ny Nx

Ny Nx

=

− − − −

w E N S

E W S N

x x y y

A I I I I

I I I I

C C C C
 (50) 

where the last three arguments of this function call are the size of the system matrix and 
the number of non-zero elements respectively (5 in a row for a 2D finite difference 
mode). The first three arguments are respectively the column of i indices, the column of j 
indices and the column of corresponding matrix coefficients, i.e. the negative values of 
the conductances. The minus sign is a sign choice. It implies that the flow from a node to 
its surrounding neighbors is positive, and so is an injection into the model which must 
deliver this net flow from a node to its neighbors. Hence, extractions such was water 
supply wells are negative, as is evaporation, while recharge is positive. This sign 
convention is easily remembered as any flow into the model gives rise to increasing water 
levels and vice versa. 

Notice that in the actual model listed further below we use an equivalent Matlab form to 
enter this three column matrix which is just an exercise in reading Matlab matrices. 

An alternative to expression (50) is using only the W-E and N-S pairs and exploiting the 
matrix symmetry: 

( ) ( )
( ) ( )
( ) ( )

([ : ; : ];...

[ : ; : ];...

[ : ; : ];...

* ,...

* ,...

2 * )

sparse

Ny Nx

Ny Nx

Ny Nx

=

− −

W N

E S

x y

A I I

I I

C C
 (51) 

And then due to symmetry construct the system matrix from this one and its transpose 

';= +A A A  (52) 

Having come so far, we only have 4 matrix elements per row and still miss the diagonal 
matrix elements aii. These diagonal matrix elements may be put into A using the function 
spdiags as follows 
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( ( ,2),0, )spdiags sum= −A A A  (53) 

Where the 0 means zero-offset from the diagonal of matrix A, in which to put the 
diagonal, ( , 2)sum− A . We need Matlab’s function spdiags instead of its equivalent diags 
because we work with sparse matrices. 
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3 The actual model in Matlab 
The model will be a Matlab function accepting the needed arguments and yielding the 
heads and the computed nodal flows. This function resides in an “m.file” which is 
Matlab’s text file storage of scripts and functions having extension “.m”. A second m.file 
will be a Matlab script, which is just set of commands in a file. This script will be used to 
set up the model, specify its boundary conditions, call the function (i.e. the actual model) 
and finally visualize the results by contouring the computed heads. 

To make the model in Matlab, launch Matlab browse to the directory where you want to 
store the “m.files” of this model. 

Then start with opening a new file by pressing the correct icon of the Matlab editor and 
immediately save it with the desired model name, for instance fdm2. “fdm2.m” will be the 
file name given by Matlab and fdm2 the name of the Matlab function it contains. 

The first line in fdm2.m gets the function name, and its (multiple) output and inputs. All 
inputs are matrices and vectors to be defined in the script that we will use to call the 
model. 

To write the calling script, open another new file. Save it with the name “modelscript” for 
example. 

The model will be called from this script as follows 

[Phi,Q]=fdm2(x,y,kx,ky,FH,FQ); 

However, since the model does not yet exist and to ease debugging we use the model file 
as a script. So, “comment out” this call as follows by prefixing a “%” and further prefix 
the call to the file fdm2.m: 

fdm2;      % [Phi,Q]=fdm2(x,y,kx,ky,FH,FQ); 

This command (call) will simply run the lines in the file fdm2.m as typed-in commands. 

To set up an arbitrary trial model of ten columns that are 10 m wide and twelve rows that 
are 6 m high, place the following lines in the modelscript before the call of the fdm2 file 

x=-100:10:100; y=(100:-10:-100)’;     % x hor, y ve rt (transposed) 
Dx=diff(x); Dy=abs(diff(y));    % compute column an d row sizes 
Nx=length(Dx); Ny=length(Dy);         % compute siz e of model 
xm=0.5*(x(1:end-1)+x(2:end));         % coordinates  of cell centers 
ym=0.5*(y(1:end-1)+y(2:end));         % coordinates  of cell centers 
Kx=10*ones(Ny,Nx); Ky=5*ones(Ny,Nx);  % conduct. (t ransmissivities) 
FH=NaN*ones(Ny,Nx); FH(:,end)=0;      % fixed head matrix 
FQ=zeros(Ny,Nx);  FQ(2,3)=-2400;      % fixed flow (one well at (2,3)) 
N=0.001;       % recharge (0.001 m/d) 
Q=Q+N*Dy*Dx;                          % add recharg e equal to N as flow 
fdm2;      % [Phi,Q,Qx,Qy]=fdm2(x,y,kx,ky,FH,FQ);  % call the model 
contour(xm,ym,Phi);                   % contour the  computed heads 
%surf(xm,ym,Phi);                     % if you like  show heads as 3D 
xlabel(’x in m’); ylabel(’y in m’); title(’head con tours’); 
% Some checks 
sum(sum(Q))          % overall model water balance (must be zero) 
sum(Q(:,end))        % total outflow across right h and boundary 
sum(Q(find(~isnan(FH))) % total flow over all fixed  head boundaries  
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This completes the model script. It sets up the model dimensions, the cell properties, 
fixed head and flow boundaries for all nodes and runs the model. Finally it contours the 
heads and computes some integrated flows. Note that the heads are computed for the cell 
centers, so that we need to compute those centers first. 

Now let’s focus on the model and the model script fdm2.m. The first line should be the 
function heading 

function [Phi,Q,Qx,Qy]=fdm2(x,y,kx,ky,FH,FQ) 
 

It defines a function called fdm2 with arguments to be passed to it (and will be local 
inside the function). It also defines its output, which may be multiple as is the case here, 
where we will obtain the computed heads, the computed nodal flows, the computed 
horizontal flows across cell faces and the computed vertical flow across cell faces. 

To start, comment this line out, because during the construction of the model we will run 
the file as a script to ease debugging 

% function [Phi,Q,Qx,Qy]=fdm2(x,y,kx,ky,FH,FQ)   % “%” is used to 
comment out 
 

When run as a script, the parameters are not local; the parameters in the model script and 
visible in fdm2 as well as the parameters in fdm2 in modelscript. This will be no longer 
the case when the first line in fdm2.m is a proper function definition (function header). 

Below the function definition line, insert a number of comment lines (i.e. all starting with 
“%”) to provide the information that Matlab given whenever you type 

 >>help fdm2  

in the command window. 
function  [Phi,Q,Qx,Qy,Psi]=fdm2(x,y,kx,ky,FH,Q) 
% function [Phi,Q,Qx,Qy,Psi]=fdm2d(x,y,kx,ky,FH,Q)  
% 2D block-centred steady-state finite difference m odel  
% x,y mesh coordinates, kx,ky conductivities  
% FH=fixed heads (NaN for ordinary points), Q=fixed  nodal flows  
% Phi,Q computed heads and cell balances  
% Qx is horizontal cell face flow positive in posit ive x direction  
% Qy is vertial    cell face flow, postive in posit ive y direction  
% Psi is stream function assuming bottom of model i s zero (impervious)  
% TO 991017  TO 000530 001026 070414 080226  
  
x=x(:)'; Nx=length(x)-1; dx=diff(x); xm=0.5*(x(1:en d-1)+x(2:end)); 
y=y(:);  Ny=length(y)-1; dy=abs(diff(y)); 
  
Nodes = reshape(1:Nx*Ny,Ny,Nx);               % Node numbering  
IE=Nodes(:,2:end);   IW=Nodes(:,1:end-1); 
IS=Nodes(2:end,:);   IN=Nodes(1:end-1,:); 
  
warning( 'off' , 'all' );  % allow division by zero for inactive cells  
RX=0.5*(1./dy)*dx./kx; Cx=1./(RX(:,1:end-1)+RX(:,2: end)); % hor  conductances 
RY=0.5*dy*(1./dx)./ky; Cy=1./(RY(1:end-1,:)+RY(2:en d,:)); % vert conductances 
warning( 'on' , 'all' ); % restore warning message  
 
A=sparse([IE(:);IW(:);IN(:);IS(:)], ...  
         [IW(:);IE(:);IS(:);IN(:)], ...  
         -[Cx(:);Cx(:);Cy(:);Cy(:)], ...  
         Ny*Nx,Ny*Nx,5*Ny*Nx);                 % System matrix  
Adiag= -sum(A,2);                              % Main diagonal  
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IAct =Nodes( kx>0 | ky>0);               % active cells  
IAct1=Nodes((kx>0 | ky>0) &  isnan(FH)); % active cells but not fixed heads  
Ifh  =Nodes((kx>0 | ky>0) & ~isnan(FH)); % active cells with fixed heads  
 
Phi=FH(:);  % make sure Phi and Q are column vector s, otherwise it won’t work 
Q  =FQ(:);  % in case the groundwater problem is a single row. 
 
% solve  
Phi(IAct1)=spdiags(Adiag(IAct1),0,A(IAct1,IAct1))\(   Q(IAct1)-A(IAct1,Ifh)*Phi(Ifh)); 
Q(IAct)   =spdiags(Adiag(IAct ),0,A(IAct ,IAct ))* Phi(IAct ); % nodal flows  
 
Phi=reshape(Phi,[Ny,Nx]);   % reshape back to shape  of original model 
Q  =reshape(Q  ,[Ny,Nx]);   % same for Q 
 
Qx=-Cx.*diff(Phi,1,2)*sign(x(end)-x(1)); Qx(isnan(Q x))=0;  % horizontal cell face flows  
Qy=-Cy.*diff(Phi,1,1)*sign(y(end)-y(1)); Qy(isnan(Q y))=0;  % vertical cell face flow  
 
Psi=[flipud(cumsum(flipud(Qx),1));zeros(size(Qx(1,: )))];   % Stream function  

% ================================================= ===== 

 

The model must be set up and debugged line by line. This is done by selecting one or 
more lines, running them by pressing F9 and checking if they are correct. Once all lines 
run smoothly and correctly, remove the comment in the first line of the fdm2 file. This 
makes the file a function. Also change the call to the file fdm2 into a function call. So 

fdm2;      % [Phi,Q,Qx,Qy,Psi]=fdm2(x,y,kx,ky,FH,FQ );  % call the model 

becomes 

[Phi,Q,Qx,Qy,Psi]=fdm2(x,y,kx,ky,FH,FQ);  % call th e model 

 

Then the model can be run with any changed input. 

Note: There are no error checks in the model. This is to keep the file short. You may add 
checks that verify the size of the input matrices and vectors with respect to the model 
dimensions implied in the x and y. 

3.1 Exercises 
1 Prove  that your model is  correct, by comparing its results with analytical solutions 

--- Compute the heads in a 1d model with recharge 

The analytical solution can be found in Geohydrology I 

( )2 2

2

n
L x

kD
φ = −  with L and x are measured from the water divide to the boundary 

% script to compute this case and compare with anal ytical solution 
kD=100;             % transmissivity to be used  
L =200;             % half width of model  
x=-L:5:L;       % generate x-coordinates for mesh  
y= [10 -10]';    % one row suffices because problem is 1D  
 
xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x);      Nx=l ength(dx);  
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);  
 
kx=kD*ones(Ny,Nx); ky=kx;   % same kD in every cell, kyD=kxD (ky=kx)  
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FH=NaN*ones(Ny,Nx); FH(:,[1,end])=0.0;       % Fix left and  right head  
 
n=0.001; FQ=n*dy*dx;                         % Set recharge  
 
[Phi,Q,Qx]=fdm2(x,y,kx,ky,FH,FQ);            % Run model  
 
fi=n/(2*kD)*(L.^2-xm.^2);                % Analytical solution  
plot(xm,Phi, 'r+' ,xm,fi, 'b' );           % Plot results  
title( 'compare model with phi=n/(2kD)(L^2-x^2)' );  
xlabel( 'x [m]' ); ylabel( 'Phi [m]' );  
legend( 'model' , 'analytical' );  
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Figure 4 Comparison between model and analytical solution. The match is not perfect due to the fact 
that the exact locations of the outer cells in the model do not coincide with –L and L, the exact 
location of the outer nodes is in the cell center, see below to solve this. 

As is clear the numerical and analytical solutions do not match completely. This is due to 
the fact that the boundaries nodes of the numerical model are not at –L and L but at the 
cell centers with is at –L+2.5=-197.5 m and at L-2.5=+197.5 m. 

To solve this you may add a very thin outer cell at both ends 

or set 

x=-L-2.5:5:L+2.5;  % generate x-coordinates for mesh 

This will yield the perfect match between model and analytical solution 
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--- Compute the heads in a 1d model with leakage for an aquifer below an aquitard, while 
above the aquitard the head is maintained at zero. The flow is symmetrical with x=0 in 
the center. All heads are relative to the maintained water level above the aquitard while 
the head at x=L and x=-L is maintained at H.  

( )
( )

cosh /

cosh /

x
H

L

λ
φ

λ
=  

This problem is a 1-d problem which may be solved by two rows representing the cross 
section with the first layer being the aquitard with resistance c and the second being the 
aquifer with given transmissivity kD. 

% Cross section through polder with fixed head H at  both sides  
L=1000; kD=1600; c=100; lambda=sqrt(kD*c); % +/- Xsec of Bethune polder  
x=[-L-5:10:L+5]; 
y=[0 -10 -40]'; 
 
xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x);      Nx=l ength(dx);  
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);  
 
k=[dy(1)/c kD/dy(2)]';   % conductivities from c, kD and thickness  
kx=k*ones(1,Nx); ky=kx;  
 
H=-2.75;                 % head at left and right boundary  
FH=NaN*ones(Ny,Nx);      % NaN matrix to store fixed heads  
FH(1,:)=0;               % head above aquitard  
FH(2,[1,end])=H;         % head at left and right boundary  
 
FQ=zeros(Ny,Nx);         % matrix to store fixed Q's  
 
[Phi,Q,Qx]=fdm2(x,y,kx,ky,FH,FQ);  % run model  
 
fi=H*cosh(xm/Lambda)./cosh(L/Lambda); % analytical  
 
plot(xm,Phi, '+' ,xm,fi, 'b' );  
title( 'compare model with phi=H*cosh(x/lambda)/cosh(L/lam bda)' );  
xlabel( 'x [m]' ); ylabel( 'Phi [m]' );  
legend( 'fixed head' , 'model' , 'analytical' );  
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Figure 5: Comparison between model and analytical solution of cross section through polder.  
Obviously there is a big difference between the two. See text below to solve. 

The outcome of the script is given in the figure above.  The model results for both layers 
are shown. The first is the fixed heads in the top layer and the second are the computed 
heads in the second layer. Clearly, the model is way off compared with the analytical 
solution. Again this is due to the fact that the model nodes are in the center of the cells 
and therefore in the center of the layer. The resistance to vertical flow between the model 
and the bottom of the first layer is therefore only half of that between the top and the 
bottom of this layer. To solve this, you may use a thin layer on top and specify the head 
in that one. Or you may double the thickness of the first layer so that the resistance 
between the node and the bottom of this layer equals the desired value. Or you just half 
the conductivity of the first layer to get the same result. So, in the last case do this 

k=[0.5*dy(1)/c kD/dy(2)]';   % conductivities from c, kD and thickness  
 
--- Compute the drawdown due to well in the center, corners 

The drawdown due to a well with extraction Q in the center of a circular island with 
radius R around which the head is maintained at a value zero reads 

ln
2

Q R
s

kD rπ
 =  
 

 

--- recharge on a square island of half length L, with given parameters 
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This is simple, generate coordinates, set FH=0 along all 4 boundaries, add recharge to the 
nodes and run the model. 

L=200; dL=5; kD=150; R=170; n=0.001;  
x=-L-0.5*dL:dL:L+0.5*dL;  
y=flipud(x');  
xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x);      Nx=l ength(dx);  
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);  
kx=kD*ones(Ny,Nx); ky=kx;  
FH=NaN*ones(Ny,Nx); 
FH([1,end],:)=0; FH(:,[1,end])=0; % all boundaries 0  
FQ=n*dy*dx;                          % recharge as nodal flows  
 [Phi,Q]=fdm2(x,y,kx,ky,FH,FQ);       % run model  
contour(xm,ym,Phi);  
title( 'recharge on square island' ); xlabel( 'x [m]' ); ylabel( 'y [m]' );  

recharge on square island
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Figure 6: Recharge on a square island, contours may be labeled (see help contour in Matlab and how 
to use clabel, you may also use colorbar to get a colorscale see help colorbar in Matlab) 

--- Recharge on a circular island 

Problem with the rectangular island is that there is no easy analytical solution for it. 
Therefore to proof our model is correct, let’s compute the head in a circular island with 
the same model. 

The analytical solution is derived from the partial differential equation and boundary 
condition that h=0 for r=R. 
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22
dh

rkD n r
dr

π π− = ,    �  ( )2 2

4

n
h R r

kD
= −  

Below is the same script as before, only the boundary condition is changed. What we do 
we set all nodes where r>=R equal to zero. R is here the distance from point x=0, y=0 and 
R the given radius of the model.  Given the coordinates of the nodes xm (row vector) and 
ym (column vector), we can compute a matrix with the size of the Nodes containing the 
distance r in each cell as follows: 

r=sqrt((ym*ones(size(xm))).^2+(ones(size(ym))*xm).^ 2);  
and then set the fixed head FH equal to zero in all nodes for which r>=R: 

FH(r>=R)=0; 

Hence 

% Head in circular island with recharge  

L=200; dL=5; kD=150; R=170; n=0.001;  
x=-L-0.5*dL:dL:L+0.5*dL;  
y=flipud(x');  
xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x);      Nx=l ength(dx);  
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);  
kx=kD*ones(Ny,Nx); ky=kx;  
FH=NaN*ones(Ny,Nx); 
r=sqrt((ym*ones(size(xm))).^2+(ones(size(ym))*xm).^ 2);  %Distance     
FH(r>=R)=0;  
FQ=n*dy*dx;                          % recharge as nodal flows  
[Phi,Q]=fdm2(x,y,kx,ky,FH,FQ);       % run model  
contour(xm,ym,Phi);  
title( 'recharge on circular island' ); xlabel( 'x [m]' ); ylabel( 'y [m]' );  
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Figure 7: Head in circular island of R=170 m with recharge 

To compare this with the analytical solution, plot the head through the center together 
with the analytical solution. So add these lines 

figure  
fi=n/(4*kD)*(R.^2-xm.^2);  
plot(xm,Phi(xm==0,:), 'r+' ,xm,fi, 'b' );  
legend( 'numeric' , 'analytic' );  
title( 'compare model with Phi=n/(4kD)*(R^2-r^2)' ); xlabel( 'r [m]' ); 
ylabel( 'Phi [m]' );  
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Figure 8: Comparison between model and analytical solution. Obviously there is a small difference. 
See text below how to solve this. 

The figure above shows a small difference between the head through the center of the 
model and the analytical solution. Is this model wrong? No and yes. It is correct but just a 
little inaccurate. If we reduce the size of the elements to 2 m and we’ll see that the 
difference between the two models has completely disappeared. So the model is correct 
after all, but for this computation we need a smaller cell size, which will be due to the 
fact that square or rectangular cells do not nicely match with circular shapes like the 
boundary of the island and especially the true head contours. 

--- Show the effect of anisotropy? 

Anisotropic situations can be readily computed if the main conductivities align with the x 
and y axes of the model grid. Just try it. However, it is not straightforward to apply 
anisotropy in arbitrary directions, unless the model grid can be rotated to align with the 
main conductivity directions. In the finite element method, anisotropy in arbitrary 
direction in each cell is natural. In the finite difference model it is generally limited to the 
main directions of the grid itself. There exist however several methods to apply 
anisotropy in rectangular grids. This is beyond this course. 

--- Generate and solve a complex cross section with a given boundary condition at the top 

To model a cross section, the y direction is simply regarded vertical. Nothing changes, 
except that in cross sections we pass the conductivities of the cells, while in flat aquifers 
we pass the transmissivities instead. For the model this makes no difference. Because 
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cross sections combine so nicely with streamlines, we skip this till after we implemented 
these streamlines. 

5 Generate a random conductivity field and compute the heads given fixed head 
boundaries. 

A random conductivity field may be generated using the rand(Ny,Nx) function. 

6 Generate a river through your model and compute the heads with recharge 

A river is a set of lines with fixed heads or heads that are fixed through a resistance, 
which are called “general head boundaries” in Matlab. Normally assigning rivers to a grid 
is a GIS action. The river has to be intersected with the model cells. For each cell the 
intersecting surface area A [m2] is computed and converted into a conductance C [m2/d] 
using the bottom resistance c [d] of the river /C A c= . So we skip this GIS action for 
now. 
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4 Stream lines 
Streamlines are lines of constant stream-function value. Flow lines are lines followed by 
particles. Therefore, flow lines have to be computed by tracing particles, but streamlines 
(if they exist) can be computed by contouring the stream function, without tracing. 
However, the stream function is only defined in 2D steady-sate flow without sources and 
sinks (and leakage or recharge for that matter). In practice, individual sources and sinks 
can be dealt with and will look similar to wells in the 2D image. 

Because our model is 2D, streamlines will often be an efficient manner to show the flow 
in a quantitative way. A very powerful characteristic of streamlines is that the flow is 
known between any pair of points in the model. Further, the flow between any pair of 
streamlines is constant and equal to the difference of the stream function values. 

With respect to the stream function, any streamline may be designated the zero line, after 
which the values of all other streamlines are fixed. The stream function can be computed 
by integrating the flow across an arbitrary line cutting streamlines. Assuming the bottom 
of the model is a streamline, we can compute the stream function easily by integrating the 
horizontal flow across cell faces from the bottom to the top of the model. 

Mathematically 

 ( )
max

min

y

x

y

q y dyψ = ∫  ( 1 ) 

When we use the horizontal flow across the cell faces as an extra output of the model, we 
just cumulate these along the cell faces upward from the bottom of the model. This gives 
the stream function values at all cell corners (not the nodes). This stream function may 
subsequently be contoured, which yields stream lines. 

To implement the stream function, open a new Matlab file and save it as “Psi.m”. Type 
the following and save again 

function  P=Psi(Qx)  
% P=Psi(Qx) 
% Stream function assuming bottom is stream line 
% size of Psi is Ny+1,Nx-1, to contour is do 
% contour(x[2:end-1),y,Psi(Qx)); 
P=flipud(cumsum(flipud([Qx;zeros(1,Nx)])));  
 

It does the following. It receives the horizontal flows across the cell faces, which is the 
third output to the model. It adds a line of zeros through the bottom, because this will be 
the starting stream line with stream function value zero. Then we want to cumulate this 
matrix vertically from the bottom upward. Matlab’s cumsum(..) accumulates matrices (try 
it), but starts at the top working downward. So we flip the matrix up-down before calling 
cumsum(..). When done we flipud(..) again to put it right. 

 

Next, add the following lines to your script file 

contour(x(2:end-1),y,Psi(Qx)); % streamlines 
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The values of the stream function is the flow between any point and the bottom of the 
model. If you want that in specific steps of say dPsi=0.1 m2/d, just specify the contours, 
for instance 

contour(x(2:end-1),y,Psi(Qx),[0:dPsi:max(Psi(Qx(:)) )]); % streamlines 

 

See help contour in Matlab for details. 

Clearly, if the left hand boundary if you models is a streamline, you may just as well 
integrate the vertical flow across horizontal cell faces along the horizontal lines. 

4.1 Exercises streamlines 
1 A symmetric cross section through a long building with sheet pilings 15 m deep at 
x=20 m. Dewatering wells are placed inside this sheet piling between 6 and 11 m depth. 
Compute the necessary extraction to dewater the pit by 5 m. The aquifer is semi-
confined. All elevations are relative to the fixed head at the top. The sheet piling is 
between x=19.9 and x=20 m, and z=0 and z=-15 m with conductivity kW=0.0001 m/d. 
Wells are between x=19.8 and 19.9 m and between z=-6 and z=-11 m and are modeled as 
an extraction line in this cross section. The layers are given as in the Matlab script below. 

The results are shown in the two figures. One shows the total cross section and the 
second one a detail. This detail demonstrates the streamlines and the head lines in this 
cross section in the neighborhood of the wells and the sheet piling. It clearly shows how 
the groundwater flows underneath the 15 m deep sheet piling towards the wells at the 
inside of this sheet piling between -6 and -11 m. The extraction is 8.67 m2/d, which can 
be computed by summing the Q over the wells. Alternatively one may compute the Q 
entering the model through the first layer (sum(Q(1,(:))). We set the FH of the wells at -5 
m. The head in the center immediately below the building pit is then -4.6 m. By setting 
FH in the wells to -5.4 will make sure the drawdown under the building pit is the required 
5 m. The extraction will then be 9.38 m2/d.  This demonstrates the influence of partial 
penetration. 

Partial penetration means that the well screen only penetrates part of the aquifer 
thickness. This implies that the drawdown is larger than in the case of a fully penetrating 
screen. Partial penetration is the usual case, to save well money or to prevent upcoming 
of brackish water from below. If a building pit must be put dry, only the head at its 
bottom needs to be lowered, not at the bottom of the aquifer, which may be 100 m or 
more thick. Using short screens then reduces the amount of water that needs to be 
extracted. 
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Half cross section through building pit with sheet pilings
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Figure 9: Building  pit cross section with partially penetrating sheet piling and extraction wells at the 
inside 

Half cross section through building pit with sheet pilings
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Figure 10: Detail showing the streamlines underneath the 15 m deep sheet piling towards the 
partially penetrating wells at its inside between 6 and 11 m depth 
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This is the script to create the cross section. You get the detailed one by zooming first 
horizontally and then unrestricted (select zoom and then right mouse button for options). 
To get you figure in word, use “edit copyfigure” in Matlab in the menu of the selected 
figure and then paste it in Word or PowerPoint as usual. 

layers={                      % specify layers  
  'clay'  0 -5  0.02           % material, top, bottom k  
  'sand'  -5 -50  20  
  'clay'  -50 -60 0.01  
  'sand'  -60 -200  30  
};  
xW    =[19.9 20  ]; yW    =[ 0 -15]; kW=0.0001;  
xWells=[19.8 19.9]; yWells=[-6 -11]; FHWells=-5; 
 
% the column and row coordinates are refined where needed to have 
% a very detailed result (top and bottom of wells a nd sheet piling 
% just add coordinates then apply unique to sort ou t 
x=unique([0:2:18, 18:0.2:22 19:0.1:21, 22:2:40, 40: 10:100,… 
     100:25:250, 250:50:500, 500:100:1000]);  % fin e mesh where needed  
L=[-5 -50 -60 -200];  % layer boundaries for genera ting y values  
y=[0 -0.01 L, L+0.01, -5:-0.1:-7, -7:-0.5:-14, -15: -0.1:-16, … 
-16:-0.5:-19.5, -19.5:-0.1:-20.5, -20.5:-0.5:-25, - 25:-5:-50];  
y=sort(unique(y), 'descend' )';  % Unique + sort downward  
 
xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x);      Nx=l ength(dx);  
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);  
 
% get k values from specified layers 
kx=zeros(Ny,Nx);  
for  i=1:size(layers,1); 
    kx(ym<=layers{i,2}&ym>layers{i,3},:)=layers{i,e nd}; 
end  
 
% set k in sheet piling to its given value 
kx(ym<yW(1) & ym>yW(2), xm>xW(1) & xm<xW(2))=kW;  k y=kx;   % deep wall  
 
FH=NaN*ones(Ny,Nx); FH(1,:)=0.0; 
 
% set fixed head in wells to its given value 
FH(ym<yWells(1) & ym>yWells(2), xm>xWells(1) & xm<x Wells(2))=FHWells;  
 
FQ=zeros(Ny,Nx);  % no fixed Q this time  
 
[Phi,Q,Qx]=fdm2(x,y,kx,kx,FH,FQ);  
 
close all   % ============plotting ====================== =========  
contour(xm,ym,Phi,-5:0.2:0, 'b' );  
hold on 
contour(x(2:end-1),y,Psi(Qx),20, 'r' );  
for  i=1:size(layers,1)  
    plot([x(1) x(end)],[layers{i,2},layers{i,2}]);  
end  
title( 'Half cross section through building pit with sheet  pilings' );  
xlabel( 'x [m]' ); ylabel( 'z [m]' );  
 
% ====water balance and computed head below pit === ================ 
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sum(sum(Q(ym<yWells(1) & ym>yWells(2), xm>xWells(1)  & xm<xWells(2)))) 
sum(sum(Q(1,:)))  % infiltration through top of model  
sum(sum(Q))  % overall water balance  
Phi(ym<-5 & ym>-6,1)   % head below building pit  
 

Clearly this can just as well be done for a radial symmetric model, which we develop 
next. In fact, we only have to add the 7th argument in the model-call and the same 
problem will be computed for a circular building pit. Nothing else needs to be done. 

[Phi,Q,Qx]=fdm2(x,y,kx,kx,FH,FQ, 'radial' );  
 
The result for the detail is shown below 
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Figure 11: Same as above but for radial symmetric flow.  

The extraction is now 5250 m3/d (not m2/d !) with the fixed head in the wells -6.7 m to 
reach a drawdown of 5 m in the center of the pit. 

Extractions in a cross section look like wells, because the streamlines to the extraction all 
connect with the top of the model. These are so-called branch cuts and are unavoidable, 
as the stream function is multi-valued in the case of extractions or injections within the 
domain. This is, in fact, is nice for cross sections. 

To make wells sharp, narrow the exaction column such that you only see a line of a 
column of the width of the borehole of the well. 

3 Add the stream lines to the 5-layer cross section of your pumping test 

This gives a good view on the origin of the water and the paths it takes toward the well. 



CT5440 Exercises, make your own finite difference model in Matlab 

Olsthoorn Page 34 of 66 3/15/2009 

7 Make a 5 layer vertical semi-confined cross section and show the heads in all layers if 
layer 4 is pumped 

A multi-layer semi-confined model in a cross section is readily made with the Matlab 
model. The grid rows now represent layers. The conductivity of the layers determines if 
they represent (work as) aquifers or aquicludes. The head in the top layer is fixed. At 
other locations in the aquifers fixed heads or flows may be specified. This may also be 
done for the boundaries of the layers. 

4 Color your cross section according to the conductivities before contouring this will 
yield a publication-ready picture. 

Using surface(x,y,kx) the conductivities are colored and thus visualizes the structure of 
the model and make for instance the layers in a cross section clearly visible. To remove 
the grid lines between the cells use shading(‘flat’). 

To overlay this with the contours, we may need an extra axis to draw them and place this 
axis on top of the surface to show them together. 

First set up an axis with the correct scales, copy this axis in the same figure. Then draw 
the conductivity surface in the first axis. Remove the axis, so that only the surface is 
visible. Switch to the second axis, draw the contours and make the canvas transparent to 
show the underlying surface. 

f1=figure; 

a1=axes; 

set(a1,’xlim’,[x(1),x(end)],’ylim’,[min(y),max(y)]); 

xlabel(‘x in m’); ylabel(‘z in m’); title(‘cross section); 

a2=copyobject(a1,f1); 

axes(a1); 

surface(x,y,kx); shading(‘flat’); set(gca,’visible’,’off’); 

axes(a2); 

contour(xm,ym,Phi); 

hold on; 

contour(x(2:end-1),y,Psi(Qx)); 
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5 Radial symmetric finite difference model 
An example of the results of a radial symmetric model has already been shown above. 
Very often we have to deal with radial symmetric flows, for instance to wells. Therefore, 
it comes in handy to have also a radial symmetric model that is extremely accurate, more 
accurate than computing radial symmetric flow with the previous model by multiplying 
the kx with the distance to the left size of the model: 

2* * * ;

2* * * ;

Kx pi xm kx

Ky pi xm ky

=

=
 

Using a flat model this way to compute a radial symmetric flow is course a possibility 
and a good exercise to compare it with a truly a radial symmetric model developed 
hereafter by converting our flat model into a radial symmetric one, or rather one that can 
serve both flat and radial symmetric flow problems. 

However, in order to convert our model into a radial symmetric one we have to alter its 
conductances. But in doing so we are not going to destroy the flat model that we already 
developed; instead the model is going to work for both radial symmetric and flat cases. 
Keeping both situations in a single Matlab function reduces maintenance in the future. 

To make the model work for radial symmetric situations, the only thing to do is compute 
the resistance between adjacent nodes. 

We know that for radial symmetric horizontal flow between two radii the logarithmic 
analytical solution is valid, from which the resistance against horizontal radial flow is 
readily derived: 
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Or in Matlab: 

 
   RX=(1./dy)*log(x(2:end-1)./xm(1:end-1))./(2*pi*k x(:,1:end-1))+ ...  
      (1./dy)*log(xm(2:end)./x(2:end-1)) ./(2*pi*kx (:,2:end));  
   RY=0.5/pi*dy*(1./(x(2:end).^2-x(1:end-1).^2))./k y;  
   Cx=1./RX; 
   Cy=1./(RY(1:end-1,:)+RY(2:end,:));  
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To add this to our model without destroying what we already have, implement it inside 
the following if statement  

 
If nargin== 7 
   RX=(1./dy)*log(x(2:end-1)./xm(1:end-1))./(2*pi*k x(:,1:end-1))+ ...  
      (1./dy)*log(xm(2:end)./x(2:end-1)) ./(2*pi*kx (:,2:end));  
   RY=0.5/pi*dy*(1./(x(2:end).^2-x(1:end-1).^2))./k y;  
   Cx=1./RX; 
   Cy=1./(RY(1:end-1,:)+RY(2:end,:));  
else  
   RX=0.5*(1./dy)*dx./kx; Cx=1./(RX(:,1:end-1)+RX(: ,2:end));  
   RY=0.5*dy*(1./dx)./ky; Cy=1./(RY(1:end-1,:)+RY(2 :end,:));  
end  
 

nargin is the number of input argument of a Matlab function that is always known within 
the function. Therefore if the function/model is called with 7 arguments instead of with 
the ordinary 6, it uses the conductances that are valid for radial symmetric flow and 
otherwise those for a flat model. 

To let a function call 

[Phi,Q,Qx]=fdm2(x,y,kx,ky,FH,FQ) 

compute the radial symmetric solution, add an arbitrary seventh dummy argument, for 
instance the string ‘radial’) 

[Phi,Q,Qx]=fdm2(x,y,kx,ky,FH,FQ,’radial’) 

And it will do so. 

Clearly, when setting up radial symmetric models you will often use r instead of x and z 
instead of y etc. In such a script you are likely to see a call like this 

[Phi,Q,Qr]=fdm2(r,z,kr,kz,FH,FQ,’radial’) 

But for the function that is called this makes no difference. 

The model is now ready to compute both flat and radial symmetric groundwater flow 
cases and is, therefore, quite flexible. 

5.1 Exercise radial symmetric model 
Show that the model is correct using analytical solutions. Plot the head and the flow 
contours (stream function) 

1 --- compare with Thiem 

Thiem is confined radial symmetric flow with fixed-head boundary at distance R. The 
analytical solution for the drawdown s is 

ln
2

Q R
s

kD rπ
 =  
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2 --- compare with De Glee 
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De Glee’s radial symmetric stead-state flow to a fully penetrating well in a semi-confined 
aquifer has the analytical solution: 

2 o

Q r
s K

kDπ λ
 =  
 

 with kDcλ =  and ( )...oK  the well-known Bessel function of 

second kind and zero order. 

We may compute this flow with the model in radial mode and compare with the 
analytical solution 

Qo=-2400; kD=500; c=350; lambda=sqrt(kD*c); 
 
x=logspace(0,4,41);  y=[0,-1,-2]'; 
 
xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x);      Nx=l ength(dx);  
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);  
 
kx=[0.5*dy(1)/c; kD/dy(2)]*ones(size(xm));   ky=kx;  
 
FH=NaN*ones(Ny,Nx); FH(end,end)=0.0;  
 
FQ=zeros(Ny,Nx); FQ(end,1)=Qo;  
 
[Phi,Q,Qx]=fdm2(x,y,kx,ky,FH,FQ, 'radial' );  
 
close all  
fi=Qo/(2*pi*kx(end,1)*dy(end))*log(xm(end)./xm);  
plot(xm,Phi(end,:), 'r' ,xm,fi, 'b+' );  
legend( 'analytic' , 'numeric' ,4);  
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Figure 12: Comparing the model in radial mode with the semi-confined flow solution for steadhy 
state extraction from a well (De Glee). 

3 --- Compare vertical anisotropy 

This is straightforward 

4 --- Compare with a circular island with recharge 

The analytical solution has already been given. In the radial symmetric model the 
recharge in the top of the columns of the cross section is 

FQ(1,:)=pi*(r(2:end).^2-r(1:end-1).^2)*n; 

5 --- Compare with a circular island in semi-confined aquifer 

In the semi-confined aquifer, the top is an aquitard with a fixed head above it. In the 
Matlab model, we may use the aquitard as the top layer. But then the fixed head is in the 
center of this layer. The resistance of the aquitard must than be generated by the half 
thickness of the top layer (between the node and the bottom of the cell). If the resistance 
of the aquitard is c, and the thickness of the top layer is H, then the vertical conductivity 
in this top layer must be set to 0.5 /zk H c= . 

We may also use an extra layer on top of the aquifer, make it very thin and specify the 
head in this thin top layer. In that case the conductivity of the top layer must be set to 

/zk H c= . 

This is the only thing necessary to model a semi-confined aquifer with the radial 
symmetric model.  
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6 --- Compute pumping test in layer 4 of 5 layer model 

This is trivial with the model. 

7 --- Compute effect of partial penetration 

As stated before partial screen penetration of the aquifer is the rule rather than the 
exception when installing wells.  
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Figure 13: Partial penetrating wells with variables used in the formula 

In Matlab one may compute both situations and subtract the two to get the extra 
drawdown and then compare it with the analytical formula. 

The extra drawdown caused by partial penetration has been derived in the past and is 
given in several books on hydrogeology or pumping test analysis (e.g. Kruzeman & De 
Ridder, 1997): 
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This drawdown is relative (has to be added to) the drawdown for fully penetrating wells. 
It was derived for a uniform extraction along the well screens in a homogeneous aquifer. 

This formula is valid for uniform extraction along the screen. This is readily implemented 
as the boundary condition for the well. In the real case, the boundary is rather a fixed 
head along the screen. This too is readily modeled with the Matlab model. The drawdown 
along the screen will than vary. 

To check the model with respect to partial penetration, compute the drawdown with a 
fully and with partially penetrating well. Subtract the two drawdown matrices. This 
difference, which is also a matrix of the size of the model, can be compared with the 
analytical solution. 

figure  
ds=0; Z=0; D=sum(dy(2:end));  % ds is partial penet ration  
for  i=1:50  % analytical solution partial penetration  
   ds=ds+1/i*(sin(i*pi*(ZS(1)-Z)/D)-sin(i*pi*(ZS(2) -Z)/D)) ...  
       .*cos(i*pi.*(ym*ones(size(xm))-Z)/D) ...  
       .*besselk(0,i*pi.*ones(size(dy))*xm/D);  



CT5440 Exercises, make your own finite difference model in Matlab 

Olsthoorn Page 40 of 66 3/15/2009 

end  
ds=ds*Qo/(2*pi*kD)*(2*D/(pi*(ZS(1)-ZS(2))));  
contour(xm,ym,ds)  
title( 'dspp penetration contours' );  
set(gca, 'xscale' , 'log' )  

5.2 Houskeeping with function modelsize(x,y) 
To ease initializing the model, a small householding function may be applied like 

[x,y,xm,ym,dx,dy,Nx,Ny]=modelsize(x,y)  
 

It makes sure x and y are in the right order, sorted and contain no duplicate values, so that 
the coodinates may be given in any order. It then computes the centers of the cells, xm 
and ym,  and given the size of the model Ny, Nx, i.e. the number of rows and the number 
of columns of the model. Using this simple function avoids clutter in your scripts. 

 

function  [x,y,xm,ym,dx,dy,Nx,Ny]=modelsize(x,y)  
%[xm,ym,dx,dy,Nx.Ny]=modelsize(x,y)  
% compute size of model and put x and y in correct order  
x=unique(x(:)');  
y=sort(unique(y(:)), 'descend' );  % first row is highest coordinated  
xm=0.5*(x(1:end-1)+x(2:end));  
ym=0.5*(y(1:end-1)+y(2:end));  
dx=diff(x);  
dy=abs(diff(y));  
Nx=length(dx);  
Ny=length(dy);  
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6 Transient modeling 
With the previously developed models, all ingredients are already in place. The transient 
water balance during a given time step of length t∆  reads 

,
i i

ij j i i i i i S ia C Q C h C
t

φ φ
φ φ

+ −−
+ = + −

∆∑  ( 2 ) 

This is the same as before, a complete model including its boundaries, but now with the 
storage added to the balance. The left part is the flow outward of node i; the right-hand 
side says where this water comes from: injection into the node, a fixed head boundary 
and a release of storage over the considered time step. iφ

+  is the nodal head at the end of 

the time step and  iφ
−  is the head at the beginning of the time step. This head represents 

the initial condition necessary in all transient modeling. It is either the initial head at the 
start of the model or the head at the end of the previous time step. In any case, it is always 
known during the simulation. 

All other heads and the flows have to be average values for the duration of the current 
time step and are still unknown. 

SC  contains the storativity and the cell dimensions, and will be considered further down. 

The computation of this coefficient is specific to the numerical method, in our case finite 
differences. 

Here we encounter two unknowns, iφ  and iφ
+ . We will only be able to resolve this 

situation if we assume some relation between the two. For instance that the head change 
during the time step is linear and that the average heads are those at time given by some 
value t t tθ−= + ∆  where 0 1θ≤ ≤ , so that 

( ) φ φ
φ φ θ φ φ φ φ

θ

−
− + − + − −

− = − → − =  ( 3 ) 

and therefore,  

( ),S i
ij j i i i i i i i

C
a C Q C h

t
φ φ φ φ

θ
−+ = + − −

∆∑  ( 4 ) 

Exactly like we did with the general fixed heads, we leave the fixed part at the right-hand 
side and put the variable part to the left hand side 

, ,S i S i
ij j i i i i i i i

C C
a C Q C h

t t
φ φ φ φ

θ θ
−+ + = + +

∆ ∆∑  ( 5 ) 

The left-hand side is equivalent to adding iC  and ( ), /S iC tθ∆  to the diagonal matrix 

coefficient. The right-hand side is equivalent to a permanent inflow into the node during 
this time step. In Matlab/matrix formulation 

1
* .* .*S

Sdiag C
t tθ θ

−  
+ + Φ = + + Φ  ∆ ∆  

C
A Q C h C  ( 6 ) 



CT5440 Exercises, make your own finite difference model in Matlab 

Olsthoorn Page 42 of 66 3/15/2009 

This represents the complete transient model, including its initial and boundary 
conditions. 

Hence, to solve this model in Matlab for the time step: 

1
\ .* .*S

Sdiag C
t tθ θ

−    Φ = + + + + Φ   ∆ ∆   

C
A Q C h C  ( 7 ) 

This yields average heads during the time step (based on the chosen value ofθ ). The head 
at the end of the time step requires a separate computation step: 

( )1 1 1
1

θ θ θ
+ − − − Φ = Φ + Φ −Φ = Φ + − Φ 

 
 ( 8 ) 

Then, by setting − +Φ =Φ  we enter into the next time step, with the heads at the end of 
the previous time step are the initial heads of the next one. 

The value of θ  is called the implicitness of the solution.  0θ =  is called explicit and 
1θ =  is called fully implicit. Values above 0.5 yield stable solutions (without artificial 

oscillations). 0θ =  requires small time steps in order to prevent oscillation. On the other 
hand computation steps are cheap because it does not require any solution of a system 
matrix. A value of 1 is called fully implicit. It may be less accurate in case of larger time 
steps, but it is rock-stable. Notice that MODFLOW just uses 1θ =  without any choice for 
the user. An optimal value for finite element models seems 2 / 3θ = . Anyway, all values 
above 0.5θ =  yield unconditionally stable solutions. In practice, it may be most simple 
to use 1θ = , which implies that the average flows and heads during the time step are well 
represented by those at the end of the time step. Given the success of MODFLOW there 
seems to be no real objection against 1θ = . 1θ =  makes the second step to update the 
heads at the end of the time step obsolete because it reduces to 

+ −Φ = Φ  ( 9 ) 

The only thing to be elaborated are the values of sC . For the flat finite difference model 

these equal 

S SC S x y z= ∆ ∆ ∆  ( 10 ) 

Where yS  is specific yield (water table storage) and sS  is the specific storage, which 

requires the thickness of the model cell to be given. 

As can be seen, each cell is given both a specific yield (in case it has or gets a free water 
table) and an elastic storage for the saturated part. In our simple models we will not deal 
with variable aquifer or layer thickness during the simulation, although this is quite 
straightforward to implement. 

For the radial symmetric model the storage coefficients equal 

( )2 2
1S i i sC r r ySπ += − ∆  ( 11 ) 

In practice, Sy will be specified for the top cells with a free water table and Ss for all 
deeper cells. 



CT5440 Exercises, make your own finite difference model in Matlab 

Olsthoorn Page 43 of 66 3/15/2009 

What has to be changed to the model to make it transient? 

The function call has to be extended with time, storage coefficients and initial heads, 
while θ  may be specified or just set to a default value. We just keep θ  as an internal 
parameter of the model. Here is the transient model. 
function  [Phi,Qt,Qx,Qy,Qs]=fdm2t(x,y,t,kx,ky,S,IH,FH,FQ,rad ial) 
% function [Phi,Q,Qx,Qy,Qs]=fdm2(x,y,t,kx,ky,S,IH,F H,FQ,radial)  
% 2D block-centered transient finite difference mod el  
% IH=initial head [L]  
% FH=fixed heads (NaN for ordinary points) [L] 
% FQ=fixed nodal flows  [L3/T] constant in this mod el  
% Phi [L3] output heads 3D matrix, all time steps    [Ny,Nx,Nt] 
% Qt [L3/T] to adjacent nodes during time step =-St orage+inflow  
% Qx [L3/T] is hor  cell face flow time step averag e [Ny,Nx,Nt-2]  
% Qy [L3/T] is vert cell face flow time step averag e [Ny,Nx,Nt-1]  
% Qs [L3] is nodal storage change, time step total! ! [Ny,Nx,Nt-1]  
% TO 991017  TO 000530 001026 070414 070426  
 
theta=1;  % implicitness  
 
x=x(:)'; Nx=length(x)-1; dx=diff(x); xm=0.5*(x(1:en d-1)+x(2:end)); 
y=y(:);  Ny=length(y)-1; dy=abs(diff(y)); 
t=t(:);  Nt=length(t)-1; dt=diff(t); 
 
Nodes = reshape(1:Nx*Ny,Ny,Nx);               % Node numbering  
IE=Nodes(:,2:end);   IW=Nodes(:,1:end-1); 
IS=Nodes(2:end,:);   IN=Nodes(1:end-1,:); 
 
% resistances and conductances  
If nargin==10 
   RX=(1./dy)*log(x(2:end-1)./xm(1:end-1))./(2*pi*k x(:,1:end-1))+ ...  
      (1./dy)*log(xm(2:end)./x(2:end-1)) ./(2*pi*kx (:,2:end)); 
   RY=0.5/pi*dy*(1./(x(2:end).^2-x(1:end-1).^2))./k y; 
   Cx=1./RX; 
   Cy=1./(RY(1:end-1,:)+RY(2:end,:)); 
   Cs=pi*dy*(x(2:end).^2-x(1:end-1).^2).*S; 
else  
   RX=0.5*(1./dy)*dx./kx; Cx=1./(RX(:,1:end-1)+RX(: ,2:end)); 
   RY=0.5*dy*(1./dx)./ky; Cy=1./(RY(1:end-1,:)+RY(2 :end,:)); 
   Cs=dy*dx.*S; 
end  
  
A=sparse([IE(:);IW(:);IN(:);IS(:)], ...  
         [IW(:);IE(:);IS(:);IN(:)], ...  
         -[Cx(:);Cx(:);Cy(:);Cy(:)], ...  
         Ny*Nx,Ny*Nx,5*Ny*Nx);           % System matrix  
Adiag= -sum(A,2);                        % Main diagonal  
  
C=zeros(size(FH)); C(~isnan(FH))=1e10;  % fixed heads using huge number  
FH(isnan(FH))=0; 
 
Phi=NaN*zeros(Ny,Nx,Nt);       % storage for head matrix  
Qt =NaN*zeros(Ny,Nx,Nt-1);      % storage nodal flow matrix  
Qx =NaN*zeros(Ny,Nx-1,Nt-1);    % storage hor  face flows  
Qy =NaN*zeros(Ny-1,Nx,Nt-1);    % storage vert face flows  
Qs =NaN*zeros(Ny,Nx,Nt-1);      % storage for head matrix  
Phi(:,:,1)=IH;  Store in initial head as Phi at t=0  
 
for  it=1:length(dt) 
  Fi=spdiags(Adiag+C(:)+Cs(:)/(dt(it)*theta),0,A)\. .. 
    (FQ(:)+C(:).*FH(:)+reshape(Cs.*Phi(:,:,it)/dt(i t)/theta,Ny*Nx,1)); 
 
  Phi(:,:,it+1)=reshape(Fi,Ny,Nx)/theta-(1-theta)/t heta*Phi(:,:,it); 
  Qt (:,:,it)  =reshape(spdiags(Adiag,0,A)*Fi,Ny,Nx ); 
  Qx (:,:,it)  =-Cx.*diff(reshape(Fi,Ny,Nx),1,2)*si gn(x(end)-x(1));  % m3/d 
  Qy (:,:,it)  =-Cy.*diff(reshape(Fi,Ny,Nx),1,1)*si gn(y(end)-y(1));  % m3/d 
  Qs (:,:,it)  =-Cs.*(Phi(:,:,it+1)-Phi(:,:,it))/dt (it); 
end  
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The water balance can be checked as follows 

( )
1,

N

ij i j fixed trough fixed head storage
j j i

t C φ φ
= ≠

= − = + +∑Q Q Q Q  ( 12 ) 

Qt is thus the inflow to a node averaged over the time step. This is the flow towards its 
adjacent connected nodes. It balances with the given fixed inflows from the outside 
world, Qfixed, the inflow from the outside world through any fixed head nodes and the 
release of storage (see model code). 

( ) /Storage S dt+ −= − Φ −ΦQ C  ( 13 ) 

The ouput flows are all averages during for each time step. That is also true for the 
QStorage. It is computed as the release, see equation and model code. The total release 
from storage for a node over the entire time step thus equals 

( )s s i iQ dt C dtφ φ+ −= − −  

 

To check this water balance, for a model with no fixed heads and only fixed flows, 

dt=diff(t);  
St=zeros(length(dt)); % Vector to store total stora ge per time step  
for  it=1:length(dt)  
    St(it)=sum(sum(Qs(:,:,it)))*dt(it); % =FQ+Qfrom FH+QStoreRelease  
end  
sum(St(:))        % show total storage release over  entire period  
sum(FQ(:)*sum(dt) % Qw is well flow show total infl ow from fixed flows 

 

These two show the equal. 

In the case of fixed head cells we may compute the fixed head cell inflows from 

( ) ( ) ( ) ( ): : : :FH t fixed storage= − −Q Q Q Q  

6.1 Exercises transient model 
Prove that the model is correct 

0 --- Check the water balance 

To check the water balance, the storage must be included. Check for your self which 
flows must add up to zero 

1 --- Compare the model with Theis’s solution 

Theis’s solution is for a fully penetrating well in a confined aquifer. The well-known 
solution for the drawdown is 

2

04 4
oQ r S

s E
kD kDtπ

 
=  

 
 

With Eo the exponential integral or Theis’s well function. In Matlab, for time t(i) 
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S=Qo/(2*pi*kD).*expint(r.^2.*S./(4*kD*t(i))); 

 

% Compute radial transient model compare with Theis  analytical solution 

rW=0.1; k=10; Ss=0.0001; Sy=0.1; Qw=-2400; t=logspa ce(-3,2,51); 
r=logspace(log10(rW),4,41); 
z=[0, -20]; 
[r,z,rm,zm,dr,dz,Nr,Nz]=modelsize(r,z);   % small household function  
K=k*ones(Nz,Nr); 
S=Ss*ones(Nz,Nr); S(1,:)=Sy/dz(1);   % combine Ss and Sy (spec yield)  
FH=NaN*zeros(Nz,Nr);    % fixed head not necessary for transient flow  
IH=zeros(Nz,Nr);        % initial heads are always essential  
FQ=zeros(Nz,Nr); FQ(1,1)=Qw;  % extraction at r=rm(1)  
 
kD=k*sum(dz); SY=sum(S(:,1).*dz); % kD and S for analytical comp  
fi=Qw/(4*pi*kD)*expint((1./(4*kD*t'))*(rm.^2*SY));   % analytical  
 
[Phi,Qt,Qr,Qz,Qs]=fdm2t(r,z,t,K,K,S,IH,FH,FQ, 'radial' ); %run model  
 
close all; figure; hold on   % start visualisation  
for  it=2:length(t) 
   plot(rm,Phi(1,:,it), 'x' ); % numerical as crosses  
end  
plot(rm,fi);                 % analytical as function of rm, lines  
title( 'Theis drawdown as function of r for different time s' ); 
xlabel( 'r [m]' ); ylabel( 'dd [m]' ); 
set(gca, 'xscale' , 'log' );     % use log scale  
 
figure; hold on 
for  ir=1:length(rm) 
   plot(t,squeeze(Phi(1,ir,:)), 'x-' ); % must use squeeze if 1 layer  
end  
plot(t,fi');                % analytical as function of time, lines  
title( 'Theis drawdown as function of t for different time s' ); 
xlabel( 't [d]' ); ylabel( 'dd [m]' ); 
set(gca, 'xscale' , 'log' ); % use log scale  
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Figure 14: Drawdown as function of distance to the well for different times (x = numerical, lines are 
analytical solution according to Theis 
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Figure 15: Drawdown as function of time for various distances to the well (numeric X, line analytical 
Theis solution) 
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The pictures show the accuracy of the model. The model seems to be off for very small 
times only. This is because the model starts with zero initial heads at a very non-zero 
time, while the analytical solution is only zero at zero time. This difference can be 
completely removed by using the analytical solution at the initial time as initial heads. 

 

2 --- Compare the model with Hantush’s solution 

Hantush’s solution concerns the drawdown due to a well in a semi-confined aquifer: 

2
1 1

W , exp
4h

u

r r
u y dy

y yλ λ

∞     = − −         
∫  

It may be implemented by writing a function that carries out the integration 

2

, ,
4 4

o
h

Q r r S
s W u u

kD kDtπ λ
 = = 
 

 

Where Wh(…,…) us Hantush’s well function 

( )2/ 2y r

h

u

e
W dy

y

λ∞ − −

= ∫  

3 --- Compute delayed yield 

Delayed yield may result from the drawdown above the aquitard that is caused by the 
leaking through the aquitard. It also results from the combination of elastic storage and 
water table storage in the same unconfined aquifer. Initially the drawdown is due to 
elastic storage, which expands fast. Slowly the water table will determine the drawdown 
and will show up at a later time. The combined drawdown curve shows two theis-curves 
in series, the first one determined by the elastic storage, the second one by the water table 
storage. In Matlab is it readily modeled by giving all cells a small elastic storage 
coefficient and only the top layer cells a larger one, the specific yield. Compute the time-
drawdown curve and compare it with the two Theis curves 

4 --- Compute well bore storage (Boulton) 

The storage inside the well changes the drawdown shortly after the start of the pump. It 
may be implemented by modeling the well casing explicitly. A thin column may be given 
a zero horizontal conductivity to represent the impervious well casing. Then the top cell 
inside the casing is given a storage coefficient equal to 1. To represent the free water 
inside the screen and the casing, use a large vertical conductivity. The extraction may 
then be from any of the cells inside the screen or the casing. The large vertical 
conductivity inside the well makes sure the head is the same throughout the well screen 
and casing. The result should be compared with the analytical solution given by Boulton. 
A practical manner is comparing it with curves for Boulton in Pumping Test Books (e.g. 
Kruzeman & De Ridder, 1970, 1995) 
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Figure 16: A large diameter well 

Consider a large 5 m radius dug well that is also 5 m deep in a 20 m deep aquifer. The 
specific yield is 5% and the extraction 130 m3/d, i.e. 1000 people using 70 l/d plus 600 
cattle using 100 l/d. What will be the drawdown in this well? Is it sustainable? 

To analyze this situation, make an radial symmetric model, 20 m deep. Use a 
logarithmically increasing grid size with distance (say logspace(-1,4,41), such that the 
drawdown will not reach the outer boundary of the model) and say 20 layers of 1 m 
thickness vertically. Then refine around the diameter of the well and around its bottom, to 
accurately compute the concentrated flow in this region. 

In the well use a very high conductivity, day k=10000, so that the well will obtain a 
uniform head like in the reality. The extraction may be put in an arbitrary model point 
inside this well. Then apply the storage coefficient to the model cells. All cells may be 
given the specific elastic storage coefficient by default. However, specific yield is 
different. It applies to the topmost cells only and we must use it there as a kind of elastic 
storage for the top row of cells. To do this, use Sy/dz for this row as storage coefficient. 
That is, do this for all top row cells and use 1/dz  (i.e. Sy=1) for the cells representing the 
inside of the well. 
rW=5; zW=-5; R=10000; k=1; Ss=0.0001; Sy=0.05; Qw=- 130; 
r=[logspace(0,log10(R),50), rW+[-0.5 -0.25 -0.1 0 0 .1 0.25 0.5 1]]; 
z=[0:-1:-20, zW+[-0.5 -0.25 -0.1 0 0.1 0.25 0.5]]; 
t=logspace(0,3,31); 
[r,z,rm,zm,dr,dz,Nr,Nz]=modelsize(r,z); 
 
K=k*ones(Nz,Nr); K(zm>zW, rm<rW)=10000; 
S=Ss*ones(Nz,Nr); S(1,:)=Sy/dz(1); S(1,rm<rW)=1/dz( 1); 
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FH=NaN*zeros(Nz,Nr); 
IH=zeros(Nz,Nr); 
FQ=zeros(Nz,Nr); FQ(1,1)=Qw; 
[Phi,Qt,Qr,Qz,Qs]=fdm2t(r,z,t,K,K,S,IH,FH,FQ, 'radial' ); 
 
kD=k*sum(dz); SY=sum(S(:,end).*dz); 
fi=Qw/(4*pi*kD)*expint((1./(4*kD*t(:)))*(rm.^2*SY)) ; 
 
close all  
plot(rm,squeeze(Phi(1,:,:)), '+' ,rm,fi, '-' ); hold on 
title( 'Drawdown insize pp large diameter well, compare wi th Theis' ); 
xlabel( 'r [m]' ); ylabel( 'dd [m]' ); 
set(gca, 'xscale' , 'log' ); 
 
figure 
plot(t,squeeze(Phi([1,end],1,:)), '+' ,t,fi(:,1), '-' ); 
set(gca, 'xscale' , 'log' ); 
legend( 'in well' , 'below well, bottom aquifer' , 'Theis' ); 
title( 'Drawdown in partially penetrating large diameter w ell, compare with Theis' ); 
xlabel( 't [d]' ); ylabel( 'dd [m]' ); 
set(gca, 'xscale' , 'log' ); 

 

Example of a large diameter well 

10
0

10
1

10
2

10
3

10
4

-7

-6

-5

-4

-3

-2

-1

0
Drawdown insize pp large diameter well, compare with Theis

r [m]

dd
 [

m
]

 
Figure 17: Drawdown (numeric +) along z=0 through well and at top of aquifer. Comparison with 
Theis solution (lines). The horizontal lines is the head inside the well (5 m radius) 
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Drawdown in partially penetrating large diameter well, compare with Theis

 

 

in well

below well, bottom aquifer

Theis

 
Figure 18: Drawdown inside large diameter well, below it at the bottom of the aquifer and 
comparison with Theis solution (this drawdown is quite substantial). The drawdown inside and 
below the well is less than Theis, because the large diameter compensates the partial penetration. The 
drawdown at the bottom of the aquifer is much less than inside the well due to partial penetration. 
Initially the drawdown in the well is less than Theis and declines more or less linearly due to the large 
storage inside it. 

To check the water balance, see if the total extraction from the well over the entire period 
matches the water released from storage 

 
dt=diff(t);  
St=zeros(length(dt));  
for  it=1:length(dt)  
    St(it)=sum(sum(Qs(:,:,it)))*dt(it);  
end  
FromStorage=sum(St(:))  
Injected   =Qw*sum(dt)  
     
Matlab gives: 

FromStorage =  1.2987e+005 

Injected =     -129870 

 

These are indeed the same and equal the total extraction. Now check with the given well 
extraction (-130 m3/d * 999 days) 

>> Qw*sum(dt) 
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ans =  -129870 

Which indeed matches the given infiltration (extraction = negative infiltration) 

 

To visualize the flow, compute the steady-state model 
FH(:,end)=0;   % now we must have some boundary fix ed 
[Phi,Qn,Qx]=fdm2(r,z,K,K,FH,FQ, 'radial' ); % steady state model 
contour(rm,zm,Phi); hold on          % head lines  
contour(r(2:end-1),z,Psi(Qx));       % stream lines  
set(gca, 'xscale' , 'log' );             % log scale 
title( 'large diameter well' ); xlabel( 'r [m]' ); ylabel( 'z [m]' ); 
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Figure 19: The contours of the steady-state computation with fixed head at R=10000. Inside the wells 
the stream lines continue to the point of extraction. Notice the logarithmic scale used to visualize the 
situation 

 

5 --- Compute the effect of a shower of rain on a parcel of land compare with analytical 
solution 

A shower of rain on a parcel of land cause the water to be raised instantaneously, but the 
head at the edges of the parcel remains equal to the ditch level. This comes down to an 
immediate drawdown at the edges of the parcel, which progresses into the parcel, initially 
fast becoming slower and slower over time. 
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To model this in Matlab, set the fixed head in the ditches equal to zero and use an initial 
head equal to n/Sy, where n is the shower in mm and Sy the specific yield. Then follow the 
drawdown over time. Used increasing time steps to track the fast initial drawdown well. 

t=logspace(-3,3,61)  % logarithmically increasing series starting at10-3, ending at 103 in 
60 steps (61 values, 10 per log cycle). 

Compare the results with the analytical solution 

( ) ( ) ( )
1

2 2
2

1

14
1 cos 2 1 exp 2 1

2 1

j

jy

n x kD
s j j t

S j L L S
π π

π

−∞

=

  −     = − − − −      −      
∑  

Where L is the half-width of the cross section through the parcel (Carslaw & Jaeger, 
1959, p97, eq 8; Verruijt, 1999, p87). 
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7 Model wrapping 
Having a transient model, the steady-state version can be created by running the transient 
model with the proper input. This would make the maintenance of a separate steady –
state version of the model obsolete. On the other hand, a transient model requires more 
input and is more complicated to use. A good compromise may then be to make a 
wrapper around it, that looks like a steady-state model, but all it does is augmenting the 
input with dummies and then call the transient model with its complete input. The use 
then only bothers with the wrapper as if it were a steady-state version of the model. 
Working with wrappers may easy model usage and at the same time reduce maintenance 
as only a single model has be updated. This is especially important as models get more 
complicated. 
function  [Phi,Q,Qx,Qy]=fdm2wrap(x,y,kx,ky,FH,FQ,radial) 
% function [Phi,Q,Psiy,Psix]=fdm2(x,y,kx,ky,FH,FQ,r adial)  
% 2D block-centred steady-state finite difference m odel  
% x,y mesh coordinates, kx,ky conductivities  
% FH=fixed heads (NaN for ordinary points), Q=fixed  nodal flows  
% Phi,FQ computed heads and cell balances  
% Qx is horizontal flow direction increasing column  number  
% Qy is vertial cell wall flow in directin of incre asing row number  
% TO 991017  TO 000530 001026 070414  
  
Dummy=zeros(size(FQ)); tDummy=[0 1]; 
[Phi,Qt,Qx,Qy]=fdm2t(x,y,tDummy,kx,ky,Dummy,Dummy,F H,FQ,radial); 
  
Phi=squeeze(Phi(:,:,end)); 
Q  =squeeze(Qt); 
Qx =squeeze(Qx); 
Qy =squeeze(Qy); 
% squeeze eliminates one dimension if it has length 1: 3D�2D 
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8 Particle tracking (flow lines) 
Particle tracking is one of the functions most used in a groundwater model. Contrary to 
stream lines that require steady-state 2D flow without sources and sinks, particles may 
always be tracked to create flow lines. Clearly, particles starting at the same location may 
not follow the same path if released at different times in a transient model. In the random 
walk technique particles are even given a random displacement at each time step to 
simulate dispersion, which alters the path of individual particles in an unforeseen manner, 
thus simulating dispersion. 

Particle tracking in finite difference models is quite straightforward. The flows 
perpendicular to the cell faces are known and, therefore, the specific discharge at theses 
faces may be approximated by dividing by their surface area. Average. As the porosity in 
the cells at either side of a cell face may differ, so may the groundwater velocity 
perpendicular to the cell face, even though the specific discharge does not. 

In finite difference modeling, the flow in x, y and z direction, which is parallel to the axes 
of the model, is linearly interpolated between that at opposite cell faces. This implies that 
the flow in x-direction (and velocity for that matter) is only a function of x, the velocity in 
y-direction only a function of y and the one in z-direction only depends on z. This is 
consistent with the model assumptions and largely simplifies the analysis. However, for 
large cells it may not be accurate. So it may be necessary to use smaller cells where large 
variations in velocity occur in value and direction. On the other hand the elegance of this 
approach is that the divergence remains zero in a cell. This means no water is lost, so that 
the flow paths by themselves are consistent. 

To show this, take the divergence for an arbitrary point within a 3D cell without sources 
and sinks. This divergence must be zero: 

0yx x
qq q

x y z

∂∂ ∂
+ + =

∂ ∂ ∂
 ( 14 ) 

Written out in the flows generated by the model for a cell with size , ,x y z∆ ∆ ∆  gives 

2 12 1 2 1
2 1 2 1 2 10 0y yx x z z

x x y y z z

Q QQ Q Q Q
Q Q Q Q Q Q

x y z x y z x y z

−− −
+ + = → − + − + − =

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
 ( 15 ) 

which must be true because it is the cell’s water balance (without internal sources). 

 

To analyze particle tracking within de realm of FDM further, consider the average 
velocity at cell faces, computed from the flows perpendicular to the cell faces (Qx and Qy) 
and the porosity ε  of the cell. In 2D, the velocity in a cell with porosity ε  may be 
computed for the local flow in x and y direction. For generality we also have to consider 
the thickness of the cell, D, perpendicular to the x,y plane. 

1 1
; yx

x y

QQ
v v

H y H xε ε
= =

∆ ∆
 ( 16 ) 

Within a cell the flow is interpolated between that of the opposite cell faces 
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( ) ( ), y yx x
x x y y

Q QQ Q
Q Q x x Q Q y y

x x y y
+ −+ −

− − − −
+ − + −

−−
= + − = + −

− −
 ( 17 ) 
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In which the indices + and – refer to the sides of this cell. 

Hence ,x x x y y y+ − + −∆ = − ∆ = −  

By dividing by H yε ∆  and H xε ∆  within the cell we obtain the groundwater velocities 
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Or, 

( ) ( ); y yx x
x x y y
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 ( 20 ) 

With  

x x x
x

dv v v

dx dx
α + −−

= =  and 
y y y

y

dv v v

dy dy
α + −−

= =  ( 21 ) 

This simplifies to 

( ),x x xv v a x x− −= + − , and ( )y y xv v a y y− −= + −  ( 22 ) 

 

Working this out in terms of particle displacement yields 

( )x x

dx
v x x

dt
α− −= + − ; ( )y y

dy
v y y

dt
α− −= + −  ( 23 ) 

 

We leave out the y-direction for now to limit the length of this paper. 

Integration yields 
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− −
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+ −
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+ −
    -���� ( )( )ln x x xv x x t Cα α− −+ − = +  ( 24 ) 
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With x=xo at t=to C may be computed, giving 

( )
( )

( )ln x x
x o

x x o

v x x
t t

v x x

α
α

α
− −

− −

 + −
= −  + − 

 ( 25 ) 

This equation is useful to compute at what time the particle hits a cell face given its initial 
position in the cell. Clearly, its velocity must not be zero (denominator), neither must the 
velocity at the target position be zero (numerator), or must the fraction be negative 
(which means opposite velocities at current and target positions, implying a water divide 
in between). 

Reversing this formula yields the position of the particle at a given time 

( ) ( )( )expx x
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v v
x x x x t t
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α− −

− −

 
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Which may be rewritten in relative coordinates 

( )( )expx x
o x o
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u u t t

x v v
α− −−−  

= = + − − ∆ ∆ ∆ 
, with v v v+ −∆ = −  ( 27 ) 

This gives the relative position in the cell at given time starting at an arbitrary initial 
position xo in the cell at time to. For this to work, the only condition is that 0xα ≠  in 

which case the velocity is constant and the new position becomes. 

( )o x ox x v t t= + −  or o
o

x

x x
t t

v

−
− =  ( 28 ) 

The model must capture this situation as it needs to use an alternative formula to compute 
the velocity at another location or the time to get to some other locations (i.e. the cell 
face). 

If  
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+ −
 

The logarithm does not exist. The reason is that the velocity at the target location x is 
opposite to that at the current location xo so that the particle never reaches the target 
location. This happens if there is a water divide between the current and target locations. 
In this case no time can be computed. On the other hand the position of the particle may 
then be computed for any time up to infinity. In the model these situations must be 
captured. 

The model 

The logic of the particle tracking model is as follows: 

First compute the velocities at the upstream and downstream sides of all cells, both in x 
and y direction, using the cell face flows at the cell interfaces and the porosities of this 
cells. 



CT5440 Exercises, make your own finite difference model in Matlab 

Olsthoorn Page 57 of 66 3/15/2009 

Then, given an arbitrary point xp, yp, find in which cell it is and start tracking during a 
given time step DT 

In case the velocity is zero the point remains at its position and the time moves on to 
t+DT. Particle position and cell index remain unchanged. 

If the velocity is negative, compute movement of particle in the direction of the upstream 
cell face: 

If the velocity is constant, use the appropriate formula. Compute the time dt to reach the 
cell face. If this time exceeds DT, use DT instead and compute the new particle position 
using DT. Don’t update the cell index. 

Else check the velocity direction at the target cell face and see if the particle will ever 
reach it. If so, compute the time dt until the hit. Provisionally update the particle position 
to this cell face and reduce the cell index for the x-direction by 1. Now check if  dt>DT to 
see if the target DT is reached before we hit the cell face. If this is the case, use DT 
instead and compute the particle position using DT. Don’t update the cell index. 

If the particle will never reach the upstream cell face, use DT and compute the particle 
position after DT. Don’t update the cell index. 

The same logic is used for the downstream cell face in the case the velocity is positive. 

The same logic also applies for the y-direction. 

Finally we have a provisional new position xpN, ypN with provisional change of cell 
indix dic, djc (both -1, 0 or +1) in x and y direction respectively and two times dtx and dty 
that meet the criteria in both the x and y direction respectively. 

The smallest of the two determines the final particle update. In case this is dtx, than the 
values xp=xpN, ic=ic+dic and dt=dtx will hold and the y-position of the particle has to be 
recomputed using the new dt. In case the smallest of the two is dty it is the other way 
around. 

Clearly, dt may be smaller than the initial target time step DT, as a cell face is hit much 
sooner. Then DT is reduced by dt and the procedure is done all over again, causing the 
particle to move through the next cell. This is repeated until DT has become zero. This 
makes sure that the particle position at given time points will be stored together with the 
positions and times that a particle crosses cell faces. 

The procedure is repeated with a new time step, until all have been worked through. 

Because the cell face flows at the outer boundary faces of the model are always zero in 
the finite difference model, particles can never escape the model and need no special care 
in that respect. However, particles will enter extraction cells, where they would simply 
slow down indefinitely as, because such cells behave as having a water divide inside (or a 
distributed extraction over the cell area). Therefore, it is better to capture particles 
entering cells that have an extraction which is beyond a given fraction of the throughflow 
of the cell. This is the same approach as MODPATH. 

The extraction is provided by the output of fdm2 and the throughflow is computed as the 
sum of the absolute values of the flows across all 4 cell faces. This threshold fraction may 
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be set at 15% or so. So the loop is broken off as soon as the particle enters a cell being a 
sink according to this criterion. 

To allow dealing with the x and y (and possibly the z-axis) in the same manner, so that 
the program uses the same logic for the three axes, one must guarantee that the cell 
indices are aligned (increase) with the positive axis-direction. This is checked in the 
beginning and if necessary the concerned matrices are flipped accordingly left-right or 
upside-down. 

To allow backward tracing, the matrices Qx and Qy are multiplied by -1. Backward 
tracing is signaled by using negative times in the input. 

The implementation is such that the function fdmpath is called after the model has been 
run and the necessary nodal and cell-face flow matrices computed. The extra information 
that the fdmpath needs is the porosity of all cells and either the thickness of each cell or 
the sign that the model be computed in radial fashion 

[XP YP TP]=fdmpath(x,y,DZ|radial,Q,Qx,Qy,por,T,[mar kers]) 

 

Use the x,y,Q,Qx and Qy matrices that are the output of fdm2. 

Make sure the size of the porosity matrix equals the size of Q or use a scalar. 

Make sure that the absolute values of the time series T are increasing. Use negative 
values for backward tracing. You don’t need to start with a zero first time. 

The third argument is either a matrix DZ of the cell thicknesses or a string such as ‘R’ or 
‘radial’ to indicate the radial symmetric case. You may use a scalar for DZ. An empty 
matrix [] will be regarded the same as DZ=1. 

In the case of radial flow the horizontal and vertical velocities at the cell faces are 
computed as 
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 ( 29 ) 

The optional markers is a string consisting of letters that are valid Matlab marker 
indicators. The default is (see doc marker). 

'+o*.xsdph^v<>'  
There will be a marker plotted in the paths for each given time (except zero) according to 
this list of markers, which is repeated of there are more times than markers given. For 
instance ‘oooop’  gives you four ‘o-markers’ and each fifth a ‘p’=pentagon . 

When the model is run, it picks up the current figure (assuming it is a contour plot 
generated after running the model) by letting you click at a point in it (left mouse button). 
The program will immediately compute and show the flow path with the markers (No 
markers will be visible if the particles leave the model before the first time is reached). 

You can repeat this as long as you like. 

To stop use the right-hand mouse button. Upon this the program stops and yields the XP, 
YP and TP coordinates of all the generated lines. These points and times include all 
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points where particles crossed cell borders and all points at the given times. The 
individual lines in these matrices are separated by a NaN (“Not a Number” value). The 
coordinates at the given times can be picked out of these matrices: 

for it=1:length(T) 

I=find(abs(TP-T(it))<1e-6); 

plot(XP(I),YP(I),’o’); 

end 

As with all Matlab functions, you can always get help by typing 

help fdmpath 

fdmpath has a self test built in. It will be run if you type 

fdmpath 

Finally, it is a good exercise to work this out for transient flow. In that case the flows are 
dependent of the time which requires some extra housekeeping. It is also a good exercise 
to work this out for 3D, possibly 3D and transient. This is not very difficult, but the 
convenience will be much less due to more difficult visualization and data handling. If 
you really need to do a complicated 3D transient modeling project, rather use standard 
software with an advanced user interface with easy entry and management of the input, 
output and visualization. Having said all this, the current modeling provided in this 
syllabus comprise a practical, powerful and efficient modeling toolbox with many uses 
for practical real-life groundwater modeling. 

8.1 Checking the particle tracking 
To check the particle tracking use some convenient analytical solutions 

A cross section, thickness H, porosity ε  and recharge n, with a water divide at x=0 center 
obeys the following relations 
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 ( 30 ) 

This can be used to check the travel time in the model in two directions. 

 

Another simple check is a well in a confined aquifer. Here we have 

2 Qt
Qt H R R

H
ε π

π ε
= → =  ( 31 ) 

So set up a model, run it, contour the results, run fdmpath,  and check its results by 
clicking a point near the well 
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%% radial flow to a well, check fdmpath:  
clear all ; close all ;  
Qo=2400; por=0.35  
x=logspace(-1,4,51); y=[0 -1 -2]; % need 2 y layers  to contour  
[x,y,xm,ym,dx,dy,Nx,Ny]=modelsize(x,y);   % houseke eping  
k=10*ones(Ny,Nx);                         % conduct ivity  
FH=NaN*ones(Ny,Nx); FH(:,end)=0;          % fixed h ead boundary  
FQ=zeros(Ny,Nx); FQ(:,1)=Qo.*dy./sum(dy); % divide Q over the 2 layers  
[Phi,Q,Qx,Qy]=fdm2(x,y,k,k,FH,FQ);        % run mod el fdm2  
contour(xm,ym,Phi,30); set(gca, 'xlim' ,[0 3000]);  % contour results  
T=3650;                               % time series  (one point only)  
[XP YP TP]=fdmpath(x,y, 'radial' ,Q,Qx,Qy,por,T, 'o' );  % run fdmpath  
R=sqrt(Qo*T(end)/(pi*por*sum(dy)))    % check this yields 1996 m  

8.2  Listing of fdmpath 
function  [XP YP TP]=fdmpath(x,y,DZ,Q,Qx,Qy,por,T,markers) 
% [XP YP TP]=fdmpath(x,y,DZ,Q,Qx,Qy,por,T,markers,[ radial])  
% 2D particle tracking.  
% To use: generate a 2D steady state model, launch this file and on the  
% pictures click for a starting point. The line wil l be immedidately drawn  
% Repeat this for more lines. Click te right hand b utton to stop  
% type fdmpath for selftest and demo  
% x y mesh coordinates  
% DZ thickness of the cells (if empty, 1 is used, m atrix not needed)  
% if DZ is a character string radial flow is assume d so use 'radial' or so  
% for DZ in case a radially symmetric flow is desir ed 
% Q Qx Qy output of fdm2 (steady state only)  
% por matrix of porosities (scalar is enough)  
% T time points where markers is desired, 0 not nec essary, will be added  
% use negatigve times values to trace backward in t ime  
% markers is a series of markers for the consecutiv e times  
% e.g.   '>+o*.xsdph^v<'  
% XP YP TP coordintates of flow paths, there is a [ NaN NaN NaN] between  
% consecutive tracks.  
% TO 070424 070501  
  
if  nargin==0; selftest; return ; end  
  
if  nargin<9 
    markers= '+o*.xsdph^v<>' ; 
end  
Lm=length(markers); 
  
Nx=length(x)-1; Ny=length(y)-1; 
  
if  isempty(DZ), DZ=ones(Ny,Nx);  elseif  isscalar(DZ),  DZ =DZ *ones(Ny,Nx); end  
if  isscalar(por),                                      por=por*ones(Ny,Nx); end  
  
%first make sure the positive direction of the grid  is aligned with the positive x and y 
directions  
if  sign(x(end)-x(1))<0, x=fliplr(x); Q=fliplr(Q); Qx= fliplr(Qx); Qy=fliplr(Qy); 
DZ=fliplr(DZ); por=fliplr(por); end  
if  sign(y(end)-y(1))<0, y=flipud(y); Q=flipud(Q); Qx= flipud(Qx); Qy=flipud(Qy); 
DZ=flipud(DZ); por=flipud(por); end  
  
dx=diff(x); dy=diff(y); 
  
% then check which cell are sinks  
  
if  T(end)<T(1)  % if times negative then track particles backward i n tme  
    Qx=-Qx; 
    Qy=-Qy; 
    T=-T; 
end  
  
sinkfrac=0.15; 
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Qthrough=zeros(size(Q)); 
if  ~isempty(Qx) 
    Qthrough=Qthrough+[zeros(size(Qx(:,1))),abs(Qx) ]+[abs(Qx),zeros(size(Qx(:,1)))]; 
end  
if  ~isempty(Qy) 
    Qthrough=Qthrough+[zeros(size(Qy(1,:)));abs(Qy) ]+[abs(Qy);zeros(size(Qy(1,:)))]; 
end  
sink= Q < -sinkfrac*Qthrough; 
  
if  ischar(DZ) % then the flow is radial symmetric  
    if  ~isempty(Qx) 
        A=dy*2*pi*x; 
        vx2=[Qx, zeros(size(Qx(:,1)))]./(A(:,2:end)   .*por); 
        vx1=[zeros(size(Qx(:,1))), Qx]./(A(:,1:end- 1).*por); 
        ax=(vx2-vx1)./(ones(size(Qx(:,1)))*diff(x)) ; 
    end  
    if  ~isempty(Qy) 
        A=ones(size(dy))*(pi*(x(2:end).^2-x(1:end-1 ).^2)); 
        vy2=[Qy; zeros(size(Qy(1,:)))]./(A.*por); 
        vy1=[zeros(size(Qy(1,:))); Qy]./(A.*por); 
        ay=(vy2-vy1)./(diff(y)*ones(size(Qy(1,:)))) ; 
    end  
else  
    if  ~isempty(Qx) 
        vx2=[Qx, zeros(size(Qx(:,1)))]./((dy*ones(s ize(dx))).*por.*DZ); 
        vx1=[zeros(size(Qx(:,1))), Qx]./((dy*ones(s ize(dx))).*por.*DZ); 
        ax=(vx2-vx1)./(ones(size(Qx(:,1)))*diff(x)) ; 
    end  
    if  ~isempty(Qy) 
        vy2=[Qy; zeros(size(Qy(1,:)))]./((ones(size (dy))*dx).*por.*DZ); 
        vy1=[zeros(size(Qy(1,:))); Qy]./((ones(size (dy))*dx).*por.*DZ); 
        ay=(vy2-vy1)./(diff(y)*ones(size(Qy(1,:)))) ; 
    end  
end  
  
XP=([]); YP=([]); TP=([]); 
while  1 
    [Xp, Yp, button]=ginput(1);  if  button~=1; break ; end  % get starting points for 
stream lines  
  
    DT=diff(T(:)); if  T(1)~=0, DT=[T(1);DT]; end  
  
    for  ip=1:length(Xp); 
        xp=Xp(ip); yp=Yp(ip); t=T(1); 
        XP=[XP;NaN;xp]; 
        YP=[YP;NaN;yp]; 
        TP=[TP;NaN; t]; 
        iLast=length(TP); % to later plot only this  line  
  
        ic=find(x<xp,1, 'last' ); 
        jc=find(y<yp,1, 'last' ); 
  
        for  idt=1:length(DT); 
            dt=DT(idt); 
            while  dt>0 
                if  isempty(Qx) 
                    dic=0; dtx=dt; 
                else  
                    
[xpN,dic,dtx]=postime(xp,x(ic),x(ic+1),vx1(jc,ic),v x2(jc,ic),ax(jc,ic),dt); 
                end  
                if  isempty(Qy) 
                    djc=0; dty=dt; 
                else  
                    
[ypN,djc,dty]=postime(yp,y(jc),y(jc+1),vy1(jc,ic),v y2(jc,ic),ay(jc,ic),dt); 
                end  
  
                [ddt,i]=min([dtx,dty]); 
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                switch  i 
                    case  1 
                        if  ~isempty(Qy) 
                            xp=xpN; 
                            yp=pos(yp,y(jc),vy1(jc, ic),ay(jc,ic),ddt); 
                        end  
                        ic=ic+dic; 
                    case  2 
                        if  ~isempty(Qx) 
                            xp=pos(xp,x(ic),vx1(jc, ic),ax(jc,ic),ddt); 
                            yp=ypN; 
                        end  
                        jc=jc+djc; 
                end  
  
                dt=dt-ddt; t=t+ddt; 
                XP=[XP;xp]; YP=[YP;yp]; TP=[TP;t]; 
                if  length(XP)>20000; break ; end  
               
              if  dt==0 
                  m=mod(idt,Lm); if  m==0, m=Lm; end  
                  line(xp,yp, 'marker' ,markers(m)); hold on; 
              end  
  
              if  sink(jc,ic); 
                  break ;  % from while  
              end  
  
            end  
  
            if  sink(jc,ic); 
              break ; % from for  
            end  
        end  
        line(XP(iLast:end),YP(iLast:end), 'color' , 'g' ); 
    end  
end  
XP=[XP;NaN]; YP=[YP;NaN]; TP=[TP;NaN]; 
  
  
function  [xp,dic,dt]=postime(xp,x1,x2,v1,v2,ax,Dt) 
EPS=1e-6; 
  
v=v1+ax*(xp-x1); 
if  abs(v)<EPS 
    % ic=ic  
    dt=Dt;  % immediately jumpt to end of time step  
    dic=0; 
    return ; % x remains same location  
end  
  
if  v<0  % point moves to face at left side  
    if  abs(ax)<EPS  % v will be constant  
        dt=(x1-xp)/v; 
        if  dt>Dt 
            dt=Dt; 
            xp=xp+v*dt; 
            dic=0; 
        else  
            xp=x1; 
            dic=-1; 
        end  
    elseif  v1>=0           % point will never reach left face  
        dt=Dt;         % immediately jump to end of time step  
        xp=pos(xp,x1,v1,ax,dt); % compute position at Dt  
        dic=0; % ic=ic  
    else  
        dt=tim(xp,x1,x1,v1,ax); 
        if  dt>Dt 
            dt=Dt; 
            xp=pos(xp,x1,v1,ax,dt); 
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            dic=0; 
        else  
            xp=x1; 
            dic=-1; 
        end  
    end  
end  
  
if  v>0 
    if  abs(ax)<EPS 
        dt=(x2-xp)/v; 
        if  dt>Dt 
            dt=Dt; 
            dic=0; 
            xp=xp+dt*v; 
        else  
            xp=x2; 
            dic=+1; 
        end  
    elseif  v2<=0 
        dt=Dt; 
        xp=pos(xp,x1,v1,ax,dt); 
        dic=0; 
    else  
        dt=tim(xp,x2,x1,v1,ax);  % CHECK 
        if  dt>Dt 
            dt=Dt; 
            xp=pos(xp,x1,v1,ax,dt); 
            dic=0; 
        else  
            xp=x2; 
            dic=+1; 
        end  
    end  
end  
  
function  xp=pos(xstart,x1,v1,ax,dt) 
EPS=1e-6; 
if  abs(ax)<EPS 
    vx=v1+ax*(xstart-x1); 
    xp=xstart+vx*dt; 
else           
    xp=x1+(v1/ax+(xstart-x1))*exp(ax*dt)-v1/ax; 
end  
     
function  dt=tim(xstart,xtarget,x1,v1,ax) 
    dt=1/ax*log((v1+ax*(xtarget-x1))/(v1+ax*(xstart -x1))); 
     
function  selftest 
    help fdmpath  
    clear all ; close all  
    y=linspace(-2500,2500,22); 
    x=linspace(-2500,2500,22); 
  
    [x,y,xm,ym,dx,dy,Nx,Ny]=modelsize(x,y); 
  
    DZ=50; 
    k =10; 
    n=0.001; 
  
    kx= ones(Ny,Nx)*k*DZ; ky=kx; 
    FH=zeros(Ny,Nx)*NaN; FH(:,[1,end])=0;  FH([1,en d],:)=0; 
    FQ=n*dy*dx; 
    [Phi,Q,Qx,Qy]=fdm2(x,y,kx,ky,FH,FQ); 
    contour(xm,ym,Phi); hold on 
  
    %Track particles  
    por=0.35; DZ=50; 
    t=[60 365 3650 25*365 100*365]; 
    [XP,YP,TP]=fdmpath(x,y,DZ,Q,Qx,Qy,por,t, '...p...p...p' );  
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9 Examples 
Some examples have already been given and an unlimited number of other ones can be 
given. Below one that shows the how detail can be provide and how radial and flat flow 
can be done easily. It demonstrates the use of layers and the input of wells and walls at a 
specific location. The detail can be seen in the figure by zooming in near the sheet piling 
(deep wall) of this building pit (preferably horizontally zoom first until the x an dy scale 
are about equal and the apply regular zoom. (see zoom options under the right mouse 
button after selecting a figure in Matlab). 
%% Circular building pit with partially penetrating  wells inside sheet piling  
% The flow near the extraction and the tip of the s heet piling is very  
% detailed. There is a semi-confined top layer and an aquifer.  
% try to zoom in near the sheet piling. (horizontal ly zoom in first until  
% the vertical and horizontal scales are more or le ss equal, the use  
% regular zoom to zoom furhter (zoom options are un der the right mouse  
% button)  
% To change to a regualr (not radial cross section)  remove 'radial' form  
% the call to fdm2 and replace 'radial'in fdmpath t o 1 (i.e. DZ=1, a cross  
% section of 1 m thickness). Also change the times for the particle track  
% markers, because that will be much reduced compar ed to radial flow).  
clear all ; close all  
layers={ 
    'clay'  0 -5  0.02           % material, top, bottom k  
    'sand'  -5 -50  20 
    'clay'  -50 -60 0.01 
    'sand'  -60 -200  30 
    }; 
xW    =[19.9 20  ]; yW    =[ 0 -15]; kW=0.0001;     % dimension and props of sheet piling  
xWells=[19.8 19.9]; yWells=[-6 -11]; FHWells=-6.7;  % locaton of wells, their fixed heads  
  
x=[0:2:18, 18:0.2:22 19:0.1:21, 22:2:40, 40:10:100,  100:25:250, 250:50:500, 
500:100:1000]; 
L=[-5 -50 -60 -200]; 
y=[0 -0.01 L, L+0.01, -5:-0.1:-7, -7:-0.5:-14, -15: -0.1:-16, -16:-0.5:-19.5, -19.5:-0.1:-
20.5, -20.5:-0.5:-25, -25:-5:-50]; 
  
% house keeping makes sure that points in vectors x  and y are unique and ordered  
[x,y,xm,ym,dx,dy,Nx,Ny]=modelsize(x,y); 
  
kx=zeros(Ny,Nx); 
for  i=1:size(layers,1); 
    kx(ym<=layers{i,2}&ym>layers{i,3},:)=layers{i,e nd};    % layer conductivities  
end  
kx(ym<yW(1) & ym>yW(2), xm>xW(1) & xm<xW(2))=kW;  k y=kx;   % put sheet piling in k matrix  
FH=NaN*ones(Ny,Nx); FH(1,:)=0.0;                           % semi pervious top layer  
FH(ym<yWells(1) & ym>yWells(2), xm>xWells(1) & xm<x Wells(2))=FHWells; % wells in FH  
FQ=zeros(Ny,Nx);                                           % no given flows  
%[Phi,Q,Qx,Qy]=fdm2(x,y,kx,kx,FH,FQ,'radial');             % radial computation  
[Phi,Q,Qx,Qy]=fdm2(x,y,kx,kx,FH,FQ);                       % flat computation  
contour(xm,ym,Phi,-5:0.2:0, 'b' ); hold on                   % head contours  
contour(x(2:end-1),y,Psi(Qx),20, 'r' );                      % 20 stream lines  
for  i=1:size(layers,1)                   % plot line above an below each layer  
    plot([x(1) x(end)],[layers{i,2},layers{i,2}]); 
end  
  
% check water balance  
sum(sum(Q(ym<yWells(1) & ym>yWells(2), xm>xWells(1)  & xm<xWells(2))))  % extraction  
sum(sum(Q(1,:)))                    % infiltration through top of model  
sum(sum(Q))                         % overall water balance  
Phi(ym<-5 & ym>-6,1)                % head below building pit  
title( 'Half cross section through building pit with sheet  pilings' ); 
xlabel( 'x [m]' ); ylabel( 'z [m]' ); 
  
%particle tracking  
por=0.35; 
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t=-365*(0:5:50); 
%[XP,YP,TP]=fdmpath(x,y,'radial',Q,Qx,Qy,por,t,'... p');  % radial  
[XP,YP,TP]=fdmpath(x,y,1,Q,Qx,Qy,por,t, '...p' );          % flat  
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Figure 20: Cross section (flat) with heads, streamlines and some particle tracks, obtained by clicking 
on the figure when fdmpath is running (backward traces as times were negative, see input above). 
There is great detail near the sheet piling where all the streamlines converge, which can only be seen 
by zooming in. 
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