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Abstract

In this research, three different stochastic SIS models are concerned with different

environmental noises. We firstly introduce two perturbations in the classical de-

terministic susceptible-infected-susceptible (SIS) epidemic model. Gray et al. [1]

in 2011 used a perturbation on β in SIS model. Based on their previous work, we

consider another perturbation on the parameter µ + γ and formulate the original

model as a stochastic differential equation (SDE) with two independent Brownian

motions for the number of infected population. We then prove that our model

has a unique and bounded global solution I(t). Also we establish conditions for

extinction and persistence of the infected population I(t). Under the conditions

of persistence, we show that there is a unique stationary distribution and derive

its mean and variance. Computer simulations illustrate our results and provide

evidence to back up our theory. This work is published in JMAA [2].

We then introduce the second model replacing two independent Brownian mo-

tions in the first model by two correlated Brownian motions. We consider the

two same perturbations in the deterministic SIS model and formulate the original

model as a stochastic differential equation (SDE) with two correlated Brownian

motions for the number of infected population, based on previous work from Gray

et al. in 2011 and Hening’s work [3] in 2017. Conditions for the solution to be-

come extinct and persistent are then stated, followed by computer simulations to

illustrate the results. Compared to the formal model, the conditions of extinction

are extended after correlation between two white noises is considered. However,

we are not able to compute the mean and variance of the stationary distribution.

Note that this section has also been published as an article in Nonlinear Dynamics

in 2019 [4].
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Moreover, we combined the first model with [5] to add telegraph noise by

using Markovian switching to generate the third model. Similarly, conditions for

extinction and persistence are then given and proved, followed by explanation

on the stationary distribution. Computer simulations are clearly illustrated with

different sets of parameters, which support our theorems in this chapter. Compared

to two previous models, conditions are given based on the overall behaviour of the

solution but not separately specified in every state of the Markov chain.

iii



Contents

1 Introduction 1

1.1 Infectious Disease in Human Society . . . . . . . . . . . . . . . . . 1

1.2 Deterministic Epidemic Models . . . . . . . . . . . . . . . . . . . . 3

1.3 Environmental Noises . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Stochastic Epidemic Models . . . . . . . . . . . . . . . . . . . . . . 8

2 Stochastic Theory 16

2.1 Basic Notations of Probability Theory . . . . . . . . . . . . . . . . 16

2.2 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Brownian Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Stochastic Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Markov Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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Notations

positive : > 0.

nonpositive : ≤ 0.

negative : < 0.

nonnegative : ≥ 0.

a.s. : almost surely, or P -almost surely, or with probability 1.

A := B : A is defined by B or A is denoted by B.

∅ : the empty set.

1A : the indicator function of A, i.e. 1A(x)=1 if x ∈ A or otherwise 0.

Ac : the complement of A in Ω.

A ⊂ B : A ∩Bc = ∅.
A ⊂ B a.s. : P (A ∩Bc) = 0.

A \B : the set that contains all the elements of A that are not in B.

a ∧ b : the minimum of a and b.

a ∨ b : the maximum of a and b.

f : A→ B : the mapping f from A to B.

RD
0 : the basic reproduction number of the deterministic SIS model.

V (x) : the Lyapunov functions.

Vx : = (Vx1 , ..., Vxd) = ( ∂V
∂x1
, ..., ∂V

∂xd
).

Vxx : = ( ∂2V
∂xi∂xj

)d×d.

LV (x) : the Itô operator on Lyapunov functions.

R+ : the set of all nonnegative real numbers.

Rd : the d-dimensional Euclidean space.

Rd
+ : ={x ∈ Rd : xi > 0, 1 ≤ i ≤ d}.
Bd : the Borel-σ-algebra.

AT : the transpose of a vector or matrix A.

trace A : the trace of a square matrix A = (aij)d×d.

diagA : the diagonal of a square matrix diagAd×d = (a11, a22, ...., add).

A > 0 : all the elements of the vector A are positive.

Lp([a, b];Rd) : the family of Rd-valued Ft-adapted process {f(t)}a≤t≤b
such that

∫ b
a
|f(t)|pdt <∞ a.s.

Lp(R+;Rd) : the family of Rd-valued Ft-adapted process {f(t)}t≥0
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such that {f(t)}0≤t≤T ∈ Lp([0, T ];Rd) for every T > 0.

Mp([a, b];Rd) : the family of processes {f(t)}a≤t≤b in Lp([a, b];Rd)

such that E
∫ b
a
|f(t)|pdt <∞.

Mp(R+;Rd) : the family of process {f(t)}a≤t≤b such that for every T > 0

{f(t)}0≤t≤T ∈Mp([0, T ];Rd).

C2,1(Dd ×R+;R) : the family of all real-valued functions V (x, t) defined on D ×R+

which are continuously twice differentiable in x ∈ D,

and once differentiable in t ∈ R+.

viii



Chapter 1

Introduction

In this research, we are going to introduce the establishment of three different

stochastic epidemic SIS models. As epidemics have already been common issues

for centuries, it is necessary and important to introduce some typical deadly dis-

eases in the history initially in this section. Then previous research on deterministic

epidemic models will be explained. Combined with a brief definition of environ-

mental noises, we will finally introduce stochastic epidemic models in previous

work with different noises.

1.1 Infectious Disease in Human Society

Epidemics of infectious diseases have already become a great threat to human

beings. A disease that we do not know well about can be dangerous and fatal with

its high contagious rate and lack of professional medical control. In history, there

are many examples of diseases that become serious issues to the human society.

For instance, the Black Death [6, 7, 8] killed approximately 25%−50% of Europe’s

population between 1347 and 1350. It was the first epidemic of the second plague

pandemic which kept recurring for around 500 years. In 1870 to 1940, Russia

suffered from typhus [9, 10, 11], an acute febrile disease that was spread by the

clothes louse, which people of all age were subjected to. Typhus can be recognized

1
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and traced back to as early as 1084 in Spain. It was carried and spread by armies

into civilian populations through survivors and refugees [12]. The mortality rate

can vary between 5% to 40% or even higher. About 2 to 3 million lives were

taken from 1918 to 1922. Small outbreaks emerged in Russia in 1997 even after

the disease was controlled in 1940, which caused by the relapse of those who were

primarily infected. Although in the 21st century, technology has developed fast

enough to support medical research, we still do not fully find cures to diseases

like HIV (human immunodeficiency virus) [13, 14], which attacks and weakens the

immune system by depleting CD4+ T-cells. According to the reports of the World

Health Organization [15], there were approximately 37.9 million people living with

HIV in 2018, with about 1.7 million new infections globally. Moreover, Jones et al.

[16] indicate the emerging infectious diseases are increasing globally based on their

database, which have caused a significant impact on global health and economy.

Antimicrobial drug resistance is one of the reasons for why it is not easy to remove

diseases.

Consequently, the indispensability of studying diseases is obvious. Although

eradication of epidemics is not easy and even impractical in some cases, people

never stop to find different types of methods to control the diseases [17]. There-

fore, it is the most important to know how diseases transmit among populations.

Gottfried [18] suggests that there are four concerns on transmission of diseases.

The first concern is the environment where the diseases develop. Temperature,

landscape and climate are possible contributions to the outbreak. The second

consideration is the causation of the disease. The natural ecology defines that all

epidemics are caused by parasites which are related to some larger organisms. For

example, Rickettsia prowazekii [19] is observed in the lice which causes typhus.

The third factor is the toxicity of disease. Non-lethal infections are usually mildly

deleterious, while lethal diseases have periodical behaviour to kill large numbers

of a population during an outbreak. And the final concern about epidemics is the

way of transmission, for instance through venereal contact.

Such complex phenomena can usually be described by mathematical modelling

in order to reflect the four factors of diseases [20]. Okubo [21] regards mathemat-

ical epidemic models as crucial and necessary factors in quantitative analysis and
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prediction of the dynamic behaviour of diseases [22]. The methods are basically

the same as those used in other fields such as biophysics and molecular biology,

while the aim of building mathematical treatment is to develop a decision-making

model to help analyse the results of choosing different strategies to control the dis-

eases [23], which directly determines the selection of an immunization programme,

the allocation of limited resources and the optimal control eradication techniques.

There are mainly two different kinds of mathematical epidemic models: determin-

istic epidemic models and stochastic epidemic models. A deterministic model has

certain parameters that only take the given value, while a stochastic model can be

derived from deterministic model, with some parameters replaced by random vari-

ables to further explain the population dynamics [24] in the behaviour of disease.

There are also other ways to involve stochasticity in the deterministic epidemic

models, such as introducing demographic stochasticity. Now we are going to firstly

introduce some classical examples of deterministic epidemic models, followed by

how to establish stochastic epidemic models by considering environmental noises.

1.2 Deterministic Epidemic Models

Epidemics can be modelled by deterministic epidemic models, or compartmental

models. Such a model usually divides the whole population suffering from a typ-

ical disease into different subgroups which represent different stages of infection.

For example, a Susceptible-Infected-Removed (SIR) model is a very simple de-

terministic epidemic model with three different groups: “Susceptible” population

are those individuals that are very likely to be infected by the disease; “Infected”

individuals have been infected by disease and “Removed” group are those who

have already been infected and recovered from the disease, granting permanent

immunity. If we denote S(t), I(t) and R(t) to be the three groups of populations

at time t, this SIR model can be expressed in the following form:
dS(t)

dt
= µN − µS(t)− βI(t)S(t),

dI(t)
dt

= βI(t)S(t)− γI(t)− µI(t),

dR(t)
dt

= γI(t)− µR(t),

(1.1)



Chapter 1 4

with S(t) + I(t) + R(t) = N for all t ≥ 0, where N is the total population size

with a per capita death rate µ. This model was firstly defined by Kermack and

McKendrick in 1927 and hence it is also called the Kermack-McKendrick model

[25]. The following assumptions are made in this model [26]:

• Firstly, βN is the number of individuals that an other average member in

the population has enough contact with to transmit disease in a unit of time.

Thus, β can be regarded as the disease transmission coefficient, representing

how fast the disease is developing.

• Secondly, γ is the number of individuals who get cured and leave the infected

population. Note that those individuals who have been cured would never

come back to the susceptible group. This indicates the permanent immunity

of the recovery. Consequently, γ is usually considered as the rate at which

infected individuals become cured.

• Also, there is no entry into or departure from the whole population. The

birth rate and the death rate are the same.

As a result, it is clear from the SIR model (1.1) assumptions and definitions that

the disease is transmitting to develop with some certain speed, while measures are

taken at the same time to eliminate the threat with another rate, which means

there must be a threshold to determine the outbreak or extinction of the disease.

This is decided by the basic reproduction number [27] of an epidemic model, which

is usually denoted by RD
0 [28]. In the SIR model, RD

0 = βN
µ+γ

and when RD
0 < 1,

the disease can never cause a proper epidemic outbreak and will die out in finite

time. On the contrary, if RD
0 > 1, the disease will keep persisting in the model [29].

Obviously, the basic reproduction number is extremely important in the study of

epidemic models.

However, the SIR model is very restrictive. It is only suitable for disease like

chickenpox, measles and mumps etc [30, 31, 32, 33], in which those individuals

who have recovered from infections are no longer considered to be susceptible.

Clearly, the SIR model only represents a small amount of diseases, while we still

need an epidemic model that can describe diseases without protective immunity. A
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susceptible-infected-susceptible (SIS) model would be more reasonable and prac-

tical in such cases, that individuals who are cured from the disease will be imme-

diately included in the susceptible group. This model is defined as follows:
dS(t)

dt
= µN − βS(t)I(t) + γI(t)− µS(t),

dI(t)
dt

= βS(t)I(t)− (µ+ γ)I(t).
(1.2)

S(t) and I(t) are susceptible and infected population, where S + I = N for all

t ≥ 0 and N is the total size of population. Similarly, µ is the per capita death

rate, γ is the rate at which infected individuals become cured and β is the disease

transmission coefficient.

There are many diseases that are possible to be explained by the SIS model.

As a result, SIS epidemic models are studied in many excellent work. For example,

Hethcote and Yorke [34] found the basic reproduction number RD
0 = βN

µ+γ
of the

deterministic SIS model. When RD
0 ≤ 1, the number of infected individuals tends

to zero if the time t → ∞, which indicates the eradication of the disease. Other-

wise, when RD
0 > 1, the number of infected individuals tends to a positive number

N(1 − 1
RD0

) when t → ∞, which means the disease will maintain in the popula-

tion system without an outbreak. Based on these results, a stochastic SIS model

without demography (the birth and death rate in SIS model) is then defined to

describe gonorrhea [35], which is a sexually transmitted disease. Their assumption

indicates that the population is homogeneous because there is no entry and leave

in the total population size. Hence it is suitable for homosexual population to ex-

plain the transmission. However, other researches on gonorrhea such as [36, 37, 38]

focus on non-homogenous population which is more practical and reasonable.

There is also a special example of using an SIS model to explain transmission

of disease. Luo and Tay [39] explained the spread of computer virus in a computer

network by using the SIS epidemic model combined with Graph Theory. Their

research target is to find the infection source in the network and this can be

formulated as a maximum likelihood (ML) estimation problem by treating the

only infected node s∗ at the beginning and time t as parameters to be estimated.

This model is not only suitable to figure out the threat in cyber security [40, 41],

but can also be used to describe the spread of ideas and opinion in social media
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such as Twitter [42].

Clearly, deterministic SIS and SIR models are very easy to analyse, while sus-

ceptible, infected and recovered stages are not all the stages for some diseases that

have complicated biological mechanics. Hence sometimes M(t) and E(t) popula-

tions are introduced into the SIS epidemic models to fully complete the process

of transmission [43]. Here M(t) are those individuals who have passive immunity

at time t which is usually provided by maternal antibodies. Once those indi-

viduals lose the immunity, they immediately become susceptible to the disease.

Another subgroup is E(t), which are those individuals who have been exposed to

the disease but are not yet infectious at time t. This population represents the

incubation stage of the disease. It is suitable for modelling a disease with long in-

cubation period, such as HIV, to consider an exposed stage in the epidemic model

[43, 44]. Moreover, some epidemic models are not simply derived from SIR or SIS

models. For instance, Greenhalgh and Hay [45] established a mathematical model

for the spread of HIV and AIDS amongst people who inject drugs. This model is

based on a model created by Kaplan [46]. Greenhalgh and Hay made assumptions

to improve the model, which is consequently more practical and realistic.

From previous work of deterministic epidemic models, it is obvious that those

mathematical models focus on using parameters to measure the extent of disease

toxicity and effectiveness of corresponding actions. Different equations are used

to represent different stages during the spread of disease. However, the determ-

inistic epidemic models are not able to reflect the influence of environment, while

environment is one of the four crucial factors of studying disease behaviour. As

environment has potentially great impact in ecology, biology and epidemiology re-

search [47, 48, 49], we are going to introduce environmental noises in the following

section. Then we will show some examples of stochastic epidemic models, derived

from deterministic models with different types of environmental noises.
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1.3 Environmental Noises

Population systems are significantly influenced by the random variation from the

environment [50]. Changes of environments usually have corresponding effects in

the transmission of disease. For example, a global temperature increase of 2−3◦C

increases the number of people who catch malaria by approximately 3 − 5% ac-

cording to the research from WHO [51]. Moreover, Patz et al. [52] mention that

the alternations in global climate and the changes in the geographic environment

have negative effects in natural ecosystems, which increase the chance of exposure

to parasite disease. The disturbance in the environment can be described as envir-

onmental noises and environmental noise can be found in all levels of biology, from

molecular, sub-cell processes to the dynamics of immunity system in the human

body and the whole population [53].

There are two different types of environmental noises that are usually con-

sidered in endemic problems. White noise is a very common noise, which is often

described as a random signal with constant intensity at different frequency. It is

widely used in fields such as physics, mathematics, biology and telecommunica-

tions. A sample of finite time white noise is a random variable with a normal

distribution of zero mean and finite variance. This makes white noises easy to

analyse. White noise can be regarded as the time derivative of a Brownian mo-

tion or Wiener process [54], which is independent at different times and could

cause large fluctuation in the model. Although all Brownian motion sample paths

are nowhere differentiable, the Itô stochastic integration theory with reference to

Brownian motion is well-built by K. Itô [55]. A white noise is generally introduced

in epidemic models by considering a perturbation [56] on a certain parameter,

which makes this parameter no longer a certain value, but a random variable with

normal distribution.

Telegraph noise is another type of noise that has completely different math-

ematical mechanics. Telegraph noise is also named as burst noise. In physics,

burst noise is a type of electronic noise which can be found in semiconductors and

ultra-thin gate oxide films [57]. It consists of instant transitions between two or

more different levels of voltages. The switching time is random. Clearly, telegraph
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noise is also a stochastic process and is commonly modelled by using continuous-

time or discrete-time Markov chain [58]. A Markov chain is a stochastic model

which is named after the Russian mathematician Andrey Markov [59]. There are

many examples of using Markov chains in mathematical biology to emphasize the

switching in the model, especially in population dynamics. In epidemic models,

telegraph noise is also introduced to indicate that the transmission of disease is

influenced by the switch among different environments or regimes [60]. For in-

stance, the Leslie matrix [61] is an application of a Markov chain in modelling of

population growth. There are also many other useful and crucial properties of a

Markov chain, which we will be discussing in the next chapter.

It is obvious that in some cases, multiple noises can be considered in the epi-

demic models. For example, a finite number of independent Brownian motions can

be used to introduce the disturbance of multiple independent, or correlated white

noises. Moreover, regime switching [62] is a more general case which includes both

white noises and telegraph noise in an epidemic model. In stochastic modelling,

this is simply completed by considering a finite-dimensional Brownian motion and

a Markov chain in the deterministic model. Note that usually the Markov chain

and Brownian motion are assumed to be independent.

As we have given a brief introduction to the environmental noises in epidemic

model, we are going to present examples of stochastic epidemic models. White

noise, telegraph noise and regime switching cases will be explained in detail, fol-

lowed by some well-known results in previous research.

1.4 Stochastic Epidemic Models

In this section, we will give some examples on how to establish stochastic epidemic

models by introducing noises in deterministic epidemic models. Firstly, let us have

a look at the white noise cases in stochastic epidemic models. Recall the SIR model
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(1.1): 
dS(t)

dt
= µN − µS(t)− βI(t)S(t),

dI(t)
dt

= βI(t)S(t)− γI(t)− µI(t),

dR(t)
dt

= γI(t)− µR(t).

Tornatore et al. [63] analysed the stability of a stochastic SIR model with white

noise by replacing β with a perturbation of β : β̃dt = βdt + σdB(t). Here B(t)

is a one-dimensional Brownian motion. Thus the SIR model becomes a stochastic

SIR model with Brownian motion:
dS(t) = (µN − µS(t)− βI(t)S(t))dt− βI(t)S(t)dB(t),

dI(t) = (βI(t)S(t)− γI(t)− µI(t))dt+ βI(t)S(t)dB(t),

dR(t) = (γI(t)− µR(t))dt.

Results show that if 0 < βN < (µ+γ− σ2

2
)∧2µ then the disease-free equilibrium

E0 = (N, 0, 0) is stable. This means the system will be free from infection and

the disease will die out. Also, their computer simulations suggest that if (µ+ γ −
σ2

2
) ∧ 2µ < βN < µ + γ + σ2

2
, the disease will also die out. Ji et al. [64] studied

this model in further. They stated that such a stability is exponentially mean-

square stable. They also pointed out that when βN > µ + γ, then the solution

of the stochastic SIR model will oscillate around a positive level, which indicate

that the disease will not die out but prevail in the population. This will happen

when the white noise is considered small enough. They then expanded the results

to a multi-group stochastic epidemic model [65]. However, according to Ji et al.,

they wish to find a threshold in stochastic SIR mode which is similar to the basic

reproduction number RD
0 . Hence in 2014, Ji and Jiang [64] reviewed the stochastic

SIR model and defined the stochastic reproduction number as

RS
0 = RD

0 −
σ2N2

2(µ+ γ)
=

βN

µ+ γ
− σ2N2

2(µ+ γ)
.

Clearly, the stochastic reproduction number is smaller than the basic repro-

duction number in the deterministic SIR model, which to some extent proves that

white noises have positive impact on the epidemic models. Based on these research,

various of stochastic versions of (1.1) [66, 67] are further discussed.
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Similarly, based on the research of Tornatore et al. [63] and a generalized

study of stochastic SIRS (susceptible-infected-removed-susceptible) model by Lu

[68], Gray et al. [1] used the same perturbation in a deterministic SIS model to

establish a stochastic SIS model:

dI(t) = [β(N − I(t))I(t)− (µ+ γ)I(t)]dt+ σI(t)(N − I(t))dB(t).

They fully explained the perturbation in both a biological way and a math-

ematical way to prove that introducing perturbation in a deterministic SIS model

is biologically reasonable. Then they analysed the long-term behaviour of the

solution. The stochastic reproduction number in their model is not changed

RS
0 = βN

µ+γ
− σ2N2

2(µ+γ)
and it is still the threshold between extinction and persistence

of the disease. They firstly pointed out that when RS
0 < 1 and with either σ2 ≤ β

N
,

or σ2 > β
N
∨ β2

2(µ+γ)
, the disease will die out with probability one. Moreover, the

computer simulation results illustrated that when RS
0 < 1 and β

N
< σ2 ≤ β2

2(µ+γ)
,

the system will also be disease-free, though they do not have a proof. On the

other hand, when RS
0 > 1, the disease will prevail in the system around a positive

level with probability 1. Also, they proved that there is a unique stationary dis-

tribution under this circumstance. Explicit expressions of mean and variance are

then derived. This is a very interesting result. It indicates that the introduction

of white noise in the deterministic model expands the threshold of extinction. For

those parameters that will not result in disease-free equilibrium in the determin-

istic model, it becomes possible in the stochastic model. Obviously, this is another

example of the introduction of white noise, which changes the original basic repro-

duction number in the deterministic model into a stochastic reproduction number,

and potentially stabilizes an otherwise unstable system [1]. Now we want to show

some telegraph noise cases in stochastic epidemic models.

Based on Takeuchi’s research in 2006 [69] of introducing telegraph noise in

Lotka-Volterra model, Gray et al. [5] used a two-state Markov chain to represent

the switching between two environments in deterministic SIS model. Hence they

replaced the white noise epidemic SIS model (1.3) with a telegraph noise epidemic

SIS model:
dI(t)

dt
= I(t)[αr(t) − βr(t)I(t)], (1.3)
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where r(t) is a Markov chain with state space S = {1, 2} and generator

Γ =

(
−v12 v12

v21 −v21

)
,

and (π1, π2) = ( v21
v12+v21

, v12
v12+v21

) is the stationary distribution of the Markov chain.

Note that in order to make the model easy to analyse, they let αi = βiN − µi −
γi, i ∈ S = {1, 2}, which takes different values in two states with reference to

different environments. They firstly defined the stochastic reproduction number

RS
0 . However, this stochastic reproduction number is very complex which they

do not pursue. As a result, they defined a threshold to analyse extinction and

persistence:

T S0 =
π1β1N + π2β2N

π1(µ1 + γ1) + π2(µ2 + γ2)
.

And it is easy to see

• T S0 < 1 if and only if π1α1 + π2α2 < 0;

• T S0 = 1 if and only if π1α1 + π2α2 = 0;

• T S0 > 1 if and only if π1α1 + π2α2 > 0,

which is simple to view. They then pointed out that when T S0 < 1, the disease

will die out in probability one; when T S0 > 1, the disease will prevail in the sys-

tem around a positive level almost surely. These results clearly indicate that the

introduction of telegraph noise also expands the condition of disease-free equilib-

rium. Model (1.3) is actually two different deterministic SIS models connected

by Markov switching, which has the basic reproduction number RD
0i

= βiN
µi+γi

for

all state i. In deterministic SIS models, we strictly need every RD
0i
≤ 1 to cause

the elimination of disease in every state. However, conditions in Gray et al.’s

work only need π1α1 + π2α2 < 0. This means, after introducing telegraph noise

in a deterministic SIS model, we do not need all states go to extinction to have a

disease-free equilibrium. In some states, the disease can persist around a certain

positive levels, while the average-type condition is still satisfied, which results in

the elimination of the disease from a global point of view.
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Furthermore, based on [5], Greenhalgh et al. [60] extended the results in a

stochastic SIRS model. The same threshold is defined and used to determine the

extinction and persistence of the solution. Similar results are obtained to prove

that telegraph noise is a potentially positive factor to extinction of the disease.

Now we want to state some examples of stochastic epidemic models with regime

switching. In these models, both white noise and telegraph noise are introduced,

while noises are usually assumed to be independent. For example, Luo and Mao

[70] introduced white noise and telegraph noise in the Lotka-Volterra model. How-

ever, they studied the ultimate boundedness of the solution, while Li et al. [71]

analysed the Lyapunov function in the stochastic Lotka-Volterra model, which is

developed by Khasminskii [72], in order to explain stochastic permanence. They

clearly pointed out that permanence in the overall behaviour does not need per-

manence in every state. In some states, the solution can even become extinct.

Based on [70, 71], Liu et al. [73] focused on the ergodic property, recurrence and

the stationary distribution of the solution in a Lotka–Volterra system with pollina-

tion mutualism [74, 75, 76, 77]. Computer simulation illustrates the fluctuation in

the solution, while the integral average converges to a fixed point, which supports

the recurrence and a stationary distribution in their theory.

Besides, in some stochastic epidemic research, there are other properties in the

population system that are analysed mathematically. For instance, a stochastic

population system with delay [78] is often used to describe the time delay of a

certain event. Population dynamics in the forest can be a very good example. A

cut forest may take more than 20 years to reach the maturity of harvesting. Hence

in such cases, time delay must be built in the stochastic model. In epidemic prob-

lems, time delay usually occurs when a recovered individual will not be infectious

until a period of time after becoming infected [79, 80]. Moreover, in some research,

a different noise, Lévy noise [81, 82], is used to emphasize jumps of sudden events

such as earthquake and hurricane in the environment [83, 84]. It can be math-

ematically described by using Lévy process, which is a more general process than

Brownian motion. It is not only used in epidemic models, but widely applied in

stochastic financial modelling such as [85, 86]. Another approach in epidemic mod-

els is to mathematically disturb the transmission of disease with medical strategy.
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Vaccination is one of the best methods to prevent an outbreak of disease and it

is commonly introduced in the study of epidemic models. Li and Ma [87] used

V (t) to represent those individuals that are immune to an infection at time t as

the result of vaccination in a stochastic SIS model. They also clearly stated in

the assumptions of the model that the proportion of the vaccinated individuals

is a constant q, with a probability function Q(t) as the probability of vaccinated

individuals that still carry the immunity before returning to the susceptible group

at time t. Zhao and Jiang [88] also studied the threshold RS
0 of this model in

2014, while Lin and Jiang [89] focused on finding the stationary distribution of

this stochastic SIS model with vaccination.

Here we complete a brief introduction to this research and clearly, the abundant

previous work has built a firm foundation in studying stochastic epidemic models.

Now let us summarize some common interests in research of stochastic epidemic

models, which are also consequently our research targets. We want to know:

• if there exists a unique solution of the given model. This is the initial require-

ment of studying a stochastic differential equation, which is also reasonable

in epidemic study;

• if the solution is always positive, or non-negative. Clearly, solutions that will

go below zero are meaningless in representing the number of populations;

• if the solution is bounded. We usually want our solution to be bounded

within the number of total population size. Obviously, solutions that will

exceed N are also meaningless. As we usually assume that there is no entry

in the epidemic model, this is will cause contradiction;

• under what circumstances, the solution will persist, or become extinct. This

is of great importance in studying stochastic epidemic models. We aim to

find a threshold, or stochastic reproduction number RS
0 of our models to

determine the extinction and persistence of the disease;

• if there is a stationary distribution of the stochastic model. This is usually

examined when the disease persists.
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Obviously, stochastic epidemic models are not fully explored. For instance, in

the study of a stochastic SIS model such as [1], only β is considered to be disturbed

by white noise and then perturbed. However, in real cases, it is more likely that

all parameters are influenced. Moreover, Gray et al. emphasized the importance

of using perturbation on β to study the transmission behaviour of the diseases,

while µ + γ is the recovery rate and death rate in the system, which can repres-

ent the removal of diseases in the total population. Gou and Jin [90] mentioned

that a smaller recovery rate in the population system keeps infected individuals

longer in that state after they catch the disease, which potentially undermines the

resistance to epidemics in the whole population. Hence it is meaningful to study

the noise disturbance in µ+ γ. However, there is no work focusing on introducing

a perturbation on the parameter µ + γ. Thus, this research aims to fill the gap

in stochastic SIS epidemic modelling, which will start from introducing another

white noise on the parameter µ+ γ based on [1] in SIS model. Moreover, the new

perturbation on µ+ γ has a square-root diffusion coefficient related to number of

susceptible individuals. This is caused by our assumption of estimation, which is

inspired by the square root process [91]. And this will be our first model in Chapter

3, which can be regarded as a generalization of Gray et al.’s work [1] and it has

been published in JMAA (Journal of Mathematical Analysis and Applications) in

2019. In this chapter, we will firstly prove the uniqueness and boundedness of

the solution, followed by giving conditions of extinction and persistence. Also, a

unique stationary distribution is stated with its mean and variance. Examples are

performed using computer software to illustrate our results.

In Chapter 4 and Chapter 5, we will discuss this model further in two different

directions. In Chapter 4, we will consider the correlation between two white noises,

which is a more generalized case in real epidemic problems but there is little

previous work discussing the correlation in SIS model. It is also a published

work in Nonlinear Dynamics in 2019. However, from the results we can confirm

that introducing correlation does have a positive impact such as expanding the

conditions of extinction, while on the other hand, we fail to derive the explicit

expression of mean and variance of the stationary distribution. In Chapter 5, we

will combine [5] with our first model to formulate a stochastic SIS model with

regime switching to discuss the impact of telegraph noise. A finite state Markov
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chain is considered to represent the switching among different environments in our

model. Results in this chapter are very different, which focuses on the overall

behaviour of the solution instead of solutions in different separate states.

Before we introduce and establish our models, we want to firstly walk through

the basic stochastic theory, including definitions of probability space, Itô integrals,

stochastic process and stochastic differential equations.



Chapter 2

Stochastic Theory

In order to make this research self-contained, we shall generally review the basic

knowledge of probability theory and stochastic process, following by the definition

of Brownian motions and Markov chains. Important properties are introduced

and explained. Then we proceed to state the well-known Itô’s formula, as well

as a generalised Itô’s formula. Stochastic differential equations are then defined,

followed by a well-known theorem on stationary distribution.

2.1 Basic Notations of Probability Theory

Firstly, if we assume the possible outcomes, in other words, a set of elementary

event as Ω, then the set of only observable or interesting events F ⊂ Ω should

have the following properties:

• ∅ ∈ F , where ∅ is the empty set.

• A ∈ F ⇒ AC ∈ F , where AC = Ω− A is the complement of A in Ω.

• {Ai}i≥1 ⊂ F ⇒ ∪∞i=1Ai ⊂ F .

A family of F with these three conditions is called a σ-algebra. The pair of (Ω,F)

is called a measurable space, and the elements of F are called F-measurable sets

16
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instead of events. If C is a family of subsets of Ω, then there exists a smallest

σ-algebra σ(C) on Ω which contains C. This σ(C) is called the σ-algebra generated

by C. If Ω = Rd and C is the family of all open sets in Rd, then B = σ(C) is called

the Borel σ-algebra and the elements of Bd are called the Borel sets.

A real-valued function X : Ω→ R is said to be F-measurable if

{ω : X(ω) ≤ a} ∈ F for all a ∈ R.

The function X is also called a real-valued F-measurable random variable. An

Rd-valued function X(ω) = (X1(ω), ..., Xd(ω)) is said to be F-measurable if all

the elements Xi are F-measurable. Similarly, a d × m-matrix-valued function

X(ω) = (Xij(ω))d×m is said to be F-measurable if all the elements Xij are F-

measurable.

A probability measure P on a measurable space (Ω,F) is a function P : F →
[0, 1] such that

• P (Ω)=1;

• for any disjoint sequence {Ai}i≥1 ⊂ F (Ai ∩ Aj = ∅ if i 6= j)

P (
∞⋃
i=1

Ai) =
∞∑
i=1

P (Ai).

The triple (Ω,F , P ) is called a probability space. If X is a real-valued random

variable and is integrable with respect to the probability measure P , then the

integral

E (X) =

∫
Ω

X(ω)dP (ω),

is called the expectation of X. Also,

Var(X) = E (X − E (X))2,

is called the variance of X. And E |X|p is called the pth moment of X. Also if X

is an Rd-valued random variable, then X induces a probability measure µX on the

Borel measurable space (Rd,Bd), which is defined by

µX(B) = P{ω : X(ω) ∈ B} for B ∈ Bd,
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and µX is called the distribution of X. The expectation of X can be written as

E (X) =

∫
Rd
xdµX(x).

More generally, if g : Rd → Rm is Borel measurable, we then have the transform-

ation formula

E g(X) =

∫
Rd
g(x)dµX(x).

Now we want to introduce almost surely convergence as this will be crucial

to our following research. If X and Xk, k ≥ 1 are Rd-valued random variables,

then if there exists a P -null set Ω0 ∈ F such that for every ω /∈ Ω0, the sequence

{Xk(ω)} converges to X(ω) in the usual sense in Rd, then {Xk} is said to converge

to Xalmost surely or with probability 1, and we write limk→∞Xk = X a.s.

2.2 Stochastic Processes

Let (Ω,F , P ) be a probability space. A filtration {Ft}t≥0 is an increasing sequence

of sub-σ-algebras of F , where Ft ⊂ Fs ⊂ F for all 0 ≤ t < s < ∞. Then the

filtration is said to be right continuous if Ft =
⋂
s>tFs for all t > 0. When the

probability space is complete, the filtration is said to satisfy the usual conditions

if it is right continuous and F0 contains all P -null sets.

Throughout this thesis, unless otherwise specified, we let (Ω,F , {Ft}t>0, P ) be a

complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions.

We also define F∞ = σ(
⋃
t≥0Ft), i.e. the σ-algebra generated by

⋃
t≥0Ft. Now let

us define the stochastic process.

A family {Xt}t∈I of Rd-valued random variables is called a stochastic process

with parameter set I and state space Rd. The parameter set I is usually defined as

R+ = [0,∞). If {Xt}t≥0 is an Rd-valued stochastic process, it is continuous if for

almost all ω ∈ Ω, Xt(ω) is continuous on t ≥ 0. Also it is said to be integrable if

for every t ≥ 0, Xt is and integrable random variable. It is said to be {Ft}-adapted

if for every t, Xt is F -measurable.
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A stopping time is usually used in studying stochastic processes. A random

variable τ : Ω→ [0,∞] (it may take the value ∞) is called an {Ft}-stopping time

if {ω : τ(ω) < t} ∈ Ft for any t ≥ 0.

Now we want to introduce a special stochastic process. An Rd-valued {Ft}-
adapted integrable process {Mt}t≥0 is called a martingale with respect to {Ft} or

simply, martingale, if

E (Mt|Fs) = Ms a.s. for all 0 ≤ s < t <∞.

Here we want to specific some properties of martingale. Firstly we introduce the

Doob martingale stopping theorem.

Theorem 2.2.1 (Doob martingale stopping theorem). Let {Mt}t≥0 be an Rd-

valued martingale with respect to {Ft}, and let θ, ρ be two finite stopping times.

Then

E (Mθ|Fρ) = Mθ∧ρ a.s.

In particular, if τ is a stopping time, then

E (Mτ∧s|Fs) = Mτ∧s a.s.

for all 0 ≤ s < t <∞.

A stochastic process {Xt}t≥0 is called square-integrable if E |Xt|2 < ∞ for

every t ≥ 0. If M = {Mt}t≥0 is a real-valued square-integrable continuous martin-

gale, then there exists a unique continuous integrable adapted increasing process

denoted by {〈M,M〉t} such that {M2
t −〈M,M〉t} is a continuous martingale van-

ishing at t = 0. {〈M,M〉t} is called the quadratic variation of M . Particularly, if

τ is a finite stopping time, we have

EM2
τ = E {〈M,M〉τ}.

Furthermore, A right continuous adapted process {Mt}t≥0 is called a local mar-

tingale if there exists a non-decreasing sequence {τk}k≥1 of stopping times with

τk ↑ ∞ a.s. such that every {Mτ∧t − M0}t≥0 is a martingale. From the Doob

martingale stooping theorem, it is easy to see that every martingale is a local

martingale but the converse is not true. Now based on these definitions we give

the strong law of large numbers for martingale.
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Theorem 2.2.2 (Strong Law of large numbers). Let M = {Mt}t≥0 be a real-valued

continuous local martingale vanishing at t = 0. Then

lim
t→∞
{〈M,M〉t} =∞ a.s. ⇒ lim

t→∞

Mt

{〈M,M〉t}
= 0 a.s.

Also,

lim sup
t→∞

{〈M,M〉t}
t

<∞ a.s. ⇒ lim
t→∞

Mt

t
= 0 a.s.

2.3 Brownian Motions

In this section we firstly give the definition of a Brownian motion. The term

Brownian motion is used to describe the random motion of particles suspended in a

fluid (a liquid or a gas) resulting from their collision with the fast-moving molecules

in the fluid. This was initially observed by Robert Brown in 1827 [92, 93]. It is

not only used in mathematical problems, but also widely used in physics, botany

and biology.

Now let (Ω,F , P ) be the probability space with the filtration {Ft}t≥0. A stand-

ard one-dimensional Brownian motion is a real-valued continuous {Ft}-adapted

process {Bt}t≥0 with the following properties:

• B0 = 0 a.s.;

• for 0 ≤< s < t < ∞, the increment Bt − Bs is normally distributed with

mean 0 and variance t− s ;

• for 0 ≤< s < t <∞, the increment Bt −Bs is independent of Fs.

Also, if {Bt}t≥0 is a Brownian motion and 0 ≤ t0 < t1 < ... < tk < ∞, then the

increments Bti − Bti−1
, 1 ≤ i ≤ k are independent and we say that the Brownian

motions has independent increments. Clearly, the distribution of Bti − Bti−1
only

relies on ti− ti−1 and we say that the Brownian motion has stationary increments.

Although sometimes the probability space does not need to be complete, we

still assume our Brownian motions in this paper are defined on a complete prob-
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ability space (Ω,F , P ) with the filtration {Ft}t≥0 satisfying usual conditions. The

following list states some of the most important properties of the Brownian motion:

• {Bt} is a continuous square-integrable martingale and its quadratic variation

{〈B,B〉t} = t for all t ≥ 0;

• From the strong law of large number, we have

lim
t→∞

Bt

t
= 0;

• For almost every ω ∈ Ω, the Brownian motion sample path B(ω) is nowhere

differentiable;

• For almost every ω ∈ Ω, the Brownian motion sample path B(ω) is locally

Hölder continuous [94] with exponent δ if δ ∈ (0, 1
2
). However, for almost

every ω ∈ Ω, the Brownian motion sample path B(ω) is nowhere Hölder

continuous with exponent δ > 1
2
;

• {−Bt} is a Brownian motion with respect to the filtration {Ft};

• Let c > 0. Define

Xt =
Bct√
c

for t ≥ 0.

Then {Xt} is a Brownian motion with respect to filtration {Fct}.

Similarly, we can define a d-dimensional Brownian motion {Bt =

(B1
t , B

2
t , ...., B

d
t )}t≥0 if every {Bi

t} is a one-dimensional Brownian motion,

and {Bi
t}, ... , {Bd

t } are independent.

2.4 Stochastic Integral

In this section we will introduce the establishment of the Itô stochastic integral:∫ t

0

f(s)dB(s).
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This integral was firstly defined by K. Itô in 1949 [55]. We will introduce the

definition first, followed by some properties of stochastic integral.

A real-valued stochastic process g = {g(t)}a≤t≤b is called a simple process if

there exists a partition a = t0 < t1 < t2 < ... < tk = b of [a, b], and bounded

random variables ξi, 0 ≤ i ≤ k − 1 such that ξi is {Fti}-measurable and

g(t) = ξ01[t0,t1](t) +
k−1∑
i=1

ξi1(ti,ti+1](t).

Denote byM0([a, b];R) the family of all such processes and clearlyM0([a, b];R) ⊂
M2([a, b];R). Now we give the definition of the Itô integral for such simple pro-

cesses.

For a simple process g in M0([a, b];R), define∫ b

a

g(t)dBt =
k−1∑
i=0

ξi(Bti+1
−Bti),

and call it the stochastic integral of g with respect to the Brownian motion {Bt} or

the Itô integral. Using the approximation result, this can be extended from only

simple process to processes inM2([a, b];R), which leads to the following definition.

Let f ∈M2([a, b];R). The Itô integral of f with respect to {Bt} is defined by∫ b

a

f(t)dBt = lim
n→∞

∫ b

a

gn(t)dBt in L2(Ω;R),

where {gn} is a sequence of simple process such that

lim
n→∞

E
∫ b

a

|f(t)− gn(t)|2dt = 0.

The stochastic integral has some important properties which we will use in later

sections. Hence we summarize it here. If f , g ∈M2([a, b];R), then

•
∫ b
a
f(t)dBt is Fb-measurable;

• E
∫ b
a
f(t)dBt = 0;

• E |
∫ b
a
f(t)dBt|2 = E

∫ b
a
|f(t)|2dt;

•
∫ b
a
[αf(t) + βg(t)]dBt = α

∫ b
a
f(t)dBt + β

∫ b
a
g(t)dBt.
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2.5 Markov Process

In this section we are going to introduce some basic knowledge about a Markov

process. A d-dimensional Ft-adapted process {Xt}t≥0 is called a Markov process if

the following Markov property is satisfied: for all 0 ≤ s ≤ t <∞ and A ∈ B(Rd),

P (X(t) ∈ A|Fs) = P (X(t) ∈ A|X(s)),

which is also equivalent to the following definition: for any bounded Borel meas-

urable function: ϕ : Rd → R and 0 ≤ s ≤ t <∞,

E (ϕ(X(t))|Fs) = E (ϕ(X(t))|X(s)).

The transition probability of the Markov process is a function P (s, x; t, A), defined

on 0 ≤ s ≤ t <∞, x ∈ Rd and A ∈ B(Rd), which has the following properties:

• For every 0 ≤ s ≤ t <∞ and A ∈ B(Rd),

P (s,X(s); t, A) = P (X(t) ∈ A|X(s));

• P (s, x; t, ·) is a probability measurable on B(Rd) for every 0 ≤ s ≤ t < ∞
and x ∈ Rd;

• P (s, ·; t, A) is a Borel measurable for every 0 ≤ s ≤ t <∞ and A ∈ B(Rd);

• The Kolmogorov-Chapman equation

P (s, x; t, A) =

∫
Rd
P (u, y; t, A)P (s, x;u, dy),

holds for any 0 ≤ s ≤ u ≤ t <∞, x ∈ Rd and A ∈ B(Rd).

A stochastic process X = {Xt}t≥0 which is defined on a probability space

(Ω,F , P ) with values in a countable set Ξ (state space), is called a continuous-time

Markov Chain if for any finite set 0 ≤ t1 < t2 < ... < tn < tn+1 of times, and cor-

responding set i1, i2, ..., in−1, i, j of states in Ξ, such that P{X(tn) = i,X(tn−1) =

i− 1, ..., X(t1) = i1} > 0, we have

P{X(tn1) = j|X(tn) = i,X(tn−1) = i− 1, ..., X(t1) = i1}
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= P{X(tn1) = j|X(tn) = i}.

If for all t and s such that 0 ≤ s ≤ t < ∞ and all i, j ∈ Ξ the conditional

probability P{X(t) = j|X(s) = i} depends only on t − s, then we say that the

process X = {Xt}t≥0 is homogeneous. In this case, we must have P{X(t) =

j|X(s) = i} = P{X(t− s) = j|X(0) = i}, and the function

Pij(t) := P{X(t) = j|X(s) = i}, i, j ∈ Ξ, t ≥ 0,

is called the transition probability of the process. We also define Γ = (νij)i,j∈Ξ to

be the generator of the Markov chain. If the state space is finite we can write

it as S = {1, 2, ..., N}, then the process is called a continuous-time finite Markov

chain. We will discuss Markov chain switching in the following chapters, so in

this research we will assume that all Markov chains are finite and all states are

stable. For such a Markov chain, almost every sample path is right continuous step

function. Moreover, if P (t) = (Pij(t))N×N is the transition probability matrix, and

Γ = (νij)N×N is the generator of a finite N -state Markov chain [95], then

P (t) = e−tΓ.

Furthermore, the generator Γ = (νij)N×N can be represented as a stochastic integ-

ral with respect to a Poisson random measure. Let ∆ij be consecutive, left closed,

right open intervals of the real line each having length νij such that

∆12 = [0, ν12),

∆13 = [ν12, ν12 + ν13),

...

∆1N =

[
N−1∑
j=2

ν1j,
N∑
j=2

ν1j

)
,

∆21 =

[
N∑
j=2

ν1j,
N∑
j=2

ν1j + ν21

)
,

∆23 =

[
N∑
j=2

ν1j + ν21,
N∑
j=2

ν1j + ν21 + ν23

)
,

...
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∆2N =

[
N∑
j=2

ν1j +
N−1∑

j=1,j 6=2

ν2j,
N∑
j=2

ν1j +
N∑

j=1,j 6=2

ν2j

)
,

...

and so on. Now we define a function h : S×R→ R by

h(i, y) =

j − i, if y ∈ ∆ij,

0, otherwise.

Then

dX(t) =

∫
R

h(X(t−), y)γ(dt, dy),

with initial condition X(0) = i0, where γ(dt, dy) is a Poisson random measure

with density dt× µ(dy), in which µ is the Lebesgue measure on R.

There are some very important definitions of properties in a Markov chain. For

a Markov chain X(t) with state space S, a state i ∈ S is said to communicate with

another state j ∈ S if i and j can switch to each other. A communicating class is

a maximal set of states S ′ ⊂ S such that every pair of states in S ′ communicates

with each other. A Markov chain is also said to be irreducible if the state space is

a single communicating class, or in other words, it is irreducible if possible if any

state in the state space can switch to any state.

Another crucial property of Markov chain is its recurrence. A state i ∈ S of

Markov chain is said to be transient if there is a non-zero probability for starting

from state i to never return to itself. Otherwise state i is said to be recurrent,

which indicates that the mean recurrence time for state i is finite. If we define

τi := inf{t > T1 : X(t) = i}, where T1 is the first jump time away from state i,

then if

E τi <∞,

we say that state i is positive recurrent.

The stationary distribution of a Markov chain is usually focused on in many

different cases. If we denote π = (π1, ..., πn) as the stationary distribution of the

Markov chain X(t), with finite state space S(t) = {1, 2, ..., N} and transition mat-

rix P (t) = (Pij(t))N×N as well as the generator Γ = (νij)N×N , then the stationary
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distribution is defined as

π = πP (t) for all t ≥ 0,

or

πΓ = 0.

Based on the definition of irreducible, recurrence and stationary distribution,

we now introduce the ergodicity of a Markov chain. The Markov chain X(t) is

said to be ergodic if it is irreducible and positive recurrent, and for any function

f : S→ R, we have

P

{
1

t
f(X(s))ds −→

t→∞

∑
j∈S

πjf(j)

}
= 1.

And this is the ergodic property [95]. Now we have fully introduced Brownian

motions and Markov chains. In the next section, we are going to focus on building

the Itô formula. A multi-dimensional Itô formula will be derived firstly, followed

by a generalised Itô formula suitable for Markovian switching cases.

2.6 Itô’s Formula

Based on the Itô integral definition in the last section, we are going to establish

Itô’s formula in this section. Firstly, we will derive the one-dimensional Itô’s for-

mula. Let {Bt}t≥0 be a one-dimensional Brownian motion defined on the complete

probability space (Ω,F , P ) adapted to the filtration {Ft}t≥0. Let L1(R+;Rd) de-

note the family of all Rd-valued measurable {Ft}-adapted processes f = {f(t)}t≥0

such that ∫ T

0

|f(t)|dt <∞ a.s. for every T > 0.

Moreover, a one-dimensional Itô process is a continuous adapted process x(t) on

t ≥ 0 of the form

x(t) = x(0) +

∫ t

0

f(s)ds+

∫ t

0

g(s)dBs,
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where f ∈ L1(R+;R) and g ∈ L2(R+;R). We shall say that x(t) has stochastic

differential dx(t) on t ≥ 0 given by

dx(t) = f(t)dt+ g(t)dBt.

Now let C2,1(Rd × R+;R) denote the family of all real valued functions V (x, t)

defined on Rd × R+ such that they are continuously twice differentiable in x and

once in t. If V ∈ C2,1(Rd ×R+;R), we set

Vt =
∂V

∂t
, Vx =

(
∂V

∂x1

, ...,
∂V

∂xd

)
, Vxx =

(
∂2V

∂xi∂xj

)
d×d

.

Clearly when V ∈ C2,1(R×R+;R), we have Vx = ∂V
∂x

and Vxx = ∂2V
∂x2

, which is the

one-dimensional case. Then V (x(t), t) is again an Itô process with the stochastic

differential given by

dV (x(t), t) = [Vt(x(t), t)+Vx(x(t), t)f(t) +
1

2
Vxx(x(t), t)g2(t)]dt

+ Vx(x(t), t)g(t)dBt.

And this is the one-dimensional Itô’s formula. However this is not enough for

multi-dimensional problem. Thus we are going to expand the space and state the

multi-dimensional Itô’s formula. Hence now if we assume f ∈ L1(R+;Rd) and

g ∈ L1(R+;Rd×m). Let V ∈ C2,1(Rd×R+;R) and V (x(t), t) is also an Itô process

with the stochastic differential given by

dV (x(t), t) = [Vt(x(t), t)+Vx(x(t), t)f(t) +
1

2
trace(gT (t)Vxx(x(t), t)g(t))]dt

+ Vx(x(t), t)g(t)dBt.

Furthermore, if we let r(t), t ≥ 0, be a right-continuous N -state Markov

chain on the probability space. r(t) only takes value in a finite state space

S = {1, 2, ..., N}, with generator Γ = (νij)N×N defined as

P{r(t+ δ) = j | r(t) = i} =

νijδ + o(δ), if i 6= j,

1 + νijδ + o(δ), if i = j,

where δ > 0 and νij ≥ 0 is the transition rate from state i to j for i 6= j.

Note that νii = −
∑

1≤j≤M, j 6=i νij and we assume that the Markov chain r(·)
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is independent of the Brownian motion B(·). Now we would like to know how

a function V : Rd × R+ × S → R will map the pair process (x(t), r(t)) into

another process V (x(t), t, r(t)). So if f ∈ L1(R+;Rd), g ∈ L1(R+;Rd×m) and

V ∈ C2,1(Rd ×R+ × S;R), we have for any t ≥ 0

V (x(t), t, r(t)) = V (x(0), 0, r(0)) +

∫ t

0

LV (x(s), s, r(s))ds

+

∫ t

0

Vx(x(s), s, r(s))g(x(s), s, r(s))dB(s)

+

∫ t

0

∫
R

(V (x(s), s, i0 + h(r(s), l))− V (x(s), s, r(s)))µ(ds, dl),

with

LV (x, t, i) = Vt(x, t, i) + Vx(x, t, i)f(t) +
1

2
trace(gT (t)Vxx(x, t, i)g(t))

+
N∑
j=1

νijV (x, t, j),

where the function h is defined in last section and µ(ds, dl) = γ(ds, dl)−µ(dl)ds is

a martingale measure while µ and γ have also been defined in last section. And this

is the generalised Itô’s formula which is suitable for an Itô process with Markovian

switching. If we have two bounded stopping time τ1 and τ2 such that 0 ≤ τ1 < τ2

a.s., then for bounded V (x(t), t, r(t)) and LV (x(t), t, r(t)) etc on t ∈ [τ1, τ2], we

have

EV (x(t), t, r(t)) = EV (x(τ1)τ1, r(τ1))

+ E
∫ τ2

τ1

V (x(s), s, r(s))ds.

2.7 Stochastic Differential Equation

Firstly we will give the definition of stochastic differential equation without

Markovian switching. Let (Ω,F , P ) be a complete probability space with a filtra-

tion {Ft}t≥0 satisfying the usual conditions. Let B(t) = (B1(t), ..., Bm(t)), t ≥ 0

be an m-dimensional Brownian motion defined on the space. Let 0 ≤ t0 < T ≤ ∞.

Let x0 be an Ft-measurable Rd-valued random variable such that E |x0|2 <∞. Let
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f : Rd × [t0, T ] → Rd, and g : Rd × [t0, T ] → Rd×m be both Borel measurable.

Consider the d-dimensional stochastic differential equation of Itô type

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t), (2.1)

on t ∈ [t0, T ], with initial value x(t0) = x0. This SDE is equivalent to the following

stochastic integral equation:

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

g(x(s), s)dB(s), t ∈ [t0, T ]. (2.2)

Then we need to give the definition of the solution. An Rd-valued stochastic

process {x(t)}0≤t≤T is called the solution of (2.1) if:

• {x(t)} is continuous and Ft-adapted;

• {f(x(t), t)} ∈ L1([t0, T ];Rd) and {g(x(t), t)} ∈ L2([t0, T ];Rd×m);

• equation (2.2) holds for every t ∈ [t0, T ] with probability 1.

Also, a solution {x(t)} is said to be unique if any other solution {x̄(t)} is indistin-

guishable from {x(t)}, that is

P{x(t) = x̄(t) for all t0 ≤ t ≤ T} = 1.

However, it is not ensured to have a solution for any stochastic differential equa-

tion. Hence now we give the conditions to guarantee the existence and uniqueness

of the solution to equation (2.1). Assume that there exists two positive constants

K and K̄ such that

• (Lipschitz condition) for all x, y ∈ R and t ∈ [t0, T ]

|f(x, t)− f(y, t)|2
∨
|g(x, t)− g(y, t)|2 ≤ K̄|x− y|2;

• (Linear growth condition) for all x, y ∈ Rd × [t0, T ]

|f(x, t)|2
∨
|g(x, t)|2 ≤ K(1 + |x|2).
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Then there exists an unique solution x(t) to equation (2.1) and the solution belongs

to M2([t0, T ];Rd). However the Lipschitz condition is too restrictive. It requires

f and g changing less faster than a linear function of x in [t0, T ]. Clearly there

are too many functions that do not meet this requirement. As a result, a local

Lipschitz condition is used to replace the Lipschitz condition.

• (local Lipschitz condition) For every integer n ≥ 1, there exits a positive

constant K̄n such that for all x, y ∈ R and t ∈ [t0, T ] with |x| ∨ |y| ≤ n,

|f(x, t)− f(y, t)|2
∨
|g(x, t)− g(y, t)|2 ≤ K̄n|x− y|2;

Moreover, the linear growth condition can also be replaced by a monotone condi-

tion:

• (monotone condition) There exits a positive constant K such that for all

(x, t) ∈ Rd × [t0, T ], such that

xTf(x, t) +
1

2
|g(x, t)|2 ≤ K(1 + |x|2);

There are also more general conditions for existence and uniqueness of the solu-

tion such as Khasminskii’s condition [72]. However, the four conditions we have

introduced should be enough for the research in following sections. Now we are

going to focus on the definition of SDEs with Markovian switching.

2.8 SDEs with Markovian Switching

Now based on the last section, we can now establish conditions for the existence

of a solution for the stochastic differential equation with Markovian switching.

First of all, let us recall r(t), t ≥ t0 to be a right-continuous Markov chain on

the probability space in a finite state space S = {1, 2, ..., N} with the generator

Γ = (νij)N×N defined as

P{r(t+ δ) = j | r(t) = i} =

νijδ + o(δ), if i 6= j,

1 + νijδ + o(δ), if i = j,
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where δ > 0 and νij ≥ 0 is the transition rate from state i to j for i 6= j. Note that

νii = −
∑

1≤j≤M, j 6=i νij and we assume that the Markov chain r(·) is independent of

the Brownian motion B(·). Then a stochastic differential equation with Markovian

switching should have the form

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dB(t), t0 ≤ t ≤ T, (2.3)

with initial value x(t0) = x0 ∈ L2
Ft0

(Ω;Rd) and r(t0) = r0, where r0 is an S-valued

Ft0-measurable random variable and we should now let f : Rd × [t0, T ]× S→ Rd,

and g : Rd × [t0, T ] × S → Rd×m. Similarly, an Rd-valued stochastic process

{x(t)}0≤t≤T is called the solution of (2.3) if:

• {x(t)} is continuous and Ft-adapted;

• {f(x(t), t, r(t))} ∈ L1([t0, T ];Rd) and {g(x(t), t, r(t))} ∈ L2([t0, T ];Rd×m);

• equation

x(t) = x0 +

∫ t

t0

f(x(s), s, r(s))ds+

∫ t

t0

g(x(s), s, r(s))dB(s), (2.4)

holds for every t ∈ [t0, T ] with probability 1.

Also, a solution {x(t)} is said to be unique if any other solution {x̄(t)} is indistin-

guishable from {x(t)}.

Conditions for a unique solution can also be expanded. Assume that there

exists two positive constants K and K̄ such that

• (Lipschitz condition) for all x, y ∈ R, t ∈ [t0, T ] and i ∈ S,

|f(x, t, i)− f(y, t, i)|2
∨
|g(x, t, i)− g(y, t, i)|2 ≤ K̄|x− y|2;

• (Linear growth condition) for all x, y, i ∈ Rd × [t0, T ]× S,

|f(x, t, i)|2
∨
|g(x, t, i)|2 ≤ K(1 + |x|2).

Then there exists an unique solution x(t) to equation (2.3) and the solution belongs

to M2([t0, T ];Rd). This Lipschitz condition can also be substituted by the local

Lipschitz condition
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• (local Lipschitz condition) For every integer n ≥ 1, there exits a positive

constant Kn such that for all i ∈ S, x, y ∈ R and t ∈ [t0, T ] with |x|∨|y| ≤ n,

|f(x, t, i)− f(y, t, i)|2
∨
|g(x, t, i)− g(y, t, i)|2 ≤ Kn|x− y|2.

Similarly, we can give a more general monotone condition rather than the linear

growth condition. In some situations, the monotone condition can be satisfied

while the linear growth condition is not. Clearly when the linear growth condition

holds then the monotone condition is satisfied. However the converse is not true.

• (monotone condition) There exits a positive constant K such that for all

(x, t, i) ∈ Rd × [t0, T ]× S, such that

xTf(x, t, i) +
1

2
|g(x, t, i)|2 ≤ K(1 + |x|2).

Now we have established conditions for the existence of a solution of both types

of stochastic differential equations. In the study of SDEs, the long-term behaviour

plays an very important role. In the next section we will introduce a theorem on

existence and uniqueness of a stationary distribution of the solution.

2.9 Stationary Distribution

In this section we are going to introduce a well-known result from Khasinskii about

how to find the stationary distribution of a SDE. Firstly we define the concept of

“stationary”. A stochastic process {X(t)} = X(t, ω), (−∞ < t <∞) with values

in Rd is said to be stationary if for every finite sequence of number t1, ..., tn, the

joint distribution of the random variable X(t1 +h), ..., X(tn +h) is independent of

h. In other words, the joint probability distribution does not change when shifted

in time.

In the study of SDEs, the concept of a stationary distribution is a crucial and

necessary part. Now we initially let X(t) be a regular time-homogeneous Markov



Chapter 2 33

process in Rd described by the SDE in the following form

dX(t) = b(X)dt+
k∑
r=1

σr(X)dBr(t).

Then a diffusion matrix is defined by

A(x) = (aij(x)), aij =
k∑
r=1

σir(x)σjr(x).

Khaminskii [72] then gives two conditions for the existence and uniqueness of a

stationary distribution of the process X(t). So if there exists an open domain

U ⊂ Rd with regular boundary, such that

• In the domain U and some neighbourhood thereof, the smallest eigenvalue

of the diffusion matrix A(x) is bounded away from zero;

• If x ∈ Rd \ U , the mean time τ at which a path issuing from x reaches the

set U is finite, and supx∈K E (τ) <∞ for every compact subset K ⊂ Rd,

then X(t) has a unique stationary distribution µ. If f(x) is a integrable function

with respect to µ, then

P
{ 1

T

∫ T

0

f(X(t))dt −→
T→∞

∫
Rd
f(y)µ(dy)

}
.

Here we have finished introducing basic stochastic theory that will be used

later. Now in the following three chapters, we are going to establish three different

stochastic SIS models. In each chapter, a general introduction of the model will be

explained. Some previous works will be stated to clearly provide the motivation

and inspiration of our research. Then we will show some properties of the model,

including the conditions of extinction and persistence. Also, computer simulation

will be illustrated to back up our theory.
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SIS Epidemic Model with two

Independent Brownian Motions

3.1 Introduction

Research on epidemics modelled by introducing deterministic compartmental mod-

els make great contribution to understanding the behaviour of epidemics and help-

ing control of deadly diseases [96, 97]. For example, Capasso [97] introduces the

Kermack-Mckendrick model to describe diseases that offer permanent immunity

after an individual catching the diseases for a period of time. However, some dis-

eases such as sexually transmitted and bacterial disease do not have permanent

immunity. Susceptible individuals will catch the disease at some time to become

infected, while after a short period of time infected individuals will become sus-

ceptible again. The Susceptible-infected-susceptible (SIS) model is a very simple

but also commonly used model to describe such epidemic problems [34]. S(t) and

I(t) are used to represent the numbers of susceptible and infected populations at

time t. The deterministic model is
dS(t)

dt
= µN − βS(t)I(t) + γI(t)− µS(t),

dI(t)
dt

= βS(t)I(t)− (µ+ γ)I(t).
(3.1)

34
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with initial values S0 + I0 = N and here N is the total size of population. µ is

the per capita death rate and γ is the rate at which infected individuals become

cured. β is the disease transmission coefficient. With the condition S + I = N ,

we can rewrite the original two ODEs (3.1) into

dI(t) = [β(N − I(t))I(t)− (µ+ γ)I(t)]dt. (3.2)

Deterministic models are not enough to describe problems in the real world

because parameters are easily influenced by all kinds of circumstances with un-

certainty. Thus stochastic models with different environmental noises are more

appropriate in epidemic problems. There are many examples studying the beha-

viour of both deterministic [97, 98] and stochastic [99, 100, 101, 102] SIS epidemic

models. Different medical means on controlling the disease are also mathematically

applied in SIS model such as [103, 104, 105].

Gray et al. [1] firstly consider the perturbation on β in the deterministic SIS

model to discuss the disturbance of white noise. They initially analyse (3.2) in a

small time interval [t, t+ dt) with the d notation for small change in any quantity.

Hence we have dI(t) = I(t + dt) − I(t) in (3.2). Then the disease transmission

coefficient β can be regarded as the rate at which each infected individual make

contacts with other individuals and the total number of new infections in the

small time interval is βI(t)S(t)dt and also, a single infected individual makes βdt

potentially infectious contacts with other individuals in the small time interval.

Consequently, when some stochastic environmental factor is introduced on each

individual in the population, they replace β by a random variable β̃

β̃dt = βdt+ σ1dB1(t). (3.3)

Here dB1(t) = B1(t+ dt)−B1(t) is the increment of a standard Brownian mo-

tion. Hence the potentially infectious contacts made by a single infected individual

with another individual in the population in the small time interval [t, t+ dt) are

normally distributed with mean βdt and variance σ2
1dt. Also, Zhao et al. [106]

use the same perturbation in a SIS model with vaccination and then find the con-

ditions for the disease to become extinct and persist. There are also many other
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contributions on different epidemic models using multiple environmental noises

[100, 102, 107, 108].

Now based on the previous work of Gray et al. [1], we now consider another

perturbation on (µ + γ) with (3.3) existing in traditional SIS model. Within the

same small time interval [t, t + dt), we regard (µ + γ)I(t)dt as the total number

of infected individuals becoming cured or pass away in this time interval. In

other words, this is the total reduction of infections. Hence each single individual

contributes (µ + γ)dt in the reduction of infections in the small time interval

[t, t+ dt).

Then we introduce stochasticity on (µ + γ). (µ + γ) is replaced by a random

variable (µ̃+ γ̃)

(µ̃+ γ̃)dt = (µ+ γ)dt+ σ2

√
N − I(t)dB2(t). (3.4)

Here we do not simply set (µ̃ + γ̃)dt = (µ + γ)dt + σ2dB2(t) to be the second

perturbation. When susceptible population S(t) = N − I(t) is large, which means

there are few infected individuals, the error of estimating µ and γ will be large.

Thus we suppose that the variance of estimating µ + γ is proportional to the

number of susceptible population. As a result, the reduction of infections caused

by medical care and death of a single infected individual in the small time interval

[t, t+dt) is normally distributed with mean (µ+γ)dt and variance σ2
2(N−I(t))dt.

This is also a biologically reasonable model because the variance trends to 0 when

dt goes to 0.

Such a diffusion coefficient in square root form is widely used in financial

stochastic differential equations such as the Square Root Process. Mao [91] in-

dicates that the Square Root Process may be more appropriate if the asset price

volatility does not increase dramatically when S(t) increases (S(t) greater than

1), because the variance of error term is proportional to S(t). Meanwhile, in epi-

demic modelling, Liang et al. introduce demographic stochasticity [102] in the

deterministic SIS model based on Allen’s work [101]. The diffusion coefficient of

their SDE SIS model is
√
βI(t)(N − I(t)) + (µ+ γ) which is very similar to ours.

However, to the best of our knowledge, there is not enough work on incorporating

white noise with square-root diffusion into the epidemic models. As a result, in
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this chapter we aim to fill the gap.

As a result, we assume that two Brownian motions B1(t) and B2(t) are inde-

pendent. We then substitute two perturbations in our SIS ODE (3.2). We have

dI(t) = [β(N − I(t))I(t)− (µ+ γ)I(t)]dt+ σ1I(t)(N − I(t))dB1(t)

− σ2I(t)
√
N − I(t)dB2(t), (3.5)

with initial value I(0) = I0 ∈ (0, N). In the following sections we will concen-

trate on giving some properties of the solution I(t) of this SDE. This chapter

is a published work in February 2019 on Journal of Mathematical Analysis and

Applications [2].

3.2 Unique and Bounded Solution

In order for the model to make sense, we need to prove that the solution of our

SDE has a unique global solution which remain within (0, N), with the initial value

I0 ∈ (0, N).

Theorem 3.2.1. If µ + γ ≥ 1
2
σ2

2N , then for any given initial value I(0) = I0 ∈
(0, N), the SDE has a unique global positive solution I(t) ∈ (0, N) for all t ≥ 0

with probability one, namely,

P{I(t) ∈ (0, N), ∀t ≥ 0} = 1.

Proof. The coefficients of our SDE (3.5) are locally Lipschitz continuous and for

any given initial value, there is a unique maximal local solution I(t) on t ∈ [0, τe),

where τe is the explosion time [91]. Let k0 ≥ 0 be sufficiently large to satisfy
1
k0
< I0 < N − 1

k0
. For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, τe) : I(t) /∈ (1/k,N − 1/k)}.

In this chapter, we set inf∅ = ∞. Obviously, τk is increasing when k → ∞.

And we set τ∞ = limk→∞ τk. It is clear that τ∞ ≤ τe almost surely. So if we can
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show that τ∞ =∞ a.s., then τe =∞ a.s. and I(t) ∈ (0, N) a.s. for all t ≥ 0.

Here we assume τ∞ = ∞ a.s. is not true. Then we can find a pair of constants

T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

So we can find an integer k1 ≥ k0 large enough, such that

P{τk ≤ T} ≥ ε, ∀k ≥ k1. (3.6)

Define a function V : (0, N)→ R+ by

V (x) = − log x− log (N − x) + log
N2

4
,

and

Vx = −1

x
+

1

N − x
, Vxx =

1

x2
+

1

(N − x)2
.

Let f(t) = β(N − I(t))I(t) − (µ + γ)I(t), g(t) = (σ1I(t)(N −
I(t)),−σ2

√
N − I(t)I(t)) and dB(t) = (dB1(t), dB2(t)). By Itô’s formula [91],

we have, for any t ∈ [0, T ] and k ≥ k1

EV (I(t ∧ τk)) = V (I0) + E
∫ t∧τk

0

LV (I(s))ds+ E
∫ t∧τk

0

Vxg(s)dB(s), (3.7)

where E
∫ t∧τk

0
Vxg(s)dB(s) = 0. Also it is easy to show that

LV (x) = −β(N − x) + (µ+ γ) + βx− (µ+ γ)
x

N − x

+
1

2
(σ2

1(N − x)2 + σ2
1x

2 + σ2
2(N − x) + σ2

2

x2

N − x
)

≤ −β(N − x) + (µ+ γ) + βx+
1

2
[σ2

1(N − x)2 + σ2
1x

2 + σ2
2(N − x)]

≤ C, (3.8)

where C is a constant when µ+ γ ≥ 1
2
σ2

2N and x ∈ (0, N). Then we have

EV (I(t ∧ τk)) ≤ V (I0) + E
∫ t∧τk

0

Cds

≤ V (I0) + Ct, (3.9)

which yields that

EV (I(T ∧ τk)) ≤ V (I0) + CT. (3.10)



Chapter 3 39

Set Ωk = {τk ≤ T} for k ≥ k1 and we have P(Ωk) ≥ ε. For every ω ∈ Ωk, I(τk, ω)

equals either 1/k or N − 1/k and we have

V (I(τk, ω)) = log
N2

4(N − 1/k)1/k
.

Hence

∞ > V (I0) + CT ≥ E[IΩk(ω)V (I(τk, ω))]

≥ P(Ωk) log
N2

4(N − 1/k)1/k

≥ ε log
N2

4(N − 1/k)1/k
.

Letting k →∞ will lead to the contradiction

∞ > V (I0) + CT =∞.

So the assumption is wrong and we must have τ∞ =∞ almost surely, whence

the proof is now completed. However, the condition for our model to have bounded

positive solution µ + γ ≥ 1
2
σ2

2N might be confusing to readers. There are two

different ways to understand this condition. In [1] there is no constraint on σ1

but after adding second perturbation on µ+ γ, the square root term will trend to

infinity very fast when I(t)→ N . So there must be a condition on σ2 to neutralize

it. Also, by the classical Feller test in Mao’s book [91] on Mean Reverting Square

Root Process, there is a very similar result on constraining the coefficient before

square root term in order to make the solution always positive.

3.3 Extinction

In this section, we will discuss the conditions for the disease to die out in our

SDE model (3.5). Here we give the conditions for the solution I(t) of our SDE

becoming extinct.
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Theorem 3.3.1. Given that RS
0 := RD

0 −
σ2
1N

2+σ2
2N

2(µ+γ)
= βN

µ+γ
− σ2

1N
2+σ2

2N

2(µ+γ)
< 1, then

for any given initial value I(0) = I0 ∈ (0, N), the solution of SDE (3.5) obeys

lim sup
t→∞

1

t
log I(t) < 0 a.s.. (3.11)

if one of the following three conditions is satisfied

• σ2
1N + 1

2
σ2

2 ≤ β or,

• 1
2
σ2

2 ≥ β or,

• (β − σ1

√
2(µ+ γ)) ∨ (β − σ2

1N) < 1
2
σ2

2 < β.

Namely, I(t) will trend to zero exponentially a.s. And the disease will die out with

probability one.

Proof. Here we use Itô’s formula

log I(t)

t
=

log I0

t
+

1

t

∫ t

0

LṼ (I(s))ds+
1

t

∫ t

0

σ1(N − I(s))dB1(s)

− 1

t

∫ t

0

σ2

√
(N − I(s))dB2(s), (3.12)

with Ṽ = log x and LṼ is defined by

LṼ (x) = β(N − x)− (µ+ γ)− 1

2
[σ2

1(N − x)2 + σ2
2(N − x)], x ∈ (0, N). (3.13)

According to the large number theorem for martingales [91], we must have

lim sup
t→∞

1

t

{∫ t

0

σ1(N − I(s))dB1(s)−
∫ t

0

σ2

√
(N − I(s))dB2(s)

}
= 0. (3.14)

So if we can prove LṼ ≤ C̃ < 0, then lim supt→∞
1
t

log I(t) < 0 a.s. (C̃ is

a constant).We first examine LṼ at 0 and N . LṼ (N) = −(µ + γ) < 0 and

LṼ (0) = βN − (µ+ γ)− 1
2
(σ2

1N
2 + σ2

2N) so we must have firstly

LṼ (0) < 0,which is ensured byRS
0 < 1. (3.15)

LṼ (x) has the maximal value when

x = x̂ =
−β + σ2

1N + 1
2
σ2

2

σ2
1

= N +
1
2
σ2

2 − β
σ2

1

, (3.16)
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and

LṼ (x̂) =
1

2

(β − 1
2
σ2

2)2

σ2
1

− (µ+ γ), (3.17)

is the maximal value of LṼ when x ∈ R.

So we need to discuss the following three different cases:

Case 1. x̂ ≤ 0

With LṼ < 0 at 0 and N , if we have x̂ ≤ 0 then LṼ < 0 for all x ∈ (0, N).

Consequently, LṼ < 0 for all x ∈ (0, N) if

σ2
1N +

1

2
σ2

2 ≤ β. (3.18)

Case 2. x̂ ≥ N

This is similar to Case 1. LṼ < 0 for all x ∈ (0, N).So we must have

1

2
σ2

2 ≥ β. (3.19)

Case 3. x̂ ∈ (0, N)

In this case we need to make sure the maximal value LṼ (x̂) < 0. So we have

LṼ (x̂) =
1

2

(β − 1
2
σ2

2)2

σ2
1

− (µ+ γ) < 0. (3.20)

Also,
1

2
σ2

2 < β, (3.21)

and

σ2
1N +

1

2
σ2

2 > β, (3.22)

is required for x̂ within (0, N). Rearrange and we therefore have the result.

(β − σ1

√
2(µ+ γ)) ∨ (β − σ2

1N) <
1

2
σ2

2 < β. (3.23)

Hence when any of the three cases is satisfied, we must have LṼ ≤ C̃ < 0 (C̃

is a constant). It then follows that

lim sup
t→∞

log I(t)

t
≤ lim sup

t→∞

log I0

t
+ lim sup

t→∞

1

t
C̃t+ 0 < 0 a.s..

Therefore we now have obtained the proof.
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The stochastic reproduction number RS
0 that we define in this section is ob-

viously smaller than the RS
0 = βN

µ+γ
− σ2

1N
2

2(µ+γ)
in [1]. To some extent, with the

introduction of a new perturbation on µ + γ, we can possibly conclude in extinc-

tion for situations that may not happen in Gray et al.’s model. Moreover, though

the second perturbation is not linear, we still have the Itô operator LṼ to be a

quadratic function, which is simple to discuss. This indicate that after introducing

a white noise with nonlinear property, it does not weaken our result but instead

generalized it.

3.4 Persistence

In this section we want to discuss the conditions for disease to persist in our model.

However, there are many definitions of persistence in stochastic dynamic problems

[1, 5, 91, 99, 100, 107, 109]. For example, in Mao’s book [91] he gives a very general

definition of persistence, which only needs the disease to never become extinction

with probability 1, such that

lim inf
t→∞

I(t) > 0.

Gray et al. [1] have showed the persistence of their model as oscillations around

a positive level. This is a very strong result in epidemic problem. As our work is

an extension of [1], we give the following theorem

Theorem 3.4.1. If RS
0 = RD

0 −
σ2
1N

2+σ2
2N

2(µ+γ)
= βN

µ+γ
− σ2

1N
2+σ2

2N

2(µ+γ)
> 1, then for any

given initial value I(0) = I0 ∈ (0, N), the solution of (3.5) follows

lim sup
t→∞

I(t) ≥ ξ and lim inf
t→∞

I(t) ≤ ξ a.s., (3.24)

where

ξ =
−β + σ2

1N + 1
2
σ2

2 +
√
β2 − σ2

2β − 2σ2
1(µ+ γ) + 1

4
σ4

2

σ2
1

, (3.25)

which is the only positive root of LṼ = 0 in (0, N). I(t) will be above or below the

level ξ infinitely often with probability one.
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Proof. When RS
0 > 1, recall (3.13) that

LṼ (x) = β(N − x)− (µ+ γ)− 1

2
[σ2

1(N − x)2 + σ2
2(N − x)], x ∈ (0, N),

and we have LṼ (0) > 0, LṼ (N) = −(µ + γ) < 0 and ξ > x̂ =
−β+σ2

1N+ 1
2
σ2
2

σ2
1

. So

LṼ (x) is strictly increasing in (0, 0 ∨ x̂) and strictly decreasing in (0 ∨ x̂, N).

Here we recall (3.12)

log I(t)

t
=

log I0

t
+

1

t

∫ t

0

LṼ (I(s))ds+
1

t

∫ t

0

σ1(N − I(s))dB1(s)

− 1

t

∫ t

0

σ2

√
(N − I(s))dB2(s).

By the large number theorem for martingales [91], there is an Ω2 ⊂ Ω with

P{Ω2} = 1 such that for every ω ∈ Ω2

lim
t→∞

1

t

{∫ t

0

σ1(N − I(s))dB1(s)−
∫ t

0

σ2

√
(N − I(s))dB2(s)

}
= 0. (3.26)

Now we assume that lim supt→∞ I(t) ≥ ξ a.s. is not true. Then there must be

a small ε ∈ (0, 1) such that

P
{

lim sup
t→∞

I(t) ≤ ξ − 2ε

}
> ε. (3.27)

Let Ω1 = {lim supt→∞ I(t) ≤ ξ − 2ε}, then for every ω ∈ Ω1, there exists

T = T (ω) large enough, such that

I(t, ω) ≤ ξ − 2ε+ ε = ξ − ε, when t ≥ T (ω), (3.28)

which means when t ≥ T (ω), LṼ (I(t, ω)) ≥ LṼ (ξ − ε). So we have for any fixed

ω ∈ Ω1 ∩ Ω2 and t ≥ T (ω)

lim inf
t→∞

1

t
log I(t, ω) ≥ 0 + lim

t→∞

1

t

∫ T (ω)

0

LṼ (I(s, ω))ds+ lim
t→∞

1

t
LṼ (ξ − ε)(t− T (ω))

≥ LṼ (ξ − ε) > 0,

which yields

lim
t→∞

I(t, ω) =∞, (3.29)
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and this contradicts with ω ∈ Ω1. So we must have lim supt→∞ I(t) ≥ ξ almost

surely.

Similarly, if we assume that lim inft→∞ I(t) ≤ ξ a.s. is not true. Then there

must be a small δ ∈ (0, 1) such that

P
{

lim inf
t→∞

I(t) ≥ ξ + 2δ
}
> δ. (3.30)

Let Ω3 = {lim inft→∞ I(t) ≥ ξ + 2δ}, then for every ω ∈ Ω3, there exists

T ′ = T ′(ω) large enough, such that

I(t, ω) ≥ ξ + 2δ − δ = ξ + δ, when t ≥ T ′(ω). (3.31)

Now we fix any ω ∈ Ω3 ∩ Ω2 and t ≥ T ′(ω) in (3.12) and we have

lim sup
t→∞

1

t
log I(t, ω) ≤ 0 + lim

t→∞

1

t

∫ T ′(ω)

0

LṼ (I(s, ω))ds+ lim
t→∞

1

t
LṼ (ξ + δ)(t− T ′(ω))

≤ LṼ (ξ + δ) < 0,

which yields

lim
t→∞

I(t, ω) = 0, (3.32)

and this contradicts ω ∈ Ω3. So we must have lim inft→∞ I(t) ≤ ξ almost surely.

In the next section we will identify the stationary distribution of the solution

under the condition of persistence.

3.5 Stationary Distribution

In this section we will prove that there exists a unique stationary distribution of

our SDE model (3.5) when the solution persists and oscillates around the positive

level ξ. So here we give the first theorem of this section.

Theorem 3.5.1. If RS
0 > 1, then our SDE model (3.5) has a unique stationary

distribution



Chapter 3 45

In order to complete our proof, we need to initially use a well-known result

from Khaminskii’s book as a lemma [72].

Lemma 3.5.2. The SDE model has a unique stationary distribution if there is

a strictly proper subinterval (a, b) of (0, N) such that E(τ) < ∞ for all I0 ∈
(0, a] ∪ [b,N), where

τ = inf{t ≥ 0 : I(t) ∈ (a, b)}, (3.33)

also,

sup
I0∈[ā,b̄]

E(τ) <∞, (3.34)

for every interval [ā, b̄] ⊂ (0, N)

There is also another condition requiring the sum of square of the diffusion

coefficients of the SDE to be bounded away from zero for all I ∈ (a, b). As this is

obvious for (3.5), we do not need to point it out here. Hence here we will prove

Theorem 3.5.1 using Lemma 3.5.2.

Proof. Firstly we need to fix any (a, b) such that,

0 < a < ξ < b < N. (3.35)

Recall LṼ in last section, we can see that

LṼ (x) ≥ LṼ (0) ∧ LṼ (a), if 0 < x ≤ a, (3.36)

LṼ (x) ≤ LṼ (b), if b ≤ x < N. (3.37)

Also, recall (3.12)

log I(t) = log I0 +

∫ t

0

LṼ (I(s))ds+

∫ t

0

σ1(N − I(s))dB1(s)

−
∫ t

0

σ2

√
(N − I(s))dB2(s),

and define

τ = inf{t ≥ 0 : I(t) ∈ (a, b)}. (3.38)
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Step 1. Firstly we need to discuss one possible situation when the initial value

starts in (0, a]. Hence for all t ≥ 0 and any I0 ∈ (0, a], from (3.36), we have

E log I(t ∧ τ) = E log I0 + E
∫ t∧τ

0

LṼ (I(s))ds+ 0

≥ log I0 + E(LṼ (0) ∧ LṼ (a))(t ∧ τ). (3.39)

From the definition of τ , we know that

log a ≥ E log I(t ∧ τ) when I0 ∈ (0, a]. (3.40)

Rearrange we have

E(t ∧ τ) ≤
log ( a

I0
)

LṼ (0) ∧ LṼ (a)
,

when t→∞
E(τ) ≤

log ( a
I0

)

LṼ (0) ∧ LṼ (a)
<∞, ∀I0 ∈ (0, a]. (3.41)

This means the solution will proceed into (a, b) in finite time.

Step 2. Now similarly, we need to discuss the other situation when I0 ∈ [b,N).

For all t ≥ 0 and any I0 ∈ [b,N), from (3.37), we have

E log I(t ∧ τ) = E log I0 + E
∫ t∧τ

0

LṼ (I(s))ds+ 0

≤ log I0 + E
[
(LṼ (b))(t ∧ τ)

]
. (3.42)

From the definition of τ , we know that

log b ≤ E log I(t ∧ τ) when I0 ∈ [b,N). (3.43)

Rearrange we have

log b ≤ log I0 + LṼ (b)E(t ∧ τ),

E(t ∧ τ) ≤
log ( I0

b
)

| LṼ (b) |
,

when t→∞
E(τ) ≤

log ( I0
b

)

| LṼ (b) |
<∞, ∀I0 ∈ [b,N). (3.44)

Hence the solution will proceed into (a, b) as well. Combine the results from both

Step 1 and Step 2, we complete the proof.
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Now we know the existence of a unique stationary distribution. Consequently,

we will derive the mean and variance of this stationary distribution. It is necessary

to state that the probability density function of the stationary distribution can

be identified by Kolmogorov-Chapman equation [99, 110]. However it is very

complicated and unnecessary. Hence here we follow Khasminskii’s work to derive

the moments of the stationary distribution.

Theorem 3.5.3. If RS
0 > 1 and denote m and v as the mean and variance of the

stationary distribution of SDE model (3.5). Then we have

m =
2β(RS

0 − 1)(µ+ γ)

2β2 − σ2
1(βN + µ+ γ)− σ2

2β
, (3.45)

and

v =
βN − µ− γ

β
m−m2. (3.46)

Proof. For any I0 ∈ (0, N), we firstly recall (3.5) in the integral form

I(t) = I0 +

∫ t

0

[β(N − I(s))I(s)− (µ+ γ)I(s)]ds+

∫ t

0

σ1I(s)(N − I(s))dB1(s)∫ t

0

−σ2I(s)
√
N − I(s)dB2(s).

(3.47)

Dividing both sides by t and when t → ∞, applying the ergodic property of

the stationary distribution [72] and also the large number theorem of martingales,

we have the result that

0 = (βN − µ− γ)m− βm2, (3.48)

where m,m2 are the mean and second moment of the stationary distribution.

Also,we need to consider (3.12) as well

log I(t)

t
=

log I0

t
+

1

t

∫ t

0

LṼ (I(s))ds+
1

t

∫ t

0

σ1(N − I(s))dB1(s)

− 1

t

∫ t

0

σ2

√
(N − I(s))dB2(s),

When t→∞, we have

1

2
σ2

1m2 −
(
σ2

1N +
1

2
σ2

2 − β
)
m = βN − µ− γ − 1

2
σ2

1N
2 − 1

2
σ2

2N.
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Note that βN − µ− γ − 1
2
σ2

1N
2 − 1

2
σ2

2N = (RS
0 − 1)(µ+ γ). Rewrite this

1

2
σ2

1m2 −
(
σ2

1N +
1

2
σ2

2 − β
)
m = (RS

0 − 1)(µ+ γ).

Rearrange and we have

m =
2β(RS

0 − 1)(µ+ γ)

2β2 − σ2
1(βN + µ+ γ)− σ2

2β
. (3.49)

Also,

v = m2 −m2 =
βN − µ− γ

β
m−m2. (3.50)

Here we complete our proof of the stationary distribution. Now in the next

section, we will illustrate our theory in R to further explain our results.

3.6 Simulation

In this section, we will give some simulation examples in R to back up our theory.

Firstly, we will examine three different conditions in Theorem 3.3.1, where the

solution trends to be extinction. We shall firstly assume that there is a certain

kind of disease which currently prevails in a population. The unit of time is one

day and the population sizes are measured in units of 1 million, unless otherwise

stated. Consequently, we use a similar data set as in [1].

N = 100, β = 0.4, µ+ γ = 45, σ1 = 0.03.

In order to find the value of σ2, we initially need the model to make sense, so

we have

σ2 ≤ 2(µ+ γ)/N = 0.9, (3.51)

and also if there is extinction in our model, we need

RS
0 < 1,which results in σ2 ≥ 0. (3.52)

Using these parameters in the other three conditions, we have the corresponding

σ2 to satisfy the three conditions in extinction.
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• Condition 1: σ2 ≤ 0.78740078 or,

• Condition 2: σ2 ≥ 0.8944272 or,

• Condition 3: 0.78740078 < σ2 < 0.8944271.

A wide range of parameters and initial values have been randomly chosen, which

satisfy those conditions to simulate the solutions. Results from those simulations

match with the theoretical results. Hence here we only choose one set of parameter

for each different conditions (0.3, 0.9 and 0.82 respectively) and plot our model by

using the Euler-Maruyama (EM) Method [91, 99] in R, with step size ∆ = 0.001

and one large and one small initial values. The computer simulations are presented

in Figures 3.1, 3.2 and 3.3. Clearly, our results in this section are illustrated

and supported by the simulations. With the values of parameters, the disease will

die out.

In order to illustrate Theorem 3.4.1, we choose the following parameter values

to meet the persistence condition.

N = 100, β = 0.5, µ+ γ = 45, σ1 = 0.03.

With RS
0 > 1, we have σ2 < 0.1. Hence here we choose σ2 = 0.02 and the level

is ξ = 1.1698004. Similarly, as the level ξ is very close to zero, we use both large

and small initial values and plot the level ξ in the simulation plots to illustrate the

results to avoid loss of generality. From Figure 3.4, it is clear that the number

of infectious population will fluctuate around the level ξ, which has been marked

by red lines in Figure 3.4. Thus the disease will not die out or explode, which

means the disease will persist. It is also needs to be pointed out that solution in

Figure 3.4 can go between 0 and 1. Although we are taking population units to

be one million, it will be biologically meaningless if we change the unit to be one

person.
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Figure 3.1: Extinction with Condition 1.
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Figure 3.2: Extinction with Condition 2.



Chapter 3 52

0 2 4 6 8

0
20

40
60

80

Extinction Case 3

Time (Days)

I(
t)

 (
M

ill
io

n)

(a) I(0) = 90.

0 2 4 6 8

0
2

4
6

8
10

12
14

Extinction Case 3

Time (Days)

I(
t)

 (
M

ill
io

n)

(b) I(0) = 5.

Figure 3.3: Extinction with Condition 3.
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Figure 3.4: Persistence.
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Figure 3.5: Stationary Distribution.

In order to generate a stationary distribution, we firstly choose the following

data set

N = 100, β = 0.5, µ+ γ = 45, σ1 = 0.02, σ2 = 0.01.
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RS
0 = 1.06656 > 1 so the disease will persist and there is a unique stationary

distribution of our model according to Theorem 3.5.1. And for these parameters,

the mean and variance of the stationary distribution of our model (from Theorem

3.5.3) are

m = 6.483386, v = 22.799567.

In order to reach the stationary distribution in our simulation, we set a long

run of 200,000 iterations with step size ∆ = 0.001 and then store the last 10,000

iterations to show the recurrent of our solution. The results from simulations show

that

m = 6.479609, v = 22.7355167.

Figure 3.5 also displays the path of I(t) and the empirical cumulative distri-

bution functions for the last 10,000 samples of the simulation.

3.7 Summary

In this chapter, based on Gray et al.’s work in 2011 [1], we reasonably replace µ+γ

with a random variable to introduce another white noise in the SIS model. Com-

pared to [1], our perturbation is in a different form. It has a square-root diffusion

coefficient related to the susceptible population. Introducing this perturbation

turns the original model into a nonlinear stochastic SIS model. However, our res-

ults indicate that adding this noise still has positive impact. For example, the

stochastic reproduction number RS
0 is expanded. Also, it is interesting that al-

though we introduce a nonlinear noise in our model, using the same Ṽ = log x as

in [1], we have the new LṼ of our model (3.5) still quadratic and easy to analyse.

Hence, results are consequently generalized from [1].

Here we complete the study of our first model (3.5). In our assumptions,

we initially assume that two Brownian motions are independent. However, if we

construct two noises by using real data to simulate two Brownian motions, they are

highly likely to be correlated. Also, studying correlated noises in the SIS model is

not common but reasonable and necessary. Hence inspired by a presentation from
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Professor Alexandru Hening on correlated Lotka-Volterra food chain model [3], we

are going to consider the two white noises to be correlated in the next chapter.



Chapter 4

SIS Epidemic Model with two

Correlated Brownian Motions

4.1 Introduction

In Chapter 3, we introduced a new perturbation (3.4) into Gray’s model in 2011[1]

(µ̃+ γ̃)dt = (µ+ γ)dt+ σ2

√
N − I(t)dB4(t),

and we obtained our model (3.5)

dI(t) = [β(N − I(t))I(t)− (µ+ γ)I(t)]dt+ σ1I(t)(N − I(t))dB3(t)

− σ2I(t)
√
N − I(t)dB4(t),

with initial value I(0) = I0 ∈ (0, N), and we assumed that B3 and B4 are two

independent Brownian Motions.

However, it is interesting to consider if there is a relationship between these two

perturbations. And if we use the same data in the real world to construct these

two Brownian motions, they are very likely to be correlated [111]. And there is a

previous work focusing on correlation of Brownian motions in dynamic systems.

Hu et al. [108] consider two correlated stochastic disturbances in the form of

Gaussian white noise in an epidemic deterministic model constructed by Roberts

57
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and Jowett [18]. Also, Hening and Nguyen [3] construct a stochastic Lotka-Volterra

food chain system by introducing a number n of correlated Brownian motions

into the deterministic food chain model, where n is the total species number in

the food chain. They use a coefficient matrix to convert the vector of correlated

Brownian motions to a vector of independent standard Brownian motions. Inspired

by Emmerich [111], Hu et al. [108] and Hening [3], we are going to replace B3

and B4 by two correlated Brownian motions to introduce correlation of noises

into the SIS epidemic model. Considering two correlated Brownian motions, one

with linear diffusion coefficient and the other with Hölder continuous diffusion

coefficient, is clearly different from other work on stochastic SIS models. Though

Hölder continuous diffusion coefficients and correlations of white noises are often

involved in stochastic financial and biological models [91], there is no related work

based on the deterministic SIS model. As a result, in this chapter we aim to fill

this gap.

We now consider B3 and B4 in our model (3.5) to be correlated. Replace B3

and B4 by correlated Brownian motions E1 and E2.

dI(t) = [β(N − I(t))I(t)− (µ+ γ)I(t)]dt+ σ1I(t)(N − I(t))dE1(t)

− σ2I(t)
√
N − I(t)dE2(t). (4.1)

Note that E1 and E2 can be written as

(E1, E2)T = A(B1, B2)T ,

where (B1, B2) is a vector of independent Brownian motions and A is the coefficient

matrix where

A =

[
a1 0

a2 a3

]
, a1, a2, a3 are constants.

Note that we do not set the coefficient matrix to be A =

[
a1 a4

a2 a3

]
, where a4

is also a constant. From the knowledge of Linear Algebra we can always find an

appropriate pair of independent Brownian motions (B1, B2), which makes a4 = 0

in order to eliminate one parameter. Hence we have

dE1(t) = a1dB1(t), dE2(t) = a2dB1(t) + a3B2(t). (4.2)
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Also, define the correlation of E1 and E2

ρ =
Cov(E1(t), E2(t))√
Var(E1(t))Var(E2(t))

=
a1a2

| a1 |
√
a2

2 + a2
3

(4.3)

with

0 < |ρ| < 1.

Note that when ρ = 0, E1 and E2 are independent Brownian motions.

Now substituting (4.2) into (4.1), we have

dI(t) = [β(N − I(t))I(t)− (µ+ γ)I(t)]dt

+ [a1σ1I(t)(N − I(t))− a2σ2I(t)
√
N − I(t)]dB1(t)

− a3σ2I(t)
√
N − I(t)dB2(t), (4.4)

with initial value I(0) = I0 ∈ (0, N) and this is our new model. In the following

sections, we will focus on the long-time properties of the solution to model (4.4).

This chapter is also a published work in June 2019 in Nonlinear Dynamics [4].

4.2 Unique and Bounded Solution

We firstly want to know if the solution of our model (4.4) has a unique solution.

Also, we need this solution to be positive and bounded within (0, N) because it is

meaningless for the number of the infected population to exceed the the number

of whole population. So here we give Theorem 4.2.1.

Theorem 4.2.1. If µ + γ ≥ 1
2
(a2

2 + a2
3)σ2

2N and a1a2 > 0, then for any given

initial value I(0) = I0 ∈ (0, N), the SDE (4.4) has a unique global positive solution

I(t) ∈ (0, N) for all t ≥ 0 with probability one, namely,

P{I(t) ∈ (0, N), ∀t ≥ 0} = 1.

Proof. By the local Lipschitz condition, there must be an unique solution for our

SDE (4.4) for any given initial value. So there is a unique maximal local solution
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I(t) on t ∈ [0, τe), where τe is the explosion time [91]. Let k0 ≥ 0 be sufficiently

large to satisfy 1
k0
< I0 < N − 1

k0
. For each integer k ≥ k0, define the stopping

time

τk = inf{t ∈ [0, τe) : I(t) /∈ (1/k,N − 1/k)}.

Set inf∅ =∞. Clearly, τk is increasing when k →∞. And we set τ∞ = limk→∞ τk.

It is obvious that τ∞ ≤ τe almost surely. So if we can show that τ∞ =∞ a.s., then

τe =∞ a.s. and I(t) ∈ (0, N) a.s. for all t ≥ 0.

Assume that τ∞ =∞ is not true. Then we can find a pair of constants T > 0

and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

So we can find an integer k1 ≥ k0 large enough, such that

P{τk ≤ T} ≥ ε ∀k ≥ k1. (4.5)

Define a function V : (0, N)→ R+ by

V (x) = − log x− log (N − x) + log
N2

4
,

and

Vx = −1

x
+

1

N − x
, Vxx =

1

x2
+

1

(N − x)2
.

Let f(t) = β(N − I(t))I(t) − (µ + γ)I(t), g(t) = (a1σ1I(t)(N − I(t)) −
a2σ2

√
N − I(t)I(t),−a3σ2I(t)

√
N − I(t)) and dB(t) = (dB1(t), dB2(t)). By Itô’s

formula [91], we have, for any t ∈ [0, T ] and any k

EV (I(t ∧ τk)) = V (I0) + E
∫ t∧τk

0

LV (I(s))ds+ E
∫ t∧τk

0

Vxg(s)dB(s), (4.6)

where E
∫ t∧τk

0
Vxg(s)dB(s) = 0. Also it is easy to show that

LV (x) = −β(N − x) + (µ+ γ) + βx− (µ+ γ)
x

N − x

+
1

2

[
1

x2
+

1

(N − x)2

]
[a2

1σ
2
1x

2(N − x)2

+ (a2
2 + a2

3)σ2
2x

2(N − x)− 2a1a2σ1σ2x
2(N − x)

3
2 ]

≤ −β(N − x) + (µ+ γ) + βx+
1

2
a2

1σ
2
1(N − x)2 +

1

2
a2

1σ
2
1x

2 +
µ+ γ

N
σ2

2(N − x)
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≤ C,

where C is a constant when µ+ γ ≥ 1
2
(a2

2 + a2
3)σ2

2N , a1a2 > 0 and x ∈ (0, N).

Then we have

EV (I(t ∧ τk)) ≤ V (I0) + E
∫ t∧τk

0

Cds

≤ V (I0) + Ct, (4.7)

which yields that

EV (I(T ∧ τk)) ≤ V (I0) + CT. (4.8)

Set Ωk = {τk ≤ T} for k ≥ k1 and we have P(Ωk) ≥ ε. For every ω ∈ Ωk, I(τk, ω)

equals either 1/k or N − 1/k and we have

V (I(τk, ω)) = log
N2

4(N − 1/k)1/k
.

Hence

∞ > V (I0) + CT ≥ E[IΩk(ω)V (I(τk, ω))]

= P(Ωk) log
N2

4(N − 1/k)1/k

≥ ε log
N2

4(N − 1/k)1/k
,

and letting k →∞ will lead to the contradiction

∞ > V (I0) + CT =∞.

So the assumption is not reasonable and we must have τ∞ =∞ almost surely,

whence the proof is now complete. Compared to the result from Gray et al. [1],

the condition is now related to (a2
2 + a2

3). The square root terms are the reasons

for us to give this condition as when N − I(t) → 0,
√
N − I(t) changes rapidly.

This can also be an explanation to the readers that the condition is dependent on

a2 and a3.
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4.3 Extinction

The previous section has already provided us with enough evidence that our model

has a unique positive bounded solution. However we do not know under what

circumstances the disease will die out or persist and this is of great importance

in study of epidemic models. In this section, we will discuss the conditions for

the disease to become extinction in our SDE model (4.4). Here we give Theorem

4.3.1 and we will discuss persistence in the next section.

Theorem 4.3.1. Given that the stochastic reproduction number of our model

RS
0 := βN

µ+γ
− a21σ

2
1N

2+(a22+a23)σ2
2N−2a1a2σ1σ2N

3
2

2(µ+γ)
< 1, then for any given initial value

I(0) = I0 ∈ (0, N), the solution of the SDE obeys

lim sup
t→∞

1

t
log I(t) < 0 a.s. (4.9)

if one of the following conditions is satisfied

• 1
2
(a2

2 + a2
3)σ2

2 ≥ β and a1a2 < 0;

• 1
2
(a2

2 + a2
3)σ2

2 ≥ β + 3
2
a1a2σ1σ2

√
N − a2

1σ
2
1N and 3a2σ2 ≥ 4

√
Na1σ1;

• 1
2
(a2

2 + a2
3)σ2

2 < β ∧ (β + 3
2
a1a2σ1σ2

√
N − a2

1σ
2
1N);

• 1
2
(a2

2 + a2
3)σ2

2 ≥ β + 9
16
a2

2σ
2
2.

namely, I(t) will almost surely trend to zero exponentially. And the disease will

die out with probability one.

Proof. Here we use the Itô formula with Ṽ = log x,

log I(t)

t
=

log I0

t
+

1

t

∫ t

0

LṼ (I(s))ds+
1

t

∫ t

0

1

I(s)
g(I(s))dB(s), (4.10)

and according to the large number theorem for martingales [91], we must have

lim sup
t→∞

1

t

∫ t

0

1

I(s)
g(I(s))dB(s) = 0.
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So if we want to prove lim supt→∞
1
t

log I(t) < 0 almost surely, we need to find the

conditions for LṼ (x) to be strictly negative in (0, N). LṼ is defined by

LṼ =
1

x
[β(N − x)− (µ+ γ)]x

− 1

2x2
[a2

1σ
2
1x

2(N − x)2 + (a2
2 + a2

3)σ2
2x

2(N − x)− 2a1a2σ1σ2x
2(N − x)

3
2 ]

= β(N − x)− (µ+ γ)− 1

2
a2

1σ
2
1(N − x)2 − 1

2
(a2

2 + a2
3)σ2

2(N − x)

+ a1a2σ1σ2(N − x)
3
2 . (4.11)

And it is clear that

LṼ (N) = −(µ+ γ) < 0,

and

LṼ (0) < 0,

is ensured by RS
0 < 1. However we do not know the behaviour of LṼ in (0, N) and

it is no longer quadratic as (3.13) was, which makes it not easy to analyse. As a

result, we derive the first derivative of LṼ .

dLṼ

dx
= −β + a2

1σ
2
1(N − x) +

1

2
(a2

2 + a2
3)σ2

2 −
3

2
a1a2σ1σ2

√
N − x. (4.12)

This is a quadratic function of z =
√
N − x. So by assuming D(z) = dLṼ

dx
, we have

D(z) = a2
1σ

2
1z

2 − 3

2
a1a2σ1σ2z +

1

2
(a2

2 + a2
3)σ2

2 − β, (4.13)

where z ∈ (0,
√
N). The axis of symmetry of (4.13) is ẑ = 3a2σ2

4a1σ1
.

Here we are going to discuss different cases for (4.13).

Case 1. If 1
2
(a2

2 + a2
3)σ2

2 ≥ β and a1a2 < 0 (ẑ < 0).

From the behaviour of the quadratic function (4.13), we know that the value

of this function will be always positive in (0,
√
N). This means LṼ increases

when x increases. As LṼ (N) < 0, we have LṼ ≤ LṼ (N) < 0. This leads to

extinction. Although this condition contradicts with the condition to have a

bounded solution, we still want to specific this result. Although we do not obtain

a proof with a1a2 < 0 in the last section, it is still possible that the under some
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condition with a1a2 < 0, the solution of (4.4) is unique and bounded.

Case 2. If 1
2
(a2

2 + a2
3)σ2

2 ≥ β, D(
√
N) ≥ 0 and ẑ = 3a2σ2

4a1σ1
≥
√
N .

In this case, the value of D(z) is always positive within z ∈ (0,
√
N), which

leads to the similar result as in Case 1. So we have

1

2
(a2

2 + a2
3)σ2

2 ≥ β +
3

2
a1a2σ1σ2

√
N − a2

1σ
2
1N,

with ẑ >
√
N .

Case 3. If 1
2
(a2

2 + a2
3)σ2

2 < β and D(
√
N) < 0.

This condition makes sure that the value of D(z) is strictly negative in (0,
√
N),

which indicates that LṼ decreases when x increases. With LṼ (N) < 0 and

LṼ (0) < 0, this case results in extinction and we have

1

2
(a2

2 + a2
3)σ2

2 < β ∧
(
β +

3

2
a1a2σ1σ2

√
N − a2

1σ
2
1N

)
.

Case 4. If ∆ = 9
4
(a1a2σ1σ2)2 − 4a2

1σ
2
1[1

2
(a2

2 + a2
3)σ2

2 − β] ≤ 0 .

We have 1
2
(a2

2 + a2
3)σ2

2 ≥ β + 9
16
a2

2σ
2
2. In this case D(z) will be positive in

(0,
√
N) so LṼ increases when x increases. Similarly extinction still maintains in

this case.

In the deterministic SIS model, we have the result that if RD
0 < 1, the disease

will die out. However from our results in this section, we can see that our stochastic

reproduction number RS
0 is always less than the deterministic reproduction number

RD
0 = βN

µ+γ
, which indicates that the noise and correlation in our model help expand

the conditions of extinction. For those parameters that will not cause the dying

out of disease in the deterministic SIS model, extinction will become possible if we

consider the second perturbation (3.4) along with the correlation. On the other

hand, the LṼ is not linear after introducing the correlation, which causes the loss

in the results. For example, from the behaviour of D(z), we know that it is possible
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that LṼ can reach a negative maximum for an unknown x̂ ∈ (0, N), which clearly

leads to extinction. However, under this circumstance we are not able to derive

the maximum to give a proper condition due to the nonlinear Itô operator.

4.4 Persistence

In this section, we firstly define persistence in this paper as there are many defin-

itions in stochastic dynamic models to define persistence [1, 5, 91, 99, 100, 107,

109, 112]. However, our model (4.4) is based on [1]. As a result, we want to give

a similar definition of persistence in our model (4.4). So here we give Theorem

4.4.1 to give a condition for the solution of (4.4) oscillating around a positive

level.

Theorem 4.4.1. If RS
0 > 1, then for any given initial value I(0) = I0 ∈ (0, N),

the solution of (4.4) follows

lim sup
t→∞

I(t) ≥ ξ and lim inf
t→∞

I(t) ≤ ξ a.s. (4.14)

ξ is the only positive root of LṼ = 0 in (0, N). I(t) will be above or below the level

ξ infinitely often with probability one.

Proof. When RS
0 > 1, recall (4.11) that if Ṽ = log x

LṼ = β(N−x)−(µ+γ)− 1

2
a2

1σ
2
1(N−x)2− 1

2
(a2

2+a2
3)σ2

2(N−x)+a1a2σ1σ2(N−x)
3
2 .

We have LṼ (0) > 0 which is guaranteed by RS
0 > 1, and LṼ (N) = −(µ+γ) <

0. As LṼ (x) is a continuous function in (0, N), there must be a positive root of

LṼ (x) = 0 in (0, N). Moreover, as LṼ (0) > 0 and LṼ (N) < 0, there must be a

subinterval of (0,
√
N) for z, where D(z) < 0. Consequently, as D(z) is a quadratic

function, there are only four possible situations as follows:

• D(z) < 0 which means that LṼ (x) strictly decreases;



Chapter 4 66

• D(z) is initially positive then negative, which means that dLṼ
dx

is firstly neg-

ative then positive and LṼ (x) firstly decreases to a negative minimum then

increases to LṼ (N) < 0;

• D(z) is initially negative then positive, which means that dLṼ
dx

is firstly pos-

itive then negative and LṼ (x) firstly increases to a positive maximum and

then decrease to LṼ (N) < 0;

• D(z) is initially positive then negative, and finally positive, which means

that LṼ (x) increases to a positive maximum then decreases to a negative

minimum, and finally increases to LṼ (N) < 0.

In all of those four cases, LṼ (x) = 0 will only have one unique positive root

ξ in (0, N). Hence LṼ (x) will only have one unique positive root in (0, N) when

RS
0 > 1.

Here we recall (4.10)

log I(t)

t
=

log I0

t
+

1

t

∫ t

0

LṼ (I(s))ds+
1

t

∫ t

0

1

I(s)
g(I(s))dB(s).

According to the large number theorem for martingales [91], there is an Ω2 ⊂ Ω

with P{Ω2} = 1 such that for every ω ∈ Ω2

lim
t→∞

1

t

∫ t

0

1

I(s)
g(I(s))dB(s) = 0.

Now we assume that lim supt→∞ I(t) ≥ ξ a.s. is not true. Then there must be

a small ε ∈ (0, 1) such that

P{lim sup
t→∞

I(t) ≤ ξ − 2ε} > ε. (4.15)

Let Ω1 = {lim supt→∞ I(t) ≤ ξ−2ε}, then for every ω ∈ Ω1, there exists T = T (ω)

large enough, such that

I(t, ω) ≤ ξ − 2ε+ ε = ξ − ε, when t ≥ T (ω),

which means when t ≥ T (ω), LṼ (I(t, ω)) ≥ LṼ (ξ − ε). Then we have for any

fixed ω ∈ Ω1 ∩ Ω2 and t ≥ T (ω)

lim inf
t→∞

1

t
log I(t, ω) ≥ 0 + lim

t→∞

1

t

∫ T (ω)

0

LṼ (I(s, ω))ds+ lim
t→∞

1

t
LṼ (ξ − ε)(t− T (ω))
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≥ LṼ (ξ − ε) > 0,

which yields

lim
t→∞

I(t, ω) =∞. (4.16)

and this contradicts with ω ∈ Ω1. So we must have lim supt→∞ I(t) ≥ ξ almost

surely.

Similarly, if we assume that lim inft→∞ I(t) ≤ ξ a.s. is not true. Then there

must be a small δ ∈ (0, 1) such that

P{lim inf
t→∞

I(t) ≥ ξ + 2δ} > δ. (4.17)

Let Ω3 = {lim inft→∞ I(t) ≥ ξ+2δ}, then for every ω ∈ Ω3, there exists T ′ = T ′(ω)

large enough, such that

I(t, ω) ≥ ξ + 2δ − δ = ξ + δ, when t ≥ T ′(ω).

Now we fix any ω ∈ Ω3∩Ω2 and when t ≥ T ′(ω), LṼ (I(t, ω)) ≤ LṼ (ξ+ δ) and

so we have

lim sup
t→∞

1

t
log I(t, ω) ≤ 0 + lim

t→∞

1

t

∫ T ′(ω)

0

LṼ (I(s, ω))ds+ lim
t→∞

1

t
LṼ (ξ + δ)(t− T ′(ω))

≤ LṼ (ξ + δ) < 0,

which yields

lim
t→∞

I(t, ω) = 0. (4.18)

and this contradicts ω ∈ Ω3. So we must have lim inft→∞ I(t) ≤ ξ almost surely.

Hence the proof is complete.

Under the assumption of correlation between two white noises, this result is

not weakened. We still can find a positive level, where the solution will oscillate

around in long-term behaviour under the condition of persistence. However, we

are not able to give the explicit form of this level ξ in this section because LṼ is

not linear. Although we cannot solve LṼ = 0 in this section, we will use computer

simulation to help illustrate Theorem 4.4.1 later in the simulation section.
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4.5 Stationary Distribution

To find a stationary distribution of our SDE model (4.4) is of great important.

We can also clearly see the existence of a stationary distribution from simulation

results. In order to complete our proof, we need to initially use a well-known result

from Khaminskii as a lemma [72].

Lemma 4.5.1. The SDE model (4.4) has a unique stationary distribution if there

is a strictly proper subinterval (a, b) of (0, N) such that E(τ) < ∞ for all I0 ∈
(0, a] ∪ [b,N), where

τ = inf{t ≥ 0 : I(t) ∈ (a, b)},

also,

sup
I0∈[ā,b̄]

E(τ) <∞,

for every interval [ā, b̄] ⊂ (0, N)

Note that the other condition in Khasminskii’s theory, which requires the sum

of square of the diffusion coefficients to be bounded away from zero for all I ∈ (a, b),

is obvious for our model (4.4). Hence we do not need to point it out here. Now

we give the following Theorem 4.5.2 and the proof by using Lemma 4.5.1.

Theorem 4.5.2. If RS
0 > 1, then our SDE model (4.4) has a unique stationary

distribution.

Proof. Firstly we need to fix any (a, b) such that,

0 < a < ξ < b < N,

and recall the discussion of L̃V in last section, we can see that

LṼ (x) ≥ LṼ (0) ∧ LṼ (a) > 0, if 0 < x ≤ a, (4.19)

LṼ (x) ≤ LṼ (b) ∨ LṼ (N) < 0, if b ≤ x < N. (4.20)

Also, recall (4.10)

log I(t) = log I0 +

∫ t

0

LṼ (I(s))ds+

∫ t

0

1

I(s)
g(I(s))dB(s),
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and define

τ = inf{t ≥ 0 : I(t) ∈ (a, b)}.

Step 1. We firstly look into the case when I0 starts in (0, a]. Hence for all t ≥ 0

and any I0 ∈ (0, a], using (4.19) in (4.10), we have

E log I(t ∧ τ) = E log I0 + E
∫ t∧τ

0

LṼ (I(s))ds+ 0

≥ log I0 + E(LṼ (0) ∧ LṼ (a))(t ∧ τ).

From the definition of τ , we know that

log a ≥ E log I(t ∧ τ) when I0 ∈ (0, a].

Hence we have

E(t ∧ τ) ≤
log ( a

I0
)

LṼ (0) ∧ LṼ (a)
,

and when t→∞, we have

E(τ) ≤
log ( a

I0
)

LṼ (0) ∧ LṼ (a)
<∞,∀I0 ∈ (0, a].

Clearly this indicates the solution I(t) will rise into (a, b) in finite time.

Step 2. Now similarly, we assume the solution starts in [b,N). Consequently, for

all t ≥ 0 and any I0 ∈ [b,N), using (4.20) in (4.10), we have

E log I(t ∧ τ) = E log I0 + E
∫ t∧τ

0

LṼ (I(s))ds+ 0

≤ log I0 + E(LṼ (b) ∨ LṼ (N))(t ∧ τ).

From the definition of τ , we know that

log b ≤ E log I(t ∧ τ) when I0 ∈ [b,N).

Hence we have

log b ≤ log I0 + (LṼ (b) ∨ LṼ (N))E(t ∧ τ),

rearranging we get

E(t ∧ τ) ≤ −
log ( b

I0
)

| (LṼ (b) ∨ LṼ (N)) |
,
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and when t→∞, we conclude

E(τ) ≤
log ( I0

b
)

| (L̃V (b) ∨ L̃V (N)) |
<∞, ∀I0 ∈ [b,N).

And this means our solution I(t) will go down into (a, b) in finite time. Combining

the results from both Step 1 and Step 2, we complete the proof of Theorem

4.5.2.

Now we need to give the mean and variance of the stationary distribution.

Theorem 4.5.3. If RS
0 > 1 and denote m and v as the mean and variance of the

stationary distribution of SDE model (4.4). Then we have

βv = (βN − µ− γ)m− βm2. (4.21)

Proof. For any I0 ∈ (0, N), we firstly recall (4.4) in the integral form

I(t) = I0 +

∫ t

0

[β(N − I(s))I(s)− (µ+ γ)I(s)]ds

+

∫ t

0

[a1σ1I(s)(N − I(s))− a2σ2I(s)
√
N − I(s)]dB1(s)

−
∫ t

0

a3σ2I(s)
√
N − I(s)dB2(s).

Dividing both sides by t and when t → ∞, applying the ergodic property of the

stationary distribution [72] and also the large number theorem of martingales, we

have the result that

0 = (βN − µ− γ)m− βm2,

where m,m2 are the mean and second moment of the stationary distribution. So

we have

0 = (βN − µ− γ)m− β(v +m2),

then rearrange to have

βv = (βN − µ− γ)m− βm2.



Chapter 4 71

We have tried to get other equations of higher order moment of I(t) in order

to solve m and v but fail to get a result. This is also caused by the nonlinear  LṼ .

In Chapter 3, we can formulate another equation of m and m2 but it is clearly

not applicable in this chapter. Though we do not have an explicit formula of the

mean and the variance of the stationary distribution like [1], simulations can still

be effective to prove (4.21).

4.6 Simulation

In this section, we use Euler-Maruyama method [1, 113, 114, 115] implemented in

R to simulate the solutions in extinction, persistence and stationary distribution

examples. A wide range of parameters and initial values have been randomly

chosen to illustrate our theoretical results. Before we start to show the simulation

results, we shall initially assume that the unit of time is one day and the population

sizes are measured in units of 1 million, which is still the same as those in the

previous chapter.

Firstly, for each case in extinction we initially give a complete set of parameters

to satisfy not only the extinction conditions, but also µ + γ ≥ 1
2
(a2

2 + a2
3)σ2

2N to

make sure the uniqueness and boundedness of solutions. Also, both large and

small initial values are used in all 4 cases for better illustration. We then choose

the step size ∆ = 0.001 and plot the solutions with 5000 iterations.

Case 1.

N = 100, β = 0.4, µ+ γ = 45, σ1 = 0.02, σ2 = 0.95,

a1 = 2, a2 = −0.4, a3 = 0.9, RS
0 < 1, ρ = −0.406138 ∈ (−1, 0).

Case 2.

N = 100, β = 0.4, µ+ γ = 45, σ1 = 0.02, σ2 = 0.95,

a1 = 1.4, a2 = 0.4, a3 = 0.9, RS
0 < 1, ρ = 0.406138 ∈ (0, 1).

Case 3.

N = 100, β = 0.4, µ+ γ = 45, σ1 = 0.02, σ2 = 0.05,

a1 = 0.8, a2 = 0.5, a3 = 1.6, RS
0 < 1.
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Case 4.

N = 100, β = 0.4, µ+ γ = 45, σ1 = 0.02, σ2 = 0.9,

a1 = 3, a2 = 0.3, a3 = 1, RS
0 < 1.

The simulation results (Figure 4.1, 4.2, 4.3, 4.4) are clearly supporting our

theorem and illustrating the extinction of disease. Note that these conditions are

not all the conditions for extinction. We only considered the situation that D(z)

is either strictly positive or strictly negative. Otherwise there will be much more

complicated cases when LṼ is not monotonic in (0, N).

Then for the persistence examples, we choose the values of our parameter as

following

N = 100, β = 0.5, µ+ γ = 45, σ1 = 0.02, σ2 = 0.05.

In order to prove the generality of our result, we use two sets of different {a1, a2, a3}.

a1 = 1, a2 = 0.7, a3 = 1.6, ρ1 = 0.4008 > 0, RS
0 = 1.07375,

and

a1 = 0.1, a2 = 0.5, a3 = 0.8, ρ2 = 0.53 > 0, RS
0 = 1.1093056.

In both cases, we firstly use Newton-Raphson Method [116] in R to find a

approximation to the roots ξ of both LṼ , which are 7.092595 and 9.852507 re-

spectively. Then we use Euler-Maruyama method [1, 113] implemented in R to

plot the solutions of our SDE with both large and small initial values, following

by using red lines to indicate the level ξ. The step size is also 0.001 and 20,000

iterations is used in each example. In the following Figure 4.5 and Figure 4.6,

Theorem 4.4.1. is clearly illustrated and supported.



Chapter 4 73

0 1 2 3 4 5

0
20

40
60

80

Extinction Case 1

Time (Days)

I(
t)

 (
M

ill
io

n)

(a) I(0) = 80.

0 1 2 3 4 5

0
10

20
30

Extinction Case 1

Time (Days)

I(
t)

 (
M

ill
io

n)

(b) I(0) = 10.

Figure 4.1: Extinction Case 1.
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Figure 4.2: Extinction Case 2.
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Figure 4.3: Extinction Case 3.
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Figure 4.4: Extinction Case 4.
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Figure 4.5: Persistence Example 1.
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Figure 4.6: Persistence Example 2.
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Figure 4.7: Stationary Example 1.
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To generate stationary distribution examples, we use the following sets of our

parameters in the persistence examples

N = 100, β = 0.5, µ+ γ = 45, σ1 = 0.02, σ2 = 0.01,

which have different values of {a1, a2, a3}

a1 = 1, a2 = 0.7, a3 = 1.6, ρ1 = 0.4008 > 0, RS
0 = 1.07375,

and

a1 = 0.1, a2 = 0.5, a3 = 0.8, ρ2 = 0.53 > 0, RS
0 = 1.1093056.

Now we simulate the path of I(t) for a long run of 200,000 iterations with step size

0.001 by using the Euler-Maruyama method. And we only reserve the last 10,000

iterations to illustrate the recurrent solution of our model. We also use the samples

to calculate mean and variance of the two stationary distribution to see if they

satisfied the equation (4.21). In both cases, the results of left side and right side of

the equation (4.21) are 11.7632 and 11.7955, 0.1292906 and 0.1273215 respectively

so we can conclude that the mean and variance of the stationary distribution,

satisfy equation (4.21). Figure 4.7 and 4.8 are the histograms and empirical

cumulative distribution plots for each case of the last 10,000 iterations.

4.7 Summary

In this chapter, we generalize our model (3.5) in Chapter 3 by replacing two

independent Brownian motions with two correlated Brownian motions, which is

inspired by Hening’s work [3]. The reason of introducing correlation between noises

is obvious: it is more suitable for real problems and complicated cases in epidemics.

Results also confirm that we have stochastic reproduction number RS
0 = βN

µ+γ
−

a21σ
2
1N

2+(a22+a23)σ2
2N−2ρσ1σ2N

3
2

2(µ+γ)
strictly smaller than the basic reproduction number,

which is generalized from model (3.5). We also keep the strong persistence result

and the unique stationary distribution in the new model (4.4), which indicates

that involving correlation between the noises in the model does not change these

results but expands them.
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However, on the other hand, we lose the definitions of some features in the new

model (4.4). For instance, in the extinction section, we know that there is one

possible case that LṼ has non-boundary negative maximum, which will result in

the eradication of disease. However we are not able to give conditions depending

on such a circumstance; in the persistence section, although we know that the

solution will fluctuate around a positive level, indicating the persistence of the

disease, we do not know exactly what this positive level is; in the section on the

stationary distribution, despite the fact that we prove the existence of a unique

stationary distribution when the disease persists in the population system, we only

deduce one equation for the mean and variance. These are caused by the nonlinear

LṼ = β(N −x)− (µ+ γ)− 1
2
a2

1σ
2
1(N −x)2− 1

2
(a2

2 +a2
3)σ2

2(N −x) + ρσ1σ2(N −x)
3
2

with Ṽ = log x, or in other words, we are not able to find a proper Lyapunov

function V (I(t), t), such that the Itô operator is easily analysed.

Consequently, we still consider the model (4.4) in Chapter 4 as a general-

ization of model (3.5) in Chapter 3, which can represent a more complicated

epidemic problem in the real world. However, we would consider them separately

because the results of model (3.5) are more complete.

Here we have completed our work in Chapter 4. In the next section, we will

review our model (3.5) in a completely different direction, which is based on a

previous work from Gray et al. on the stochastic SIS model with telegraph noise.

A finite-state Markov chain will be initially explained, followed by analysis on the

solution and simulation as well. Then we will compare the results of this new

model in Chapter 5 with our previous outcomes.
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SIS Epidemic Model with Regime

Switching

5.1 Introduction

In the last two chapters, we have discussed the deterministic SIS model (3.2)

dI(t) = [β(N − I(t))I(t)− (µ+ γ)I(t)]dt,

with two perturbations (3.3)

β̃dt = βdt+ σ1dB1(t),

and (3.4)

(µ̃+ γ̃)dt = (µ+ γ)dt+ σ2

√
N − I(t)dB2(t),

and we then have our SIS SDE model with two Brownian motions (3.5).

dI(t) = [β(N − I(t))I(t)− (µ+ γ)I(t)]dt+ σ1I(t)(N − I(t))dB1(t)

− σ2I(t)
√
N − I(t)dB2(t).

In our first model (3.5), B1 and B2 were considered initially as independent

Brownian motions. And then we defined correlations between B1 and B2 to involve

correlation between white noises.

83
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However, not only white noise but also colour noise is used in classical determ-

inistic epidemic models to describe different influence of environmental noise on

population systems. For example, telegraph noise is a typical colour noise that

has been studied widely in epidemic models. Telegraph noise can be illustrated

as switching among different regimes, which can represent important information

in the model such as change of seasons in a year, or different weathers [117]. If

assuming that the future switching is only based on current state and the waiting

time for the next switching has exponential distribution, we can use a a finite-state

Markov chain to describe such behaviour.

There is much previous research based on using Markovian switching in

stochastic epidemic models to study the effect of telegraph noise. For instance,

Greenhalgh et al. [60] introduce telegraph noise in SIRS model by using a two-

state Markov chain to study the asymptotic behaviour of the solution. Mao [118]

studies the stationary distribution of SDE Lotka-Volterra systems under telegraph

noise. Also, Zhang et al. [119] consider a regime switching which includes both

white noise and telegraph noise in an SIS model under vaccination. Furthermore,

Liu and Wang [120] extend the classical theory of SDEs with single Markovian

switching by introducing a finite-state multi-Markovian switching.

Note that based on [5, 121], Gray et al. also construct a stochastic SIS model

with two-state Markov chain.

I(t)

dt
= I(t)[αr(t) − βr(t)I(t)], (5.1)

where αi = βiN − µi − γi, i is the Markov chain state. Hence in this section, we

are going to consider a finite-state Markov chain in our model (3.5) to involve the

effect of telegraph noise in our model.

Now firstly we need to define the Markov chain. Let r(t), t ≥ 0, be a right-

continuous M -state Markov chain on the probability space. r(t) only takes value

in a finite state space S = {1, 2, ...,M}, with generator Γ = (νij)M×M defined as

P{r(t+ δ) = j | r(t) = i} =

νijδ + o(δ), if i 6= j,

1 + νijδ + o(δ), if i = j,
(5.2)

where δ > 0 and νij ≥ 0 is the transition rate from state i to j for i 6= j. Note that
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νii = −Σ1≤j≤M, j 6=iνij. And Almost every sample path of r(·) is a right-continuous

step function with a finite number of sample jumps in any finite subinterval of

R = [0,∞) [95]. To be specific, there is a sequence {τk}k≥0 of finite-valued Ft-
stopping times such that 0 = τ0 < τ1 < ... < τk →∞ a.s. and

r(t) =
∞∑
k=0

r(τk)1[τk,τk+1)(t), (5.3)

where 1A denotes the indicator function of set A. Also, we define Π =

(π1, π2, ..., πM) to be the unique stationary distribution of this Markov chain and∑M
1 πi = 1. Now we suppose that in the SIS epidemic model (3.5) the parameters

µi, βi, γi, σ1,i, σ2,i are all positive numbers (i ∈ S). Then we have our previous

stochastic SIS SDE model (3.5) with Markovian switching given by

dI(t) = [βr(t)(N − I(t))I(t)− (µr(t) + γr(t))I(t)]dt+ σ1,r(t)I(t)(N − I(t))dB1(t)

− σ2,r(t)I(t)
√
N − I(t)dB2(t),

(5.4)

with I0 ∈ (0, N) and r(0) = r0 ∈ S. Also, B1 and B2 are independent Brownian

motions.

5.2 Unique and Bounded Solution

In order for the model to make sense, we need to prove that the solution of our

SDE has a unique global solution which remains within (0, N), with the initial

value I0 ∈ (0, N), r(0) = r0 ∈ S.

Theorem 5.2.1. If min
{

2(µi+γi)

σ2
2,i

}
≥ N , for all i ∈ S, then for any given initial

value I(0) = I0 ∈ (0, N) and r(0) = r0 ∈ S, the SDE has a unique global positive

solution I(t) ∈ (0, N) for all t ≥ 0 with probability one, namely,

P{I(t) ∈ (0, N), ∀t ≥ 0} = 1

Proof. It is obvious that for any i ∈ S, the corresponding coefficients of our SDE

(5.4) are locally Lipschitz continuous. And for any k and τk defined as (5.3),
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our solution of the equation (5.4) is uniquely determined on t ∈ [τk, τk+1), with

r(τk) = ik ∈ S. As a result, we see that the equation (5.4) has a unique solution

on t ∈ R+.

So now for any given initial value, there is a unique maximal local solution I(t)

on t ∈ [0, τe), where τe is the explosion time [99]. Let k0 ≥ 0 be sufficiently large

to satisfy 1
k0
< I0 < N − 1

k0
. For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, τe) : I(t) /∈ (1/k,N − 1/k)}

In this chapter, we set inf∅ = ∞. Obviously, τk is increasing when k → ∞. And

we set τ∞ = limk→∞ τk. It is clear that τ∞ ≤ τe almost sure. So if we can show

that τ∞ =∞ a.s., then τe =∞ a.s. and I(t) ∈ (0, N) a.s. for all t ≥ 0.

Here we assume τ∞ =∞ a.s. is not true. Then we can find a pair of constants

T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

So we can find an integer k1 ≥ k0 large enough, such that

P{τk ≤ T} ≥ ε ∀k ≥ k1. (5.5)

Define a function V : (0, N)→ R+ by

V (x) = − log x− log (N − x) + log
N2

4
,

which is independent of the Markov chain r(t), and

Vx = −1

x
+

1

N − x
, Vxx =

1

x2
+

1

(N − x)2
.

We let f(t) = βr(t)(N − I(t))I(t) − (µr(t) + γr(t))I(t), g(t) = (σ1,r(t)I(t)(N −
I(t)),−σ2,r(t)

√
N − I(t)I(t)) and dB(t) = (dB1(t), dB2(t)). Then by Itô’s formula

[99], we have, for any t ∈ [0, T ] and k ≥ k1

EV (I(t ∧ τk)) = V (I0) + E
∫ t∧τk

0

LV (I(s))ds+ E
∫ t∧τk

0

Vxg(s)dB(s), (5.6)

where E
∫ t∧τk

0
Vxg(s)dB(s) = 0. Also it is easy to show that

LV (x, i) = −βi(N − x) + (µi + γi) + βix− (µi + γi)
x

N − x



Chapter 5 87

+
1

2

(
σ2

1,i(N − x)2 + σ2
1,ix

2 + σ2
2,i(N − x) + σ2

2,i

x2

N − x

)
≤ −βi(N − x) + (µi + γi) + βix

+
1

2
[σ2

1,i(N − x)2 + σ2
1,ix

2 + σ2
2,i(N − x)]

≤ C, (5.7)

where C is a constant when µi + γi ≥ 1
2
σ2

2,iN for all i ∈ S and x ∈ (0, N). Hence

when min{2(µi+γi)

σ2
2,i
} ≥ N , we have

EV (I(t ∧ τk)) ≤ V (I0) + E
∫ t∧τk

0

Cds

≤ V (I0) + Ct, (5.8)

which yields that

EV (I(T ∧ τk)) ≤ V (I0) + CT. (5.9)

Now set Ωk = {τk ≤ T} for ∀k ≥ k1 and we have P(Ωk) ≥ ε. For every ω ∈ Ωk,

I(τk, ω) equals either 1/k or N − 1/k and we have

V (I(τk, ω)) = log
N2

4(N − 1/k)1/k
.

Hence

∞ > V (I0) + CT ≥ E[1Ωk(ω)V (I(τk, ω))]

≥ P(Ωk) log
N2

4(N − 1/k)1/k

= ε log
N2

4(N − 1/k)1/k
.

Let k →∞ will lead to the contradiction

∞ > V (I0) + CT =∞.

So the assumption is wrong and we must have τ∞ =∞ almost surely, whence the

proof is now complete.

The result is very similar to Theorem 3.2.1 as we are not able to find a better

substitution at this moment. However, in the following sections we will manage to
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give conditions by using the ergodic theory of the Markov chain [95, 122]. Those

results will be stated in an average-type form which combined the parameters in

each state with its corresponding Markov chain stationary distribution πi, i ∈ S.

This will let us no longer examine the solution state by state but as a whole.

5.3 Extinction

In the study of stochastic epidemic models, the extinction of disease is usually

one of the most crucial issues. So similarly, in this section, we will firstly give an

almost sure extinction condition for the disease to die out.

Theorem 5.3.1. Given that RS
0 =

∑
πiβiN∑

πi(µi+γi)
−

∑
πi(σ

2
1,iN

2+σ2
2,iN)

2
∑
πi(µi+γi)

< 1, then for any

given initial value I(0) = I0 ∈ (0, N) and r(0) = r0 ∈ S, the solution of 5.4 obeys

lim sup
t→∞

1

t
log I(t) < 0 a.s.,

if we have ∑
πi

[
1

2

(βi − 1
2
σ2

2,i)
2

σ2
1,i

− (µi + γi)

]
< 0.

Proof. Define a function by

Ṽ (x, i) = log x, x ∈ (0, N),

and we have

Ṽx(x, i) =
1

x
, Ṽxx(x, i) = − 1

x2
,

which are independent of the Markov chain state i. So by Itô’s formula, we then

obtain

log I(t)

t
=

log I0

t
+

1

t

∫ t

0

L̃V (I(s))ds+
1

t

∫ t

0

σ1,i(N − I(s))dB1(s)

− 1

t

∫ t

0

σ2,i

√
(N − I(s))dB2(s), (5.10)

where LṼ is defined by

LṼ (x, i) = βi(N−x)− (µi+γi)−
1

2
[σ2

1,i(N−x)2 +σ2
2,i(N−x)], x ∈ (0, N). (5.11)
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When t→∞ and according to the large number theorem for martingales [91, 99]

and the ergodic theory of Markov chain, from the given conditions, we must have

lim sup
t→∞

1

t
log I(t) = lim sup

t→∞

1

t

∫ t

0

LṼ (I(s))ds

≤ lim
t→∞

∫ t

0

[
1

2

(βi − 1
2
σ2

2,i)
2

σ2
1,i

− (µi + γi)

]
ds

=
∑

πi

[
1

2

(βi − 1
2
σ2

2,i)
2

σ2
1,i

− (µi + γi)

]
< 0,

as required.

From the conditions
∑
πi

[
1
2

(βi− 1
2
σ2
2,i)

2

σ2
1,i

− (µi + γi)
]
< 0, we can see that our

extinction in the solution of (5.4) does not require every state to be extinction.

In some states i, we can have 1
2

(βi− 1
2
σ2
2,i)

2

σ2
1,i

− (µi + γi) > 0 which may result in

persistence during those typical states according to Theorem 3.3.1. As long as

the average-type condition is satisfied, extinction can be approached.

5.4 Persistence

In this section, we are going to give conditions for persistence. Though there are

many different definitions in persistence, we want to find a condition of oscillating

around a positive level like Theorem 3.4.1. Hence we give the following theorem.

Theorem 5.4.1. If RS
0 =

∑
πiβiN∑

πi(µi+γi)
−

∑
πi(σ

2
1,iN

2+σ2
2,iN)

2
∑
πi(µi+γi)

> 1, then for any given

initial value I(0) = I0 ∈ (0, N) and r(0) = r0 ∈ S, the solution of (5.4) follows

lim sup
t→∞

I(t) ≥ ξ and lim inf
t→∞

I(t) ≤ ξ a.s., (5.12)

where ξ is the only positive root of K(x) = 0 in x ∈ (0, N)

K(x) =
∑

πi

[
βiN − (µi + γi)−

1

2
σ2

1,iN
2 − 1

2
σ2

2,iN

]
+
∑

πi(σ
2
1,iN +

1

2
σ2

2,i − βi)x−
1

2

∑
πiσ

2
1,ix

2. (5.13)

In other words, I(t) will be above or below the level ξ infinitely often with probability

one.



Chapter 5 90

Proof. From RS
0 > 1, we have K(0) =

∑
πi[βiN − (µi + γi)− 1

2
σ2

1,iN
2 − 1

2
σ2

2,iN ] >

0 and K(N) = −
∑
πi(µi + γi) < 0. So as a quadratic function, K(x) must

have only one positive root in (0, N). To begin the proof, we firstly assume that

lim supt→∞ I(t) ≥ ξ a.s. were not true. Then we can find a small ε > 0 for

P(Ω1) > ε where

Ω1 = {ω ∈ Ω : lim sup
t→∞

I(t) < ξ − 2ε}.

Also by the ergodic theory [95, 99], we have P(Ω2) = 1, where for any ω ∈ Ω2,

such that

lim
t→∞

1

t

∫ t

0

LṼ (ξ − ε)ds = K(ξ − ε) > K(ξ) = 0.

So for any ω ∈ Ω1 ∩ Ω2, there is a positive T = T (ω), such that ∀t ≥ T

I(t) ≤ ξ − ε.

Then we must have

lim inf
t→∞

1

t
log I(t, ω)ds ≥ lim inf

t→∞

1

t
log(I0)ds+ lim inf

t→∞

1

t

∫ T

0

LṼ (I(s, ω))ds+K(ξ − ε)

> 0.

This implies that

lim
t→∞

I(t, ω)→∞, (5.14)

which contradicts our previous assumption. Therefore lim supt→∞ I(t) ≥ ξ a.s.

must hold.

Similarly if we assume that lim inft→∞ I(t) ≤ ξ a.s. were not true, then we can

find a small δ > 0 for P(Ω3) > δ where

Ω3 = {ω ∈ Ω : lim inf
t→∞

I(t) > ξ + 2δ}.

Also we have

lim
t→∞

1

t

∫ t

0

LṼ (ξ + δ)ds = K(ξ + δ) < K(ξ) = 0,

for any ω ∈ Ω3 ∩ Ω2. Hence there is a positive T = T (ω), such that ∀t ≥ T

I(t) ≥ ξ + δ.



Chapter 5 91

Then we have that

lim sup
t→∞

1

t
log I(t, ω)ds ≤ lim sup

t→∞

1

t
log(I0)ds+ lim sup

t→∞

1

t

∫ T

0

LṼ (I(s, ω))ds+K(ξ + δ)

< 0.

This implies that

lim
t→∞

I(t, ω)→ 0, (5.15)

which contradicts our previous assumption again. Therefore lim inft→∞ I(t) ≤ ξ

a.s. must hold.

Similarly we can see from the result thatRS
0 =

∑
πiβiN∑

πi(µi+γi)
−

∑
πi(σ

2
1,iN

2+σ2
2,iN)

2
∑
πi(µi+γi)

> 1,

we have
∑
πi[βi − (µi + γi)− 1

2
(σ2

1,iN
2 + σ2

2,iN)] > 0. Hence by Theorem 3.4.1,

not all states need to be persistent. For some states i, we can have βi− (µi +γi)−
1
2
(σ2

1,iN
2 + σ2

2,iN) < 0 which possibly results in extinction. However the solution

can still persist from the point of view of the overall behaviour.

5.5 Stationary Distribution

There are many different methods to prove the stationary distribution in a

stochastic model with regime switching. For example, Zhu and Yin [123] use

Lyapunov functions to develop necessary conditions for positive recurrence [124]

and ergodicity in a hybrid system. Based on their results, Liu et al. [73] prove

that their stochastic Lotka-Volterra model has a unique stationary distribution by

proving the positive recurrence and ergodic property of the solution. However,

these results have strong connections to Khasminskii’s theory in stationary dis-

tribution. Hence in this section, we firstly recall Khasminskii’s theory [72] as a

lemma.

Lemma 5.5.1. The SDE model (5.4) has a unique stationary distribution if there

is a strictly proper subinterval (a, b) of (0, N) such that E(τ) < ∞ for all I0 ∈
(0, a] ∪ [b,N), where

τ = inf{t ≥ 0 : I(t) ∈ (a, b)}.
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Also,

sup
I0∈[ā,b̄]

E(τ) <∞,

for every interval [ā, b̄] ⊂ (0, N).

Note that the other condition in Khasminskii’s theory is clearly satisfied in

our model (5.4). So now we give the following Theorem 5.5.2 and the proof by

using Lemma 5.5.1.

Theorem 5.5.2. When RS
0 > 1, our SDE model (4.4) has a unique stationary

distribution if there exists a vector C = (C1, C2, ..., CM), Ci ∈ R, such that

diag(A) + ΓCT > 0 for all i ∈ S. (5.16)

Note that A =


α1

. . .

αM

, where αi = βiN − (µi + γi) − 1
2
(σ2

1,iN
2 + σ2

2,iN).

Also, Γ = (νij)M×M is the generator of the M-state Markov chain.

Proof. Step 1. Firstly we examine a Lyapunov function V1(x, i) = log x with

initial value I0 ∈ [b,N) and r(0) = r0. Recall (3.13) with Markov switching states

LV1(x, i) = βi(N−x)−(µi+γi)−
1

2
[σ2

1,i(N−x)2 +σ2
2,i(N−x)], x ∈ (0, N). (5.17)

And it is obvious that LV1(N, i) = −(µi + γi) < 0. So there must exist a constant

b near N , such that for any x ∈ [b,N) and i ∈ S

LV1(x, i) ≤ −q (where q is a positive constant). (5.18)

Consequently, for all t ≥ 0 and any I0 ∈ [b,N), we then have

log b ≤ E log I(t ∧ τ) = E log I0 + E
∫ t∧τ

0

LV1(I(s), r(s))ds+ 0

≤ log I0 − qE(t ∧ τ).

Rearrange and we have

E(t ∧ τ) ≤
log I0

b

q
. (5.19)
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Let t→∞, we have

E(τ) ≤
log I0

b

q
<∞,∀I0 ∈ [b,N). (5.20)

Here we complete Step 1, which clearly indicates that we can find a positive b

near the boundary N , such that the solution will proceed into (0, b) in finite time

with the initial value I0 ∈ [b,N).

Step 2. Secondly, we choose a Lyapunov function as V2(x, i) = log (eCix) =

Ci + log x, where Ci ∈ R are constants. We want to find a positive a near 0, such

that the expected time for the solution, starting in (0, a], to proceed into (a,N)

is finite. As this Lyapunov function contains parameter switching with Markov

chain states, the previous Itô formula no longer works. Instead, a generalised Itô

formula is suitable here [73, 99, 125, 126]. This formula was proved by Skorokhod

[127]. Using the generalised Itô formula, we have

LV2(x, i) =βi(N − x)− (µi + γi)−
1

2
[σ2

1,i(N − x)2 + σ2
2,i(N − x)]

+
M∑
j=1

νij(Cj + log x). (5.21)

Clearly,
∑M

j=1 νij log x = 0. So we have

LV2(x, i) = βi(N−x)−(µi+γi)−
1

2
[σ2

1,i(N−x)2 +σ2
2,i(N−x)]+

M∑
j=1

νijCj. (5.22)

And LV2(0, i) = βiN − (µi + γi) − 1
2
(σ2

1,iN
2 + σ2

2,iN) + ΣM
j=1νijCj > 0 is ensured

for all i ∈ S by the given condition (5.16). So there must exist a constant a near

0, such that for all x ∈ (0, a] and i ∈ S

LV2(x, i) ≥ p (where p is a positive constant). (5.23)

Consequently, for all t ≥ 0 and any I0 ∈ (0, a] and r(0) = r0, we then have

max
i∈S
{Ci}+ log a ≥ E log (eCr(t∧τ)I(t ∧ τ)) = Cr0 + E log I0 + E

∫ t∧τ

0

LV2(I(s))ds+ 0

≥ min
i∈S
{Ci}+ log I0 + pE(t ∧ τ).
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Rearrange and let t→∞, we have

E(τ) ≤
log a

I0
+ maxi,j∈S{Ci − Cj}

p
<∞,∀I0 ∈ (0, a]. (5.24)

This indicate that we can find a positive a near 0, such that the solution will rise

into (a,N) in finite time. Combine the results from both Step 1 and Step 2 and

(a, b) is the open set we need to find in Lemma 5.5.1. Hence we complete the

proof.

However, in this section, we do not intend to derive the mean and variance

of this stationary distribution. Now in model (5.4), all parameters have been

replaced by random variables. Thus during the deduction of mean and variance,

after applying the Itô formula to I(t) and dividing both sides by t with t →
∞, terms such as limt→∞

∫ t
0
βiI(s)ds are now related to the joint distributions

of random variables and I(t), which are very hard to compute. Hence we stop

here by only providing the proof of unique stationary distribution. We will give a

further discussion in the simulation section, by examining the integral average of

the solution 1
t

∫ t
0
I(s)ds.

5.6 Simulation

In this section, we also use Euler-Maruyama method [1, 113] implemented in R

to simulate the solutions in extinction, persistence and stationary distribution

examples. Parameters with random values are chosen to combine with different

initial values, which generate simulations that support our theoretical proof in

the previous sections. As a result, we will only give some of the examples in this

section. Before we start, we shall again assume that the unit of time is one day

and the population sizes are measured in units of 1 million. So firstly to simulate

an extinction solution, we assume a simple Markov chain generator

ν12 = 1, ν21 = 2.

So we have stationary distribution of this Markov chain

π1 =
2

3
, π2 =

1

3
.
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For both states we have N = 100 fixed. For the first example, parameters are

defined as

β1 = 0.4, µ1 + γ1 = 45, σ1,1 = 0.03, σ2,1 = 0.6;

β2 = 0.3, µ2 + γ2 = 25, σ1,2 = 0.04, σ2,2 = 0.1.

For both states we also have

1

2

(β1 − 1
2
σ2

2,1)2

σ2
1,1

− (µ1 + γ1) = −18.1;

1

2

(β2 − 1
2
σ2

2,2)2

σ2
1,2

− (µ2 + γ2) = 2.2.

Clearly by Theorem 3.3.1 and Theorem 3.4.1, the disease will die out in state

1 but persist in state 2. However from the average-type result in Theorem 5.3.1

we have

Σπi

[
1

2

(βi − 1
2
σ2

2,i)
2

σ2
1,i

− (µi + γi)

]
= −11.3 < 0,

which indicates extinction in our solution. Also in the second example, parameters

are defined as

β1 = 0.4, µ1 + γ1 = 45, σ1,1 = 0.03, σ2,1 = 0.6;

β2 = 0.5, µ2 + γ2 = 65, σ1,2 = 0.04, σ2,2 = 0.4.

For both states we also have

1

2

(β1 − 1
2
σ2

2,1)2

σ2
1,1

− (µ1 + γ1) = −18.1;

1

2

(β2 − 1
2
σ2

2,2)2

σ2
1,2

− (µ2 + γ2) = −9.88.

Clearly by Theorem 3.3.1, the disease will die out in both state 1 and state 2

and from the average-type result in Theorem 5.3.1 we have

∑
πi

[
1

2

(βi − 1
2
σ2

2,i)
2

σ2
1,i

− (µi + γi)

]
= −15.36 < 0,

which indicates extinction in our solution.

Now by using the Euler-Maruyama Method in R and assuming the step size is

0.001 and r0 = 1, we can see the results in Figure 5.1, Figure 5.2, Figure 5.3
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and Figure 5.4 clearly show that the solutions tend to 0 after 5 days, with both

large and small initial values. We can also see in Figure 5.1 and Figure 5.2 that

there are some decreasing and increasing behaviours early in the plots, indicating

the Markovian switching between extinction state to non-extinction state with

Brownian motions. The corresponding Markov chains r(t) for all cases are also

illustrated.

Similarly, for persistence examples, we want to simulate a solution of (5.4) with

a simple two-state Markov chain. Firstly we still fix N = 100. Then we want to

make the solution persist in only one of the states according to Theorem 3.4.1

but by the average-type result from Theorem 5.4.1, it still have persistence in

the whole behaviour. Hence we assume the parameters in the first example as

β1 = 0.4, µ1 + γ1 = 45, σ1,1 = 0.03, σ2,1 = 0.01.

So in state 1 we have

β1N − (µ1 + γ1)− 1

2
(σ2

1,1N
2 + σ2

2,1N) = −9.5 < 0,

which means RS
01
< 1 so by Theorem 3.3.1 disease in state 1 will die out. Also

parameters in state 2 are

β2 = 0.6, µ2 + γ2 = 35, σ1,2 = 0.04, σ2,2 = 0.1.

Then in state 2 we have

β2N − (µ2 + γ2)− 1

2
(σ2

1,2N
2 + σ2

2,2N) = 16.5 > 0.

which means RS
02
> 1 so by Theorem 3.4.1 disease in state 2 will persist. Now

we define the Markov chain generator

ν12 = 3, ν21 = 4.

So we have stationary distribution of this Markov chain

π1 =
4

7
, π2 =

3

7
.

And we can see that

π1(β1N−(µ1+γ1)−1

2
(σ2

1,1N
2+σ2

2,1N))+π2(β2N−(µ2+γ2)−1

2
(σ2

1,2N
2+σ2

2,2N)) > 0,
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which means RS
0 =

∑
πiβiN∑

πi(µi+γi)
−

∑
πi(σ

2
1,iN

2+σ2
2,iN)

2
∑
πi(µi+γi)

> 1 so our solution will be oscil-

lating around a positive level ξ = 4.478064 infinitely often by Theorem 5.4.1.

Similarly we also build a model with both states persistent according to The-

orem 3.4.1. Here we assume parameters as following in the second persistence

example.

β1 = 0.5, µ1 + γ1 = 45, σ1,1 = 0.02, σ2,1 = 0.05.

So in state 1 we let

β1N − (µ1 + γ1)− 1

2
(σ2

1,1N
2 + σ2

2,1N) = 2.88 > 0,

which means RS
01
> 1. And in state 2 we have

β2 = 0.6, µ2 + γ2 = 35, σ1,2 = 0.04, σ2,2 = 0.1.

Then in state 2 we have

β2N − (µ2 + γ2)− 1

2
(σ2

1,2N
2 + σ2

2,2N) = 16.5 > 0,

which means RS
02
> 1 so by Theorem 3.4.1 disease in both state 1 and state 2

will persist. With the same Markov chain generator as in the first example

ν12 = 3, ν21 = 4.

we have

π1(β1N−(µ1+γ1)−1

2
(σ2

1,1N
2+σ2

2,1N))+π2(β2N−(µ2+γ2)−1

2
(σ2

1,2N
2+σ2

2,2N)) > 0,

which means RS
0 =

∑
πiβiN∑

πi(µi+γi)
−

∑
πi(σ

2
1,iN

2+σ2
2,iN)

2
∑
πi(µi+γi)

> 1 so our solution will be oscil-

lating around a positive level ξ = 19.05665 infinitely often by Theorem 5.4.1.

Now we use the Euler-Maruyama method [5] in R with step size 0.001 and

r0 = 1 to simulate the solution by 50 days. Without the loss of generality, we use

both large and small initial values. Clearly the solution is oscillating around the

level ξ, which is marked as a red line in Figure 5.5, 5.6, 5.7 and 5.8. In Figures

5.5 and 5.6 we can see that during some iterations, the solution tends to zero,

and then goes up again to follow the fluctuation. This is clearly caused by the

extinction behaviour in state 1.
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To generate a stationary distribution we firstly use the same parameters as in

the persistence cases. Similarly we fix N = 100 and we assume the parameters as

follows.

Example 1.

β1 = 0.4, µ1 + γ1 = 45, σ1,1 = 0.03, σ2,1 = 0.01;

β2 = 0.6, µ2 + γ2 = 35, σ1,2 = 0.04, σ2,2 = 0.1.

Hence we have

α1 = β1N − (µ1 + γ1)− 1

2
(σ2

1,1N
2 + σ2

2,1N) = −9.5 < 0,

and

α2 = β2N − (µ2 + γ2)− 1

2
(σ2

1,2N
2 + σ2

2,2N) = 16.5 > 0.

Example 2.

β1 = 0.5, µ1 + γ1 = 45, σ1,1 = 0.02, σ2,1 = 0.05;

β2 = 0.6, µ2 + γ2 = 35, σ1,2 = 0.04, σ2,2 = 0.1.

Hence we have

α1 = β1N − (µ1 + γ1)− 1

2
(σ2

1,1N
2 + σ2

2,1N) = 2.88 > 0,

and

α2 = β2N − (µ2 + γ2)− 1

2
(σ2

1,2N
2 + σ2

2,2N) = 16.5 > 0.

With the Markov chain generator,

ν12 = 3, ν21 = 4,

it is easy to find a pair of C1 and C2 to satisfy the condition

diag(A) + ΓCT > 0.

which is required in Theorem 5.5.2. For example, C1 = 2 and C2 = 6. So

this condition is met and we have a unique stationary distribution. Now by using

Euler-Maruyama method in R, we generate a long run of 200,000 iterations with



Chapter 5 99

step size ∆ = 0.001. And we also plot the integral average of our solution, which

is 1
T

∫ T
0
I(t)dt. By Khasminskii’s theory [72], this integral will tend to the first

moment of our solution if there is a unique stationary distribution. From Figures

5.9, 5.10, 5.11 and 5.12, we can see our solution fluctuates very intensely, which

indicates the recurrence in our model (5.4). Moreover, in Figures 5.9 and 5.10,

it is clearly illustrated that there are some sequence of iterations where I(t) tends

to zero which caused by the extinction in state 1. These results give further

explanation to our persistence theory. Also, in each different cases, the integral

average of I(t) is also demonstrated, which clearly converges to a fixed positive

level, the mean of this stationary distribution. Consequently, the numerical results

support our ergodic theorem.

5.7 Summary

In this chapter, we have discussed telegraph noise in an SIS epidemic model based

on Gray et al.’s work [5]. A finite-state Markov chain is used to describe the switch-

ing between different environments in our previous model (3.5), which formulates

a stochastic SIS model with two independent Brownian motions and Markovian

switching. It is obviously a generalized model of (3.5), which can be applied to

more complicated cases in epidemic studies. From our results in each section, we

discover very interesting facts that can be related to the disturbance of telegraph

noise. From the overall behaviour of the solutions, we can conclude that if we

need to eliminate the disease, we do not need to have consistent extinction in

every state. In some certain states, disease can even persist in the population.

As long as the overall condition in Theorem 5.3.1 is satisfied, the disease will

consequently die out. A similar result is also obtained in the persistence analysis.

As long as the condition in Theorem 5.4.1 is satisfied, the disease will ultimately

persist. This is the contribution of considering telegraph noise in our model, which

indicates the expansion of extinction conditions. Moreover, while Gray et al. did

not examine the stationary distribution in their research [5], we regard this as a

very important property of the solution and in order to keep up with our previous

work in Chapter 3 and Chapter 4, we again prove the existence of a unique
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Figure 5.1: Extinction Example 1 with I(0) = 90.
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Figure 5.2: Extinction Example 1 with I(0) = 10.
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Figure 5.3: Extinction Example 2 with I(0) = 90.
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Figure 5.7: Persistence Example 2 with I(0) = 90.
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Figure 5.8: Persistence Example 2 with I(0) = 10.
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Figure 5.9: Stationary Distribution Example 1 with I(0) = 90.



Chapter 5 109

0 50 100 150 200

0
20

40
60

Stationary Distribution Example 1
     

Time (Days)

I(
t)

 (
M

ill
io

n)

(a) Solution with initial value I(0) = 10.

0 50 100 150 200

5
10

15
20

25

1

T
⌠
⌡0

T
I(t)dt

Time (Days)

 

(b) Integral average of the solution.

Figure 5.10: Stationary Distribution Example 1 with I(0) = 10.
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Figure 5.11: Stationary Distribution Example 2 with I(0) = 90.
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Figure 5.12: Stationary Distribution Example 2 with I(0) = 10.



Chapter 5 112

stationary distribution by using Khasminskii’s theory. A different generalized Itô

formula is introduced and applied in this section because we choose a Lyapunov

function defined on Markov chain.

There is no doubt that introducing telegraph noise in model (3.5) makes our

new model (5.4) more practical and complicated. However, like Chapter 4, the

results in our model are also weakened and incomplete in some aspects due to

the impact of telegraph noise. For example, although the simulation illustrates

the integral average as the mean of the stationary distribution, we are not able

to compute the explicit expression for the mean and variance; there is also an

extra condition in existence of a stationary distribution, diag(A) + ΓCT > 0,

which is caused by the use of the generalized Itô formula. Though we have tried

many Lyapunov functions, we do not know if there is a better alternative which

would not add extra requirement. We also do not know if this condition is always

satisfied for all Markov chains so we choose to keep this condition for now; to prove

the boundedness of the solution, we still require every state of the solution to be

bounded within (0, N) instead of replacing this condition by another one based

on the overall behaviour of the solution. If such a condition can be found, then

it is possible to conclude that we do not need every state to be bounded to have

overall boundedness. This means, in some of the states, solution may proceed

beyond N if it is examined individually. However, the disturbance of telegraph

noise will always pull the solution back to (0, N) by switching to other bounded

states. These are the problems that we are not able to answer now and in this

case, it is not biologically realistic in epidemic modelling. However, it would be

interesting in stochastic mathematical modelling.

Hence here we have completed the study of our three SIS epidemic models. In

the next chapter, we are going to conclude our research and summarize our results.



Chapter 6

Conclusion

In this research we construct the first model (3.5) by introducing another perturb-

ation on µ + γ based on Gray et al.’s research[1] with a different form. This SIS

SDE model (3.5) with two independent Brownian motions has very similar proper-

ties as theirs [1]. We then prove that our model has a unique and positive solution

which is bounded in (0, N) with probability 1. Then we define the stochastic re-

production number of our model, which needs a weaker condition for the model

to go to extinction compared to the classical deterministic model and the previous

model with one perturbation. When RS
0 < 1, we find the further three sufficient

conditions for the disease to die out. As long as one of these is satisfied, the disease

will die out with probability one. When RS
0 > 1, we prove that the solution of

our model will oscillate around a positive level ξ almost surely. Under this cir-

cumstance, we find the unique positive stationary distribution of our SDE model

with the expression of mean and variance. Importantly, simulations with different

values of parameters are produced to illustrate and support our theoretical results.

Our new perturbation clearly needs σ2 not too large from Theorem 3.2.1 to

ensure a unique bounded positive solution of (3.5). However, this perturbation

extends the requirements for RS
0 < 1 compared to the deterministic SIS model and

the results in [1]. This means for those parameters that will not cause the disease

to die out in the deterministic model as well as Gray’s model [1], extinction will

become possible if we add the new perturbation. Meanwhile, we find the unique

113
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stationary distribution with no extra conditions, which means that adding our new

perturbation in Gray’s model [1] will have similar results.

Secondly, we replace independent Brownian motions in our previous model (3.5)

by correlated Brownian motions which leads to not only the increasing number of

noises compared to Gray et al.’s work [1], but also turning the drifting coefficient

into a composite term. Then we prove that the stochastic reproduction number

RS
0 is the key to define the extinction and persistence of the solution. Similar to

our model (3.5), with RS
0 < 1 and extra conditions, the disease will die out. When

RS
0 > 1, we prove that the solution will oscillate around a certain positive level.

Moreover, when RS
0 > 1, there is a unique stationary distribution of the solution.

Compared to [1], our LṼ is not quadratic any more, which results in more

general and complicated conditions to both extinction and persistence sections.

Moreover, compared to our first model [2], in model (4.4) [4] we assume that the

Brownian motions are correlated and hence the effects of the correlations on the

behaviours of our SIS system are studied. The analytical results including the

form of RS
0 and the additional restrictions indicate that the correlations between

the Brownian motions do make a significant difference. Also, though we do not

know the explicit expression of the persistence level ξ, numerical method are then

used to find the exact value under certain circumstances. On the other hand, we

have tried to get the explicit expression of the mean and variance by deducing

higher moments of I(t) but we are not able to get a better result at this time.

Finally, we review our first model (3.5) and introduce telegraph noise by using

Markovian switching. This leads to our third model (5.4), which contains two

independent white noises and also a telegraph noise. Model (5.4) can be regarded

as combination and extension of both [1] and [5]. Then the new stochastic re-

production number RS
0 is also stated, and we give the extinction and persistence

conditions of the solution similarly. We also prove that there is a unique station-

ary distribution when the solution persists with an extra condition on the Markov

chain generator.

Compared to model (3.5), the main difference is that the conditions of extinc-

tion and persistence are related to the stationary distribution of the Markovian
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switching. These conditions provide requirements on the whole behaviour of the

solution instead of every state of it, which reflects the impact from adding tele-

graph noise in our epidemic SIS system. This means, for example, if extinction is

needed in our model, only one state needs to go to extinction if we choose a proper

Markov chain. Also, in order to find a stationary distribution, we use a generalised

Itô formula [99]. A condition, diag(A)+ΓCT > 0, is stated in the theorem, but we

do not know if we can always find a suitable vector C for any Markov generator

to satisfy the inequality. Moreover, simulation results are then illustrated, which

clearly support our previous theory.

Consequently, from our results in three models, we can conclude that both

white noise and telegraph noise have positive impacts on epidemic models. Al-

though there are potential improvements in our models that still yet to be ex-

plored, it is no doubt that we have formulated three models to generalize the work

from [1, 5] to stabilize those unstable cases in their work, which are also more

practical and reasonable in epidemic study.
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[127] Anatolĭı Skorokhod. Asymptotic methods in the theory of stochastic differ-

ential equations, volume 78. American Mathematical Soc., 2009.


	Introduction
	Infectious Disease in Human Society
	Deterministic Epidemic Models
	Environmental Noises
	Stochastic Epidemic Models

	Stochastic Theory
	Basic Notations of Probability Theory
	Stochastic Processes
	Brownian Motions
	Stochastic Integral
	Markov Process
	Itô's Formula
	Stochastic Differential Equation
	SDEs with Markovian Switching
	Stationary Distribution

	SIS Epidemic Model with two Independent Brownian Motions
	Introduction
	Unique and Bounded Solution
	Extinction
	Persistence
	Stationary Distribution
	Simulation
	Summary

	SIS Epidemic Model with two Correlated Brownian Motions
	Introduction
	Unique and Bounded Solution
	Extinction
	Persistence
	Stationary Distribution
	Simulation
	Summary

	SIS Epidemic Model with Regime Switching
	Introduction
	Unique and Bounded Solution
	Extinction
	Persistence
	Stationary Distribution
	Simulation
	Summary

	Conclusion
	Bibliography

