

Syllabus CT 5440 (Geohydrology 2)

Your own Finite Difference Groundwater Model in Matlab
(CT5440 exercises)

Several wells in circular island with wells an inactive part and some tracked particles

Prof. dr.ir. T.N.Olsthoorn

TUDelft, Water Resources Section

March 15, 2009

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 2 of 66 3/15/2009

Table of contents
1 Abstract ... 3

2 Numerical groundwater modeling .. 4

2.1 General overview numerical models .. 4

2.2 Deriving and assembling a numerical model .. 5

2.3 Boundary conditions ... 7

2.3.1 General head boundaries .. 7

2.3.2 Drain boundaries .. 8

2.3.3 River boundaries .. 8

2.4 Solving the model and checking the results ... 9

2.5 Dealing with fixed heads (Dirichlet boundaries) .. 10

2.5.1 Including fixed head boundaries directly .. 10

2.5.2 Inactive cells .. 11

2.6 Finite difference modeling ... 12

2.7 Numbering cells (nodes) .. 14

2.8 Assembling the system matrix ... 14

3 The actual model in Matlab ... 18

3.1 Exercises ... 20

4 Stream lines ... 29

4.1 Exercises streamlines .. 30

5 Radial symmetric finite difference model... 35

5.1 Exercise radial symmetric model ... 36

5.2 Houskeeping with function modelsize(x,y) .. 40

6 Transient modeling .. 41

6.1 Exercises transient model .. 44

7 Model wrapping .. 53

8 Particle tracking (flow lines) .. 54

8.1 Checking the particle tracking ... 59

8.2 Listing of fdmpath ... 60

9 Examples ... 64

10 Literature ... 66

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 3 of 66 3/15/2009

1 Abstract

This document explains the theory behind numerical groundwater modeling and how to
make finite difference groundwater models in Matlab (The Mathworks ®). It is an
exercise in the course CT5440, Geohydology 2. It aims in to provide a relevant insight in
numerical groundwater modeling and focuses on finite difference models. The structure
is general and largely also valid for other numerical model types such as finite element
models and surface water models.

The models will be built by the student in Matlab. There will be a combined flat and
radial symmetric model, one for steady-state and one for transient flow. The examples
serve to demonstrate what may be done with them and also to show their accuracy with
some pitfalls and tricks.

The models are small Matlab functions, elegant yet powerful. They should provide a
thorough insight and practice in numerical modeling in general. With these tools you will
be able to do quite sophisticated modeling. And yet, a 3D model is not given. To make
one is easy and straightforward and left to the student. 3D models do not much good to
this course and your experience, because much more time would then go into more
complicated data handling and visualization, especially with transient computations
(yielding 4D arrays). If you really have to do detailed regional transient 3D modeling
with all ins and outs, I suggest using a regular model that is coupled to a GIS, so you can
make use of maps and other database information.

Even though you could do all of your modeling in Matlab (even regional 3D multilayer
transient modeling), a regular GIS based approach may be advisable using models that
have been widely applied and intensively tested in practice.

Yet, knowing how to use these handy Matlab models gives you a powerful tool to deal
with many practical groundwater problems in a very short time. It also comes in handy if
you may ever need to check a large model.

The syllabus treats the theory without unnecessary details, shows how it works in Matlab
and also shows how to get started with Matlab. You may copy parts of Matlab code
directly from this word file whenever necessary, or rather make everything yourself.

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 4 of 66 3/15/2009

2 Numerical groundwater modeling
We will first give a general description of groundwater modeling and then derive an
actual model, which will finely be converted into a finite difference model by choosing
the network and the way the conductances between model cells are computed. The
general overview is true for all kinds of numerical models. We will follow the general
approach as long as possible as that provides the best insight and the least clutter.

2.1 General overview numerical models
Numerical models, whether Finite Element or Finite Difference Models divide the area to
be modeled into elements or cells with given properties and nodes (or cells) where the
head will be computed (Figure 1). In the Finite Element Method these cells may be of
arbitrary shape, while the shape in the Finite Difference Method is more limited, for
instance regular hexagons or rectangular.

element

Node

Figure 1: Difference model meshes (grid). The left figure shows a finite element triangular network
with the nodes at the element corners. The center figure shows a hexagonal finite difference network
with nodes in the center of hexagons. The ight figure shows a rectangular finite difference network
with nodes in the center of the rectangles (called cells). A rectangular finite difference network with
nodes at the cell corners is also possible, but not shown here. Area properties will be give for
elements/cells, heads and flows in and out of the model will be computed for the nodes.

The locations where the heads are going to be computed i.e. the nodes may be the corners
of the cells/elements or their center. We will make a finite difference model that
subdivides a rectangular area into Ny rows and Nx columns, where the columns and rows
may be of any size. We will compute the head in the center of these rectangles (see right-
hand picture of Figure 1). This method is straightforward, easy to understand and easy to
implement and successful, because the same approach is used by the world’s most
famous and most use groundwater model, i.e. MODFLOW of the United States
Geological Survey (USGS) (McDonald & Harbaugh, 1988).

After any of the possible derivations for the model equations, either in the finite element
or finite difference method (abbreviated to FEM or FDM), the final result comes down to
a system of equations, each of which is a water balance for a node of the model. This
system of equations represents all nodal water balances, which must be simultaneously
fulfilled. This is achieved by solving the system, i.e. computing the heads in the nodes,
such that all nodal balances are matched simultaneously.

The FDM directly writes out the water balance for the nodes, while the FEM takes a
more general approach by requiring the governing partial differential equation (which is a
water balance on infinitesimal scale) to be optimally fulfilled within all of the elements.
The cost of the FEM is more complication in deriving the equations and setting up the
model, but the bonus is definitely more flexibility in element shapes.

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 5 of 66 3/15/2009

2.2 Deriving and assembling a numerical model
In the end, any model yields a set of water balances, one for each node. This is true for
the FEM, the FDM as well as for any surface water model, in which the elements are
replaced by links. So the number of equations, as well as the number of unknowns, equals
the number of nodes. A finite difference model of 1000 rows and 1000 columns thus has
a million equations with a million unknowns. This is what is required to compute a one-
layer model of 1000 by 1000 m on 1 m resolution.

Figure 2 shows some of the nodes of an arbitrary model. For one node, number i, the
adjacent nodes are shown to which it is directly connected through intermediate elements
(FEM), intermediate cells (FDM) or connecting links (surface water model). The only
difference between these types of model is the way in which the connections are
computed. So most of the discussion about modeling and model construction can be done
without bothering about these specific details. This keeps the discussion general and
prevents us from getting lost in the details.

ija ij

Figure 2: A model node with its surrounding connected neighbors

Just as general is, that the flow Qij from node i in the direction of adjacent node j with
(still unknown) heads iφ and jφ respectively, is described by

() ()1
ij ij i j i j

ij

Q C
R

φ φ φ φ= − = − (1)

where ijC [(m3/d)/m] is called the conductance and its reciprocal ijR is the resistance

[m/(m3/d)]. This is true even for a surface-water model, be it that in that case ijC will

depend on the flow itself and therefore must be computed iteratively.

The physical meaning of the conductance is obvious; it is the flow of water from node i
to node j in case the head difference i jφ φ− equals 1.

The water balance of an arbitrary node i in the numerical model is described by the
following equation

1,

j N

ij i
j j i

Q Q
=

= ≠

=∑ (2)

whose left-hand side represents the flow from node i through the model towards its
connected neighbors, and the right-hand side equals the inflow “from the outside world”

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 6 of 66 3/15/2009

through node i. This is indeed a nodal water balance for a steady-state model. We will
deal with transient models later. The nodal inflow iQ (nodal outflows or extractions are

just negative values ofiQ), is the total of all present sources of water from the outside

world into this node (negative if extractions). It combines recharge, injections wells,
leakage, drainage and so on.

Using the conductances, the nodal water balance becomes:

()
1,

j N

ij i j i
j j i

C Qφ φ
=

= ≠

− =∑ (3)

Notice that i and j run over all the nodes of the model. This means that in this expression
node i may be connected with all other nodes of the model. Of course it is only connected
to its direct neighbors. Therefore, most of the conductances ijC are zero. In case a node

has n connecting neighbors, only 1n+ of these coefficients are non-zero for each node.
Therefore, of a model of Ny rows by Nx columns, heaving Ny*Nx nodes, each line only has
(n+1)/(Ny*Nx) nonzero coefficients. For n=4 as is the case of a 2D one-layer model, and
Ny= Nx=1000, only 5/100000=0.0005% of the coefficients are nonzero. The matrix
containing the coefficients is therefore extremely sparse. We will make use of this when
storing the system matrix and solving the model.

Writing out the above balance equation yields

1 1 2 2 , 1 1
1,

... ...
j N

i i ij ii i N N iN N i
j j i

C C C C C Qφ φ φ φ φ
=

− −
= ≠

 
− − − + − − = 

 
∑ (4)

Using aii as general matrix element or matrix coefficient instead of the specific
conductance, then (4) can be written as a general linear equation

1 1 2 2 , 1 1... ...i i ii ii i N N iN N ia a a a a Qφ φ φ φ φ− −+ + + + + =
 (5)

in matrix form

1

N

ij j j
j

a Qφ
=

=∑ (6)

where

,ij j i ija C≠ = − (7)

1, 1,

j N j N

ii ij ij
j j i j j i

a C a
= =

= ≠ = ≠

= = −∑ ∑ (8)

so that the sum taken over all matrix elements in a row (node) equals zero

1

0
j N

ij
j

a
=

=

=∑ (9)

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 7 of 66 3/15/2009

The physical meaning of diagonal matrix element iia is the amount of water flowing

from node i to all its adjacent nodes if the head in node i is exactly 1 higher than that of
its neighbors.

The equation above is equivalent to the matrix equation

*Φ =A Q (10)

With A the square system matrix holding the entries (matrix elements) ija as defined.

Both i and j may take values from 1 to Ny*Nx. Therefore, the size of A is Ny*Nx rows by
Ny*Nx columns, which may be really huge. Φ is the column vector of still unknown
heads (length Ny*Nx) and Q the column vector of nodal inflows (length Ny*Nx).

To fill the system matrix, all we have to do is compute the conductances between all
connected nodes given by their indices i and j and put their negative value into the matrix
at location i,j. When done, the coefficients for the diagonal, iia are computed by
summing the other coefficients in the line of the matrix representing this node (see eq (7))

The model is based on the water balance of its nodes. The flow between the nodes is
determined by the properties of adjacent model cells as well and their head difference.
This intercellular flow is determined by Darcy’s law using the heads of adjacent cells and
the conductance between them. We will first consider the model’s boundary conditions.

2.3 Boundary conditions
Boundary conditions connect (constrain) the model (or, for that matter, the partial
differential equation) to the outside world. We already met one type of boundary
condition, namely the given inflow of the nodes. The other type has to do with fixation of
heads. We treat this in a general way, i.e. by writing out how fixed heads in the outside
world connect to nodes of the model through a resistance, or rather a conductance
(inverse resistance). Heads that are directly fixed to nodes then become a limiting case in
which the resistance approaches zero or, reversely, where the conductance approaches
infinity.

2.3.1 General head boundaries
Consider flow Qex,i from the external world with fixed head hi the model node i having an
unknown head iφ . This flow through conductance iC equals

(),ex i i i iQ C hφ= − (11)

This flow can be simply added to the right-hand side of the model equation to give

()
1,

N

ij j ii i i i i i
j i j

a a Q C hφ φ φ
= ≠

+ = + −∑ (12)

in which the diagonal was taken out of the matrix for clarity in the sequel.

The external flow (),ex i i i iQ C hφ= − represents inward flow (positive if inward), just like

the given inflow Qi.

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 8 of 66 3/15/2009

This way, each model node may be connected to the outside world having arbitrary fixed
heads (lakes, rivers and so on).

The constant part i iC h functions exactly like a fixed injection. The variable part, i iCφ ,
may be put to the left-hand side of the equation, yielding

()
1,

N

ij j ii i i i i i
j i j

a a C Q C hφ φ
= ≠

+ + = +∑ (13)

This comes down to adding iC to the diagonal matrix entry, ii ii ia a C→ + .

In matrix form for Matlab

()() .*diag+ Φ = +A C Q C h (14)

Where ()diag C is an N N× diagonal matrix with the elements Ci. This is indeed

equivalent to adding iC to the diagonal elements aii.

The boundary conditions explained in this section are so-called general head boundary in
Modflow jargon. Fixed-head boundaries are dealt with further down.

Modflow has two variants of these general head boundaries: drains and rivers. Drains
differ in that they only discharge when the head is above drain level while river head
boundaries differ in that the head below the river (i.c. in the model) does not affect the
inflow when it falls below the river bottom. In that case the river bottom is used.

Drains and rivers thus make the model non-linear as they imply a switch which depends
on the head itself. Such conditions are most efficiently implemented using iterative
matrix solvers, so that the conditions can be updated during the solution process. Here we
ignore this efficiency, we will use Matlab’s standard matrix solver (backslash operation).

2.3.2 Drain boundaries
Drain works as general head boundaries if the head is above the drain elevation, while the
discharge of the drain is zero when the head falls below this elevation. For the drains we
thus need a drain elevation, i.e. a vector FD next to the drain conductances Cd.

The switch may be implemented as a Boolean vector dH defined for drains to be 1 if

dhφ > and 1 if dhφ < :

()d d= Φ >H h
 (15)

Hence, the drains are implemented as follows:

()().* .* .* .*d d d d ddiag+ + Φ = + +A C C H Q C h C H h
 (16)

2.3.3 River boundaries
River boundaries are also general head boundaries as long as the head remains above the
bottom of the river. When it falls below the bottom, the infiltration is assumed to pass
through the unsaturated zone without suction from the fallen head. So

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 9 of 66 3/15/2009

,

,
R R B

R R B B

Q h h

Q h h h

φ φ

φ

= − ≥

= − <

Or

()() () ()R R R B R R B BQ C h h C h h hφ φ φ= − ≥ + − <

()() () ()()

() ()

1R R R B R R B B

R R R R R R R R R B R R R R R B

R R R B R R B

Q C h h C h h h

Q C H h C H C h C h C H h C H h

Q C h h C H h

φ φ φ

φ

φ

= − ≥ + − − ≥

= − + − − +

= − − −

Where ()R BH hφ= ≥

Similarly rivers can be implemented as follows

()() ().* .* .* .* .* .* .* .*d d R R d d R R B R R Bdiag+ + + Φ = + + + − +A C C H C H Q C h C H h C h h C H h
 (17)

The model then includes al general head, drain and river boundaries.

2.4 Solving the model and checking the results

From this the heads may be solved in Matlab simply by the backslash operator:

()() ()\ .*diagΦ = + +A C Q C h (18)

.*C h uses Matlab’s “.*” operator, which stands for element-by-element multiplication
instead of matrix multiplication. .*C h is therefore a column vector with elements i ic h .

The latter system equation, which solves for the heads Φ is the complete system
equation (i.e. the complete model) including all its boundaries.

Now with the heads computed, we may calculate the net inflow of the nodes by the
following matrix multiplication

*in = ΦQ A (19)

Which must be zero when summed over the entire model

() 0insum =Q (20)

This is an easy check.

We may compute the inflow from all external fixed-head sources (negative if the flow is
outward) from

*fh = Φ −Q A Q (21)

As already explained, most of the possible inter-nodal connections (aij) are zero, so that
the final system matrix tends to be extremely sparse. This too is valid for all numerical
models. To prevent having to deal with the zeros in over 99% of the system matrix,

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 10 of 66 3/15/2009

Matlab offers sparse matrices and sparse matrix functions. These sparse matrices work
exactly like ordinary matrices and ordinary matrix functions, but sparse matrices only
store and deal with the non-zeros elements. Sparse matrices make computing large
models feasible on a PC.

2.5 Dealing with fixed heads (Dirichlet boundaries)
What we did above is using so-called general-head boundaries, i.e. fixed heads in the
outside world that connect with the model through a conductance (or resistance). The
general head boundaries were extended to specific forms of general head boundaries, the
so-called drains and river boundaries. However, most models define directly fixed-head
boundaries, separately (and in addition to) the variants of the general head boundaries
mentioned.

One way to deal with fixed head boundaries is through the use of a very last conductance
in applied general head boundaries, i.e. iC → +∞ .

So let us use an arbitrary conductance Γ which a very high value conductance (in
practice take a value of 1010 or so) representing an infinite value of Ci.

Then for the fixed head nodes we have

()
1,

N

ij j ii i i i
j j i

a a Q hφ φ
= ≠

+ +Γ = +Γ∑ (22)

Because Γ→∞ and so ijaΓ� , then by dividing the left and right hand side by Γ , this

equation reduces to

i ihφ ≈
 (23)

This may be all what is needed to fix these heads and it works well in Matlab; if 1010Γ =
or so, Most of the time, Matlab has no difficulty in solving the system, while a very
accurate result is obtained.

2.5.1 Including fixed head boundaries directly
Rather than using an arbitrary large conductance to implement fixed heads, we may
directly implement them. This improves the condition of the matrix and it reduces the
amount of work, because the fixed heads nodes don’t have to be computed at all, which
reduces the computational size of the model.

Let the model be described by

*Φ =A Q (24)(25)

Let the vector of these cell numbers with fixed heads be I fh and let the vector of the
remaining cells numbers be I , such that the union of I and I fh comprises all cell numbers.

Then ():, fhA I represents all columns in A which will be multiplied by a fixed head. The

fixed heads are represented by the vector ()fhΦ I . Hence, () ():, *fh fhΦA I I is a constant

vector which may be put directly to the right-hand side of the matrix equation, leaving the

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 11 of 66 3/15/2009

remaining columns ():,A I to the left hand side to be multiplied with the remaining non-

fixed heads ()Φ I . This changes the model to:

() () () ():, * :, *fh fhΦ = − ΦA I I Q A I I
 (26)

Because we only have to compute the heads at locations I , we get the reduced system of
equations. The rows corresponding to the fixed heads may also be eliminated as the fixed
heads need not to be computed at all. This results in the following matrix equation:

() () () () (), * , *fh fhΦ = − ΦA I I I Q I A I I I
 (27)

Hence the right hand side contains the constants and the left hand size contains the
remaining equation (rows and columns), after removing those corresponding the fixed
heads. The result is a computationally smaller model, that moreover is better conditioned.
The model also can be up to ten times faster under certain circumstances.

So, the unknown heads become

() () () () ()(), \ , *fh fhΦ = − ΦI A I I Q I A I I I
 (28)

If we initialize the head matrix with the fixed head matrix, the fixed head values are also
contained in the head matrix. If the fixed head matrix contains NaN’s in all non-fixed
head cells these cells are easily found

Ifh=Nodes(~isnan(FH));

I =Nodes(isnan(FH));

The nodal flow can be computed by

* ;= ΦQ A (taken over all cells, including the fixed head cells). This gives the injection
flow into each of the cells.

2.5.2 Inactive cells
In a large model, often substantial parts are inactive, i.e. represent bedrock or other parts
without groundwater. The computation time may be substantially reduced if such cells
are excluded beforehand. In practice it should be straightforward to find such cells from
the input, as they represent cells where no water can flow or be stored, hence cells with
all conductivities and the storage coefficient equal to zero. In Matlab these cells may be
found as follows

Active cells that have a fixed head (preventing errors from input of fixed heads in non-
active cells):

() ()0 | 0 | 0 | 0 & ;fh y z FHx NaN= > > > > Φ ≠I K K K S
 (29)

Active cells that are not fixed head (these cells have to be computed)

() ()0 | 0 | 0 | 0 & ;a y z fhx NaN= > > > > Φ ==I K K K S
 (30)

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 12 of 66 3/15/2009

In Matlab in 2D steady-state (omitting Kz and S)

Ifh=Nodes((Kx>0 | Ky>0) & ~isnan(FH)); % active fixed heads 2D

Ia=Nodes((Kx>0 | Ky>0) & isnan(FH)); % active non fixed heads 2D

Matrices Kx, Ky,FH all have size (Ny,Nx).

The remaining cells are the active cells, denoted by the cell number vector Ia.

All we need to do is exclude these non-active cells, which reduces the model to the
number of active cells minus the number of fixed head cells

() () () () (), * , *a a a a a fh fhΦ = − ΦA I I I Q I A I I I
 (31)

This way, we have now reduced our model by both the fixed head and the inactive cells.

Solving for the active, non fixed head cells yields

() () () () ()(), \ , *a a a a a fh fhΦ = − ΦI A I I Q I A I I I
 (32)

The equation expresses that we only use the active and fixed head parts of the
information; hence we still have the entire matrices and vectors available and thus may
immediately compute the nodal water balances from.

To compute the cell-inflows to all active cells including the fixed-head cells, we use all
active cells (2D steady state, leaving out Kz and S):

()1 0 | 0a yx= > >I K K (33)

And compute

() () ()1 1 1 1, *a a a a= ΦQ I A I I I (34)

In Matlab

Ia1=Nodes(Kx>0 | Ky>0);

Q=zeros(size(Phi));

Q(Iact1)=A(Iact1,Iact1)*Phi(Iact1);

The non active cells will have Q=0;

2.6 Finite difference modeling
Until now, everything said was true for all numerical models and nothing specific has
been said or done for finite difference modeling.

What remains to be done is the computation of the conductances. This is specific for each
method. We also need a mesh (model network or grid that divides the model area in
parts). The grid type is more or less specific for the method employed. The model grid
determines the number of connections between the individual nodes.

We will deal with a 2D (1 layer) rectangular grid (with rectangular cells) with nodes
(head points) at the cell centers (right-hand picture in Figure 1). In such a model, the flow

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 13 of 66 3/15/2009

from one node, i, to its neighbor, j, first passes half a cell with the conductivity (or
transmissivity), ki, of the first cell and then half a cell with the conductivity (or
transmissivity), kj, of the receiving cell. This is flow through two media placed in series,
for which resistances add up (not conductances). Therefore, we compute the resistance to
the flow between the two nodes and then take its inverse to get the conductance.

i j

ikx jkx

ix∆ jx∆

y∆

0.5 iRx 0.5 jRx

ijQ

Figure 3: Resistance Rx=0.5Rxi+0.5Rxj for flow from node i to j. Where Rxi and Rxj are the
resistances for flow through an entire cell in x-direction

LetDx be row vector with column widths andDy a column vector with cell heights
(width in y-direction) and ,kx ky the 2D matrices with the with the horizontal and vertical
cell conductivities respectively. The resistance between adjacent nodes in x-direction then
becomes:

()() () ()
()() () ()

0.5* 1./ :,1: 1 * :,1: 1 ./ :,1: 1 ...

0.5* 1./ :, 2 : * :, 2 : ./ :, 2 :

end end end

end end end

= − − − +Rx Dy Dx kx

Dy Dx kx
 (35)

The conductances between these nodes is then given by

1. /=Cx Rx (36)

Likewise for the resistance between adjacent nodes in y-direction gives

() ()() ()
() ()() ()

0.5* 1: 1,: * 1./ 1: 1,: . / 1: 1,: ...

0.5* 2 : ,: * 1. / 2 : ,: . / 2 : ,:

end x end end

end x end end

= − − − +Ry Dy D ky

Dy D ky
 (37)

and

1./=Cy Ry (38)

Note that here it is assumed that Dy is a column vector and Dx a row vector. Multiplying
a column vector of length Ny with a row vector of length Nx yields a matrix of size
Ny*Nx with elements equal to the product of the corresponding elements of the column
and the row. In this case these elements are dx/dy and dy/dx respectively.

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 14 of 66 3/15/2009

2.7 Numbering cells (nodes)
In equations (3) through (13) indices i and j were used to denote connected cells (or
nodes). To allow numbering of cells in our model, we need to generate such cell
numbers, which can be arbitrary, as is the case in a finite element model. The only
requirement is that the numbers are unique.

When numbering cells of a finite difference model we will, of course, exploit the regular
mesh structure. In Matlab it is straightforward to generate a vector of increasing numbers
starting with 1 and ending with Ny Nx× , which is the number of cells in the model (We
will have Ny Nx Nz× × cells in a 3D model):

1.. ;Nodes Ny Nx= ×

Next we fold this vector into the shape of the model grid with its Ny rows and Nx
columns. This is done using Matlab’s reshape function:

(1.. * , ,)Nodes reshape Ny Nx Ny Nx= ; (39)

This way, the variable Nodes, is the matrix holding the cell numbers. The number of an
arbitrary cell within the grid, say row j and column i, is now obtained from

cellNumber=Nodes(j,i)

2.8 Assembling the system matrix
In equations (3) through (13) the indices refer to cells that are connected. Hence aij is the
coefficient (i.e. the negative of the conductance) between the cells i and j, which, of
course, are just adjacent cells.

The system matrix element aii is the negative value of the conductance between these
cells i and j, where the first index refers to the equation number, i.e. the cell for which the
water balance is computed, and the second index, j, refers to an adjacent cell, to which it
is connected. Clearly aij=aji, which makes the system matrix A symmetric.

To put a coefficient (negative of the conductance) at the correct position in the system
matrix, we need its value and its indices i and j: i.e. the triple i,j,aij.

This is now straightforward with the available numbering.

We may generate the West-East cell pair indices with their corresponding coefficients as
follows:

x[Nodes(:,1:end-1), Nodes(:,2:end), -C]
 (40)

Writing

WI =Nodes(:,1:end-1);
 (41)

EI =Nodes(:,2:end);
 (42)

we could write this more compactly as

W E x[I I -C]
 (43)

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 15 of 66 3/15/2009

With

NI =Nodes(1:end-1,:);
 (44)

SI =Nodes(2:end,:);
 (45)

we may write the North-South pairs as

N S y[I I -C]
 (46)

We may put all combinations in a single matrix

W E x

E W x

N S y

S N y

[[I I -C]; ...

[I I -C]; ...

[I I -C]; ...

[I I -C] ...

]

 (47)

Where the “…” is Matlab’s line continuation and the “;” places what follows in
subsequent rows of the matrix.

The problem with the last expression is that the embedded matrices are not column
vectors but matrices having the shape of the model; i.e. the IW IE and Cx being of size

()1Ny Nx× − and the IN, IS and Cy of size ()1Ny Nx− × . We can turn them into column

vectors by using the Matlab’s (:) operator. This operator shapes matrices of any shape
into their equivalent column vectors.

Hence,

() () ()
() () ()
() () ()
() () ()

W E x

E W x

N S y

S N y

[[I : I : -C :]; ...

[I : I : -C :]; ...

[I : I : -C :]; ...

[I : I : -C :] ...

]

 (48)

does the job.

The number of rows in this three-column matrix is thus

() ()2 1 2 1Ny Nx Ny Nx− + −

This completes all the connected nodes in this 2D model.

Because the matrix is symmetric, we could skip the East-West and South-North pairs and
exploit this symmetry. We will show this below.

The three-column matrix above represents three column vectors with elements i,j,aij and
j,i,aji respectively. These triples contain all non-zero elements of the system matrix with
their position, except the diagonal elements. The latter may be readily computed by

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 16 of 66 3/15/2009

1,

Nodes

ii ij
j j i

a a
= ≠

= ∑
 (49)

To generate the sparse system matrix, we have to use the Matlab function sparse and pass
it the indices and the matrix element value. However, sparse requires the columns i, j and
aij to be specified as separate vectors. This is now readily done as follows:

() () () ()
() () () ()
() () () ()

([: ; : ; : ; :],...

[: ; : ; : ; :],...

[: ; : ; : ; :],...

* ,...

* ,...

5* *)

sparse

Ny Nx

Ny Nx

Ny Nx

=

− − − −

w E N S

E W S N

x x y y

A I I I I

I I I I

C C C C
 (50)

where the last three arguments of this function call are the size of the system matrix and
the number of non-zero elements respectively (5 in a row for a 2D finite difference
mode). The first three arguments are respectively the column of i indices, the column of j
indices and the column of corresponding matrix coefficients, i.e. the negative values of
the conductances. The minus sign is a sign choice. It implies that the flow from a node to
its surrounding neighbors is positive, and so is an injection into the model which must
deliver this net flow from a node to its neighbors. Hence, extractions such was water
supply wells are negative, as is evaporation, while recharge is positive. This sign
convention is easily remembered as any flow into the model gives rise to increasing water
levels and vice versa.

Notice that in the actual model listed further below we use an equivalent Matlab form to
enter this three column matrix which is just an exercise in reading Matlab matrices.

An alternative to expression (50) is using only the W-E and N-S pairs and exploiting the
matrix symmetry:

() ()
() ()
() ()

([: ; :];...

[: ; :];...

[: ; :];...

* ,...

* ,...

2 *)

sparse

Ny Nx

Ny Nx

Ny Nx

=

− −

W N

E S

x y

A I I

I I

C C
 (51)

And then due to symmetry construct the system matrix from this one and its transpose

';= +A A A (52)

Having come so far, we only have 4 matrix elements per row and still miss the diagonal
matrix elements aii. These diagonal matrix elements may be put into A using the function
spdiags as follows

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 17 of 66 3/15/2009

((,2),0,)spdiags sum= −A A A (53)

Where the 0 means zero-offset from the diagonal of matrix A, in which to put the
diagonal, (, 2)sum− A . We need Matlab’s function spdiags instead of its equivalent diags
because we work with sparse matrices.

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 18 of 66 3/15/2009

3 The actual model in Matlab
The model will be a Matlab function accepting the needed arguments and yielding the
heads and the computed nodal flows. This function resides in an “m.file” which is
Matlab’s text file storage of scripts and functions having extension “.m”. A second m.file
will be a Matlab script, which is just set of commands in a file. This script will be used to
set up the model, specify its boundary conditions, call the function (i.e. the actual model)
and finally visualize the results by contouring the computed heads.

To make the model in Matlab, launch Matlab browse to the directory where you want to
store the “m.files” of this model.

Then start with opening a new file by pressing the correct icon of the Matlab editor and
immediately save it with the desired model name, for instance fdm2. “fdm2.m” will be the
file name given by Matlab and fdm2 the name of the Matlab function it contains.

The first line in fdm2.m gets the function name, and its (multiple) output and inputs. All
inputs are matrices and vectors to be defined in the script that we will use to call the
model.

To write the calling script, open another new file. Save it with the name “modelscript” for
example.

The model will be called from this script as follows

[Phi,Q]=fdm2(x,y,kx,ky,FH,FQ);

However, since the model does not yet exist and to ease debugging we use the model file
as a script. So, “comment out” this call as follows by prefixing a “%” and further prefix
the call to the file fdm2.m:

fdm2; % [Phi,Q]=fdm2(x,y,kx,ky,FH,FQ);

This command (call) will simply run the lines in the file fdm2.m as typed-in commands.

To set up an arbitrary trial model of ten columns that are 10 m wide and twelve rows that
are 6 m high, place the following lines in the modelscript before the call of the fdm2 file

x=-100:10:100; y=(100:-10:-100)’; % x hor, y ve rt (transposed)
Dx=diff(x); Dy=abs(diff(y)); % compute column an d row sizes
Nx=length(Dx); Ny=length(Dy); % compute siz e of model
xm=0.5*(x(1:end-1)+x(2:end)); % coordinates of cell centers
ym=0.5*(y(1:end-1)+y(2:end)); % coordinates of cell centers
Kx=10*ones(Ny,Nx); Ky=5*ones(Ny,Nx); % conduct. (t ransmissivities)
FH=NaN*ones(Ny,Nx); FH(:,end)=0; % fixed head matrix
FQ=zeros(Ny,Nx); FQ(2,3)=-2400; % fixed flow (one well at (2,3))
N=0.001; % recharge (0.001 m/d)
Q=Q+N*Dy*Dx; % add recharg e equal to N as flow
fdm2; % [Phi,Q,Qx,Qy]=fdm2(x,y,kx,ky,FH,FQ); % call the model
contour(xm,ym,Phi); % contour the computed heads
%surf(xm,ym,Phi); % if you like show heads as 3D
xlabel(’x in m’); ylabel(’y in m’); title(’head con tours’);
% Some checks
sum(sum(Q)) % overall model water balance (must be zero)
sum(Q(:,end)) % total outflow across right h and boundary
sum(Q(find(~isnan(FH))) % total flow over all fixed head boundaries

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 19 of 66 3/15/2009

This completes the model script. It sets up the model dimensions, the cell properties,
fixed head and flow boundaries for all nodes and runs the model. Finally it contours the
heads and computes some integrated flows. Note that the heads are computed for the cell
centers, so that we need to compute those centers first.

Now let’s focus on the model and the model script fdm2.m. The first line should be the
function heading

function [Phi,Q,Qx,Qy]=fdm2(x,y,kx,ky,FH,FQ)

It defines a function called fdm2 with arguments to be passed to it (and will be local
inside the function). It also defines its output, which may be multiple as is the case here,
where we will obtain the computed heads, the computed nodal flows, the computed
horizontal flows across cell faces and the computed vertical flow across cell faces.

To start, comment this line out, because during the construction of the model we will run
the file as a script to ease debugging

% function [Phi,Q,Qx,Qy]=fdm2(x,y,kx,ky,FH,FQ) % “%” is used to
comment out

When run as a script, the parameters are not local; the parameters in the model script and
visible in fdm2 as well as the parameters in fdm2 in modelscript. This will be no longer
the case when the first line in fdm2.m is a proper function definition (function header).

Below the function definition line, insert a number of comment lines (i.e. all starting with
“%”) to provide the information that Matlab given whenever you type

 >>help fdm2

in the command window.
function [Phi,Q,Qx,Qy,Psi]=fdm2(x,y,kx,ky,FH,Q)
% function [Phi,Q,Qx,Qy,Psi]=fdm2d(x,y,kx,ky,FH,Q)
% 2D block-centred steady-state finite difference m odel
% x,y mesh coordinates, kx,ky conductivities
% FH=fixed heads (NaN for ordinary points), Q=fixed nodal flows
% Phi,Q computed heads and cell balances
% Qx is horizontal cell face flow positive in posit ive x direction
% Qy is vertial cell face flow, postive in posit ive y direction
% Psi is stream function assuming bottom of model i s zero (impervious)
% TO 991017 TO 000530 001026 070414 080226

x=x(:)'; Nx=length(x)-1; dx=diff(x); xm=0.5*(x(1:en d-1)+x(2:end));
y=y(:); Ny=length(y)-1; dy=abs(diff(y));

Nodes = reshape(1:Nx*Ny,Ny,Nx); % Node numbering
IE=Nodes(:,2:end); IW=Nodes(:,1:end-1);
IS=Nodes(2:end,:); IN=Nodes(1:end-1,:);

warning('off' , 'all'); % allow division by zero for inactive cells
RX=0.5*(1./dy)*dx./kx; Cx=1./(RX(:,1:end-1)+RX(:,2: end)); % hor conductances
RY=0.5*dy*(1./dx)./ky; Cy=1./(RY(1:end-1,:)+RY(2:en d,:)); % vert conductances
warning('on' , 'all'); % restore warning message

A=sparse([IE(:);IW(:);IN(:);IS(:)], ...
 [IW(:);IE(:);IS(:);IN(:)], ...
 -[Cx(:);Cx(:);Cy(:);Cy(:)], ...
 Ny*Nx,Ny*Nx,5*Ny*Nx); % System matrix
Adiag= -sum(A,2); % Main diagonal

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 20 of 66 3/15/2009

IAct =Nodes(kx>0 | ky>0); % active cells
IAct1=Nodes((kx>0 | ky>0) & isnan(FH)); % active cells but not fixed heads
Ifh =Nodes((kx>0 | ky>0) & ~isnan(FH)); % active cells with fixed heads

Phi=FH(:); % make sure Phi and Q are column vector s, otherwise it won’t work
Q =FQ(:); % in case the groundwater problem is a single row.

% solve
Phi(IAct1)=spdiags(Adiag(IAct1),0,A(IAct1,IAct1))\(Q(IAct1)-A(IAct1,Ifh)*Phi(Ifh));
Q(IAct) =spdiags(Adiag(IAct),0,A(IAct ,IAct))* Phi(IAct); % nodal flows

Phi=reshape(Phi,[Ny,Nx]); % reshape back to shape of original model
Q =reshape(Q ,[Ny,Nx]); % same for Q

Qx=-Cx.*diff(Phi,1,2)*sign(x(end)-x(1)); Qx(isnan(Q x))=0; % horizontal cell face flows
Qy=-Cy.*diff(Phi,1,1)*sign(y(end)-y(1)); Qy(isnan(Q y))=0; % vertical cell face flow

Psi=[flipud(cumsum(flipud(Qx),1));zeros(size(Qx(1,:)))]; % Stream function

% === =====

The model must be set up and debugged line by line. This is done by selecting one or
more lines, running them by pressing F9 and checking if they are correct. Once all lines
run smoothly and correctly, remove the comment in the first line of the fdm2 file. This
makes the file a function. Also change the call to the file fdm2 into a function call. So

fdm2; % [Phi,Q,Qx,Qy,Psi]=fdm2(x,y,kx,ky,FH,FQ); % call the model

becomes

[Phi,Q,Qx,Qy,Psi]=fdm2(x,y,kx,ky,FH,FQ); % call th e model

Then the model can be run with any changed input.

Note: There are no error checks in the model. This is to keep the file short. You may add
checks that verify the size of the input matrices and vectors with respect to the model
dimensions implied in the x and y.

3.1 Exercises
1 Prove that your model is correct, by comparing its results with analytical solutions

--- Compute the heads in a 1d model with recharge

The analytical solution can be found in Geohydrology I

()2 2

2

n
L x

kD
φ = − with L and x are measured from the water divide to the boundary

% script to compute this case and compare with anal ytical solution
kD=100; % transmissivity to be used
L =200; % half width of model
x=-L:5:L; % generate x-coordinates for mesh
y= [10 -10]'; % one row suffices because problem is 1D

xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x); Nx=l ength(dx);
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);

kx=kD*ones(Ny,Nx); ky=kx; % same kD in every cell, kyD=kxD (ky=kx)

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 21 of 66 3/15/2009

FH=NaN*ones(Ny,Nx); FH(:,[1,end])=0.0; % Fix left and right head

n=0.001; FQ=n*dy*dx; % Set recharge

[Phi,Q,Qx]=fdm2(x,y,kx,ky,FH,FQ); % Run model

fi=n/(2*kD)*(L.^2-xm.^2); % Analytical solution
plot(xm,Phi, 'r+' ,xm,fi, 'b'); % Plot results
title('compare model with phi=n/(2kD)(L^2-x^2)');
xlabel('x [m]'); ylabel('Phi [m]');
legend('model' , 'analytical');

-200 -150 -100 -50 0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
compare model with phi=n/(2kD)(L2-x2)

x [m]

P
hi

 [
m

]

model

analytical

Figure 4 Comparison between model and analytical solution. The match is not perfect due to the fact
that the exact locations of the outer cells in the model do not coincide with –L and L, the exact
location of the outer nodes is in the cell center, see below to solve this.

As is clear the numerical and analytical solutions do not match completely. This is due to
the fact that the boundaries nodes of the numerical model are not at –L and L but at the
cell centers with is at –L+2.5=-197.5 m and at L-2.5=+197.5 m.

To solve this you may add a very thin outer cell at both ends

or set

x=-L-2.5:5:L+2.5; % generate x-coordinates for mesh

This will yield the perfect match between model and analytical solution

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 22 of 66 3/15/2009

--- Compute the heads in a 1d model with leakage for an aquifer below an aquitard, while
above the aquitard the head is maintained at zero. The flow is symmetrical with x=0 in
the center. All heads are relative to the maintained water level above the aquitard while
the head at x=L and x=-L is maintained at H.

()
()

cosh /

cosh /

x
H

L

λ
φ

λ
=

This problem is a 1-d problem which may be solved by two rows representing the cross
section with the first layer being the aquitard with resistance c and the second being the
aquifer with given transmissivity kD.

% Cross section through polder with fixed head H at both sides
L=1000; kD=1600; c=100; lambda=sqrt(kD*c); % +/- Xsec of Bethune polder
x=[-L-5:10:L+5];
y=[0 -10 -40]';

xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x); Nx=l ength(dx);
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);

k=[dy(1)/c kD/dy(2)]'; % conductivities from c, kD and thickness
kx=k*ones(1,Nx); ky=kx;

H=-2.75; % head at left and right boundary
FH=NaN*ones(Ny,Nx); % NaN matrix to store fixed heads
FH(1,:)=0; % head above aquitard
FH(2,[1,end])=H; % head at left and right boundary

FQ=zeros(Ny,Nx); % matrix to store fixed Q's

[Phi,Q,Qx]=fdm2(x,y,kx,ky,FH,FQ); % run model

fi=H*cosh(xm/Lambda)./cosh(L/Lambda); % analytical

plot(xm,Phi, '+' ,xm,fi, 'b');
title('compare model with phi=H*cosh(x/lambda)/cosh(L/lam bda)');
xlabel('x [m]'); ylabel('Phi [m]');
legend('fixed head' , 'model' , 'analytical');

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 23 of 66 3/15/2009

-1000 -800 -600 -400 -200 0 200 400 600 800 1000
-3

-2.5

-2

-1.5

-1

-0.5

0
compare model with phi=H*cosh(x/lambda)/cosh(L/lambda)

x [m]

P
hi

 [
m

]

fixed head

model

analytical

Figure 5: Comparison between model and analytical solution of cross section through polder.
Obviously there is a big difference between the two. See text below to solve.

The outcome of the script is given in the figure above. The model results for both layers
are shown. The first is the fixed heads in the top layer and the second are the computed
heads in the second layer. Clearly, the model is way off compared with the analytical
solution. Again this is due to the fact that the model nodes are in the center of the cells
and therefore in the center of the layer. The resistance to vertical flow between the model
and the bottom of the first layer is therefore only half of that between the top and the
bottom of this layer. To solve this, you may use a thin layer on top and specify the head
in that one. Or you may double the thickness of the first layer so that the resistance
between the node and the bottom of this layer equals the desired value. Or you just half
the conductivity of the first layer to get the same result. So, in the last case do this

k=[0.5*dy(1)/c kD/dy(2)]'; % conductivities from c, kD and thickness

--- Compute the drawdown due to well in the center, corners

The drawdown due to a well with extraction Q in the center of a circular island with
radius R around which the head is maintained at a value zero reads

ln
2

Q R
s

kD rπ
 =  
 

--- recharge on a square island of half length L, with given parameters

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 24 of 66 3/15/2009

This is simple, generate coordinates, set FH=0 along all 4 boundaries, add recharge to the
nodes and run the model.

L=200; dL=5; kD=150; R=170; n=0.001;
x=-L-0.5*dL:dL:L+0.5*dL;
y=flipud(x');
xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x); Nx=l ength(dx);
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);
kx=kD*ones(Ny,Nx); ky=kx;
FH=NaN*ones(Ny,Nx);
FH([1,end],:)=0; FH(:,[1,end])=0; % all boundaries 0
FQ=n*dy*dx; % recharge as nodal flows
 [Phi,Q]=fdm2(x,y,kx,ky,FH,FQ); % run model
contour(xm,ym,Phi);
title('recharge on square island'); xlabel('x [m]'); ylabel('y [m]');

recharge on square island

x [m]

y
[m

]

-200 -150 -100 -50 0 50 100 150 200
-200

-150

-100

-50

0

50

100

150

200

Figure 6: Recharge on a square island, contours may be labeled (see help contour in Matlab and how
to use clabel, you may also use colorbar to get a colorscale see help colorbar in Matlab)

--- Recharge on a circular island

Problem with the rectangular island is that there is no easy analytical solution for it.
Therefore to proof our model is correct, let’s compute the head in a circular island with
the same model.

The analytical solution is derived from the partial differential equation and boundary
condition that h=0 for r=R.

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 25 of 66 3/15/2009

22
dh

rkD n r
dr

π π− = , � ()2 2

4

n
h R r

kD
= −

Below is the same script as before, only the boundary condition is changed. What we do
we set all nodes where r>=R equal to zero. R is here the distance from point x=0, y=0 and
R the given radius of the model. Given the coordinates of the nodes xm (row vector) and
ym (column vector), we can compute a matrix with the size of the Nodes containing the
distance r in each cell as follows:

r=sqrt((ym*ones(size(xm))).^2+(ones(size(ym))*xm).^ 2);
and then set the fixed head FH equal to zero in all nodes for which r>=R:

FH(r>=R)=0;

Hence

% Head in circular island with recharge

L=200; dL=5; kD=150; R=170; n=0.001;
x=-L-0.5*dL:dL:L+0.5*dL;
y=flipud(x');
xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x); Nx=l ength(dx);
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);
kx=kD*ones(Ny,Nx); ky=kx;
FH=NaN*ones(Ny,Nx);
r=sqrt((ym*ones(size(xm))).^2+(ones(size(ym))*xm).^ 2); %Distance
FH(r>=R)=0;
FQ=n*dy*dx; % recharge as nodal flows
[Phi,Q]=fdm2(x,y,kx,ky,FH,FQ); % run model
contour(xm,ym,Phi);
title('recharge on circular island'); xlabel('x [m]'); ylabel('y [m]');

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 26 of 66 3/15/2009

recharge on circular island

x [m]

y
[m

]

-200 -150 -100 -50 0 50 100 150 200
-200

-150

-100

-50

0

50

100

150

200

Figure 7: Head in circular island of R=170 m with recharge

To compare this with the analytical solution, plot the head through the center together
with the analytical solution. So add these lines

figure
fi=n/(4*kD)*(R.^2-xm.^2);
plot(xm,Phi(xm==0,:), 'r+' ,xm,fi, 'b');
legend('numeric' , 'analytic');
title('compare model with Phi=n/(4kD)*(R^2-r^2)'); xlabel('r [m]');
ylabel('Phi [m]');

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 27 of 66 3/15/2009

-200 -150 -100 -50 0 50 100 150 200
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

r [m]

P
hi

 [
m

]

compare model with Phi=n/(4kD)*(R2-r2)

numeric

analytic

Figure 8: Comparison between model and analytical solution. Obviously there is a small difference.
See text below how to solve this.

The figure above shows a small difference between the head through the center of the
model and the analytical solution. Is this model wrong? No and yes. It is correct but just a
little inaccurate. If we reduce the size of the elements to 2 m and we’ll see that the
difference between the two models has completely disappeared. So the model is correct
after all, but for this computation we need a smaller cell size, which will be due to the
fact that square or rectangular cells do not nicely match with circular shapes like the
boundary of the island and especially the true head contours.

--- Show the effect of anisotropy?

Anisotropic situations can be readily computed if the main conductivities align with the x
and y axes of the model grid. Just try it. However, it is not straightforward to apply
anisotropy in arbitrary directions, unless the model grid can be rotated to align with the
main conductivity directions. In the finite element method, anisotropy in arbitrary
direction in each cell is natural. In the finite difference model it is generally limited to the
main directions of the grid itself. There exist however several methods to apply
anisotropy in rectangular grids. This is beyond this course.

--- Generate and solve a complex cross section with a given boundary condition at the top

To model a cross section, the y direction is simply regarded vertical. Nothing changes,
except that in cross sections we pass the conductivities of the cells, while in flat aquifers
we pass the transmissivities instead. For the model this makes no difference. Because

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 28 of 66 3/15/2009

cross sections combine so nicely with streamlines, we skip this till after we implemented
these streamlines.

5 Generate a random conductivity field and compute the heads given fixed head
boundaries.

A random conductivity field may be generated using the rand(Ny,Nx) function.

6 Generate a river through your model and compute the heads with recharge

A river is a set of lines with fixed heads or heads that are fixed through a resistance,
which are called “general head boundaries” in Matlab. Normally assigning rivers to a grid
is a GIS action. The river has to be intersected with the model cells. For each cell the
intersecting surface area A [m2] is computed and converted into a conductance C [m2/d]
using the bottom resistance c [d] of the river /C A c= . So we skip this GIS action for
now.

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 29 of 66 3/15/2009

4 Stream lines
Streamlines are lines of constant stream-function value. Flow lines are lines followed by
particles. Therefore, flow lines have to be computed by tracing particles, but streamlines
(if they exist) can be computed by contouring the stream function, without tracing.
However, the stream function is only defined in 2D steady-sate flow without sources and
sinks (and leakage or recharge for that matter). In practice, individual sources and sinks
can be dealt with and will look similar to wells in the 2D image.

Because our model is 2D, streamlines will often be an efficient manner to show the flow
in a quantitative way. A very powerful characteristic of streamlines is that the flow is
known between any pair of points in the model. Further, the flow between any pair of
streamlines is constant and equal to the difference of the stream function values.

With respect to the stream function, any streamline may be designated the zero line, after
which the values of all other streamlines are fixed. The stream function can be computed
by integrating the flow across an arbitrary line cutting streamlines. Assuming the bottom
of the model is a streamline, we can compute the stream function easily by integrating the
horizontal flow across cell faces from the bottom to the top of the model.

Mathematically

 ()
max

min

y

x

y

q y dyψ = ∫ (1)

When we use the horizontal flow across the cell faces as an extra output of the model, we
just cumulate these along the cell faces upward from the bottom of the model. This gives
the stream function values at all cell corners (not the nodes). This stream function may
subsequently be contoured, which yields stream lines.

To implement the stream function, open a new Matlab file and save it as “Psi.m”. Type
the following and save again

function P=Psi(Qx)
% P=Psi(Qx)
% Stream function assuming bottom is stream line
% size of Psi is Ny+1,Nx-1, to contour is do
% contour(x[2:end-1),y,Psi(Qx));
P=flipud(cumsum(flipud([Qx;zeros(1,Nx)])));

It does the following. It receives the horizontal flows across the cell faces, which is the
third output to the model. It adds a line of zeros through the bottom, because this will be
the starting stream line with stream function value zero. Then we want to cumulate this
matrix vertically from the bottom upward. Matlab’s cumsum(..) accumulates matrices (try
it), but starts at the top working downward. So we flip the matrix up-down before calling
cumsum(..). When done we flipud(..) again to put it right.

Next, add the following lines to your script file

contour(x(2:end-1),y,Psi(Qx)); % streamlines

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 30 of 66 3/15/2009

The values of the stream function is the flow between any point and the bottom of the
model. If you want that in specific steps of say dPsi=0.1 m2/d, just specify the contours,
for instance

contour(x(2:end-1),y,Psi(Qx),[0:dPsi:max(Psi(Qx(:)))]); % streamlines

See help contour in Matlab for details.

Clearly, if the left hand boundary if you models is a streamline, you may just as well
integrate the vertical flow across horizontal cell faces along the horizontal lines.

4.1 Exercises streamlines
1 A symmetric cross section through a long building with sheet pilings 15 m deep at
x=20 m. Dewatering wells are placed inside this sheet piling between 6 and 11 m depth.
Compute the necessary extraction to dewater the pit by 5 m. The aquifer is semi-
confined. All elevations are relative to the fixed head at the top. The sheet piling is
between x=19.9 and x=20 m, and z=0 and z=-15 m with conductivity kW=0.0001 m/d.
Wells are between x=19.8 and 19.9 m and between z=-6 and z=-11 m and are modeled as
an extraction line in this cross section. The layers are given as in the Matlab script below.

The results are shown in the two figures. One shows the total cross section and the
second one a detail. This detail demonstrates the streamlines and the head lines in this
cross section in the neighborhood of the wells and the sheet piling. It clearly shows how
the groundwater flows underneath the 15 m deep sheet piling towards the wells at the
inside of this sheet piling between -6 and -11 m. The extraction is 8.67 m2/d, which can
be computed by summing the Q over the wells. Alternatively one may compute the Q
entering the model through the first layer (sum(Q(1,(:))). We set the FH of the wells at -5
m. The head in the center immediately below the building pit is then -4.6 m. By setting
FH in the wells to -5.4 will make sure the drawdown under the building pit is the required
5 m. The extraction will then be 9.38 m2/d. This demonstrates the influence of partial
penetration.

Partial penetration means that the well screen only penetrates part of the aquifer
thickness. This implies that the drawdown is larger than in the case of a fully penetrating
screen. Partial penetration is the usual case, to save well money or to prevent upcoming
of brackish water from below. If a building pit must be put dry, only the head at its
bottom needs to be lowered, not at the bottom of the aquifer, which may be 100 m or
more thick. Using short screens then reduces the amount of water that needs to be
extracted.

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 31 of 66 3/15/2009

Half cross section through building pit with sheet pilings

x [m]

z
[m

]

100 200 300 400 500 600 700 800 900

-180

-160

-140

-120

-100

-80

-60

-40

-20

Figure 9: Building pit cross section with partially penetrating sheet piling and extraction wells at the
inside

Half cross section through building pit with sheet pilings

x [m]

z
[m

]

10 20 30 40 50 60
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

Figure 10: Detail showing the streamlines underneath the 15 m deep sheet piling towards the
partially penetrating wells at its inside between 6 and 11 m depth

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 32 of 66 3/15/2009

This is the script to create the cross section. You get the detailed one by zooming first
horizontally and then unrestricted (select zoom and then right mouse button for options).
To get you figure in word, use “edit copyfigure” in Matlab in the menu of the selected
figure and then paste it in Word or PowerPoint as usual.

layers={ % specify layers
 'clay' 0 -5 0.02 % material, top, bottom k
 'sand' -5 -50 20
 'clay' -50 -60 0.01
 'sand' -60 -200 30
};
xW =[19.9 20]; yW =[0 -15]; kW=0.0001;
xWells=[19.8 19.9]; yWells=[-6 -11]; FHWells=-5;

% the column and row coordinates are refined where needed to have
% a very detailed result (top and bottom of wells a nd sheet piling
% just add coordinates then apply unique to sort ou t
x=unique([0:2:18, 18:0.2:22 19:0.1:21, 22:2:40, 40: 10:100,…
 100:25:250, 250:50:500, 500:100:1000]); % fin e mesh where needed
L=[-5 -50 -60 -200]; % layer boundaries for genera ting y values
y=[0 -0.01 L, L+0.01, -5:-0.1:-7, -7:-0.5:-14, -15: -0.1:-16, …
-16:-0.5:-19.5, -19.5:-0.1:-20.5, -20.5:-0.5:-25, - 25:-5:-50];
y=sort(unique(y), 'descend')'; % Unique + sort downward

xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x); Nx=l ength(dx);
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);

% get k values from specified layers
kx=zeros(Ny,Nx);
for i=1:size(layers,1);
 kx(ym<=layers{i,2}&ym>layers{i,3},:)=layers{i,e nd};
end

% set k in sheet piling to its given value
kx(ym<yW(1) & ym>yW(2), xm>xW(1) & xm<xW(2))=kW; k y=kx; % deep wall

FH=NaN*ones(Ny,Nx); FH(1,:)=0.0;

% set fixed head in wells to its given value
FH(ym<yWells(1) & ym>yWells(2), xm>xWells(1) & xm<x Wells(2))=FHWells;

FQ=zeros(Ny,Nx); % no fixed Q this time

[Phi,Q,Qx]=fdm2(x,y,kx,kx,FH,FQ);

close all % ============plotting ====================== =========
contour(xm,ym,Phi,-5:0.2:0, 'b');
hold on
contour(x(2:end-1),y,Psi(Qx),20, 'r');
for i=1:size(layers,1)
 plot([x(1) x(end)],[layers{i,2},layers{i,2}]);
end
title('Half cross section through building pit with sheet pilings');
xlabel('x [m]'); ylabel('z [m]');

% ====water balance and computed head below pit === ================

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 33 of 66 3/15/2009

sum(sum(Q(ym<yWells(1) & ym>yWells(2), xm>xWells(1) & xm<xWells(2))))
sum(sum(Q(1,:))) % infiltration through top of model
sum(sum(Q)) % overall water balance
Phi(ym<-5 & ym>-6,1) % head below building pit

Clearly this can just as well be done for a radial symmetric model, which we develop
next. In fact, we only have to add the 7th argument in the model-call and the same
problem will be computed for a circular building pit. Nothing else needs to be done.

[Phi,Q,Qx]=fdm2(x,y,kx,kx,FH,FQ, 'radial');

The result for the detail is shown below

Half cross section through building pit with sheet pilings

x [m]

z
[m

]

10 20 30 40 50 60
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

Figure 11: Same as above but for radial symmetric flow.

The extraction is now 5250 m3/d (not m2/d !) with the fixed head in the wells -6.7 m to
reach a drawdown of 5 m in the center of the pit.

Extractions in a cross section look like wells, because the streamlines to the extraction all
connect with the top of the model. These are so-called branch cuts and are unavoidable,
as the stream function is multi-valued in the case of extractions or injections within the
domain. This is, in fact, is nice for cross sections.

To make wells sharp, narrow the exaction column such that you only see a line of a
column of the width of the borehole of the well.

3 Add the stream lines to the 5-layer cross section of your pumping test

This gives a good view on the origin of the water and the paths it takes toward the well.

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 34 of 66 3/15/2009

7 Make a 5 layer vertical semi-confined cross section and show the heads in all layers if
layer 4 is pumped

A multi-layer semi-confined model in a cross section is readily made with the Matlab
model. The grid rows now represent layers. The conductivity of the layers determines if
they represent (work as) aquifers or aquicludes. The head in the top layer is fixed. At
other locations in the aquifers fixed heads or flows may be specified. This may also be
done for the boundaries of the layers.

4 Color your cross section according to the conductivities before contouring this will
yield a publication-ready picture.

Using surface(x,y,kx) the conductivities are colored and thus visualizes the structure of
the model and make for instance the layers in a cross section clearly visible. To remove
the grid lines between the cells use shading(‘flat’).

To overlay this with the contours, we may need an extra axis to draw them and place this
axis on top of the surface to show them together.

First set up an axis with the correct scales, copy this axis in the same figure. Then draw
the conductivity surface in the first axis. Remove the axis, so that only the surface is
visible. Switch to the second axis, draw the contours and make the canvas transparent to
show the underlying surface.

f1=figure;

a1=axes;

set(a1,’xlim’,[x(1),x(end)],’ylim’,[min(y),max(y)]);

xlabel(‘x in m’); ylabel(‘z in m’); title(‘cross section);

a2=copyobject(a1,f1);

axes(a1);

surface(x,y,kx); shading(‘flat’); set(gca,’visible’,’off’);

axes(a2);

contour(xm,ym,Phi);

hold on;

contour(x(2:end-1),y,Psi(Qx));

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 35 of 66 3/15/2009

5 Radial symmetric finite difference model
An example of the results of a radial symmetric model has already been shown above.
Very often we have to deal with radial symmetric flows, for instance to wells. Therefore,
it comes in handy to have also a radial symmetric model that is extremely accurate, more
accurate than computing radial symmetric flow with the previous model by multiplying
the kx with the distance to the left size of the model:

2* * * ;

2* * * ;

Kx pi xm kx

Ky pi xm ky

=

=

Using a flat model this way to compute a radial symmetric flow is course a possibility
and a good exercise to compare it with a truly a radial symmetric model developed
hereafter by converting our flat model into a radial symmetric one, or rather one that can
serve both flat and radial symmetric flow problems.

However, in order to convert our model into a radial symmetric one we have to alter its
conductances. But in doing so we are not going to destroy the flat model that we already
developed; instead the model is going to work for both radial symmetric and flat cases.
Keeping both situations in a single Matlab function reduces maintenance in the future.

To make the model work for radial symmetric situations, the only thing to do is compute
the resistance between adjacent nodes.

We know that for radial symmetric horizontal flow between two radii the logarithmic
analytical solution is valid, from which the resistance against horizontal radial flow is
readily derived:

()
()2

1 2 1 2
1 2 1

2
ln

2 ln /

rQ kD
Q

kD r r r

π
φ φ φ φ

π
 

− = → = − 
 

�
()2 11 2

ln /

2r

r r
R

Q kD

φ φ
π

−
= =

Therefore, the resistance between two adjacent nodes becomes

() ()1 , , 1 1

, , 1
1

ln / ln /

2 2
i m i m i i

r i i
i i

r r r r
R

k Dy k Dyπ π
+ + +

+
+

= + � , , 1 , , 11./r i i r i iC R+ +=

The vertical resistance for entire cells equal

() () ()()2 2
1

0.5 1: 1,: 2 : ,:
i i z

Dy
Rz Rz Rz end Rz end

r r kπ +

= → = − +
−

Or in Matlab:

 RX=(1./dy)*log(x(2:end-1)./xm(1:end-1))./(2*pi*k x(:,1:end-1))+ ...
 (1./dy)*log(xm(2:end)./x(2:end-1)) ./(2*pi*kx (:,2:end));
 RY=0.5/pi*dy*(1./(x(2:end).^2-x(1:end-1).^2))./k y;
 Cx=1./RX;
 Cy=1./(RY(1:end-1,:)+RY(2:end,:));

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 36 of 66 3/15/2009

To add this to our model without destroying what we already have, implement it inside
the following if statement

If nargin== 7
 RX=(1./dy)*log(x(2:end-1)./xm(1:end-1))./(2*pi*k x(:,1:end-1))+ ...
 (1./dy)*log(xm(2:end)./x(2:end-1)) ./(2*pi*kx (:,2:end));
 RY=0.5/pi*dy*(1./(x(2:end).^2-x(1:end-1).^2))./k y;
 Cx=1./RX;
 Cy=1./(RY(1:end-1,:)+RY(2:end,:));
else
 RX=0.5*(1./dy)*dx./kx; Cx=1./(RX(:,1:end-1)+RX(: ,2:end));
 RY=0.5*dy*(1./dx)./ky; Cy=1./(RY(1:end-1,:)+RY(2 :end,:));
end

nargin is the number of input argument of a Matlab function that is always known within
the function. Therefore if the function/model is called with 7 arguments instead of with
the ordinary 6, it uses the conductances that are valid for radial symmetric flow and
otherwise those for a flat model.

To let a function call

[Phi,Q,Qx]=fdm2(x,y,kx,ky,FH,FQ)

compute the radial symmetric solution, add an arbitrary seventh dummy argument, for
instance the string ‘radial’)

[Phi,Q,Qx]=fdm2(x,y,kx,ky,FH,FQ,’radial’)

And it will do so.

Clearly, when setting up radial symmetric models you will often use r instead of x and z
instead of y etc. In such a script you are likely to see a call like this

[Phi,Q,Qr]=fdm2(r,z,kr,kz,FH,FQ,’radial’)

But for the function that is called this makes no difference.

The model is now ready to compute both flat and radial symmetric groundwater flow
cases and is, therefore, quite flexible.

5.1 Exercise radial symmetric model
Show that the model is correct using analytical solutions. Plot the head and the flow
contours (stream function)

1 --- compare with Thiem

Thiem is confined radial symmetric flow with fixed-head boundary at distance R. The
analytical solution for the drawdown s is

ln
2

Q R
s

kD rπ
 =  
 

2 --- compare with De Glee

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 37 of 66 3/15/2009

De Glee’s radial symmetric stead-state flow to a fully penetrating well in a semi-confined
aquifer has the analytical solution:

2 o

Q r
s K

kDπ λ
 =  
 

 with kDcλ = and ()...oK the well-known Bessel function of

second kind and zero order.

We may compute this flow with the model in radial mode and compare with the
analytical solution

Qo=-2400; kD=500; c=350; lambda=sqrt(kD*c);

x=logspace(0,4,41); y=[0,-1,-2]';

xm=0.5*(x(1:end-1)+x(2:end)); dx=diff(x); Nx=l ength(dx);
ym=0.5*(y(1:end-1)+y(2:end)); dy=abs(diff(y)); Ny=l ength(dy);

kx=[0.5*dy(1)/c; kD/dy(2)]*ones(size(xm)); ky=kx;

FH=NaN*ones(Ny,Nx); FH(end,end)=0.0;

FQ=zeros(Ny,Nx); FQ(end,1)=Qo;

[Phi,Q,Qx]=fdm2(x,y,kx,ky,FH,FQ, 'radial');

close all
fi=Qo/(2*pi*kx(end,1)*dy(end))*log(xm(end)./xm);
plot(xm,Phi(end,:), 'r' ,xm,fi, 'b+');
legend('analytic' , 'numeric' ,4);

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 38 of 66 3/15/2009

10
0

10
1

10
2

10
3

10
4

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
Compare model with DeGlee s=Q/(2pikD)Ko(r/lambda)

x [m]

dr
aw

do
w

n
[m

]

analytic

numeric

Figure 12: Comparing the model in radial mode with the semi-confined flow solution for steadhy
state extraction from a well (De Glee).

3 --- Compare vertical anisotropy

This is straightforward

4 --- Compare with a circular island with recharge

The analytical solution has already been given. In the radial symmetric model the
recharge in the top of the columns of the cross section is

FQ(1,:)=pi*(r(2:end).^2-r(1:end-1).^2)*n;

5 --- Compare with a circular island in semi-confined aquifer

In the semi-confined aquifer, the top is an aquitard with a fixed head above it. In the
Matlab model, we may use the aquitard as the top layer. But then the fixed head is in the
center of this layer. The resistance of the aquitard must than be generated by the half
thickness of the top layer (between the node and the bottom of the cell). If the resistance
of the aquitard is c, and the thickness of the top layer is H, then the vertical conductivity
in this top layer must be set to 0.5 /zk H c= .

We may also use an extra layer on top of the aquifer, make it very thin and specify the
head in this thin top layer. In that case the conductivity of the top layer must be set to

/zk H c= .

This is the only thing necessary to model a semi-confined aquifer with the radial
symmetric model.

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 39 of 66 3/15/2009

6 --- Compute pumping test in layer 4 of 5 layer model

This is trivial with the model.

7 --- Compute effect of partial penetration

As stated before partial screen penetration of the aquifer is the rule rather than the
exception when installing wells.

D

z1-Z
r

z2-Z

z1-Z

z-Z

r

z2-Z

Measuring from belowMeasuring from above

z-Z

Figure 13: Partial penetrating wells with variables used in the formula

In Matlab one may compute both situations and subtract the two to get the extra
drawdown and then compare it with the analytical formula.

The extra drawdown caused by partial penetration has been derived in the past and is
given in several books on hydrogeology or pumping test analysis (e.g. Kruzeman & De
Ridder, 1997):

() () ()
∑
∞

= 






















 −















 −
−







 −
=∆

1

21 cossinsin
12

2 n
o D

rn
K

D

Zzn

D

Zzn

D

Zzn

nd

D

kD

Q
s

ππππ
ππ

This drawdown is relative (has to be added to) the drawdown for fully penetrating wells.
It was derived for a uniform extraction along the well screens in a homogeneous aquifer.

This formula is valid for uniform extraction along the screen. This is readily implemented
as the boundary condition for the well. In the real case, the boundary is rather a fixed
head along the screen. This too is readily modeled with the Matlab model. The drawdown
along the screen will than vary.

To check the model with respect to partial penetration, compute the drawdown with a
fully and with partially penetrating well. Subtract the two drawdown matrices. This
difference, which is also a matrix of the size of the model, can be compared with the
analytical solution.

figure
ds=0; Z=0; D=sum(dy(2:end)); % ds is partial penet ration
for i=1:50 % analytical solution partial penetration
 ds=ds+1/i*(sin(i*pi*(ZS(1)-Z)/D)-sin(i*pi*(ZS(2) -Z)/D)) ...
 .*cos(i*pi.*(ym*ones(size(xm))-Z)/D) ...
 .*besselk(0,i*pi.*ones(size(dy))*xm/D);

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 40 of 66 3/15/2009

end
ds=ds*Qo/(2*pi*kD)*(2*D/(pi*(ZS(1)-ZS(2))));
contour(xm,ym,ds)
title('dspp penetration contours');
set(gca, 'xscale' , 'log')

5.2 Houskeeping with function modelsize(x,y)
To ease initializing the model, a small householding function may be applied like

[x,y,xm,ym,dx,dy,Nx,Ny]=modelsize(x,y)

It makes sure x and y are in the right order, sorted and contain no duplicate values, so that
the coodinates may be given in any order. It then computes the centers of the cells, xm
and ym, and given the size of the model Ny, Nx, i.e. the number of rows and the number
of columns of the model. Using this simple function avoids clutter in your scripts.

function [x,y,xm,ym,dx,dy,Nx,Ny]=modelsize(x,y)
%[xm,ym,dx,dy,Nx.Ny]=modelsize(x,y)
% compute size of model and put x and y in correct order
x=unique(x(:)');
y=sort(unique(y(:)), 'descend'); % first row is highest coordinated
xm=0.5*(x(1:end-1)+x(2:end));
ym=0.5*(y(1:end-1)+y(2:end));
dx=diff(x);
dy=abs(diff(y));
Nx=length(dx);
Ny=length(dy);

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 41 of 66 3/15/2009

6 Transient modeling
With the previously developed models, all ingredients are already in place. The transient
water balance during a given time step of length t∆ reads

,
i i

ij j i i i i i S ia C Q C h C
t

φ φ
φ φ

+ −−
+ = + −

∆∑ (2)

This is the same as before, a complete model including its boundaries, but now with the
storage added to the balance. The left part is the flow outward of node i; the right-hand
side says where this water comes from: injection into the node, a fixed head boundary
and a release of storage over the considered time step. iφ

+ is the nodal head at the end of

the time step and iφ
− is the head at the beginning of the time step. This head represents

the initial condition necessary in all transient modeling. It is either the initial head at the
start of the model or the head at the end of the previous time step. In any case, it is always
known during the simulation.

All other heads and the flows have to be average values for the duration of the current
time step and are still unknown.

SC contains the storativity and the cell dimensions, and will be considered further down.

The computation of this coefficient is specific to the numerical method, in our case finite
differences.

Here we encounter two unknowns, iφ and iφ
+ . We will only be able to resolve this

situation if we assume some relation between the two. For instance that the head change
during the time step is linear and that the average heads are those at time given by some
value t t tθ−= + ∆ where 0 1θ≤ ≤ , so that

() φ φ
φ φ θ φ φ φ φ

θ

−
− + − + − −

− = − → − = (3)

and therefore,

(),S i
ij j i i i i i i i

C
a C Q C h

t
φ φ φ φ

θ
−+ = + − −

∆∑ (4)

Exactly like we did with the general fixed heads, we leave the fixed part at the right-hand
side and put the variable part to the left hand side

, ,S i S i
ij j i i i i i i i

C C
a C Q C h

t t
φ φ φ φ

θ θ
−+ + = + +

∆ ∆∑ (5)

The left-hand side is equivalent to adding iC and (), /S iC tθ∆ to the diagonal matrix

coefficient. The right-hand side is equivalent to a permanent inflow into the node during
this time step. In Matlab/matrix formulation

1
* .* .*S

Sdiag C
t tθ θ

−  
+ + Φ = + + Φ  ∆ ∆  

C
A Q C h C (6)

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 42 of 66 3/15/2009

This represents the complete transient model, including its initial and boundary
conditions.

Hence, to solve this model in Matlab for the time step:

1
\ .* .*S

Sdiag C
t tθ θ

−    Φ = + + + + Φ   ∆ ∆   

C
A Q C h C (7)

This yields average heads during the time step (based on the chosen value ofθ). The head
at the end of the time step requires a separate computation step:

()1 1 1
1

θ θ θ
+ − − − Φ = Φ + Φ −Φ = Φ + − Φ 

 
 (8)

Then, by setting − +Φ =Φ we enter into the next time step, with the heads at the end of
the previous time step are the initial heads of the next one.

The value of θ is called the implicitness of the solution. 0θ = is called explicit and
1θ = is called fully implicit. Values above 0.5 yield stable solutions (without artificial

oscillations). 0θ = requires small time steps in order to prevent oscillation. On the other
hand computation steps are cheap because it does not require any solution of a system
matrix. A value of 1 is called fully implicit. It may be less accurate in case of larger time
steps, but it is rock-stable. Notice that MODFLOW just uses 1θ = without any choice for
the user. An optimal value for finite element models seems 2 / 3θ = . Anyway, all values
above 0.5θ = yield unconditionally stable solutions. In practice, it may be most simple
to use 1θ = , which implies that the average flows and heads during the time step are well
represented by those at the end of the time step. Given the success of MODFLOW there
seems to be no real objection against 1θ = . 1θ = makes the second step to update the
heads at the end of the time step obsolete because it reduces to

+ −Φ = Φ (9)

The only thing to be elaborated are the values of sC . For the flat finite difference model

these equal

S SC S x y z= ∆ ∆ ∆ (10)

Where yS is specific yield (water table storage) and sS is the specific storage, which

requires the thickness of the model cell to be given.

As can be seen, each cell is given both a specific yield (in case it has or gets a free water
table) and an elastic storage for the saturated part. In our simple models we will not deal
with variable aquifer or layer thickness during the simulation, although this is quite
straightforward to implement.

For the radial symmetric model the storage coefficients equal

()2 2
1S i i sC r r ySπ += − ∆ (11)

In practice, Sy will be specified for the top cells with a free water table and Ss for all
deeper cells.

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 43 of 66 3/15/2009

What has to be changed to the model to make it transient?

The function call has to be extended with time, storage coefficients and initial heads,
while θ may be specified or just set to a default value. We just keep θ as an internal
parameter of the model. Here is the transient model.
function [Phi,Qt,Qx,Qy,Qs]=fdm2t(x,y,t,kx,ky,S,IH,FH,FQ,rad ial)
% function [Phi,Q,Qx,Qy,Qs]=fdm2(x,y,t,kx,ky,S,IH,F H,FQ,radial)
% 2D block-centered transient finite difference mod el
% IH=initial head [L]
% FH=fixed heads (NaN for ordinary points) [L]
% FQ=fixed nodal flows [L3/T] constant in this mod el
% Phi [L3] output heads 3D matrix, all time steps [Ny,Nx,Nt]
% Qt [L3/T] to adjacent nodes during time step =-St orage+inflow
% Qx [L3/T] is hor cell face flow time step averag e [Ny,Nx,Nt-2]
% Qy [L3/T] is vert cell face flow time step averag e [Ny,Nx,Nt-1]
% Qs [L3] is nodal storage change, time step total! ! [Ny,Nx,Nt-1]
% TO 991017 TO 000530 001026 070414 070426

theta=1; % implicitness

x=x(:)'; Nx=length(x)-1; dx=diff(x); xm=0.5*(x(1:en d-1)+x(2:end));
y=y(:); Ny=length(y)-1; dy=abs(diff(y));
t=t(:); Nt=length(t)-1; dt=diff(t);

Nodes = reshape(1:Nx*Ny,Ny,Nx); % Node numbering
IE=Nodes(:,2:end); IW=Nodes(:,1:end-1);
IS=Nodes(2:end,:); IN=Nodes(1:end-1,:);

% resistances and conductances
If nargin==10
 RX=(1./dy)*log(x(2:end-1)./xm(1:end-1))./(2*pi*k x(:,1:end-1))+ ...
 (1./dy)*log(xm(2:end)./x(2:end-1)) ./(2*pi*kx (:,2:end));
 RY=0.5/pi*dy*(1./(x(2:end).^2-x(1:end-1).^2))./k y;
 Cx=1./RX;
 Cy=1./(RY(1:end-1,:)+RY(2:end,:));
 Cs=pi*dy*(x(2:end).^2-x(1:end-1).^2).*S;
else
 RX=0.5*(1./dy)*dx./kx; Cx=1./(RX(:,1:end-1)+RX(: ,2:end));
 RY=0.5*dy*(1./dx)./ky; Cy=1./(RY(1:end-1,:)+RY(2 :end,:));
 Cs=dy*dx.*S;
end

A=sparse([IE(:);IW(:);IN(:);IS(:)], ...
 [IW(:);IE(:);IS(:);IN(:)], ...
 -[Cx(:);Cx(:);Cy(:);Cy(:)], ...
 Ny*Nx,Ny*Nx,5*Ny*Nx); % System matrix
Adiag= -sum(A,2); % Main diagonal

C=zeros(size(FH)); C(~isnan(FH))=1e10; % fixed heads using huge number
FH(isnan(FH))=0;

Phi=NaN*zeros(Ny,Nx,Nt); % storage for head matrix
Qt =NaN*zeros(Ny,Nx,Nt-1); % storage nodal flow matrix
Qx =NaN*zeros(Ny,Nx-1,Nt-1); % storage hor face flows
Qy =NaN*zeros(Ny-1,Nx,Nt-1); % storage vert face flows
Qs =NaN*zeros(Ny,Nx,Nt-1); % storage for head matrix
Phi(:,:,1)=IH; Store in initial head as Phi at t=0

for it=1:length(dt)
 Fi=spdiags(Adiag+C(:)+Cs(:)/(dt(it)*theta),0,A)\. ..
 (FQ(:)+C(:).*FH(:)+reshape(Cs.*Phi(:,:,it)/dt(i t)/theta,Ny*Nx,1));

 Phi(:,:,it+1)=reshape(Fi,Ny,Nx)/theta-(1-theta)/t heta*Phi(:,:,it);
 Qt (:,:,it) =reshape(spdiags(Adiag,0,A)*Fi,Ny,Nx);
 Qx (:,:,it) =-Cx.*diff(reshape(Fi,Ny,Nx),1,2)*si gn(x(end)-x(1)); % m3/d
 Qy (:,:,it) =-Cy.*diff(reshape(Fi,Ny,Nx),1,1)*si gn(y(end)-y(1)); % m3/d
 Qs (:,:,it) =-Cs.*(Phi(:,:,it+1)-Phi(:,:,it))/dt (it);
end

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 44 of 66 3/15/2009

The water balance can be checked as follows

()
1,

N

ij i j fixed trough fixed head storage
j j i

t C φ φ
= ≠

= − = + +∑Q Q Q Q (12)

Qt is thus the inflow to a node averaged over the time step. This is the flow towards its
adjacent connected nodes. It balances with the given fixed inflows from the outside
world, Qfixed, the inflow from the outside world through any fixed head nodes and the
release of storage (see model code).

() /Storage S dt+ −= − Φ −ΦQ C (13)

The ouput flows are all averages during for each time step. That is also true for the
QStorage. It is computed as the release, see equation and model code. The total release
from storage for a node over the entire time step thus equals

()s s i iQ dt C dtφ φ+ −= − −

To check this water balance, for a model with no fixed heads and only fixed flows,

dt=diff(t);
St=zeros(length(dt)); % Vector to store total stora ge per time step
for it=1:length(dt)
 St(it)=sum(sum(Qs(:,:,it)))*dt(it); % =FQ+Qfrom FH+QStoreRelease
end
sum(St(:)) % show total storage release over entire period
sum(FQ(:)*sum(dt) % Qw is well flow show total infl ow from fixed flows

These two show the equal.

In the case of fixed head cells we may compute the fixed head cell inflows from

() () () (): : : :FH t fixed storage= − −Q Q Q Q

6.1 Exercises transient model
Prove that the model is correct

0 --- Check the water balance

To check the water balance, the storage must be included. Check for your self which
flows must add up to zero

1 --- Compare the model with Theis’s solution

Theis’s solution is for a fully penetrating well in a confined aquifer. The well-known
solution for the drawdown is

2

04 4
oQ r S

s E
kD kDtπ

 
=  

 

With Eo the exponential integral or Theis’s well function. In Matlab, for time t(i)

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 45 of 66 3/15/2009

S=Qo/(2*pi*kD).*expint(r.^2.*S./(4*kD*t(i)));

% Compute radial transient model compare with Theis analytical solution

rW=0.1; k=10; Ss=0.0001; Sy=0.1; Qw=-2400; t=logspa ce(-3,2,51);
r=logspace(log10(rW),4,41);
z=[0, -20];
[r,z,rm,zm,dr,dz,Nr,Nz]=modelsize(r,z); % small household function
K=k*ones(Nz,Nr);
S=Ss*ones(Nz,Nr); S(1,:)=Sy/dz(1); % combine Ss and Sy (spec yield)
FH=NaN*zeros(Nz,Nr); % fixed head not necessary for transient flow
IH=zeros(Nz,Nr); % initial heads are always essential
FQ=zeros(Nz,Nr); FQ(1,1)=Qw; % extraction at r=rm(1)

kD=k*sum(dz); SY=sum(S(:,1).*dz); % kD and S for analytical comp
fi=Qw/(4*pi*kD)*expint((1./(4*kD*t'))*(rm.^2*SY)); % analytical

[Phi,Qt,Qr,Qz,Qs]=fdm2t(r,z,t,K,K,S,IH,FH,FQ, 'radial'); %run model

close all; figure; hold on % start visualisation
for it=2:length(t)
 plot(rm,Phi(1,:,it), 'x'); % numerical as crosses
end
plot(rm,fi); % analytical as function of rm, lines
title('Theis drawdown as function of r for different time s');
xlabel('r [m]'); ylabel('dd [m]');
set(gca, 'xscale' , 'log'); % use log scale

figure; hold on
for ir=1:length(rm)
 plot(t,squeeze(Phi(1,ir,:)), 'x-'); % must use squeeze if 1 layer
end
plot(t,fi'); % analytical as function of time, lines
title('Theis drawdown as function of t for different time s');
xlabel('t [d]'); ylabel('dd [m]');
set(gca, 'xscale' , 'log'); % use log scale

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 46 of 66 3/15/2009

10
-1

10
0

10
1

10
2

10
3

-18

-16

-14

-12

-10

-8

-6

-4

-2

0
Theis drawdown as function of r for different times

r [m]

dd
 [

m
]

Figure 14: Drawdown as function of distance to the well for different times (x = numerical, lines are
analytical solution according to Theis

10
-3

10
-2

10
-1

10
0

10
1

10
2

-18

-16

-14

-12

-10

-8

-6

-4

-2

0
Theis drawdown as function of t for different times

t [d]

dd
 [

m
]

Figure 15: Drawdown as function of time for various distances to the well (numeric X, line analytical
Theis solution)

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 47 of 66 3/15/2009

The pictures show the accuracy of the model. The model seems to be off for very small
times only. This is because the model starts with zero initial heads at a very non-zero
time, while the analytical solution is only zero at zero time. This difference can be
completely removed by using the analytical solution at the initial time as initial heads.

2 --- Compare the model with Hantush’s solution

Hantush’s solution concerns the drawdown due to a well in a semi-confined aquifer:

2
1 1

W , exp
4h

u

r r
u y dy

y yλ λ

∞     = − −         
∫

It may be implemented by writing a function that carries out the integration

2

, ,
4 4

o
h

Q r r S
s W u u

kD kDtπ λ
 = = 
 

Where Wh(…,…) us Hantush’s well function

()2/ 2y r

h

u

e
W dy

y

λ∞ − −

= ∫

3 --- Compute delayed yield

Delayed yield may result from the drawdown above the aquitard that is caused by the
leaking through the aquitard. It also results from the combination of elastic storage and
water table storage in the same unconfined aquifer. Initially the drawdown is due to
elastic storage, which expands fast. Slowly the water table will determine the drawdown
and will show up at a later time. The combined drawdown curve shows two theis-curves
in series, the first one determined by the elastic storage, the second one by the water table
storage. In Matlab is it readily modeled by giving all cells a small elastic storage
coefficient and only the top layer cells a larger one, the specific yield. Compute the time-
drawdown curve and compare it with the two Theis curves

4 --- Compute well bore storage (Boulton)

The storage inside the well changes the drawdown shortly after the start of the pump. It
may be implemented by modeling the well casing explicitly. A thin column may be given
a zero horizontal conductivity to represent the impervious well casing. Then the top cell
inside the casing is given a storage coefficient equal to 1. To represent the free water
inside the screen and the casing, use a large vertical conductivity. The extraction may
then be from any of the cells inside the screen or the casing. The large vertical
conductivity inside the well makes sure the head is the same throughout the well screen
and casing. The result should be compared with the analytical solution given by Boulton.
A practical manner is comparing it with curves for Boulton in Pumping Test Books (e.g.
Kruzeman & De Ridder, 1970, 1995)

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 48 of 66 3/15/2009

Figure 16: A large diameter well

Consider a large 5 m radius dug well that is also 5 m deep in a 20 m deep aquifer. The
specific yield is 5% and the extraction 130 m3/d, i.e. 1000 people using 70 l/d plus 600
cattle using 100 l/d. What will be the drawdown in this well? Is it sustainable?

To analyze this situation, make an radial symmetric model, 20 m deep. Use a
logarithmically increasing grid size with distance (say logspace(-1,4,41), such that the
drawdown will not reach the outer boundary of the model) and say 20 layers of 1 m
thickness vertically. Then refine around the diameter of the well and around its bottom, to
accurately compute the concentrated flow in this region.

In the well use a very high conductivity, day k=10000, so that the well will obtain a
uniform head like in the reality. The extraction may be put in an arbitrary model point
inside this well. Then apply the storage coefficient to the model cells. All cells may be
given the specific elastic storage coefficient by default. However, specific yield is
different. It applies to the topmost cells only and we must use it there as a kind of elastic
storage for the top row of cells. To do this, use Sy/dz for this row as storage coefficient.
That is, do this for all top row cells and use 1/dz (i.e. Sy=1) for the cells representing the
inside of the well.
rW=5; zW=-5; R=10000; k=1; Ss=0.0001; Sy=0.05; Qw=- 130;
r=[logspace(0,log10(R),50), rW+[-0.5 -0.25 -0.1 0 0 .1 0.25 0.5 1]];
z=[0:-1:-20, zW+[-0.5 -0.25 -0.1 0 0.1 0.25 0.5]];
t=logspace(0,3,31);
[r,z,rm,zm,dr,dz,Nr,Nz]=modelsize(r,z);

K=k*ones(Nz,Nr); K(zm>zW, rm<rW)=10000;
S=Ss*ones(Nz,Nr); S(1,:)=Sy/dz(1); S(1,rm<rW)=1/dz(1);

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 49 of 66 3/15/2009

FH=NaN*zeros(Nz,Nr);
IH=zeros(Nz,Nr);
FQ=zeros(Nz,Nr); FQ(1,1)=Qw;
[Phi,Qt,Qr,Qz,Qs]=fdm2t(r,z,t,K,K,S,IH,FH,FQ, 'radial');

kD=k*sum(dz); SY=sum(S(:,end).*dz);
fi=Qw/(4*pi*kD)*expint((1./(4*kD*t(:)))*(rm.^2*SY)) ;

close all
plot(rm,squeeze(Phi(1,:,:)), '+' ,rm,fi, '-'); hold on
title('Drawdown insize pp large diameter well, compare wi th Theis');
xlabel('r [m]'); ylabel('dd [m]');
set(gca, 'xscale' , 'log');

figure
plot(t,squeeze(Phi([1,end],1,:)), '+' ,t,fi(:,1), '-');
set(gca, 'xscale' , 'log');
legend('in well' , 'below well, bottom aquifer' , 'Theis');
title('Drawdown in partially penetrating large diameter w ell, compare with Theis');
xlabel('t [d]'); ylabel('dd [m]');
set(gca, 'xscale' , 'log');

Example of a large diameter well

10
0

10
1

10
2

10
3

10
4

-7

-6

-5

-4

-3

-2

-1

0
Drawdown insize pp large diameter well, compare with Theis

r [m]

dd
 [

m
]

Figure 17: Drawdown (numeric +) along z=0 through well and at top of aquifer. Comparison with
Theis solution (lines). The horizontal lines is the head inside the well (5 m radius)

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 50 of 66 3/15/2009

10
0

10
1

10
2

10
3

-7

-6

-5

-4

-3

-2

-1

0

t [d]

dd
 [

m
]

Drawdown in partially penetrating large diameter well, compare with Theis

in well

below well, bottom aquifer

Theis

Figure 18: Drawdown inside large diameter well, below it at the bottom of the aquifer and
comparison with Theis solution (this drawdown is quite substantial). The drawdown inside and
below the well is less than Theis, because the large diameter compensates the partial penetration. The
drawdown at the bottom of the aquifer is much less than inside the well due to partial penetration.
Initially the drawdown in the well is less than Theis and declines more or less linearly due to the large
storage inside it.

To check the water balance, see if the total extraction from the well over the entire period
matches the water released from storage

dt=diff(t);
St=zeros(length(dt));
for it=1:length(dt)
 St(it)=sum(sum(Qs(:,:,it)))*dt(it);
end
FromStorage=sum(St(:))
Injected =Qw*sum(dt)

Matlab gives:

FromStorage = 1.2987e+005

Injected = -129870

These are indeed the same and equal the total extraction. Now check with the given well
extraction (-130 m3/d * 999 days)

>> Qw*sum(dt)

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 51 of 66 3/15/2009

ans = -129870

Which indeed matches the given infiltration (extraction = negative infiltration)

To visualize the flow, compute the steady-state model
FH(:,end)=0; % now we must have some boundary fix ed
[Phi,Qn,Qx]=fdm2(r,z,K,K,FH,FQ, 'radial'); % steady state model
contour(rm,zm,Phi); hold on % head lines
contour(r(2:end-1),z,Psi(Qx)); % stream lines
set(gca, 'xscale' , 'log'); % log scale
title('large diameter well'); xlabel('r [m]'); ylabel('z [m]');

large diameter well

r [m]

z
[m

]

10
1

10
2

10
3

-18

-16

-14

-12

-10

-8

-6

-4

-2

Figure 19: The contours of the steady-state computation with fixed head at R=10000. Inside the wells
the stream lines continue to the point of extraction. Notice the logarithmic scale used to visualize the
situation

5 --- Compute the effect of a shower of rain on a parcel of land compare with analytical
solution

A shower of rain on a parcel of land cause the water to be raised instantaneously, but the
head at the edges of the parcel remains equal to the ditch level. This comes down to an
immediate drawdown at the edges of the parcel, which progresses into the parcel, initially
fast becoming slower and slower over time.

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 52 of 66 3/15/2009

To model this in Matlab, set the fixed head in the ditches equal to zero and use an initial
head equal to n/Sy, where n is the shower in mm and Sy the specific yield. Then follow the
drawdown over time. Used increasing time steps to track the fast initial drawdown well.

t=logspace(-3,3,61) % logarithmically increasing series starting at10-3, ending at 103 in
60 steps (61 values, 10 per log cycle).

Compare the results with the analytical solution

() () ()
1

2 2
2

1

14
1 cos 2 1 exp 2 1

2 1

j

jy

n x kD
s j j t

S j L L S
π π

π

−∞

=

  −     = − − − −      −      
∑

Where L is the half-width of the cross section through the parcel (Carslaw & Jaeger,
1959, p97, eq 8; Verruijt, 1999, p87).

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 53 of 66 3/15/2009

7 Model wrapping
Having a transient model, the steady-state version can be created by running the transient
model with the proper input. This would make the maintenance of a separate steady –
state version of the model obsolete. On the other hand, a transient model requires more
input and is more complicated to use. A good compromise may then be to make a
wrapper around it, that looks like a steady-state model, but all it does is augmenting the
input with dummies and then call the transient model with its complete input. The use
then only bothers with the wrapper as if it were a steady-state version of the model.
Working with wrappers may easy model usage and at the same time reduce maintenance
as only a single model has be updated. This is especially important as models get more
complicated.
function [Phi,Q,Qx,Qy]=fdm2wrap(x,y,kx,ky,FH,FQ,radial)
% function [Phi,Q,Psiy,Psix]=fdm2(x,y,kx,ky,FH,FQ,r adial)
% 2D block-centred steady-state finite difference m odel
% x,y mesh coordinates, kx,ky conductivities
% FH=fixed heads (NaN for ordinary points), Q=fixed nodal flows
% Phi,FQ computed heads and cell balances
% Qx is horizontal flow direction increasing column number
% Qy is vertial cell wall flow in directin of incre asing row number
% TO 991017 TO 000530 001026 070414

Dummy=zeros(size(FQ)); tDummy=[0 1];
[Phi,Qt,Qx,Qy]=fdm2t(x,y,tDummy,kx,ky,Dummy,Dummy,F H,FQ,radial);

Phi=squeeze(Phi(:,:,end));
Q =squeeze(Qt);
Qx =squeeze(Qx);
Qy =squeeze(Qy);
% squeeze eliminates one dimension if it has length 1: 3D�2D

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 54 of 66 3/15/2009

8 Particle tracking (flow lines)
Particle tracking is one of the functions most used in a groundwater model. Contrary to
stream lines that require steady-state 2D flow without sources and sinks, particles may
always be tracked to create flow lines. Clearly, particles starting at the same location may
not follow the same path if released at different times in a transient model. In the random
walk technique particles are even given a random displacement at each time step to
simulate dispersion, which alters the path of individual particles in an unforeseen manner,
thus simulating dispersion.

Particle tracking in finite difference models is quite straightforward. The flows
perpendicular to the cell faces are known and, therefore, the specific discharge at theses
faces may be approximated by dividing by their surface area. Average. As the porosity in
the cells at either side of a cell face may differ, so may the groundwater velocity
perpendicular to the cell face, even though the specific discharge does not.

In finite difference modeling, the flow in x, y and z direction, which is parallel to the axes
of the model, is linearly interpolated between that at opposite cell faces. This implies that
the flow in x-direction (and velocity for that matter) is only a function of x, the velocity in
y-direction only a function of y and the one in z-direction only depends on z. This is
consistent with the model assumptions and largely simplifies the analysis. However, for
large cells it may not be accurate. So it may be necessary to use smaller cells where large
variations in velocity occur in value and direction. On the other hand the elegance of this
approach is that the divergence remains zero in a cell. This means no water is lost, so that
the flow paths by themselves are consistent.

To show this, take the divergence for an arbitrary point within a 3D cell without sources
and sinks. This divergence must be zero:

0yx x
qq q

x y z

∂∂ ∂
+ + =

∂ ∂ ∂
 (14)

Written out in the flows generated by the model for a cell with size , ,x y z∆ ∆ ∆ gives

2 12 1 2 1
2 1 2 1 2 10 0y yx x z z

x x y y z z

Q QQ Q Q Q
Q Q Q Q Q Q

x y z x y z x y z

−− −
+ + = → − + − + − =

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
 (15)

which must be true because it is the cell’s water balance (without internal sources).

To analyze particle tracking within de realm of FDM further, consider the average
velocity at cell faces, computed from the flows perpendicular to the cell faces (Qx and Qy)
and the porosity ε of the cell. In 2D, the velocity in a cell with porosity ε may be
computed for the local flow in x and y direction. For generality we also have to consider
the thickness of the cell, D, perpendicular to the x,y plane.

1 1
; yx

x y

QQ
v v

H y H xε ε
= =

∆ ∆
 (16)

Within a cell the flow is interpolated between that of the opposite cell faces

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 55 of 66 3/15/2009

() (), y yx x
x x y y

Q QQ Q
Q Q x x Q Q y y

x x y y
+ −+ −

− − − −
+ − + −

−−
= + − = + −

− −
 (17)

() ()

() ()

x x x x x x x
x

y y y y y y y
y

Q Q Q Q xQ Q Q
v x x x x

H y H y H x y V V

Q Q Q Q yQ Q Q
v y y y y

H x H x H x y V V

ε ε ε ε ε

ε ε ε ε ε

− + − − + −
− −

− + − − + −
− −

− ∆ −
= = + − = + −

∆ ∆ ∆ ∆

− ∆ −
= = + − = + −

∆ ∆ ∆ ∆

 (18)

In which the indices + and – refer to the sides of this cell.

Hence ,x x x y y y+ − + −∆ = − ∆ = −

By dividing by H yε ∆ and H xε ∆ within the cell we obtain the groundwater velocities

()

()

x x x x
x

y y y y
y

Q Q Q Q
v x x

H y H y H x y

Q Q Q Q
v y y

H x H x H x y

ε ε ε

ε ε ε

− + −
−

− + −
−

−
= = + −

∆ ∆ ∆ ∆

−
= = + −

∆ ∆ ∆ ∆

 (19)

Or,

() (); y yx x
x x y y

v vv v
v v x x v v y y

x y
+ −+ −

− − − −

−−
= + − = + −

∆ ∆
 (20)

With

x x x
x

dv v v

dx dx
α + −−

= = and
y y y

y

dv v v

dy dy
α + −−

= = (21)

This simplifies to

(),x x xv v a x x− −= + − , and ()y y xv v a y y− −= + − (22)

Working this out in terms of particle displacement yields

()x x

dx
v x x

dt
α− −= + − ; ()y y

dy
v y y

dt
α− −= + − (23)

We leave out the y-direction for now to limit the length of this paper.

Integration yields

()()
()

x x

x
x x

d v x x
dt

v x x

α
α

α
− −

− −

+ −
=

+ −
 -���� ()()ln x x xv x x t Cα α− −+ − = + (24)

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 56 of 66 3/15/2009

With x=xo at t=to C may be computed, giving

()
()

()ln x x
x o

x x o

v x x
t t

v x x

α
α

α
− −

− −

 + −
= −  + − 

 (25)

This equation is useful to compute at what time the particle hits a cell face given its initial
position in the cell. Clearly, its velocity must not be zero (denominator), neither must the
velocity at the target position be zero (numerator), or must the fraction be negative
(which means opposite velocities at current and target positions, implying a water divide
in between).

Reversing this formula yields the position of the particle at a given time

() ()()expx x
o x o

x x

v v
x x x x t t

a a
α− −

− −

 
= + + − − − 

 
 (26)

Which may be rewritten in relative coordinates

()()expx x
o x o

v vx x
u u t t

x v v
α− −−−  

= = + − − ∆ ∆ ∆ 
, with v v v+ −∆ = − (27)

This gives the relative position in the cell at given time starting at an arbitrary initial
position xo in the cell at time to. For this to work, the only condition is that 0xα ≠ in

which case the velocity is constant and the new position becomes.

()o x ox x v t t= + − or o
o

x

x x
t t

v

−
− = (28)

The model must capture this situation as it needs to use an alternative formula to compute
the velocity at another location or the time to get to some other locations (i.e. the cell
face).

If

()
()

0x x

x x o

v x x

v x x

α
α

− −

− −

+ −
≤

+ −

The logarithm does not exist. The reason is that the velocity at the target location x is
opposite to that at the current location xo so that the particle never reaches the target
location. This happens if there is a water divide between the current and target locations.
In this case no time can be computed. On the other hand the position of the particle may
then be computed for any time up to infinity. In the model these situations must be
captured.

The model

The logic of the particle tracking model is as follows:

First compute the velocities at the upstream and downstream sides of all cells, both in x
and y direction, using the cell face flows at the cell interfaces and the porosities of this
cells.

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 57 of 66 3/15/2009

Then, given an arbitrary point xp, yp, find in which cell it is and start tracking during a
given time step DT

In case the velocity is zero the point remains at its position and the time moves on to
t+DT. Particle position and cell index remain unchanged.

If the velocity is negative, compute movement of particle in the direction of the upstream
cell face:

If the velocity is constant, use the appropriate formula. Compute the time dt to reach the
cell face. If this time exceeds DT, use DT instead and compute the new particle position
using DT. Don’t update the cell index.

Else check the velocity direction at the target cell face and see if the particle will ever
reach it. If so, compute the time dt until the hit. Provisionally update the particle position
to this cell face and reduce the cell index for the x-direction by 1. Now check if dt>DT to
see if the target DT is reached before we hit the cell face. If this is the case, use DT
instead and compute the particle position using DT. Don’t update the cell index.

If the particle will never reach the upstream cell face, use DT and compute the particle
position after DT. Don’t update the cell index.

The same logic is used for the downstream cell face in the case the velocity is positive.

The same logic also applies for the y-direction.

Finally we have a provisional new position xpN, ypN with provisional change of cell
indix dic, djc (both -1, 0 or +1) in x and y direction respectively and two times dtx and dty
that meet the criteria in both the x and y direction respectively.

The smallest of the two determines the final particle update. In case this is dtx, than the
values xp=xpN, ic=ic+dic and dt=dtx will hold and the y-position of the particle has to be
recomputed using the new dt. In case the smallest of the two is dty it is the other way
around.

Clearly, dt may be smaller than the initial target time step DT, as a cell face is hit much
sooner. Then DT is reduced by dt and the procedure is done all over again, causing the
particle to move through the next cell. This is repeated until DT has become zero. This
makes sure that the particle position at given time points will be stored together with the
positions and times that a particle crosses cell faces.

The procedure is repeated with a new time step, until all have been worked through.

Because the cell face flows at the outer boundary faces of the model are always zero in
the finite difference model, particles can never escape the model and need no special care
in that respect. However, particles will enter extraction cells, where they would simply
slow down indefinitely as, because such cells behave as having a water divide inside (or a
distributed extraction over the cell area). Therefore, it is better to capture particles
entering cells that have an extraction which is beyond a given fraction of the throughflow
of the cell. This is the same approach as MODPATH.

The extraction is provided by the output of fdm2 and the throughflow is computed as the
sum of the absolute values of the flows across all 4 cell faces. This threshold fraction may

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 58 of 66 3/15/2009

be set at 15% or so. So the loop is broken off as soon as the particle enters a cell being a
sink according to this criterion.

To allow dealing with the x and y (and possibly the z-axis) in the same manner, so that
the program uses the same logic for the three axes, one must guarantee that the cell
indices are aligned (increase) with the positive axis-direction. This is checked in the
beginning and if necessary the concerned matrices are flipped accordingly left-right or
upside-down.

To allow backward tracing, the matrices Qx and Qy are multiplied by -1. Backward
tracing is signaled by using negative times in the input.

The implementation is such that the function fdmpath is called after the model has been
run and the necessary nodal and cell-face flow matrices computed. The extra information
that the fdmpath needs is the porosity of all cells and either the thickness of each cell or
the sign that the model be computed in radial fashion

[XP YP TP]=fdmpath(x,y,DZ|radial,Q,Qx,Qy,por,T,[mar kers])

Use the x,y,Q,Qx and Qy matrices that are the output of fdm2.

Make sure the size of the porosity matrix equals the size of Q or use a scalar.

Make sure that the absolute values of the time series T are increasing. Use negative
values for backward tracing. You don’t need to start with a zero first time.

The third argument is either a matrix DZ of the cell thicknesses or a string such as ‘R’ or
‘radial’ to indicate the radial symmetric case. You may use a scalar for DZ. An empty
matrix [] will be regarded the same as DZ=1.

In the case of radial flow the horizontal and vertical velocities at the cell faces are
computed as

2
x

x

Q
v

y xε π
=

∆
 and

()2 2

y
y

Q
v

x xε π + −

=
−

 (29)

The optional markers is a string consisting of letters that are valid Matlab marker
indicators. The default is (see doc marker).

'+o*.xsdph^v<>'
There will be a marker plotted in the paths for each given time (except zero) according to
this list of markers, which is repeated of there are more times than markers given. For
instance ‘oooop’ gives you four ‘o-markers’ and each fifth a ‘p’=pentagon .

When the model is run, it picks up the current figure (assuming it is a contour plot
generated after running the model) by letting you click at a point in it (left mouse button).
The program will immediately compute and show the flow path with the markers (No
markers will be visible if the particles leave the model before the first time is reached).

You can repeat this as long as you like.

To stop use the right-hand mouse button. Upon this the program stops and yields the XP,
YP and TP coordinates of all the generated lines. These points and times include all

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 59 of 66 3/15/2009

points where particles crossed cell borders and all points at the given times. The
individual lines in these matrices are separated by a NaN (“Not a Number” value). The
coordinates at the given times can be picked out of these matrices:

for it=1:length(T)

I=find(abs(TP-T(it))<1e-6);

plot(XP(I),YP(I),’o’);

end

As with all Matlab functions, you can always get help by typing

help fdmpath

fdmpath has a self test built in. It will be run if you type

fdmpath

Finally, it is a good exercise to work this out for transient flow. In that case the flows are
dependent of the time which requires some extra housekeeping. It is also a good exercise
to work this out for 3D, possibly 3D and transient. This is not very difficult, but the
convenience will be much less due to more difficult visualization and data handling. If
you really need to do a complicated 3D transient modeling project, rather use standard
software with an advanced user interface with easy entry and management of the input,
output and visualization. Having said all this, the current modeling provided in this
syllabus comprise a practical, powerful and efficient modeling toolbox with many uses
for practical real-life groundwater modeling.

8.1 Checking the particle tracking
To check the particle tracking use some convenient analytical solutions

A cross section, thickness H, porosity ε and recharge n, with a water divide at x=0 center
obeys the following relations

() ()

() ()

() ()

ln ,

ln ln

ln exp

x o o

o o o o

o o o
o

dx nx dx n n
v dt x t C with t t x x

dt H x H H
n n

x t C C x t
H H

x n n
t t x x t t

x H H

ε ε ε

ε ε

ε ε

= = → = → = + = =

= + → = −

   = − → = −   
  

 (30)

This can be used to check the travel time in the model in two directions.

Another simple check is a well in a confined aquifer. Here we have

2 Qt
Qt H R R

H
ε π

π ε
= → = (31)

So set up a model, run it, contour the results, run fdmpath, and check its results by
clicking a point near the well

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 60 of 66 3/15/2009

%% radial flow to a well, check fdmpath:
clear all ; close all ;
Qo=2400; por=0.35
x=logspace(-1,4,51); y=[0 -1 -2]; % need 2 y layers to contour
[x,y,xm,ym,dx,dy,Nx,Ny]=modelsize(x,y); % houseke eping
k=10*ones(Ny,Nx); % conduct ivity
FH=NaN*ones(Ny,Nx); FH(:,end)=0; % fixed h ead boundary
FQ=zeros(Ny,Nx); FQ(:,1)=Qo.*dy./sum(dy); % divide Q over the 2 layers
[Phi,Q,Qx,Qy]=fdm2(x,y,k,k,FH,FQ); % run mod el fdm2
contour(xm,ym,Phi,30); set(gca, 'xlim' ,[0 3000]); % contour results
T=3650; % time series (one point only)
[XP YP TP]=fdmpath(x,y, 'radial' ,Q,Qx,Qy,por,T, 'o'); % run fdmpath
R=sqrt(Qo*T(end)/(pi*por*sum(dy))) % check this yields 1996 m

8.2 Listing of fdmpath
function [XP YP TP]=fdmpath(x,y,DZ,Q,Qx,Qy,por,T,markers)
% [XP YP TP]=fdmpath(x,y,DZ,Q,Qx,Qy,por,T,markers,[radial])
% 2D particle tracking.
% To use: generate a 2D steady state model, launch this file and on the
% pictures click for a starting point. The line wil l be immedidately drawn
% Repeat this for more lines. Click te right hand b utton to stop
% type fdmpath for selftest and demo
% x y mesh coordinates
% DZ thickness of the cells (if empty, 1 is used, m atrix not needed)
% if DZ is a character string radial flow is assume d so use 'radial' or so
% for DZ in case a radially symmetric flow is desir ed
% Q Qx Qy output of fdm2 (steady state only)
% por matrix of porosities (scalar is enough)
% T time points where markers is desired, 0 not nec essary, will be added
% use negatigve times values to trace backward in t ime
% markers is a series of markers for the consecutiv e times
% e.g. '>+o*.xsdph^v<'
% XP YP TP coordintates of flow paths, there is a [NaN NaN NaN] between
% consecutive tracks.
% TO 070424 070501

if nargin==0; selftest; return ; end

if nargin<9
 markers= '+o*.xsdph^v<>' ;
end
Lm=length(markers);

Nx=length(x)-1; Ny=length(y)-1;

if isempty(DZ), DZ=ones(Ny,Nx); elseif isscalar(DZ), DZ =DZ *ones(Ny,Nx); end
if isscalar(por), por=por*ones(Ny,Nx); end

%first make sure the positive direction of the grid is aligned with the positive x and y
directions
if sign(x(end)-x(1))<0, x=fliplr(x); Q=fliplr(Q); Qx= fliplr(Qx); Qy=fliplr(Qy);
DZ=fliplr(DZ); por=fliplr(por); end
if sign(y(end)-y(1))<0, y=flipud(y); Q=flipud(Q); Qx= flipud(Qx); Qy=flipud(Qy);
DZ=flipud(DZ); por=flipud(por); end

dx=diff(x); dy=diff(y);

% then check which cell are sinks

if T(end)<T(1) % if times negative then track particles backward i n tme
 Qx=-Qx;
 Qy=-Qy;
 T=-T;
end

sinkfrac=0.15;

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 61 of 66 3/15/2009

Qthrough=zeros(size(Q));
if ~isempty(Qx)
 Qthrough=Qthrough+[zeros(size(Qx(:,1))),abs(Qx)]+[abs(Qx),zeros(size(Qx(:,1)))];
end
if ~isempty(Qy)
 Qthrough=Qthrough+[zeros(size(Qy(1,:)));abs(Qy)]+[abs(Qy);zeros(size(Qy(1,:)))];
end
sink= Q < -sinkfrac*Qthrough;

if ischar(DZ) % then the flow is radial symmetric
 if ~isempty(Qx)
 A=dy*2*pi*x;
 vx2=[Qx, zeros(size(Qx(:,1)))]./(A(:,2:end) .*por);
 vx1=[zeros(size(Qx(:,1))), Qx]./(A(:,1:end- 1).*por);
 ax=(vx2-vx1)./(ones(size(Qx(:,1)))*diff(x)) ;
 end
 if ~isempty(Qy)
 A=ones(size(dy))*(pi*(x(2:end).^2-x(1:end-1).^2));
 vy2=[Qy; zeros(size(Qy(1,:)))]./(A.*por);
 vy1=[zeros(size(Qy(1,:))); Qy]./(A.*por);
 ay=(vy2-vy1)./(diff(y)*ones(size(Qy(1,:)))) ;
 end
else
 if ~isempty(Qx)
 vx2=[Qx, zeros(size(Qx(:,1)))]./((dy*ones(s ize(dx))).*por.*DZ);
 vx1=[zeros(size(Qx(:,1))), Qx]./((dy*ones(s ize(dx))).*por.*DZ);
 ax=(vx2-vx1)./(ones(size(Qx(:,1)))*diff(x)) ;
 end
 if ~isempty(Qy)
 vy2=[Qy; zeros(size(Qy(1,:)))]./((ones(size (dy))*dx).*por.*DZ);
 vy1=[zeros(size(Qy(1,:))); Qy]./((ones(size (dy))*dx).*por.*DZ);
 ay=(vy2-vy1)./(diff(y)*ones(size(Qy(1,:)))) ;
 end
end

XP=([]); YP=([]); TP=([]);
while 1
 [Xp, Yp, button]=ginput(1); if button~=1; break ; end % get starting points for
stream lines

 DT=diff(T(:)); if T(1)~=0, DT=[T(1);DT]; end

 for ip=1:length(Xp);
 xp=Xp(ip); yp=Yp(ip); t=T(1);
 XP=[XP;NaN;xp];
 YP=[YP;NaN;yp];
 TP=[TP;NaN; t];
 iLast=length(TP); % to later plot only this line

 ic=find(x<xp,1, 'last');
 jc=find(y<yp,1, 'last');

 for idt=1:length(DT);
 dt=DT(idt);
 while dt>0
 if isempty(Qx)
 dic=0; dtx=dt;
 else

[xpN,dic,dtx]=postime(xp,x(ic),x(ic+1),vx1(jc,ic),v x2(jc,ic),ax(jc,ic),dt);
 end
 if isempty(Qy)
 djc=0; dty=dt;
 else

[ypN,djc,dty]=postime(yp,y(jc),y(jc+1),vy1(jc,ic),v y2(jc,ic),ay(jc,ic),dt);
 end

 [ddt,i]=min([dtx,dty]);

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 62 of 66 3/15/2009

 switch i
 case 1
 if ~isempty(Qy)
 xp=xpN;
 yp=pos(yp,y(jc),vy1(jc, ic),ay(jc,ic),ddt);
 end
 ic=ic+dic;
 case 2
 if ~isempty(Qx)
 xp=pos(xp,x(ic),vx1(jc, ic),ax(jc,ic),ddt);
 yp=ypN;
 end
 jc=jc+djc;
 end

 dt=dt-ddt; t=t+ddt;
 XP=[XP;xp]; YP=[YP;yp]; TP=[TP;t];
 if length(XP)>20000; break ; end

 if dt==0
 m=mod(idt,Lm); if m==0, m=Lm; end
 line(xp,yp, 'marker' ,markers(m)); hold on;
 end

 if sink(jc,ic);
 break ; % from while
 end

 end

 if sink(jc,ic);
 break ; % from for
 end
 end
 line(XP(iLast:end),YP(iLast:end), 'color' , 'g');
 end
end
XP=[XP;NaN]; YP=[YP;NaN]; TP=[TP;NaN];

function [xp,dic,dt]=postime(xp,x1,x2,v1,v2,ax,Dt)
EPS=1e-6;

v=v1+ax*(xp-x1);
if abs(v)<EPS
 % ic=ic
 dt=Dt; % immediately jumpt to end of time step
 dic=0;
 return ; % x remains same location
end

if v<0 % point moves to face at left side
 if abs(ax)<EPS % v will be constant
 dt=(x1-xp)/v;
 if dt>Dt
 dt=Dt;
 xp=xp+v*dt;
 dic=0;
 else
 xp=x1;
 dic=-1;
 end
 elseif v1>=0 % point will never reach left face
 dt=Dt; % immediately jump to end of time step
 xp=pos(xp,x1,v1,ax,dt); % compute position at Dt
 dic=0; % ic=ic
 else
 dt=tim(xp,x1,x1,v1,ax);
 if dt>Dt
 dt=Dt;
 xp=pos(xp,x1,v1,ax,dt);

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 63 of 66 3/15/2009

 dic=0;
 else
 xp=x1;
 dic=-1;
 end
 end
end

if v>0
 if abs(ax)<EPS
 dt=(x2-xp)/v;
 if dt>Dt
 dt=Dt;
 dic=0;
 xp=xp+dt*v;
 else
 xp=x2;
 dic=+1;
 end
 elseif v2<=0
 dt=Dt;
 xp=pos(xp,x1,v1,ax,dt);
 dic=0;
 else
 dt=tim(xp,x2,x1,v1,ax); % CHECK
 if dt>Dt
 dt=Dt;
 xp=pos(xp,x1,v1,ax,dt);
 dic=0;
 else
 xp=x2;
 dic=+1;
 end
 end
end

function xp=pos(xstart,x1,v1,ax,dt)
EPS=1e-6;
if abs(ax)<EPS
 vx=v1+ax*(xstart-x1);
 xp=xstart+vx*dt;
else
 xp=x1+(v1/ax+(xstart-x1))*exp(ax*dt)-v1/ax;
end

function dt=tim(xstart,xtarget,x1,v1,ax)
 dt=1/ax*log((v1+ax*(xtarget-x1))/(v1+ax*(xstart -x1)));

function selftest
 help fdmpath
 clear all ; close all
 y=linspace(-2500,2500,22);
 x=linspace(-2500,2500,22);

 [x,y,xm,ym,dx,dy,Nx,Ny]=modelsize(x,y);

 DZ=50;
 k =10;
 n=0.001;

 kx= ones(Ny,Nx)*k*DZ; ky=kx;
 FH=zeros(Ny,Nx)*NaN; FH(:,[1,end])=0; FH([1,en d],:)=0;
 FQ=n*dy*dx;
 [Phi,Q,Qx,Qy]=fdm2(x,y,kx,ky,FH,FQ);
 contour(xm,ym,Phi); hold on

 %Track particles
 por=0.35; DZ=50;
 t=[60 365 3650 25*365 100*365];
 [XP,YP,TP]=fdmpath(x,y,DZ,Q,Qx,Qy,por,t, '...p...p...p');

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 64 of 66 3/15/2009

9 Examples
Some examples have already been given and an unlimited number of other ones can be
given. Below one that shows the how detail can be provide and how radial and flat flow
can be done easily. It demonstrates the use of layers and the input of wells and walls at a
specific location. The detail can be seen in the figure by zooming in near the sheet piling
(deep wall) of this building pit (preferably horizontally zoom first until the x an dy scale
are about equal and the apply regular zoom. (see zoom options under the right mouse
button after selecting a figure in Matlab).
%% Circular building pit with partially penetrating wells inside sheet piling
% The flow near the extraction and the tip of the s heet piling is very
% detailed. There is a semi-confined top layer and an aquifer.
% try to zoom in near the sheet piling. (horizontal ly zoom in first until
% the vertical and horizontal scales are more or le ss equal, the use
% regular zoom to zoom furhter (zoom options are un der the right mouse
% button)
% To change to a regualr (not radial cross section) remove 'radial' form
% the call to fdm2 and replace 'radial'in fdmpath t o 1 (i.e. DZ=1, a cross
% section of 1 m thickness). Also change the times for the particle track
% markers, because that will be much reduced compar ed to radial flow).
clear all ; close all
layers={
 'clay' 0 -5 0.02 % material, top, bottom k
 'sand' -5 -50 20
 'clay' -50 -60 0.01
 'sand' -60 -200 30
 };
xW =[19.9 20]; yW =[0 -15]; kW=0.0001; % dimension and props of sheet piling
xWells=[19.8 19.9]; yWells=[-6 -11]; FHWells=-6.7; % locaton of wells, their fixed heads

x=[0:2:18, 18:0.2:22 19:0.1:21, 22:2:40, 40:10:100, 100:25:250, 250:50:500,
500:100:1000];
L=[-5 -50 -60 -200];
y=[0 -0.01 L, L+0.01, -5:-0.1:-7, -7:-0.5:-14, -15: -0.1:-16, -16:-0.5:-19.5, -19.5:-0.1:-
20.5, -20.5:-0.5:-25, -25:-5:-50];

% house keeping makes sure that points in vectors x and y are unique and ordered
[x,y,xm,ym,dx,dy,Nx,Ny]=modelsize(x,y);

kx=zeros(Ny,Nx);
for i=1:size(layers,1);
 kx(ym<=layers{i,2}&ym>layers{i,3},:)=layers{i,e nd}; % layer conductivities
end
kx(ym<yW(1) & ym>yW(2), xm>xW(1) & xm<xW(2))=kW; k y=kx; % put sheet piling in k matrix
FH=NaN*ones(Ny,Nx); FH(1,:)=0.0; % semi pervious top layer
FH(ym<yWells(1) & ym>yWells(2), xm>xWells(1) & xm<x Wells(2))=FHWells; % wells in FH
FQ=zeros(Ny,Nx); % no given flows
%[Phi,Q,Qx,Qy]=fdm2(x,y,kx,kx,FH,FQ,'radial'); % radial computation
[Phi,Q,Qx,Qy]=fdm2(x,y,kx,kx,FH,FQ); % flat computation
contour(xm,ym,Phi,-5:0.2:0, 'b'); hold on % head contours
contour(x(2:end-1),y,Psi(Qx),20, 'r'); % 20 stream lines
for i=1:size(layers,1) % plot line above an below each layer
 plot([x(1) x(end)],[layers{i,2},layers{i,2}]);
end

% check water balance
sum(sum(Q(ym<yWells(1) & ym>yWells(2), xm>xWells(1) & xm<xWells(2)))) % extraction
sum(sum(Q(1,:))) % infiltration through top of model
sum(sum(Q)) % overall water balance
Phi(ym<-5 & ym>-6,1) % head below building pit
title('Half cross section through building pit with sheet pilings');
xlabel('x [m]'); ylabel('z [m]');

%particle tracking
por=0.35;

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 65 of 66 3/15/2009

t=-365*(0:5:50);
%[XP,YP,TP]=fdmpath(x,y,'radial',Q,Qx,Qy,por,t,'... p'); % radial
[XP,YP,TP]=fdmpath(x,y,1,Q,Qx,Qy,por,t, '...p'); % flat

Half cross section through building pit with sheet pilings

x [m]

z
[m

]

100 200 300 400 500 600 700 800 900

-180

-160

-140

-120

-100

-80

-60

-40

-20

Figure 20: Cross section (flat) with heads, streamlines and some particle tracks, obtained by clicking
on the figure when fdmpath is running (backward traces as times were negative, see input above).
There is great detail near the sheet piling where all the streamlines converge, which can only be seen
by zooming in.

CT5440 Exercises, make your own finite difference model in Matlab

Olsthoorn Page 66 of 66 3/15/2009

10 Literature
McDonald, M.G. & A.W. Harbaugh (1988) A Modular three-dimensional finite-
difference ground-water flow model. Series: Techniques of Water-Resources
Investigations on the United States Geological Survey. Book 6, Chapter A1.

The Mathworks (2006) Matlab refernce.

