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Abstract

Reusable Launch Vehicles (RLVs) are becoming a relevant topic within the space in-

dustry. These vehicles operate in a broad range of flight envelopes necessitating greater

autonomy to compensate for uncertainties or disturbances in real time. Therefore, intel-

ligent Guidance and Control (G&C) architectures are required. The research presented

in this thesis aims at investigating the application of Genetic Programming (GP) in

an Intelligent Control (IC) setting to perform the real-time guidance of a RLV. The

thesis begins with a literature review of the state-of-the-art of G&C and IC methods

and applications. Following this, a novel taxonomy of IC was developed, aimed at

classifying the applications’ levels of intelligence. The applicability of GP in an IC

setting is then investigated, both as a standalone approach and when hybridized with a

Neural Network (NN). The standalone GP is applied to perform the real-time guidance

of a Goddard rocket. This application, the first of its kind for an aerospace vehicle,

showcases the ability of GP to produce online guidance commands to successfully track

a reference trajectory when external disturbances are applied. Simultaneously, a novel

hybrid IC scheme named Genetically Adapted Neural Network-based Intelligent Con-

troller (GANNIC) is introduced. GANNIC is composed of a NN, used as a nonlinear

agent, whose weights are updated online by a set of differential equations found offline

using GP. Applied to real-time reentry guidance of an RLV, GANNIC proves effec-

tive in generating online guidance commands to compensate for uncertainties, and its

robustness is assessed through a statistical study. Lastly, as a byproduct of the re-

search, the Inclusive Genetic Programming (IGP), a novel GP heuristic, is introduced.

The IGP advances the state-of-the-art of GP algorithms by addressing the population’s

diversity issue while demonstrating its efficacy in G&C applications.
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Chapter 1

Introduction

Over the preceding two decades, Artificial Intelligence (AI) has emerged as an important

technological force in industrial applications, representing a dynamic and expanding

field of research. The global output for AI research has witnessed a surge of more than

600% from 2000 to 2019.
1

The applications of AI can be found across diverse domains,

ranging from medicine to social networks, showcasing its inherent versatility.
2

Considerable research has been dedicated to the use of AI in space applications.

Russo et al. [6] conducted a comprehensive survey on the applications of AI in earth

observation, space exploration, and mission design and planning. Additionally, Meß et

al. [7] focused their survey on AI applications in autonomous planning and schedul-

ing, self-awareness, Fault, Detection, Isolation and Recovery (FDIR), on-board data

analysis, as well as on-board operations and processing of earth-observation data. An-

other stream of research concentrates on the application of AI in Guidance and Con-

trol (G&C) systems. Izzo et al. [8] analyzed AI trends in spacecraft dynamics and

control, emphasizing the potential for increased autonomy and enhanced system per-

formance through greater integration of AI in the space domain. They also anticipate

an increase in research related to the validation and explainability of AI systems.

Focusing on the application of AI to G&C systems, Intelligent Control (IC) rep-

resents a family of G&C schemes built using AI techniques and capable of adapting

1https://www.nature.com/articles/d41586-020-03409-8
2https://cloud.google.com/discover/ai-applications
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or learning online. Intelligent systems exhibit an enhanced capability to handle uncer-

tainties compared to traditional G&C approaches. They can use online-acquired data

and can be applied to nonlinear systems without the need for linearization. Although

the term IC was initially introduced in 1971 [9], this G&C paradigms have gained in-

creasing popularity in the past two decades due to rapid advancements in hardware

technology and AI research.

Despite notable examples of IC applications in the space industry found in the

literature, such as NASA’s Earth Observing One spacecraft [10], its application is still

constrained by the demanding robustness and safety requirements typical of aerospace

applications. As summarized by Cohen [11], this constraint primarily arises from the

black-box nature of AI techniques, leading to challenges in understanding the decision-

making processes of these algorithms. Furthermore, there is a lack of a well-defined

framework for systematically analyzing the stability and robustness of IC approaches.

As discussed in the subsequent chapter, existing approaches aim to address both of

these challenges, but further research is necessary to make them applicable and widely

accepted in the aerospace industry.

Among AI techniques, Genetic Programming (GP), an Evolutionary Algorithm

(EA), exhibits potential for application in G&C systems. Notably, GP proved capable

of generating control schemes that compete with human-designed ones, as reported by

Koza et al. [12]. In GP individuals are encoded as symbolic mathematical models

providing the potential to obtain interpretable solutions. This characteristic makes

GP particularly valuable for understanding and analyzing the evolved control schemes.

Additionally, Lyapunov stability analysis can be applied to a GP-based controller, as

shown by Ali et al. [13].

Despite the potential of GP, the literature offers limited instances of its application

in an IC context, as observed in two reports on IC applications produced within the

scope of this thesis [14, 15]. Notably one of the reasons is its computational costs, which

limits its applicability in real time. To overcome this, the hybridization with another

AI approach, such as a Neural Network (NN), can be beneficial and it is investigated

in this thesis.
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Concerning aerospace applications, in recent times the space industry has redirected

its focus towards Reusable Launch Vehicles (RLVs), a market projected to experience

substantial growth from $1.94 billion in 2023 to $5.41 billion by 2030.
3

This growth

in interest stems primarily from economic and environmental considerations, where

the complete or partial reusability of launchers is anticipated to result in cost reduc-

tions of up to 65%, alongside a reduction in overall environmental impact.
4

Within the

broader category of RLVs, the spaceplane configuration has gained significant momen-

tum, prompting numerous new industrial developments. 5,6

However, RLVs encounter several technical challenges. Wang et al. [16] empha-

size, particularly in the context of Vertical Take-Off and Vertical Landing (VTVL)

vehicles, the necessity for research in trajectory design and optimization technology,

high-precision guidance and control technology for return manoeuvres, and landing

support technology. The authors conclude that AI can play a pivotal role in enhancing

autonomy, enabling faster responses to emergencies and off-nominal conditions without

relying solely on commands from ground personnel.

Regarding RLVs configured as spaceplanes or hypersonic vehicles, Castaldi et al.

[17] assert that maintaining controllability across a broad range of flight envelopes,

adhering to constrained paths due to structural limitations, and managing uncertainties

and external disturbances arising from extreme atmospheric conditions pose significant

challenges. These challenges could be overcome by applying AI to the G&C scheme

of such vehicles, to enhance autonomy and fortify robustness against uncertainties and

disturbances.

1.1 Research Objectives

The main aim of the work has been the investigation of approaches to enhance the au-

tonomy and robustness of RLVs against uncertainties and disturbances through online

3https://www.fortunebusinessinsights.com/reusable-launch-vehicle-market-106803
4https://www.kdcresource.com/insights-events/the-rise-of-reusable-rockets-transform

ing-the-economics-of-space-travel/
5https://www.space.com/polaris-spaceplanes-mira-light-flight-test-campaign-complete
6https://www.dawnaerospace.com/spacelaunch
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adaptation. In particular, the research activity has focused on the application of GP

for IC, both as a standalone method and as part of a hybrid approach, in combination

with a NN.

In pursuit of this aim, the following specific objectives are pursued:

1. Investigate the current state-of-the-art of IC approaches, both within and outside

the aerospace industry, and assess the level of intelligence exhibited by existing

applications. This research aims to gain insights into the utilization of GP and

NNs in the domain of IC.

2. Advance the state-of-the-art of GP algorithms applied to IC.

3. Develop a novel IC approach by hybridizing GP and NN algorithms. Subse-

quently, apply the developed IC scheme to perform real-time guidance for a RLV.

The central focus of this thesis revolves around the development of novel GP-based

algorithms specifically designed for the IC of RLV. In doing so, aspects concerning the

implementation, computational feasibility and overall performance were investigated.

Improving the interpretability of the G&C models produced by the designed algorithms,

and the development of a framework to assess their stability was initially considered

but was deemed out of the scope of this first investigation.

1.2 Contributions

Some of the work presented in this thesis has been previously published in journal

articles or conference proceedings and presented at international conferences and work-

shops. In the following, a list of the publications relevant to this thesis is listed.

1.2.1 Journal publications

1. Wilson, C.; Marchetti, F.; Di Carlo, M.; Riccardi, A.; Minisci, E. Classifying

Intelligence in Machines: A Taxonomy of Intelligent Control. Robotics 2020, 9,

64. https://doi.org/10.3390/robotics9030064 [1]
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2. Marchetti, F., Minisci, E., Riccardi, A.: Single-Stage to Orbit Ascent Trajec-

tory Optimisation with Reliable Evolutionary Initial Guess. Optimization and

Engineering (2021) [18]

3. Marchetti, F.; Minisci, E. Genetic Programming Guidance Control System for

a Reentry Vehicle under Uncertainties. Mathematics 2021, 9, 1868. https:

//doi.org/10.3390/math9161868 [4]

4. Marchetti, F.; Minisci, E. Genetically Adapted Neural Network-Based Intelli-

gent Controller for Reentry Vehicle Guidance Control. [SUBMITTED TO] Soft

Computing [2]

1.2.2 Peer-reviewed conferences publications

1. Wilson C., Marchetti F., Di Carlo M., Riccardi A. and Minisci E., ”Intelli-

gent Control: A Taxonomy,” 2019 8th International Conference on Systems and

Control (ICSC), 2019, pp. 333-339, doi: 10.1109/ICSC47195.2019.8950603. [19]

2. Marchetti F., Minisci E. and Riccardi A., ”Towards Intelligent Control via

Genetic Programming,” 2020 International Joint Conference on Neural Networks

(IJCNN), 2020, pp. 1-8, doi: 10.1109/IJCNN48605.2020.9207694. [3]

3. Marchetti F., Minisci E. (2020) A Hybrid Neural Network-Genetic Program-

ming Intelligent Control Approach. In: Filipič B., Minisci E., Vasile M. (eds)

Bioinspired Optimization Methods and Their Applications. BIOMA 2020. Lec-

ture Notes in Computer Science, vol 12438. Springer, Cham. https://doi.or

g/10.1007/978-3-030-63710-1_19 [20]

4. Marchetti F., Minisci E. (2021) Inclusive Genetic Programming. In: Hu T.,

Lourenço N., Medvet E. (eds) Genetic Programming. EuroGP 2021. Lecture

Notes in Computer Science, vol 12691. Springer, Cham. https://doi.org/10

.1007/978-3-030-72812-0_4 [21]
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1.2.3 Workshop presentations

1. Marchetti F., Minisci E., Riccardi A. . Trajectory Optimization of a Reusable

Launch Vehicle. 17th Workshop on Advances in Continuous Optimization (EU-

ROPT 2019). Glasgow, 2019. https://pure.strath.ac.uk/ws/portalfiles

/portal/103324763/Marchetti_etal_Europt_2019_Trajectory_optimizati

on_of_a_reusable_launch_vehicle.pdf [22]

2. Marchetti F., Minisci E., Riccardi A. . Towards Intelligent Control via Ge-

netic Programming. 5th workshop on Optimisation in Space Engineering (OSE).

Ljubljana, 2019. https://pure.strath.ac.uk/ws/portalfiles/portal/1033

24511/Marchetti_etal_OSE_2019_Towards_intelligent_control_via_gene

tic_programming.pdf [23]

1.2.4 Technical reports

1. Riccardi A., Minisci E., Di Carlo M., Wilson C., Marchetti F.. Assessment

of Intelligent Control Techniques for Space Applications. ESA Contract Nr.

4000124916/18/NL/CRS/hh. 2018. [14]

2. Riccardi A., Minisci E., Di Carlo M., Wilson C., Marchetti F.. Assessment

of Intelligent Control Techniques for Space Applications - Gap Analysis. ESA

Contract Nr. 4000124916/18/NL/CRS/hh. 2018. [15]

Other works, not relevant to this thesis, were produced during the PhD program:

the journal paper [24], the peer reviewed conference papers [25, 26] and the workshop

presentation [27].

The code developed for [3, 20, 21, 4] and for the test case in section 5.3 is publicly

available at https://github.com/strath-ace/smart-ml.

1.3 Thesis structure

The structural arrangement of the thesis is illustrated in Figure 1.1, delineating the

various components. Novel contributions are highlighted through the use of bold for-
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matting.

Chapter 1: Introduction

Chapter 2: A Review of Guidance and Control Approaches for 
Reusable Launch Vehicles

Chapter 3: Intelligent control

Chapter 4: Genetic Programming for G&C and Intelligent Control

Chapter 5: Genetically Adapted Neural Network-Based 
Intelligent Controller (GANNIC)

Taxonomy of Intelligent 
Control

Inclusive Genetic Programming

Genetic Programming for Intelligent Control: Real-Time Guidance for 
Access to Space

Chapter 6: Conclusions

IC application of standalone GP 
algorithm to the real-time ascent 
guidance of a rocket

IC application of the GANNIC algorithm 
- a GP and NN hybrid - to the real-time 
reentry guidance of a RLV

Figure 1.1: Thesis structure. The novel contributions are highlighted in bold.

Chapter 2 provides a comprehensive overview of the prominent G&C techniques

employed in the aerospace industry, with a specific focus on RLVs applications. This

high-level exposition serves to familiarize the reader with the relevant background infor-

mation essential for contextualizing the research undertaken in this thesis and gaining

insight into the current state-of-the-art in the field.

In chapter 3, the discipline of IC is described, encompassing an analysis of applica-

tions within the IC domain. A review of existing literature underscores the necessity

for a more precise classification of what qualifies as IC and delves into the varying

levels of intelligence exhibited by IC applications. Consequently, a novel taxonomy of

IC applications is introduced and applied to enhance clarity and categorization.
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Chapter 4 provides an in-depth exploration of GP and its application in the domain

of IC. This is demonstrated by applying GP to perform the real-time ascent guidance

of a Goddard rocket. The ascent trajectory is dynamically controlled by an online-

generated GP guidance law, enabling an effective response to external disturbances.

The chapter concludes with the description and test of a byproduct of the performed

research. A novel GP heuristic named Inclusive Genetic Programming (IGP) was de-

signed to address the population’s diversity issue and proved efficient in solving G&C

problems.

In chapter 5, the formulation of the innovative Genetically Adapted Neural Network-

based Intelligent Controller (GANNIC) scheme - a GP and NN hybrid - is presented.

The chapter describes the developmental process of the GANNIC scheme, addressing

critical aspects that may impact its performance. The chapter concludes with the

application of GANNIC for real-time reentry guidance of a RLV model. The GAN-

NIC scheme robustness is assessed by incorporating uncertainties in the environmental

models.

Chapter 6 contains a summary of the thesis, highlighting the novel contributions

and acknowledging current limitations. Additionally, potential directions for future

research are discussed.

8



Chapter 2

A Review of Guidance and

Control Approaches for Reusable

Launch Vehicles

2.1 Introduction

The aerospace industry is an exemplary environment for the advancement of Guidance

and Control (G&C) methods, due to the stringent requirements that aerospace sys-

tems must meet and the inherent complexity of these systems. Essential criteria, in-

cluding high performance, reliability, robustness, and safety, highlight the challenges

faced by aerospace systems as detailed in [28]. Moreover, their dynamics are gov-

erned by highly nonlinear equations, and their performance is susceptible to various

uncertainties. These uncertainties may arise from the complex nature of these systems,

involving unknown interactions between subsystems, as described by Haibin et al. [29]

in the context of hypersonic vehicles. Alternatively, uncertainties may arise from lim-

ited or incomplete knowledge of the operating environment, as observed in Mars entry

vehicles [30] or deep space exploration missions [31].

This chapter provides the reader with an overview of the prevalent G&C schemes

commonly employed in the context of Reusable Launch Vehicles (RLVs), focusing on the

schemes’ capability to handle uncertainties and to adapt to unforeseen situations. Based

9
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on the performed literature review, an analysis of the following aspects is performed:

1) strengths and limitations of the state-of-the-art G&C schemes applied to RLVs,

specifically focusing on their uncertainties handling capabilities; 2) how Intelligent Con-

trol (IC) could help in overcome limitations of the treated G&C schemes.

The chapter is structured as follows: section 2.2 presents a brief historical perspec-

tive on the evolution of control systems based on their capability to handle uncertainties,

progressing from open-loop configurations to IC. Sections 2.3, 2.4 and 2.5 focus on opti-

mal control, robust control and adaptive control respectively. For each of these control

approaches the most widespread techniques applied to RLVs G&C are presented. For

each technique, the discussion is structured with a brief introduction on its theoretical

formulation and working principles, followed by examples of its application to RLVs

or hypersonic vehicles, and concluded with comments on its strengths and weaknesses.

Only applications involving ascent and re-entry phases of RLVs and hypersonic vehicles

are considered since this is the focus of this thesis. Moreover, only works published

from 2015 to the present day are taken into consideration, to assess the recent trends

in the aerospace industry. In section 2.6, an introduction to IC and Artificial Intelli-

gence (AI)-based G&C systems is presented, highlighting key AI techniques employed

in RLVs G&C design. Section 2.7 presents a comparative analysis of the discussed

G&C techniques addressing their strengths and limitations, and underscoring the sig-

nificance of IC in overcoming the identified challenges. The chapter ends with section

2.8 comprising a summary and conclusive remarks.

2.2 Brief History of Control Systems Development
1

To control a human-made machine, or plant, involves applying specific inputs to obtain

desired responses or outputs. Over the past century, control theory has undergone

significant advancements, enabling the development of controllers ranging from simple

devices like home thermostats to complex systems such as the attitude control system

of spacecrafts.

In the historical evolution of control systems, there has been a continuous adaptation

1Part of the content of this section was previously published in the journal paper [1].
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to handle increasing uncertainties, enhancing reliability and robustness. The most basic

architecture of a control system is the open-loop scheme illustrated in Figure 2.1, where

the system’s behavior is not considered, and a predefined sequence of control actions is

applied.

desired
state plantcontroller

Figure 2.1: Open loop control scheme. [1]

Open-loop control systems demonstrate optimal performance only in an ideal sce-

nario where the system and environment are perfectly understood. Acknowledging the

presence of imperfections in mathematical models, the feedback control architecture was

introduced by Nyquist in 1932 [32], as depicted in Figure 2.2. In a feedback control sys-

tem, the current states of the plant are employed to adjust control actions, facilitating

the accomplishment of specific tasks, such as following a predefined trajectory.

plantcontrollerdesired
state

-

+

Figure 2.2: Feedback control scheme. [1]

The earliest feedback control systems were linear and designed using graphical tech-

niques in the frequency domain. Pioneered by Bode, Ziegler, and Nichols [33], these sys-

tems incorporated the widely used Proportional-Integral-Derivative (PID) controller,

which continues to be a widespread controller in industrial applications.

To enhance the performance and robustness of linear controllers, optimal control

and robust control strategies were introduced. Optimal control, inspired by Bellman’s

foundational work [34], focuses on optimizing control system performance based on

predefined metrics. This resulted in the development of linear optimal control methods

such as Linear Quadratic Regulator (LQR), H2, and Model Predictive Control (MPC),

as well as nonlinear optimal control formulations. Conversely, robust control aims to
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plantcontrollerdesired
state

-

+

unknown
disturbances

sensor
noise

adaptation/learning
mechanism

+
+

+
+

Figure 2.3: Adaptive or learning control scheme [1].

maintain controllability in the presence of uncertainties, allowing the control system to

directly address them. This led to the creation of controllers such as H∞, Sliding Mode

Control (SMC), backstepping, and dynamic inversion-based controllers.

Control theory advanced further with the introduction of adaptive controllers. An

adaptive controller, depicted in Figure 2.3, enhances the performance and robustness of

optimal and robust controllers by incorporating an adaptive capability into the control

scheme. Unlike optimal and robust controllers, which are designed offline to handle

expected uncertainties at design time, an adaptive controller can dynamically adjust

its parameters or objectives online in response to changes in the environment or plant

conditions. This adaptation capability renders the controller nonlinear, in contrast to

optimal and robust controllers explicitly designed for linear systems [35].

The next advancement in control theory is represented by intelligent controllers.

As further detailed in chapter 3, a control system earns the label ”intelligent” when

it can dynamically adapt online and incorporates an AI technique. The integration of

AI enhances the adaptation capabilities of a control system, enabling it to handle a

broader spectrum of uncertainties and effectively utilize the data generated by sensors.

12
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2.3 Optimal Control Approaches

Optimal control focuses on designing a control law for a given plant by optimizing a

specified performance measure. For instance, in the context of a launch vehicle, tra-

jectory optimization may seek to minimize fuel consumption. Rooted in the calculus

of variations, the history of optimal control spans over 360 years, becoming particu-

larly relevant from the 1960s with the advent of technological advancements, such as

computers, enabling the evaluation of optimal trajectories for aerospace systems [36].

The general formulation of an optimal control problem is presented in Equation

2.1. Here, J is a defined cost functional to be minimized, x represents state variables,

and u denotes control variables within the admissible control set U . The states x

must adhere to the initial value problem defined by the system’s dynamic equations,

and ψ represents a set of final conditions. Additionally, S denotes a set of inequality

constraints that may or may not be considered.

min
u(t), t ∈ [t0, tf ]

J(x(t),u(t), t)

s.t. ẋ(t) = f(x(t),u(t), t),

x(t0) = x0,

u ∈ U,

ψ(tf , xf ) = 0,

S(x) ≥ 0

(2.1)

Various optimal control approaches have been devised for specific applications based

on the formulation and solution of the optimization problem. The most pertinent ones

for controlling RLVs are discussed in the following. For an in-depth exploration of

optimal control, readers are directed to [37, 38, 39, 40].

2.3.1 Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) stands out as one of the most widely adopted

optimal control approaches, characterized by its simplicity and assured optimality. An
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LQR controller enables the identification of the optimal trade-off between control effort

and stability for the controlled system.

Plant

u

x

-Kr

Figure 2.4: LQR generic scheme

Considering a system as illustrated in Figure 2.4, the objective is to determine the

set of control gains Kr capable of minimising the cost function in Equation 2.2

J(t) =

∫ tf

t0

x(t)TQx(t) + u(t)TRu(t)dt (2.2)

The gains Kr are computed as outlined in Equation 2.3, where X represents the

solution of the Riccati equation provided in Equation 2.4.

Kr = R−1BTX (2.3)

ATX + XA−XBR−1BTX + Q = 0 (2.4)

For more information on the LQR controller, the reader is referred to [41, 42].

Regarding some examples of the LQR controller applied to aerospace vehicles, in a

study by Lu et al. [43], an LQR controller was formulated to track the reentry trajectory

of a hypersonic vehicle, accounting for aerodynamic disturbances. The model under-

went small perturbations linearization, and the controller’s robustness was evaluated

by varying the parameter set. Li et al. [44] devised an LQR controller for the air rud-

der of a rocket. Through hardware-in-the-loop simulation, the controller demonstrated

enhanced tracking accuracy, stability margin and dynamic characteristics compared to

a traditional PID controller. A last example is the work of Wang et al. [45], where
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they proposed a novel G&C scheme for the reentry phase of a hypersonic vehicle. They

adopted an unscented Kalman filter to estimate online the aerodynamic coefficient and

reevaluated online the trajectory using a pseudospectral method. A LQR scheme is

used to perform the trajectory tracking guidance and an SMC is used for attitude con-

trol. Their approach proves capable of achieving satisfactory tracking errors on the

states under large aerodynamic coefficients errors.

Despite their simplicity and optimality guarantees, LQR controller’s applicability is

limited to linear systems. Linearization techniques are required, introducing modelling

errors, and the guaranteed stability margins may not apply to real systems “due to

the constraints in the selection of measurable states” as explained by Zhang et al.

[46]; Additionally, LQR controllers tend to fail when uncertainties and disturbances

are considered. To address this issue, Linear Quadratic Gaussian (LQG) regulators are

introduced. However, LQG regulators have drawbacks, such as a lack of guaranteed

stability margins, as demonstrated by Doyle [47].

2.3.2 Trajectory Optimization

In contrast with LQR control, where the considered controller is of the feedback type,

trajectory optimization involves techniques that aim to find an optimal open-loop con-

trol trajectory. Trajectory optimization approaches can be classified as direct or indirect

based on how the optimization problem in Equation 2.1 is formulated.

Indirect optimal control reduces the optimization problem to a Boundary Value

Problem (BVP). This method requires deriving the adjoint equations of the considered

system analytically along with their gradients. However, this step can be cumbersome

for complex systems, and the results are highly dependent on the provided initial guess.

Achieving good results without a proper initial guess is challenging. Moreover, indirect

optimal control approaches struggle with nonlinear constraints, making them rarely

used for real-world applications. Nevertheless, some recent applications can be found

in the literature [48, 49], although their number is extremely limited.

On the other hand, if the optimization problem is reduced to a Nonlinear Program-

ming (NLP) problem, the approach is defined as direct optimal control. The NLP

15



Chapter 2. A Review of Guidance and Control Approaches for Reusable Launch
Vehicles

problem is then solved using a numerical optimization solver [50, 51]. This allows for

consideration of nonlinear equality and inequality constraints, as well as boundary con-

straints on the optimization variables. Several transcription techniques can be used to

reduce the original optimization problem to a NLP problem. Two major branches can

be identified: shooting methods and collocation methods.

Shooting methods involve placing a defined number of control points along the tra-

jectory, interpolating them to find a control law for each trajectory point, and using

such a control law to propagate the system’s dynamics equations. The optimizer aims

at finding the optimal sequence of control points to satisfy the defined objective func-

tion. Additionally, the original trajectory can be split into n smaller sub-trajectories

within the limits of the initial trajectory. Then n propagations are performed to reduce

errors introduced by numerical propagation. This is called multiple-shooting transcrip-

tion, schematically depicted in Figure 2.5a. In contrast, with collocation methods, the

optimizer places a certain number of control and state points along the trajectory, as

depicted in Figure 2.5b. The state points must satisfy the equality constraints with the

system’s dynamic equations, which are evaluated using the control points provided by

the optimizer. Therefore, the optimization seeks to find the optimal sequence of control

and states that minimizes the chosen objective function while satisfying the equality

constraints on the states. Both approaches have pros and cons. Shooting methods are

more precise, as the trajectory is obtained by propagating the system’s dynamics using

the optimized control points. In contrast, with collocation methods, the trajectory is

obtained as a result of the equality constraints satisfaction and may not necessarily

match the trajectory obtained by propagating the system’s dynamics using the optimal

control points. Nonetheless, collocation methods are faster, as the propagation of the

system’s dynamics is a time-consuming process, and with enough collocation points,

accurate results can be obtained.

Trajectory optimization has a rich history of successful applications in the aerospace

industry, particularly for ascent vehicles [52]. A few examples are discussed in the fol-

lowing. In one of the studies conducted during this thesis development [18], a trajectory

optimization analysis was performed on the ascent trajectory of a RLV using a direct
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(a) Multiple-Shooting Transcription [18]
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(b) Collocation Transcription

Figure 2.5: Main optimal control transcriptions: a) Multiple-shooting, the blue dots
are the control points, and the red triangles are the states. b) Collocation, the blue dots
are the control points, the red triangles are the states points chosen by the optimizer,
and the green squares are the states evaluated with the system’s dynamics. The black
boxes denote where equality constraints are applied in both images.

multiple-shooting approach. The initial guess for the optimization process was dis-

covered through a combination of two evolutionary algorithms designed by one of the

authors [53, 54]. Kumar et al. [55] tackled the trajectory optimization problem for

a hypersonic vehicle using a Genetic Algorithm (GA). Path and terminal constraints

were imposed for the considered phase of flight, and GA successfully found the global

optimum for the analyzed problem, offering greater flexibility in incorporating con-

straints compared to gradient-based methods. In another work by the same authors

[56], trajectory optimization for a reentry vehicle was explored using various gradient-

free optimization algorithms. The Aerospace Centre of Excellence at the University of

Strathclyde has made significant contributions to trajectory optimization. For instance,

Ricciardi et al. [57] proposed a novel method to solve multiphase, multi-objective op-

timal control problems by combining the Direct Finite Elements in Time transcription

with a Multi-Agent Collaborative Search. This approach was robust and accurate, pro-

viding sets of Pareto optimal solutions for three test cases: ascent, reentry, and abort

scenarios. Another example from Strathclyde’s work is found in [58], where the abort

trajectory of an ascent vehicle is optimized to maximise downrange and crossrange dis-

tances. The initial guess for the optimization process is obtained through a multi-start
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analysis on the first point, followed by successive iterative generation, proving to be

successful for all analyzed abort points.

Trajectory optimization, while powerful for enhancing aerospace system perfor-

mance, comes with high computational costs and is typically conducted offline. This

implies that an optimized trajectory is only optimal for the specific set of uncertainties

or disturbances considered, lacking robustness. Furthermore, for nonlinear systems like

RLVs, the optimization process becomes challenging, and the selection of the initial

guess can be crucial, depending on the chosen optimization algorithm.

2.3.3 Model Predictive Control

If the optimization problem in Equation 2.1 is solved iteratively on a finite-time horizon

in a closed-loop fashion, the resulting control scheme is referred to as MPC. Introduced

at the end of the 1970s, MPC emerged as an alternative to classical controllers, such

as PID controllers. Its fundamental characteristic lies in leveraging the knowledge

of the system to be controlled to predict its future behavior and optimize it. This

optimization occurs using a receding finite-time horizon, meaning that at each time

step, an optimization is performed based on the information available at that time

step. Consequently, a control sequence is generated from the current time step to the

end of the time horizon through the optimization process. The first control action

of this sequence is then employed to guide the system to the next time step, and

the optimization process repeats. A schematic representation of the MPC scheme is

illustrated in Figure 2.6.

An interesting aspect of MPC is its capability to consider constraints, even though

this inclusion leads to an increase in computational time. This computational burden

significantly limits the range of applications suitable for MPC. MPC is particularly

well-suited for linear or slow varying processes, such as industrial processes, where

computational time is not a critical factor, and the optimization process can be exe-

cuted online while considering constraints. On the contrary, when dealing with highly

nonlinear or rapidly changing systems, successfully applying MPC becomes challeng-

ing. Additionally, for linear and well-known models, mathematical proofs of robustness
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Figure 2.6: Simplified MPC control scheme

and stability for MPC can be formulated [59]. In contrast, in more general nonlinear

cases, assessing the robustness and stability of MPC is often difficult, if not impossible

[60, 61].

Despite its computational challenges, MPC has found some applications in the

aerospace industry. Chai et al. [62] introduced an adaptive MPC scheme applied to the

linearized model of a flyback booster reentry. Their MPC controller, designed for high

update rates, integrated an L1 adaptive augmentation to compensate for matched and

unmatched uncertainties. A recent study presented by Guadaganini et al. [63] explores

a successive convexification MPC guidance algorithm for 6-DOF Powered Descent Guid-

ance. Two control architectures are proposed. The first combines MPC-Guidance with

a PID-Controller (MPC-G&PID-C), optimizing the trajectory during flight. The sec-

ond, MPC-G&C, follows a classical MPC approach, solving the optimal control problem

at a higher frequency. Sensitivity analyses show that the MPC-G&PID-C architecture

is robust to dispersed parameters, reducing errors. The inclusion of a low-level PID

controller aids trajectory alignment. Despite challenges, the outcomes highlight MPC

guidance as promising for online autonomous guidance in achieving precise pinpoint

landings.

For a more comprehensive review of MPC applications in the aerospace domain,

interested readers can refer to [64].

In comparison to trajectory optimization approaches outlined in Subsection 2.3.2,
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MPC emerges as a more robust technique. Its strength lies in its ability to consider

unforeseen disturbances and uncertainties through online optimization. However, it’s

worth noting that this optimization process can be time-consuming, imposing limita-

tions on the applicability of MPC across various systems.

2.3.4 Convex Optimization

The optimization problem described in Equation 2.1 is deemed convex if the involved

functions—J, f, ψ, and S—are themselves convex. Convex problems hold significant

appeal for the engineering community due to the availability of efficient numerical

algorithms. These algorithms come with theoretical guarantees of finding solutions

within known computational bounds. This is particularly crucial in G&C applications,

where stringent requirements for precision and computational speed exist [65].

In the realm of optimal control, convex optimization plays a vital role in enhancing

the efficiency of trajectory optimization algorithms or in conjunction with MPC. Con-

vexification techniques are employed to convert the original non-convex optimization

problem into a convex one. Conceptually similar to linearization methods, these trans-

formations simplify the problem for easier treatment. However, it is important to note

that the resulting models may contain less information than the original ones. Further

details on convex optimization can be explored in [66].

In recent years, the popularity of convex optimization techniques has increased,

notably influenced by the work of Açikmeşe, Carson, and Blackmore [67]. Their contri-

butions have played a pivotal role in the successes of companies like SpaceX, achieving

safe landings of the launcher’s first stages on the ground or floating platforms post-

ascent. Convex optimization is frequently integrated with MPC, as demonstrated in

[68]. This study applied convex optimization with pseudospectral discretization in

an MPC framework, specifically addressing the fuel-optimal rocket landing problem.

The algorithm proved optimal, robust, and feasible for online computation, consider-

ing constraints and disturbances. Sagliano et al. [69] introduced an online trajectory

optimization algorithm for the reentry trajectory of a Space Shuttle-like entry vehicle.

Their approach utilizes a loss-less convex representation for entry guidance, leveraging
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drag dynamics. The optimization problem is discretized with pseudospectral methods,

incorporating constraints. Notably, their algorithm requires solving only one convex

problem to generate a feasible reentry trajectory, showcasing precision and compu-

tational efficiency. Szmuk et al. [70] devised a continuous formulation for compound

state-triggered constraints, applying it to the 6-DoF powered descent of a rocket within

the successive convexification framework. Their approach considered velocity-triggered

angle of attack constraints to mitigate aerodynamic loads and collision avoidance con-

straints to prevent obstacles near the landing site. While promising for powered descent

guidance, the authors acknowledge the need for further work to enhance the conver-

gence properties of state-triggered constraints.

Convex optimization for G&C in RLVs applications represents a captivating and

relatively new area of research. Recent publications and industry achievements under-

score the validity and potential of this technique. However, it is crucial to note a few

considerations regarding its applicability. The use of convexification techniques results

in ”simplified” models, potentially introducing a loss of information. Additionally, con-

vexification methods may be susceptible to poor convergence, as highlighted in works

like [71, 72]. These factors underscore the need for careful consideration and further

research in the application of convex optimization in this context.

2.4 Robust control Approaches

Robust control methodologies emerged in the 1980s to tackle challenges posed by un-

certainties in plant and environmental models. These approaches are predominantly

deterministic and model-based, relying on mathematical formulations and existing mod-

els of the considered systems. Known for their ease of implementation and backed by

mathematical proofs of convergence, they are often deemed reliable. However, their ef-

fectiveness is confined to scenarios with bounded uncertainties, and being static meth-

ods, they cannot adapt online to uncertainties beyond their predefined bounds. Among

the robust control approaches commonly applied to RLVs in the literature, H∞ control

and Sliding Mode Control (SMC) stand out.
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2.4.1 H∞ Control

H∞ control theory, introduced by Zames in the ’80s [73], is rooted in optimal control

theory. In the generalized control scheme illustrated in Figure 2.7, both the plant G

and controller K matrices are in state-space form, and they are both controllable and

observable. The external input w could represent a disturbance, z is the controlled

output, and y is the measured output. In this general scenario, the objective of the

H∞ controller is to determine a controller K such that the H∞ norm of the transfer

function from w to z, denoted as ||Twz||∞, is less than a specified value γ [74]. The

system is considered stable for all admissible uncertainties ||∆||∞ < 1/γ. For a more in-

depth exploration of the theoretical aspects of H∞ control theory, readers are referred

to [42, 75, 76].

Figure 2.7: H∞ control scheme configuration

The H∞ controller has been utilized in a series of studies published by European

Space Agency (ESA), specifically applied to the control of the VEGA launch vehicle

[77, 78]. In [77], a methodology for synthesizing H∞ controllers was presented, incorpo-

rating newly designed weighting functions to facilitate the controller design and tuning

phases during the development of the control system. The approach was tested on the

attitude control of the VEGA launcher, demonstrating that the same gains used in an

actual flight could be recovered through their methodology. The results were further

validated using a nonlinear high-fidelity simulator in [78]. The synthesis of an H∞ con-
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troller was also explored in [79], where it was employed to track the descent phase of a

reusable rocket, and its performance was assessed using a nonlinear simulator. Another

application of a robust H∞ controller was presented in [80], where a controller for a

hypersonic aerial vehicle was designed. The vehicle’s dynamics were linearized around

temporary operating points for controller development, and global asymptotic stability

was established through Lyapunov analysis.

H∞ control is a powerful technique that ensures closed-loop stability in the presence

of bounded disturbances, enabling the derivation of an optimal or sub-optimal controller

to optimize a specific performance index. However, its application is limited to linear

systems in state-space form. Consequently, when dealing with a nonlinear system,

linearization is necessary, introducing model uncertainties. Additionally, H∞ control

is effective only for bounded uncertainties, and failure may occur if these bounds are

unknown.

2.4.2 Sliding Mode Control

Sliding Mode Control (SMC) originated in the late ’50s in the Soviet Union as part

of Variable Structure Systems research. The design process involves two steps: 1)

designing a switching function to guide the system on the sliding manifold according to

specifications, and 2) selecting a control law to attract the system to the sliding manifold

in the presence of disturbances/uncertainties [81]. The sliding manifold, defined by

points where the sliding variable equals zero, is user-designed and determines the desired

closed-loop performance.

SMC possess insensitivity to internal and external disturbances, ensuring the con-

vergence of the sliding variable to zero for a stable configuration. The inherent non-

linearity of SMC arises from the discontinuity introduced by the switching function.

Despite its robust control capabilities, SMC faces challenges like chattering. Vari-

ous SMC formulations were introduced to address these issues, including Terminal

SMC for finite-time stability, Higher-Order Sliding Mode Control (HOSMC) to reduce

chattering, and Integral Sliding Mode Control (ISMC) for chattering mitigation while

maintaining finite-time stability. Further details on different SMC configurations can
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be found in [71], and a more in-depth discussion of SMC theory is available in the

literature [82, 83, 84].

The SMC scheme has gathered considerable attention in recent decades due to its

robustness against uncertainties and mathematical proofs of convergence. Researchers

have frequently employed RLVs as testbeds to assess advancements in SMC theory. This

overview highlights some recent applications of SMC in the context of RLVs. Zhang et

al. [85] introduced a Non-singular Fast Terminal Sliding Mode Control (NSFTSMC)

for the attitude tracking of a vertical take-off and vertical landing RLV. They incor-

porated a fixed-time extended state observer to estimate error states and disturbances,

accounting for uncertain parameters and external disturbances. Additionally, they de-

signed a novel fast terminal sliding mode surface along with a corresponding fixed-time

controller, demonstrating smaller steady-state errors in comparison to previous works.

Guo et al. [86] proposed an adaptive twisting SMC for controlling the attitude of a

hypersonic reentry vehicle. Their approach accommodates disturbances with unknown

bounds, and the designed control law effectively mitigates the chattering phenomenon.

SMC was also employed for guidance applications, as done in the works of Liao et al.

[87] and Cho et al. [88]. Liao et al. [87] addressed the approach and landing guidance

problem for an RLV using a finite-time ISMC. Their work showcased the stabilization

of the system within a predefined finite time, expressing the system’s states analytically.

Cho et al. [88] presented a singular sliding mode guidance approach for a missile to

intercept a target at a specific time. The guidance law was adapted to avoid singular-

ities and included an additional component to ensure that the sliding mode remained

the sole attractor.

Decades of active research on SMC have led to significant advancements and the

resolution of some inherent challenges associated with this technique. Strategies such

as ISMC and HOSMC have been developed to address the chattering phenomenon,

while the Non-singular Fast Terminal Sliding Mode Control (NSFTSMC) has been

introduced to mitigate singularity issues. However, these refinements bring forth new

considerations. For instance, HOSMC poses challenges in obtaining information about

higher-order derivatives of the system and demands an accurate system model. On the
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other hand, ISMC exhibits a propensity for large overshoot and extended regulation

time when faced with significant initial errors. Additionally, akin to H∞ control, SMC

is constrained by its ability to handle only bounded uncertainties, limiting its capacity

for online adaptation.

2.5 Adaptive Control Approaches

An adaptive control system is designed to dynamically adjust its parameters in re-

sponse to changes in the controlled system’s parameters or environmental conditions.

This real-time adjustment is facilitated by an adaptation mechanism, introducing non-

linearity into the controller [35, 89]. The schematic representation of an adaptive control

scheme is depicted in Figure 2.3 in section 2.2. Essentially, any controller design can be

rendered adaptive by incorporating a parameters adaptation mechanism. This mech-

anism, responsible for online adaptation, adjusts controller parameters, such as gains,

to ensure continued plant controllability in the presence of disturbances.

Adaptive control can be categorized into open-loop, direct, and indirect schemes

based on the adaptation mechanism employed. An example of an open-loop adaptive

controller is gain scheduling, where controller parameters are updated online according

to a predefined adaptation sequence. In a direct adaptive controller, the adaptation

mechanism and a reference model are combined. The adaptation mechanism receives

the error between the output predicted by the reference model and the actual plant

output as input. In the indirect adaptive control scheme, a plant estimator is updated

online, and its output is compared with the real output. The resulting error is then

fed into the controller adaptation mechanism, updating the controller parameters. This

method is termed indirect because the adaptation mechanism occurs in two steps: first,

the plant parameters are estimated online, and second, the controller parameters are

estimated online based on the estimated plant model.

Adaptive control shares similarities with robust control, but with a distinct focus on

leveraging adaptation mechanisms to enhance resilience against uncertainties or distur-

bances. An adaptive controller, therefore, exhibits the ability to withstand a broader

range of disturbances compared to a robust controller, where robustness is predefined
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and embedded in the controller. Nevertheless, a robust controller can be enhanced with

adaptive features to enhance its performance. The concept of learning has been closely

associated with adaptive control [90], leading to the integration of AI techniques into

adaptive controllers to augment their adaptation and learning capabilities, giving rise

to intelligent controllers, as elaborated in section 2.6 and chapter 3. Despite its advan-

tages, adaptive control faces a set of challenges outlined in [91], including impractical

control objectives stemming from an incomplete plant description leading to instability,

and failure in coping with instabilities due to a plant component failure.

2.5.1 Gain Scheduling

Gain scheduling represents a straightforward adaptation mechanism applicable to var-

ious controller designs. This method involves linearizing the plant around a set of

operating conditions. A controller is then synthesised for these conditions and its pa-

rameters are stored in a lookup table. This table is then used to schedule the controller’s

parameters change during operation according to the current operating condition. To

obtain the controller’s parameters between operating conditions, interpolation is used.

Gain scheduling is categorized as an open-loop adaptation mechanism since the lookup

table is defined offline based on the predicted plant trajectory and the anticipated

ranges of environmental and plant state variations. Further insights into gain schedul-

ing theoretical aspects can be found in [92].

This technique was extensively applied for the attitude control of RLVs, as demon-

strated by older works such as [93, 94]. A recent example that combines gain scheduling

and an LQR controller is presented by Hameed et al. [95]. They developed a finite

horizon LQR with gain scheduling for the guidance and control of the approach and

landing phase of a RLV. The controller’s robustness and effectiveness were evaluated by

varying the flight’s initial conditions and considering aerodynamic uncertainties. Their

approach proves capable of minimizing the state errors to achieve touchdown at a spec-

ified downrange in the presence of variations in the initial conditions. Another common

application of gain scheduling is represented by its combination with H∞ controllers.

An example of such an approach is represented by the work of De Oliveira et al. [96].
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The authors investigate the design of a structured H∞ gain-scheduled controller for

the atmospheric re-entry of RLVs. The control approach is validated through linear

analysis in both time and frequency domains, as well as nonlinear analyses using a

6-DoF RLV re-entry dynamics simulator. However, these validations also emphasize

the requirement for increased stability and robustness in handling uncertainties.

Although straightforward to implement, gain scheduling introduces stability prob-

lems, and the robustness of the controller is questionable as pointed out by Castaldi et

al. [17]. Additionally, a major drawback of this technique is that the scheduled gains

cannot be updated online, posing a risk of failure if the plant operates outside the

predefined set of operating conditions. This issue can be mitigated by increasing the

number of operating points to cover the entire flight envelope. However, this approach

poses practical challenges, limiting the inclusion of all possible operating conditions.

2.5.2 Model Reference Adaptive Control (MRAC)

In Model Reference Adaptive Control (MRAC), a reference model representing the

desired plant’s input-output relationships serves as a reference for the control system.

The control system aims to identify a feedback control law that, when applied to the

actual plant, aligns with the input-output relationships defined by the reference model.

MRAC can be categorized as either direct or indirect, depending on the availability of

a plant model from which the output is measured. In the case of indirect MRAC, an

estimator of the plant’s behavior is utilized.

A schematic representation of direct MRAC is illustrated in Figure 2.8, where the

reference command r serves as input to both the controller and the reference model.

The output of the reference model produces the control action u and the reference

output xref corresponding to the given reference command. The control action u is then

applied to the plant model, generating an output x. The tracking error e between the

reference output xref and the current output is computed and fed into the adaptation

mechanism. The adaptation mechanism adjusts the controller parameters based on the

current plant conditions. Further theoretical details on MRAC can be explored in [97].

Applications of MRAC for RLVs were investigated by renowned authors such as
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Figure 2.8: MRAC schematic configuration

Johnson et al. [98] and Orr et al. [99]. More recently, applications of MRAC focus on

combining this scheme with some AI technique, such as the Deep MRAC framework

presented by Joshi et al. [100]. Recent examples not involving AI, can be found in the

work of Nair et al. [101] and Guo et al. [102]. In [101], a Lyapunov-based PD/PID

adaptive controller was developed within the MRAC framework to govern the ascent

trajectory of an RLV. The authors conducted a comparative analysis with a gain-

scheduled PD/PID controller, demonstrating that their proposed approach achieved

superior tracking performance and enhanced robustness against disturbances. In [102],

a novel MRAC approach was devised by integrating it with a backstepping approach.

The developed control system was employed for the attitude control of a near-space

hypersonic vehicle. Stability analysis using Lyapunov stability theory was conducted,

and simulation results showcased robustness against input constraints and parameter

perturbations. The proposed scheme outperformed a standard MRAC configuration in

terms of stability and control effectiveness.

MRAC offers an effective solution to perform an informed adaptation by tracking

the behaviour of a reference model. As mentioned in [103], the use of a reference
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model results in reduced sensitivity to environmental changes, modelling errors and

non-linearities within the system. However, MRAC schemes are characterized by a

great number of design variables which must be tuned appropriately to obtain good

performance and this is usually done relying on the experience of the designer. More-

over, as Shekhar et al. point out [104], it is difficult to assess MRAC schemes’ stability

when applied to nonlinear systems.

2.5.3 Real-time or Adaptive Guidance

Real-time or adaptive guidance encompasses those schemes that generate guidance

commands online, enabling the plant to track the desired reference trajectory despite

external disturbances or uncertainties. These approaches are complementary to convex

optimization or MPC ones where the reference trajectory is recomputed during flight

to cope with disturbances and uncertainties. Adaptive guidance schemes can also be

designed using AI algorithms. In that case, they are also referred to as Intelligent

Guidance as done in [105], however, this terminology is not widespread and oftentimes

approaches built with AI are either termed as adaptive guidance, e.g. in the works

of Johnson et al. [106], or generally as IC. The latter terminology is used in this

thesis, i.e. adaptive guidance approaches involving AI techniques are categorized as IC

approaches. The guidance schemes developed during this doctoral work and described

in chapters 4 and 5 of this thesis fall under this category.

A discussion on adaptive guidance approaches built using AI is given in chapter 5.1,

while this section focuses on adaptive guidance approaches designed without using AI

techniques.

Zhu et al. [107] present a robust adaptive gliding guidance strategy for a hypersonic

vehicle. Their method involves the design of an analytical optimal gliding guidance law

and robust compensation of aerodynamic coefficients using an Extended Kalman Filter

(EKF). Aerodynamic coefficients are expressed as quadratic polynomial functions of

flight states, with unknown parameters estimated using EKF. The estimated values are

then utilized to calculate the required angle of attack for robust compensation. This

approach accurately satisfies terminal multiple constraints over a broad range of disper-
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sion. Another example is discussed by Mooij [108], who presents an adaptive guidance

technique for the reentry of a hypersonic vehicle. Three approaches are tested to track

the heat flux profile: an inner loop output-feedback controller, an outer loop adaptive

tracker based on simple adaptive control theory, or a combination of both. The combi-

nation of inner and outer loops tracking improves the performance with respect to the

nominal guidance, satisfying the heat-flux and g-load constraints. Results demonstrate

stability and robustness in trajectory tracking against applied perturbations. Another

example of integrated adaptive guidance and control can be found in [109]. The authors

developed an integrated nonlinear adaptive guidance and control approach applied to

the lading phase of a RLV. They introduced an adaptation law into the backstepping

scheme to handle uncertainties, while aiming at tracking the flight path angle reference

trajectory. Results obtained through numerical simulations show that their approach

can effectively perform the RLV landing in the presence of uncertainties, while a Lya-

punov stability analysis is used to assess the overall system’s stability. A last example is

proposed by Yan et al. [110]. The authors developed an adaptive guidance approach for

hypersonic entry vehicles, based on a feedback control law that outputs the bank angle

command based on the quasi-equilibrium glide condition. Their algorithm is composed

of two parts, longitudinal and lateral profile guidance. The longitudinal guidance is

responsible for generating the magnitude of the bank angle analytically in real-time,

while the lateral one is used to determine the sign. The approach is tested considering

a broad range of entry trajectories with applied uncertainties, and proves to be effective

in guiding the vehicle towards the desired final position.

Adaptive guidance can help in relieving the pressure posed on the attitude controller

and in avoiding the accumulation of control errors, by generating guidance commands

to track new trajectories that already consider deviations due to uncertainties or dis-

turbances. As discussed by Song et al. [111], this results in an increased robustness

against disturbances and uncertainties. However, in adaptive guidance schemes online

computations are performed and these can cause mission failure if not performed in an

adequate time window.
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2.6 AI-based and Intelligent Control approaches

While AI has gained substantial significance in various aspects of everyday life, ranging

from social networks to healthcare and home automation, its incorporation into control

applications, particularly in the aerospace field, remains limited outside the academic

domain. However, the intersection of AI and control theory represents an active research

area, resulting in the development and testing of numerous algorithms over the past

decades. As detailed in chapter 3, the application of AI in a control system does

not guarantee that the control scheme is intelligent. True intelligence emerges from the

fusion of AI with online learning and adaptation capabilities. In this context, intelligent

controllers share similarities with adaptive control systems as they dynamically update

the controller’s parameters or structures online. However, the former achieves this

through the utilization of AI techniques. Compared to classical adaptation mechanisms,

AI-based controllers enhance robustness against a broader range of disturbances, by

leveraging the nonlinear character of AI algorithms and their ability to efficiently exploit

data. This section outlines the three primary families of AI techniques employed for

control - Machine Learning (ML), Evolutionary Computing (EC), and Fuzzy Logic (FL)

- alongside some of the latest AI-based and IC approaches applied to RLVs. Figure 2.9

schematically illustrates how these techniques are often combined in control systems.

Within the ML family, the focus is given to Neural Networks (NNs), since it is

one of the techniques used to develop the guidance scheme presented in chapter 5,

while a detailed description of Genetic Programming (GP) is given in chapter 4. A

comprehensive literature review of IC applications is given in chapter 3 and in the two

technical reports developed as part of this thesis on behalf of ESA [14, 15].
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Figure 2.9: Synergies of artificial intelligence techniques used for intelligent control.
[1]

2.6.1 Fuzzy Logic

Fuzzy Logic (FL) operates on the principle of reasoning by leveraging partial truths.

In this context, partial truth refers to the truth values of variables, which can take

any real number within the range of 0 to 1. This is in contrast with Boolean logic,

where truth values are constrained to either 1 or 0 [112]. Designers define these par-

tial truths, incorporating expert knowledge into the controller design and resulting in

an interpretable control scheme. Partial truths are then used to evaluate propositions,

allowing for reasoning in situations where precise numerical values are difficult to ascer-

tain. FL can be employed both intelligently and non-intelligently. If its parameters are

updated online, it is considered an intelligent application; otherwise, if the FL control

law is not updated online, it cannot be deemed intelligent.

An instance of FL applied to control RLVs is presented in [113], focusing on the

attitude control of a RLV during its reentry phase. The authors devised a compound

adaptive fuzzy H∞ control strategy. They tested their approach against uncertain

controller parameters and disturbances, and they used the Lyapunov theory to assess

the closed-loop stability of their method. The results demonstrate the effectiveness of

this approach, qualifying it as an intelligent controller due to the online updating of

control parameters. Further applications of FL in IC are detailed in chapter 3.
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2.6.2 Machine Learning

ML techniques are particularly suitable for IC applications due to their inherent learn-

ing capabilities. Notably, Neural Networks (NNs) and Support Vector Machines (SVMs)

stand out as commonly employed architectures. While these structures find widespread

application in classification tasks, they can also serve as nonlinear function approxima-

tors. Their versatility extends to modelling dynamical systems, approximating uncer-

tainties, or even being directly integrated as controllers [114].

Neural Networks

NNs have become one of the most prevalent ML techniques, finding applications across

various domains for classification and regression tasks. The fundamental structure of

a NN is illustrated in Figure 2.10, where its primary components, called neurons, are

organized into layers.

Figure 2.10: Simple Feedforward Neural Network architecture with two hidden layers

Neurons across different layers can either be fully connected, as depicted in Figure

2.10, or follow a different architecture based on specific requirements. When multiple

layers are stacked consecutively, the resulting NN is termed a Deep Neural Network

(DNN). Each neuron incorporates an activation function, denoted as σ(z) in Figure

2.11.
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Figure 2.11: Close up of a single neuron

This function takes as input the output of the preceding layers (xj), multiplied

by a connection weight (wj), plus a bias term (bi) in a linear combination fashion as

expressed by Equation 2.5.

zi = bi +

n∑
j=1

(wjxj), i = 1, ...,m (2.5)

In Equation 2.5, m refers to the number of neurons in the layer, while n to the

number of inputs for each neuron. The output of this linear combination, denoted

as z, is then passed through the activation function to obtain the neuron’s final out-

put. Various activation functions are employed in the literature, with some common

examples being tanh, sigmoid and ReLu as reported in [115]. The significance of

the activation function lies in its ability, typically as a nonlinear function, to impart

nonlinearity to the entire NN model. Specifically, a NN using solely linear activation

functions would effectively be a linear combination. Conversely, employing a nonlinear

activation function results in a nonlinear model capable of mapping specific inputs to

their corresponding outputs. The process used to adjust the various weights and bi-

ases within the model is known as learning. Learning can take the form of supervised,

unsupervised, or semi-supervised learning. Supervised learning occurs when the NN

learns to predict outputs from certain inputs based on labelled data provided by the

designer. In unsupervised learning, where data are not labelled, the model must learn

the correlation between input and output. For a more comprehensive exploration of

NNs and DNNs, please refer to the book by Goodfellow et al. [115].
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Various applications of NNs in control can be found in the literature. An extensive

collection of early applications is presented in [116]. These control schemes primarily

involved feedforward NNs and Radial Basis Function (RBF) networks, deployed either

alone, within an MPC framework, or hybridized with other AI techniques like FL.

Given the absence of online learning, most of these applications do not fall under the

category of IC. More recent studies have explored the applications of different NN ar-

chitectures in an IC setting. Johnson et al. [106, 98] introduced a control scheme called

”pseudo-control hedging” that incorporates a NN adaptive control architecture. In this

approach, the NN serves as the adaptive element online, attempting to correct errors in

the approximate dynamic inversion. Another instance is found in the work of Xu et al.

[117], where a RBF NN is employed to approximate uncertainties and is updated online

to accommodate dynamic uncertainties. In [118], a robust neuro-adaptive control sys-

tem is developed for the reentry phase of a RLV. The controller, designed following the

dynamic inversion methodology, is augmented with a barrier Lyapunov function-based

neuro-adaptive controller for the inner loop. This intelligent approach demonstrates

the capability to track guidance commands with good robustness characteristics, as the

controller is updated online according to the designed update rule.

2.6.3 Evolutionary Computation

A family of AI techniques less frequently used for control applications is EC. The field

of EC includes Evolutionary Algorithms (EAs), GAs, and GPs. Despite their different

characteristics in design, they all rely on the concept of biological evolution, evolving

a population of individuals according to the principle of the survival of the fittest to

obtain a solution. These algorithms are often computationally expensive, making their

online usage challenging. Nevertheless, there are some online applications, such as

in [119], where EAs are used for online parameter tuning. However, instances of IC

applications using an EA for a RLV were not found in the literature. This scarcity of

applications contributed to the selection of GP as the technique of interest, as will be

explained more thoroughly in the subsequent sections of this thesis. A more detailed

description of GP is provided in chapter 4, alongside a discussion on control applications
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not involving RLVs.

2.6.4 Hybrids

The presented techniques exhibit diverse strengths and weaknesses. Leveraging these

characteristics, they can be synergically combined to enhance the specific advantages

provided by each technique. These are denoted as ”Hybrid” methods. For instance,

NNs are frequently used to approximate the membership functions of a FL controller,

while GP can be employed to optimize both the topology and weights of a NN controller.

2.6.5 Limitations of Intelligent and AI-based Control

AI-based and intelligent control systems hold great potential for transforming the space

industry, by enhancing autonomy and robustness. Nonetheless, these systems confront

a set of challenges that must be addressed for their effective application in the industry.

The two most prominent ones in the context of AI applied to G&C are analyzed in the

following: interpretability and explainability, and stability assessment

Interpretability and Explainability Foremost among these challenges is the issue

of trustworthiness. To improve trust in AI systems, two key features must be consid-

ered: interpretability and explainability. Interpretability refers to the knowledge of the

inner workings of an AI model, while explainability refers to the possibility of explaining

the decisions made by the model. Expainable Artificial Intelligence (XAI), a branch

of AI research, aims at addressing this concern by developing tools and procedures

that clarify the reasoning behind the outputs of AI models, thereby enhancing human

trust. In the aerospace industry, Sutthithatip et al. [120] provide insights into the

implementation of XAI. They present a framework outlining how XAI could be inte-

grated into the aviation sector, emphasizing its potential to enhance operational safety

and support decision-making processes. While acknowledging the potential benefits,

the authors caution that current explanation methods are not yet mature enough for

widespread industrial use. Mandrake et al. [121] contribute to the discussion on XAI

by applying a framework developed by The Aerospace Corporation to two NASA Jet
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Propulsion Laboratory (JPL) projects: the Machine Learning-based Analytics for Au-

tomated Rover Systems (MAARS) and Ocean Worlds Life Surveyor (OWLS) missions.

The authors report that JPL found the framework to be a practical and systematic

structure that fosters valuable introspection into design principles, promoting trust

and mission success. This includes specific guidance for AI-based autonomy, distinct

from conventional research and development practices for non-autonomy-focused AI.

Among AI techniques GP emerges as an interesting solution to tackle the interpretabil-

ity and explainability challenge. Leveraging its intrinsic interpretability, GP models

can be employed in safety-critical applications, offering transparent insights into the

inner workings of AI models. However, for GP to be effective in this context, it must be

configured to generate meaningful mathematical models that users can interpret and

that are related to the specific problems being addressed. The literature extensively

covers research on enhancing interpretability and explainability through GP, and inter-

ested readers are directed to the comprehensive survey conducted by Mei et al. [122].

In their analysis of nearly 300 papers, the authors highlight the considerable potential

that GP holds in advancing the XAI field. This survey provides valuable insights into

the various approaches and applications of GP, emphasizing its role in contributing to

the transparency, interpretability and explainability of AI models.

Stability Analysis The second prominent issue with AI-based and IC approaches

is the difficulty in proving their stability. Stability is an important feature of control

schemes used to prove that given a bounded input, the control scheme will produce a

bounded output, hence proving the predictability of the control scheme. Traditional

stability analysis approaches for linear systems involve the formulation of the closed loop

transfer function which can be analyzed using approaches such as the Routh–Hurwitz

stability criterion and the Nyquist criterion. A description of traditional approaches

can be found in [123]. For nonlinear systems, one of the most applied approaches is the

Lyapunov stability analysis, as described in [124].

Traditional approaches may result in being impractical for AI-based and IC schemes,

due to the complex and nonlinear nature of the models, their data-driven character, and
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lack of well-established theoretical foundations. Moreover, the complex structures of

some techniques such DNN architectures, coupled with their black-box nature, hinder

traditional stability analysis methods designed for linear systems.

Nevertheless, substantial research has been conducted in recent years on stability

analysis approaches applied to AI-based and IC schemes, primarily constructed using

NN, DNN, and Reinforcement Learning (RL). Emami et al. [125] present a com-

prehensive review of NN-based flight control systems. Their review reveals that the

majority of stability analysis approaches involve delineating a region of stability, with

boundaries determined by the upper limits of a set of parameters. Unfortunately, these

parameters often lack physical significance or measurability, posing a significant chal-

lenge when implementing adaptive controllers in practical applications. Determining

the controllability region of the system becomes particularly problematic in model-free

control systems. Thus, there is a pressing need to establish a set of tangible criteria for

analyzing closed-loop stability in order to address these challenges effectively.

Regarding FL, Lam [126] conducts a thorough review of stability analysis tech-

niques applied to continuous-time fuzzy-model-based (FMB) control systems. The

author compares two distinct approaches for stability analysis in FL control systems:

Membership-Function-Independent (MFI) stability analysis and Membership-Function-

Dependent (MFD) stability analysis. In the MFI technique, membership function in-

formation is not considered. On the other hand, in the MFD stability analysis, stability

conditions incorporate information from membership functions. Despite the widespread

use of MFI stability analysis in the literature due to its simplicity (fewer stability con-

ditions and decision variables), Lam concludes that MFD stability analysis exhibits

greater potential to reduce conservativeness. The MFD approach not only offers a

more relaxed stability analysis but also provides fundamental technical and theoretical

support for the advancement of FMB control and its diverse applications.

In the realm of EC, specifically focusing on GP, approaches have been devised to

establish stability through Lyapunov stability analysis. Grosman et al. [127] demon-

strate the application of GP to automatically generate Lyapunov functions suitable for

the stability analysis of nonlinear systems. Their methodology identifies the candidate
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Lyapunov function with the largest connected set, defining a sub-domain of attrac-

tion that includes the origin. Consequently, this approach facilitates the estimation

of domains of attraction and can be adapted for automated control system synthe-

sis by appropriately defining the objective function to be optimized. Building upon

Grosman et al.’s work, Ali et al. [13] employ a multi-objective GP to concurrently

design both control and Lyapunov functions. This approach is applied to stabilize two

unstable nonlinear systems, showcasing its efficacy in achieving stability. The authors

emphasize the superior capability of GP to optimize not only the controller parameters

but also the controller structure, distinguishing it from standard multi-objective opti-

mization algorithms that focus solely on optimizing predefined controller parameters.

Additionally, by incorporating the region of attraction into the GP fitness function,

this approach provides the flexibility to control the stability margin of the controller.

The authors conclude that this integration enhances the adaptability and performance

of the GP-based control system synthesis.

2.7 Issues and Research Gaps

In the preceding sections, a high-level overview of four control branches was presented:

Optimal Control, Robust Control, Adaptive Control, and a brief mention of AI-based

and Intelligent Control, which will be more comprehensively addressed in the next

chapter. The theoretical foundations of these control families were outlined, and recent

applications to RLVs were discussed. The resulting landscape is summarized in Table

2.1, where the four control branches are classified based on key properties: their appli-

cability to nonlinear systems, online adaptation capability, robustness against distur-

bances, optimality, ability to leverage online data, and the availability of mathematical

proofs of stability.

In Table 2.1, the symbol ✓ indicates that the control family satisfies the desired

property, while ∼ denotes fulfilment under restricted assumptions. This qualitative

analysis is based on the general characteristics of each control family and does not aim

to cover all specific control approaches developed in the literature. It is important to

note that specific control methodologies may exist in the literature that successfully
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Table 2.1: Summary of comparison between main control branches

Nonlinear Online Disturbance Optimal Can Exploit Proof of
Adaptation Rejection Data Stability

Optimal Control ∼ ∼ ✓ ∼ ∼
Robust Control ∼ ✓ ✓ ✓
Adaptive Control ✓ ✓ ✓ ✓ ∼
Intelligent Control ✓ ✓ ✓ ∼ ✓ ∼

address challenges common to their respective control families.

Optimal control stands out as the preferred family of control schemes for designing

controllers optimized to address specific tasks. It can leverage data gathered online

when employed in MPC schemes. In such cases, new optimizations are carried out on-

line, incorporating updated plant and environmental conditions, allowing for real-time

adaptability. However, the extent of this adaptability is constrained by the complexity

of the treated system, as reflected in the computational time required for online opti-

mization. Despite these positive attributes, optimal control methodologies can be fully

exploited, and stability proofs can be derived only when applied to linear systems, such

as in the case of LQR controllers or convexified systems in the context of convex opti-

mization. While optimal control techniques can also be extended to nonlinear systems

through NLP methods, providing a mathematical proof of stability in such cases may

be unfeasible.

Robust control approaches focus primarily on enhancing the resilience of the plant

against disturbances. These techniques have demonstrated successful applications

across various domains, and mathematical proofs of stability can be rigorously derived.

Robust control methodologies, including the widely used H∞ control, can be optimized

based on specific metrics, providing a systematic way to handle disturbances. However,

it’s important to note that the optimality and stability proofs are typically established

for linear or linearized systems. When it comes to nonlinear systems, SMC can be used

within the robust control framework. It is worth highlighting that SMC demands a

deep understanding of the treated plant and necessitates significant design efforts from

the user. A notable limitation of robust control approaches is their lack of adaptability

online to unforeseen disturbances. These approaches are typically designed offline and
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are effective within the predefined range of disturbances established at the time of de-

sign. As a result, while robust control provides stability and resilience against known

disturbances, its applicability to unanticipated or evolving disturbances is limited.

Adaptive control approaches stand out as the primary group of techniques designed

to create controllers with the capability for online adaptation. This adaptability is cru-

cial for systems operating across a broad range of conditions, particularly those subject

to significant disturbances and uncertainties. Adaptive mechanisms can be integrated

into various control schemes, allowing for flexibility in their application. For example,

a robust controller can be enhanced with adaptive features. Several adaptation mech-

anisms have been developed over the years to address the dynamic nature of different

systems. It’s important to note that the design of a specific adaptation mechanism is

problem-dependent, and it is difficult to mathematically assess its stability when ap-

plied to nonlinear systems. Moreover, adaptive control approaches are not inherently

optimal. Despite these limitations, they represent the control approach of choice for

complex and nonlinear systems, allowing them to extend their operating range and

enhance resilience against disturbances. The adaptability of these controllers makes

them particularly well-suited for applications characterized by varying conditions and

uncertainties.

To address the limitations observed in the control groups previously described and

to enhance control system capabilities in handling even more substantial uncertainties,

IC was developed. IC techniques represent a progression beyond adaptive control by in-

tegrating AI methods into their design. The influence of AI techniques is evident across

various domains, showcasing their exceptional capabilities in data analysis, correlation

identification, classification tasks, and predictive modelling of future behaviours. These

techniques find application in managing nonlinear systems and possess a certain degree

of optimality, as many AI methods inherently involve optimization routines. Neverthe-

less, IC approaches come with notable drawbacks, primarily the challenge of compre-

hending the inner workings and decision processes of these algorithms. Moreover, the

absence of an established framework for systematically analyzing the stability of these

systems represents another significant limitation. As outlined in section 2.6.5, existing
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approaches in the literature often tend to be tailored to specific applications, lacking a

generalized framework that can be universally applied across diverse IC scenarios. This

lack of a standardized stability analysis framework adds a layer of complexity and un-

certainty, hindering the broader adoption of IC techniques, particularly in safety-critical

applications where stability assurance is paramount.

Considering these factors, this thesis was developed to advance current knowledge

on IC and its application to RLVs, which have been relatively underexplored in this

domain. Following a comprehensive literature review on IC, resulting in the production

of two technical reports [14, 15], as well as two papers [19, 1], GP was selected as the AI

technique of interest. This choice is motivated by several compelling reasons. Firstly,

GP stands out for its capacity to autonomously generate control laws for nonlinear

systems, offering a versatile and adaptive approach suitable for the complexities often

found in control applications. Secondly, its interpretability is a key feature, enabling

users to comprehend and explain the generated control strategies. This transparency

addresses the challenge associated with the ”black box” nature of many IC techniques,

contributing to a better understanding and trust in the generated control systems.

Additionally, GP provides a unique advantage in that the stability of the generated

control scheme can be proven through a Lyapunov stability analysis. This mathematical

foundation for stability is crucial in safety-critical applications, to instill confidence

in the reliability of the control system. Furthermore, the decision to focus on GP is

reinforced by the observation made in section 2.6 that very few IC applications involving

GP can be found in the literature, and none specifically on RLVs. This underscores the

novelty and potential impact of exploring GP in the domain of IC for RLVs, offering an

opportunity to contribute with new insights and solutions to this relatively unexplored

area.

2.8 Summary and Comments

This chapter is meant to provide a background on control theory as applied to RLVs.

The historical development of the three primary branches of control theory - Optimal

Control, Robust Control, and Adaptive Control - is presented to clarify the evolving
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need for increasingly sophisticated control schemes capable of handling greater un-

certainties. The journey progresses from the introduction of optimal control, aimed

at optimizing control laws, to the advent of robust control, addressing disturbances

within defined bounds. The subsequent development of adaptive control allows for on-

line adaptation to face unbounded or significant disturbances. The latest stage in this

evolutionary process is IC, which integrates an AI techniques into control schemes to

extend the range of treatable uncertainties. This control paradigm has become particu-

larly relevant in recent years due to advancements in hardware technologies, facilitating

the development and proliferation of AI techniques.

The literature review provides a high-level description and theoretical insight into

the main techniques within these control branches, highlighting the issues and gaps in

each control family. The discussion is enriched with a list of applications related to

RLVs and hypersonic vehicles—central themes of this thesis.

The chapter concludes with a comparison of the analyzed control families, where

IC emerges as a solution to handle increasingly greater uncertainties. This approach

promises greater flexibility, robustness, and the ability for online learning through real-

time data. However, the challenge remains in overcoming the black box nature of

many AI models, emphasizing the need for enhanced explainability to foster trust and

reliability in IC; and in improving the stability analysis framework for AI-based control

schemes.
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Intelligent Control
1

This chapter presents a comprehensive literature review on Intelligent Control (IC)

to provide the reader with the necessary background to understand the rest of this

thesis. The chapter concludes with a novel taxonomy to classify IC applications. It

was designed during the development of the research presented in this thesis and was

initially introduced in [19].

3.1 Introduction

The increasing complexity of control problems in the past century has made neces-

sary the design of more advanced control methods. Current control systems are often

required to work in challenging environments with limited preexisting available knowl-

edge. To overcome this issue, Artificial Intelligence (AI) is introduced into control

theory, and its combination with the disciplines of automatic control and operations

research is defined as “Intelligent Control” [128].

IC is a topic widely discussed in the literature since the term was coined by Fu [9].

IC applications are distributed among various engineering fields and are mainly concen-

trated in those that seek to minimise human intervention, such as robotics. Nonetheless,

the IC term was often misused, leading to increasing confusion, especially when com-

paring IC with similar but different concepts such as adaptive and learning control

1The content of this chapter was previously published in the technical reports [14, 15], in the
conference paper [19] and in the journal paper [1].
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[129]. Nowadays, the concepts related to IC are defined more precisely. The taxonomy

presented in section 3.3 is defined according to the work of Saridis and Antsaklis, which

both gave clear definitions of IC [128, 130]. Despite a more precise definition of IC,

many different types of control systems with varying levels of complexity can still be

classified as IC. The taxonomy presented in section 3.3 aims to quantify the level of

intelligence of an IC system according to the differences and similarities among control

systems. This approach allows a comparison between different control methods and

applications and highlights gaps that can be filled by further research on IC systems.

As Antsaklis [129] pointed out, it is not trivial to define the level of intelligence of a

machine. It cannot be defined in a binary way but rather in a more detailed manner,

from non-intelligent to highly intelligent. However, the problem of quantifying the level

of intelligence arises.

If some aspects of a system are unknown due to stochastic behaviour or a lack of

knowledge, that system is characterised by a certain degree of uncertainty. Uncertainty

treatment has always been a critical challenge in control theory. In the past decades,

much work has been done on control systems to make them more robust against uncer-

tainty. Great effort was also put into increasing their autonomy in facing uncertainties,

up to the point where some of them were required to learn from the environment, show-

ing human-like behaviour. This can be considered intelligence [131]. According to this,

it can be stated that the greater the level of uncertainty at design time that a control

system can handle, the greater its level of intelligence.

This chapter begins by defining IC in section 3.2 with the dimensions in which an

intelligent controller operates and the methods used. Section 3.3 presents the novel

taxonomy produced during this thesis’s development. Section 3.4 contains a list of

IC examples classified according to the proposed taxonomy. Section 3.5 concludes the

chapter with a summary and final remarks.
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3.2 Defining Intelligent Control

After its definition, the term “Intelligent Control” became highly used and often abused

by the academic community, both in and outside the control field. This widespread

usage made it difficult to create a definition of IC suitable to every different IC ap-

plication. Because of this, a task force was designated in 1993 by the IEEE Control

Systems Society to research and define “Intelligent Control” [130]. The outcome of

their investigation led to the following defining characteristics of an IC system:

“An intelligent control system is designed so that it can autonomously achieve a

high level goal, while its components, control goals, plant models and control laws

are not completely defined, either because they were not known at the design time or

because they changed unexpectedly.”

This definition shows how an intelligent controller can be defined as such not only

if it is capable of dealing with system uncertainties but also if its structure and goals

are not entirely defined. Before this definition, Saridis described IC as an interaction

between the fields of Artificial Intelligence, Operations Research, and Automatic Con-

trol Systems (Figure 3.1) [128]. The definition given by Saridis is in line with the one

initially given by Fu, who defined IC as the “intersection of artificial intelligence and

automatic control”[9].

According to these definitions, it is clear how a control system can be defined

intelligent if it possesses some online learning/adaptation capability and incorporates

an AI technique. A common misunderstanding arises when considering adaptive or

learning control systems and AI-based control systems separately. An adaptive system

can be defined intelligent if it is built using an AI technique and not classical analytical

formulations, while an AI-based control system can be defined intelligent if it possesses

an online adaptation/learning mechanism. For example, a control system that uses AI

to define its control structure offline, without updating any of its components online,

cannot be considered intelligent since it cannot cope with substantial environmental

uncertainties.
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Figure 3.1: Intelligent control is the interaction of the fields of artificial intelligence,
operations research, and automatic control. [1]

The AI techniques mostly used to design IC schemes belong to the three fami-

lies described in section 2.6, namely Fuzzy Logic (FL), Machine Learning (ML) and

Evolutionary Computing (EC). A description of these is provided in section 2.6, with a

focus on Neural Networks (NNs). A detailed description of Genetic Programming (GP)

can be found in chapter 4.

3.2.1 Dimensions of Intelligent Control

As previously stated in section 3.2, the main characteristic of an IC system is its ability

to deal with substantial uncertainties. Therefore, it is reasonable to define the level of

intelligence of an intelligent controller according to the level of uncertainty it has to face.

From the task force definition of IC, it emerged that the uncertainty could be present in

three dimensions: the environment (under which both plant and environment models

are considered), the controller laws and components, and the control goals. From a

more abstract point of view, this represents what is being controlled, how it is being

controlled, and why it is being controlled.

Environment

An environment is considered known if a mathematical model is available. With the

environment term, both the plant model and the environment model in which the plant
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has to operate are considered. Such a model is necessary for the design of the control

system, and the degree of knowledge of the environment models at design time affects

the intelligence of the controller. A general controllable nonlinear system is shown in

Equation (3.1), where y represents the output, u the input, x represents the system’s

state variables, and the functions f and h are mappings (linear or nonlinear) from their

inputs to an appropriately dimensioned vectors.

ẋ = f (x, u) (3.1a)

y = h (x) (3.1b)

For clarity, in the rest of this chapter, only expressions for ẋ will be considered. Also

the environment model may contain time dependent parameters A = {a1, a2, . . . , ana}.

In this case, Equation 3.1 is no longer valid, and a time dependant mapping must be

used, as shown in Equation 3.2.

ẋ = f (x, u,A(t)) (3.2)

The actual environment does not precisely match its mathematical models in real-

world applications due to modelling inaccuracies or uncertainties. Considering this

more realistic scenario, Equation 3.2 must be updated into Equation 3.3, where f̂

represents an uncertain mapping.

ẋ = f̂ (x, u,A(t)) (3.3)

Controller

As for the environment, also the controller can be mathematically designed according to

different levels of knowledge about its components. The more intelligent the controller
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is, the less precise the knowledge of its control law at design time, alongside an overall

greater flexibility.

A general feedback controller can be defined as in Equation 3.4, where e = yd−y is the

tracking error between the desired system output yd, and the actual system output y.

u = g (e) (3.4)

This type of controller has fixed parameters that are defined at design time. On

the other hand, a general adaptive controller can be defined as in Equation 3.5, where

K = {k1, k2, . . . , knk} are the control parameters that can vary according to variations

in the operating conditions.

u = g (e,K(·)) (3.5)

So far, perfect control systems were considered, i.e. no uncertainties were taken

into account. Nonetheless, significant uncertainties can affect the tracking error e, even

if the environment is stationary and deterministic. These uncertainties can be due to

sensor disturbances or unknown actuator dynamics. Such a controller can be defined

as in Equation 3.6, where ê = yd− ŷ is the uncertain tracking error given the measured

and uncertain system output ŷ.

u = g (ê, K(·)) (3.6)

The control parameters in Equation 3.6 will be tuned accordingly to the applied

uncertainty and change in the operating conditions. In addition to the control param-

eters, the controller structure could also be adapted to face uncertainties. A variable

structure could be achieved by considering multiple control laws simultaneously and

choosing the more suited to the current observations, or new control laws could be

derived online. Equation 3.7 defines a general example of such a controller.
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u =



g1 (ê, K1(·))

g2 (ê, K2(·))
...

gng (ê, Knk(·))

(3.7)

Goals

Defining the dimension of the goals is a more arduous task than it was for the previous

two dimensions. Goals are more abstract; hence, it is more challenging to define them

mathematically. Consequently, knowledge of goals could be defined according to how

well they can be described mathematically and how aware the controller is of its goals.

Often the goals are determined following a stability criterion or by tracking a desired

performance measure. In this scenario, the goal is defined at design time, and the

controller is unaware of its purpose.

The goals can also be defined through a cost function that indirectly gives the

controller information about its performance in executing a task. The controller will

then try to minimise (or maximise) such a cost function according to its control policy.

In this case, the controller now possesses a low level of awareness since it tries to find

a way to achieve the goal by minimising (or maximising) the cost function.

A higher degree of intelligence is required in those systems where the goal cannot

be defined mathematically but only in a high-level language. Such an intelligent sys-

tem must understand how to act to achieve the sought high-level goals. This can be

done, for example, by introducing a series of short-term goals that may change over

time according to the controller’s internal planning but always considering the required

global goal.

3.3 Taxonomy

The taxonomy presented in this section is an original contribution of this thesis. Such

a taxonomy aims to classify the level of intelligence of control systems. One of the main

innovations of the proposed taxonomy is that it considers IC as a multi-dimensional dis-
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cipline in the sense that a control system can show intelligence in different dimensions.

Other previous works attempted to classify the levels of intelligence in IC systems.

Krishnakumar [132] proposed a classification based on four levels of intelligence based

on the controller’s ability to self-improve, but it does not consider uncertainties treat-

ment. Moreover, each level of intelligence is additive to the previous one. On the

contrary, the taxonomy proposed in this research shows that intelligence levels can

differ in each dimension. The dimensions are independent, and therefore the levels of

intelligence are not additive. Another classification was presented in an industry survey

from the American Institute of Aeronautics and Astronautics. Six “stages of intelligent

reasoning” for spacecrafts [133] were defined in this work, which was only specific for

spacecraft operations. Conversely, the taxonomy proposed in this thesis can be applied

to any IC system.

As previously mentioned in section 3.2, IC approaches are employed where there is a

lack of knowledge at design time. Such a lack of knowledge can be encountered in three

main categories: the environment, the controller, and the goals. Any controller within

these categories, also conventional ones, can possess a different level of knowledge at

design time. This section presents a classification scheme for IC methods based on the

level of knowledge present in the control system at design time. For all three categories,

level 4, which is the highest level of uncertainty, represents a hypothetical maximum

uncertainty.

3.3.1 Environment Knowledge

0. Complete and precise environment model: Suppose the environment is completely

known, and an equation captures all the dynamics in the form of Equation 3.1.

In that case, an open loop controller could be used without needing any degree of

intelligence. This is an ideal scenario, and usually, this approach cannot be used in

real applications due to uncertainties or unknown aspects of the considered system.

Therefore, the need for more sophisticated controllers.

1. Complete environment model subject to minor variations: As said above, real

systems can only be modelled to a certain degree of precision. For this level
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of environment knowledge, only bounded uncertainties are considered, which can

be tackled by a feedback controller without needing adaptation. This absent or

small need for adaptation leads to controllers which are not necessarily intelligent.

Nonetheless, there are still some examples of intelligent controllers in this category.

2. Environment subject to change during operation: As described by Equation 3.2,

the environment at this level is characterized by time-varying parameters. Since

it may not be possible to predict these greater changes in the environment, or

they may be too complex to model, a higher level of intelligence is required. Some

conventional adaptive controllers and intelligent ones can perform well at this level

of uncertainty.

3. Underlying physics of environment not well defined: Although it represents an

uncommon scenario for Earth applications, an environment could be described as

an uncertain mapping from states and actions to future states as in Equation 3.3.

This is the case for many space applications, such as Mars entry vehicles. In this

scenario, some information about the environment is known, but an intelligent

controller must account for substantial knowledge gaps.

4. No knowledge of environment: No model of the environment is available or exists;

hence no environment knowledge is incorporated into the control system at design

time. An intelligent controller is required to explore such an environment safely.

3.3.2 Controller Knowledge

0. Stationary, globally stable controller: Feedback controllers in the form of Equation

3.4 can maintain appropriate performances under the given assumption, and their

stability can be mathematically proven. A feedback control system can perform

well for simple applications without needing adaptation.

1. Varying controller parameters: Suppose a controller with fixed parameters at de-

sign time cannot perform efficiently in the entire operating range of the system.

In that case, its parameters can be varied online to extend its operational range.
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Equation 3.5 describes a controller of this kind. Many examples of intelligent and

non-intelligent applications can be found at this knowledge level.

2. Unknown sensor/actuator behaviour: This level of controller knowledge compre-

hends the broader category of Fault Tolerant Control (FTC). In this context, FTC

represents an uncertainty in the controller whose action might be different than

the expected response and where sensors may provide erroneous measurements.

A general definition of this controller is provided in Equation 3.6. This category

does not comprehend FTC systems that use simple thresholds to identify faults

that are defined at design time since they are known. Therefore this category is

for those control systems that must deal with unknown faults.

3. Varying controller configurations: With the increasing level of intelligence, a con-

troller can alter its structure online to adapt to unforeseen uncertainties. Such

a controller is generally defined as in Equation 3.7. Often, techniques such as

evolutionary computation are used to determine the controller structure offline.

Applying these techniques online would make the control system intelligent and

able to adjust its configuration while operating.

4. No known controller structure: The maximum level of intelligence in this category

is represented by a controller that can design itself online from scratch, using, for

example, control blocks, mathematical operations and intelligent architectures. To

improve the online efficiency of this approach, an initial rudimentary controller can

be given as a stable starting point.

3.3.3 Goal Knowledge

0. Goals entirely predetermined by designer: Most control systems, including intel-

ligent ones, are designed to satisfy a defined goal. In this scenario, the control

system has no awareness of its goals hence it is not able to change the current

goals to better adapt to the encountered environment or uncertainties. Examples

of such control systems are those where the tracking error must be reduced to zero.
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1. Goal specified implicitly, for example, as a reward function: Classical optimal con-

trol problems pertain to this category. These control systems aim to minimize or

maximize a defined objective function. This results in a high-level goal of the con-

troller consisting of deriving an optimal control policy with respect to the objective

function. This is also the case for the reinforcement learning control framework,

where an agent learns a control policy by interacting with the environment. In

this latter control scheme, the controller learns by observing its state and reward.

2. Specific goals subject to change during operation with a globally defined goal: Sys-

tems acting in highly dynamic environments require an intelligent goal planner

to adapt online to significant environmental changes. For example, in a space

mission, the spacecraft/rover has to wait for new instructions every time an un-

foreseen event occurs, or new data are available. These instructions are sent from

the engineers on Earth. Hence a time delay is introduced, which could affect the

mission’s success. This delay could be avoided by an intelligent goal planner that

defines online new goals according to the current environment.

3. One or several abstract goals with no clear cost function: In some cases, it might

not be possible to define the goals mathematically; hence the controller must

be able to understand high-level goals. For example, a high-level goal could be

“capture images of scientifically interesting events” or “explore this region and

collect data”. The controller must understand and decide autonomously what

events are scientifically interesting or which data are worth collecting.

4. No knowledge of goals: Controllers in this category have to deduce autonomously

what actions to take when, to begin with, they have no knowledge or indication

of what actions are favourable.

3.4 Classification of Relevant Examples

To illustrate the applicability of the taxonomy presented in the previous section, some

examples of IC systems are described and classified, covering a broad range of methods
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and levels of intelligence. The following notation is used in the classification below:

– G: Goal Knowledge

– E: Environmental Knowledge

– C: Controller Knowledge

Table 3.1 shows the classification of IC approaches found in the literature with

their respective references. They are grouped according to the particular AI technique

employed. For clarity, only the levels of classification found in the reviewed applications

are listed in the table. Figure 3.2 presents the same classification in a parallel coordinate

plot, where the applications are divided into different levels of intelligence, and the

colours and line thicknesses indicate the number of applications found in the respective

level of intelligence. The additional dimension regarding the publication year was added

to show the spread of dates over which these were published. From Figure 3.2, it can be

observed that: 1) there are no applications with a goal knowledge greater than two; 2)

the most common classification is G-0, E-1, C-1 (20 applications) by a significant margin

and the second most populated intelligence level is G-0, E-2, C-1 (9 applications); 3)

the reviewed works were published in a well-spread manner between 1991 to 2019.

As previously discussed in section ??, several AI techniques can be used for IC,

although the majority of them can be classified either as Machine Learning (ML),

Fuzzy Logic (FL), Evolutionary Computing (EC) or hybrid methods. The distribution

of these methods is quantitatively depicted in Figure 3.3 where it can be observed that

the majority of the reviewed applications employ NNs (51%) covering a broad range

of intelligence levels as shown by Table 3.1. EC and FL are employed on a similar

number of applications but with different levels of goal knowledge. Usually, EC is used

for symbolic regression or optimisation applications and is often coupled with other

AI techniques. While FL is used where human-like reasoning is required, thus leading

to a higher concentration of FL applications in higher levels of intelligence, e.g. G-2.

Hybrid methods are also widely used (24%), and among them, the most common is the

combination NN and FL.
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Table 3.1: Artificial intelligence techniques used for intelligent control applications.
[1]

G0 G1 G2

E0 E1 E2 E3 E0 E1 E2 E3 E1 E2

C2 C1 C2 C3 C1 C2 C1 C0 C1 C4 C1 C2 C4 C0 C1 C1

FL [134, 135] [136] [137]

NN [138, 139,
140, 141,
142, 143,
144, 145,
146, 147,
148, 149,
150]

[151] [152, 153,
154, 155,
156]

[157] [158] [159] [106, 160,
161]

[162]

SVM [163, 164]

EC [165] [166, 167] [168] [169]

Other [170] [171]

Hybrid
Methods

[172] [173, 174] [175] [176, 177,
178, 179]

[180, 181] [182] [183]

Figure 3.2: Parallel coordinate plot of the observed levels of intelligence. The colour
scale and the different line thickness refer to the number of applications observed in
the considered intelligence level. [1]
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Figure 3.3: AI methods used for Intelligent Control (IC). [1]

In the following, a brief description of an application for each observed level of intel-

ligence is provided. The reviewed applications are from different engineering domains

that comprehend a robotic element, meaning that the considered systems can achieve

their goal without human intervention.

• G-0, E-0, C-2: Kankar et al. [172] present a comparison between NN and Support

Vector Machine (SVM) in predicting ball bearing failures showing how both tech-

niques can be useful for this application. Although the presented application is

not a complete controller, it is a fault detection system that can be integrated into

a controller for a rotating machine.

• G-0, E-1, C-1: An early example of Neural Networks (NNs) being used as di-

rect controllers is described by Ichikawa and Sawa [174]. In their work, a direct

NN controller is combined with a genetic model reference adaptive control, which

trains the NN considering the model of the ideal plant dynamics. This system is

designed to deal with evolving environment dynamics, and the network is contin-

ually updated to optimise performance.

• G-0, E-1, C-2: A widespread technology for IC and in particular Fault, Detection,

Isolation and Recovery (FDIR), is the Adaptive Network-based Fuzzy Inference
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System (ANFIS) developed by Jang [184]. An application of ANFIS is presented

by Wang et al. [185]. In their work, an adaptive backstepping sliding mode

controller is augmented with an ANFIS FDIR system that can control a robotic

airship. The environment states are predicted at each time step by an ANFIS

observer. If these values disagree with those from the sensors, a sensor fault is

declared, and the ANFIS output is used as input to the controller. The level of

Goal knowledge is 0 since the goal of the control system is to minimise a tracking

error following a predetermined trajectory.

• G-0, E-1, C-3: The NN controller designed by Wu et al. [151] is classified as

C-3 since it possesses the unique ability to change the network topology and its

parameters online based on the output of a learning algorithm. Such a change in

the topology is not trivial and requires a trade-off between maintaining sufficient

computational speed for online usage and the required precision in its output

values.

• G-0, E-2, C-1: The neuro-fuzzy controller is among the more popular IC methods.

It is designed by combining the adaptability of a NN with the ability to replicate

the human-like reasoning of fuzzy controllers. In [178], the authors apply a neuro-

fuzzy model reference adaptive control scheme to an electric drive system. Their

results show that the controller is robust to environmental changes and adapts

quickly to suppress vibrations and improve tracking accuracy.

• G-0, E-2, C-2: Xu et al. [157] present another example of FDIR incorporated

into control systems. In particular, unknown faults are recognized using a FTC

scheme based on a backstepping controller integrated with a NN, which updates

its weights online using a modified back-propagation algorithm. Two networks are

used to approximate unknown system faults and compensate for their effect.

• G-0, E-3, C-1: Vehicles that operate in uncertain environments, such as Mars

entry vehicles, can benefit from having an IC system. In the paper of Li et

al. [158], a NN based sliding mode variable structure controller is developed.
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Such a controller is composed of a fast loop, a conventional Proportional-Integral-

Derivative (PID) controller, and a slow loop containing the adaptive NN element.

The user defines the goal by defining a nominal entry trajectory.

• G-1, E-0, C-0: The control system presented in [165] is based on a Genetic Al-

gorithm (GA) used to optimise the temperature for ethanol fermentation online.

In this application, GA is not used to adapt the controller parameters online, but

rather in an optimal control fashion to find the optimal fermentation temperature

online and update its goals. In contrast to classical optimal control approaches,

the optimisation is performed online according to the plant states and employs an

AI technique. These differences make the considered control system intelligent.

• G-1, E-1, C-1: The control system designed by Handelman et al. [180] pertains

to the class of hybrid methods, which, as discussed in section 3.2, combine dif-

ferent AI techniques and exploit their strengths. The presented control system

comprises a Knowledge Based System (KBS) for devising learning strategies and

a NN controller, which learns the desired actions and performs these in real time.

This control system is designed to mimic human learning, combining a rule-based

initial learning and fine-tuning by repetitive learning. The environment and con-

troller considered here have low levels of uncertainty, and the control goals are

only implicitly defined.

• G-1, E-1, C-4: Despite its good performances in symbolic regression applications,

GP is rarely used for IC applications due to its cumbersome computational cost.

Chiang [168] presents a control system that can be classified as C-4 since the

control law is created online using GP starting from predefined mathematical

functions without any prior knowledge of the controller structure. Such a controller

guides a mobile robot in an environment with known and unknown obstacles, and

the latter introduces a slight uncertainty.

• G-1, E-2, C-1: Kawana and Yasunobu [136] present an intelligent controller ca-

pable of keeping the system performances at the desired level despite actuators’
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failure. This example is not classified as G-2 since the introduced failure is known

and defined by the user. Nonetheless, the introduced changes in the environment

are significant. A particular feature of this control system is its ability to generate

the environment model online through learning, and this model is then used to

update the fuzzy control rules.

• G-1, E-2, C-2: In the work of Talebi et al. [162], two Recurrent Neural Networks

(RNNs) are used to detect and isolate faults, one for sensor faults and the other for

actuator faults. These NNs are also used to compensate for these faults directly

without needing an additional subsystem for fault isolation.

• G-1, E-3, C-4: In the control system presented in section 4.3 [169] GP is used to

generate online the control, similar to what was done in [168]. The controller is

then tested on different failure scenarios, where the environment model is partially

unknown at design time.

• G-2, E-1, C-0: The controller designed by Ceriotti et al. [170] can modify a plan-

etary rover’s goal during its mission. To do so, a value of “interest” is assigned

to each point on the map. Such value of “interest” comes from combining naviga-

tion data with scientific data from different sources. The values of interest on the

map evolve according to the observed data. The combination of data from var-

ious sensors is done using the Dezert-Smarandache Theory (DSmT) of plausible

and paradoxical reasoning, which can overcome the limitations of fuzzy logic and

evidence theory. The values of interest on the map evolve over time according to

the observed data.

• G-2, E-1, C-1: One of the most advanced IC systems is the Autonomous Sci-

encecraft Experiment onboard NASA’s Earth Observing One [171]. This system

possesses a hierarchical structure, where the highest level is the CASPER planner,

which plans its activities according to the information coming from the onboard

science. The activities plan is then fed to the spacecraft command language, which

executes it using lower-level actions. This level can also adapt to environmental
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changes and make control adjustments as necessary. Conventional software is used

below this level to carry out control actions as instructed by higher levels. While

this system does not operate in a significantly changing environment, it can alter

its controller parameters online and contains highly autonomous decision-making

and goal updating.

• G-2, E-2, C-1: The WISDOM control system for rovers is presented in the work of

Vasile et al. [183]. Such a controller is capable of adaptive control and high-level

planning. It is composed of a hierarchical structure of three layers. The top layer

generates plans which are fed to the adaptive controller at the lower layer. The

adaptive controller deals with environmental changes and provides instructions for

the lowest hierarchical level connected to the actuators. This system adapts to

changing or uncertain environments and has varying parameters. The goals are

also evolved over time by the system’s planner.

The examples listed above are meant to show the applicability of the proposed

taxonomy to a broad range of fields and applications involving IC. The taxonomy is

consistent in the sense that different applications involving different AI techniques can

be grouped in the same classification level according to the performed task. A few

examples of this consistency are listed in the following:

• Activity planning - G-2 : The applications involving planning and reasoning were

classified as G-2. Regardless of the employed AI technique, the controller needs to

choose its desired states and how to achieve them in all these cases. For example,

in [171], the control system uses information from the onboard science subsystem

to plan its activities. In [182], a reasoning strategy based on forward chaining is

adopted to find optimal concentrations of chemicals for an electrolytic process.

• Robotic navigation and manipulation - E-2 : Systems that operate in unknown

environments or in the presence of unknown obstacles are classified as E-2. This

category comprehends control systems that deal with parametric uncertainties in

the plant’s dynamic models as in [156, 155] and robotic exploration in an uncertain

environment [183].
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• Adaptive intelligent control - C-1 : If no unknown faults are considered, then

those control systems that adapt their parameters online are classified as C1.

This category’s most common aspect is some adaptation mechanism to update

the control law parameters. Such adaptation can be performed with different AI

techniques. From the comparison of two different applications [137] and [149],

it can be seen that despite the different AI techniques employed (FL and NN

respectively) and their differing overall goal, they are both classified as C-1 since

they both adjust control law parameters online.

• Fault Detection, Isolation, and Recovery (FDIR) - C-2 : This category compre-

hends those control systems that can deal with failures in their sensors or actua-

tors. ANFIS is a technique used often in this category as in [175] for fault detection

and diagnosis of an industrial steam turbine and in [185] where a controller is de-

signed to reliably track the trajectory of a robotic airship in the presence of sensor

faults.

3.5 Summary and Comments

This chapter provided a comprehensive description of Intelligent Control (IC). IC was

defined alongside a high level description of the different Artificial Intelligence (AI)

techniques used for IC. A more detailed description of Genetic Programming (GP) is

given in chapter 4.

As a novel contribution of this thesis, a novel taxonomy of IC was proposed. The

taxonomy aims to classify control systems based on their level of knowledge at design

time in three dimensions: goals, environment and controller. Therefore, the classifi-

cation is performed according to the level of uncertainty that the control system can

handle. Several applications were studied and classified according to the proposed tax-

onomy to assess its applicability and consistency. From the reviewed applications, it

emerges that the majority of IC systems focus on the environment and controller di-

mensions which tend to have a greater number of highly intelligent applications than

the goal dimension. Although recent applications show an increasing development to-
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wards a higher level of intelligence in each dimension, there is still work to be done to

develop the level of intelligence with respect to goal knowledge.

The reviewed applications showed how IC covers several classes of systems requiring

different levels of intelligence. Applications with a lower level of intelligence are the

most common, but as technology develops, more autonomous machines will be required;

hence the number of highly intelligent applications will increase.

Many future work directions can be pursued. Machines created to explore new or

highly uncertain environments, such as disaster rescue robots, will need a controller

capable of dealing with higher uncertainty in the goals knowledge. The intersection

between IC and explainable AI can be an essential step towards creating trustworthy

systems, allowing a human operator to interact with the reasoning process of machines

effectively.
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Chapter 4

Genetic Programming for G&C

and Intelligent Control

4.1 Introduction

This chapter presents Genetic Programming (GP) and describes its application in a

control and Intelligent Control (IC) framework. GP, an Evolutionary Algorithm (EA)

devised by Koza in 1992 [186], demonstrates proficiency in generating mathematical

models for achieving predefined objectives. Its applicability extends to both regres-

sion and classification scenarios. In the context of regression problems, the method

is labelled as symbolic regression due to the symbolic form of the generated models.

The flexibility and interpretability of models produced by GP makes it an interesting

alternative for discovering control strategies. In control applications, interpretability

proves useful as understanding the control equation facilitates the evaluation of system

reliability and behaviour. For instance, in linear systems, the knowledge of the control

law expression facilitates the construction of the closed-loop transfer function for subse-

quent stability analysis [187]. Furthermore, in the context of Artificial Intelligence (AI)

applied to control systems, an interpretable control law promotes trust in AI-based

control systems by clarifying the connection between input and output [188].

Considering GP applied to control schemes design, noteworthy non-intelligent ap-

plications are found in the literature. For instance, in [189], GP is employed to au-
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tonomously generate a control Lyapunov function and the modes of a switched state

feedback controller. Similarly, in [190], GP is utilized to formulate a PID-based con-

troller resilient to noise. In the aerospace domain, only very few works about GP-based

controllers can be found, such as [191] employing multi-objective GP for evolving con-

trollers for a Unmanned Aerial Vehicle (UAV) tasked with locating and navigating

around a radar source. Another instance is [192], where an adapted GP approach is

employed to generate the control law for a UAV to be recovered onto a ship, account-

ing for real disturbances and uncertainties. However, these applications do not qualify

as IC since the GP controller design was conducted offline, lacking online learning or

adaptation.

To design an intelligent controller using solely GP, the control law must be gener-

ated or updated online in response to environmental or plant changes. This type of

application is extremely rare in the literature, likely due to computational costs. An

example is discussed by Chiang [168], who describes the online generation of the con-

trol law using GP, to allow a small robot to navigate through a predefined environment

with previously unknown obstacles. The scarcity of these types of applications is one

of the reasons that justified the research developed during the doctoral work. In fact,

due to the rapid development of hardware technologies, issues related to computational

costs will become less relevant in the future.

The remainder of this chapter is structured as follows. Section 4.2 discusses the

theoretical foundations of GP while its application in an IC settings is presented in

section 4.3, where GP is used to produce the real-time ascent guidance commands of

a Goddard rocket. In section 4.4, the Inclusive Genetic Programming (IGP), a novel

GP heuristic designed during this thesis’s development is presented and the results

obtained from its application on regression tasks are discussed. Section 4.5 contains a

summary of the chapter along with concluding remarks.

4.2 Genetic Programming

Similar to other EAs, GP operates based on the Darwinian principle of the evolution of

the fittest. Following this principle, a population of individuals evolves until a specified
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goal is achieved. In GP, an individual is represented by a mathematical model, also

known as a GP tree, illustrated in Figure 4.1. Here, x, y, and 5 are termed terminal

nodes, with x and y representing input variables. The remaining nodes in the GP tree

correspond to primitive functions defined by the user and used by the GP algorithm to

autonomously construct programs.

At the beginning of the evolutionary process, an initial population of randomly gen-

erated programs is created. The user defines a fitness function, either to be minimized

or maximized by the evolutionary process. Evolution proceeds through the application

of crossover, mutation, and selection operators, aiming at finding the minimum (or

maximum) of the specified fitness function.

Figure 4.1: Individual structure in GP. The tree can be read as the mathematical
model on the right.[2]

Concerning the evolutionary operators, crossover involves the exchange of genes

between two parent individuals, resulting in the generation of two offspring individuals.

In Figure 4.2, the blue and orange boxes highlight two genes that are exchanged between

the parents to create the offspring. Meanwhile, the mutation operator performs the

random mutation of a selected gene in an individual to generate a new child with the

same structure as the parent, except for the mutated gene, as depicted in Figure 4.3.

Lastly, the selection operator is employed to choose individuals from the population,

which comprises parents and offspring, to form the starting population for the next

generation. The selection is made based on user-defined criteria. The evolutionary
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process of a generic GP algorithm is summarized in Algorithm 1.

Figure 4.2: Schematic of crossover operation. From two parents, two children are
generated.

Figure 4.3: Schematic of mutation operation. A selected gene of an individual is
mutated randomly.

Numerous variations of crossover, mutation, and selection operators have been de-

veloped over the past decades, and a great amount of literature exists on various flavours

of GP. This thesis does not intend to offer an exhaustive description of the subtleties

of the GP algorithm. Interested readers are directed to [186, 193, 194] for more com-

prehensive discussions on diverse GP implementations.
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Algorithm 1 Generic GP evolutionary process

1: Create initial population randomly
2: Evaluate fitness of individuals in the initial population
3: Generation ← 1
4: while Termination criteria is not met do
5: Perform crossover and mutation to obtain offspring
6: Evaluate fitness of offspring
7: Select individuals from the old population and offspring to create

a new population
8: Generation ← Generation + 1
9: end while

4.2.1 Genetic Programming for Guidance and Control

A dynamical system represented by Equation 4.1 is considered. In this equation, f

denotes the system’s dynamics, which may consist of both linear and nonlinear equa-

tions. The vector x represents the state variables, while u represents the vector of

control inputs.

ẋ = f(x(t),u(t)) (4.1)

When employed for controller design, the objective of GP is to discover a mathe-

matical model that can serve as the control law for the target dynamical system. This

is expressed as fGP (v) = u, where the GP model is a function of a set of user-defined

variables v. Consequently, this leads to an updated representation of the dynamical

system, as given by Equation 4.2.

ẋ = f(x(t), fGP (v)) (4.2)

Figure 4.4 illustrates a graphical representation of a GP control scheme. In this

Figure, the inputs of the GP models are the tracking errors on the state variables.

While this is a common approach in control scheme design, the user can define other

variables for the GP to utilize. The GP will then autonomously evolve models that

make use of the most influential inputs.

The methodology for designing a GP-based control system is outlined in Algorithm
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Figure 4.4: Application of GP models in a control scheme

2. When this process is executed in real-time, or online, during plant operation, it

falls under the category of IC. According to the taxonomy presented in chapter 3, the

described approach can be classified as G-4 since the GP generates the control law online

from scratches using a set of primitives provided by the user. If the GP evolutionary

process is not performed online, it is not classified as IC but it is considered AI-based

control.

Algorithm 2 Generic process to obtain a GP based control system

1: Create initial population
2: for j = 1 → NindPopInit do
3: Propagate dynamical system in Equation 4.2 using the control law

fGP defined by the j-th individual
4: Evaluate a fitness function according to the propagated trajectory
5: end for
6: while Termination criteria is not met do
7: Perform crossover and mutation to obtain offspring
8: for j = 1 → NindOffspring do
9: Propagate dynamical system in Equation 4.2 using the control law

fGP defined by the j-th individual
10: Evaluate a fitness function according to the propagated trajectory
11: end for
12: Apply selection operator considering both offspring and parent populations
13: Store best performing individual of current generation
14: end while

As shown in Algorithm 2, the fitness of each individual in each generation is as-

sessed through the propagation of the dynamical system. This process is necessary for

evaluating the performance of the generated control models. Consequently, the GP
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algorithm learns, evolving individuals through direct interaction with the controlled

plant. An advantage of this learning approach is its adaptability to systems with un-

known dynamics. However, the computational cost associated with dynamical system

propagation poses a significant challenge when deploying GP in an IC context. The

evolutionary process must be executed within a time frame compatible with the sys-

tem dynamics. This becomes especially critical when dealing with highly nonlinear

equations that model the plant, as the dynamics propagation can become excessively

time-consuming.

Moreover, during the initial stages of the evolutionary process, the GP may generate

control laws that result in propagation failure. To address this issue, the fitness function

must be formulated to identify and exclude such individuals, guiding the evolutionary

process toward well-performing individuals.

4.3 Intelligent Control Application
1

This section introduces an Intelligent Control (IC) application of GP. In this context,

GP is employed at the outer loop level of the control scheme, assuming a perfect

response from the actuators. GP is used to generate the values of the control signals

required by the inner control loop to effectively track the desired trajectory. From this

perspective, GP serves to generate real-time guidance commands for the inner loop

controller. The application of GP follows the process outlined in Algorithm 2, where

the fitness function is computed by propagating the system’s equation of motion using

the guidance laws generated by GP.

The real-time guidance generation capability of GP is assessed by subjecting the

plant and environment models to external disturbances. Whenever a disturbance is

detected, the GP evolutionary process is initiated to generate a guidance model in

response.

The utilization of GP in an online setting introduces a specific challenge: the plant’s

initial conditions to propagate its trajectory using GP must be predetermined before

the evolutionary process begins. Consequently, the time taken by the GP to conduct

1The content of this section was previously published in the conference paper [3].

70



Chapter 4. Genetic Programming for G&C and Intelligent Control

the evolution must be known a priori and must be shorter than the total time of the

simulated trajectory. For reliable results, this time interval must be defined conser-

vatively, slightly exceeding the time required by the GP evolutionary process and yet

remaining small enough to maintain effective control capabilities. Given the stochastic

nature of GP and to test different disturbance configurations, a statistical analysis was

undertaken and is presented in Subsection 4.3.3.

4.3.1 Test Case and Mission Profile

The selected test case involves tracking the ascent trajectory of a 2-dimensional version

of the Goddard rocket [195]. The system is analyzed using polar coordinates, resulting

in five states and two control variables. The states include the radial position or

altitude r, angular position or path angle θ, radial velocity vr, tangential velocity vt,

and mass m. The guidance commands consist of the radial thrust Tr and tangential

thrust Tt. The dynamical model of the chosen plant is expressed in Equations 4.3,

whose derivation can be found in [196].



ṙ = vr

θ̇ = vt
r

v̇r = Tr
m −

Dr
m − g +

v2t
r

v̇t = Tt
m −

Dt
m + vtvr

r

ṁ = −

√
T 2
r + T 2

t

g0Isp

(4.3)

The drag vector is defined as well with its radial and tangential components, as

shown in Equation 4.4.

Dr =
1

2
ρvr

√
v2r + v2t cdS

Dt =
1

2
ρvt

√
v2r + v2t cdS

(4.4)

The chosen density model is shown in Equation 4.5.
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ρ = ρ0e
−βr (4.5)

The gravitation acceleration is evaluated as in Equation 4.6

g = g0

(R
r

)2
(4.6)

The equations governing the dynamics of the Goddard rocket are influenced by

various constant parameters, as detailed in Table 4.1. Constraints are imposed on the

vehicle’s mass and thrust values. Specifically, the total mass must always be greater

than the vehicle’s structural mass, i.e., m > 1000 kg. Additionally, both tangential

and radial thrust must remain within the range from zero to their respective maximum

values, i.e., 0 < Tr, Tt < 1471 kN .

Table 4.1: Constant parameters used in the Goddard rocket test case

Symbol Value Unit Meaning

R 6371000 m Earth’s radius
g0 9.80665 m/s2 Gravitational acceleration at sea level
m0 100000 kg Total initial mass
mp 99000 kg Propellant initial mass
S 4 m2 Reference surface
cd 0.6 Drag coefficient
Isp 300 s Specific impulse

ρ0 1.225 kg
m3 Air density at sea level

β 0.000118 m−1 Scale factor

The mission profile involves reaching an altitude of 400 km while minimizing fuel

consumption. An optimal trajectory for this mission was obtained through a direct

optimal control study using Direct Pseudospectral Collocation discretization. The

OpenGoddard
2

open-source library was employed for this purpose. The resulting opti-

mal trajectory serves as a reference trajectory to be tracked by the GP.

The plant can operate in two conditions: nominal and off-nominal. In nominal con-

ditions, no disturbances are present, and the open-loop controller obtained during the

optimal control study is sufficient to track the reference trajectory. In off-nominal condi-

2https://github.com/istellartech/OpenGoddard
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tions, disturbances are introduced during trajectory propagation, making the open-loop

scheme incapable of tracking the reference trajectory. In such cases, the GP real-time

guidance is employed. The guidance equations corresponding to the operational states

of the system are summarized in Table 4.2.

Table 4.2: Open loop and closed loop control laws [3]

Open Loop Closed Loop

Tr(t) = Trref (t) Tr(t) = Trref (t) + fGPr(er(t), evr(t))

Tt(t) = Ttref (t) Tt(t) = Ttref (t) + fGPt(eθ(t), evt(t))

The models found by the GP are not employed as complete guidance commands;

instead, they are used as variations applied to the reference commands, as indicated in

Table 4.2. This approach was adopted based on the observation that providing the GP

with information about the domain in which the guidance command should be located

facilitated the evolutionary process and yielded better results.

Figure 4.5: Simplified guidance scheme of modified Goddard rocket for off-nominal
flight conditions [3]

The complete closed-loop guidance scheme used in off-nominal conditions is illus-

trated in Figure 4.5

Concerning the closed-loop models, the decision was made to design the GP equa-
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tion for the radial thrust, denoted as fGPr , as a function solely dependent on the radial

quantities. Similarly, the GP equation for the tangential thrust, denoted as fGPt , was

designed as a function solely dependent on the tangential quantities. This choice aims

to streamline the GP evolutionary process and reduce the complexity of the generated

models.

4.3.2 Genetic Programming settings

The GP algorithm settings are summarized in Table 4.3, in particular: each GP in-

dividual is composed of two GP trees which are evolved simultaneously. One is used

for the radial thrust fGPr and the other for the tangential thrust fGPt . As previously

explained, they receive as input the respective quantities, i.e. fGPr receives the ra-

dial quantities, while fGPt the tangential ones. Two fitness measures are used, F and

P . F represents the GP guidance laws’ capability of tracking the reference trajectory

and it is used to guide the GP evolutionary process. Specifically, it is computed as

F =
∫ tf
t0
| er(t) | dt, where t0 is the initial time of the trajectory, tf is the final time

and er is the tracking error on the radial position. P is employed to track the violation

of the constraints. It is evaluated considering the constraints violations at all points

of the trajectory. The values of the constrained quantities are grouped in the vector c

and their values are compared against their defined maximum and minimum values, re-

spectively cmax and cmin. The overall vector of constraints violations will then be cv =

[max(0, c1−c1max),max(0, c1min−c1), ...,max(0, cNp−cNpmax
),max(0, cNpmin

−cNp)]

where Np is the number of points in the trajectory. Then, P is computed as P = ||cv||2.

The mutation rate is initially set at 0.7 during the early stages of the evolution-

ary process to enhance exploration within the search space. Subsequently, as feasible

individuals are discovered (i.e., those with P = 0), the mutation rate is reduced by

0.01 at each generation. Concurrently, the crossover rate is increased by 0.01 at each

generation until the crossover rate reaches a value of 0.65.

The listed primitives comprise common arithmetic operations such as addition,

subtraction and multiplication, but also a set of custom functions. These are add3,

plog, psqrt, pexp. add3 is a ternary addition, while plog, psqrt, pexp are a modified
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version of the log, sqrt, exp to avoid numerical errors. As an example, the plog function

is presented in Equation 4.7.

plog(x) =


ln(x), x > 0

0, otherwise

(4.7)

Input features fGPr er, evr
Input features fGPt eθ, evt

Population Size 500 individuals
Maximum Generations 150

Stopping criteria
Reaching the maximum number of generations or

F ≤ 0.7 and P = 0
Crossover probability 0.2 (+0.01 at every generation if P = 0) → 0.65
Mutation probability 0.7 (-0.01 at every generation if P = 0) → 0.25

1:1 Reproduction probability 0.1
Evolutionary strategy M + Λ

M Population size
Λ Population Size

Number of Ephemeral constants 2
Limit Height 8

Limit Size 30
Selection Mechanism Double Tournament

Double Tournament fitness size 2
Double Tournament parsimony size 1.6

Tree creation mechanism Full

Mutation mechanisms
Uniform (50%), Shrink (25%),

Insertion (15%), Mutate Ephemeral (10%)
Crossover mechanism One point crossover

Primitives Set
+, −, ∗, add3, tanh, psqrt

plog, pexp, sin, cos
Fitness measures min F , min P

Table 4.3: GP setting for the guidance scheme design process.

4.3.3 Results

The GP algorithm was developed in Python 3.8 using the open source library DEAP

[197]. The simulations were run on a Desktop PC with 8GB of RAM and an In-

tel®CoreTM i7-6700 CPU @3.40 GHz x 8 processors and multiprocessing was used.
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The developed code is open source and can be found at https://github.com/strath-

ace/smart-ml.

To test the effectiveness and reliability of the proposed IC approach, three different

failure scenarios were simulated mimicking real world situations:

1. the unexpected change in the vehicle shape due to a component failure, which is

simulated by introducing a variation in one of the plant parameters, specifically

the drag coefficient cd;

2. the unforeseen change in environmental conditions, which is simulated by intro-

ducing a wind gust, that can impact the performance of an ascent vehicle;

3. poor knowledge of the environment’s physical models at design phase. This is a

common scenario in space exploration applications. In such cases, engineers often

have to rely on environmental models derived from observations, which may vary

in accuracy. This is simulated by using a simplified air density model to find the

optimal trajectory and a more detailed one during flight.

In the subsequent sections, Figures from 4.6 to 4.16 depict the trajectories of the

radial distance r and the angular distance θ. These quantities are used to assess the

outcomes of the conducted simulations. The success criterion for a simulation is met if

the final values of r and θ deviate by no more than 1% from their respective reference

values.

Hereafter, the results for each failure scenario are presented, with a comprehensive

statistical analysis presented towards the end of this subsection.

1st Failure Scenario - cd variation

To simulate a system’s component failure, the drag coefficient cd undergoes variation

from its nominal value of 0.6 to a randomly selected value within the range [0.61, 2].

This alteration occurs at a randomly determined time within the interval [20s, 250s]

seconds. Refer to the end of this section for the results of the complete statistical

analysis. In particular, Tables 4.4 and 4.5 list the results of the analysis conducted by
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performing 1000 GP evolutionary processes considering 1000 different combinations of

cd and variation time. The values of cd and variation time are drawn from a uniform

distribution in the aforementioned ranges.
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Figure 4.6: Altitude profiles for a Cd variation from 0.6 to 1.21 at 142.33 s [3]. The
inset depicts a magnification of the last seconds of the trajectory.
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Figure 4.7: θ profile for a Cd variation from 0.6 to 1.21 at 142.33 s [3]. The inset
depicts a magnification of the last seconds of the trajectory.

The trajectories depicted in Figures 4.6 and 4.7 illustrate the response when the

drag coefficient (cd) is altered from 0.6 to 1.21 at 142.33 seconds. Figure 4.6 displays the

trajectory of radial distance, while Figure 4.7 presents the angular distance trajectory.
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In both plots, the red dashed line represents the reference trajectory, the black line

corresponds to the trajectory under nominal conditions, the blue line represents the

trajectory under the influence of the new cd with the open-loop guidance law, and the

green line illustrates the trajectory under the influence of the new cd with the closed-

loop guidance law. The marker on both the blue and green lines indicates the point at

which the guidance commands are applied. The inset in each plot provides a closer view

of how well the trajectories obtained using the GP commands align with the reference

towards the end of the simulation. The red shaded areas in the inset denote the 1%

range from the reference.

As shown in Figure 4.6, the trajectory obtained using the GP models falls within

the 1% range from the reference trajectory, demonstrating the effectiveness of the GP

guidance law. In contrast, the trajectory obtained with the open-loop commands de-

viates significantly from the reference. A different behaviour is observed in Figure 4.7,

where both the open and closed-loop commands result in successful trajectories. How-

ever, considering both the radial and angular distances, it can be concluded that the

open-loop scheme struggles to handle a variation in the drag coefficient, while the GP

guidance law successfully tracks the reference trajectory.

2nd Failure Scenario - Wind Gust

In this second failure scenario, the simulation of a change in environmental conditions

is performed by introducing a wind gust. The wind gust acts within a random altitude

range with a constant speed in the tangential direction. The initial altitude for the

wind gust is randomly chosen within the [0, 40] km range, with size within the [10, 15]

km interval. The gust magnitude is selected from the interval [0, 24] m/s. Refer to the

end of this section for the results of the complete statistical analysis. In particular,

Tables 4.4 and 4.5 list the results of the analysis conducted by performing 1000 GP

evolutionary processes considering 1000 different combinations of gust intensity, and

range of application. The values of gust intensity, initial altitude of the gust zone

and size of the gust zone are drawn from a uniform distribution in the aforementioned

ranges.
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Figure 4.8: Altitude profiles for a wind gust of 13.02 m/s applied between 3.11 km
and 15.59 km [3]. The inset depicts a magnification of the last seconds of the trajectory.
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Figure 4.9: θ profile for a wind gust of 13.02 m/s applied between 3.11 km and 15.59
km[3]. The inset depicts a magnification of the last seconds of the trajectory.

The results presented in Figures 4.8 and 4.9 were obtained by introducing a wind

gust with a magnitude of 13.02 m/s, acting between 3.11 km and 15.59 km.

In these plots, the reference trajectory is represented by a red dashed line, the

trajectory flown with the applied gust and the open-loop guidance is depicted in blue,

while the trajectory flown with the applied gust and the GP closed-loop guidance is

shown in green. Once again, the markers denote the point at which the open and closed-
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loop guidance commands are applied. The inset illustrates how close the trajectories

obtained using the GP commands get to the reference in the final part of the trajectory,

with the red shaded areas indicating the 1% range from the reference. Similar to the

previous failure scenario, the open-loop guidance commands can successfully track the

angular position but fail in tracking the radial position. Therefore, for this failure

scenario as well, the GP guidance laws are necessary to track the desired trajectory in

terms of radial and angular positions.

3rd Failure Scenario - Partially known density model

In the final failure scenario, the simulation aimed at replicating a lack of knowledge

in the physical models at the design stage. For this purpose, an optimal trajectory

was computed offline using the simplified density model presented in Equation 4.5,

representing an incorrect atmospheric model. Conversely, during the actual simulated

trajectory, the U.S. Standard Atmosphere Model 1962 (USSA1962) model was em-

ployed, reflecting the real atmospheric conditions. A direct comparison of the two

density models is illustrated in Figures 4.10 and 4.11 on a semi-logarithmic scale. In

both plots, the altitude is considered up to 50 km since, beyond this threshold, the

density value becomes negligible.

The impact of employing different air density models is depicted in Figure 4.12. This

picture showcases the altitude profiles obtained using the two different models while

using the same open-loop guidance commands derived from the optimal control study

performed using the density model in Equation 4.5. Consequently, the use of a different

atmospheric model results in a different final altitude if the guidance commands are

not updated accordingly.

To adapt to unforeseen environmental conditions, the GP guidance laws are gener-

ated in real-time by updating the current environmental models with newly acquired

data during the mission. This is achieved through Piecewise Cubic Hermite Interpo-

lating Polynomial (PCHIP) interpolation, as depicted in Equation 4.8.

ρnew = PCHIP (t, ρ) (4.8)
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Figure 4.10: Comparison between the density models up to 50 km [3]
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Figure 4.11: Comparison between the density models up to 50 km on a semi-
logarithmic scale[3]

with ρ defined as in Equation 4.9

ρ =


ρUSSA1962, 0 ≤ t ≤ teval

ρSimplified, teval < t ≤ tend
(4.9)

ρSimplified is the density model in Equation 4.5 and teval is the time at which the
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Figure 4.12: Altitude profile using the two different density models. The red dashed
line is the altitude profile obtained using the simplified density model, while the con-
tinuous black line is the one obtained using the USSA1962 model. In both cases the
trajectories are propagated using the reference open loop guidance commands. [3]

GP evaluation starts.

The objective of this approach is to dynamically update the density model online

by interpolating newly gathered data during the mission with the anticipated data

produced by the existing density model. Despite potential inaccuracies, the old model

may still contain valuable information.

The results presented in Figures 4.15 to 4.16 illustrate the trajectories of the radial

and tangential positions, r and θ, obtained for the specific failure scenario. In this case,

the density model was updated online three times, and each obtained model is depicted

in Figures 4.13 and 4.14. The density model was updated every time the tracking error

on the radial position became greater than 100 m.

The notation used in Figures 4.15 and 4.16 has the following meaning:

• Red dashed line: reference trajectory, obtained with the simplified density model.

Simplified model in Figures 4.13 and 4.14.

• Black continuous line: trajectory obtained with the USSA1962 density model and

reference open loop guidance. USSA1962 model in Figures 4.13 and 4.14.
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Figure 4.13: Comparison between the different density models used [3]
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Figure 4.14: Comparison between the different density models used on a semi loga-
rithmic scale [3]

• Light blue line: trajectory performed using density model 0 and the GP guidance.

Model 0 in Figures 4.13 and 4.14.

• Orange line: trajectory performed using density model 1 and the GP guidance.

Model 1 in Figures 4.13 and 4.14.

• Green line: trajectory performed using density model 2 and the GP guidance.

Model 2 in Figures 4.13 and 4.14.

The insets in Figures 4.15 and 4.16 provide insight into how closely the trajectories
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obtained using the GP commands align with the reference at the end of the trajectory,

with the red shaded areas indicating the 1% range from the reference. Similar to the

previous failure scenarios, the open-loop guidance commands can successfully track the

angular position under off-nominal conditions. However, they struggle to track the

radial position. Once again, the GP guidance laws are needed for successfully tracking

the desired trajectory in terms of both radial and angular positions.

The results of the complete statistical analysis are listed in Tables 4.4 and 4.5. The

statistical analysis was performed by repeating the trajectory propagation 1000 times.

More on the statistical analysis is discussed in the following.
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Figure 4.15: Altitude profile in the 3rd scenario. The different markers on the plot
represent the trajectory performed with different density models [3]

Statistical Analysis

Given the stochastic nature of the GP algorithm, its performance can vary, requiring a

robustness assessment through a statistical study. Moreover, both variations in the GP

initialization and in the applied failures are considered, so to test the robustness also

against a broader range of failure cases. Table 4.4 provides a summary of the results

obtained from a statistical study conducted on the three previously discussed failure

scenarios.

In each of the three scenarios, 1000 trajectory propagations were performed. For
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Figure 4.16: θ profile in the 3rd scenario. The different markers on the plot represent
the trajectory performed with different density models [3]

each propagation, the GP evolutionary process was initialized differently and different

combinations of failure scenarios were used. In particular, for the first failure scenario,

each propagation was performed by using a randomly initialized GP population, a

value of cd drawn from a random uniform distribution in the [0.61, 2] range, and a cd

variation time drawn from a random uniform distribution in the [20, 250]s interval. In

the second scenario, each simulation was performed with a different GP initialization

and a different combination of wind speed and altitude range. Also in this scenario,

the GP’s population was initialized randomly, the gust magnitude was drawn from a

random uniform distribution in the [0, 24]m/s range, the initial altitude of the gust

zone was picked from a random uniform distribution in the [0, 40]km range and the

size of the gust zone was sampled from a random uniform distribution in the [10, 15]km

interval. Concerning the third scenario, each time a GP evolution was performed, its

population was initialized randomly.

Reviewing the results presented in Table 4.4, the Evaluation Time Success Rate

indicates how frequently the GP evolution was completed within the allocated time

interval. This metric is employed because the time spent by the GP to complete

the evolutionary process varied in each simulation. The allocated time is reported in

the ”Fixed time interval” row. Min, max and median evaluation time refers to the

minimum, maximum and median evaluated on the time spent by the GP to perform
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Table 4.4: Statistics of GP evaluations performed on the 3 scenarios presented [3]

Cd Variation Wind Gust Density Model

GP Evaluations 1000 1000 3153
Fixed time interval 40 s 100 s 40 s
Min evaluation time 4.76 s 6.46 s 3.22 s
Max evaluation time 04h58m20s 01h36m53s 54m49s
Median evaluation time 14.7 s 88.76 s 38.35 s
Evaluation Time Success Rate 61.90% 52.60% 50.77%
Range Success Rate 71.70% 99.80% 79.80%

the evolutionary process considering the 1000 simulations.

Meanwhile, the range Success Rate shows how often the GP evolution generated

a guidance model capable of tracking the reference trajectory and guiding the system

successfully within the 1% range from the desired trajectory. According to the obtained

results, the proposed IC approach achieves the desired precision in 83.7% on average

considering the three failure scenarios, with a noteworthy peak of 99.8% success in the

second scenario, which is likely to be a common occurrence in real-world applications.

Learning approach

To enhance the obtained results, a learning mechanism was introduced and its effects

were studied. In the learning approach, a few of the best-performing individuals from

each GP evolution were retained and added to the initial population, which was ran-

domly created at the beginning of the next simulation. The maximum size of the

population composed of well-performing individuals was set at 300, while the total

population for each simulation was maintained at 500 individuals. The inclusion of

200 randomly created individuals aimed at ensuring a certain degree of diversity in the

population and preventing overfitting.

Table 4.5 compares the results obtained with and without the learning approach.

From the comparison, it is clear that the incorporation of the learning approach resulted

in improved performance across all three scenarios, resulting in higher success rates for

both Range and Evaluation Time quantities.

A graphical depiction of these improvements is shown in Figures 4.17 to 4.19. These
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Table 4.5: Statistics of GP evaluations performed on the 3 scenarios presented, com-
paring the results obtained with the learning approach against those obtained without
learning. [3]

Cd Variation Wind Gust Density Model
No Learning Learning No Learning Learning No Learning Learning

GP Evaluations 1000 1000 1000 1000 3153 3108
Fixed time interval 40 s 40 s 100 s 100 s 40 s 40 s
Min evaluation time 4.76 s 2.73 s 6.46 s 8.34 s 3.22 s 1.45 s
Max evaluation time 04h58m20s 01h18m09s 01h36m53s 26m16s 54m49s 01h01m19s
Median evaluation time 14.7 s 5.81 s 88.76 s 22.09 s 38.35 s 28.49 s
Evaluation Time Success Rate 61.90% 83.10% 52.60% 90.80% 50.77% 54.89%
Range Success Rate 71.70% 73.50% 99.80% 100% 79.80% 79.60%
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Figure 4.17: Detail of time distribution for 1st scenario between 0 and 50 seconds.
For this simulation, the median evaluation time was 14.7 s without learning and 5.8 s
with learning [3]

present plots of evaluation times against the number of evaluations. The results ob-

tained with and without the learning approach are marked by orange crosses and blue

dots, respectively. The evaluation time is depicted as up to 50 seconds in the first and

third scenarios and up to 100 seconds in the second scenario, focusing on the region

encompassing the median evaluation time. Notably, these plots reveal that points cor-

responding to the learning approach are tightly clustered around a smaller evaluation

time in comparison to those corresponding to the approach without learning. This

clearly shows how the learning approach can help in reducing the evaluation times

and in improving the consistency of the GP algorithm. In this context, consistency

refers to the tendency of the GP algorithm enhanced with the learning approach to
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Figure 4.18: Detail of time distribution for 2nd scenario between 0 and 100 seconds.
For this simulation, the median evaluation time was 88.76 s without learning and 22.09
s with learning [3]

0 500 1000 1500 2000 2500 3000
GP Evaluations

0

10

20

30

40

50

Ti
m

e 
[s

]

3rd Scenario
No learning
Learning

Figure 4.19: Detail of time distribution for 3rd scenario between 0 and 50 seconds.
For this simulation the median evaluation time was 38.35 s without and 28.49 s with
learning [3]

perform more evolutions in a time frame centred around the median, in contrast to

those obtained without learning.

88



Chapter 4. Genetic Programming for G&C and Intelligent Control

4.4 Inclusive Genetic Programming
3

This section presents the Inclusive Genetic Programming (IGP). A heuristic developed

during the doctoral work and initially devised to enhance the performance of a GP

algorithm applied in control applications, introducing mechanisms to maintain popu-

lation diversity throughout the evolutionary process. This algorithm is discussed since

it is employed in the real-time guidance scheme discussed in chapter 5.

Diversity loss is a common challenge in EAs that can lead to premature conver-

gence. This occurs when the population is filled with duplicates and variations of the

same well-performing individuals, resulting in a loss of genetic diversity. Diversity loss

is particularly relevant in control applications, where a control law capable of captur-

ing nonlinearities is crucial for controlling highly nonlinear plants. GP achieves this by

increasing the number of nodes in the individuals. However, if this behaviour is uncon-

trolled, the number of nodes may grow excessively, yielding large individuals with not

necessarily improved performance. This is why bloat control operators are employed

to mitigate this issue. Nevertheless, these operators can be overly restrictive, poten-

tially discarding individuals larger than the average but containing valuable genetic

information.

The significance of population diversity in EAs has been extensively explored by

various authors. In [198], diversity is discussed as a method for managing exploration

and exploitation during the evolutionary process, with the paper also detailing various

diversity measures. The balance between exploration and exploitation is influenced

by population diversity, where greater diversity favours exploration and lesser diver-

sity enhances exploitation. Squillero et al. [199] provide a comprehensive survey of

methodologies for promoting diversity in evolutionary optimization. Additionally, [200]

analyzes different diversity measures, contributing to the understanding of diversity’s

role in evolutionary algorithms.

The approach employed in the IGP involves classifying individuals into different

niches based on their genotype (i.e., their structure). Subsequently, crossover, mutation,

3The content of this section was previously published in the conference papers [20, 21] and the
journal paper [4].
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and selection operations are conducted considering all the obtained niches. Thus, IGP

can be categorized as a niching technique. However, it differs from traditional niching

approaches, which involve dividing the population into distinct niches and evolving

them separately to discover different local optima. In contrast, IGP considers all the

niches to facilitate the flow of genes between them.

The concept of combining diverse individuals, such as those from different niches,

rather than focusing solely on well-performing ones, has been explored in the past. For

instance, Aslam et al. [201] investigated this concept, although their approach is based

on the phenotypic diversity of individuals and does not involve the subdivision of the

population into niches. Instead, they classified individuals based on a measure called

Binary String Fitness Characterization, initially introduced by Day and Nandi [202].

Additionally, they explored the concept of good and bad diversity.

4.4.1 Inclusive Evolutionary Process

The IGP is built on a modified version of the evolutionary strategy M + Λ [203], the

Inclusive M + Λ, developed during this doctoral work and originally introduced in

[21]. The designed evolutionary strategy is depicted in Figure 4.20 and outlined in

Algorithm 3. The Inclusive M + Λ was created to incorporate the niches creation into

the evolutionary process, in particular at the beginning of the evolutionary process and

after the generation of new offspring. It is also structured to consider both the Inclusive

Reproduction and Inclusive Tournament selection mechanisms, which were developed

for the IGP and described in the following.

Niches Creation

The cornerstone of the Inclusive Evolutionary Process is the niches creation mechanism.

In this context, a niche is defined as an interval between lower and upper bounds, corre-

sponding to two values representing lengths of the GP individuals. To determine these

boundaries, each time the niches are created, the individuals in the current population

are examined to identify the maximum and minimum lengths in the population. Based

on these values and the user-input desired number of niches, denoted as n, a set of n
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Algorithm 3 Pseudocode of the Inclusive M + Λ [3]

1: Evaluate the fitness of the individuals in the population
2: Update Hall of Fame of best individuals
3: while Termination criteria is not met do
4: Create n niches according to the maximum and minimum length

of the individuals in the population and allocate the individuals
to their respective niche

5: Perform Inclusive Reproduction to produce λ offspring
6: Evaluate the fitness of the individuals in the obtained offspring
7: Update Hall of Fame of best individuals
8: Create n niches according to the maximum and minimum length of the

individuals considering both the parents and the offspring and allocate
the individuals to their respective niche

9: Perform Inclusive Tournament Selection to select M new parents
10: end while

Figure 4.20: Inclusive Evolutionary Process schematic representation [4]

niches is established. The size of these niches is determined by linearly dividing the

interval from the minimum to the maximum length by n. Consequently, each niche will

encompass individuals with lengths falling within the boundaries of that niche. The

niches creation process is illustrated in Figure 4.21. In this example, a population of

ten individuals, with lengths 1, 1, 2, 2, 3, 4, 4, 5, 7, 8 (excluding the root node), is

considered. Ten niches are created, spanning the lengths depicted in the figure and

containing the individuals shown within them.

The overall number of niches remains constant throughout the evolutionary process.
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However, the number of individuals within each niche may fluctuate in response to

changes in the individuals’ lengths resulting from evolutionary operators and alterations

in the niches’ boundaries. Specifically, if the maximum and minimum lengths in the

population change, the subdivisions of the interval will be adjusted accordingly. This

variation in the sizes of niches induces a migration of individuals between niches, thereby

contributing to the maintenance of population diversity.

Figure 4.21: Illustration of the niches creation rationale. [3]

Inclusive Reproduction and Inclusive Tournament

To fully exploit the created niches, a modified version of the VarOr reproduction al-

gorithm [197] and of the Double Tournament [204] selection process were developed.

The Inclusive Reproduction, outlined in Algorithm 4, performs similar operations to

the VarOr algorithm, including crossover, mutation, or 1:1 reproduction, but selects

individuals from different niches.

When crossover is chosen, a one-point crossover is applied between two individuals

from two different niches. One individual is the best from one niche, while the other

is randomly selected from another niche. This approach retains well-performing genes

while preserving diversity and preventing overfitting. Additionally, a mechanism is

implemented to prevent breeding between identical or highly similar individuals (lines

16-20 in Algorithm 4). Here, nl is a predefined constant indicating the maximum

number of loop iterations to avoid potential infinite loops.
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When mutation is selected, a mutation operator is randomly chosen from a set of

options such as uniform, shrink, insertion, or mutate ephemeral, based on a user-defined

selection probability. These mutation operators, as defined in the DEAP library [197],

contribute to increasing randomization introduced by the mutation operation. The

mutation is applied to an individual randomly chosen from the selected niche.

Lastly, when 1:1 reproduction is chosen, the best individual from the population is

passed to the offspring. The niches used in all three operations (crossover, mutation,

and 1:1 reproduction) are selected from a list of exploitable niches, which is continually

updated to avoid consistently selecting from the same niches.

The Inclusive Tournament involves executing a Double Tournament [204] on each

niche, as outlined in Algorithm 5. In the Inclusive Tournament, niches are selected

sequentially. The double tournament on each niche is conducted at most t times, where

t is the number of individuals within the respective niche, preventing the presence of

clones in the final population.

The IGP can be configured to evolve individuals capable of satisfying a set of

imposed constraints. For this purpose, the objective function of each individual is

formulated as Find = [F, P ], where F represents the current goal of the algorithm

(e.g., minimizing the prediction error), and P is a penalty function considering the

constraints violation. Subsequently, the Double Tournament selection used within the

Inclusive Tournament, as outlined in Algorithm 5, has been modified and is presented

in Algorithms 6 and 7. The objective of this algorithm is to first select individuals

that satisfy the constraints, thereby obtaining a population predominantly composed of

constraints-preserving individuals. Subsequently, individuals are selected based on their

fitness. The algorithm is configured for a minimization problem but can be adapted

for a maximization problem as well.

4.4.2 Test Procedure and Chosen Benchmarks

To assess the efficacy of the IGP algorithm, it was compared against a standard GP

implementation (Standard Genetic Programming (SGP)). The SGP employs the stan-

dard M + Λ evolutionary strategy, the standard VarOr reproduction, and the standard
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Algorithm 4 Pseudocode of Inclusive Reproduction [3]

1: if Crossover probability < cxlimit then
2: Mutation probability ← Mutation probability - 0.01
3: Crossover probability ← Crossover probability + 0.01
4: end if
5: Good Indexes ← Indexes of filled niches
6: List of exploitable niches ← Good Indexes
7: while Size offspring < λ do
8: Choice ← Random number between [0, 1]
9: if Choice < Crossover Probability then

10: if List of exploitable niches is empty then
11: List of exploitable niches ← Good Indexes
12: end if
13: Select randomly two different niches from List of exploitable niches
14: Remove chosen niches from List of exploitable niches
15: Select the best individual from the first niche and select a random

individual from the second niche
16: n ← 0
17: while The selected individuals have the same fitness and n < nl do
18: Repeat lines 10 to 15
19: n ← n+1
20: end while
21: Apply crossover to the chosen individuals
22: Add first child to offspring
23: if Size of offspring < λ then
24: Add the second child to the offspring
25: end if
26: else
27: if Choice < Mutation probability + Crossover Probability then
28: Repeat lines 10 to 15 but selecting only one category
29: Select randomly one individual from the chosen category
30: Perform mutation of the chosen individual
31: Add mutated individual to the offspring
32: else
33: Repeat lines 27, 28
34: Add chosen individual to the offspring
35: end if
36: end if
37: end while
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Algorithm 5 Pseudocode of Inclusive Tournament [3]

1: while Number of selected individuals < M do
2: for i = 1 → number of niches do
3: if Number of selected individuals from i-th niche < total number of individ-

uals in i-th niche then
4: Select one individual in i-th niche with modified Double Tournament

selection
5: end if
6: end for
7: end while

Algorithm 6 Pseudocode of modified Double Tournament Selection - Part 1

1: A set of individuals I is received as input
2: chosen← empty list
3: lp ← random uniform ∈ [0, 1]
4: while Length of chosen < 2 do
5: Select randomly two individuals (i1, i2) from I
6: if Pfi1

== 0 and Pfi2
== 0 then

7: if Ffi1
< Ffi2

then
8: i1 is appended to chosen
9: else

10: i2 is appended to chosen
11: end if
12: else
13: if Pfi1

== 0 and Pfi2
!= 0 then

14: i1 is appended to chosen
15: end if
16:

17: if Pfi1
!= 0 and Pfi2

== 0 then
18: i2 is appended to chosen
19: end if
20:

21: if Pfi1
!= 0 and Pfi2

!= 0 then
22: if Pfi1

< Pfi2
then

23: i1 is appended to chosen
24: else
25: i2 is appended to chosen
26: end if
27: end if
28: end if
29: end while
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Algorithm 7 Pseudocode of modified Double Tournament Selection - Part 2

30: n← random uniform ∈ [0, 1]
31: if Length i1 == Length i2 then
32: lp ← 0.5
33: ind1 ← i1
34: ind2 ← i2
35: else
36: if Length i1 < Length i2 then
37: ind1 ← i1
38: ind2 ← i2
39: else
40: ind1 ← i2
41: ind2 ← i1
42: end if
43: end if
44: if n < lp then
45: Select ind1
46: else
47: Select ind2
48: end if
49: Output selected individual

double tournament selection, as implemented in the DEAP library [197].

The comparison between the two algorithms was conducted on nine regression prob-

lems outlined in [205] and summarized in Table 4.6.

Name Definition Features Instances

Koza-1 fK1(x) = x4 + x3 + x2 + x 1 20(train), 100(test)
Korns-11 fK11(x, y, z, v, w) = 6.87 + 11 cos(7.23x3) 5 5000(train, test)

S1
fS1(x) = e−xx3 sin(x) cos(x)·

1
110(train),
220(test)·(sin2(x) cos(x)− 1)(sin2(x) cos(x)− 1)

S2 fS2(x, y) = (y − 5)fS1(x) 2 110(train), 220(test)
UB fUB(x1, x2, x3, x4, x5) = 10

5+
∑5

i=1(xi−3)2
5 1024(train), 5000(test)

ENC [206] 8 768 (train:70%, test:30%)
ENH [206] 8 768 (train:70%, test:30%)
CCS [207] 8 1030 (train:70%, test:30%)
ASN [208] 5 1503 (train:70%, test:30%)

Table 4.6: Summary of chosen benchmarks

The chosen benchmarks encompass both synthetic and real-world data, providing a

diverse set of problems for evaluation. The number of samples and sampling techniques

used to generate the data were consistent with those adopted in [205]. There were two
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exceptions: for the benchmark korns11, 5000 samples were utilized instead of 10000

to decrease the computational time for both training and testing samples; and for the

benchmark S2, the same number of training samples used for the x variable was also

applied to the y variable.

To evaluate the performances of the two algorithms, three indicators are used:

1. RMSE of the final solution found by both algorithms on test and train data.

2. Evolution of the RMSE of the best individual during the evolutionary process.

3. Evolution of the entropy during the evolutionary process. Rosca demonstrated

[209] that entropy reflects the diversity within a population, and the higher the

entropy, the more diverse the population is. Entropy is computed using Equation

4.10, where pk represents the proportion of the population P inside niche k.

Empty niches are not taken into account in the entropy evaluation.

E(P ) = −
∑
k

(pk · ln(pk)) (4.10)

As a clarifying example of the relationship between entropy and diversity, two

populations of 10 individuals are considered, both subdivided into 10 niches.

The individuals of the first population are more similar to each other filling only

two niches, five in the first and five in the second niche. The individuals of

the second population are more diverse with all the 10 niches filled, one indi-

vidual per niche. According to this, the entropy for the first population will

be E(P1) = −2(0.5ln(0.5)) = 0.69, while for the second population it will be

E(P2) = −10(0.1ln(0.1)) = 2.3. This example clearly shows how greater diver-

sity corresponds to greater entropy.

The mean and standard deviation for all three indicators are evaluated by perform-

ing 100 simulations.
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Algorithms Settings

Both IGP and SGP are implemented in Python 3.8, using the open source library

DEAP [197]. The simulations are performed on a machine with 16GB of RAM and an

Intel® Core™ i7-8750H CPU @ 2.20GHz × 12 threads, and multiprocessing is used.

The developed code is open source and can be found at https://github.com/strat

h-ace/smart-ml.

To perform the simulations, the algorithms are set as in Table 4.7.

SGP IGP

Population Size 300 individuals
Maximum Generations 300

Stopping criteria Reaching maximum number of generations
Crossover probability 0.8 0.2 → 0.8
Mutation probability 0.2 0.8 → 0.2
Evolutionary strategy M + Λ Inclusive M + Λ

M Population size
Λ Population Size × 1.2

Number of Ephemeral constants 1
Limit Height 15

Limit Size 30
Selection Mechanism Double Tournament Inclusive Tournament

Double Tournament fitness size 2
Double Tournament parsimony size 1.2

Tree creation mechanism Ramped half and half

Mutation mechanisms
Uniform (50%), Shrink (5%),

Insertion (25%), Mutate Ephemeral (20%)
Crossover mechanism One point crossover

Primitives Set
+, −, ∗, add3, mul3, tanh
square, plog, pexp, sin, cos

Fitness measure RMSE

Table 4.7: Settings for the SGP and IGP algorithms. The percentages near the
mutation mechanisms refer to the probability of that mutation mechanism being chosen
when the mutation is performed. [3]

The ”Limit height” and ”Limit size” in Table 4.7 represent parameters used by

the bloat control mechanism implemented in the DEAP library. Regarding the mu-

tation operators, they were used according to the specified probabilities in brackets;

for instance, the uniform mutation was selected 50% of the time when a mutation was
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performed. These mutation operators are those coded in the DEAP library.

The primitive set comprises basic arithmetic functions such as addition, subtrac-

tion, and multiplication plus a set of custom functions. These are add3 and mul3,

representing ternary addition and multiplication, and plog and pexp, which are a mod-

ified version of the logarithmic and exponential functions to prevent numerical errors.

As an example, the pexp function is presented in Equation 4.11.

pexp(x) =


exp(100), x > 100

exp(x), −100 ≤ x ≤ 100

exp(−100), x < −100

(4.11)

In the SGP, the crossover and mutation probabilities were fixed, while in the IGP,

these probabilities changed dynamically. The mutation probability was decreased by

0.01, and the crossover probability was increased by the same quantity at each gener-

ation, up to a limit cxlimit defined by the user. This dynamic adjustment is illustrated

in Algorithm 4 at lines 1-4, where cxlimit is the crossover limit. This approach was

employed to enhance the algorithm’s exploration capability at the beginning of the evo-

lutionary process while improving exploitation towards the end. The same approach

was tested in the SGP but did not result in any improvement. The simulations were

terminated at 300 generations to strike a balance between result quality and reasonable

computation times.

Results

As outlined in Subsection 4.4.2, the IGP and SGP were evaluated on nine distinct

benchmarks representing synthetic and real-world regression problems. Their perfor-

mances were evaluated using three indicators: the Root Mean Squared Error (RMSE)

on the final solution, the evolution of the RMSE throughout the evolutionary process,

and the entropy of the population during the evolutionary process. The RMSE was cal-

culated using the best-performing individual in the population for each simulation. The
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evolutionary process was repeated 100 times, i.e. 100 simulations, for each benchmark

to ensure statistically meaningful results.

The results presented in Figure 4.22 depict the trajectory of the RMSE during the

evolutionary process for both IGP and SGP across the nine benchmarks. The solid lines

in the figure represent the median values, while the shaded areas denote the standard

deviation intervals. By analyzing the results, it is clear that the IGP consistently

outperformed or matched the SGP by converging more rapidly to the minimum.

The figures from 4.23 to 4.27 depict the RMSE median and standard deviation on

the final solution for both test and train data. Once again, the IGP exhibits superior

performance compared to the SGP, especially in terms of generalization capability.

This trend is consistent across all benchmarks except for the koza1 benchmark, where

the SGP achieves better results. This outcome might be attributed to the IGP’s goal

of promoting a more diverse population, leading to larger individuals, i.e. with more

nodes, compared to the SGP population. These larger individuals may be overkill

solutions for a straightforward test case like the koza1 benchmark, which could be

more efficiently solved by smaller individuals.

As described in Subsection 4.4.2, the entropy measure was employed to assess the

population’s diversity. The results in Figure 4.28 illustrate the evolution of entropy

throughout the evolutionary process for both the SGP and IGP. A close examination of

the entropy evolution reveals that the IGP maintained an entropy value of around 2.30,

which is the theoretical maximum, throughout the evolutionary process. In contrast,

the entropy in the SGP tends to decrease towards the end of the evolutionary process,

indicating a reduction in diversity in favour of better-performing individuals.

In summary, when analyzing both Figures 4.22 and 4.28, the presented results sug-

gest that diversity maintenance indeed contributes to improving the performance of the

GP algorithm. The IGP converges faster to a minimum, achieving better performance

and generalization capabilities compared to the SGP.

As a concluding remark, Table 4.8 lists the mean and standard deviations of the

computational times obtained with the SGP and IGP algorithms across the nine bench-

marks. Since the IGP performs more operations than the SGP, higher computational
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Figure 4.22: Fitness function values of the SGP and IGP algorithms on the nine
different benchmarks. On the ordinate is the RMSE, while on the abscissa is the
number of generations. The solid and dashed lines represent the median values for
the IGP and SGP respectively, while the shaded regions are the standard deviation
intervals [3]
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Figure 4.23: RMSE of training and test data on synthetic benchmarks Koza1 and
Korns11. The median and standard deviation values were evaluated over the results
produced on 100 different runs. [3]
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Figure 4.24: RMSE of training and test data on synthetic benchmarks S1 and S2.
The median and standard deviation values were evaluated over the results produced on
100 different runs. [3]
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Figure 4.25: RMSE of training and test data on synthetic benchmark UB. The median
and standard deviation values were evaluated over the results produced on 100 different
runs. [3]
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Figure 4.26: RMSE of training and test data on real-world benchmarks ENC and
ENH. The median and standard deviation values were evaluated over the results pro-
duced on 100 different runs. [3]
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Figure 4.27: RMSE of training and test data on real-world benchmarks CCS and ASN.
The median and standard deviation values were evaluated over the results produced on
100 different runs. [3]

times were expected. This is true on some of the treated benchmarks, while for others

the computational time is either comparable or smaller considering also the standard

deviations. Therefore, by averaging on all the treated benchmarks it can be inferred

that the enhancements introduced by the IGP do not come with a significant increase

in computational time.

Computational times [s]

SGP IGP

Koza-1 44.83± 5.78 17.29± 1.97
Korns-11 1079.10± 745.43 1429.35± 814.94

S1 60.36± 17.77 49.54± 15.04
S2 37.76± 12.54 86.69± 18.17
UB 108.96± 75.18 198.18± 69.92

ENC 108.60± 88.69 147.58± 49.67
ENH 132.43± 420.11 141.09± 52.95
CCS 198.74± 75.022 188.38± 77.99
ASN 262.07± 179.45 168.06± 71.14

Table 4.8: Computational times
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Figure 4.28: Entropy values of the SGP and IGP algorithms on the nine different
benchmarks. On the ordinate is the Entropy, while on the abscissa is the number of
generations. The solid and dashed lines represent the median values for the IGP and
SGP respectively while the shaded regions are the standard deviation intervals [3]
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4.5 Summary and Comments

This chapter provides an overview of Genetic Programming (GP) and its application in

the domain of Intelligent Control (IC). It begins with an introduction to the theoretical

foundations of GP and proceeds to present the necessary framework for deploying

GP in the context of guidance or control tasks. Subsequently, an application of IC

using GP is presented. Specifically, GP is employed in real-time to generate guidance

commands for tracking the ascent trajectory of a Goddard rocket in the presence of

various external disturbances. Three types of disturbances are introduced to assess the

robustness of the proposed approach: a variation in the drag coefficient cd, simulating

changes in system parameters; a wind gust, emulating environmental disturbances; and

a variation in the atmospheric model, representing a potential modelling error. The

GP evolution is conducted online within a fixed time interval, and two success metrics

are defined: the range success rate, indicating the GP’s ability to track the reference

trajectory, and the evaluation time success rate, denoting the frequency of successful

GP evolutions within the designated time interval. The proposed approach proves

its efficacy by successfully guiding the vehicle through all three disturbance scenarios,

achieving an average range success rate of 83.7% and an average evaluation time success

rate of 55% across these scenarios. A learning approach, where the GP algorithm learns

from previous evolutions, was applied, resulting in an improvement of the evaluation

time success rate by an average of 21%. These results underscore the potential of the

proposed method, even when applied to a simplified problem.

Notably, for plants with a greater degree of nonlinearity, the online application of GP

can be impractical due to extended evaluation times required to perform the trajectory

propagation, potentially resulting in mission failure. To address this limitation and

improve adaptability online, the Genetically Adapted Neural Network-based Intelligent

Controller (GANNIC) approach outlined in chapter 5 was developed.

The chapter concludes with the description and test of a novel GP heuristic, the

Inclusive Genetic Programming (IGP). Notably, the IGP, featured in chapter 5, is

designed to enhance the performance of GP algorithms in control applications by pro-
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moting and maintaining diversity within the population. To evaluate its efficacy, the

IGP is tested across nine distinct benchmarks representing regression problems. Com-

parative analyses with a standard GP implementation reveal that the IGP achieves

lower fitness values, i.e. better performance, quicker convergence, and enhanced gener-

alization capabilities without a significant increase in the computational costs. These

advantages are caused by the IGP’s emphasis on promoting and maintaining the pop-

ulation’s diversity. Diversity is monitored through the entropy measure, which is kept

constant by the IGP throughout the evolutionary process, in contrast to the SGP that

shows an entropy decrease, i.e. loss of diversity, towards the end of the evolutionary

process.
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Chapter 5

Genetically Adapted Neural

Network-Based Intelligent

Controller (GANNIC)
1

5.1 Introduction

This thesis aims at investigating the applicability of Genetic Programming (GP) in

an Intelligent Control (IC) setting. In doing so, the integration of GP with Neural

Network (NN) is investigated, to enhance the online applicability of GP and overcome

the limit posed by its computational cost. In chapter 4, GP was introduced, and its

applicability in an IC setting was assessed. Subsequent experiments conducted in the

course of this research revealed a significant growth of the GP’s computational cost

as the nonlinearity of the used models increased. This observation was particularly

evident in another work produced during this thesis’s development [4], where GP was

employed to generate guidance commands for a Reusable Launch Vehicle (RLV), specif-

ically angle of attack (α) and bank angle (σ). The results showcased GP’s capability

to produce guidance commands leading to successful mission completion under uncer-

tainties in atmospheric and aerodynamic models. However, the computational cost,

approximately five minutes per GP evolutionary process, made it impractical for online

1Part of the content of this chapter is submitted for publication [2]
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applications with the current technology. For these reasons, the integration of GP and

NN was investigated, resulting in the development of the Genetically Adapted Neu-

ral Network-based Intelligent Controller (Genetically Adapted Neural Network-based

Intelligent Controller (GANNIC)).

The Genetically Adapted Neural Network-based Intelligent Controller (GANNIC)

is a control framework designed with a versatile interface capable of issuing commands

at both inner and outer control loop levels. Within the scope of this thesis, it was

specifically formulated and implemented to operate at the outer loop level, assuming a

perfect actuator response. From the perspective of the inner control loop, the GANNIC

scheme functions as a real-time guidance mechanism, generating reference signals for

certain desired variables to be tracked by the inner control loop. Furthermore, GANNIC

was developed to guide a plant in the presence of external disturbances or uncertain-

ties in the used models. This is achieved by leveraging the online learning capabilities

provided by the combination of GP and NN. As elaborated in section 5.3.1, in the

selected test case for GANNIC development and evaluation, the guidance commands

comprised the angle of attack α and bank angle σ required to follow a desired trajec-

tory in the presence of uncertainties in the environmental models. Examples of similar

adaptive guidance schemes can be found in the literature, employing both conventional

techniques and those augmented by Artificial Intelligence (AI). Examples not involving

the use of AI are listed in section 2.5.3. When employing AI, many applications in the

literature involve the use of NNs. As an example, Song et al. [210] proposed a real-time

reentry guidance approach built using transformer networks trained to output the cor-

rect bank angle for a given flight state. Another real-time guidance approach relying on

NNs is the one discussed in [16]. The authors developed a real-time guidance scheme

for the landing phase of a reusable rocket, by combining two networks, one for classi-

fication and the other for regression. The classification network is used to classify the

initial conditions of landing flights into different categories that correspond to different

thrust profiles. Then the regression network is used to output the corresponding values

of thrust to perform a successful landing. Recently, Reinforcement Learning (RL) has

been increasingly used for adaptive guidance. Gaudet et al. applied a reinforcement
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meta-learning algorithm in a series of works on planetary landing [211, 212], and more

recently on the approach phase guidance of a hypersonic glider [213]. Their method

involves applying reinforcement meta learning to optimize the adaptive guidance sys-

tem, to output the angle of attack and bank angle rates according to the current flight

conditions. Other examples of RL applied to perform the adaptive guidance of a RLV

can be found in [214, 215]. Other AI techniques are more rarely used for this purpose.

An example of Fuzzy Logic (FL) being applied for the adaptive guidance during the

approach and landing phase of a RLV can be found in [216], while to the best of my

knowledge, no applications can be found involving only Evolutionary Algorithms (EAs).

In contrast EAs have been widely used to perform trajectory optimization, as done for

example by [56], where the reentry trajectory of a RLV is optimized using Genetic

Algorithm (GA).

The decision to employ a combination of GP and NN in designing GANNIC was

influenced by the particular characteristics of each algorithm. GP is known for its ex-

ploratory capabilities, a characteristic extensively investigated in various applications,

as discussed in the works of Schmidt and Lipson [217, 218]. On the other hand, NNs

are universal nonlinear approximators, demonstrating the capability to learn nearly

any data distribution provided an adequate number of neurons in the hidden layers

[219, 220]. The combination of these two techniques is commonly observed in the do-

main of Neuroevolutionary control, where GP is employed to optimize the topology of

a NN [221].

GANNIC introduces a novel way of combining of GP and NNs. GP is employed

offline to discover a set of differential equations, which are then used to propagate the

NN’s weights along with the states of the considered plant. This approach can be inter-

preted as an adaptive Guidance and Control (G&C) scheme, where GP is employed to

learn the algorithm for parameters’ adaptation. According to the definition of IC pro-

vided in chapter 3, which involves the integration of AI and online learning, GANNIC

can be characterized as an instance of IC. Furthermore, employing the taxonomy out-

lined in chapter 3, GANNIC falls under the classification of E2-C1-G1. Specifically, the

controller is designed to address uncertainties linked to the plant’s states (E2); the NN’s
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weights, representing the controller’s parameters, undergo online adaptation (C1), and

the trajectory tracking objective is conveyed to the GP algorithm as a fitness function

to be minimized (G1).

The use of differential equations to update NN weights is not a novel concept in the

literature. Notably, Chowdhary et al. [222] employed a Model Reference Adaptive Con-

trol (MRAC) control scheme featuring a single hidden layer NN as a controller. They

devised two adaptation laws for the NN’s weights - one for adapting the hidden layer

weights and another for the output layer weights - ensuring their ultimate boundedness.

These adaptation laws were formulated as differential equations. This approach traces

its roots back to the foundational works of Lewis et al. [223, 224], where the stability

and boundedness of NN weights were guaranteed through derived differential equations.

However, the complexity of the mathematical formulation, originally developed for a

simple robotic manipulator model, may render its application to more complex systems

impractical, particularly those employing tabular models like most aerodynamic ones.

Despite these challenges, various works have emerged over the years employing the

approach presented in [223]. For instance, Zhang et al. [225] applied adaptive neural

control to robotic manipulators with output constraints and uncertainties, designing a

single adaptive law for all NN weights to ensure closed-loop system stability. In the work

of Liu et al. [226], an adaptive neural controller for nonlinear multiple-input multiple-

output systems was introduced. They used Radial Basis Function (RBF) networks to

approximate unknown functions, determining weights through the backstepping tech-

nique, and demonstrating closed-loop system stability using the Lyapunov theorem.

Another illustration is the work of Johnson and Calise [98], wherein they applied the

adaptive laws introduced by Lewis [223] to update NN controller weights. The con-

trol system was implemented on a RLV, simulating various failure scenarios. Their

approach effectively adapted to failure cases without necessitating direct knowledge of

the failure, showcasing the adaptability of the technique.

Due to the inherent mathematical challenges associated with formulating adapta-

tion laws, the application of GP offers a promising avenue for automating this complex

process. This can prove invaluable for engineers treating highly nonlinear problems,
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removing the need for linearization techniques and facilitating the application of a con-

sistent design methodology across diverse plants. Consequently, the control approach

outlined below represents a significant advancement towards achieving a fully auto-

mated and universally applicable controller design process.

To the best of the author’s knowledge, the literature does not present the use of GP

to find the adaptation laws in adaptive control or IC. There are other examples of GP

being applied to find adaptation laws, such as in [227], where it is used to automatically

design parameter adaptation techniques within a differential evolution algorithm.

This chapter is structured as follows. Section 5.2 provides a general description of

the GANNIC framework without referring to any particular application while section

5.3 showcases the GANNIC application to the real-time guidance of a RLV during

reentry. Section 5.4 presents a summary of the chapter with a discussion of the strengths

and limitations of the GANNIC scheme.

5.2 GANNIC Framework Description

The GANNIC scheme design process, illustrated in Figure 5.1, comprises a series of

steps that can be summarized as follows: 1) identify a reference trajectory for the

considered mission; 2) define how uncertainties are applied; 3) perform the GP evolu-

tionary process multiple times, first to optimize the NN topology (step 3.1), and then,

to determine the final update laws for use with the optimal NN configuration (step

3.2); 4) test the obtained control scheme. The controller structure and the third de-

sign step are described in the following. The application of the whole design process

is presented in section 5.3.1 referring to the treated test case. In the remainder of

this section, GANNIC will be addressed as a control scheme and its output as control

commands or control signals. This terminology is adopted for its generality, as the

provided description applies to both control and real-time guidance applications.
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Figure 5.1: Graphical depiction of the GANNIC scheme design process

5.2.1 Scheme Structure

The generic GANNIC scheme is illustrated in Figure 5.2. The vector x ∈ RNs comprises

the state variables, where Ns is the number of state variables. The vector u ∈ RNu

encompasses the control commands, with Nu denoting the number of control com-

mands. Control signals are obtained through the interaction between the NN output

uNN ∈ RNo , where No is the number of output neurons, and the reference control sig-

nal uref ∈ RNu , as further explained below. The vector e ∈ RNs denotes the tracking

errors on the states, computed as e = xref − x, where xref ∈ RNs is the vector of

reference state variables. The vectors x̄ ∈ RNs and ē ∈ RNs represent the scaled states

and tracking errors, respectively. The vector η encompasses environmental variables,

which are problem-dependent and can be omitted. The term U represents uncertain-

ties applied to the plant. The vectors νnew and νold represent the NN’s weights at the

current and previous time steps, respectively.

A NN featuring a single hidden layer is employed, and its outputs are defined

according to Equation 5.1, using the terminology adopted by Lewis [228].

uNNi =

Nh∑
j=1

[
wijϕ

( Ni∑
k=1

vjkyk + θvj

)]
+ θwi ; i = 1, ..., No (5.1)

In Equation 5.1 uNNi is an element of the vector uNN ∈ RNo containing the NN

outputs. wij is an element of the matrix W ∈ RNo×Nh representing the weights con-
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Figure 5.2: Diagram of the GANNIC scheme [2]

necting the hidden layer with the output layer. Nh represents the number of neurons

in the hidden layer. ϕ is the NN’s activation function. vjk is an element of the matrix

V ∈ RNh×Ni representing the weights connecting the input layer with the hidden layer,

where Ni is the number of input variables; and x ∈ RNi is the vector of input variables.

θv and θw represent the biases applied to the hidden and output layers, respectively. In

this work, no distinction has been made between the weights connecting the input layer

to the hidden layer and those connecting the hidden layer to the output layer; therefore,

they can be grouped in one vector ν. Also, the biases are treated equally to the weights

and can be grouped in the vector ν ∈ RNν with Nν = Nh(Ni + 1) +No(Nh + 1). Thus,

for clarity, in the rest of this chapter both NN’s weights and biases will be referred to

as weights.

The input of the NN corresponds to the scaled tracking errors on the states, com-

puted using a min-max scaling from their original range to the target range [0, 1], as

expressed in Equation 5.2. Here, LB and UB respectively represent the maximum

and minimum permissible values for the state variables. This scaling is implemented

based on literature recommendations [115], suggesting that NN performance tends to

improve with a small and bounded input. For this configuration, Ni = Ns, y ≡ ē, and
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No = Nu, where one output neuron is used for each control command.

ē =
x− xref

UB− LB
(5.2)

The weights of the NN, denoted by ν, are not static but are learned online by

propagating them using a set of differential equations determined offline through GP.

Consequently, the resulting dynamical system can be expressed in general form as pre-

sented in Equation 5.3. In this formulation, the states are propagated while considering

the states-dependent uncertainty U(x), also referred to as the uncertainty scenario. As

elucidated in the subsequent subsections, a collection of uncertainty scenarios is em-

ployed during the GP evolutionary process, resulting in a vector U(x) ∈ RNU , where

NU is the number of the considered uncertainty scenarios.

ẋ = f(x(t),u(t), U(x))

ν̇ = fGP (x(t),η(x), ν(t))
(5.3)

Nν GP equations are evolved simultaneously therefore a single differential equation

can be written as in Equation 5.4.

ν̇i = fGPi(x(t),η(x), νi(t)); i = 1, ..., Nν (5.4)

The input for each GP equation encompasses the states, a set of environmental

variables η and the corresponding weight. However, it is essential to note that the GP

algorithm evolves models that consider influential inputs. Therefore, the final models

might not incorporate all the input initially made available to the GP algorithm

To summarize, by propagating the dynamical system in Equation 5.3, the NN’s

weights are updated at each time step, leading to a control action uNN employed to

control the plant. However, this control action is not used directly, as it could assume

extremely large values, especially at the start of the GP evolutionary process. This

is attributed to the GP differential equations, which might produce exceedingly large
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values for the weights, resulting in numerical errors in the propagation and potential

failure of the evolutionary process. Consequently, the control action uNN is passed

through a scaler.

The scaler is a function employed to constrain and subsequently scale the output

of the NN to the range [uref (1 − ϵS),uref (1 + ϵS)], where uref denotes the reference

control signals, and ϵS is a distribution parameter proportional to the sum of the scaled

tracking errors on the state variables, assessed as presented in Equation 5.5. Here, ubS

and lbS represent the maximum and minimum variations, expressed as percentages from

the reference value. For instance, if lbS = 0.01 and ubS = 0.5, it signifies that the final

control action will lie within the range [1%, 50%] from the reference control value.

ϵS(t) =

Ns∑
i=1

(lbS (1− |ēi(t)|) + ubS |ēi(t)|) (5.5)

The ϵS(t) function allows for a broader range of variation, i.e. more significant

control actions, when the tracking error is big and vice versa. This means that when

the vehicle is on the optimal trajectory, i.e.
∑

ē = 0, the open loop control action uref

is sufficient.

To perform the scaling, the NN output must be first bounded to a permissible range.

To do so, the NN output is passed through the tanh function, which is modified with

the parameters p1 and p2 to change its shape. p1 defines the bounds of the output,

while p2 is the slope of the linear portion of the function.

The constrained output is consequently linearly scaled from [-p1, p1] to [uref (1 −

ϵS),uref (1 + ϵS)] using Equation 5.6.

uscaled = uref (1 + ϵS tanh(p2uNN )) (5.6)

5.2.2 Genetic Programming Evolutionary Process

The GANNIC approach was developed using the Inclusive Genetic Programming (IGP)

presented in section 4.4. Therefore, its usage is recommended to achieve similar perfor-

mances. Nevertheless, other GP algorithms can be employed to find the NN weights’
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adaptation laws, but they must possess three key features: the ability to evolve mul-

tiple GP trees simultaneously to evolve one adaptive law for each NN’s weight; the

capability of handling constraints; and the capacity to be applied to Multiple-Input

Multiple-Output (MIMO) systems. The IGP can be easily configured to perform these

tasks, thanks to the flexibility of the DEAP library [197] used to code it. Other GP

architectures might fail in doing so. For example, a Multi-Gene Genetic Program-

ming (MGGP) [229] algorithm would be impractical in a control setting. The least

square optimization performed in the MGGP to evaluate each subtree is performed by

minimizing the error between the target and the GP output, which is not composed

of a single quantity in control applications. Multiple states are tracked simultaneously,

and a way of grouping them must be employed. Moreover, the MGGP least square

optimization is fast in classical regression problems, where the subtrees are evaluated

on the dataset. But in a control setting, it would require the dynamical system propa-

gation using each subtree to find their fitness value. This results in an extremely slow

process.

The fitness evaluation process is summarized in Algorithm 8. Briefly, a fitness

composed of two elements is assigned to each individual, Find = [Ff , Pf ]. Ff represents

the true objective of the evolutionary process, i.e. reach a target final position, while

Pf is a penalty parameter accounting for constraints violations. If constraints are not

considered, Pf is set to 0. The IGP algorithm was configured, as described in section

4.4, to handle constraints.

Ff and Pf are computed considering the performance of the individual across NU

uncertainty scenarios. These uncertainty scenarios are previously chosen and do not

change during the evolutionary process. Subsection 5.2.3 explains the process adopted

to select the uncertainty scenarios. Incorporating multiple uncertainty scenarios into

the fitness evaluation enhances the evolved individuals’ robustness to unforeseen uncer-

tainties. This robustness is directly proportional to the number of uncertainty scenarios

considered during the evolutionary training phase. Nonetheless, it is important to ac-

knowledge that a higher number of uncertainty scenarios implies a proportional increase

in computational resources and time required for the evolutionary process.
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Algorithm 8 Pseudocode of the fitness evaluation process

1: Load NU uncertainty scenarios
2: Initialize Fs vector as empty
3: Initialize Ps vector as empty
4: for i = 1 → NU do
5: Selected i-th uncertainty scenario Ui

6: Initialize P vector as empty
7: Propagate system’s dynamics in Equation 5.3, resulting in

a trajectory of Np points
8: if cvkj > 0; k = 1, ..., Nc, j = 1, ..., Np, where cvkj is the constraints violation

of the considered quantity and Nc is the number of constrained quantities.
then,

9: Append cvkj to P
10: end if
11: Evaluate Pu as Pu = RMSE(P)
12: Evaluate Fitness function Fu as Fu = MSE(F)
13: Append Fu to Fs

14: Append Pu to Ps

15: end for
16: Evaluate Fitness Ff as in Equation 5.8 and penalty Pf as Pf = MSE(Ps).
17: Output Find = [Ff , Pf ]

A detailed description of the Ff and Pf evaluation process is provided in the fol-

lowing,

Objective Function Ff

The objective function Ff is designed to guide the plant toward a desired final position

when uncertainties are present. To achieve this, the scaled tracking errors at the final

point of the trajectory are considered, along with the integrals of the absolute scaled

tracking errors on a final portion of the trajectory. The scaled tracking errors are meant

to provide direct information about the ability of the GP individual to guide the plant

towards the desired final position. On the other hand, the integrals computed on the

final portion of the trajectory are meant to guide the GP evolutionary process towards

well behaving individuals, providing information on the trajectory tracking capabilities

in the proximity of the final position. As previously described, these operations are

performed on NU trajectories obtained considering NU uncertainty scenarios.

The scaled tracking errors are computed by performing a min-max scaling of the
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tracking errors, as in Equation 5.2. These are evaluated for each state, and their values

on the final position are grouped in the vector ēf ∈ RNs , with Ns is the number of state

variables. The integrals of the absolute scaled tracking errors on the chosen portion of

the trajectory are computed as in Equation 5.7. Here, |ēi(t)| is the absolute value of

the i-th state scaled tracking error at time t. tf is the final time of the trajectory, while

tstart represents the initial time of the chosen portion. This integral aims at minimizing

the discrepancy between the obtained trajectory and the reference one in their final

part, to better guide the plant towards the desired final state. Therefore, tstart must

be chosen close enough to the final time. As an example, in the application described

in Section 5.3, the integrals are computed on the last 30% of the trajectory.

Ii =

∫ tf

tstart

|ēi(t)|dt, i = 1, ..., Ns (5.7)

An integral is computed for each state variable, resulting in the vector I = [I1, ..., INs ],

where Ns is the number of state variables.

Using the vector of scaled tracking error on the final position ēf and the vector of

integrals on the final portion of trajectory I, the vector F = [I/sf , ēfw
T
s sf ] ∈ R2Ns

can be computed. As the fitness function aims to guide the plant towards the desired

final state, the vectors I and ēf are scaled by a scalar scaling factor sf to prioritize

small tracking errors at the final position rather than small tracking errors in the last

portion of the trajectory. Additionally, a vector of weights ws ∈ RNs is used to increase

the value of the error on the desired states to prioritize their minimization during the

evolutionary process.

The Mean Squared Error (MSE) of the vector F is then computed to obtain the

fitness of each uncertainty scenario, defined as Fu = 1
2Ns

∑2Ns
i=1 F

2
i , where 2Ns is the

number of elements in the vector F. Once the fitness Fu for each uncertainty scenario

is evaluated, these are added to the vector Fs = [Fu1, Fu2, ..., FuNU
] ∈ RNU , where NU

is the number of uncertainty scenarios used for training.

The final fitness Ff for the considered individual is then evaluated as in Equation

5.8. S ∈ RNU is a vector of ones and zeros used to track the uncertainty scenarios

solved successfully. The success criterion is problem dependent. As an example, an
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uncertainty scenario can be considered solved successfully if the tracked states are at

the desired final position or within the tolerance interval from the final position and all

constraints are satisfied.

Ff =
max(Fs) +median(Fs)

max(
∑

S, 1)
(5.8)

If no uncertainty scenario is solved successfully, the denominator of Equation 5.8

is set to one. Equation 5.8 considers both the maximum and median of the fitnesses

found in each uncertainty scenario to consider both the average performance and the

behaviour in the most challenging uncertainty scenario. Moreover, the fitness is di-

vided by the number of successes to reward those individuals who are more successful.

Such a fitness function is designed to guide the evolution towards individuals who can

successfully solve an increasingly greater number of uncertainty scenarios and perform

well even in those scenarios where they fail.

Constraints Violation Function Pf

As summarized in Algorithm 8, a penalty vector P is initialized as empty for each

considered uncertainty scenario and it is extended with the values of the violated con-

straints at each point of the trajectory. If the constrained quantities are grouped in

the vector c, and the vectors of upper and lower bounds are defined as cmax and cmin,

the vector of constraints violations cv will be cv = [max(0, c1 − c1max),max(0, c1min −

c1), ...,max(0, cNp − cNpmax
),max(0, cNpmin

− cNp)] where Np is the number of points

in the propagated trajectory. Only the elements of cv greater than zero are added to

the vector P. Therefore, the number of elements in the vector P is not known a priori,

but it changes for every trajectory according to the violated constraints.

At the end of each trajectory propagation performed using different uncertainty

scenarios, the total penalty Pu is evaluated as the Root Mean Squared Error (RMSE)

of P, such as Pu =
√

1
N

∑N
i=1 P

2
i , where N is the number of elements in the vector

P. Pu is evaluated for each considered uncertainty scenario, and it is added to a

vector Ps ∈ RNU such as Ps = [Pu1 , ..., PuNU
]. After all the runs on the uncertainty

scenarios are performed, the final penalty Pf for the considered individual is evaluated
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as Pf = 1
NU

∑NU
i=1 P

2
si .

If for each run performed on the different uncertainty scenarios, the P vector is

empty, the constraints are always satisfied. Regarding the use of RMSE and MSE

to evaluate Pu and Pf , RMSE is used to have a more direct representation of the

constraints violation for each considered uncertainty scenario, while the MSE is used

to average the results over different uncertainty scenarios while giving importance also

to the outliers. In fact, the constraints violation function aims to have individuals who

can satisfy constraints on all the considered uncertainty scenarios.

5.2.3 Training Uncertainty Scenarios Selection

To evolve a controller capable of maintaining good control capabilities in the presence

of unforeseen uncertainties, it is essential to consider various uncertainty scenarios si-

multaneously during the training phase. The evaluation of fitness functions Ff and Pf

takes into account the control system’s performance across multiple uncertainty sce-

narios. The way uncertainty scenarios are selected and applied significantly influences

the GP evolutionary process, and inappropriate choices may lead to failure. In the fol-

lowing discussion, the term ”uncertainty scenario” is used in a general sense, referring

to a user-defined formulation tailored to the specific problem under consideration. The

particular uncertainty formulation employed for the test case analyzed in this chapter

is detailed in Subsection 5.3.4.

The method of applying uncertainty is problem-dependent. However, the impact of

uncertainty on the propagated trajectory can be systematically studied across various

test cases, enabling the classification of uncertainties based on their influence on the

considered plant. To achieve this, two sets of uncertainty scenarios are generated: one

for training, denoted as Utrain, and the other for testing, denoted as Utest. Both sets

consist of a user-defined number of uncertainty scenarios. The scenarios in the training

set are employed to propagate the dynamic system described by Equation 5.9 a total

of Ntrain times, resulting in Ntrain trajectories. These trajectories are generated using

the reference control actions uref derived from the optimal trajectory.
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ẋ = f(x(t),uref (t), Utraini(x)); i = 1, ..., Ntrain (5.9)

To classify uncertainty scenarios, it is important to define a magnitude metric de-

noted as µ. The specific definition of the magnitude metric is contingent on the prob-

lem at hand. Once the magnitude metric µ is computed for each scenario, they can

be ranked and subsequently grouped based on their magnitude metric values. The

subdivision into groups is accomplished by determining the maximum and minimum

values of the magnitude metrics and then linearly dividing this interval into g groups.

Each group is defined by an upper and a lower bound, encompassing all the uncertainty

scenarios with a µ value falling within these bounds. After creating the groups, the

uncertainty scenario with the highest magnitude metric, i.e. the worst case scenarios,

is selected from each uncertainty group and used during the training phase, i.e. the

GP evolutionary process.

In cases akin to the one examined in this thesis, a magnitude metric that quantifies

the sum of absolute scaled tracking errors on the final position can be employed, as

expressed in Equation 5.10.

µ =

Ns∑
i=1

|ēi(tf )| (5.10)

Figure 5.3 provides an illustrative example of the ranked uncertainty scenarios,

where the magnitude metric was determined using Equation 5.10 and five groups were

created.

The uncertainty scenarios selection process is summarized in Algorithm 9.

5.2.4 Neural Network Settings and Topology Optimization

The NN is employed as a nonlinear agent. As such, its inputs are the scaled tracking

errors evaluated with Equation 5.2, and it features one output neuron for each control

command. Its topology must be defined according to the studied test case to have

enough layers and neurons to capture the problem’s nonlinearity but not too many,

resulting in an unsuccessful GP evolutionary process due to an excess of GP differential
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Figure 5.3: Example of ranked uncertainty scenarios divided into five groups. Each
point represents an uncertainty scenario.

Algorithm 9 Pseudocode of uncertainty scenario selection process

1: Define how the uncertainty is applied and create two uncertainty sets, Utrain and
Utest. Use Utrain for the operations described hereafter.

2: Define a magnitude metric µ according to the considered test case.
3: for i = 1 → Ntrain do
4: Perform a trajectory propagation applying the i-th uncertainty scenario using

reference control commands uref
5: Evaluate the magnitude metric µ
6: end for
7: Linearly subdivide the uncertainty scenarios into g groups according to their mag-

nitude metric µ
8: From each uncertainty group, pick the one with max µ
9: Use the selected uncertainty scenarios in the GP evolutionary process.

equations. A heuristic designed to optimally prune the NN topology is outlined in

Algorithm 10.

An example of the operations described in Algorithm 10 is illustrated hereafter.

For exposition’s sake, Nevolutions = 1. Ntest = 100, meaning that the control system

is tested on a batch of 100 uncertainty scenarios. A NN composed of six inputs, one

hidden layer with four neurons and two outputs is considered; hence a total of 38

weights are used. This initial configuration is depicted in Figure 5.4.

As described in line 7 of Algorithm 10, each of the 38 weights is set to zero one by
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Algorithm 10 Pseudocode of NN topology pruning heuristic

1: Define an initial NN configuration.
2: for i = 1 → Nevolutions do
3: Perform i-th GP evolution.
4: Select the best-performing individual
5: Perform Ntest trajectory propagations, using Ntest uncertainty scenarios from

the uncertainty test set Utest

6: for j = 1 → Nν do
7: Set to 0 the j-th weight of the NN and repeat line 5.
8: Keep track of the number of uncertainty scenarios successfully solved
9: end for

10: end for
11: Prune the NN according to the obtained results, i.e. remove those weights that,

when set to 0, result in the same or a higher success ratio as the one obtained in
line 5.
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Figure 5.4: NN initial configuration

one, and Ntest trajectory propagations are performed using the uncertainty scenarios

from the uncertainty set Utest. As an example, the controller with the full NN achieved

a success ratio of 85% on the test uncertainty scenarios. The results obtained by setting

the weights to 0 one by one are summarized in Figure 5.5. In this Figure, the critical

weights, highlighted in red, are those that, when set to 0, lead to a deterioration in the
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NN’s performance.
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Figure 5.5: Success ratios of the control system when setting NN’s weights to zero
one by one

As can be seen in Figure 5.5, many of the weights can be set to 0, i.e. the green bars,

and still, the controller is capable of achieving the baseline performances or better, as

for the weights 0, 3, 13, 15, 24, 25, 27, 34.

Figure 5.6 illustrates the NN weights map. This Figure depicts the location of the

NN weights and those non influential are not depicted. This outcome provides valuable

insights since only three of the six inputs are useful, and of the four hidden neurons,

only two are fully connected between the input and output. If similar patterns emerge

when analyzing GP individuals obtained from multiple evolutions, it is safe to reduce

the NN configuration from 6-4-2 (input-hidden-output neurons) to 3-2-2. This, in turn,

will result in a faster GP evolution since fewer GP trees are simultaneously evolved, and

better performances are achieved as the GP focuses on evolving only the differential

equations for the valuable weights.

Algorithm 10 can be repeated multiple times by setting the initial configuration

as the one obtained in the previous iteration. Using this approach, the NN will be

gradually pruned until the final configuration is found. A final topology is reached

when all weights are used, meaning the performances will worsen if any of them are set
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Figure 5.6: Graphical depiction of the NN weights location and their influence. In
particular, the non influential weights are omitted. This kind of plot is defined as a
weights map.

to zero.

5.3 Application

This section outlines the application of the GANNIC scheme for real-time guidance of

a RLV during reentry. In this context, GANNIC is used to generate real-time guidance

commands for the angle of attack α and bank angle σ during the flight. From this

point onward, the term ”guidance scheme” will be used to refer to GANNIC, and its

output will be denoted as guidance commands or signals.

5.3.1 Test Case - FESTIP-FSSC5 Reentry Vehicle

The selected vehicle is the FESTIP-FSSC5 RLV, presented in Figure 5.7. This vehicle

was developed by European Space Agency (ESA) as part of the Future European Space

Transportation Investigation Programme (FESTIP) program, which aimed to conduct

a feasibility study on various new RLV designs [230, 231]. The FESTIP-FSSC5 model
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draws inspiration from the NASA Venturestar concept and its technology demonstra-

tor, the X-33 experimental vehicle. Featuring a lifting body configuration and an

aerospike engine, the FESTIP-FSSC5 was designed for vertical lift-off and horizontal

landing. Notably, it is engineered to complete the entire mission, encompassing both

atmospheric and space travel, without relying on multiple propulsion systems, thanks

to the aerospike engine.

Figure 5.7: FESTIP-FSSC5 reusable launch vehicle [5]

Both the X-33 and FESTIP-FSCC5 projects were never realized due to technological

and economic limitations. Concerning the FESTIP-FSSC5, ”the design team was dis-

appointed to discover that this concept, inspired by the Venturestar geometry, cannot

be made both feasible and economically viable with the technology presently available

or foreseeable in the near term in Europe” [230]. Several technological challenges con-

tributed to this outcome, including the design of lightweight cryogenic tanks with the

desired structural characteristics, underdeveloped technology for the aerospike engine,

and difficulties in achieving accurate guidance during reentry caused by the unique

shape of the vehicle, which impacted both aerodynamics and controllability [232, 233].

Given the recent interest of the aerospace industry towards reusability, RLVs with

a space plane configuration
2

and aerospike engines
3

, the FESTIP-FSSC5 has been

2https://www.space.com/polaris-spaceplanes-mira-light-flight-test-campaign-complete
3https://spacenews.com/pangea-aerospace-tests-aerospike-engine/
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considered an appropriate candidate to test the GANNIC scheme.

The vehicle’s models are taken from [5]. The vehicle is modelled as a rigid body

flying over a spherical non-rotating Earth. The Earth’s rotation was neglected for two

reasons. First, a short duration flight is considered, as will be explained further in the

text. Second, using a set of equations of motion with a lower degree of nonlinearity

helps reduce the overall computational complexity without affecting the results. No

wind is considered in the atmosphere, and the reentry is unpowered, i.e. the thrust

is set to zero. The vehicle’s flight is studied using six state variables V (speed), χ

(heading angle), γ (flight path angle), θ (longitude), λ (latitude), h (altitude) and two

guidance commands α (angle of attack) and σ (bank angle), therefore the vector of

state variables is defined as x = [V, χ, γ, θ, λ, h], and the vector of guidance signals is

defined as u = [α, σ]. The 3 Degrees-of-Freedom model is shown in Equation 5.11.

V̇ =− D

m
− g sin γ

χ̇ =
L sinσ

mV cos γ
− cos γ cosχ tanλ

V

R+ h

γ̇ =
L cosσ

mV
−
( g
V
−

V

R+ h

)
cos γ

θ̇ = cos γ cosχ
V

(R+ h) cosλ

λ̇ = cos γ sinχ
V

R+ h

ḣ =V sinγ

(5.11)

Table 5.1 summarises the constant parameters used in the considered models.

The employed aerodynamic models come from experimental nonlinear data obtained

in [5] and result in two lookup tables that output the values of cl and cd as a function

of the Mach and angle of attack. The chosen atmospheric model is the U.S. Standard

Atmosphere Model 1962 (USSA1962), as used in [5].
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Table 5.1: Constant parameters used in the application

Symbol Value Unit Meaning

R 6371000 m Earth’s radius
g0 9.80665 m/s2 Gravitational acceleration at sea level
m 45040 kg Vehicle empty mass
S 500 m2 Wing surface

5.3.2 Surrogate Models

To facilitate the GP evolutionary process and to avoid non-differentiable models, surro-

gates of the atmospheric and aerodynamics models were created and used in the GAN-

NIC design process. Surrogates were created for the following quantities: atmospheric

density ρ, speed of sound c, lift coefficient cl and drag coefficient cd. The surrogates

were created using a MGGP algorithm coded in Python 3.8 and relying on the DEAP

library [197]. Training data for the atmospheric models (ρ and c) were generated using

the original USSA1962 model in the altitude range from 0 to 55 km. The aerodynamic

models’ training data consisted of the original dataset from [5], which was expanded

to increase the number of data using the Cubic Spline Generalization (CSG) approach

described in [18]. The CSG approach involves employing a not-a-knot cubic spline

interpolation on the original aerodynamic coefficients data to increase the database’s

number of data points and enhance the models’ smoothness.

The obtained models are displayed in Equation 5.12 and in Figures 5.8 to 5.10.

ρ(h) =0.119 · tanh(1.72 · 10−8 · h2)+

− 1.34 · tanh(84.7 · tanh(tanh(tanh(h · 10−6)))) + 1.22

c(h) =109 · tanh(exp(1.00 · tanh(h · 10−5)− 8.84 · 10−5 · h))+

− 16.5 · cos(tanh(sin(8.82 · 10−5 · h)))+

− 6.11 · exp(6.35 · 10−5 · h)+

− 54.2 · cos(tanh(sin(sin(sin(7.55 · cos(sin(tanh(6.63 · 10−5 · h))))))))+

+ 731 · exp(h2 · 10−10)− 407
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cl(α,M) =7.89 · α− 0.232 · sin(α)− 2.43 · α · tanh(M − tanh(α))+

+ 5.78 · α · tanh(M − 0.922)− 3.76 · α · exp(tanh(M − 0.922))+

− 0.0112

cd(α,M) =14.9 · cos(α · tanh(M − α))− 16.4 · cos(α)− 2.45 · exp(α−M)+

+ 2.38 · exp(2.41 · α2 −M) + 1.57

(5.12)
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(a) Air density ρ surrogate
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Figure 5.8: Air density ρ surrogates. Figure 5.8b show the obtained model on a
semi-logarithmic scale, highlighting the differences above 20km. [2]
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Figure 5.9: Sound speed c surrogate [2]

The accuracy of the obtained models was evaluated using the R2 score, resulting
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Figure 5.10: Surrogate of the aerodynamic models [2]

in R2
ρ = 0.99998, R2

c = 0.99919, R2
cl

= 0.99913, R2
cd

= 0.97761. These high R2 scores

indicate that the constructed surrogates effectively capture the characteristics of the

training data. Furthermore, the surrogates were constructed using only continuous

differentiable functions, resulting in fully continuous differentiable models. This rep-

resents an enhancement compared to the original data, as illustrated in Figure 5.9 for

the sound speed model. Specifically, the original model was piecewise differentiable,

whereas the surrogate is fully differentiable.

5.3.3 Reentry Mission Description and Reference Trajectory

Currently, there are no published manuscripts addressing guidance or control of the

FESTIP-FSSC5 vehicle during reentry. In contrast, numerous studies involving reen-

try missions of the X-33 are available in the literature. Considering the similarities

between the X-33 and the FESTIP-FSSC5, the study conducted by Bollino et al. [234]

was chosen as a reference. The mission involves an unpowered reentry originating from

an initial point, to reach a specified Final Approach Corridor (FAC) box at the trajec-

tory’s conclusion. The Final Approach Corridor (FAC) box is defined by the altitude h,

longitude θ and latitude λ, along with their respective tolerances. This defined space en-

compasses all permissible final points of the trajectory, enabling a horizontal landing at

the Space Shuttle Landing Facility at NASA’s Kennedy Space Center. Constraints are

imposed on the dynamic pressure q, normal acceleration az and heat rate Q̇. Regarding
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the heat rate, it was modelled as Equation 5.13, with C = 9.12 · 10−4 kg0.5m1.5s−3,

Λ = 45 deg, V is the vehicle’s speed and ρ is the atmospheric density. This model,

derived from [235], was selected since it is formulated for a generic vehicle with lifting

body configuration and no specific heat rate models tailored to the FESTIP-FSSC5

can be found in the literature.

Q̇ = C
√
ρV 3(1− 0.18 sin2 Λ) cos Λ (5.13)

The limit values for the constraints were taken from [5] for q and az and from [235]

for the heat rate. The limit value on az was increased to 25 m/s2 to match the limit

value used in [234]. This was done since the flown trajectory is similar. The chosen

reentry trajectory is summarised in Table 5.2

Initial Final Controls Constraints
Conditions Conditions Bounds

V0 = 2600 m/s, Vf = 91.44 m/s, −2 deg ≤ α ≤ 40 deg −25 m/s2 ≤ az ≤ 25 m/s2,
χ0 = 0 deg, χf = -60 deg, −90 deg ≤ σ ≤ 90 deg q ≤ 40 kPa

γ0 = -1.3 deg, γf = -6 deg, Q̇ ≤ 4MW/m2

θ0 = -85 deg, θf = −80.7112± 0.0014 deg,
λ0 = 30 deg, λf = 28.6439± 0.0014 deg,
h0 = 51 km hf = 609.6± 121.92 m

Table 5.2: Chosen reentry trajectory

According to the trajectory data in Table 5.2, the upper and lower bounds used to

scale the errors and the states using Equation 5.2 are reported in Table 5.3.

V χ γ θ λ h

Max 5200 m/s 180 deg 89 deg -80 deg 30 deg 60000 m
Min 1 m/s -180 deg -89 deg -87 deg 27 deg 1 m

Table 5.3: Upper and lower bounds used to scale the states and errors variables using
Equation 5.2

A reference trajectory was generated using the surrogates introduced in the pre-

vious subsection, employing the methodology developed in one of the works produced

during the development of this thesis [18]. The process consists of finding an initial

guess using two EAs, namely Multi-Objective Parzen-based Estimation of Distribu-

tion (MOPED) [53] and Multi-Population Adaptive Inflationary Differential Evolution
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Algorithm (MP-AIDEA) [54]. This initial guess was subsequently used in an optimal

control study with Multiple-Shooting transcription. The trajectory was simulated us-

ing Equations 5.11. The obtained reference trajectory is shown in Figure 5.11, while

the found reference guidance commands are shown in Figure 5.12. The constraints are

depicted in Figure 5.13. The found trajectory ends inside the FAC box, and all the

constraints are satisfied. As can be seen from Figure 5.13c, the heat rate Q̇ constraint

is always satisfied by at least an order of magnitude, which is why it is not considered

a constraint during the development and application of the GANNIC scheme.

Figure 5.11: Reference trajectory [2]

A reduced portion of the optimal trajectory was used to perform the GANNIC

design process, namely, the last 100 seconds. This decision is motivated by multiple

factors. Firstly, the mission is deemed successful if the vehicle precisely enters the FAC

box in its final position. The FAC box is defined by very strict tolerances on the latitude

and longitude, necessitating the development of a precise guidance scheme. Focusing

solely on the concluding portion of the trajectory contributes to refining the GANNIC

precision. Secondly, a shorter trajectory results in faster trajectory propagations. This

enables the performance of multiple runs to generate a statistically significant sample for

testing the robustness, i.e. reproducibility, of the GP evolutionary process. Lastly, as

illustrated in Figure 5.13, the considered portion of trajectory - from 303.73s to 403.73s
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(a) Angle of attack α reference trajectory
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(b) Bank angle σ reference trajectory

Figure 5.12: Reference trajectories of the control parameters [2]

- contains the maximum values of the az and q constraints, providing a comprehensive

assessment of the GANNIC scheme’s ability to adhere to the applied constraints.

The initial conditions for the reduced trajectory are summarized in Table 5.4. The

final conditions, commands bounds and constraints are consistent with those for the

full trajectory, as detailed in Table 5.2. The subscript 100 denotes the initial conditions

at t100 = tf − 100s = 304.73s. The values of the states and guidance commands at

t100 were obtained by evaluating at t100 the interpolating functions produced using a

PCHIP interpolation scheme on the states and control variables’ optimal trajectories.

The reduced trajectory is depicted in Figure 5.14 and the the reduced reference guidance

signals profiles are shown in Figure 5.15.

Initial Conditions at tf −100s

V100 = 693.28 m/s,
χ100 = -59.42 deg,
γ100 = -47.92 deg,
θ100 = -80.80 deg,
λ100 = 28.83 deg,
h100 = 21.83 km,
α100 = 0.47 deg,
σ100 = -83.53 deg,
t100 = 304.73 s

Table 5.4: Initial conditions of the reduced trajectory used for the GANNIC design
process
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Figure 5.13: Variations of the constrained quantities obtained with the reference
trajectory. Dashed lines denote the maximum and minimum allowed values.

The GANNIC scheme underwent testing across the entire trajectory to assess its

overall performance. However, it exhibited suboptimal results using the hyperparame-

ters detailed in this section. This outcome is attributed to the experimental determi-

nation of settings based solely on the last portion of the trajectory. Achieving effective

uncertainty mitigation throughout the entire trajectory necessitates additional testing

and a more sophisticated hyperparameter tuning approach. Given that the primary

focus of this work was precision at the final point rather than comprehensive uncer-

tainty mitigation, the development of an enhanced and more comprehensive version of

the GANNIC scheme is left for future research.
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Figure 5.14: Reduced reference trajectory [2]
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Figure 5.15: Reduced reference trajectories of the guidance commands [2]

5.3.4 Uncertainty Model and Training Uncertainty Profiles Selection

Uncertainties are incorporated into atmospheric models to assess the robustness of the

GANNIC approach. These uncertainties are introduced as randomized perturbations

applied to the surrogate models of air density (ρ) and sound speed (c) quantities. Specif-

ically, uncertainties are modelled according to the methodology outlined in [236]. This

approach is motivated by several factors. Firstly, it is a parametric model, hence the

user can define the shape and magnitude of the applied uncertainties. This allows for

testing the GANNIC’s robustness across a broad range of uncertainties. Secondly, these

uncertainties are represented as interpolating profiles, ensuring a correlation between

successive points along the trajectory, thereby avoiding abrupt variations between ad-
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jacent time steps. Thirdly, they are modelled to be constrained within boundaries that

increase proportionally with a desired variable, while remaining confined between user-

defined upper and lower bounds. In the context of this work, these boundaries are a

function of the altitude (h). The described features allow for realistic modelling of the

uncertainties in the atmospheric models. In fact, abrupt variations are not physically

meaningful and the comparison between experimental data and atmospheric models

reveals an increasing discrepancy at higher altitudes. A comprehensive description of

the formulation and application of these uncertainty profiles is provided hereafter.

The interpolating profiles are generated by creating a random uniform distribution

of 20 points within the [0, 1] range. A PCHIP interpolation is then applied with respect

to altitude (h) to yield an Uncertainty Profile U(h). An illustrative example of an

uncertainty profile is presented in Figure 5.16. The 20 points are uniformly distributed

across the considered altitude range, which, for the addressed problem, spans 60 km,

resulting in a point positioned every 3 km. Employing this distribution ensures that

even a sudden variation from one extreme to the other between successive points results

in the variation of the perturbed quantity occurring over a 3 km interval. Although

a variation every 3 km might still be deemed too severe for a realistic scenario, this

interval is chosen to design and assess the GANNIC scheme against a more conservative

scenario, i.e. with more severe uncertainties.

0 20 40 60
Altitude [km]

0.0

0.2

0.4

0.6

0.8

1.0

Unc. Points
Unc. Profile

Figure 5.16: Example of an uncertainty profile U(h)

Once the uncertainty profile is generated, this is applied to the chosen quantities
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using Equation 5.14.

xunc(h) = xnom(h)[U(h)((1 + ϵ(h))− (1− ϵ(h))) + (1− ϵ(h))] (5.14)

The uncertainty bounding parameter, denoted as ϵ, is computed using Equation

5.15 where hc is the maximum admissible value of h. hc is problem dependent and

must be set accordingly to the considered trajectory. For this application, hc = 60km.

ub and lb are the upper and lower bounds defined by the user and can be varied to alter

the magnitude of the applied uncertainty.

ϵ(h) = lb

(
1− h

hc

)
+ ub

h

hc
(5.15)

Equation 5.15 is formulated to output a bounding parameter ϵ which is used to

define the range of variation of the perturbed quantity around its nominal value. This

bounding parameter will vary according to the altitude but it is constrained by the

user defined upper and lower bounds, ub and lb respectively, such as ϵ ∈ [ub, lb]. In fact,

ϵ = ub when the altitude is at its maximum, i.e. h = hc, while ϵ = lb with h = 0.

In the subsequent discussion, the term ”shape of the uncertainty” refers to the

interpolating profiles, denoted as U(h), while the term ”magnitude of the uncertainty”

refers to the value of ub in Equation 5.15.

As an illustrative example of the uncertainty application, a quantity x that varies

linearly with h is considered, specifically x = h · 10−4. By setting the parameters in

Equation 5.15 as lb = 0.2, ub = 0.5, and hc = 60000 m, the perturbed quantity xunc

will exhibit variations between 20% and 50% of its nominal value xnom. Using the

uncertainty profile shown in Figure 5.16 and applying Equations 5.15 and 5.14, the

perturbed quantity xunc is obtained as depicted in Figure 5.17. Here, the variation

of the nominal and perturbed quantities xnom and xunc are illustrated. Notably, xunc

exhibits an oscillating behaviour corresponding to the applied uncertainty profile U(h)

in Figure 5.16.

To develop and evaluate the GANNIC scheme, 1100 uncertainty profiles were ran-

domly generated from a uniform distribution in the range [0, 1]. Among these, 1000
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Figure 5.17: Variation of the nominal and perturbed quantities xnom and xunc as
a function of the altitude. The shaded area represents the range of variation of the
perturbed quantity defined by ϵ.

profiles constitute the set of training profiles, denoted as Utrain, from which the scenar-

ios used in the training phase are selected. The remaining 100 profiles are assigned to

the test uncertainty set, denoted as Utest. Figure 5.18 illustrates an example of one gen-

erated uncertainty profile applied to air density ρ and sound speed c, with parameters

lb = 0.01, ub = 0.2 and hc = 60km.
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Figure 5.18: Example of uncertainty profile applied to the Air Density and Sound
Speed quantities.

In section 5.2.3, the process of selecting uncertainty profiles to use in the GP evo-

lutionary process involved the following steps: initially, the 1000 uncertainty profiles

from Utrain were used to propagate the dynamical system in Equation 5.9 by applying
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open-loop guidance commands, resulting in 1000 trajectories. During this phase, ϵ was

calculated with lb = 0.01 and ub = 0.2. The open-loop guidance commands were de-

rived from the reference trajectory and are illustrated in Figure 5.12. Among the 1000

trajectories propagated with the applied uncertainties using open-loop commands, only

39.7% (397/1000) were successful. Subsequently, the uncertainty profiles that led to

successful trajectories were excluded from the pool of 1000 training profiles, resulting

in 603 remaining profiles for the GP training phase. As a reminder, a trajectory was

considered successful if the vehicle ended up within the FAC box at the last point of

the trajectory, as detailed in section 5.3.3. These 603 uncertainty profiles were then

ranked from least to most severe based on the magnitude metric µ, evaluated accord-

ing to Equation 5.10. This evaluation considered only errors on θ, λ, and h, the states

defining trajectory success. Thus, Equation 5.16 was employed, where ē represents a

scaled error calculated using Equation 5.2, with the minimum and maximum values

given in Table 5.3.

µ = |ēθ(tf )|+ |ēλ(tf )|+ |ēh(tf )| (5.16)

These ranked uncertainty profiles were then linearly divided into five groups, as

described in section 5.2.3. Within each group, the uncertainty profile with the highest

metric µ was chosen to participate in the GP evolutionary process. The distribution of

uncertainty profiles among the groups is illustrated in Figure 5.19.

To obtain the results presented in the following, the ϵ parameter was evaluated

considering a lower bound lb = 0.01 and five different values for the upper bounds

ub: 0.2, 0.3, 0.4, 0.5 and 0.6. The following subsections explain how and when these

different values for the upper bounds were applied.

5.3.5 Inclusive Genetic Programming Settings

The IGP used to find the adaptation laws was set as in Table 5.5.

Within the specified primitives, add3 represents a ternary addition, while psqrt, plog

and pexp represent protected versions of the sqrt, log, and exp functions, designed to

avoid numerical issues. Examples of the plog and pexp functions are given in Equations
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Figure 5.19: Training uncertainty profiles ranked and divided into five intervals

4.7 and 4.11. psqrt is defined similarly to plog, i.e. 0 is output for input values

lower than 0. The associated mutation mechanisms feature probabilities expressed as

percentages, indicating the likelihood of selecting a particular mechanism during the

mutation process. The environmental parameter η, input to the GP as in Figure 5.2,

comprise the air density ρ.

The fitness function is evaluated as described in Section 5.2.2. Briefly, each indi-

vidual has a fitness composed of two parameters, Ff and Pf . Ff represents the true

objective, i.e. reaching the FAC box; while Pf is a penalty accounting for constraints

violations. These fitness parameters are evaluated considering the results on five un-

certainty profiles from the training set Utrain, hence five trajectory propagations are

performed to evaluate each GP individual.

Regarding the Ff evaluation, the necessary parameters are set as follows. The

scaled tracking errors are computed by performing a min-max scaling of the tracking

errors, using Equation 5.2 with the min and max values from Table 5.3. This operation

results in the vector of scaled tracking errors ē, and consequently the vector of scaled

tracking errors in the final position ēf = ē(tf ). The vector ē is then used to compute the

integrals of the absolute scaled tracking errors over the last 30% of the trajectory. These
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Input features V , χ, γ, θ, λ, h, ρ, ν
Population Size 500 individuals

Maximum Generations 300
Stopping criteria Reaching the maximum number of generations
Number of niches 10

Crossover probability 0.2 (+0.01 at every generation if Pf = 0) → 0.65
Mutation probability 0.7 (-0.01 at every generation if Pf = 0) → 0.25

1:1 Reproduction probability 0.1
Crossover selection criteria Best, random
Mutation selection criteria Random

1:1 Reproduction selection criteria Best
Evolutionary strategy M + Λ

M Population size
Λ Population Size × 1.2

Number of Ephemeral constants 5
Limit Height 40

Limit Size 40
Selection Mechanism Inclusive Tournament

Double Tournament fitness size 2
Double Tournament parsimony size 1.6

Tree creation mechanism Ramped half and half

Mutation mechanisms
Uniform (55%), Shrink (5%),

Insertion (25%), Mutate Ephemeral (15%)
Crossover mechanism One point crossover

Primitives Set
+, −, ∗, add3, tanh, psqrt

plog, pexp, sin, cos
Fitness measures Ff , Pf

Table 5.5: IGP setting for the GANNIC controller design process.

are computed employing Equation 5.7, with tstart = 379s and tf = 404s. One integral

for each state is computed and added to the vector I. Using the vectors ēf and I, the

vector F = [I/sf , ēfw
T
s sf ], described in section 5.2.2, is computed. The scaling factor

sf and weight vector ws are set to sf = 1000 and ws = [1, 1, 1, 10, 10, 1], respectively.

ws(4) and ws(5) are set equal to 10 to emphasize the significance of tracking errors

in θ and λ in the final position. As described in Section 5.2.2, the vector F is then

used to compute Fu and finally Ff using Equation 5.8. Similarly, the penalty Pf is

evaluated by first computing the constraints violations in each point of the trajectory,

considering the constraints on dynamic pressure q and normal acceleration az, as listed

in Table 5.2. The constraint on Q̇ is not considered following the discussion in Section
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5.3.3. The constraints violations are then added to the vector P which is then used to

compute Pu and finally Pf .

5.3.6 Results

The GANNIC guidance scheme was implemented in Python 3.10, using the DEAP

library [197] for the GP components and Tensorflow [237] for NN creation. To test

the GANNIC scheme, the final 100 seconds of the optimal trajectory outlined in Sub-

section 5.3.3 were considered, employing the initial conditions specified in Table 5.4.

Trajectories were propagated using the Runge-Kutta 4 integration scheme with a fixed

time step dt = 5s, chosen for a balance between computational efficiency and accuracy.

Parameters for the scaler in Equations 5.5 and 5.6 were set as p1 = 2000, p2 = 0.0015,

ubS = 100, and lbS = 0. For all NN configurations employed, weights and biases were

initialized to zero, the tanh activation function was used in the hidden layer, and the

linear activation function was employed in the output layer.

Throughout the subsequent experiments, the terms ”train” or ”training phase” de-

note the GP evolutionary process using uncertainty profiles from the training set Utrain.

This phase aims to identify the optimal set of GP differential equations for updating

the weights in the chosen NN configuration. On the other hand, the terms ”test” or

”test phase” refer to trajectory propagations using the set of GP models obtained dur-

ing training. These propagations employ uncertainty profiles from the test set Utest,

aiming at assessing the robustness of the evolved GP models by evaluating their perfor-

mance on different uncertainty profiles in terms of both shape and magnitude compared

to those used during training.

Neural Network Topology Optimization

Before conducting a comprehensive statistical analysis to understand the capabilities

of the GANNIC scheme, a study concerning the NN topology optimization was carried

out to identify a suitable configuration for the given problem. The outlined procedure

is detailed in section 5.2.4 and presented concisely in Algorithm 10. In summary, a

series of runs is performed to assess the performance of a NN topology. Each run is
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composed of three phases: 1) the execution of the GP evolutionary process, to find

the NN adaptation laws for the given NN topology; 2) the test of the obtained scheme

on the selected test uncertainty profiles; 3) the assessment of the impact of each NN

weight by individually setting them to zero and observing the resulting performance

on the test uncertainty profiles. Following the terminology in Algorithm 10, the used

parameters were set as follows: Nevolutions = 4, indicating four GP evolutions, i.e.

four runs, were conducted; Ntest = 100, signifying that the best individual from each

evolution underwent testing on 100 uncertainty profiles from the test set Utest. The

initial NN topology consisted of six inputs representing the scaled tracking errors on

the states, one hidden layer with four neurons, and two neurons in the output layer,

corresponding to each guidance command. This configuration is denoted as the 6-4-2

configuration hereafter. Table 5.6 lists the results of the GANNIC schemes produced in

the four runs, and these are used as references to analyze the NN’s weights impact. The

results are shown in terms of fitness values and success rates on the test uncertainty

profiles using the 6-4-2 NN topology. During the GP training phase, ub = 0.2 was used.

Table 5.6: Test success rates obtained with the 6-4-2 NN configuration in the four
runs performed.

Run ID
Fitness values Test success rate

Ff Pf ub = 0.2

1 0.001071 0 90%
2 0.003015 0 100%
3 0.001236 0 88%
4 0.001521 0 89%

Following the evaluation on the 100 test uncertainty profiles, the NN weights were

individually set to zero, and 100 trajectory propagations were executed each time using

the best GP individuals identified in the four runs. The outcomes of this study are

summarized in Figure 5.20. In this representation, each bar denotes the success rate on

the test uncertainty profiles, with four bars presented for each weight, corresponding

to each of the four runs. The green bars signify success rates equal to the reference

success rate, the blue bars indicate success rates greater than the reference, and the red

bars represent those with a lower success rate than the reference. The colour scheme is
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interpreted as follows: green bars denote weights that are not significant, meaning their

removal does not alter performance; blue bars indicate weights whose removal leads to

improved NN performance, while red bars highlight influential weights, the removal of

which results in degraded performance.

Analysis of Figure 5.20 reveals that weights 12 to 23 were consistently found to be

non-influential across all four runs, while weights 29, 34, and 35 exhibited significant

influence. Notably, some columns are missing for certain weights, indicating that,

in those runs, the success rate dropped to 0% upon removing that specific weight.

Additionally, it is interesting to observe that some weights in the outer layers (24

to 37) negatively impact the NN, meaning that removing them leads to improved

performance. Figure 5.21 offers a more concise view of this behaviour, displaying the

weights’ location and their influence for each of the four runs. These diagrams will be

referred to as weight maps from this point onwards. They are not to be confused with

actual NN topologies, since their goal is to show only the location and the influence of

each NN weight. In these diagrams, the weights are represented by arrows connecting

neurons. The NN inputs, denoted as i1 to i6, correspond to the scaled tracking errors

on the states. Neurons h1 to h4 represent the hidden layer, and o1 and o2 are the

output neurons responsible for the guidance commands α and σ.

The weights maps illustrated in Figure 5.21 are derived from the initial NN config-

uration by eliminating weights that do not adversely impact performance, as indicated

in Figure 5.20. Examining these maps reveals that input nodes i4 to i6, corresponding

to the tracking errors on θ, λ, and h, are consistently connected by weights that are

not influential. This aligns with the physical behaviour, as the equations of motion

in Equation 5.11 suggest that the derivatives of the states are primarily influenced by

V , χ, and γ. Additionally, the colour of each arrow signifies the weight’s importance:

yellow indicates a slight decrease in performance when the weight is removed, resulting

in a success rate between 67% and 100%; light orange denotes a success rate between

34% and 66%, and dark orange indicates a success rate between 1% and 33%. Weights

that, when removed, lead to a 0% success rate are coloured in red. According to this

colour scheme, it is evident that the tracking error on γ (flight path angle) consistently
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Figure 5.20: Results of the first iteration of the NN topology optimization process.
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Figure 5.21: Graphical representation of the weights influence analysis. The yellow
arrows represent those weights that, when removed, cause a slight decrease in per-
formances; light and dark orange represent those weights that, when removed, cause
a medium and high decrease in performances, while the red arrows represent those
weights that, when removed cause the success rate to drop to zero. [2]

shows the most significant influence. This observation aligns with existing literature,

where guidance schemes often focus on tracking the flight path angle and velocity, as

seen in works such as [238, 239, 240]. Another noteworthy observation is that at least

one of the hidden neurons is never fully connected, i.e. the weights between hidden

to outer neurons are not influential. This suggests that three hidden neurons may be

sufficient for the treated problem.

Based on the insight gained from this analysis, the decision was made to simplify

the NN configuration from six inputs, four hidden neurons, and two output neurons
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(configuration 6-4-2) to a structure with three inputs, three hidden neurons, and two

output neurons (configuration 3-3-2). In this reduced configuration, the inputs consist

of the scaled tracking errors ēv, ēχ, and ēγ , respectively i1, i2 and i3 in Figure 5.21.

To determine whether the newly obtained topology was optimal, the topology opti-

mization process was repeated. Using the reduced topology (3-3-2), another four runs

were carried out, using an uncertainty upper bound of ub = 0.2 during the GP training.

The results of this second iteration are presented in Appendix A. Based on these results,

the second optimization iteration did not provide clear evidence of whether further re-

duction in the NN configuration was beneficial. Therefore, the 3-3-2 configuration was

retained as the optimal configuration for the subsequent statistical analysis.

Statistical Campaign

A comprehensive statistical campaign was conducted to evaluate the robustness and

reproducibility of the GANNIC scheme. The GANNIC design process was repeated

twenty times. During each run, the GP evolutionary process was performed once, the

produced weights adaptation laws were applied to the NN and the resulting scheme was

tested on 100 test uncertainty scenarios. For each evolutionary process, the IGP was

set as in Table 5.5 and a NN with the 3-3-2 topology was employed. The NN weights

were all initialized as 0. During training, the same five uncertainty profiles from the

training set Utrain were used for all runs.

For each run, the best individual was selected and used to produce the statistical

results. The process employed to select the best performing individual is described in

Appendix B. Briefly, the evolution of the Ff fitness value was monitored, and when-

ever a decrease was observed, the corresponding individual was picked. The selected

individuals from each run underwent testing through 100 trajectory propagations, em-

ploying 100 test uncertainty profiles from Utest. This process was repeated five times,

varying the value of the uncertainty’s upper bound ub, from 0.2 to 0.6 in increments

of 0.1, while lb was kept fixed at lb = 0.01. Subsequently, an average success rate was

calculated, considering the performance under different ub values. This average success

rate reflects the individual’s generalization capability across uncertainties with varying
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magnitudes and shapes. This process was employed since the individual with the lowest

(best) fitness might not be the one with the best generalization capabilities.

To further enhance the performance of the GANNIC scheme, i.e. increase the test

success rates, the best individuals in each run underwent a process of fine-pruning.

This process was applied to the NN similarly to what was done during the topology

optimization process, with the exception that the aim of the fine-pruning is not to alter

the number of neurons in the network but to deactivate the weights that are detrimental

to the overall performance. This process is described in lines 6-9 of Algorithm 10.

It consists of setting the weights of the NN to zero one by one and conducting 100

trajectory propagations with the modified topology using 100 uncertainty profiles from

the uncertainty test set Utest. The use of this approach is justified by the results

gathered during the initial NN topology optimization study. As it was observed, some

weights might be detrimental to the overall performance. Therefore, by selectively

removing them, improved results can be achieved. The comprehensive results of this

fine-pruning process are detailed in Appendix C.

Following the pruning for all runs, the best-pruned topologies are tested again on

the 100 test uncertainty profiles. Table 5.7 lists the results on the twenty runs for both

the unpruned and fine-pruned topologies. The latter are marked in bold-faced font.

The initial row provides the success rate on the test uncertainty profiles obtained using

the open-loop reference commands. The last four rows in Table 5.7 depict the median

and standard deviation of the test success rates corresponding to different magnitudes

of uncertainty. These values were evaluated based on the outcomes of the twenty runs

conducted.

The results indicate that the unpruned GANNIC achieves a median success rate of

100% when tested with ub = 0.2, the magnitude used during training. Furthermore, it

shows satisfactory performance with ub = 0.6, attaining a median success rate of 74%

with a standard deviation of 8.21%. Notably, these performances greatly surpass those

of the reference open-loop guidance scheme, which, when subjected to an uncertainty

magnitude of ub = 0.2, can successfully guide the system in only 36% of the considered

test uncertainty profiles. Concerning the pruning process, an average enhancement of
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2.12% in median success rate and an average reduction in the standard deviation of

1.28% are observed across the different ub values. Therefore, it is concluded that the

GANNIC scheme exhibits robustness against unforeseen uncertainties, and the fine-

pruning process further enhances both the performance and statistical consistency of

the GANNIC scheme.

A visual representation of the obtained results is presented in Figures 5.22 to 5.24,

illustrating the outcomes of the best (run 15) and worst (run 19) runs. Each line

corresponds to a trajectory propagated using a specific test uncertainty profile and

magnitude. The colour bar indicates the magnitude of the applied uncertainty, with

red lines representing failed trajectories. In Figures 5.22 and 5.23, the black dashed

line represents the reference trajectory, while in Figure 5.24, the black horizontal lines

denote the boundary values of the constrained quantities.

By analyzing Figure 5.22 it can be seen the GANNIC scheme demonstrates efficacy

in mitigating deviations of failed trajectories from the desired final position. Addition-

ally, GANNIC exhibits robustness to increasing magnitudes of applied uncertainty, as

shown by its ability to produce trajectories showing small divergence from the reference

trajectory, even under heightened magnitudes of uncertainty (blue lines in Figure 5.22).

Figure 5.23 displays the trajectories of the guidance commands α and σ—representing

the angle of attack and bank angle, respectively. The GANNIC scheme effectively gen-

erates guidance commands closely aligned with the reference signals. Trajectories with

larger deviations from the reference ones are associated with higher uncertainty mag-

nitudes or failed cases. Notably, failed trajectories tend to cluster further away from

the reference, suggesting that substantial deviations from the reference may contribute

to failure. Therefore, reducing ubS—the scaler’s upper bound—might be considered to

enhance performance.

In Figure 5.24, the trajectories of the constrained quantities az and q are presented

for both the best and worst runs. These plots clearly illustrate that the constraints are

consistently satisfied, even when the desired final position is not reached.
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Table 5.7: Statistical analysis results performed using the GANNIC control scheme.
The data in bold correspond to the pruned topologies.

Run ID
Fitness values Test success rate
Ff Pf ub = 0.2 ub = 0.3 ub = 0.4 ub = 0.5 ub = 0.6

Open Loop / / 36% 20% 15% 13% 9%
1 0.00719 0 100% 100% 94% 87% 74%

100% 100% 95% 87% 80%
2 0.00391 0 100% 94% 87% 83% 75%

100% 100% 93% 89% 79%
3 0.00365 0 100% 96% 88% 84% 76%

100% 96% 88% 84% 76%
4 0.0403 0 100% 99% 96% 85% 79%

100% 100% 97% 85% 78%
5 0.0117 0 100% 98% 91% 82% 66%

100% 100% 95% 84% 70%
6 0.00572 0 100% 96% 93% 84% 74%

100% 100% 96% 86% 80%
7 0.00456 0 100% 100% 94% 89% 80%

100% 100% 95% 89% 81%
8 0.00726 0 100% 97% 92% 84% 74%

100% 100% 94% 82% 78%
9 0.0126 0 100% 99% 91% 85% 76%

100% 100% 93% 86% 79%
10 0.0119 0 100% 98% 89% 79% 67%

100% 98% 90% 84% 72%
11 0.00280 0 100% 95% 88% 78% 70%

100% 95% 88% 78% 70%
12 0.00675 0 99% 97% 90% 84% 71%

100% 99% 93% 88% 80%
13 0.00651 0 100% 100% 92% 85% 74%

100% 100% 94% 87% 79%
14 0.00293 0 96% 90% 83% 74% 60%

100% 93% 86% 75% 69%
15 0.00270 0 100% 98% 92% 79% 76%

100% 100% 96% 89% 80%
16 0.00848 0 100% 97% 91% 81% 70%

100% 96% 94% 83% 70%
17 0.00430 0 100% 100% 98% 85% 78%

100% 100% 99% 87% 78%
18 0.00258 0 100% 100% 94% 83% 75%

100% 100% 95% 87% 79%
19 0.0287 0 92% 78% 68% 58% 43%

97% 88% 76% 63% 53%
20 0.0437 0 100% 100% 95% 84% 71%

100% 99% 95% 87% 75%

Median / / 100.0% 98.0% 91.5% 84.0% 74.0%
100% 100% 94% 86% 78%

Standard Deviation / / 1.95% 5.06% 6.27% 6.51% 8.21%
0.67% 3.17% 5.06% 6.10% 6.61%
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Figure 5.22: Reentry trajectories and final positions of the best (run 15 in Table 5.7)
and worst (run 19 in Table 5.7) runs performed with the GANNIC scheme. The red
lines represent the failed trajectories. The black horizontal bars in the final position
plots represent the FAC box boundaries. [2]

Comparison with a standalone Genetic Programming guidance scheme

To contextualize the obtained results, the performance of the GANNIC scheme was

compared with a standalone GP guidance algorithm. The GP algorithm, outlined in

section 4.2.1, was employed to determine guidance commands, as illustrated in Figure

4.4. For this comparative analysis, the same mission was considered as in the GANNIC
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Figure 5.23: Trajectories of the guidance commands, angle of attack α and bank angle
σ for the best (run 15 in Table 5.7) and worst (run 19 in Table 5.7) runs performed
with the GANNIC scheme. The red lines represent the failed trajectories. The dashed
black line represents the reference trajectory.

scheme, and the GP was configured according to Table 5.5. The same fitness function

and training/test uncertainty profiles as in the GANNIC scheme were employed. Fur-

thermore, the selection of the best-performing individuals in each run was performed

by following the approach outlined in Algorithm 11, as done for GANNIC. The run

results using only the GP for guidance commands generation are presented in Table

5.8, with qualitative trajectory representations shown in Figure 5.25.

By comparing Figure 5.25 and Figure 5.22, it can be observed that the GANNIC

and GP algorithms show similar trajectory tracking capabilities in their respective best

runs. However, this is not the case for the worst runs. Examination of Figures 5.22d and
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Figure 5.24: Trajectories of the constrained quantities, normal acceleration az and
dynamic pressure q for the best (run 15 in Table 5.7) and worst (run 19 in Table
5.7) runs performed with the GANNIC scheme. The red lines represent the failed
trajectories. The horizontal black line represents the constraints.

5.25d proves that GANNIC effectively maintains failed trajectories in the proximity of

the target, whereas the trajectories generated using the GP guidance commands diverge

further away from the desired final position.

Figure 5.26 presents a graphical synthesis of results obtained through GANNIC in

both pruned and unpruned forms, alongside results from the standalone GP. Test suc-

cess rates are depicted as box plots, showcasing the median and statistical distribution

for each magnitude considered. Open-loop results are marked with black dots for refer-

ence. Notably, GANNIC exhibits statistical consistency superior to the standalone GP,

an observation reinforced by the standard deviations provided in Tables 5.7 and 5.8.
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Table 5.8: Results of the statistical analysis performed using the standalone GP
controller

Run ID
Fitness values Test success rate

Ff Pf ub = 0.2 ub = 0.3 ub = 0.4 ub = 0.5 ub = 0.6

1 0.00440 0 100% 91% 80% 74% 65%
2 0.00403 0 100% 99% 90% 82% 77%
3 0.116 0 81% 66% 53% 40% 26%
4 0.000731 0 100% 100% 99% 94% 88%
5 0.00214 0 100% 99% 90% 85% 68%
6 0.00192 0 100% 100% 97% 93% 85%
7 0.00315 0 100% 100% 100% 99% 90%
8 0.00139 0 100% 99% 90% 82% 76%
9 0.00244 0 99% 99% 91% 84% 78%
10 0.0405 0 96% 77% 54% 40% 28%
11 0.000770 0 100% 98% 94% 87% 81%
12 0.153 0 96% 71% 53% 37% 23%
13 0.00641 0 100% 100% 95% 88% 85%
14 0.273 0 65% 46% 32% 22% 13%
15 0.0753 0 94% 86% 75% 68% 62%
16 0.00613 0 90% 70% 61% 50% 38%
17 0.670 0 76% 52% 30% 16% 13%
18 0.00221 0 100% 100% 100% 98% 90%
19 0.00204 0 100% 100% 100% 93% 86%
20 0.02246 0 94% 80% 55% 39% 30%

Median / / 100% 98.5% 90% 82% 72%
Standard Deviation / / 9.66% 17.42% 23.46% 27.17% 28.34%

While the GP achieves a broad range of success rates, from excellent performance (e.g.,

ub = 0.4 and ub = 0.5) to success rates comparable to those obtained with open-loop

commands (e.g., ub = 0.5 and ub = 0.6), the GANNIC approach exhibits far greater

robustness. Moreover, while median values for GP results align with those of unpruned

GANNIC, they are visibly inferior to those of the pruned GANNIC.

Figure 5.27 offers another illustration of the GANNIC scheme’s consistency in com-

parison to the standalone GP. The plot depicts the evolution of the Ff fitness for the

best individuals. The solid lines represent the means, and the shaded areas denote

the standard deviations evaluated on the performed twenty runs. As can be observed,

the GP’s standard deviation is around one order of magnitude greater than that of

GANNIC. Additionally, the evolutions performed with the GANNIC scheme exhibit

faster convergence to lower fitness values.

These findings lead to the conclusion that, although the standalone GP guidance

155



Chapter 5. Genetically Adapted Neural Network-Based Intelligent Controller
(GANNIC)

[deg]

80.80080.77580.75080.725 [de
g]

29
29

29
29

h 
 [k

m
]

5
10
15
20

Ref
Failed

0.2

0.3

0.4

0.5

0.6ub

(a) Reentry trajectories best run

39
0

40
0

41
0

-80.7

-80.7

-80.7

-80.7

-80.7  [deg]

39
0

40
0

41
0

28.6

28.6

28.6

28.6

28.7
 [deg]

Ref
Failed

39
0

40
0

41
0

-0.5

0.0

0.5

1.0

1.5

h [km]

Time [s]

(b) Final positions best run

[deg]

80.80080.77580.75080.725 [de
g]

29
29

29
29

h 
 [k

m
]

5
10
15
20

Ref
Failed

0.2

0.3

0.4

0.5

0.6ub

(c) Reentry trajectories worst run

39
0

40
0

41
0

-80.7

-80.7

-80.7

-80.7

-80.7  [deg]

39
0

40
0

41
0

28.6

28.6

28.6

28.6

28.7
 [deg]

Ref
Failed

39
0

40
0

41
0

-0.5

0.0

0.5

1.0

1.5

h [km]

Time [s]

(d) Final positions worst run

Figure 5.25: Reentry trajectories and final positions of the best (run 7 in Table 5.8)
and worst (run 14 in Table 5.8) runs performed with the standalone GP scheme. The
red lines represent the failed trajectories. The black horizontal bars in the final position
plots represent the FAC box boundaries. [2]

algorithm can attain peaks of exceptional performance, the pruned GANNIC scheme

shows superior performance and robustness from a statistical point of view, by consis-

tently maintaining a higher median success rate and a lower standard deviation across

all considered ub values. This is particularly visible when analyzing the results for

higher values of ub. Furthermore, the GP evolution within the GANNIC scheme con-

verges more rapidly to a lower fitness compared to using the standalone GP guidance
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Figure 5.26: Results of the statistical study. The blue box plots are evaluated con-
sidering 20 runs using the GANNIC scheme. The orange boxplots are evaluated with
the pruned GANNIC scheme, and the green boxplots using the standalone GP control
scheme. [2]
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Figure 5.27: Evolution of the Ff value for the GANNIC and GP control approaches.
The continuous lines are the mean, while the shaded areas represent the standard
deviations. Both mean and standard deviation are evaluated by considering the best
individuals in the 20 runs.
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scheme. As a final remark, it is clear how both the GP and the GANNIC schemes can

successfully guide the vehicle through a significantly wider range of uncertainties than

what is achievable with open-loop guidance commands. This observation underscores

the importance of an adaptive element in the guidance scheme to effectively manage

complex, uncertain environments.

Scaler’s role investigation

To investigate the heightened robustness observed in GANNIC, the identical scaler used

in the GANNIC scheme was applied to the standalone GP guidance algorithm to bound

its output. This configuration underwent testing through twenty runs, replicating the

same settings used for GANNIC and the standalone GP cases. The complete results are

provided in Appendix D. Contrary to anticipated improvements, the outcomes indicate

an overall degradation in performance compared to the standalone GP controller. This

behaviour is possibly attributed to the shape of the scaler’s input signal as depicted in

Figure 5.28, illustrating results selected from the best of the twenty runs in both the

GANNIC and GP+scaler schemes. Notably, the NN employed in GANNIC generates

an expanding bang-bang control signal, whereas the GP output, fed into the scaler,

exhibits a more chaotic pattern. This consistent structure of the NN output, observed

across runs, is likely influenced by the use of the tanh activation function in the hidden

layers.

Considering the observed results, it can be inferred that the scaler alone is not

capable of producing an effective bounded guidance signal. Therefore, the NN assumes

a main role in ensuring overall output boundedness, likely due to the use of the tanh

activation function in the hidden layer.

5.4 Summary and Comments

This chapter introduces the Genetically Adapted Neural Network-based Intelligent Con-

troller (GANNIC), providing a description of the underlying framework and practical

application showcasing its usage. Functioning as an IC scheme, GANNIC can be applied
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Figure 5.28: Scaler input signals in the GANNIC and GP+scaler schemes. These
results are picked from the best of the 20 runs in the GANNIC and GP+scaler schemes.
[2]

both as a controller and a real-time guidance scheme. Comprising a NN responsible for

generating nonlinear guidance or control commands, GANNIC adapts its weights online

to address variations in environmental or system parameters. Online weight adaptation

is achieved by propagating the NN’s weights through time using a set of differential

equations determined offline through GP. Each weight is adapted by a distinct GP

equation. GANNIC offers an innovative approach to the design of adaptation laws for

NN weights. Unlike conventional methods that rely on analytically derived differential

equations, often cumbersome and challenging when dealing with models composed of

tabular data, GANNIC autonomously generates adaptation laws for weights through

interaction with the target plant. This autonomous adaptation capability eliminates
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the need for explicit plant models. Engineers can focus solely on defining the GP fitness

function to achieve their desired objectives.

The GANNIC scheme was applied to perform the reentry guidance of the FESTIP-

FSSC5 RLV. The guidance commands, namely the angle of attack α and bank angle

σ, were generated online in real-time to guide the vehicle towards the desired final

position in the presence of uncertainties applied to the atmospheric models. The pro-

posed scheme exhibits robustness to a broad range of uncertainties. A total of twenty

GP evolutionary processes were conducted to evaluate the repeatability of the GP al-

gorithm. For each run, GP adaptation laws were generated offline using a predefined

set of training uncertainty profiles. Subsequently, the GP models were integrated into

the GANNIC scheme, which underwent testing by propagating 100 trajectories under

100 unknown test uncertainty profiles. For each of the twenty runs, this set of 100

trajectory propagations was repeated five times, varying the magnitude of applied un-

certainties. The GANNIC scheme achieved an average success rate of 91.6% across all

uncertainty magnitudes, proving its robustness against unknown uncertainties. A com-

parative analysis with a standalone GP guidance algorithm was performed. GANNIC

exhibited superior statistical performance, indicated by higher median values, along

with enhanced statistical robustness underscored by a lower standard deviation. In

particular, the average median success rate, evaluated considering the median success

rates on different magnitudes of uncertainties, is 91.6% for GANNIC and 88.5% for the

standalone GP. The average standard deviation is 4.34% for GANNIC and 21.21% for

the standalone GP.

The conducted experiment shed light on some noteworthy characteristics of both the

GANNIC and the treated test case. The NN topology optimization process highlighted

the great importance of input variables associated with quantities possessing physical

relevance to the treated problem. Specifically, the optimization revealed that variables

θ, λ, and h exhibit negligible influence, as can also be observed through an analysis

of the equations of motion. The generated commands for the angle of attack (α) and

bank angle (σ) displayed an observable pattern, suggesting that substantial deviations

from their reference values may lead to failure. This information can be leveraged to
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further tune the hyperparameters of the scaler.

Furthermore, an analysis of the importance of a bounded guidance command was

conducted by analyzing the scaler’s impact. A comparison between the GANNIC and

the GP guidance schemes, both augmented with the same scaler, highlighted the negli-

gible influence of the scaler itself. However, the comparison emphasized the importance

of the bounding mechanism embedded in the NN. Specifically, the tanh activation func-

tion in the hidden layer generates a bounded signal that is more effectively scaled by the

scaler. The bounded nature conferred by the NN contributes to a heightened robustness

of the overall guidance scheme.

The GANNIC scheme is currently in the developmental stage, and as such, several

issues impact its performance and design process. These challenges are outlined in the

following discussion.

GANNIC Design Process

The GANNIC scheme involves several components, each of them necessitating an indi-

vidual analysis to understand their critical aspects. For instance, the decision on how to

select and apply the uncertainties during GP training is of great importance. While the

presented solution is effective for the considered problem, a comparative study across

diverse test cases could offer a more profound understanding of the impact of uncer-

tainties during training. Another crucial component is the NN. A feedforward network

was chosen for its simplicity, but it might not be the optimal configuration. Alternative

NN structures my lead to better performance. A comprehensive understanding of the

NN’s influence on GANNIC outcomes is essential. As highlighted in section 5.3.6, it

is evident that the use of the NN yields more consistent results than the standalone

GP controller, and this behaviour is not solely attributed to the scaler. However, the

ultimate results stem from complex interactions involving the propagated NN weights,

the NN topology, and the scaler.
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Scaler’s Hyperparameters

The GANNIC system is currently suboptimally configured, with hyperparameters p1, p2, ubS ,

and lbS defined in section 5.2. While the existing parameter values have shown satisfac-

tory results, a thorough investigation is necessary to optimize the system’s performance.

Statistical Sample

Using a personal laptop, the computational time required for a single GP evolutionary

process, both for the standalone GP and the GANNIC controllers, was substantial.

Specifically, the average computational time for one run during standalone GP evo-

lution was approximately 4 hours and 20 minutes, while for the GANNIC scheme, it

was around 19 hours and 40 minutes. It is crucial to note that this time pertains to

the offline GP evolution. The online learning in the GANNIC scheme occurs almost

instantaneously using equations determined offline. Consequently, to generate results

within a reasonable timeframe, only 20 runs per test case were conducted to produce

the statistical data.

Comparison with Other Guidance Schemes

GANNIC was exclusively compared with a GP-based guidance scheme for two primary

reasons: 1) the GP scheme applied to the FESTIP-FSSC5 had been analyzed in a prior

study, and the models were already accessible; 2) no other guidance scheme applied to

the FESTIP-FSSC5 could be found in the existing literature. Particularly, the latter

point introduced uncertainty regarding what could be considered as the reference for

this vehicle. Consequently, it was impractical to test and optimize numerous algorithms

to identify the best-performing one and designate it as the reference. To facilitate

further research and comparison of G&C schemes for this vehicle, the used models are

publicly available at https://github.com/strath-ace/smart-ml/tree/master/GP.

A more detailed discussion on these aspects is provided in Section 6.2.
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Chapter 6

Conclusions

This project was carried out to investigate the domain of Intelligent Control (IC) and

assess the applicability of Genetic Programming (GP), both alone and combined with a

Neural Network (NN), within an IC framework for the real-time guidance of a Reusable

Launch Vehicle (RLV). This chapter presents an overview of the findings derived from

the research, describing the present status of the developed methodologies while dis-

cussing their inherent constraints. The last section presents a discussion on directions

for future research, aiming at refining the proposed methodologies and enriching the

academic literature on IC systems.

6.1 Summary and Contributions

The carried out research was guided by three primary objectives: 1) investigate the

state-of-the-art of IC to understand how GP and NNs are applied in this context. 2)

Advance the state-of-the-art of GP applied to IC. 3) Develop an innovative IC scheme

by hybridizing GP and NNs for the real-time guidance of a RLV.

The first objective was addressed in chapters 2 and 3. Chapter 2 presents a com-

prehensive literature review of control approaches applied to RLVs, identifying four

main families: optimal control, robust control, adaptive control, and Artificial Intel-

ligence (AI)-based and IC. The most frequently employed methods for RLVs within

these families were described, accompanied by illustrative examples of their applica-

163



Chapter 6. Conclusions

tions. Following this analysis, a comparative examination of these control families was

conducted to underscore how IC could enhance the RLVs industry. This compari-

son considered the general characteristics of the discussed control families and did not

intend to analyze every specific control approach developed in the literature. Conse-

quently, certain control approaches may exist that are not afflicted by the common

issues of their respective control families. The comparison revealed that IC has the po-

tential to augment the robustness of existing control approaches against disturbances

and uncertainties by leveraging the nonlinearity introduced by AI techniques, the ca-

pability to adapt online, and the efficient use of real-time data. However, it was noted

that many AI-based and IC approaches often lack a stability analysis framework and

are frequently characterized as black-box models, compromising their explainability.

Chapter 3 presents a comprehensive literature review of IC applications. This re-

view, conducted on behalf of the European Space Agency (ESA), resulted in the pro-

duction of two technical reports [14, 15]. Two major remarks stemmed from the review:

1) the term IC is oftentimes misused; 2) not all IC approaches possess the same level of

intelligence. To address these findings, a novel taxonomy for IC applications was devel-

oped. It was initially introduced in [19] and subsequently refined in [1]. This taxonomy

served a dual purpose: firstly, as a tool to assess the legitimacy of an application being

classified as IC; secondly, as a classification scheme to delineate the intelligence levels

inherent in different applications, clarifying the factors that make one application more

intelligent than another. The proposed taxonomy revolves around the control system’s

ability to manage uncertainties based on the knowledge available at the time of design,

encompassing three key aspects: goal knowledge, environment knowledge, and control

system knowledge. Each of these aspects is categorized into five levels, ranging from 0

(non-intelligent) to 4 (highly intelligent). The taxonomy was subsequently applied to

the analyzed applications to evaluate its consistency and applicability.

Chapter 4 details the development of the second objective of this thesis. It begins

with the description of the theoretical aspects of GP and its application within an IC

and, more broadly, a Guidance and Control (G&C) framework.
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Subsequently, the application of GP in an IC setting is illustrated, specifically for

real-time ascent guidance of a Goddard rocket, initially presented in [169]. This appli-

cation serves as an illustrative example of the potential of GP within an IC framework.

In this context, GP proved its capability to generate online a guidance law for tracking

a reference trajectory in the presence of applied disturbances. These include a variation

in the drag coefficient (cd) representing changes in plant geometry during flight; wind

gusts representing environmental disturbances; and variations in the adopted air den-

sity model during flight, simulating a partially known environmental model updated

online during the mission. In all three scenarios, GP effectively generated a guidance

law online within a limited time interval, highlighting the advantages of its online us-

age. This feature is currently limited to plants with a low degree of nonlinearity or

slow-varying, due to the cumbersome computational cost of GP. Nonetheless, it will be

extended to more complex systems with future technological advancements.

The chapter concludes with the description of the Inclusive Genetic Program-

ming (IGP) algorithm. Initially presented in [20] and further explored in [21], IGP

is an innovative GP heuristic designed to promote and maintain diversity in a GP

population. Specifically tailored for G&C applications, IGP addresses the criticality

of population’s diversity in these contexts, as larger (i.e., more complex) individuals

showed greater efficiency in capturing plant nonlinearities and, traditionally, GP algo-

rithms tend to evolve smaller individuals for improved interpretability. Through testing

on a set of regression problems and comparison with a standard GP implementation,

IGP exhibited superior performance due to its diversity maintenance and promotion

mechanisms.

Chapter 5 introduces the concluding contribution of this dissertation, the Genetically

Adapted Neural Network-based Intelligent Controller (GANNIC) scheme. This control

paradigm was formulated leveraging insights gained from prior experiments with GP

to enable its online application within an IC framework. As discussed in this thesis,

the use of GP alone in an IC setting is suitable only for systems with a low degree

of nonlinearity or slowly varying. To overcome this limitation, a NN is employed as
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a nonlinear controller, and GP is applied to generate a set of differential equations

to dynamically adjust the NN’s weights online. This approach allows for the online

updating of NN parameters in response to environmental or system variations.

The chapter concludes with the application of the GANNIC scheme in the real-

time reentry guidance of the FESTIP-FSSC5 RLV. The test case involved the online

adaptation of guidance commands to track a reference trajectory in the presence of

uncertainties in environmental models. The experiments demonstrated the superiority

of the GANNIC scheme in comparison to the reference guidance open-loop commands,

allowing to successfully guide the vehicle over a wide range of uncertainty with vary-

ing magnitudes. Additionally, a comparative analysis with a standalone GP guidance

scheme shows the superior statistical robustness and performances of GANNIC.

In summary, the research and experiments presented in this doctoral dissertation

lead to the following conclusions:

• There is a general misconception of what IC is, leading to the improper use of

the term by many researchers. Moreover, there was no structured framework to

assess the level of intelligence of IC applications. To address these issues, the

taxonomy described in chapter 3 was developed.

• The developed research showed that GP can be successfully employed in an IC

setting. It can be applied to nonlinear systems without requiring linearization

and it can handle constraints. For the considered real-time guidance application,

GP showed the capability of generating online a guidance law to adapt to unfore-

seen disturbances. It is capable of doing so only by interacting with the plant and

environment, without relying on previous knowledge of them. Nevertheless, the

application of GP to highly nonlinear systems is currently limited by its compu-

tational costs. While this poses a challenge at present time, it is anticipated that

the issue will become increasingly negligible as hardware technologies continue to

advance rapidly.

• The novel GP heuristic developed for this project, the IGP, shows superior per-
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formance than the standard GP and can be successfully applied in a G&C frame-

work.

• The presented research showed that GP can be successfully employed to design

the NN’s weights adaptation algorithm. The resulting G&C scheme, named GAN-

NIC, was applied to perform the real-time guidance of a RLV. It proved robust

against a broad range of unforeseen uncertainties showing superior performance

w.r.t. the open-loop reference commands and a GP-based guidance scheme.

• These experiments conducted with both GP and GANNIC highlighted the impor-

tance of incorporating an adaptive element into the guidance scheme to adapt to

complex and uncertain environments. This is particularly true for RLVs, which

operates in a large flight envelope and could greatly benefit from the online adap-

tation of the guidance commands to cope online with unforeseen situations.

6.2 Current Limitations and Future Work Directions

The conducted research aimed at developing novel IC algorithms involving GP. Because

of the foundational work being performed, the focus was placed on the algorithms

development and testing. An investigation to improve the explainability of the obtained

schemes and to perform a stability analysis were not conducted, since they represent

different research branches in themselves. Considering these aspects, and the issues

pertaining to the GP and GANNIC G&C schemes, the following limitations and areas

for improvement can be identified.

6.2.1 Interpretability and Explainability

The selection of GP for designing an innovative IC scheme was motivated, in part,

by its inherent interpretability. However, having interpretable models is not enough

to convey useful information to the user. To this end, future research should focus

on developing a GP algorithm capable of producing models based on the physical

features of the treated problem. To do so, several strategies could be pursued, such as

introducing appropriately formulated constraints or developing fitness functions that
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explicitly encourage the evolution of models with greater physical relevance. This

could be done similarly to Physics Informed Neural Networks (PINNs) [241], where the

physics of the treated problem is embedded into the NN and the loss function contains

a physics-informed regularization term.

Concerning the GANNIC scheme, interpretability and explainability of the overall

scheme may pose a challenge due to the predominant role played by the NN, which

inherently functions as a black-box model. Nonetheless, the experiments detailed in

chapter 5 highlight that a compact NN configuration suffices for the real-time guidance

task under consideration. In such instances, it becomes feasible to comprehensively ana-

lyze the complete analytical model. Therefore, future research could focus on improving

interpretability and explainability of the GANNIC scheme by developing a framework

to analyze both the NN and the GP models simultaneously and their interaction.

6.2.2 Stability Analysis

Stability analysis represents a central element in control systems. Although stability

analysis methods have been developed for AI-based or IC schemes, gaps exist in the

literature regarding the discussion of stability properties, and a common framework

for AI-based control schemes is lacking. Notably, Lyapunov stability analysis can be

applied to the G&C schemes developed in this thesis. Existing works in the literature,

such as [127, 13, 242], have explored embedding the search for a suitable Lyapunov

function into the GP fitness function. This innovative approach simultaneously pro-

duces both the desired Lyapunov function and a suitable control scheme. However, the

widespread adoption and applicability of this approach across different plants require

further investigation.

In the context of the GANNIC scheme, the stability analysis is made more chal-

lenging by the interaction between the GP and the NN. Therefore, both the stability

of NN’s weights adaptation laws and the overall scheme should be assessed.

Future research endeavours should focus on examining the incorporation of Lya-

punov stability analysis into the GP algorithm and testing its applicability to complex

nonlinear systems. Additionally, investigations into the characteristics of the resulting
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region of attraction derived from the designed Lyapunov function are required. Under-

standing whether the obtained region of attraction holds physical significance is crucial

for assessing the practical implications of the stability analysis and refining the design

process. This exploration will contribute to the advancement of stability-assured AI-

based and IC control schemes, fostering their applicability across diverse systems and

enhancing their robustness in real-world applications.

6.2.3 Comparison with established approaches

The comparison of the developed algorithms against state-of-the-art methodologies

presents a significant challenge, particularly in the context of the selected test case. The

literature currently lacks research pertaining to the guidance of the FESTIP-FSSC5

vehicle, indicating a necessity for comprehensive preliminary studies to identify the

state-of-the-art methodologies applicable to this vehicle and its specific mission.

Moreover, within the broader RLV domain, there is an absence of a standardized

approach to real-time guidance, complicating the identification of a common state-of-

the-art. Recent years have seen the emergence of various methodologies deemed state-

of-the-art for distinct applications. For instance, convex optimization techniques have

been effectively applied to Vertical Take-Off and Vertical Landing (VTVL) vehicles. An

alternative comparative analysis could involve Reinforcement Learning (RL) techniques

which, alongside other AI-based methods, are yet to be recognized as state-of-the-

art in real-world applications. Nonetheless, such a comparison could elucidate the

learning mechanisms of NNs within the GANNIC and RL frameworks, highlighting

their respective advantages and limitations.

Although such a comparison work could potentially give highly valuable insights, its

execution would have required time and computational resources beyond those available

for this project, and it is left for future work.

6.2.4 GANNIC Design Process

The Genetically Adapted Neural Network-based Intelligent Controller (GANNIC) scheme

involves several key steps that require individual investigation to comprehend their crit-
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ical aspects. For instance, the method to select and apply the uncertainties during the

Genetic Programming (GP) training phase is crucial. While the approach presented in

this thesis has proven effective for the considered problem, a comparative study involv-

ing different test cases could provide deeper insights into the influence of uncertainties

during training.

Another critical aspect deserving further investigation is the NN agent. The use of

a feedforward network, while straightforward, may not represent the optimal configura-

tion. For instance, architectures like Recurrent Neural Network (RNN) or Transformer

Networks, which possess the ability to recognize temporal patterns, could offer signif-

icant advantages for guidance applications. A comprehensive exploration of various

NN structures is required to identify the most suitable architecture for the GANNIC

scheme, considering performance, complexity, adaptability and interpretability.

Overall, a more in-depth understanding of the NN’s impact on GANNIC results

would be beneficial. As highlighted in section 5.3, it is evident that the use of the

NN yields more consistent results than the standalone GP scheme, and this improve-

ment is not solely attributable to the scaler. However, the final outcomes result from

complex interactions involving the propagated NN weights, the NN topology, and the

scaler. Investigating these interactions and their implications on the overall system

performance will contribute to refining the GANNIC scheme for broader applicability

and effectiveness across various scenarios.

GANNIC Hyperparameters

The existing configuration of the Genetically Adapted Neural Network-based Intelligent

Controller (GANNIC) scheme is acknowledged to be suboptimal, relying on a set of hy-

perparameters, namely the tanh shaping parameters p1 and p2, and the scaler bounds

ubs , and lbs as described in Subsection 5.2.1. While the current values of these pa-

rameters have yielded favourable results, a thorough investigation is needed to further

enhance the system’s performance.

One potential avenue for improvement involves exploring an approach that elimi-

nates the use of the specified hyperparameters and, consequently, the scaler. This ad-
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justment aims at increasing the GANNIC system’s adaptability to different plants. The

proposed approach involves constraining the GP to generate algebraic convex models.

The use of convex models will facilitate the discovery of the maximum and minimum

values of the generated functions, consequently providing insight into the maximum

and minimum output of the NN controller, particularly when using a tanh activation

function.

Further investigation and experimentation are required to validate the effective-

ness of this approach, assessing its impact on the GANNIC system’s performance and

applicability across a broader spectrum of test cases.

Statistical Sample

The computational time required for simulations using both the GP and GANNIC

schemes on a personal laptop was considerable. Because of that, a limited number

of simulations were conducted to generate statistical data. A more extensive set of

simulations would enhance the statistical reliability of the controllers’ performance

evaluation.

While the limitations in computational resources influenced the scope of the simu-

lations, this acknowledgement underscores the potential for future work to delve deeper

into the statistical aspects of controller performance. Expanding the number of runs

would not only contribute to a more robust understanding of the controllers’ capabil-

ities but also provide additional insights into their behaviour under varied conditions

and scenarios.
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Results of second Neural

Network Topology Optimization

This appendix contains the results of the second iteration of the NN topology optimiza-

tion process for the GANNIC scheme. The results are presented in Table A.1, which

reports the success rate on the test uncertainty scenarios for the best individuals of

each run.

Table A.1: Test success rates obtained with the 3-3-2 NN configuration in the four
runs performed.

run ID
Fitness values Test success rate

Ff Pf ub = 0.2

1 0.001838 0 100%
2 0.001906 0 100%
3 0.001135 0 100%
4 0.002859 0 94%

By comparing the results in Table A.1 with those in Table 5.6, it can be seen how

by pruning the Neural Network (NN) and therefore allowing the Genetic Program-

ming (GP) to focus on evolving only the necessary weights adaptation laws, led to a

performance increase. A reduced network configuration also led to a faster convergence,

as shown in Figure A.1. In this Figure, the evolution of the mean Ff values for the

full and reduced NN configurations are plotted as a continuous line. The shaded areas

represent the standard deviation of the Ff fitness values. The mean and standard devi-
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ations are evaluated considering the four runs with the complete net configuration and

the four runs with the reduced net configuration. The full network configuration can

reach a lower fitness value, but this is not representative of the generalization capabili-

ties shown by Tables 5.6 and A.1. In fact, a lower fitness value can also be a symptom

of overfitting.
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Figure A.1: Evolution of fitness Ff for the full and reduced network configuration.
The continuous lines represent the mean fitness value for each generation considering
the four performed runs. The shaded areas represent the standard deviation.

The results obtained from the second iteration of the NN topology optimization

process are summarized in Figure A.3. A less clear image emerges than Figure 5.20.

As expected, more weights are influential compared to the entire network configuration:

18/38 (47%) in the whole network, against 17/20 (85%) for the reduced network. These

percentages are evaluated considering a weight influential if it is such in at least one

out of four runs. Also, many weights were found to be detrimental in run 4, but this

might be due to an evolution that did not reach satisfactory results in 300 generations.

The weights maps are plotted in Figure A.2. Contrarily to the first iteration, now it

is unclear whether some weights could be removed. Biases seem unimportant in two of

the four runs, but they are used in the other two, and when removed, the performances

drop significantly. Also, the input ēv and ēχ are never used together, but it is unclear
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if one should be preferred over the other. Regarding the hidden neurons, only two of

them are simultaneously used in three runs, but in run 2, they are all used. Instead, as

for the previous iteration, ēγ is the most influential, leading to a 0% success rate when

removed in all four runs.
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Figure A.2: Graphical representation of the second iteration of the topology op-
timization process. The yellow arrow represents those weights that, when removed,
cause a slight decrease in performances; light and dark orange represent those weights
that, when removed, cause a medium and high decrease in performances, while the red
arrow represents those weights that, when removed, cause the success rate to drop to
zero.
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Figure A.3: Results of the second iteration of the NN topology optimization process.
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Best Individual Selection Process

This Appendix contains the description of the best individual selection process for each

of the 20 runs performed with the GANNIC scheme. This is done to avoid overfitting.

The approach summarized in Algorithm 11 was used. Briefly, the evolution of the Ff

fitness value was monitored for each run, and every time a decrease was observed, the

corresponding individual was picked. These individuals were tested by performing 100

trajectory propagations using 100 test uncertainty scenarios from Utest. This process

was repeated Nub
times by increasing the value of ub - i.e. the upper bound of the

applied uncertainty - by 0.1 at every iteration, starting from ub = 0.2 up to ub =

0.6. Therefore, Nub
in Algorithm 11 was set as Nub

= 5. This was done to assess

the generalization capabilities of the individual when considering uncertainties with

different shapes and magnitudes. For each ub considered, a success rate Sr on the

100 performed runs was evaluated. Having obtained Nub
success rates, the mean was

evaluated to obtain the average success rate S̄r for that individual. Therefore, at the

end of each of the 20 runs, the individual with the highest average success rate was

picked as the best one for that run and used for the statistical analysis discussed in the

following.

This research for the best-performing individual was performed since the final in-

dividual produced by the Genetic Programming (GP) evolution, i.e. the one with the

lowest fitness value, might not be the one with the best generalization capabilities since

it might overfit the training uncertainty scenarios. This behaviour is depicted in Figure

176



Appendix B. Best Individual Selection Process

Algorithm 11 Pseudocode of the algorithm adopted to select the best individual from
each run

1: for i = 1 → Nsim do
2: for j = 1 → Ngen do
3: if Ffj < Ffj−1

then
4: for k = 1 → Nub

do
5: Test j-th individual on Ntest uncertainty scenarios

using ubk = 0.2 + 0.1(k − 1)
6: Save the success rate Srjk
7: end for
8: Find the average success rate S̄rj for the j-th individual
9: end if

10: end for
11: Best individual of the i-th run ← individual with max

1≤j≤Ngen

(S̄rj )

12: end for

B.1, where the average test success rate is plotted against the number of generations.

These data are obtained from the individuals in run 2 listed in Table 5.7. Each dot

in the Figure corresponds to a different individual who caused a decrease in the Ff

value at the corresponding generation. The red dot represents the best-performing in-

dividual. From this Figure, it is clear how the best-performing individual is found at

generation 57, and then overfit happens, leading to a decrease in the average success

rate.
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Figure B.1: Average test success rate evolution in run 2. The best-performing indi-
vidual is the red dot.
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Complete results of the Neural

Network fine-pruning before

deployment

The results of the NN fine-pruning before deployment are shown in Figures C.1 to

C.5. These pictures show a set of tables containing the success rates obtained by

removing the weights one by one and performing 100 trajectory propagations using

the uncertainty scenarios from Utest. In these tables, the rows list the results for the

different weights, and the columns refer to the uncertainty magnitudes considered. An

exception is made by the first row, which contains the reference success rates from the

unpruned topology and the last column, which contains the row-wise average of the

success rates obtained on all the magnitude of uncertainties by setting the considered

weight to 0. So, for example, by looking at Figure C.1a, the data in the second row

and first column cell says that by setting the weight w0 to 0, the success rate is 100%

using an uncertainty magnitude with ub = 0.2. The adopted colour scheme has the

following meaning: the green cells represent a success rate greater than the reference;

the yellow cells a success rate lower than the reference and greater than 66%; the dark

yellow cells a success rate lower than the reference and between 66% and 33%; the

orange cells a success rate lower than the reference and between 33% and 1%; the red

cells a success rate of 0%. This colour scheme is adopted to highlight the severity
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of the performance decrease when removing the considered weight. The performance

improvement obtained with pruning is measured by comparing the obtained average

success rate with the reference one, highlighted in green if greater than the reference. In

most cases, the performances can be improved with pruning. Still, it can also happen

that pruning does not contribute to performance improvement, as in the case of Run

3 Figure C.1c, and Run 11 in Figure C.1a. On the other hand, in some cases, many

weights could be removed resulting in a performance increase, as for Run 12 shown in

Figure C.3d. In most cases, the pruned topology with the highest success rate is picked

as the new topology. Still, it was observed that combining two good pruned topologies

can lead to even higher average success rates, as in the case of Run 1 shown in Figure

C.1a. Here, it was observed that by removing both weights w18 and w19, the average

success rate becomes 92.4%, which is greater than those obtained by removing either

w18 or w19. On average, an increase of the average success rate of 2.12% is observed,

with a maximum increase of 7.6% observed in Run 19 shown in Figure C.5c.
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(a) Run 1 (b) Run 2

(c) Run 3 (d) Run 4

Figure C.1: Results of pruning performed on runs 1, 2, 3 and 4
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(a) Run 5 (b) Run 6

(c) Run 7 (d) Run 8

Figure C.2: Results of pruning performed on runs 5, 6, 7 and 8

181



Appendix C. Complete results of the Neural Network fine-pruning before deployment

(a) Run 9 (b) Run 10

(c) Run 11 (d) Run 12

Figure C.3: Results of pruning performed on runs 9, 10, 11 and 12
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(a) Run 13 (b) Run 14

(c) Run 15 (d) Run 16

Figure C.4: Results of pruning performed on runs 13, 14, 15 and 16
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(a) Run 17 (b) Run 18

(c) Run 19 (d) Run 20

Figure C.5: Results of pruning performed on runs 17, 18, 19 and 20
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Appendix D

Results of the scaler application

to the standalone Genetic

Programming (GP) guidance

scheme

The results presented in this Appendix were obtained by performing the GP evolu-

tionary process as described at the end of Subsection 5.3.6. They are meant to show

the effect of the scaler application to a standalone GP guidance scheme resulting in

the framework in Figure D.1. The scaler is the same as described in Subsection 5.2.1

with the hyperparameters set as in Subsection 5.3.6. The complete results are shown

in Table D.1 while a depiction of the performed trajectories is shown in Figure D.2
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Figure D.1: Control scheme of the standalone GP controller with the scaler

Table D.1: Results of the statistical analysis performed using the standalone GP with
the scaler

Run ID
Test success ratio

ub = 0.2 ub = 0.3 ub = 0.4 ub = 0.5 ub = 0.6

1 83% 59% 40% 31% 27%
2 88% 71% 55% 38% 30%
3 89% 76% 60% 50% 41%
4 100% 90% 81% 70% 65%
5 71% 45% 26% 14% 13%
6 100% 95% 91% 80% 74%
7 70% 47% 34% 25% 17%
8 97% 72% 56% 46% 39%
9 100% 100% 98% 88% 79%
10 82% 63% 40% 24% 16%
11 90% 82% 69% 57% 53%
12 94% 69% 53% 34% 28%
13 94% 83% 71% 62% 50%
14 91% 84% 65% 54% 43%
15 100% 99% 89% 81% 71%
16 92% 80% 74% 65% 52%
17 98% 88% 74% 62% 52%
18 98% 92% 74% 62% 52%
19 91% 88% 77% 66% 54%
20 53% 35% 22% 18% 14%

Median 91.5% 81% 67% 55.5% 46.5%
Standard Deviation 12.24% 18.36% 21.78% 22.19% 20.47%

186



Appendix D. Results of the scaler application to the standalone GP guidance scheme
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Figure D.2: Reentry trajectories and final positions of the best (run 9) and worst
(run 20) runs performed with the GP+scaler scheme. The red lines represent the failed
trajectories. The black horizontal bars in the final position plots represent the Final
Approach Corridor (FAC) box boundaries. [2]
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“Model predictive control in aerospace systems: Current state and opportunities,”

Journal of Guidance, Control, and Dynamics, vol. 40, no. 7, pp. 1541–1566, 2017.

[65] X. Liu, P. Lu, and B. Pan, “Survey of convex optimization for aerospace appli-

cations,” Astrodynamics, vol. 1, no. 1, pp. 23–40, 2017.

[66] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,

mar 2004.

194



Bibliography

[67] B. Acikmese, J. M. Carson, and L. Blackmore, “Lossless convexification of non-

convex control bound and pointing constraints of the soft landing optimal con-

trol problem,” IEEE Transactions on Control Systems Technology, vol. 21, no. 6,

pp. 2104–2113, 2013.

[68] J. Wang, N. Cui, and C. Wei, “Optimal Rocket Landing Guidance Using Convex

Optimization and Model Predictive Control,” Journal of Guidance, Control, and

Dynamics, vol. 42, no. 5, pp. 1078–1092, 2019.

[69] M. Sagliano and E. Mooij, “Optimal drag-energy entry guidance via pseudospec-

tral convex optimization,” Aerospace Science and Technology, vol. 117, p. 106946,

2021.
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[187] K. J. Åström and R. M. Murray, Feedback Systems. Princeton University Press,

apr 2010.

[188] C. Utama, B. Karg, C. Meske, and S. Lucia, “Explainable artificial intelligence for

deep learning-based model predictive controllers,” 2022 26th International Con-

ference on System Theory, Control and Computing, ICSTCC 2022 - Proceedings,

pp. 464–471, 2022.

[189] C. F. Verdier and M. Mazo, Jr., “Formal Controller Synthesis via Genetic Pro-

gramming,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 7205–7210, 2017.

[190] K.  Lapa, K. Cpa lka, and A. Przyby l, “Genetic programming algorithm for de-

signing of control systems,” Information Technology and Control, vol. 47, no. 4,

pp. 668–683, 2018.

[191] C. K. Oh and G. J. Barlow, “Autonomous controller design for unmanned aerial

vehicles using multi-objective genetic programming,” in Proceedings of the 2004

Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), pp. 1538–

1545 Vol.2, 2004.

[192] A. Bourmistrova and S. Khantsis, “Genetic Programming in Application to Flight

Control System Design Optimisation,” New Achievements in Evolutionary Com-

putation, 2010.

208



Bibliography

[193] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G. Lanza,

Genetic Programming IV: Routine Human-Competitive Machine Intelligence.

No. December 2015, 2003.

[194] R. Poli, W. Langdon, and N. McPhee, A Field Guide to Genetic Programing.

No. March, 2008.

[195] R. H. Goddard, “A Method of Reaching Extreme Altitudes,” Smithsonian Mis-

cellaneous Collections, vol. 71, no. 2, 1919.

[196] J. R. Rea, A Legendre Pseudospectral Method for rapid optimization of launch

vehicle trajectories. PhD thesis, Massachusetts Institute of Technology, 1975.

[197] F. A. Fortin, F. M. De Rainville, M. A. Gardner, M. Parizeau, and C. Gagńe,
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