
Robust Planning and Scheduling using Column

Generation

PhD Thesis

Andrew Murray

Department of Computer and Information Sciences

University of Strathclyde, Glasgow

June 4, 2024

This thesis is the result of the author’s original research. It has been

composed by the author and has not been previously submitted for

examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of

the United Kingdom Copyright Acts as qualified by University of

Strathclyde Regulation 3.50. Due acknowledgement must always be

made of the use of any material contained in, or derived from, this

thesis.

i

Abstract

Autonomous Planning and Scheduling (APS) is the problem of autonomously

planning, scheduling and executing a sequence of actions in an environment to

achieve some goals. Due to the increased adoption of APS in sensitive applica-

tions, there is an increasing need for models that are robust to the uncertainty

prevalent in the real world. Robustness can be achieved by modelling the APS

problem via stochastic optimization, however such problems are inherently diffi-

cult to solve. Recently, the column generation method has shown precedent in

solving stochastic optimization problems. In this technique, the main optimiza-

tion problem is decomposed into two more manageable sub problems which are

then solved iteratively: the Restricted Master Problem (RMP) and the Column

Generation Problem (CGP). In this thesis, we apply column generation in a novel

way to develop robust solutions to APS problems.

The first problem we address is a 5G telecommunications planning problem

called the Virtual Network Function Placement and Routing Problem (VNF-

PRP). In 5G, Internet Service Providers (ISP) must deliver tailored network

services for a variety of use cases; often with heterogeneous requirements defining

the expected Quality of Service (QoS). Past approaches at solving this problem

do not consider all of the constraints required to guarantee QoS. Likewise, the

majority of prior algorithms either solve a large Integer Linear Program (ILP),

which is computationally intractable for practical problems; or leverage heuristics,

which give no guarantees on solution quality. In this thesis, we present a column

iii

Chapter 0. Abstract

generation based VNF-PRP algorithm which solves: the RMP, which optimizes

the placement, replication and routing of the VNFs given the paths generated so

far; and the CGP, which generates new paths. Our approach is the first VNF-

PRP algorithm to consider throughput, latency and availability constraints. It is

also the first that is capable of computing a valid VNF placement, routing and

replication solution, while providing a measure of solution quality. We validate

our approach on a realistic Mobile Edge Cloud (MEC) network architecture and

show that our model can find near optimal solutions to practical sized problems

within a reasonable time.

The second problem we address is a scheduling problem called Strong Con-

trollability (SC). SC of Probabilistic Simple Temporal Networks (PSTN) involves

finding a schedule to execute a sequence of actions that maximises the probability

that all constraints are satisfied (robustness). Previous approaches to this prob-

lem assume independence of probabilistic durations. This gives no guarantee

of finding the schedule optimising robustness, and fails to consider correlations

between action durations that frequently arise in practical applications. In this

thesis, we formally define the Correlated Simple Temporal Network (Corr-STN),

which generalises the PSTN by removing the restriction of independence, and

show that the problem of Corr-STN SC is convex. We present the first Corr-STN

SC algorithm based on column generation which solves: the RMP, which finds

the most robust schedule given an approximation of the joint distribution; and

the CGP, which finds a new point to refine the approximation. We validate our

approach on a number of Corr-STNs and find that our method offers strictly more

robust solutions when compared with prior PSTN SC approaches.

iv

Publications

1. “Constraint Relaxation Costs in Expected Value Probabilistic Simple Tem-

poral Networks”, Andrew Murray, International Conference on Automated

Planning and Scheduling (Doctoral Consortium), 2021, (Reviewed, but not

formally published)

2. “Towards Temporally Uncertain Explainable AI Planning”, Andrew Mur-

ray, Benjamin Krarup and Michael Cashmore, International Conference on

Distributed Computing and Internet Technology, 2022

3. “Joint Chance Constrained Probabilistic Temporal Networks via Column

Generation (Extended Abstract)”, AndrewMurray, Michael Cashmore, Ash-

win Arulselvan and Jeremy Frank, International Symposium on Combina-

torial Search, 2022 (Chapter 5)

4. “A Column Generation Approach to Correlated Simple Temporal Net-

works”, AndrewMurray, Ashwin Arulselvan, Michael Cashmore, Marc Roper

and Jeremy Frank, International Conference on Automated Planning and

Scheduling, 2023 (Chapter 5)

5. “The Cost of Quality of Service: SLA Aware VNF Placement and Rout-

ing using Column Generation”, Andrew Murray, Ashwin Arulselvan, Marc

Roper, Michael Cashmore, Swarup Mohalik, Ian Burdick and Sushanth

David, International Workshop on Resilient Networks Design and Mod-

elling, 2023 (Chapter 4)

v

Contents

Abstract iii

Publications v

List of Figures x

List of Tables xiii

Acronyms xv

Source Code xvii

Preface/Acknowledgements xxiii

1 Introduction 3

1.1 Background . 3

1.2 Outline . 6

1.3 Motivation . 8

1.4 Contribution . 11

2 A Survey of Robust Planning and Scheduling 13

2.1 Introduction . 13

2.2 Background . 15

2.2.1 Mathematical Optimization 15

vii

Contents

2.2.2 Planning . 17

2.2.3 Scheduling . 22

2.3 Robust Planning and Scheduling 24

2.3.1 Proactive Approaches . 24

2.3.2 Reactive Approaches . 27

2.3.3 Probabilistic Approaches 28

2.4 Optimization under Uncertainty 30

2.4.1 Stochastic Optimization 30

2.4.2 Solution Methods . 31

2.5 Discussion and Conclusions . 33

3 Technical Preliminaries on the Column Generation Method 37

3.1 Introduction . 37

3.2 Linear Programming . 38

3.3 Column Generation Method . 42

3.4 Example: Cutting Stock . 47

3.4.1 Compact Model . 48

3.4.2 Column Generation Model 49

3.4.3 Running Example . 50

4 SLA Aware VNF Placement and Routing using Column Gener-

ation 55

4.1 Introduction . 55

4.2 Background . 57

4.3 Related Work . 60

4.3.1 VNF Placement in General 61

4.3.2 Solution Methods . 63

4.3.3 Use Case . 64

4.3.4 Optimization Metric . 65

viii

Contents

4.4 Motivating Example . 67

4.5 Method . 70

4.5.1 Restricted Master Problem 72

4.5.2 Column Generation Problem 77

4.5.3 Network Transformation 78

4.6 Experimental Setup . 80

4.7 Results . 83

4.8 Conclusion . 87

5 A Column Generation Approach to Correlated Simple Temporal

Networks 89

5.1 Introduction . 89

5.2 Background . 92

5.3 Related work . 99

5.3.1 Algorithms for PSTN SC 99

5.3.2 Correlations in Scheduling 101

5.4 Motivating Example . 102

5.5 Corr-STN SC is Convex . 107

5.6 Method . 110

5.7 Experimental Setup . 117

5.7.1 Planning Domain and Problem 117

5.7.2 Corr-STN Instance Generation 120

5.7.3 Solution Methods . 122

5.8 Results . 122

5.9 Conclusion . 129

6 Conclusion 131

6.1 Summary and Contributions . 131

6.2 Future Research Directions . 134

ix

Contents

A PDDL Drone Delivery Domain 139

B PDDL Drone Delivery Problem 143

Bibliography 144

x

List of Figures

2.1 Example plan for vehicle delivery problem. 21

2.2 Example Simple Temporal Network. 23

2.3 Digraph representation of STN from Figure 2.2 23

3.1 Polytope representing feasible region of an LP. The simplex algo-

rithm starts at one of the vertices of the polytope and repeatedly

moves along the steepest edge in the improving direction until it

reaches the optimal solution. The steepest edge is found by solving

(3.8). 40

3.2 Image showing MP for an LP (top), and equivalent RMP (bot-

tom). The RMP is grown columnwise on each iteration by adding

columns from the unknown set to the generated set. When the

RMP contains all the optimal basic variables, the solution to the

RMP is the same as the solution to the MP. Note that q = |G|. . 44

3.3 Flowchart showing the column generation procedure for LPs (a),

versus MIPs (b). In (b), we solve a linear relaxation of the RMP

(LRMP). When the column generation procedure terminates, the

variables are made integer once more and the RMP is re-solved as

a MIP. 46

xi

List of Figures

3.4 Figure showing an example cutting stock problem. The order

quantities and widths are provided in the table. Each pattern is a

feasible solution to the knapsack CGP (3.15). Among all feasible

patterns, (3.15) is trying to find the best pattern for the given dual

solution. One possible solution to this cutting stock problem would

be to satisfy the orders using one instance of 3 distinct patterns:

p1, p5, p6, and 2 instances of the pattern p4. 51

4.1 Figure showing varying KPI requirements for different service groups

(adapted from [1]). 59

4.2 VNF placement example for 5G network slices (adapted from [2]).

The VNFs required for the autonomous driving, UHD video stream-

ing and smart city slices are shown in green, orange and blue re-

spectively. 69

4.3 Master Problem MILP . 73

4.4 Diagram showing multi-layered graph. 78

4.5 Column Generation Problem ILP 79

4.6 Plot showing gap versus MILP runtime for Nobel EU with 700

SFCs and load factor 3. 87

5.1 Example Simple Temporal Network with Uncertainty. 93

5.2 Example Probabilistic Simple Temporal Network. 96

5.3 Figure showing risk associated with squeezing a probabilistic con-

straint to an equivalent contingent link. 98

5.4 Image showing toy example . 103

5.5 Comparison of robustness using Boole’s versus actual robustness

with varying correlation coefficient ρ (below). 105

5.6 Image showing bi-variate Gaussian distribution probability density

function with and without correlation. 107

xii

List of Figures

5.7 Inner approximation for a bivariate convex function ϕ(z). The red

crosses are the approximation points (columns) zi at which the

function has been evaluated and the black dots are the function

evaluations ϕi. 112

5.8 Master Problem . 113

5.9 Image showing STN example constructed from plan. 121

5.10 Plot showing % difference in Monte Carlo robustness for different

solutions: θx,y = (ΓMC
x − ΓMC

y)/ΓMC
x × 100. Boole’s and indepen-

dent are compared to correlated of different sizes. 123

5.11 Plot showing % of cases solved versus runtime for Boole’s, inde-

pendent and correlated. 123

5.12 Plot showing % difference in Monte Carlo and theoretical robust-

ness: αx,y = (ΓMC
x −ΓTH

y)/ΓMC
x ×100. Theoretical for independent

and correlated are compared to correlated Monte-Carlo. 124

xiii

List of Tables

4.1 Master Problem Decision Variables 71

4.2 Networks Used . 81

4.3 VNF requirements: C is the CPU requirement, M is the memory

requirement, T is the throughput and L is the latency. 82

4.4 SFC requirements for different slices: T is the throughput require-

ment, L is the latency, A is the availability, Prob refers to the

probability of sampling the slice and W is the SLA violation cost. 83

4.5 Table showing experimental results. 84

5.1 Drone types . 119

5.2 Medicine Types . 119

5.3 Table showing results for rover domain. 127

5.4 Table showing results for crew-planning domain. 128

xv

Source Code

The source code used in this thesis is available online at the following repositories:

• Chapter 4: https://anonymous.4open.science/r/VNFPP-CG-00DC

• Chapter 5: https://anonymous.4open.science/r/CORRSTN-3E78

xvii

Acronyms

5G 5th Generation.

AI Artificial Intelligence.

AIA Adaptive Interference Aware.

APS Automated Planning and Scheduling.

BFS Basic Feasible Solution.

CC-PSTN Chance Constrained Probabilistic Simple Temporal Network.

CDF Cumulative Density Function.

CGP Column Generation Problem.

Corr-STN Correlated Simple Temporal Network.

DC Data Center.

eMBB Enhanced Mobile Broadband.

ILP Integer Linear Program.

ISP Internet Service Provider.

KPI Key Performance Indicator.

xix

Acronyms

LP Linear Program.

LRMP Linear Restricted Master Problem.

MDP Markov Decision Process.

MEC Mobile Edge Cloud.

MIP Mixed Integer Program.

MIQCP Mixed Integer Quadratically Constrained Program.

mMTC Massive Machine Type Communications.

MP Master Problem.

MTBF Mean Time Between Failures.

MTTR Mean Time To Repair.

NF Network Function.

NFV Network Function Virtualization.

NLP Nonlinear Program.

OR Operations Research.

PDDL Planning Domain Definition Language.

PSTN Probabilistic Simple Temporal Network.

QoS Quality of Service.

RMP Restricted Master Problem.

SC Strong Controllability.

xx

Acronyms

SFC Service Function Chain.

SLA Service Level Agreement.

STN Simple Temporal Network.

STNU Simple Temporal Network with Uncertainty.

UHD Ultra High Definition.

URLLC Ultra Reliable Low Latency Communications.

VNF Virtual Network Function.

VNF-FG Virtual Network Function Forwarding Graph.

VNF-PP Virtual Network Function Placement Problem.

VNF-PRP Virtual Network Function Placement and Routing Problem.

xxi

Preface/Acknowledgements

Most importantly, I would like to thank my academic supervisors for all of their

guidance and encouragement throughout the course of my PhD. I was fortunate

enough to have three excellent supervisors whose expertise was invaluable. I’d

like to thank Michael Cashmore for all the assistance with planning, scheduling

and more generally programming; as well as for providing excellent developmental

support in my initial few years of study. I’d also like to thank Ashwin Arulselvan

for his mathematical expertise and for taking the time to explain technical ideas

in an intuitive way. Finally, I’d like to thank Marc Roper for taking up the reins

in my final year. Regardless of the time or day, he was available to answer my

questions and provide crucial guidance on the development of this thesis.

I was also very fortunate to collaborate with a number of external partners

whose guidance made this thesis possible. I’d like to thank the AI research

team at Ericsson for introducing me to many interesting problems in 5G, as

well as for welcoming me so kindly to their office during my research visit to

Stockholm. In particular, I would like to thank Swarup Mohalik whose knowledge

of telecommunications and innovative ideas helped make Chapter 4 possible. In

addition, I would like to thank Jeremy Frank for his guidance and insights into

controllability which helped sculpt Chapter 5 of this thesis. This work would

also not have been possible without all the constructive feedback provided by

anonymous reviewers for publications related to this thesis.

Outside of the work presented in this thesis, a number of people were funda-

xxiii

Chapter 0. Preface/Acknowledgements

mental in my professional development as a researcher. The staff in CIS provided

me the opportunity to work as a lab demonstrator in their classes. Working as a

lab demonstrator gave me a welcome break from research and introduced me to

a host of new techniques and ideas. I’d also like to thank the staff at JP Morgan

AI research for their guidance during my 6 month internship and for highlighting

the applicability of all the skills and experiences gained throughout my PhD.

This work was supported by a number of grants. The Engineering and Physi-

cal Sciences Research Council studentship helped make this thesis financially pos-

sible. Similarly, the Scottish Informatics and Computer Science Alliance Saltire

emerging researcher grant helped fund my visit to Ericsson.

Finally, I would like to thank all of my family and friends for helping take

my mind off research. This thesis would have been significantly more challenging

if it weren’t for the many hiking and climbing trips that kept me entertained

throughout these past years. My girlfriend Ailsa, for all her love, support and the

countless morning coffees; and my parents, for supporting my decision to pursue

a PhD.

xxiv

Chapter 0. Preface/Acknowledgements

1

Chapter 1

Introduction

1.1 Background

Planning and scheduling are two interconnected problems which are at the root

of many decision processes. A planning problem involves selecting a sequence of

actions, and ordering them so as to achieve some goals. For example, assume that

I was at my house and was tasked with delivering some groceries to a friend. In

order to achieve this, I may have to walk to the supermarket, pick up the groceries,

walk to my friends house and finally, deliver the groceries. This sequence of

actions can be considered a plan which achieves the goal condition: my friend has

the groceries. On the other hand, scheduling assumes that the actions required

to achieve the goals are known in advance, and deals with the problem of finding

the best time to execute them. I may need to reason over possible travel times

to decide the best time to leave my house. The assignment of times to actions is

known as a schedule.

Because planning and scheduling problems are so prevalent, there has been a

targeted effort to develop autonomous systems capable of automatically solving

them. These autonomous systems are collectively known as automated planners

and schedulers, while the field associated with developing them is known as Au-

3

Chapter 1. Introduction

tomated Planning and Scheduling (APS) or alternatively Artificial Intelligence

(AI) Planning and Scheduling.

In many applications, planning and scheduling algorithms have matched or

even surpassed human capabilities. A Monte Carlo tree search (a type of planning

algorithm) based planning system was at the core of the AlphaGo algorithm, a

computer program which managed to beat the worlds best player at the game of

Go [3]. The game of Go features some 2 × 10170 possible states, far more than

any human brain can deliberate over [4]. Despite this, developing APS models to

work in real world applications, as opposed to games which often have well defined

rules and logic, poses some additional challenges. One of the key challenges is:

how to make the solution robust. This is becoming increasingly important as

new high risk applications of AI [5–7] have led to a growing call for governmental

regulation [8]. Recently, robustness has been identified by the European Union

high level expert group on AI as one of the key pillars that new AI systems should

be evaluated against in their “ethical guidelines for trustworthy AI” [9].

Robustness of a computer program refers to how well it can perform its func-

tionality in the presence of perturbations, invalid inputs and stressful environ-

mental conditions [10,11]. In planning, Fox et al. define robustness as a measure

of the likelihood that a plan will be executed successfully in the presence of uncer-

tainty in the execution environment [12]. A similar definition has been provided

in the context of scheduling by Fang et al. [13].

It’s worth mentioning that the term robustness is often used within Operations

Research (OR) in the context of robust optimization [14]. In robust optimization,

the goal is to find the optimal solution that satisfies all uncertain values in a pre-

defined uncertainty set. We stress here that, when we refer to robustness in this

thesis we are referring to the definition implied in the APS literature, as opposed

to robust optimization which is not covered. In this thesis, we address robust APS

from a stochastic optimization perspective. Explicitly modelling the uncertainty

4

Chapter 1. Introduction

via probabilities allows us to reason over the likelihood of the uncertainty sources,

as well as providing quantifiable guarantees on robustness. However, doing so re-

quires solving complicated optimization problems with a number of challenging

characteristics. Dealing with probability distributions directly in the optimiza-

tion can result in non-linear functions which render the optimization particularly

difficult to solve.

Decomposition methods are a suite of techniques from OR which decompose

difficult optimization problems into a number of smaller, more manageable sub

problems. The column generation method, is one such technique which decom-

poses the problem into two problems which are then solved iteratively: a Re-

stricted Master Problem (RMP) and a Column Generation Problem (CGP). The

RMP solves a smaller optimization problem using a subset of the decision vari-

ables, while the CGP finds the best new variables (with an associated column of

coefficients) to include in the next iteration of the RMP. The method terminates

when no improving columns can be found: i.e. there are no new variables which,

when included in the RMP, will improve the objective function value.

The column generation method was first introduced by Dantzig and Wolfe

in their seminal paper, where they suggested iteratively adding columns to a

Linear Program (LP) as required [15]. Since its conception, the column genera-

tion method has made it possible to solve efficiently many interesting classes of

optimization problems which were previously intractable. Gilmore and Gomory

were the first to apply the technique to a practical problem, by using it as a

heuristic to solve the cutting stock problem [16, 17]. Desrosiers et al. embedded

it within a branch and bound framework and used it to find solutions to vehicle

routing problems with time windows, thus pioneering its use for large integer

programs [18].

In this thesis we apply the column generation method in two new ways, to

develop robust solutions to APS problems. In Chapter 4, we look at robustness

5

Chapter 1. Introduction

in planning, in particular we study an application of combined task and path

planning with robustness constraints known as the Virtual Network Function

Placement and Routing Problem (VNF-PRP). To make the solution robust to

failures, we introduce redundancies in the routing solution. In this problem, we

use column generation to generate a set of feasible paths, thus decomposing the

path planning from the robustness constraints. In Chapter 5, we look at robust-

ness in scheduling, in particular we aim to develop schedules which are robust to

correlated uncertainty. By encoding the problem using stochastic optimization

we are able to explicitly optimize the robustness. Here, we use the column gen-

eration method to generate an approximation of the multi-variate distribution,

which is then refined in the CGP.

1.2 Outline

We begin in Chapter 2 with a survey on robustness in APS. We introduce basic

definitions of planning, scheduling and optimization and review literature related

to achieving robustness in planning and scheduling, as well as techniques for

optimization under uncertainty.

Since this thesis is intended as an application of the column generation method

to new problems, we assume no prior knowledge of the underlying theory behind

how it works. As a result, in Chapter 3 we provide an intuitive summary of the

underlying principles and theory of the technique. We then demonstrate how

this theory can be applied with reference to a classical application of the column

generation method: the cutting stock problem.

In Chapter 4, we address a well known telecommunications planning problem,

the Virtual Network Function Placement and Routing Problem (VNF-PRP). In

the Network Function Virtualization (NFV) paradigm, Internet Service Providers

(ISP) provide network services to customers by routing and processing traffic

6

Chapter 1. Introduction

through an ordered sequence of Virtual Network Functions (VNF), for exam-

ple a load balancer or firewall. In the 5th generation (5G) of mobile networks,

multiple service use cases are hosted on a shared physical infrastructure in a

process known as network slicing. The Quality of the Service (QoS) depends on

the quantity and relative placement of the VNFs, and is quantified by a set of

Key Performance Indicators (KPI) in a Service Level Agreement (SLA): a con-

tract reached between the ISP and customer. This can be considered a planning

problem since we are required to compute a sequence of actions (which VNFs to

place on which nodes and which paths to configure for each service request) such

that we achieve the goal of providing the service in line with the requirements

outlined in the SLA. Because we do not know the routing paths in advance, the

problem requires planning paths as well as tasks which renders classical planning

techniques impractical. As a result, the problem is better modelled as a com-

binatorial optimization problem, which are typically solved in OR using branch

and bound [19]. However, since there can be exponentially many paths on the

network, and consequently exponentially many variables, branch and bound fails

to find solutions except for the smallest instances. Instead, we use column gener-

ation as a heuristic and consider the valid routing paths as columns, such that we

consider only the paths which are necessary. The column generation decomposi-

tion involves solving: the RMP which finds the placement and routing solution

of the VNFs maximizing QoS (in terms of latency, throughput and availability),

given the paths generated so far; and the CGP which generates new, improving

paths.

In Chapter 5, we introduce and solve for the first time a scheduling prob-

lem known as Correlated Simple Temporal Network (Corr-STN) Strong Con-

trollability (SC). This is an extension to the existing problem of Probabilistic

Simple Temporal Network (PSTN) SC. PSTNs represent scheduling problems

under temporal uncertainty. SC of PSTNs involves finding a schedule to a PSTN

7

Chapter 1. Introduction

that maximises the probability that all constraints are satisfied (robustness). In

Corr-STN SC, action durations are subject to correlated temporal uncertainty.

We show that this is a convex optimization problem for multivariate Gaussian

distributions meaning that the feasible region is convex. By taking a convex com-

bination of approximation points denoted an inner-approximation, on the surface

of the convex set, we can find the optimal solution. However, this can require

exponentially many approximation points and therefore finding a solution means

enumerating the non-linear function exponentially many times. Instead, we use

column generation and consider approximation points as columns, such that we

can consider only the approximation points required. The column generation

procedure involves solving: the RMP which finds the most robust schedule using

the approximation generated so far; and the CGP which computes the best new

approximation point to include.

1.3 Motivation

Despite having its origins in the 1960s, the column generation method is typi-

cally not well understood or acknowledged outwith the realm of OR. This could

be attributed to the fact that the majority of column generation literature ap-

proaches the subject from a highly theoretical perspective which is not so easily

interpreted by researchers in other disciplines. Likewise, most applications and

experimental studies focus on well defined OR problems containing very specific

structures and characteristics. At the time of writing, a survey of the top 100

papers from a scholar search using the criteria “column generation” resulted in 84

papers published in OR specific conferences and journals and only 14 published in

other fields. Likewise, of the 92 papers which contained some form of numerical

study, 35 included vehicle routing problems, 18 included crew scheduling and 12

focused on the cutting stock problem. Applying column generation to new prob-

8

Chapter 1. Introduction

lems is not especially trivial; it requires technical expertise and knowledge about

problem structure so that it can be exploited effectively. In a contrast to the

norm, this thesis applies column generation to new types of problems. Through

use of numerous practical examples, it is hoped that we can encourage further

application of the technique to other problems.

In both planning and scheduling problems, there are often many potentially

viable solutions. Selecting the best solution amongst a suite of viable solutions,

falls within the domain of optimization and therefore both problems can be seen

more generally as optimization problems. Despite this, the field of APS and OR

have developed somewhat independently, with little dialogue between the two.

This is primarily driven by a divergence in research focus: APS researchers tend

to focus on the development of methods which are domain independent; that is

they are applicable regardless of the problem they are applied to. In contrast,

OR researchers tend to focus on developing techniques which excel at solving

particular problems very well, but may not be applicable to other use cases. As

a result, many techniques which have been developed for optimization problems

in OR, are not utilised to their full extent by APS researchers and vice versa.

Encouraging dialogue between these two fields was a further motivator for this

thesis.

In Chapter 4, the problem we tackle can be considered a combined task and

path planning problem, a particularly challenging class of planning problems.

These types of problems are challenging in that we must reason over both the

actions: where to assign the VNFs; and the paths: how do we route the service

requests. The motivation for selecting this problem, is that the solution must

be exceptionally robust to failures. The scope of services provided in 5G and

beyond networks is vast, but expected use cases include remote surgery [20], au-

tomation of industrial machinery [21] and control of self driving cars [22]. The

term availability refers to the proportion of time that a service is available: up-

9

Chapter 1. Introduction

time versus the total time including downtime. The 3rd Generation Partnership

Project (3GPP), the governing body in charge of maintaining industrial stan-

dards in mobile telecommunications networks, refers to high availability services

as being available 99.999% of the time [23]. While this problem has been tackled

in the past, prior approaches typically solve an exact Mixed Integer Program

(MIP) which is not scalable, or use meta-heuristics which give no guarantee of

solution quality. By drawing analogies to well-known OR problems, in particu-

lar vehicle routing problems, it became apparent that column generation was a

good fit [24]. Using column generation allows us to solve the routing problem for

each service independently as a shortest path problem which is computationally

tractable. While column generation has been applied to this problem in the past,

prior column generation based approaches do not consider the availability, con-

tain numerous modelling issues and are incapable of satisfying the diverse SLA

constraints expected in 5G use cases.

The decision for solving the problem of Corr-STN SC, was motivated by the

lack of any literature within APS containing solutions that are robust to correla-

tions in the uncertain parameters. The problem of PSTN SC has been tackled in

the past by a variety of different authors. However all prior solutions assume that

the uncertain durations are stochastically independent. Many sensitive applica-

tions contain durations which are correlated, for example industrial production

scheduling [25] and scheduling of wind turbines in energy networks [26]. As-

suming independence offers no guarantee of finding the most robust schedule if

correlations are encountered when the schedule is executed in the real world.

However, considering correlations across action durations results in a formulation

containing multivariate distributions which are non-linear. Non-linear functions

pose additional challenges which can not be handled by conventional LP tech-

niques. By drawing analogies to the probabilistic programming problems studied

by Prèkopa and colleagues [27], it was found that the problem was convex, en-

10

Chapter 1. Introduction

abling application of convex optimization techniques. Column generation has

been applied to such problems in the past [28, 29] and has been shown to work

well. One of the key motivators for the use of the column generation method, as

opposed to other probabilistic programming techniques is that the constraining

factor in terms of efficiency is the dimensionality of the multi-variate distributions

considered. Often correlations only exist across subsets of actions. By using col-

umn generation we are able to solve a number of much smaller sub problems (one

for each set of actions containing a correlation) as opposed to one much larger sub

problem. For a more in depth review of techniques for probabilistic programming

we refer the reader to Section 2.4.2.

We would like to point out that the two problems tackled in this thesis are

very different: both in class (one is convex while the other is combinatorial) and

application (one is a stochastic scheduling problem while the other is a telecom-

munications planning problem). We hope that this highlights the versatility of

the technique. Initially it was envisioned that the VNF-PRP would be a prac-

tical use case for the Corr-STN work. An intelligent network slice management

function requires both planning (as per Chapter 4), and scheduling of actions to

adjust the VNF placement and routing in response to predicted SLA violations.

These SLA violation events are temporally uncertain and correlated due to fac-

tors such as traffic density. The scheduling problem could be solved by using a

Corr-STN (as per Chapter 5). This problem is not addressed in this thesis but is

outlined in the future work, Section 6.2 of the conclusion.

1.4 Contribution

In Chapter 4, we introduce the first VNF placement model capable of computing

a bounded optimal solution containing all of the following features: 1) a valid

placement of VNFs to compute nodes, 2) a full routing solution containing a

11

Chapter 1. Introduction

set of valid routing paths and the fraction of traffic to route down each path

and 3) the number of VNF replicas required. Similarly, our model is the first

that we are aware of, that is capable of satisfying the throughput, latency and

availability constraints required of 5G network slices. We show that all of these

features can be modelled via a column generation procedure, in which the CGP

is a constrained shortest path problem on an augmented network. This allows

efficient solutions to be computed to practical sized problems. We experimentally

validate this claim on a realistic Mobile Edge Cloud (MEC) test case and show

that our model can typically find near optimal solutions within a reasonable time.

In Chapter 5, we introduce and formally define for the first time the Corr-

STN, which expands the state of the art on PSTNs by permitting modelling of

correlations involving multiple uncertain action durations. We show that the

problem of Corr-STN SC can be expressed as a convex one. This enables the

application of efficient, optimal solution techniques. We describe the first algo-

rithm in the literature for solving the problem of Corr-STN SC based on column

generation. This approach is capable of finding the optimal schedule, in addition

column generation is an any-time algorithm allowing us to trade-off numerical

time spent with an acceptable optimality guarantee. We present an experimental

validation using a drone scheduling test domain with the following findings: 1)

prior PSTN SC algorithms assuming independence are not guaranteed to give a

conservative estimate of robustness if correlations are encountered, 2) prior PSTN

SC algorithms using Boole’s inequality are conservative but can be grossly inac-

curate and 3) by considering correlations our model is capable of computing more

robust schedules versus prior PSTN SC approaches.

12

Chapter 2

A Survey of Robust Planning

and Scheduling

“Uncertainty is the only certainty there is, and knowing how to live with

insecurity is the only security.”

– John Allen Paulos

2.1 Introduction

In this chapter, we review literature related to robustness in planning, scheduling

and optimization. We start by introducing the basic problem definitions. We

then look at robustness in APS and present a survey and classification of past

approaches. Following this, we review stochastic optimization and discuss some

techniques for solving stochastic optimization problems.

Throughout this chapter, we discuss our perspective on these approaches,

in particular we motivate the need for APS models with robustness guarantees:

some quantifiable measure of the probability that the solution will function as

expected. This leads us towards stochastic optimization based approaches and

subsequently motivates the application of the column generation method.

13

Chapter 2. A Survey of Robust Planning and Scheduling

We note that the literature in this section is intended to provide a broad

perspective on a number of related fields. As a result, we have included a variety of

references which allow the reader to gain a more detailed understanding of specific

areas. For planning, we refer the reader to the text book by Ghallab et al. [30] and

for scheduling, the textbook by Pinedo is an excellent resource [31]. For a general

overview of different optimization problems and techniques for solving them we

refer the reader to the book by Sinha [32]. Finally, for a more comprehensive

review specific to stochastic optimization we refer the reader to Prèkopa [33].

It’s also worth pointing out that past surveys of robustness in planning and

scheduling are available but they tend to focus on a narrower scope. Vermaelen et

al. [34] focus on probabilistic planning and scheduling, Bensalem et al. [35] survey

verification and validation techniques, Verderame et al. [36] look at planning and

scheduling under uncertainty from an industrial engineering perspective and a

number of authors survey scheduling under uncertainty [37, 38]. We would like

to stress, that in our survey of robustness, we are referring to robustness as a

design requirement (maintaining functionality in the presence of uncertainty), as

opposed to a purely probabilistic setting where uncertainty is modelled as an

input. Hence, our review covers both deterministic and probabilistic approaches.

As far as we are aware, we are the first to present a survey and classification

related to robustness in planning, scheduling and optimization, considering both

deterministic and probabilistic approaches.

An in depth review of the literature related to the specific problems tackled

in this thesis are provided in the relevant chapters. For the VNF-PRP we refer

to Section 4.3 and for Corr-STN SC we refer to Section 5.3.

14

Chapter 2. A Survey of Robust Planning and Scheduling

2.2 Background

2.2.1 Mathematical Optimization

Optimization problems involve selecting the best set of resources in order to

maximize reward, sometimes subject to constraints. Mathematical optimization

is the scientific field that studies the mathematical formulation of optimization

problems, whereas mathematical programming refers to the set of techniques used

to solve them.

From a mathematical perspective, the set of resources we wish to select when

solving an optimization problem are the decision variables, which can be assigned

a particular value. The allowable values of the decision variables are constrained

by a set of equality or inequality constraints which define the feasible solution

space; while the level of reward obtained by selecting a particular set of decision

variables is modelled via a mathematical function known as the objective function.

By solving a mathematical optimization problem, we seek to find an assignment

of a feasible value to each of the decision variables, that maximizes or minimizes

the objective function. More formally, a mathematical optimization problem is

defined as per (2.1):

min
x

f(x)

subject to gi(x)≤ 0, i = 1, 2, . . . ,m

xi ≥ 0, i = 1, 2, . . . , n

(2.1)

Where x ∈ Rn is a vector of decision variables, f : Rn → R is the objective

function and gi(x) ≤ 0 are the constraints that define the set of feasible values

for x. A solution to a mathematical optimization problem is an assignment of a

feasible value to x which minimizes (or maximizes) f .

Mathematical optimization problems are typically classified according to the

type of decision variables and class of mathematical functions present. Each class

15

Chapter 2. A Survey of Robust Planning and Scheduling

has its own particular suite of solution methods, some classes being more challeng-

ing to solve than others. The most basic class occurs when the decision variables

are continuous and the constraints and objective function are linear. Such prob-

lems are denoted Linear Programs (LP). When the variables are continuous, but

the constraints and/or the objective function is non-linear the problem is classed

as a Nonlinear Program (NLP). NLPs are significantly more challenging as there

is no guarantee that the solution will be optimal. The exception to this is when

the functions are nonlinear but convex, in which case efficient algorithms exist ca-

pable of computing the optimal solution. Many practical optimization problems

feature variables whose values are discrete. These types of problems are preva-

lent in planning and scheduling applications, for example when finding a plan we

cannot take parts of each action, we must select either the whole action or not

take it at all. Such a variable is discrete and optimization problems containing

discrete variables are known as Mixed Integer Programs (MIP).

Techniques for solving mathematical optimization problems vary drastically

depending on the application. We only discuss in detail techniques for certain

classes of problems, for a more detailed survey we refer the reader to a relevant

textbook [32]. We do mention however, that optimization problems are typi-

cally solved using either exact, heuristic or approximation methods. Exact meth-

ods can compute the optimal solution but tend to suffer issues with scalability:

whereas heuristic methods can often find high quality solutions within a reason-

able time but offer no guarantee of solution quality. Approximation methods

strike a balance between the two and are often capable of finding a high quality

solution in an efficient manner, while providing numerical guarantees on solution

quality. Approximation algorithms provide an improved understanding of the

problems and underlying structures and can possibly be incorporated within a

larger framework. However, they may not be suitable for a direct implementation

for practical problems. The guarantees may not hold for the application at hand

16

Chapter 2. A Survey of Robust Planning and Scheduling

or the algorithms themselves may not be scalable. If the problem structure is

of a particular form, decomposition methods allow one to exploit it and break

large scale problems into more manageable problems which can be solved more

efficiently.

2.2.2 Planning

Since the conception of AI, planning has been seen as an essential function of

intelligence and a key component necessary to develop intelligent agents which

can act rationally [39]. Generally speaking, planning can be thought of as the

process of deliberating before acting.

A deterministic task planning domain contains a set of actions which can be

performed in the environment. Actions can only be performed within a state

if a number of preconditions hold. After an action is performed, a number of

conditions change, these are referred to as the effects of the action. More formally,

a planning domain can be defined as a state transition system:

Definition 1 (State Transition System). A state transition system is a tuple,

Σ = (S,A, γ), such that S is the set of states, A is the set of actions that can be

performed and γ is the state transition function γ : S × A → S, which defines

which actions can be legally applied in which states. If γ(s, a) ̸= ∅, then a ∈ A

is applicable in s ∈ S, and will transition the state from s, to some other state

s′ ∈ γ(s, a).

In a planning problem, we start with an initial state s0, and want to find a

plan: π = ⟨a1, a2, . . . an⟩, a sequence of actions which, when applied to our initial

state, satisfies a number of goal conditions g. If we denote Sg ⊆ S as the set of

goal states that satisfy g, we can formally define a planning problem:

Definition 2 (Planning Problem). A planning problem is a tuple, P = ⟨Σ, s0, Sg⟩,

such that Σ is the state transition system, s0 is the initial state and Sg is the set

17

Chapter 2. A Survey of Robust Planning and Scheduling

of goal states. The solution to P is any plan π, such that γ(s0, π) ∈ Sg.

Planning problems are typically modelled using the Planning Domain Defini-

tion Language (PDDL). PDDL was first introduced by Aeronautiques et al. [40]

and was extended in version 2.1 by Fox and Long to include temporal planning

containing numerous additional features such as durative actions (actions which

have durations) and metrics [41]. We formally define a PDDL temporal planning

instance as per Fox and Long:

Definition 3 (PDDL Temporal Planning Instance). A PDDL temporal planning

instance is a tuple, P = ⟨Dom,Prob⟩. The domain Dom = ⟨Ps, Fs,A, arity⟩,

consists of a set of predicate symbols Ps, function symbols Fs, actions (durative

or non-durative) A and arity, a function mapping each symbol to their respective

arities. In temporal planning, durative actions contain a duration and the condi-

tions and effects can occur at either: the start of the action, the end of the action

or for the overall action duration. The problem Prob = ⟨O, s0, Sg⟩, is composed

of a set of objects O, initial and goal states s0 and Sg as per Definition 2.

Each state in a PDDL temporal planning instance is comprised of three parts:

the time of the state st, the logical part sl, containing the set of facts that hold

True in the state, and the numeric part sn, defining the function values in the

state at the given time.

Definition 4 (Plan State). The set of propositions PROP , is the set composed

of applying the predicate symbols from Ps, to an ordered set of objects o ⊆ O,

while respecting arities. Likewise, the set of primitive numeric expressions PNE,

is composed by applying the function symbols from Fs, to the objects O. The state

s = ⟨st, sl, sn⟩ is a tuple, such that st ∈ R is the time of the state, sl ⊆ PROP is

the set of propositions in the state and sn ∈ R|PNE| is a vector defining the values

of the PNEs in the state.

18

Chapter 2. A Survey of Robust Planning and Scheduling

We will illustrate these concepts with reference to a toy domain: the vehicle

delivery domain. In this example, the set of objects O is composed of a vehicle

v, a package p and two locations l1 and l2. We refer to the package and vehicle

as locatables since they can be at a given location. The set of predicates are that

the locatables can be at a given location: (at ?loc - locatable ?l - location), two

locations can be connected by a road : (road ?l1 - location ?l2 - location) and the

package can be in a vehicle: (in ?p - package ?v - vehicle). For simplicity, we

do not include function symbols. Finally, in the domain we have three durative

actions: the vehicle can drive between two locations, it can pick-up the package

from a location and it can drop-off the package at a location.

For the pick-up action to be performed, the vehicle must be at the location

for the overall action duration, while the package should be at the same location

at the start of the action. Once the action has been performed, the effect is that

the package is no longer at the location at the start of the action and the package

is in the vehicle at the end of the action. It is assumed that it takes a constant

duration of 1 for the vehicle to pick up the package. This action is described

using PDDL in Listing 2.1.

For the vehicle to be able to drive between two locations l1 and l2, the vehicle

must be located at the first location l1 at the start of the action and there must

be a road connecting the two locations for the overall action duration. Once the

action has been performed, the effect is that the vehicle is no longer at location

l1 at the start of the action, and it is at location l2 at the end of the action. We

assume that the action of driving between two locations takes a constant duration

of 5. This action is described using PDDL in Listing 2.2.

For the vehicle to be be able to drop off the package at a location, the vehicle

must be at the location for the overall action duration and the package must be

in the vehicle at the start of the action. Once the action has been performed,

the effect is that the package is no longer in the vehicle at the start of the action

19

Chapter 2. A Survey of Robust Planning and Scheduling

and the package is at the location at the end of the action. We assume that this

action also takes a constant duration of 1. This action is described using PDDL

in Listing 2.3.

Listing 2.1: PDDL pick-up action.

(:durative−action pick−up

:parameters (? v − v eh i c l e ? l − l o c a t i o n ?p − package)

:duration (= ? durat ion 1)

:condition (and (over a l l (at ?v ? l)) (at s t a r t (at ?p ? l)))

: e f f e c t (and (at s t a r t (not (at ?p ? l))) (at end (in ?p ?v)))

)

Listing 2.2: PDDL drive action.

(:durative−action dr iv e

:parameters (? v − v eh i c l e ? l 1 ? l 2 − l o c a t i o n)

:duration (= ? durat ion 5)

:condition (and (at s t a r t (at ?v ? l 1)) (over a l l (road (? l 1 ? l 2))))

: e f f e c t (and (at s t a r t (not (at ?v ? l 1))) (at end (at ?v ? l 2)))

)

Listing 2.3: PDDL drop-off action.

(:action drop−off

:parameters (? v − v eh i c l e ? l − l o c a t i o n ?p − package)

:duration (= ? durat ion 1)

:condition (and (over a l l (at ?v ? l)) (at s t a r t (in ?p ?v)))

: e f f e c t (and (at s t a r t (not (in ?p ?v))) (at end (at ?p ? l)))

)

An example proposition is formed by applying the at predicate to the vehicle

v and location l1 with arity 2: (at v l1). Thus we can define the logical part of

the initial state as the set of propositions: sl0 = {(at v l1), (at p l1), (road l1

l2)}. The initial state begins at time 0, since there are no function symbols, the

initial state is defined as s0 = ⟨0, sl0, ∅⟩. The goal is that the package p should be

located at location l2. This can be defined as the single proposition (at p l2).

20

Chapter 2. A Survey of Robust Planning and Scheduling

Figure 2.1: Example plan for vehicle delivery problem.

An example plan consists of applying three actions sequentially:

π = ⟨pick-up(v, l1, p), drive(v, l1, l2), drop-off(v, l2, p)⟩

The resulting state transition is explained visually in Figure 2.1. We show the

conditions at the start of each action. The start and end times of the action are

described as ts and te respectively. Note that to distinguish between the state

at the start and end of the action, we add a small separation of 0.001 seconds,

hence a1 finishes at te = 1, whereas a2 begins at ts = 1.001. Here, applying the

plan transitions the state from the initial state s0, to a goal state s3.

21

Chapter 2. A Survey of Robust Planning and Scheduling

2.2.3 Scheduling

Pinedo [31] defines scheduling as the problem of assigning resources (for example

time, computer processors or industrial machinery) in order to complete tasks over

a period of time. In this thesis, we look at one particular application of scheduling

which involves assigning times to actions from a plan. Simple Temporal Networks

(STN), first introduced by Dechter et al. [42], are graphs used to model such

problems. An STN is a graph in which the nodes correspond to time-points and

the edges (links) correspond to durations between the time-points.

Definition 5 (STN). An STN is a tuple, S = ⟨T,C⟩ where t ∈ T is the set

of time-point vertices and C is the set of temporal requirement constraints or

edges between two time-points; normally written in the form c(tj, ti) = tj − ti ∈

[lc,ij, uc,ij], where lc,ij and uc,ij are the lower and upper bound on the allowable

duration between the time-points ti and tj. Let s(t) ∈ R+ be the assignment of a

real value to the time point. A schedule s is the assignment s(t) for all t ∈ T ,

while a valid schedule, is one in which c(tj, ti) ∈ [lc,ij, uc,ij] for all c ∈ C. An STN

with at least one valid schedule is a consistent STN.

As an example, imagine a student tasked with completing a project by a

professor. The student has been given a deadline of 10 days from the current

date to submit their project. They know that the project will take 6 days to

complete and they must decide when to work on the project such that they meet

the deadline. Such a problem can be modelled by the STN provided in Figure

2.2. The time-points represent the following events:

t1 : Time at which the professor gives the project to the student.

t2 : Time at which the student begins work on the project.

t3 : Time at which the student finishes work on the project.

t4 : Time of the deadline (when the student must finish the work by).

22

Chapter 2. A Survey of Robust Planning and Scheduling

t1 t2 t3 t4
Wait

[0,∞]
Work

[6, 6]
Wait

[0,∞]

Deadline

[10, 10]

Figure 2.2: Example Simple Temporal Network.

t1 t2 t3 t4

∞

0

6

−6

∞

0

10

−10

Figure 2.3: Digraph representation of STN from Figure 2.2

While the constraints c(t3, t2) = t3−t2 ∈ [6, 6], represents the action of the student

working on the project; c(t4, t1) = t4 − t1 ∈ [10, 10] represents the deadline; and

the two other edges: c(t2, t1) = t2 − t1 ∈ [0,∞] and c(t4, t3) = t4 − t3 ∈ [0,∞]

represent times at which the student is idle. Such is typically the case, the student

may choose to wait as long as possible before beginning work on the project. In

which case s = {t1 := 0, t2 := 4, t3 := 10, t4 := 10}, represents a valid schedule.

It should be noted that we can represent the constraints tj − ti ∈ [lc,ij, uc,ij]

in the form of two less than inequalities: tj − ti ≤ uc,ij and ti − tj ≤ −lc,ij. If

we represent each of these constraints as an edge in a graph, we can present the

STN as a directed graph with edge weights as shown in Figure 2.3.

Dechter et al. [42] show that checking for negative cycles in the digraph is

23

Chapter 2. A Survey of Robust Planning and Scheduling

equivalent to checking consistency: if there are no negative cycles, then there is

at least one valid schedule. This enabled the application of efficient shortest path

algorithms such as Floyd-Warshall to check consistency and find a schedule to

the STN [43].

2.3 Robust Planning and Scheduling

In this section we review literature related to how to achieve robustness in APS.

We have identified three key groups of approaches: proactive, reactive or proba-

bilistic. Proactive measures attempt to consider in advance the possible failure

sources and develop the solution accordingly, whereas reactive measures react to

the failures as they arise. On the other hand, probabilistic approaches explicitly

reason over the probability of potential failures.

We further group proactive measures according to verification and validation,

contingency based and redundancy based. Vieira et al. present a comprehensive

survey on reactive strategies for scheduling and classify approaches as either:

dynamic or predictive/reactive [44]. We use the same classification in this survey.

Finally, we separate probabilistic approaches into static and dynamic, whereas

static approaches find a single solution, dynamic approaches compute a policy.

2.3.1 Proactive Approaches

Verification and Validation Verification and validation are two techniques

which can be used to check that the model behaves as expected.

In planning, verification and validation has been applied to verify domain

models [35] as well as plans [45] and planners [46, 47]. Verification can be com-

pleted by either model checking [48] or model testing [49, 50]. The prior aims

to ensure that the model works for all possible states, while the latter generates

a set of test cases to ensure that no errors are present. Raimondi et al. note

24

Chapter 2. A Survey of Robust Planning and Scheduling

that model testing is often preferable to model checking, since the size of the

state space may be prohibitive (it is not possible to test exhaustively all states

for failure) and the domain model may contain features which are not possible

to encode in the language of the model checker [49]. On the other hand, model

testing is reliant on the test cases covering a sufficient portion of the state space;

model checking can prove the absence of faults, whereas model testing can only

show whether faults are present in the test cases [35].

Contingency Based Approaches As opposed to a single plan or schedule,

contingency based techniques produce a solution with multiple branches, usually

in the form of decision tree, where each branch is a valid solution for one possible

uncertain outcome.

Contingency based planning was introduced by Goldman et al. [51] and ex-

tended to include sensing actions which could be used to gather information about

the state that the agent is in [52,53]. Even with information from sensors, contin-

gent planners need to deal with incomplete information and partial observability:

the state that the agent thinks it is in, may not be the state that the agent is

actually in. Bonet and Geffner modelled contingent planning as a search in the

space of belief states [54]. In this approach, the belief space is the space of all

possible states, which is exponential in the number of states in the domain [55].

A number of planners have been proposed which pose the problem of contingent

planning as a search on a binary decision diagram in the belief space [55–58].

More recent advancements involve compiling the contingent problem into a non-

deterministic search in the state space as opposed to the belief space [59,60], thus

enabling the application of classical planning techniques. This result has been

used to compute offline solutions to contingent planning problems [61, 62] and

extended to include temporal planning problems [63]. The problem of contingent

planning is similar in a sense to the problem of just in case scheduling [64], in

25

Chapter 2. A Survey of Robust Planning and Scheduling

which contingent schedules are computed to cover the failures most likely to be

encountered.

Redundancy based Approaches Rather than explicitly modelling all possi-

ble contingencies, redundancy based techniques aim to absorb some of the uncer-

tainty by introducing conservatism in the form of redundancies, thus mitigating

against potential failures. As such these approaches could also be referred to as

mitigation based approaches.

In a scheduling context, redundancy has been incoporated by adding time to

operations, or inserting dummy operations to cover delays in the event of faults.

Mehta [65] and O’Donovan et al. [66] add idle time to account for failures in the

problem of single machine scheduling. Davenport et al. [67] add two new measures

of temporal slack: the first ensures that each activity will have a set amount of

slack, while the latter varies the amount of slack provided to the activity depend-

ing of the whereabouts of the activity in the schedule. Intuitively, later activities

require more slack since there are more opportunities for a failure upstream of

the activity. By introducing the slack in the scheduling problem definition, as

opposed to simply extending the activity durations, their approach allowed rea-

soning over where to put the slack. Scheduling with redundancy can be compared

to the problem of Strong Controllability (SC) in Simple Temporal Networks with

Uncertainty (STNU), whereby a schedule is found for all possible outcomes of

the uncertain action durations. This problem is covered in Section 5.2. Cimatti

et al. [68] extend SC to strong temporal plans as opposed to schedules. Strong

temporal planning seeks to find a plan that will succeed regardless of the outcome

of uncertain action durations.

26

Chapter 2. A Survey of Robust Planning and Scheduling

2.3.2 Reactive Approaches

Predictive/Reactive Approaches In predictive/reactive approaches, a proac-

tive plan or schedule is computed in advance which is then adjusted in the event

of a failure.

In scheduling, reactive approaches typically involve rescheduling in the event

of disruption. This disruption can be caused by a number of factors, for example,

machine failure, job cancellation, new jobs or lack of resources [69, 70]. In order

to repair the schedule, a number of techniques have been proposed: shifting the

start time of all tasks in the schedule by some fixed value (right shift reschedul-

ing) [71], repairing only the tasks which are affected by the disruption (partial

rescheduling) [72] and complete regeneration of the schedule for all tasks not yet

completed (schedule regeneration) [73].

A similar line of reasoning has been undertaken within the planning commu-

nity. Reactive measures for dealing with plan failure were discussed by Fox et

al. [74]. In particular, they identify two different approaches: replanning and plan

repair. The two are contrasted through the notion of plan stability : a measure

of how different a new plan is from the existing one. In replanning, a completely

new plan is generated with no consideration paid to how different it is from the

existing one; whereas in plan repair the aim is to modify the existing plan to

work in the new situation, while minimizing the changes. Many techniques have

been proposed in literature for replanning and plan repair [75,76].

Dynamic Approaches In dynamic approaches, the solution is not a schedule

or plan, but a strategy, which is used to select resources or actions online.

In dynamic scheduling, jobs are assigned as the resources become available

according to some preference criteria called a priority rule or dispatch rule (e.g.

shortest processing time), a survey of which is provided by Panwalkar and Iskan-

der [77]. This shares similarities with the problem of dynamic controllability of

27

Chapter 2. A Survey of Robust Planning and Scheduling

STNUs. An STNU is dynamically controllable if it is possible to compute a dis-

patch strategy which can be adapted in real time based on the the observation

of past events. A number of algorithms have been proposed for proving dynamic

controllability of STNUs and generating dispatch strategies [78–80].

Rather than committing to a plan that is then adjusted upon failure, Do et al.

produce a flexible, partially ordered plan enabling actions to be reordered during

execution [81]. Lima et al. relax the causal structure in temporal plans, also

resulting in a partially ordered plan [82]. This partially ordered plan is then used

to enumerate a set of complete plans, where each such plan has an associated

probability of success. The probabity of success of each plan is reasoned over

to select the best action at execution time. Orlandini et al. present a similar

approach which automatically synthesizes a plan execution controller based on

the generation of a winning strategy in timed game automata [83]. Fox et al. [84]

learn a policy through solving deterministic plan instances, and then passing the

plans as input to a decision tree classifier.

2.3.3 Probabilistic Approaches

In the previous sections, most of the planning and scheduling models were deter-

ministic. Robustness in these approaches is achieved through either anticipating

uncertainty and taking proactive measures, or observing the uncertainty and

taking reactive measures. Uncertainty was not modelled quantitatively. Such

approaches are outlined in this section.

Probabilistic Dynamic In probabilistic planning, the probability of reaching

a state, given an action is explicitly encoded in the state transition system [85].

This is achieved through modelling the planning problem as a Markov Decision

Process (MDP) [86] which can be solved through policy or value iteration [87].

MDPs differ from traditional planning techniques in that their solution is not

28

Chapter 2. A Survey of Robust Planning and Scheduling

necessarily a plan but a policy defining which action to take in which situa-

tion. The goal of MDPs is typically to find a policy which maximizes the reward

function, where high rewards are generally applied to states that achieve some

goal conditions, thus mapping the goal conditions onto the MDP [88]. MDPs

have been extended to handle a variety of different features: for example partial

observability [89], uncertainty in transition probabilities [90], cost and resource

constraints [91], chance constraints [92] and path constraints [93]. A number

of extensions to PDDL have also been proposed to model planning problems as

MDPs [94,95] for which support is provided in a number of planners [96,97].

Probabilistic Static MDPs require discretization of time and resources to

model uncertainty which can result in a combinatorial explosion of the state

space. In contrast, Beaudry et al. [98] use random variables to model uncertainty.

Their approach employs forward chaining search, coupled with a Bayesian net-

work which maintains dependency relations between the random variables. The

Bayesian network is generated dynamically as the actions are applied in the search

and is used as input to a Bayesian network inference algorithm based on sam-

pling, which computes the probability of success of the returned plan. Since the

resulting plan is often conservative, Coles [99] extends the work of Beaudry et al.

to consider soft goals (goals which can be violated at the expense of a penalty

paid) and opportunistic branches (branches added to the plan which can be taken

advantage of if random variable values are better than expected).

Probabilistic planning deals with finding a policy, while considering the prob-

ability that a state will be reached after taking an action. However these tech-

niques do not reason over the uncertainty in action duration. This reasoning is

typically handled in a scheduling context. Probabilistic Simple Temporal Net-

works (PSTN) are an extension of STNs in which the duration of actions and

events are modelled using probability distributions [100]. A number of papers

29

Chapter 2. A Survey of Robust Planning and Scheduling

have been written on the topic of finding a schedule to a PSTN while maximiz-

ing the probability that the schedule will succeed [100–102] or minimizing cost,

subject to a tolerance on the probability of success [13, 103]. PSTNs form the

backbone of the work completed in Chapter 5 of this thesis and so a comprehen-

sive review of such approaches is provided in Section 5.3.

2.4 Optimization under Uncertainty

In this section, we discuss approaches to dealing with uncertainty from an opti-

mization perspective. We focus our attention on stochastic optimization, in which

the uncertainty is described with the use of random variables. We introduce the

problem definition and review and discuss some techniques used to solve these

problems.

2.4.1 Stochastic Optimization

Stochastic optimization covers any optimization problem in which random vari-

ables are present. In this thesis, we look at two particular cases. In the first

case, probability maximization, we want to maximize the probability that the

constraints are satisfied. Probability maximization problems can be written in

the general form:

max
x

P (f1(x, ξ) ≥ 0, . . . , fk(x, ξ) ≥ 0)

subject to gi(x) ≤ 0, i = 1, 2, . . . ,m

xi ≥ 0, i = 1, 2, . . . , n

(2.2)

In this case, the decision variables x and constraint functions g are as per Section

2.2.1. Here we want to maximize the probability that the constraints f1(x, ξ) ≥

0, . . . , fk(x, ξ) ≥ 0 are satisfied, where ξ is a multivariate random vector with

30

Chapter 2. A Survey of Robust Planning and Scheduling

some probability distribution.

In the second case, chance-constrained, we want to satisfy the constraints

with some tolerance on risk. A chance constrained optimization problem can be

written in the form:

min
x

f(x)

subject to P (g1(x, ξ) ≥ 0, . . . , gm(x, ξ) ≥ 0)≥ p

hi(x) ≥ 0, i = 1, 2, . . . o,

xi ≥ 0, i = 1, 2, . . . , n

(2.3)

where we want to minimize a cost function f subject to the fact that the con-

straints g1(x, ξ) ≥ 0, . . . , gm(x, ξ) ≥ 0 must be satisfied with some probability

p ∈ {0, 1}.

Charnes et al. [104] made one of the first attempts at formalising stochastic

optimization problems through addressing the problem of scheduling oil supplies

subject to uncertainty from weather and demand. Later work by Charnes and

Cooper formally defined the chance constrained optimization problem [105]. It

should be noted, that the work of Charnes and Cooper focused on the case that

the chance constraints were treated separately: P (gi(x, ξ) ≥ 0) ≥ pi, where pi is

defined for each constraint gi, as the required probability that it is satisfied.

Prèkopa made the generalization to the case of multi-variate distributions [106]

and joint chance constraints as per (2.3). The author extended this work [107–

109], where it was observed that chance constrained problems dealing with log-

concave probability measures are convex programs. Extensive theory and efficient

solution techniques were developed following this seminal work [110–113].

2.4.2 Solution Methods

Stochastic optimization problems of the form provided in (2.2) and (2.3) have

been solved using a variety of techniques. Prèkopa [106] provided convergence

31

Chapter 2. A Survey of Robust Planning and Scheduling

proofs for the method of feasible directions [114], and used it to solve the problem

of energy production planning under uncertainty [115]. In the method of feasible

directions, two sub problems are solved iteratively: the first finds a direction

which is feasible for a sufficiently small step size, while the second computes the

maximum step size reducing the objective, for which the direction remains within

the feasible region.

In the sample average approximation technique, the probabilistic constraint or

objective is replaced by a sample average approximation of the random variables.

The resulting deterministic optimization problem can then be solved. Luedtke

and Ahmed [116] solve a problem equivalent to (2.3) and derive sample size

conditions required to have high confidence that the solution to the approximation

will provide a valid lower bound and feasible solution.

Cutting plane methods [117] are techniques which can be used to form an outer

approximation of the convex set formed by the probabilistic constraints, using a

set of linear constraints called cutting planes. In this approach, the intersection

of the cutting planes forms a polytope approximating the feasible region, which

can be solved as an LP. However the solution to the LP is not guaranteed to be

feasible to the original problem. The outer approximation is refined iteratively by

adding new constraints to the LP until the optimal solution is feasible. Prèkopa et

al. [118] use the cutting plane method of Kelley [117], in which the generated cuts

are not guaranteed to support the feasible region [119]. In order to improve the

efficiency of the approach, Veinott [120] proposed using a line search between a

slater point (a known point within the feasible set) and the optimal solution to the

master problem to generate a tighter cut. The resulting supporting hyperplane-

method has been used by Arnold et al. [121] and Szántai [122] in the context of

stochastic optimization.

Prèkopa [123] showed that if the probabilistic constraint is separable, then the

random variable can can be replaced with a set of points satisfying the proba-

32

Chapter 2. A Survey of Robust Planning and Scheduling

bilistic constraint, referred to as p-efficient points. Prèkopa [118] later presented

a method for solving stochastic optimization problems with discrete random vari-

ables which relied on explicit enumeration of all such points. Rather than explic-

itly enumerating all p-efficient points, Dentcheva et al. [124] use column genera-

tion to generate the points iteratively in their so-called cone-generation method.

Fabian et al. [29] tackle a problem of the form present in (2.2). Their approach

forms an inner approximation of the convex set formed by the probabilistic con-

straint using a number of approximation points, and then uses column generation

to iteratively refine the inner approximation. Their approach is similar to the cone

generation method, however the probabilistic constraint is approximated in the

master problem via the inner approximation. The result is that each new column

is not required to satisfy the probabilistic constraint and so the sub problem is

much simpler. They show that the sub problem amounts to non-linear uncon-

strained minimization which can be solved via gradient descent.

2.5 Discussion and Conclusions

In reviewing techniques related to robust APS, a number of approaches were

identified.

Verification and validation can help to rule out modelling errors and ensure

that the planning and scheduling model is behaving as expected. Even if the

solution is valid with respect to the model, it may be the case that the plan

or schedule fails during execution due to discrepancies in the model versus the

execution environment. In this case, robustness can normally be achieved using

proactive or reactive measures.

By considering and planning for possible faults in advance, proactive measures

can prevent delays at execution time. Redundancy based approaches are simple

and easy to implement, however they can be overly conservative. Using contin-

33

Chapter 2. A Survey of Robust Planning and Scheduling

gency based approaches can be beneficial as they offer a solution that will work

for every outcome considered, without needing to recompute a new solution on

line. Since each uncertain outcome in contingent planning and scheduling results

in a new branch in the decision tree, these approaches are mainly suited to ap-

plications in which the space of potential outcomes is small. In reality, there are

infinitely many potential outcomes that can arise in the real world. Therefore,

using contingency based techniques requires careful consideration of the most

likely sources of failure. In some cases, it may not be computationally feasible to

plan for all possible contingencies.

A different approach may be to develop a solution which can be refined and

adapted online at execution time in the event of failure. This allows the model

to react to all possible situations that may be experienced in the real world.

Repairing or recomputing a plan or schedule at execution time can be disruptive,

particularly for time sensitive tasks. Additionally, using a dynamic execution

strategy offers no guarantee that the solution being developed is the best one

with respect to any desired metric.

All these approaches decouple the planning and scheduling with the compu-

tation of robustness and have no way of reasoning over the likelihood of failures.

Consequently, such approaches offer no guarantee of finding the most robust solu-

tion. As new regulations call for increased transparency and risk awareness in AI

systems [8,125], having numerical guarantees on robustness is becoming increas-

ingly important. For this reason it was decided to address robust APS from a

probabilistic perspective. In this thesis, we focus primarily on probabilistic static

solutions as opposed to dynamic ones. Such problems can be solved effectively

using techniques from the stochastic optimization literature.

In the sample average approximation approach to stochastic optimization, the

number of samples required can be prohibitive when the dimension of the data is

large [126]. Rather than using random sampling to approximate the distribution,

34

Chapter 2. A Survey of Robust Planning and Scheduling

decomposition based approaches such as the cutting plane method and column

generation explicitly solve a smaller optimization problem to find the best points

(or cuts) to refine the approximation.

Note, that every LP has an associated dual linear program, such that the

variables in the dual problem are associated with the constraints of the original

primal problem and vice versa [127]. Column generation and cutting plane meth-

ods can be seen as doing the same thing but viewed from a different perspective:

generating variables using column generation is analogous to generating cutting

planes on the dual problem. The choice of which approach to use is normally

driven by modelling convenience, for example which approach permits the sim-

plest sub problems. Cutting plane methods are generally well suited to problems

involving a complicated set of variables. Without these variables, or when the

variables are fixed the problem becomes separable and simple. Likewise, column

generation is normally used when there is a complicating constraint set [128].

When dealing with probabilistic constraints, cutting plane methods form an

outer approximation, whereas column generation forms an inner approximation of

the feasible set. In column generation, the inner approximation gradually grows

within the feasible region, whereas in cutting plane methods, the outer approxi-

mation gradually shrinks around the feasible region. As a result, on any iteration,

the solution to the approximate problem in column generation is guaranteed to

be a feasible solution to the original problem. This is not the case when an outer

approximation is used.

For these reasons, it was decided to focus on the column generation method in

this thesis. In the next chapter we formally introduce the reader to this method.

35

Chapter 3

Technical Preliminaries on the

Column Generation Method

“Nothing is particularly hard if you divide it into small jobs.”

– Henry Ford

3.1 Introduction

In this chapter, we introduce the reader to the column generation method. In

particular, we will discuss the basic theory behind it and some of its character-

istics. Since this thesis is application orientated and it is not assumed that the

reader will be well-versed or even aware of the technique, we will begin with the

fundamentals. Most of this chapter will be focused on getting an intuition for

how it works with the more in depth theory left to other references [129]. In Sec-

tion 3.2 we discuss the fundamentals of linear programming, the Simplex method

and the concept of reduced cost. In Section 3.3 we introduce the theory behind

the column generation method and in Section 3.4 we illustrate the practical appli-

cation of these concepts with reference to the cutting stock problem. For readers

already familiar with these concepts, feel free to progress to Chapter 4.

37

Chapter 3. Technical Preliminaries on the Column Generation Method

3.2 Linear Programming

To understand the basic principles of column generation, it is important to first

discuss the fundamentals of linear programming. LPs are special cases of opti-

mization problems in which all functions and constraints are linear, as per (3.1):

max
x

cTx

subject to Ax≤ b,

xi ≥ 0, i = 1, 2, . . . , n

(3.1)

where x ∈ Rn is the decision variable vector, c is an n-dimensional vector of cost

coefficients, A is an m× n dimensional constraint parameter matrix and b is the

m-dimensional vector of bounds.

The feasible region of the LP is bounded by a polytope (see Figure 3.1) formed

by the intersection of the constraints. Any solution which lies within the feasible

region of the LP is denoted a basic solution, while those which lie on one of the

corner vertices of the polytope are Basic Feasible Solutions (BFS). Each BFS

corresponds to a number of basic variables xB ⊆ x having non-zero value and

non-basic variables xN = x \ xB, whose value is zero.

Simplex Method The simplex procedure was first introduced by Dantzig [130]

and is one of the most widely utilised algorithms for solving LPs. Note that the

optimal solution to the LP (3.1) corresponds to one of the BFS vertices of the

polytope shown in Figure 3.1. When solving (3.1) using the simplex procedure,

the algorithm iteratively moves along an improving adjacent edge of the current

vertex of the simplex polytope, to a new vertex, until it reaches the optimal

solution. Since each vertex corresponds to a BFS, moving from one vertex to

another corresponds to a non-basic entering variable entering the simplex basis

(i.e. taking non-zero value). The edge to traverse is selected in the pricing step of

the algorithm, by finding the edge with the highest improvement in the objective

38

Chapter 3. Technical Preliminaries on the Column Generation Method

function amongst all the adjacent edges (referred to as the steepest edge). The

steepest edge corresponds to the one with the greatest reduced cost. The BFS

vertex corresponding to the optimal solution will have no improving adjacent

edge, meaning that traversing the edge will only reduce the objective function

and so the algorithm can terminate. This procedure is highlighted in Figure 3.1.

Reduced Cost Note that we can rewrite the inequality in (3.1) as an equality

through the inclusion of slack and surplus variables; and that we are free to

change the order of the columns and variables. As such any LP can be written

in the form of (3.2):

max
x

(
cTB cTN

)xB

xN



subject to
[
AB AN

]xB

xN

= b,

xi ≥ 0, i = 1, 2, . . . , n

(3.2)

At any iteration, since the non-basic variables are zero, the following is a BFS

to the above:

Ax =
[
AB AN

]xB

0

 = b (3.3)

and hence xB = A−1
B b. The equivalent objective value is:

cTx =
[
cB cN

]xB

0

 = cBA
−1
B b (3.4)

We now consider that we are moving to another BFS, such that some non-basic

variable assumes a non-zero value, x =
(
x̄B x̄N

)
. Taking the constraint (3.3),

39

Chapter 3. Technical Preliminaries on the Column Generation Method

Figure 3.1: Polytope representing feasible region of an LP. The simplex algorithm
starts at one of the vertices of the polytope and repeatedly moves along the
steepest edge in the improving direction until it reaches the optimal solution.
The steepest edge is found by solving (3.8).

40

Chapter 3. Technical Preliminaries on the Column Generation Method

we have (3.5):

Ax =
[
AB AN

]x̄B

x̄N

 = b (3.5)

Rearranging for the basic variables gives x̄B = A−1
B b − A−1

B AN x̄N . The

equivalent objective is (3.6):

cTx =
[
cB cN

]A−1
B b−A−1

B AN x̄N

x̄N

 = cBA
−1
B b− cBA

−1
B AN x̄N + cN x̄N

(3.6)

If we want to find out how the objective function will change through modify-

ing the basic and non-basic variables, then we can look at the difference in the

objective value (3.6) versus (3.4), ρ:

ρ =
[
cB cN

]x̄B

x̄N

− [cB cN

]x

0

 = cN x̄N − cBA
−1
B AN x̄N

=
∑
i∈N

(ci − cBA
−1
B Ai)xi (3.7)

Note that N = {i : 1 ≤ i ≤ n, xi ∈ xN}, is the index set of non-basic variables

and that Ai refers to the column of coefficients from AN associated with variable

xi.

Intuitively, (3.7) tells us whether the objective function will improve if the

BFS was to change. For any non-basic variable xi whose current value is zero,

the term ρi = ci − cBA
−1
B Ai is the amount by which the objective will change

for every positive unit increase of xi, also known as the reduced cost. If we are

seeking to maximize the objective function (as per (3.1)) and the reduced cost

ρi is positive, then it means that if variable xi were to assume a non-zero value,

the objective function would increase and so it is an improving variable. Note,

the term cBA
−1
B is the vector of dual variables y associated with the constraint

41

Chapter 3. Technical Preliminaries on the Column Generation Method

Ax = b. In the pricing step of the simplex method, we can find the entering

variable by finding the non-basic variable with the greatest reduced cost:

argmax{ci −AiTy | i ∈ N} (3.8)

If at any iteration, the entering variable is not an improving variable, then the

current BFS is optimal and the simplex procedure can terminate. This procedure

is discussed in greater detail by Chvatal [131], for more information we refer the

reader there.

3.3 Column Generation Method

In many cases, the number of variables can be prohibitively large when solving

(3.8) explicitly. The intuition behind the column generation method is that we can

instead solve a smaller problem using a subset of the variables (and columns). We

then iteratively grow this problem columnwise by adding variables and columns

until the problem is big enough that it contains the optimal solution to the

original, much larger problem.

Restricted Master Problem From henceforth, we refer to (3.1) as theMaster

Problem (MP) and use M = {1, 2, . . . , n}, to refer to the index set of all variables

present in the MP. Now assume that we are working with a subset of generated

variables, such that G ⊆ M , is the index set of generated variables. If xG and

cG are the subvectors of x and c corresponding to the index set G; and AG is

the submatrix of A corresponding to the set of columns in G, we can write a

restricted version of (3.1), referred to as the Restricted Master Problem (RMP),

42

Chapter 3. Technical Preliminaries on the Column Generation Method

as per (3.9):

max
x

cTGxG

subject to AGxG≤ b,

xi ≥ 0, i ∈ G

(3.9)

We use B ⊆ M , to refer to the index set of optimal basic variables from the

MP (3.1). Since all non-basic variables take a value of zero, if B ⊆ G, then

solving the RMP (3.9), is equivalent to solving the MP (3.1). The non-entered,

unknown variables corresponding to the index set M \G, are treated as non-basic

variables taking a value of zero in the current BFS. As such, we can start the

RMP with some subset of generated variables and continuously add variables and

columns until the set G, contains all the optimal basic variables. The number of

generated variables can be significantly less than the number of variables in the

MP, making the RMP much easier to solve, while in the worst case the procedure

involves solving the same problem (i.e. RMP = MP). An illustrative example of

the MP and RMP features is provided in Figure 3.2.

Column Generation Problem This begs the question: how can we know

when all of the optimal basic variables have been included in the RMP? We can

use the concept of reduced cost introduced previously and solve the following op-

timization problem called the Column Generation Problem (CGP) (often referred

to as the oracle or pricing problem):

max{ci −AiT y | Ai ∈ A} (3.10)

where we find a new column Ai, that maximizes reduced cost. If the optimal

solution to (3.10) is non-positive then we know that the best column is not an

improving one and consequently all other columns are also not improving and so

the process can terminate.

The structure of the CGP is inherently linked to original MP, often generated

43

Chapter 3. Technical Preliminaries on the Column Generation Method

Figure 3.2: Image showing MP for an LP (top), and equivalent RMP (bottom).
The RMP is grown columnwise on each iteration by adding columns from the
unknown set to the generated set. When the RMP contains all the optimal basic
variables, the solution to the RMP is the same as the solution to the MP. Note
that q = |G|. 44

Chapter 3. Technical Preliminaries on the Column Generation Method

columns must abide by a particular structure. As a result, the CGP can take many

forms (for example an LP, an NLP or a MIP). Typically, column generation is

well suited when the CGP is computationally tractable, since it must be solved

in an iterative manner.

Algorithm The full column generation procedure for solving LPs is illustrated

in the flow chart in Figure 3.3a. It relies upon having at least one initial column

for which the MP has a feasible solution, this is typically heuristically computed.

From here the RMP is solved using the initial column(s) and the dual values are

extracted to model reduced cost as the objective to the CGP. The CGP is then

solved to find the column with the greatest reduced cost. A check is then made

to see whether the column is an improving one, i.e. it has a positive reduced cost

if maximising. If so, it is added to the RMP and the process repeats, otherwise

the solution to the RMP is optimal and the process terminates.

Termination Criteria It should be noted, that after any iteration of the pro-

cedure we have access to a measure of solution quality, If we denote x∗
G, the

optimal solution to the RMP for the variables generated so far, then LB = cTGx
∗
G

is a lower bound on the optimal solution. Likewise, if we solve the CGP (3.10)

to optimality and denote ρ∗ as the optimal reduced cost, then if an upper bound

on the variable values holds for the MP: K ≥
∑n

i=1 xi, since it is not possible

to increase the objective by more than ρ∗K, we also have an upper bound on

each iteration: UB = cTGx
∗
G + ρ∗K. Instead of checking whether the solution is

optimal, we can instead compute the difference between the bounds ϵ, known as

the optimality gap:

ϵ =
UB − LB

UB
(3.11)

45

Chapter 3. Technical Preliminaries on the Column Generation Method

(a) Procedure for solving an LP. (b) Procedure for solving an MIP.

Figure 3.3: Flowchart showing the column generation procedure for LPs (a),
versus MIPs (b). In (b), we solve a linear relaxation of the RMP (LRMP). When
the column generation procedure terminates, the variables are made integer once
more and the RMP is re-solved as a MIP.

If we define an acceptable tolerance on optimality, then we are free to termi-

nate the procedure when the gap falls below a predetermined threshold. If this

is the case, then the solution is known as an ϵ-optimal solution.

Column Generation for Mixed Integer Programs The algorithm defined

in Figure 3.3a is only valid for continuous convex models (which includes LPs). As

mentioned in Section 2.2.1, many interesting planning and scheduling problems

feature variables whose values are discrete and are solved as a MIP. Such prob-

lems are non-continuous and non-convex. In order to solve MIPs using column

generation, it is typical to relax the integer restriction on the variables, such that

46

Chapter 3. Technical Preliminaries on the Column Generation Method

the relaxed RMP, referred to as the Linear Restricted Master Problem (LRMP),

is an LP which can be solved using column generation. When the column gener-

ation procedure terminates, the integrality of variables are reintroduced and the

RMP is solved as a MIP, as per Figure 3.3b. To guarantee a valid integer solution

to the RMP, we must start the column generation procedure with a valid integer

solution. This is typically generated using domain knowledge.

Solving a MIP using column generation represents adding columns at the root

node of the branch and bound tree and therefore does not guarantee optimality.

However, it is typically a good heuristic and its efficacy has been proven on many

domains [132]. In order to guarantee optimality, one must employ the branch

and price method [133]. In the branch and price method, each local node in the

branch and bound tree is solved using column generation. Branch and price is

outwith the scope of this thesis and so for interested parties we refer the reader

to Barnhart et al. [133] for a comprehensive overview.

3.4 Example: Cutting Stock

The previous section focused on the theory behind why column generation works.

However, the goal of this thesis is to show how column generation can be applied

to develop new algorithms for solving practical problems. The decomposition into

a column generation framework is not always clear. In this section, we show how

the theory can be applied to solve practical optimization problems, with reference

to the cutting stock problem.

Since its introduction by Kantorovic [134], the cutting stock problem has

become a core example in many classical OR textbooks [131] and remains one

of the most well studied examples of the application of column generation. The

cutting stock problem has practical applications in a variety of industries, for

example forestry [135, 136], carpentry [137], paper [138], construction [139] and

47

Chapter 3. Technical Preliminaries on the Column Generation Method

steel [140].

In this problem, we are tasked with deciding how to cut pieces of stock of

standard size, into orders of specified size while ensuring that we minimize the

quantity of stock material used. Consider that we have a set of orders O and

each order o ∈ O has a width wo, and quantity qo. The stock is a fixed width Ws.

3.4.1 Compact Model

A compact formulation to solve the cutting stock problem was introduced in

Kantorovic [134]. In this formulation, we assume a known upper bound K, on

the quantity of stock material used. We introduce binary variables xi ∈ {0, 1}

for i = 1, 2, . . . K, which states whether stock i is cut. Likewise we enumerate a

combinatorial number of integer variables xi,o ∈ Z+ which define the number of

times order o is satisfied in stock i. The full formulation is provided in (3.12):

minimize
K∑
i=1

xi

subject to
K∑
i=1

xi,o ≥ qo, o ∈ O∑
o∈O

woxi,o ≤ Wsxi, i = 1, 2, . . . K

xi ∈ {0, 1}, i = 1, 2, . . . K

xi,o ∈ Z+, i = 1, 2, . . . , K, o ∈ O

(3.12)

The objective is to minimize the quantity of stock material cut. The first con-

straint enforces that the required quantity for each order is satisfied. The second

constraint states that the total width of all orders cut from a given stock, cannot

exceed the width of the stock material.

48

Chapter 3. Technical Preliminaries on the Column Generation Method

3.4.2 Column Generation Model

Gilmore and Gomory [16, 17] note that solving (3.12) is intractable for all but

the smallest instances. Furthermore solving an LP relaxation of the compact

model is not guaranteed to give a tight lower bound. Martello and Toth [141]

prove that the lower bound can be as low as 50% of the integer objective value.

This is a result of the fact that many fractional solutions (ways of cutting each

stock) may not be feasible if integrality were to be reinforced, and so the optimal

integer solution can be quite different. To counter this, Gilmore and Gomory [16]

proposed enumerating all valid cutting patterns a priori. Each instance of stock

can be cut into a set of patterns P . If we denote xp ∈ Z+, as the quantity of

pattern p ∈ P used and ap,o as the number of times order o appears in pattern p,

then we can write the MP as per:

minimize
∑
p∈P

xp

subject to
∑
p∈P

ap,oxp ≥ qo, o ∈ O, ⟨yo⟩

xp ∈ Z+, p ∈ P

(3.13)

Now, the constraint in (3.13) simply states that each order quantity must be

satisfied within the total patterns used to cut the stock. Note that there can

be exponentially many patterns; Johnson et al. [142] comment that real world

applications of the cutting stock problem in the paper industry can have billions

of viable patterns. Consequently the number of xp variables can be prohibitive.

In addition, we may not explicitly know in advance all possible patterns, and

therefore enumerating the columns associated with all the patterns may not be

practical. Instead, we can start with a small subset and use column generation

to iteratively add new improving patterns. With each constraint, we associate

a dual variable yo such that we can write the reduced cost of including a new

49

Chapter 3. Technical Preliminaries on the Column Generation Method

pattern as:

ρp = 1−
∑
o∈O

ap,oyo (3.14)

Note that we still need to constrain the patterns according to the width of the

stock material. Furthermore since yo ≥ 0, solving maxap{
∑

o∈O ap,oyo} is the

same as solving minap{1−
∑

o∈O ap,oyo}. We can formalise the CGP as:

maximize
∑
o∈O

yo ap,o

subject to
∑
o∈O

woap,o ≤ Ws

ap,o ∈ Z+ o ∈ O

(3.15)

The CGP (3.15), is a knapsack problem, a well-studied problem in combinatorial

optimization which seeks to select the best combination of items to include in

a knapsack such that the value is maximized. Here, we wish to select the best

combination of orders to include in the pattern. The dual value yo, can be con-

sidered as the value of selecting one unit of order o in the pattern. Such problems

are known to be NP-complete, however pseudo-polynomial time algorithms exist

based on dynamic programming. In addition, it is not necessary to solve this

sub problem to optimality, we only require an improving column. Efficient ap-

proximation schemes also exist capable of accelerating the procedure. Hence, in

practice, (3.15) can be solved efficiently. Experimental validation is provided in

numerous references, for example Vanderbeck [143].

3.4.3 Running Example

An example cutting stock problem is provided in Figure 3.4. When solving the

cutting stock problem using column generation as per Figure 3.3b, we start with

some initial solution. Coming up with a good initial solution is potentially chal-

50

Chapter 3. Technical Preliminaries on the Column Generation Method

Figure 3.4: Figure showing an example cutting stock problem. The order quan-
tities and widths are provided in the table. Each pattern is a feasible solution to
the knapsack CGP (3.15). Among all feasible patterns, (3.15) is trying to find
the best pattern for the given dual solution. One possible solution to this cut-
ting stock problem would be to satisfy the orders using one instance of 3 distinct
patterns: p1, p5, p6, and 2 instances of the pattern p4.

51

Chapter 3. Technical Preliminaries on the Column Generation Method

lenging, therefore it is common to kick start the procedure with a naive one.

For the toy example provided in Figure 3.4, we could simply compute the max-

imum amount of each order we could include in the stock by taking the floor:

pi = ⌊Ws/wi⌋. This results in 4 initial patterns:

p1 = {ap1,o1 = 3}, p2 = {ap2,o2 = 1}, p3 = {ap3,o3 = 5}, p4 = {ap4,o4 = 2}

With our initial patterns added, we would then solve a linear relaxation of

(3.13). The solution to the LRMP would be to use 1.67, 1, 1 and 1.5 instances

of patterns p1, p2, p3 and p4 respectively with a total cost of 5.17:

xp1 = 1.67, xp2 = 1, xp3 = 1, xp4 = 1.5

The dual variables would then be extracted using the appropriate function

call from the LP solver of choice and used for the objective to the CGP (3.15).

This could then be solved resulting in a pattern p5, containing 1 instance of o1

and 1 instance of o2:

p5 = {ap5,o1 = 1, ap5,o2 = 1}

We would then check that the reduced cost is negative for the given dual values

yo1 . yo2 using (3.14): 1 − yo1 − yo2 < 0. We find that it is, so the column is an

improving one so we can add it to the LRMP.

With p5 added, the LRMP would choose to select p5 over p2, since it contains

an additional instance of o1. The solution would therefore contain 1.33, 1, 1.5

and 1 instances of p1, p3, p4 and p5 with a total cost of 4.83:

xp1 = 1.33, xp3 = 1, xp4 = 1.5, xp5 = 1

The dual values would once more be extracted and the CGP solved resulting

52

Chapter 3. Technical Preliminaries on the Column Generation Method

in pattern p6 containing 1 instance of o1 and 3 instances of o3:

p6 = {ap6,o1 = 1, ap6,o3 = 3}

Once more, we check that the reduced cost is negative for the given dual values

yo1 , yo3 : 1− yo1 − 3yo3 < 0. The reduced cost is found to be negative and so the

column is an improving one and so we add it to the LRMP.

We solve the LRMP once more and decide to use p6 instead of p3 such that

our solution contains 1, 1.5, 1 and 1 instances of p1, p4, p5 and p6 with a total

cost of 4.5:

xp1 = 1, xp4 = 1.5, xp5 = 1, xp6 = 1

Finally, we extract the dual values and find that there is no improving pattern,

the optimal solution to (3.15) is less than or equal to 1 (the reduced cost (3.14)

is non-negative). We would then solve (3.13) ensuring that the integrality of

variables is reinforced, i.e. xp ∈ Z+. Once integrality is reinforced, we note

that taking 1.5 instances of p4 (as per the LRMP) is not possible. The resulting

solution to the RMP would require 1, 2, 1 and 1 instances of p1, p4, p5 and p6

respectively with a total cost of 5:

xp1 = 1, xp4 = 2, xp5 = 1, xp6 = 1

The optimal solution to the LRMP is a lower bound on the optimal solution,

while the solution to the RMP is an upper bound. The resulting optimality gap

can be computed as per:

ϵ =
5− 4.5

5
× 100 = 10%

53

Chapter 4

SLA Aware VNF Placement and

Routing using Column

Generation

“We are all now connected by the Internet, like neurons in a giant

brain.”

– Stephen Hawking

4.1 Introduction

In contrast to previous generations of mobile networks, the 5th Generation (5G)

of networks will use network slicing, with multiple virtual network slices, over-

laying a shared physical infrastructure [144]. Network slicing enables Internet

Service Providers (ISP) to optimize infrastructure usage; while delivering tailored

network services. Each slice corresponds to a particular service use case (e.g. in-

dustrial automation, autonomous driving and Ultra High Definition (UHD) video

streaming [23]), each with contrasting and often competing requirements in terms

of latency, throughput and availability [1]. These requirements are characterised

55

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

by a set of Key Performance Indicators (KPI) quantified in the Service Level

Agreement (SLA): a contract reached between the ISP and customer. Providing

Quality of Service (QoS) means delivering the end-to-end service subject to the

constraints imposed by the SLA.

Each slice is comprised of a number of Service Function Chains (SFC), where

each SFC is a request to route and process traffic via an ordered sequence of Net-

work Functions (NF) (e.g. load balancer, traffic monitor, firewall) [145]. Within

the Network Function Virtualization (NFV) paradigm, NFs are Virtual Network

Functions (VNF) implemented in software running on industry standard high

volume servers [146]. Finding a suitable placement of the VNFs within the net-

work, and subsequently routing the SFCs is a hard problem which has attracted

significant attention and has been designated the VNF Placement and Routing

Problem (VNF-PRP) [147].

Numerous papers have been presented in recent years tackling different varia-

tions of this problem. However, these approaches typically do one of the following:

1) minimize operational expenditure while neglecting QoS [148–150], 2) minimize

specific QoS terms such as latency [151–154] or 3) model SLA constraints as hard

constraints [147,155]. When applied to network slicing, the prior may result in a

VNF placement guaranteed to violate QoS for some slices, the second offers no

distinction between the different QoS requirements of each network slice and the

latter will simply result in no solution when it is not possible to satisfy the QoS

constraints for a particular SFC.

In this chapter we present a VNF-PRP algorithm based on column genera-

tion, in which we iteratively solve a Restricted Master Problem (RMP), which

optimizes the placement, replication and routing of the VNFs given the SFC

paths generated so far; and a constrained shortest path Column Generation Prob-

lem (CGP) which generates new, improving paths. We treat SLA constraints

(throughput, latency and availability) as soft constraints and then minimize SLA

56

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

violation cost, meaning that we satisfy all SLA constraints if possible otherwise

we satisfy as many of them as possible. Unlike many prior studies, our approach

provides a full placement, replication and routing solution. In particular we com-

pute: 1) the quantity of replicas of each required VNF, 2) a placement of each

VNF onto compute nodes, 3) a number of paths for each SFC and 4) the fraction

of flow to send down each path. We experimentally validated our approach on a

realistic Mobile Edge Cloud (MEC) architecture generated using SNDlib bench-

marks [156]. We show that for realistic sized instances (28 vertices, 41 edges,

700 SFCs), our approach is typically able to find near-optimal solutions within a

practical time-frame.

The structure of this chapter is as follows. In Section 4.2 we introduce defi-

nitions related to the VNF-PRP. In Section 4.3 we review relevant literature and

place the contribution of this chapter in context with respect to related work.

In Section 4.4 we give a motivating example based on the MEC architecture to

highlight the challenges associated with VNF-PRP. In Section 4.5 we show how

the VNF-PRP can be decomposed into a column generation framework. In Sec-

tions 4.6 and 4.7 we describe the setup and results of our experimental validation.

We conclude and address avenues for future research in Section 4.8.

4.2 Background

Network Slicing In recent years, there has been an emergence of novel, con-

nected devices such as fitness-monitoring wearables, smart home appliances and

energy monitoring devices [157]. These devices are capable of sensing, storing

and processing large quantities of data and are collectively known as the Internet

of Things (IoT). IoT promises to revolutionise the way we live our lives, from the

development of smart cities and energy grids, to automated medical monitoring,

factories and vehicles [158]. To make this possible, ISPs must decide how to host

57

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

the services, each with their own diverse requirements, while making the most of

the physical network infrastructure at their disposal.

Network slicing is the technology that makes this possible, in which multi-

ple virtual network slices are overlaid on a shared physical infrastructure [144],

thus optimizing infrastructure usage. Three general categories of network slices

expected in 5G have been identified [159] and are summarised below, with the

equivalent KPI requirements outlined in Figure 4.1:

1. Enhanced Mobile Broadband (eMBB) High speed mobile internet

with uniform QoS constraints for human-centric use cases.

2. Ultra Reliable Low Latency Communications (URLLC) Commu-

nications for critical use-cases requiring extremely low latency and high

reliability.

3. Massive Machine Type Communications (mMTC) Communications

between a large number of connected IoT devices characterised by low-

volume intermittent data transmission and high connection density.

Each slice has heterogeneous often competing requirements which makes slic-

ing the network while maintaining QoS a challenging problem. These numeric

requirements are defined according to industrial standards [23] in the SLA.

Network Function Virtualization Within each slice, there are a number of

requests to access the service, denoted SFCs. Each SFC is a request to route and

process traffic via an ordered sequence of NFs [145], where NFs are blocks within

a physical network infrastructure which perform a well defined function, for ex-

ample a firewall or load-balancer. NFs were traditionally built into specialised

proprietary hardware known as middle-boxes. However, this hardware-centric ap-

proach incurred high capital and operational expenditure and was not scalable.

Whenever a new service was to be provided, ISPs were required to purchase and

58

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

Figure 4.1: Figure showing varying KPI requirements for different service groups
(adapted from [1]).

install new expensive middle-boxes, train skilled workers on the installation and

operation of the middle-boxes as well as find physical space within the network

infrastructure [160–162]. Furthermore the middle-boxes could not be reconfig-

ured for new functionality meaning they quickly became redundant [163, 164].

Network Function Virtualization (NFV) is a paradigm that offers to solve these

issues by replacing NFs running on middle box hardware, with Virtual Network

Functions (VNFs) implemented in software running on Virtual Machines (VM) or

containers hosted on industry standard high volume servers [146,165,166]. NFV

offers solutions to many of the challenges of 5G. It will make it easier to provi-

sion new services, increase scalability and improve energy efficiency thus reducing

costs [167].

Cloud and Edge Computing Working in conjunction with network slicing

and NFV to enable 5G are the paradigms of cloud and edge computing. In

cloud computing, virtual resources such as VNFs, are hosted on a large shared

59

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

infrastructure such as a centralised DC and accessed by customers on a pay-per-

use model [168]. Cloud computing lowers costs associated with provisioning new

services since ISPs no longer need to build and maintain their own DCs [167].

On the other hand, hosting all services in a centralised DC is an issue for latency

sensitive services, which are required to be hosted on nodes close to the user [169].

Edge computing provides a solution to this, by enabling computation and data-

processing to be performed on nodes located at the edge of the network, thus

preventing delays associated with transmitting the data to the cloud [170].

VNF Placement and Routing Problem While NS, NFV and edge comput-

ing are some of the key enablers of 5G, they also introduce additional challenges

which must be overcome. One of the most important challenges is: how to pro-

vision the VNFs within the network and route the SFC requests, while satisfying

the diverse QoS constraints imposed by each network slice. This problem has

been denoted the VNF Placement and Routing Problem (VNF-PRP) and will be

the focus of this chapter.

4.3 Related Work

There has been a plethora of literature in recent years addressing the more general

case: the VNF Placement Problem (VNF-PP). For a comprehensive overview, we

refer the reader to a relevant survey [171, 172]. In this section we address only

those which are most relevant. Sun et al. [172] classify the VNF placement prob-

lem into 4 distinct sub problems: the chaining problem computes the VNFs and

outputs a Virtual Network Function Forwarding Graph (VNF-FG) (possible ways

of chaining the VNFs) based on demand; the embedding problem uses the VNF-

FG as input and maps it to the physical links in the network subject to band-

width resources; the placement problem allocates VNFs to the network subject

to compute and network resources and the routing problem takes SFCs as input

60

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

and routes traffic through the respective VNFs. Past literature has primarily

involved: a) solving a combination of these sub problems, b) using an optimiza-

tion method, c) for a particular use case, d) optimizing some metric. This is the

way in which this section will be structured, where Section 4.3.1 addresses the

different combinations of sub problems, Section 4.3.2 reviews different solution

techniques, Section 4.3.3 discusses specific use cases and Section 4.3.4 examines

different optimization metrics. Throughout, we emphasize how the work outlined

in this chapter fits into this categorization.

4.3.1 VNF Placement in General

Early work in literature tackled the problem of placement, chaining and embed-

ding but neglected the flow routing. Cohen et al. [173] formalised the VNF-PP

problem by drawing comparisons to well known OR problems; the facility location

problem and the general assignment problem. They present a near-optimal algo-

rithm based on linearly relaxing an Integer Linear Program (ILP) to an LP, and

then rounding the optimal solution so that it is integral. However, services are

considered as single middle-box modules which are placed on the network while

minimizing distance to the user. Chaining of VNFs and the bandwidth capacity

of the links are not considered. To deal with the transition to NFV, Moens and de

Turck [148] considered a hybrid scenario composed of a combination of middle-

box and VNFs. By taking inspiration from virtual network embedding [174],

they develop an ILP which places VNFs onto the physical infrastructure while

minimizing servers used. While their work considers the bandwidth and latency

of network links, they do not consider the chaining of VNFs which is a key fea-

ture of VNF placement. Mehraghdam [175] consider the chaining of VNFs and

hence maintain the VNF ordering, however they solve the chaining and placement

problems sequentially. First, they enumerate a set of VNF-FGs and then use a

Mixed Integer Quadratically Constrained Program (MIQCP) to embed them in

61

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

the network while optimizing numerous objectives.

The problem we address is better compared to the VNF-PRP introduced by

Addis et al. [147]. In this problem, SFCs are directly encoded in the optimization

as a flow routing problem, where we try to route traffic demands down any num-

ber of paths, while simultaneously placing VNFs directly on the paths subject to

the ordering constraints. Addis et al. encode this problem as a multi-objective

ILP minimizing both servers used and maximum network link utilization. They

then present a matheuristic based on prioritisation of objectives (they split the

optimization problem into a number of objectives which are solved sequentially,

as per lexicographic optimization) to solve larger problem instances. However,

they do not consider the replication of VNFs; in reality VNFs are often replicated

for load balancing, fault tolerance and to cope with demand. Carpio et al. [176]

introduced the VNF-PP with replication which takes this into account. How-

ever, their solution method involves three sequential optimization phases: first

they enumerate a set of viable paths for each SFC, then they find the optimal

placement of the VNFs on the enumerated paths and finally, they see if it is

possible to improve the solution by introducing replicas. Each sub problem is

then solved using a genetic algorithm, meaning it is impossible to measure the

quality of the solution. As far as we are aware, our approach is the first algorithm

capable of generating bounded optimal solutions considering placement, routing

and replication.

In this chapter, we assume the network traffic to be static and deterministic,

such that we can compute a static solution to the VNF-PRP. In practice, network

traffic is dynamic and uncertain and therefore an online solution requires the

capability of adjusting the VNF placement and routing according to demand.

Such a problem is referred to as the dynamic VNF-PRP [177, 178]. Typically,

ISPs will plan a baseline network configuration according to a pre-determined

pattern of network traffic. This baseline configuration can then be adjusted online

62

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

in an iterative manner based on learned experience. On that note, we stress that

the solution presented in this chapter is not a dynamic one but would be used

to determine a baseline configuration. A potential dynamic solution utilising the

techniques from this chapter is outlined in Section 6.2 of this thesis.

4.3.2 Solution Methods

In terms of approach, VNF-PP has predominantly been solved using exact or

heuristic methods. A number of authors present ILPs [5, 147–151, 175, 179–187]

which can exactly compute the optimal solution, however they are incapable

of solving problem instances of a practical size. To achieve scalability, heuris-

tics of varying flavours are often presented. Many authors present greedy algo-

rithms [151,180,181,185,187], Bari et al. [149] presents a dynamic programming

based heuristic, Addis et al. [147] present a math-heuristic, Ghaznavi et al. [183]

and Luizelli et al. [150] present a local and binary search based heuristic and

Carpio et al. [176] use genetic algorithms. While computationally more efficient,

such approaches do not offer guarantees on solution quality.

On the other hand, column generation can be used as a heuristic to solve prac-

tical sized problems while offering bounded optimality. Column generation has

proven one of the most effective techniques for solving vehicle routing problems,

to which the VNF-PRP contains many similarities. The vehicle routing problem

was first formally defined by Dantzig and Ramser [188], as how to serve a set of

geographically distributed customers using a fleet of vehicles. Balinski et al. [189]

were the first to note that the vehicle routing problem can be formulated as a

set-covering problem using a set of predetermined paths. Enumerating the set of

valid paths is not especially trivial, furthermore the number of possible paths on a

graph is exponential. Desrosiers et al. [18] were the first to use column generation

to solve the problem of vehicle routing with time windows (each delivery must

be made within a fixed time), considering only the paths that were needed. In

63

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

the VNF-PRP we can consider the customers as the VNFs, and the vehicles as

the SFCs, such that we want to find a set of routing paths to deliver packages

(data traffic) to the customers (VNFs) beginning from a depot (the source node)

and ending at another depot (the sink node). Just as each customer in the ve-

hicle routing problem with time windows must be served within a set time, each

SFC must traverse the required VNFs to provide the service within the latency

time window. Often in vehicle routing problem, there is a capacity constraint on

how many vehicles can traverse a road at a given time. This is analogous to the

bandwidth constraints in the VNF-PRP; there is a limit on how much traffic we

can route down any network link.

Liu et al. [178] use column generation and exploit it’s any-time property to

dynamically place VNFs to satisfy new SFC requests, however their column gen-

eration sub problem has an exponential runtime. Huin et al. [190] tackle the

VNF-PP in static scenarios and show that the pricing problem can be formu-

lated as a shortest path problem with polynomial time complexity. However,

their approach differs from ours as they do not consider the QoS constraints such

as latency and availability and assume that each SFC is mapped to exactly one

path, with the routing demands down each path known a priori. Furthermore,

they assume that the VNF instances can be fractionally split in terms of CPU

and RAM. This is not the case in practice and can result in infeasible, non-integer

assignments of the VNFs to the computational resources.

4.3.3 Use Case

VNF-PP for 5G has some interesting characteristics which render many of the

general placement strategies insufficient. Cao et al. [191] study the problem of

VNF Forwarding Graph (VNF-FG) design and embedding in 5G networks. A

two-step method is proposed to generate the VNF-FGs according to the SFC

requests, then 4 genetic algorithms are used to embed the graphs and place the

64

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

VNFs on the network while minimizing bandwidth consumption and maximum

link utilization. Agarwal et al. [192] present a heuristic approach to solve the

VNF-PP in 5G networks while minimizing latency. They note that solving the

VNF-PP ensures that the minimum compute resources required for each VNF

are available on the host node; but that additional resources can be provided to

allow the VNF to process traffic more quickly. The allocation problem uses a

queuing model to schedule the compute resources to individual VNFs hosted on

the same node. Both Cao et al. [191] and Agarwal et al. [192] focus solely on the

mobile core; Zhang et al. [2] highlight that in order to satisfy the ultra low latency

requirement of some 5G services, placing VNFs at the edge is mandatory. They

present an Adaptive Interference Aware (AIA) based heuristic which places VNFs

on network slices wihin an edge-cloud architecture. They optimize throughput

of accepted requests subject to slice-specific latency constraints, however they do

not consider availability and solve the VNF-FG design and embedding problems

sequentially (similar to Mehraghdam et al. [175]). Rather than explicitly mod-

elling availability, Mohan and Gurusamy [193] introduce a resilient VNF-PP ILP

for network slicing in which the objective is to minimize the number of SFCs af-

fected given any node was to fail. As far as we are aware, our approach is the first

VNF-PP solution capable of satisfying the throughput, latency and availability

constraints required in 5G network slices.

4.3.4 Optimization Metric

Prior QoS sensitive approaches to VNF placement have typically handled sub sets

of the required KPIs present in the SLA. While most studies consider throughput,

Mehraghdam et al. [175] highlighted the importance of considering path latency

and performed a Pareto set analysis to show the trade off between latency, number

of servers used and link utilization. Following from this, numerous papers have

considered latency as either the objective [151, 152] or as a constraint [147, 149,

65

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

150, 194, 195]. Rather than considering latency as a hard constraint which must

be satisfied, Ben Jemaa et al. [182] treat it as a soft constraint for which violation

incurs a cost. SLA violation cost is then minimized alongside link utilisation and

server usage using the weighted sum method. Their approach however does not

consider resource availability constraints (outlined in Section 4.5.1) and solves

the problem using an exact MILP which is not scalable. They consider a small

use case with one cloudlet and one cloud server and do not consider flow routing

in the optimization.

More recently, some effort has been placed on incorporating availability in

VNF placement algorithms. Hmaity et al. [184] present resilient strategies for

safe-guarding against specific failures: node failure, link failure and a combina-

tion of both. However these strategies do not quantify availability and therefore

are incompatible with the well-defined, numeric SLA requirements. Vizaretta et

al. [155] were the first to explicitly model SFC availability as a constraint, using

the product of individual VNF, node and link availability. However they model

SLAs as hard constraints which simply returns no solution when it is not possible

to satisfy all SLA constraints. Furthermore, they do not consider replication, in

reality it is impossible to satisfy high availability constraints using only one SFC.

Yala et al. [153] solve a weighted bi-objective optimization problem minimizing

cost, while maximizing availability, where availability is derived using the proba-

bility that a node will fail. Similarly, Carpio et al. [154] model availability con-

sidering replications in a multi-objective framework. To avoid the non-linearity

of the availability function, they choose to optimize a linear inverse penalty func-

tion which does not directly quantify availability. Both these approaches consider

availability as the objective; in reality different slices have significantly different

availability requirements which is why we chose to explicitly model availability

as a constraint for each SFC.

66

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

4.4 Motivating Example

5G networks use an MEC architecture [196] with a combination of centralised

core Data Centers (DC) and localised NFV enabled edge cloud servers. Core

DCs have potentially unbounded compute and memory resources (they can be

scaled up by adding new servers to cope with increased demand), however they

can often be some distance from the user leading to high latency; while edge

servers are resource constrained but tend to be placed close to the access points,

thus lowering latency [2].

An example of expected 5G network slices is provided in Figure 4.2. Here we

have three slices hosted on the shared MEC infrastructure. Each slice corresponds

to a different use case with different QoS requirements. The autonomous driving

slice falls under the category of URLLC characterised by ultra low latency and

high availability. The UHD video streaming slice can be considered a eMBB

use case and is characterised by high data-rates. Finally, the smart city slice is

composed of a number of connected IoT devices and falls under the category of

mMTC.

In order to satisfy the low latency constraint for the autonomous driving slice,

it may be beneficial to host the VNFs at the edge. The slice also requires high

availability; replicating the VNFs and hosting them on different servers increases

the availability, since in the event of a node failure, traffic can still be processed

by the replica. The total throughput required for the SFC can then be split down

two paths, one visiting the master VNFs and one visiting the replicas. The UHD

streaming slice has high data-rates meaning that a large proportion of the overall

network bandwidth must be allocated. Likewise, the VNFs have traffic processing

limits and so must be replicated to cope with demand. The throughput can be

split down each replica as per the autonomous driving case. Finally the IoT based

smart city slice has high connection density but is not as sensitive to QoS and

67

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

therefore can be placed according to resource availability.

Satisfying all competing constraints for these diverse slices makes the opti-

mization problem incredibly complex. Solving the VNF-PP while neglecting flow

routing offers no guarantee that the latency QoS constraint will be satisfied. Like-

wise, simply placing and routing the VNFs without considering replication may

result in a violation of either the throughput or availability QoS constraint. Con-

sidering any combination of these metrics as the objective does not distinguish

between the different requirements for each slice. Consequently, prior VNF-PP

algorithms are not viable for 5G network slicing. We now formally define the

problem we are tackling.

Definition 6 (VNF-PRP). The VNF-PRP is a tuple: ⟨G,S⟩, where G is the

network topology graph and S is the set of SFCs. The graph G = ⟨V , E⟩, has

a set of vertices V, representing physical locations in the network; and edges

(i, j) ∈ E representing physical connections between the locations. The set of

vertices can be classified into distinct subsets: the set of switches, Vs and the set

of computational server nodes with NFV functionality, Vn. Each node n ∈ Vn,

has compute and memory resources Cn, Mn and availability An, while each link

(i, j) has an associated bandwidth capacity and latency, Bij and Lij respectively.

The set S is the set of SFC requests which must be hosted within the network,

where each SFC request s ∈ S, is defined as a tuple s = ⟨F s, (v0, vd),Rs⟩. The

set F s, is the ordered set of required VNFs for the SFC, where each VNF f ∈ F s,

has compute and memory requirements Cf and M f , availability Af , processing

latency Lf and throughput capacity T f . The pair (v0, vd), represents the source

and sink destination of the SFC traffic, where v0 is the source node and vd is

the destination. The set Rs, is the set of numeric QoS requirements composed

of ⟨T s, Ls, As⟩, where T s, Ls and As are the throughput, latency and availability

requirements respectively. The VNF-PRP problem we seek to solve involves com-

puting: 1) the quantity of replicas of each required VNF, 2) a placement of each

68

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

Figure 4.2: VNF placement example for 5G network slices (adapted from [2]).
The VNFs required for the autonomous driving, UHD video streaming and smart
city slices are shown in green, orange and blue respectively.

69

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

VNF onto compute nodes, 3) a number of paths for each SFC request and 4) the

fraction of flow to send down each path.

4.5 Method

We solve the VNF-PRP via a column generation procedure as outlined in Algo-

rithm 1, in which two optimization phases are iteratively solved:

1. The Restricted Master Problem (RMP) in line 7, which finds the num-

ber of replicas and placement of VNFs and the routing solution given the

paths enumerated so far.

2. AColumn Generation Problem (CGP) in line 10 for each SFC, in which

we find the best new path to include in the RMP.

We will show in the coming section that each path is equivalent to a column

in the RMP constraint matrix, henceforth we can use the terms column and

path interchangeably. We initialise the set of paths Ps, for each SFC using a

heuristically generated valid path p in lines 1-3. We extract the dual values

(Duals) from the solution to the LRMP in line 7, and use them to model the

reduced cost which we set as the objective to the CGP. Since we are minimizing

reduced cost, any path whose reduced cost is negative is called an improving

column. If an improving column can be found (line 11), we add the new path

to the set of paths enumerated for that SFC (line 13). The process then repeats

(lines 6 - 16) until no improving columns can be found.

It should be noted that the RMP in this problem is a Mixed Integer Linear

Program (MILP), however we solve a linear relaxation of this problem (LRMP)

by replacing binary variables with continuous ones (as described in Section 3.3).

This enables us to employ commercial solvers (e.g. Gurobi, Cplex) which do

not permit adding variables at local nodes in the search tree. However, it does

70

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

Table 4.1: Master Problem Decision Variables

Sets

n ∈ V The set of nodes in the network G.

n ∈ Vn The set of compute nodes in the network G.

n ∈ Vs The set of switch nodes in the network G.

(i, j) ∈ E The set of links in the network G.

s ∈ S The set of SFCs.

f ∈ F The set of VNFs.

Variables

xp ∈ R+ Fraction of flow through a path p for an SFC s.

ϕs
T ∈ R+ Amount by which SFC s violates the SLA throughput.

yfn ∈ Z+ Number of instances of VNF f installed on node n.

qs,fi ∈ {0, 1} 1 if i distinct nodes are hosting VNF f , for SFC s.

ϕs
A ∈ {0, 1} 1 if SFC s violates SLA availability, else 0.

βs,f
n ∈ {0, 1} 1 if VNF f for SFC s is hosted on node n, else 0.

Parameters

W s Cost of violating SLA for SFC S.

Cf CPU requirement for VNF f .

Cn CPU resources of server node n.

Mf Memory requirement for VNF f .

Mn Memory resources of server node n.

T s Throughput requirement for SFC s.

T f Throughput capacity of each instance of VNF f .

Bij Bandwidth capacity of edge (i, j).

zpij Number of times an edge (i, j) occurs in a path p.

αp,f
n

Number of times a VNF f installed on node n processes
traffic in path p.

As,f
i Availability for i replicas of VNF f for SFC s.

As Availability requirement for SFC s.

N
Min fraction of SFC flow required for a path to be

considered in the availability calculation.

Kf
q Max number of distinct nodes that can host a VNF f .

ϕp
L 1 if path p violates the SLA latency, else 0.

71

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

come with some caveats, for example it is only a heuristic. Once the column

generation procedure has terminated, we restore the integrality of variables and

solve the RMP as a MILP using the generated paths (line 17). Therefore, while

the solution is not guaranteed to be optimal, it is integral.

Algorithm 1: Column Generation for VNF-PRP

Input : A network, G
A set of SFC requests, S

Output: Placement of VNFs and routing of SFC requests.
1 for s in S do
2 p := FindInitialPath(s);
3 Ps := {p};
4 end
5 Terminate := False;
6 while Terminate := False do
7 Cost, Duals := LRMP(G, S);
8 Terminate := True;
9 for s in S do

10 p := CGP(Duals);
11 if p.ReducedCost < 0 then
12 Terminate := False;
13 Ps.insert(p);

14 end

15 end

16 end
17 Cost, Config := RMP(G, S);

Return: Cost, Config

4.5.1 Restricted Master Problem

If we were to enumerate the set containing all valid paths Ps, for every SFC,

then we can model the optimization problem as per Figure 5.8, with variables

and parameters defined in Table 4.1. We refer to this as the Master Problem

(MP).

72

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

min
x,y,ϕ,β,q

∑
s∈S

W s

(
ϕs
T + ϕs

A +
∑
p∈Ps

ϕp
Lx

p

)

∑
f∈F

yfnC
f ≤ Cn n ∈ Vn (1)∑

f∈F

yfnM
f ≤Mn n ∈ Vn (2)∑

s∈S

∑
p∈Ps

zpijT
sxp ≤ Bij (i, j) ∈ E ⟨µij⟩ (3)∑

p∈Ps

xp + ϕs
T = 1 s ∈ S ⟨πs⟩ (4)∑

s∈S

∑
p∈Ps

αp,f
n T sxp ≤ T fyfn f ∈ F , n ∈ Vn⟨νf

n⟩ (5)

∑
f∈Fs

Kf
q∑

i=1

As,f
i qs,fi + ϕs

A ≥ logAs s ∈ S (6)

Kf
q∑

i=1

qs,fi = 1 s ∈ S, f ∈ F s (7)

Kf
q∑

i=1

iqs,fi ≤
∑
n∈N

βs,f
n s ∈ S, f ∈ F s (8)∑

p∈Ps

Nαp,f
n xp ≥ βs,f

n s ∈ S, f ∈ F s n ∈ Vn ⟨us,f
n ⟩ (9)

Figure 4.3: Master Problem MILP

73

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

Objective ISPs must pay a fee if they fail to abide by the terms outlined in

the SLA: denoted the SLA violation cost. As such, the SLAs are modelled as

soft constraints for which violation incurs a cost (denoted W s), the sum of which

is minimized. If it is not possible to satisfy all SLAs, this approach should still

satisfy the constraints as best as possible. It is trivial to extend this approach

to minimize operational cost as a secondary objective. A weighted bi-objective

framework could be utilised with the weights selected in accordance with the rela-

tive importance of minimizing operational costs and satisfying QoS. Nonetheless,

the purpose of this chapter was to study the optimization of QoS, hence we leave

this analysis as an avenue for future work.

Compute Constraints Constraints (1) and (2) ensure that the sum of CPU

and memory requirements of the VNFs hosted on each node do not exceed the

node resources.

Networking Constraints Constraint (3) says that the sum of all traffic flow

passing through each edge must not exceed the bandwidth capacity of the edge.

Constraint (4) ensures that as much of the required throughput for each SFC

as possible must be routed down the paths. Constraint (5) says that the flow

through all paths which consider a VNF to be installed on a particular node

must be zero if that VNF is not installed on the node (i.e. yfn = 0). Conversely

if yfn > 0, then the flow through all paths in the SFC which consider a VNF to

be installed in that node can be at most T fyfn.

It’s worth mentioning that the ordering of the VNFs is explicitly encoded in

the path (see Section 4.5.3). In order for a path to be selected, each sequential

VNF must be installed on the required node encoded in the path through the

αp,f
n parameters: i.e. for xp > 0, yfn > 0 if αp,f

n = 1. As such, Constraint (5)

maintains the ordering of the VNFs encoded in the path.

74

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

Availability Constraints Availability of a network service refers to the total

fraction of time that the service is functional and is typically computed using the

Mean Time Between Failures (MTBF) and the Mean Time To Repair (MTTR):

A =
MTBF

MTBF +MTTR

Here, the MTBF refers to the average time between failures occurring and the

MTTR refers to the average time it takes to repair the failure. Consequently,

the availability is the fraction of up-time (MTBF) over the total time including

down-time (MTBF + MTTR).

As per prior studies [176,197,198], we consider the availability of an SFC As, as

the probability that the SFC works, which is the probability that each sequential

VNF works: As = Πf∈FA
f
n, where Af

n is simply the product of the availability of

the VNF, and the availability of the node that the VNF is hosted on: Af
n = AnA

f .

The availability of the VNF is the probability that at least one of the replicas

works, which is the complement of the probability that all replicas fail: As =

Πf∈Fs

(
1− Πn∈N

(
1− Af

n

))
. A more accurate way to model SFC availability is

by calculating the probability of at least one valid path being available as per Yang

et al. [199]. This incorporates both node and link availability, however results in

non-linear constraints which consequently renders the MP intractable. Since there

is typically a rich path diversity between any nodes in modern networks [197], it

should always be possible to reroute the traffic through the remaining instances of

the VNFs in the event of simultaneous node failures. Hence, we are considering

the availability of the nodes and VNFs (making sure that we have sufficient

replicas of each of the VNFs running on the nodes) but not the availability of

the links (we assume we can always reroute traffic between the VNFs running on

the nodes). We assume that the availability of each server and VNF is the same,

75

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

such that we can write the availability of the SFC as:

As = Πf∈Fs

(
1−

(
1− Af

n

)qf)
(4.1)

where qf is the number of different nodes hosting a VNF. It’s worth mentioning

that we can have multiple replicas of a VNF running on one node. In which

case, the availability Af
n = An

(
1− (1− Af)i

)
, where i is the number of replicas

running on node n. However, we note that An

(
1− (1− Af)i

)
≥ AnA

f , and so

Equation (4.1) is conservative. A similar justification can be made for assuming

that the availability of all nodes/VNFs is the same.

Constraint (6) ensures that the SLA availability is satisfied and comes from

Equation (4.1). If As is the required availability of the SFC, then we can rewrite

Equation (4.1) as:

∑
f∈Fs

log
(
1−

(
1− Af

n

)qf) ≥ logAs (4.2)

where qf is the number of nodes hosting VNF f . We make an assumption here

that the number of different nodes hosting a VNF can be at most Kf
q . Assuming

Af
n = 0.999, even the availability requirement of 0.999999 can be achieved with

Kf
q = 3, and so this is a reasonable assumption to make. We can then enumerate

the function: As,f
i = log

(
1− (1− Af

n)
i
)
for i = 1, 2, .., Kf

q and introduce the

binary variables qs,fi which take a value of 1 if i nodes are hosting VNF f for an

SFC s. If the LHS terms are not sufficient to satisfy the availability, then ϕs
A = 1

and the SLA violation cost is incurred. Constraint (7) says that exactly one of

these variables must have a value of 1 for each VNF. Constraint (8) forces the

number of replicas to be equal to the number of distinct nodes that host the VNF.

Constraint (9) forces the variable βs,f
n to take a value of 0 if the SFC flow through

the node is less than 1/N of the total SFC flow. This forces the solution away

from assigning arbitrarily small flows to paths in order to satisfy the availability.

76

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

For example if N = 10, then each path must have at least 0.1T s flow through

it. If one path is insufficient to satisfy availability, a valid solution may be to use

two paths, one with xp1 = 0.9 and one with xp2 = 0.1.

4.5.2 Column Generation Problem

Note that there are exponentially many paths in the graph, and therefore enu-

merating all possible paths is computationally prohibitive. In addition, we are

only interested in the paths from our base that are in the vicinity of the optimal

solution. Instead, we iteratively solve a restricted version of the MP, that we

refer to as the Restricted Master Problem (RMP), using a subset of the total

paths. We can imagine that there are many other paths, whose variables xp take

a zero value in the RMP simplex basis and are therefore non-basic.

Each non-basic path variable xp, at index k, in decision vector x has an asso-

ciated column of coefficients Ak:

Ak =
(
0 0 zp

ijT
s 1 αp,f

n T s 0 0 0 −Nαp,f
n

)T
Where each value in Ak is a vector of coefficients from constraints (1-9). Each

path is directly encoded in the column, and is defined by precisely 2 variables:

αp,f
n , which VNFs are installed on which nodes in the path and zpij, how many

times each edge occurs in the path.

The dual variables for each constraint are shown in Figure 4.3 enclosed by ⟨⟩.

Since constraints (3, 4, 5 and 9) are the only constraints containing the path vari-

able xp (all other coefficients in Ak are 0), we denote y =
(
µij πs νf

n us,f
n

)
,

the dual vector. The reduced cost is given by:

ρ = W sϕp
L − πs −

∑
(i,j)∈E

T sµijz
p
ij −

∑
n∈Vn

∑
f∈F

(
T sνf

n −Nus,f
n

)
αp,f
n

77

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

Figure 4.4: Diagram showing multi-layered graph.

The best new path is the one that minimizes the reduced cost: minz,α,ϕ (ρ). For

more details we refer the reader to Chapter 3.

4.5.3 Network Transformation

In this section, we show that the CGP can be solved as a constrained shortest

path problem on a transformed network. For each SFC request, we construct

an augmented network Gs = ⟨Vs, Es⟩. This network is a K-layered graph, where

K = |F s|+1, and each layer is a copy of the network G. We introduce the binary

variable zlij, that says that an edge (i, j) ∈ E , in layer l of the graph, is used in

the path. From each node n ∈ Vn in layer l, we add an edge to the equivalent

node in layer l+1. We have binary variables αl
n that says that one of these edges

from layer l is traversed. Traversing this edge represents an assignment of the

VNF at index l of the set F s, to node n: i.e. if αl
n = 1, αp,f

n = 1. The problem

78

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

min
z,α,ϕ

W sϕp
L − πs +

∑
(i,j)∈E

K∑
l=1

(−T sµij)z
l
ij +

∑
n∈Vn

K−1∑
l=1

(Nus,f
n − T sνf

n)α
l
n

∑
k:(j,k)∈G

zljk −
∑

i:(i,j)∈G

zlij + αl
n − αl−1

n = 0 j, l : jl /∈ {vs0, vsd} (1)∑
k:(j,k)∈G

zljk −
∑

i:(i,j)∈G

zlij = 1 j, l : jl = vs0 (2)∑
k:(j,k)∈G

zljk −
∑

i:(i,j)∈G

zlij = −1 j, l : jl = vsd (3)

∑
(i,j)∈G

K∑
l=1

zlijLij +
∑
n∈Vn

K−1∑
l=1

αl
nL

l −Mϕp
L ≤ Ls (4)

Figure 4.5: Column Generation Problem ILP

is then to route flow from the SFC source node v0 on layer 1 to the destination

node vd on layer K (referred to as vs0 and vsd respectively). An example is shown

for a small network with 2 switches and 4 nodes in Figure 4.4. Consider an

SFC request with source v0 = 1, sink vd = 6 and two VNFs. The sub problem

would be to find a path from node 1 on layer 1, to node 6 on layer 3. A valid

path: p = {(11, 21), (21, 22), (22, 42), (42, 43). (43, 63)} is highlighted in red in

Figure 4.4 and is equivalent to the column with non-zero terms: zp1,2 = 1, zp2,4 = 1,

zp4,6 = 1, αp,1
2 = 1 and αp,2

4 = 1. This transformation was first characterised by

Huin et al. [190].

An ILP to solve this problem is provided in Figure 4.5. The objective is

analogous to minimizing the reduced cost. Constraint (1) says the number of

active edges into and out of each node that is neither the source or destination

must be equal. Constraints (2) and (3) say that exactly one edge must be active

out of and into the source and destination node respectively. Constraint (4)

constrains the latency of the path based on the SLA. If the latency is not satisfied,

79

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

the big M term corresponding to ϕp
L is activated and the SLA violation cost is

incurred.

Note that the dual values are constants in this problem and the zlij and αl
n

variables encode which links in Figure 4.4 are used. We can consider the terms

−T sµij and Nus,f
n − T sνf

n as the edge weights. If we were to remove constraint

(4), along with the term W sϕp
L − πs then what we are left with is just a shortest

path problem. Since µij ≤ 0, the edge weights −T sµij are all positive. Only the

edges representing the assignment of a node to a VNF can be negative. Since

these edges can only be traversed in one direction, the graph has no negative

cycles. Such a problem can be solved efficiently using the Bellman-Ford algo-

rithm [200] which has worst case time complexity O(|V ||E|), where |V | and |E|

refer to the number of vertices and edges in the graph. In practice we found that

employing commercial solvers to solve the ILP in Figure 4.5 was as fast as using

Bellman-Ford and therefore that is the approach taken in this chapter. One could

theoretically use Bellman-Ford to solve the CGP with the exception of constraint

(4), check the reduced cost and if it results in an improving column then add the

column and continue. If on the other hand, Bellman-Ford fails to result in an

improving column, we could resort to solving the ILP from Figure 4.5.

4.6 Experimental Setup

As per prior studies [190], network topologies were taken from SNDlib [156]. Of

the networks available, Abilene and Nobel EU were selected as they gave a broad

range of network size. In order to simulate a realistic MEC architecture, a subset

of nodes were selected to be core DCs, another subset were selected to be edge

DCs and the remaining nodes were set as simple switches which can be access or

destination points for SFC requests but have no NFV functionality. A summary

of the graphs used is provided in Table 4.2.

80

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

Table 4.2: Networks Used

Name |V| |E| No. Core
DC’s

No. Edge
DC’s

Abilene 12 15 2 6

Nobel EU 28 41 5 15

Since the edge DCs are more computationally constrained versus the larger

core DCs, we set each edge DC as a single NFV node with 40 cores and 40GB

of RAM. The Core DCs on the other hand were given 3 NFV nodes, each with

100 cores and 100GB of RAM. This was achieved by minor modification of the

network; the node which was selected to be the core DC was set as the DC

gateway switch, and was connected to three additional nodes. SFC requests could

therefore access the gateway and then reach the required VNF on whichever node

was hosting it. Apart from this, and due to the significant path diversity in the

DCs and the fact that the internal DC latency is negligible, we did not model the

internal DC topology. We note however, that a separate routing problem could

be solved to route traffic between the DC gateways and the nodes if necessary.

Using the coordinates of each node from SNDlib, we computed the length of each

link as the distance between nodes, and then used this to compute the relative

link latency. Latencies were then scaled in the range [0, 2] in line with prior

studies [2,201]. Bandwidth of each link was randomly sampled from {10, 40, 100}

Gbps.

The VNF data used is provided in Table 4.3 and was extracted from prior stud-

ies [2,195,202–204]. We assume an availability of 0.9999 and 0.999 for servers and

VNFs respectively as per Wang et al. [205]. The network slice SFC requirements

used are provided in Table 4.4 and have been extracted from prior studies [2,206],

and industrial technical specifications [23,207].

The slice use cases were selected in line with the general categories identified

in Section 4.2, where autonomous driving, UHD video streaming and smart city

81

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

Table 4.3: VNF requirements: C is the CPU requirement, M is the memory
requirement, T is the throughput and L is the latency.

VNF C (cores) M (GB) T (Mbps) L (ms)

FW 4 4 600 0.8

TM 10 10 2000 0.1

IDS 8 8 600 0.01

NAT 16 16 3200 0.1

VOC 8 8 2320 0.25

ADNF 8 8 1500 0.1

FW: Firewall, TM: Traffic Monitor, IDS: Intrusion Detection System, NAT: Network
Address Translator, VOC: Video Optimization Controller, ADNF: Autonomous Driving
Network Function

correspond to URLLC, eMBB and mMTC respectively, The cost of violating each

SFC was set according to the priority ranking from Jalalian et al. [206].

The number of SFC requests were varied (in the range 20 - 700), with each

request being randomly assigned to slices from Table 4.4 and source and sink

node. In order to simulate realistic traffic scenarios, the probability of sampling

each slice type was estimated based on past internet traffic [208] (shown as Prob

in Table 4.4). To scale the load on the network, we introduced a “load factor”,

which scaled the number of users accessing each SFC; for example a load factor 5

meant that every SFC in the network was being accessed by 5 users and therefore

the total throughput would be 5T s.

Since there are no comparable models incorporating all the features considered

in our approach, we compare our solutions to the LRMP LP solution after column

generation. Note that the column generation procedure was solved to within 1%

of optimality. Through using the reduced cost, we computed the lower bound

from the LP solution (shown in the “LP Obj” column) which is a valid lower

bound on the original MP. Similarly each RMP MILP was solved using branch

and bound with an optimality gap of 1% and a time limit of 3600s. As per the

82

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

Table 4.4: SFC requirements for different slices: T is the throughput requirement,
L is the latency, A is the availability, Prob refers to the probability of sampling
the slice and W is the SLA violation cost.

Network
Slice

Required
VNFs

T
(Mbps)

L (ms) A (%) Prob W s

Autonomous
Driving

NAT-FW-
TM-ADNF

10 5 99.999 0.1 3

UHD
Streaming

NAT-FW-
TM-VOC-

IDS
200 100 - 0.4 2

Smart City
NAT-FW-

IDS
0.1 - - 0.5 1

LRMP, this still gives us a valid upper bound on the MP (shown in the “Obj”

column). Gurobi was selected as the solver since it has been shown to be faster

than similar competitors on recent benchmarks [209].1

4.7 Results

Experimental results are provided in Table 4.5.

SLA Violation Cost The total SLA violation cost is provided in the objective

column “Obj.” which shows the objective of the RMP MILP. Note that since we

are minimizing, this is an upper bound on the optimal solution. Comparatively,

the LP objective column “LP Obj.” shows the optimal solution to the LRMP

which is a lower bound on the optimal value. The difference between the upper

and lower bound (UB−LB)/UB, is shown as a percentage in the “Gap” column.

Typically the model performs poorer on cases in which the number of SFCs

and load factor is low. This is thought to be attributed to the high fractionality of

the assignment variables yfn for these cases. In a number of instances in which the

1Source code and problem instances can be accessed online at: https://anonymous.4open.
science/r/VNFPP-CG-00DC

83

https://anonymous.4open.science/r/VNFPP-CG-00DC
https://anonymous.4open.science/r/VNFPP-CG-00DC

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

Network
No.
SFCs

Load
Factor

LP
Obj.

Obj.
Gap
(%)

Total
Pens.

Av.
Pens.

Lt.
Pens.

Tp.
pens.

Run-
time
(s)

MILP
Run-
time
(s)

CG
Run-
time
(s)

abilene 20 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.50
abilene 20 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.00 0.49
abilene 20 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.01 0.49
abilene 20 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.01 0.61
abilene 20 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.02 0.91
abilene 50 1 0.30 0.33 7.87 0.11 0.00 0.10 0.01 2.25 0.09 2.16
abilene 50 2 0.60 10.66 94.38 4.21 2.00 0.20 2.01 2.21 0.60 1.61
abilene 50 3 0.90 0.90 0.12 0.30 0.00 0.30 0.00 2.17 0.21 1.96
abilene 50 4 1.20 9.73 87.68 4.43 0.00 0.80 3.63 5.12 2.96 2.16
abilene 50 5 1.50 29.46 94.91 14.34 0.00 0.50 13.84 21.93 18.62 3.31
abilene 100 1 3.60 11.86 69.64 5.29 0.00 1.20 4.09 3.71 0.35 3.36
abilene 100 2 7.20 7.20 0.02 2.40 0.00 2.40 0.00 5.15 1.04 4.11
abilene 100 3 14.70 31.80 53.78 14.00 0.00 3.60 10.40 1034.45 1015.17 19.28
abilene 100 4 102.41 111.89 8.48 53.06 0.00 4.80 48.26 495.25 477.39 17.86
abilene 100 5 189.78 202.82 6.43 97.50 0.00 6.00 91.50 476.61 456.25 20.36
abilene 200 1 0.60 3.67 83.65 1.67 0.00 0.30 1.37 32.55 25.09 7.46
abilene 200 2 112.49 125.32 10.24 61.56 0.00 1.00 60.56 316.41 287.58 28.83
abilene 200 3 292.04 304.58 4.12 150.64 0.00 0.30 150.34 930.08 912.31 17.77
abilene 200 4 471.19 484.75 2.80 239.39 0.00 1.20 238.19 132.48 114.82 17.66
abilene 200 5 651.25 661.47 1.54 326.73 0.00 1.50 325.23 45.35 29.19 16.16
nobeleu 300 1 6.00 9.60 37.50 3.20 1.00 2.20 0.00 26.54 4.59 21.95
nobeleu 300 2 12.00 35.66 66.35 15.23 0.00 5.00 10.23 1154.69 1119.17 35.52
nobeleu 300 3 83.20 114.00 27.01 53.31 0.00 1.50 51.81 3783.57 3600.06 183.51
nobeleu 300 4 318.91 347.23 8.16 168.02 0.00 8.00 160.02 3757.26 3600.09 157.17
nobeleu 300 5 554.94 572.15 3.01 278.39 0.00 10.00 268.39 3812.27 3600.06 212.21
nobeleu 400 1 30.00 37.16 19.27 12.42 2.00 10.05 0.37 162.34 126.63 35.71
nobeleu 400 2 71.51 122.35 41.55 50.33 0.00 17.80 32.53 3682.93 3600.03 82.90
nobeleu 400 3 409.70 434.28 5.66 199.64 0.00 6.90 192.74 3778.47 3600.07 178.40
nobeleu 400 4 754.20 775.62 2.76 363.62 0.00 16.64 346.98 3755.44 3600.05 155.39
nobeleu 400 5 1090.90 1116.75 2.31 527.75 0.00 10.50 517.25 3756.83 3600.17 156.66
nobeleu 500 1 21.00 21.00 0.00 7.00 0.00 7.00 0.00 70.46 8.64 61.82
nobeleu 500 2 258.10 289.93 10.98 136.25 0.00 15.00 121.25 3913.12 3600.08 313.04
nobeleu 500 3 699.10 725.38 3.62 348.68 0.00 15.30 333.38 3867.85 3600.02 267.83
nobeleu 500 4 1127.55 1168.94 3.54 564.90 0.00 28.40 536.50 3871.82 3600.12 271.70
nobeleu 500 5 1570.07 1600.55 1.90 775.13 0.00 35.50 739.63 2056.64 1834.34 222.30
nobeleu 600 1 36.00 36.60 1.64 12.20 0.00 12.20 0.00 3674.62 3600.02 74.60
nobeleu 600 2 374.15 404.05 7.40 188.09 0.00 24.60 163.49 4010.19 3600.08 410.11
nobeleu 600 3 871.27 896.11 2.77 425.58 0.00 7.50 418.08 3918.77 3600.02 318.75
nobeleu 600 4 1366.79 1399.76 2.36 669.62 0.00 45.12 624.50 3828.99 3600.07 228.92
nobeleu 600 5 1862.69 1903.24 2.13 912.00 0.00 20.45 891.55 1928.65 1667.65 261.00
nobeleu 700 1 21.00 80.60 73.94 35.87 0.00 8.30 27.57 3720.72 3600.02 120.70
nobeleu 700 2 579.78 611.52 5.19 295.51 0.00 5.00 290.51 4178.42 3600.04 578.38
nobeleu 700 3 1170.59 1208.35 3.12 587.61 0.00 4.50 583.11 4058.58 3600.08 458.50
nobeleu 700 4 1774.12 1808.35 1.89 881.25 0.00 28.80 852.45 3981.58 3600.12 381.46
nobeleu 700 5 2370.00 2408.31 1.59 1174.83 0.00 7.00 1167.83 871.56 379.51 492.05

Table 4.5: Table showing experimental results.

84

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

network flow was low, the throughput constraint (constraint (5) in the LRMP)

could be satisfied by setting yfn ≈ 0. Paths were thus generated assuming this was

a valid configuration. When integrality was restored and the variables yfn were

forced to be integer, the ILP tried to set yfn = 1, but this resulted in a violation of

constraints (1) and (2) for that particular node. Since the yfn variables were then

required to be zero, and no paths had been generated for other configurations,

these cases ended up paying some quantity of throughput penalties which were

not paid in the LRMP. This is evident for example in Abilene with the number

of SFCs 50 and load factor 4. Nonetheless, the more realistic sized cases tended

to be solved to within 10% of optimality.

In the cases we ran, the model mostly managed to satisfy availability for

the SFCs. For every autonomous driving SFC, the model will always choose to

split the flow down at least two paths. For example the model could select one

path with low latency to send 90% of the flow down, and then another with high

latency to send 10% of the flow down. Since the latency penalty is fractional, this

would contribute to a cost of 0.1W s. Conversely, since the availability penalty

is binary, if we were to route all the flow down the low latency path, the model

would pay a cost of W s. Of course a different tradeoff could be achieved through

a different parameterisation of the availability penalty versus latency.

Runtime The runtime for the procedure is highlighted in the column “Run-

time”. We also show a breakdown of the column generation runtime (“CG Run-

time”) versus the RMP MILP runtime (“MILP Runtime”). Note that the column

generation runtime corresponds to the total runtime over the course of all CGP

subproblems and LRMP LPs. It’s worth noting that the column generation pro-

cedure is quite quick with all problems being solved within 600s. This is partially

attributed to the fact that we solve the LRMP to within 1% of optimality, since

we found that the column generation procedure struggles with convergence as

85

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

the gap approaches zero. It was empirically found that 1% represented the best

termination criteria, tightening the gap resulted in new columns being generated

that did not result in a significant improvement to the objective. This was already

deemed sufficient enough for practical purposes and so we did not investigate any

stabilisation techniques. Most of the runtime is composed of solving the RMP

MILP, since it involves solving a large MILP with many integer variables. We

also found that branch and bound struggled to converge within a reasonable time

for many instances when solving the RMP; hence our decision to also solve the

RMP to within 1% of optimality.

Despite having significantly less variables than if we were to enumerate all

paths, the RMP still has a significant number of variables (19595 continuous and

9623 integer for Nobel EU with 700 SFCs and load factor 5). As such solving

the RMP MILP was still impractical for the larger instances. Instead, we set a

time-limit of 1 hour (3600s) for Gurobi. When the problem could not be solved,

the best incumbent solution was returned which still gives a valid upper bound

on the optimal solution. Hence, where the MILP runtime is quoted as 3600s,

the solver failed to find the optimal solution within the time-limit. Despite not

satisfying the optimality termination criteria, the solver is typically able to find

solutions that are within 10% of the optimal value. It’s important to note that

this gap is conservative since the LP lower bound is not tight, therefore the actual

optimality gap may be much smaller than quoted in Table 4.5.

We would like to mention that we use integer variables to model the assign-

ment of VNFs to compute nodes, yfn. Of course, this could be replaced with

multiple binary variables yf,in ∈ {0, 1}, where i refers to the number of instances

of VNF f installed on node n. This could potentially improve the convergence

efficiency of branch and bound in the RMP, however it was found that the model

quickly reached reasonable incumbent solutions (±10% within 100s) and so this

comparison was left as an avenue for future work.

86

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

Figure 4.6: Plot showing gap versus MILP runtime for Nobel EU with 700 SFCs
and load factor 3.

It’s also worth pointing out that the RMP MILP tends to find a reasonable

incumbent solution quite quickly. This is shown for the Nobel EU case with 700

SFCs and load factor 3 in Figure 4.6. After 100 seconds of solving, the optimality

gap is just 5.20% with the remaining 3500s only resulting in a 2.08% reduction.

4.8 Conclusion

We present a QoS sensitive VNF-PRP algorithm which satisfies SLA constraints

(latency, throughput and availability) if possible, otherwise it minimizes the cost

of SLA violations. This allows us to generate solutions which are compliant with

the diverse requirements of 5G network slices. We introduce one solution method

using column generation, in which we iterate between generating improving paths

and optimizing the placement and routing of the VNFs given the generated paths.

The column generation sub problem can be solved efficiently meaning that

practical sized problems can be solved in a reasonable time. We experimentally

validated our approach on a realistic MEC architecture generated using SNDlib

87

Chapter 4. SLA Aware VNF Placement and Routing using Column Generation

benchmarks. We show that for realistic sized instances (28 vertices, 41 edges,

700 SFCs), our approach is typically able to find near-optimal solutions within a

practical time-frame (±10% of optimal value within 1 hour).

We conclude by addressing some caveats and avenues for future work. First,

we found that when the number of SFCs and the network load is low (low number

of users/SFCs), the solution can be quite poor (gap of 94.91% for the worst case).

This is a result of the fractionality of the VNF assignment variables as explained in

Section 4.7. One solution would be to employ a branch and price framework [133]

to add columns at local nodes in the search tree. This would permit finding the

optimal solution but would require using specialised solvers (e.g. SCIP [210]).

Implementation of a branch and price solution using SCIP would be a significantly

involved engineering project requiring writing custom branching rules. While a

Python interface for SCIP exists (see PySCIPOpt [211]), support is limited and

column generation was providing good solutions, hence our decision not to pursue

this avenue. Another potentially interesting avenue is a more comprehensive

study of the trade-off between satisfying QoS and minimizing operational cost.

Operational cost is typically a function of the bandwidth and number of nodes

used. One could model the problem as a multi-objective optimization problem

as explained in Section 4.5.1. By varying the weights, a Pareto front of solutions

could be generated.

88

Chapter 5

A Column Generation Approach

to Correlated Simple Temporal

Networks

“A plan is what; a schedule is when. It takes both a plan and a schedule

to get things done.”

– Peter Turla

5.1 Introduction

Automated planning is the problem of selecting a sequence of actions which,

when applied to some initial state, satisfies a number of goal conditions [30].

Temporal planning is a particular class of planning problems in which actions

have durations. Once the plan has been found there remains the problem of

executing the actions within the real world. Actions have a number of conditions

which must be satisfied for their success to be guaranteed, therefore maintaining

the correct order of the actions is crucial. This is increasingly difficult in temporal

planning where external uncertainty factors can result in action durations taking

89

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

significantly longer or shorter than those assumed in the planner. As such it

becomes necessary to decide when to perform the actions such that this ordering

is maintained. Such a problem falls within the realm of scheduling.

Simple Temporal Networks with Uncertainty (STNU) [212], are graphs used

to represent and reason over scheduling problems involving uncertain durations.

In an STNU, actions are denoted as time-point vertices on the graph, whereas the

edges represent constraints on the duration between the time-points. A solution

to an STNU, is a schedule at which to execute the time-points, such that the

temporal constraints are satisfied. STNUs capture uncertainty in the problem

through the inclusion of set-bounded contingent links. Continuous probability

distributions are a more accurate representation of duration uncertainty; Proba-

bilistic Simple Temporal Networks (PSTN) model the uncertain duration with a

probability density function [13,100].

When dealing with uncertainty in temporal networks, it is typical to classify

the problem in terms of controllability [213], which states how sophisticated an

execution strategy is allowed. Strong Controllability (SC) asks if there is a single

schedule robust to all uncertain outcomes, i.e. all constraints are satisfied no

matter what happens. However, PSTNs are rarely strongly controllable as the

continuous probability distributions are unbounded.

A PSTN can be reduced to a strongly controllable STNU through truncating

the distributions over durations. However, this discards some of the probability

mass of the distribution, thus reducing the robustness of the schedule. A variety

of approaches have been introduced for solving SC of PSTNs while maximizing

robustness [13,100–102]. However, these approaches either bound above the risk

using Boole’s inequality which offers no guarantee on optimizing robustness; or

solve a generic non-linear optimization problem which can be computationally

expensive. Furthermore, all prior approaches assume independence of uncontrol-

lable outcomes, which does not always hold. As an example consider a network of

90

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

drones to be used in the delivery of medical supplies to rural communities [214].

The drone must fly between locations, picking up and dropping off supplies before

they expire. Each leg of the journey is subject to correlated temporal uncertainty

as a result of weather factors such as wind speed and direction. In vehicle routing

problems correlation has been shown to exist in travel times [215], with coeffi-

cients as high as 0.75 [216].

In this chapter we introduce the Correlated Simple Temporal Network (Corr-

STN) which generalises the PSTN by removing the assumption of independence.

We show that the problem of optimizing robustness is convex for a wide range of

log-concave distributions. This allows us to solve Corr-STN SC using one of the

many available convex optimization algorithms. We introduce one such approach

leveraging the column generation method [217], in which we iteratively refine and

optimize on an approximation of the distributions. This approach provides the

decision maker the choice to trade-off numerical time spent with an acceptable

optimality guarantee.

We test our approach on a number of drone delivery temporal planning prob-

lems. Corr-STNs are generated from the solution to the planning problem (the

plan) and solved to compute a schedule maximizing robustness. We compare

results against a linear program (LP) using Boole’s inequality [101] and our

approach assuming independence. We then perform Monte-Carlo simulations,

simulating the execution of each schedule on the Corr-STN and compare the ro-

bustness (the total probability of success) and accuracy of solutions. We show

that considering the correlations offers more robust schedules than using Boole’s

inequality or assuming independence. Although the robustness benefit of consid-

ering correlations varied substantially, we typically experienced greater improve-

ments when the optimal robustness was low. When the optimal robustness was

less than 0.5, considering correlation offered an average robustness improvement

of 8.51% over using Boole’s, and 3.50% over assuming independence. We also

91

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

highlight that while Boole’s is a bounding approximation of the true robustness,

it can be grossly inaccurate, whereas assuming independence can be more ac-

curate but is not guaranteed to give a conservative estimate of robustness. On

the other hand, considering the correlation gives an accurate approximation of

the true robustness but is more computationally expensive versus the other two

approaches.

In Section 5.2 we introduce definitions related to STNUs, PSTNs, controlla-

bility and robustness. In Section 5.3 we review relevant literature and place the

contribution of this chapter in context with respect to related work on PSTN SC.

In Section 5.4 we motivate the importance of considering correlations through

reference to a toy example and formally define the Corr-STN. In Section 5.5 we

highlight how Corr-STN SC can be encoded as a convex optimization problem.

In Section 5.6 we present one possible solution approach utilising the column gen-

eration method. In Sections 5.7 and 5.8 we describe the setup and results of our

experimental evaluation. We conclude and address avenues for future research in

Section 5.9.

5.2 Background

Simple Temporal Networks with Uncertainty Simple Temporal Networks

(STN), outlined in Section 2.2.3, are graphs used to model scheduling problems

involving actions. One of the key issues with STNs is the assumption that all

time-points are controllable; we can control the duration that actions will take.

STNUs [212] were introduced to model the temporal uncertainty inherent in the

real world. In STNU semantics, a distinction is made between contingent links,

for which the duration of the interval is uncertain, and requirement links, for

which we can choose the duration.

Definition 7 (STNU). A STNU is a tuple, SU = ⟨Tc, Tu, C,G⟩ where b ∈ Tc is

92

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

b1 b2 e2 b3
Wait

[0,∞]
Work

[6, 10]
Wait

[0,∞]

Deadline

[10, 10]

Figure 5.1: Example Simple Temporal Network with Uncertainty.

the set of controllable time-points and e ∈ Tu is the set of un-controllable time-

points, such that t ∈ {Tc ∪ Tu}. The set C is the set of temporal requirement

constraints between two time-points, normally written in the form c(tj, ti) = tj −

ti ∈ [lc,ij, uc,ij]. The set G is the set of contingent links given in the form g(ei, bi) =

ei − bi ∈ [lg,i, ug,i]. Here lc∨g, uc∨g is the lower and upper limits for the constraint

or contingent link respectively. Let s (b) ∈ R+ be the assignment of a value to the

controllable time-point b. Let o (e) ∈ R+ be the value observed by an uncontrollable

time-point e. A projection of a contingent link gi is ωi := o(ei)− s(bi).

Returning to the example introduced in Section 2.2.3, we assume that the

student cannot choose exactly how long it will take for him to complete his

assignment, but that it will take some duration between 6 and 10 days. An

equivalent STNU is provided in Figure 5.1 and the relevant time points are listed

below:

b1 : Time at which the professor gives the project to the student.

b2 : Time at which the student begins work on the project.

e2 : Time at which the student finishes work on the project.

b3 : Time of the deadline (When the student must finish the work by).

Note that the time-point e2, is uncontrollable. The student is free to choose

when to begin the project, but since the duration that it will take to perform

93

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

the work is uncertain (denoted by contingent link g(e2, b2) highlighted in red in

Figure 5.1), the student cannot schedule the time that he will finish the work.

An effective strategy must consider all possible projections of the contingent link.

Strong Controllability The concept of consistency was extended for STNUs

by Vidal [213] to the notion of controllability. Split into three categories (strong,

dynamic and weak) controllability can be considered as a way of classifying how

much control is needed to satisfy all constraints. Strong controllability (SC) says

that the STNU is consistent, regardless of the outcome of the uncertain contingent

links.

Definition 8 (Strong Controllability). Denote Ω, the space of outcomes of the

contingent links: Ω = ×g∈G[lg, ug]. Let the schedule s be the assignment: s(b),

∀b ∈ Tc. An STNU S is said to be strongly controllable if: ∃s | c(tj, ti) ∈

[lc,ij, uc,ij], ∀c ∈ C, ∀ω ∈ Ω.

SC is a highly desirable property, as it offers the advantage that a fixed-time

schedule can be computed offline which will work regardless of how the contingent

links are realised at execution.

Without loss of generality, the requirement constraints can be separated into

the set of controllable constraints Cc in the form: c(bj, bi) = bj − bi ∈ [lc,ij, uc,ij]

and uncontrollable constraints Cu in the form: c(ej, bi) = ej − bi ∈ [lc,ij, uc,ij]

(as per c(e2, b1) in Section 5.4) or c(bj, ei) = bj − ei ∈ [lc,ij, uc,ij] (as per c(b2, e1)

in Section 5.4). By substituting ej = bj + ωj or ei = bi + ωi, we can write

the uncontrollable constraints in terms of the controllable time-points, and the

projection, as per Equations (5.1) and (5.2):

c(ej, bi) = bj + ωj − bi ∈ [lc,ij, uc,ij] (5.1)

c(bj, ei) = bj − bi − ωi ∈ [lc,ij, uc,ij] (5.2)

94

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

To check whether an STNU S is strongly controllable, it is sufficient to check

that the requirement constraints are satisfied for the worst possible projection of

the contingent links. This can be achieved by rearranging for ω, giving us the

maximum and minimum value (ug and lg respectively) that the projection can

take, while still satisfying the uncontrollable constraint. For constraints of the

form present in Equation (5.1), the worst cases are provided in Equations (5.3)

and (5.4):

max
ωj∈[lg,j ,ug,j]

c(ej, bi) := ug,j ≤ bi − bj + uc,ij (5.3)

min
ωj∈[lg,j ,ug,j]

c(ej, bi) := lg,j ≥ bi − bj + lc,ij (5.4)

And for constraints of the form present in Equation (5.2), the equivalent worst

cases are presented in Equations (5.5) and (5.6):

max
ωi∈[lg,i,ug,i]

c(bj, ei) := ug,i ≤ bj − bi − lc,ij (5.5)

min
ωi∈[lg,i,ug,i]

c(bj, ei) := lg,i ≥ bj − bi − uc,ij (5.6)

For further details on solving STNU SC, we refer the reader to the work of Morris

and Muscettola [218] or Cimatti et al. [219].

Returning to the STNU example from Figure 5.1, the schedule s = {b1 :=

0, b2 := 0, b3 := 10} is a valid schedule for every projection ω2 ∈ [6, 10] and so the

STNU is SC.

Probabilistic Simple Temporal Networks When sufficient data is available,

it is more accurate to model the space of projections of a contingent link by a

probability density function. This allows the scheduling process to focus on the

durations most likely to be realised at execution. Probabilistic Simple Temporal

Networks (PSTN) were introduced by Tsamardinos et al. [100].

95

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

b1 b2 e2 b3
Wait

[0,∞]
Work

X2 ∼ N (8, 1)
Wait

[0,∞]

Deadline

[10, 10]

Figure 5.2: Example Probabilistic Simple Temporal Network.

Definition 9 (PSTN). A PSTN is a tuple, SP = ⟨Tc, Tu, C,D⟩, where Tc, Tu and

C are as per the STNU. The set of probabilistic constraints D, are in the form

d(ei, bi) = ei − bi = Xi, where Xi is a random variable with a set of outcomes

Ωi, probability density function f(ωi) and cumulative probability function F (z) =

P (Xi ≤ z).

The STNU in Figure 5.1, offers no insight into the likelihood of the student

taking 6 days versus 10 days to complete the assignment. Furthermore, it assumes

that there is zero probability that the task will take longer than 10 days, or less

than 6 days. This is not necessarily the case in practice. A more accurate

representation may be to use a Gaussian distribution: the length of time that the

student will take to perform the assignment can be described with a mean of 8

days, and a standard deviation of 1 day. An example PSTN is given in Figure 5.2.

PSTN SC and Risk It should be noted that the PSTN in Figure 5.2 is not

SC as the Gaussian distribution is unbounded. Even if the student was to be-

gin working on the assignment as soon as it was provided, there is a non-zero

probability that the assignment will take significantly longer than 10 days. The

probability of such an event occurring however is very small, and so considering

these unlikely outcomes could be deemed overly conservative.

As a result, it is typical to truncate the distribution by neglecting the extreme,

unlikely outcomes in the tails, i.e: Ω∗i = [ld,i, ud,i]. If we denote by d∗(ei, bi) the

96

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

transformed probabilistic constraint with value defined by random variable X∗i

and set of outcomes Ω∗i, then performing this transformation transforms the prob-

abilistic constraint to a contingent link: d∗(ei, bi) = ei − bi = X∗i ∈ [ld,i, ud,i] ≡

g(ei, bi). Applying this transformation to all d ∈ D, is equivalent to transforming

the PSTN SP , to an equivalent STNU S∗U . However the schedule is now only

robust to the outcomes considered in S∗U . The probability mass excluded by

performing this transformation is the risk of S∗U , while the probability mass con-

sidered is the robustness. This is shown for one particular probabilistic constraint

in Figure 5.3, where the hatched area refers to the risk and the area between the

dotted and dashed line is the robustness. We refer to Fang et al. [13] for a

definition of robustness and risk, written in its equivalent form below.

Definition 10 (Robustness and Risk). Let s be a schedule and denote c(s, ω), the

value of constraint c ∈ C, given the schedule s and outcome ω ∈ Ω. If for every

c ∈ C, c(s, ω) ∈ [lc,ij, uc,ij]: then ω ∈ ΩR ⊆ Ω. The robustness Γ, of a schedule s,

is P (ΩR), while the risk ∆, is P (Ω̄R), where Ω̄R denotes the complement of the

set ΩR.

Since the joint probability functions, P (ΩR) and P (Ω̄R) may be non-trivial,

it is typical to treat each probabilistic constraint independently, such that the

robustness can be evaluated: Γ =
∏

d∈D P (ld ≤ X ≤ ud) and the risk: ∆ =

1 −
∏

d∈D P (ld ≤ X ≤ ud). The values of ud and ld are determined through the

SC relationships, Equations (5.3) to (5.6), by substituting lg, ug for ld, ud. To

permit a linear formulation, it is possible to bound above the risk using Boole’s

inequality. Boole’s inequality states that the probability of at least one event

happening is strictly less than sum of the probabilities of the individual events.

The risk can therefore be approximated as ∆ =
∑

d∈D (1− F (ud) + F (ld)), while

the robustness: Γ =
∑

d∈D (F (ud)− F (ld)).

Returning to the example PSTN from Figure 5.2, from Equations (5.3) to (5.6),

97

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

Figure 5.3: Figure showing risk associated with squeezing a probabilistic con-
straint to an equivalent contingent link.

to enforce SC we need the following conditions to hold:

b2 − b1 ≤ ∞

b2 − b1 ≥ 0

b3 − b1 = 10

ud,2 ≤ b3 − b2

ld,2 ≥ b3 − b2 −∞

Assuming the schedule s = {b1 := 0, b2 := 0, b3 := 10}, for SC to hold, we have

that ud,2 ≤ 10 and ld,2 ≥ −∞. We can transform the probabilistic link d(e2, b2)

to a contingent link g(e2, b2) = e2 − b2 ∈ [−∞, 10]. The resulting STNU is SC

with schedule s, robustness Γ = P (−∞ ≤ X2 ≤ 10) and risk ∆ = 1− P (−∞ ≤

X2 ≤ 10).

98

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

5.3 Related work

5.3.1 Algorithms for PSTN SC

PSTNs were first introduced by Tsamardinos [100]. They motivated the need for

such a framework by highlighting that prior STNU SC approaches [220], assume

that the probability of durations existing outwith the bounds of contingent links

is zero: which is not the case in practice. Instead, they explicitly compute the

probability mass excluded by transforming a PSTN to a strongly controllable

STNU. They show that robust execution of PSTNs should focus on finding the

schedule that maximizes the probability of success (robustness). By assuming

independence, they leverage Sequential Quadratic Programming to find static

schedules: thus first solving the problem of PSTN SC.

Fang et al. [13] noted that maximizing robustness can lead to conservative

solutions. To counter this, they introduced the Chance Constrained PSTN (CC-

PSTN), by enforcing an allowable tolerance on the risk as a constraint in the

system. Some other objective function could then be optimized, while ensuring

that the schedule risk does not exceed the bound. Perhaps more importantly,

they show that constraints containing an uncontrollable time-point can be con-

verted to a set-bounded contingent link, thus drawing analogies between PSTNs

and STNUs. Their solution uses Boole’s inequality to bound above the risk and

therefore is a conservative approximation of the true robustness. Wang et al. [221]

introduce a more efficient method of CC-PSTN scheduling based on conflict de-

tection. In this approach, the problem is decomposed into smaller problems: the

first allocates risk evenly across uncertain durations resulting in an STNU, while

the latter checks the STNU for SC and returns conflicts to be added to the first

model in the form of constraints.

In some instances, the risk required to enforce SC can be deemed too high. Yu

et al. [103] extend the chance-constrained framework to the Relaxable CC-PSTN

99

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

by permitting the use of soft constraints which can be relaxed. The relaxable

CC-PSTN is solved by Yu et al. as per Wang et al. [221] using a nonlinear solver,

combined with a conflict detection mechanism based on identification of negative

cycles in STNUs.

All aforementioned methods make use of non-linear optimization solvers to

solve SC of PSTNs. Such approaches are often difficult to solve and offer no

guarantee of global optimality. By using Boole’s inequality and forming piece-

wise linear approximations of the cumulative density function (CDF), Santana

et al. [101] were the first to present a fully linear encoding of PSTN SC. This

enabled solutions to be found online, using commercial off the shelf linear pro-

gramming solvers. Lund et al. [102] also leverage linear programming solvers in

their Static Robust Execution Algorithm (SREA). They iteratively pose and solve

an LP using non-bounding approximations of the probability mass in the tails

of the probability distributions. By iteratively solving SREA within a loop, they

present a dynamic execution algorithm which can react to unexpected outcomes

at execution, thus paving the way to PSTN dynamic controllability.

To the best of the authors’ knowledge, all previous approaches to PSTN SC

assume independence [13, 100–103], and either use Boole’s inequality to bound

above the risk [13, 101, 103], or solve a generic non-linear optimization prob-

lem [100,221]. Using Boole’s inequality permits the use of LPs, however it is not

guaranteed to return the optimal solution maximizing robustness (see Section

5.4); procedures used to solve generic non-linear optimization problems offer no

guarantee on either optimality or computational efficiency.

In Section 5.5, we show that PSTN SC can be modelled as a convex optimiza-

tion problem enabling globally optimal, robust schedules to be found. We suggest

one approach in Section 5.6, that has been employed in convex optimization lit-

erature. Rather than using piecewise linear approximations of the CDF which

is not convex (see Santana [101]), we form inner approximations of the negative

100

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

log of the CDF which is convex. These inner approximations are analogous to

piecewise linear approximations in one dimension, however generalise to polyhe-

dral approximations at higher dimensions. This makes it possible to approximate

multivariate random variables and consequently consider correlations in the op-

timization. Every approach outlined in this section assumes independence of

probabilistic constraints, making our approach the first to consider correlations.

5.3.2 Correlations in Scheduling

While assuming independence when solving scheduling problems improves tractabil-

ity, it can often lead to inaccurate or sub-optimal solutions. This is particularly

the case when strong correlations exist. Correlated uncertainty exists in many

practical applications of scheduling algorithms, in this section we aim to elucidate

this with reference to some examples.

Industrial Production In Zhang et al. correlated uncertainty is studied in

production scheduling of ethylene plants [25]. The authors highlight that causal

relations between upstream and downstream equipment in the process, as well

as uncertainty in the demand and supply of resources can lead to correlations

between consumption rates of different furnaces, with coefficients as high as 0.5.

In a similar vein, Lu et al. [222] study the single machine scheduling problem and

show that correlations may arise in job processing times, driven by factors such

as shortage of raw materials, availability of staff and machine breakdowns.

Energy Networks In renewable energy networks, energy providers face the

challenge of balancing energy generation to cope with demand. Renewable energy

generation from different turbines is inherently uncertain and depends strongly

on correlation factors such as wind speed [223]. The problem of scheduling when

to activate the generators is denoted the energy and reserve dispatch scheduling

101

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

problem. Xu et al. [26] study the energy and reserve dispatch problem and

note that supply of energy from different turbines is strongly correlated, with

coefficients as high as 0.9.

Construction Ökmen and Öztaş [224] focus on analysing risk in construction

schedules and highlight that weather may affect which tasks can be performed

when, or how long it takes to perform particular tasks. Wang et al. [225] also

note that labor and site conditions contribute to correlations in activity durations.

Maronati and Petrovic [226] note that construction activity durations of the same

type (i.e. welding or concrete pouring) are often highly correlated. Likewise, Eiris

Pereira and Flood [227] note that correlation in activity durations greater than

0.8 can result in the construction crew spending 7% of their time idle, as well as

a 12% extension in project duration.

Vehicle Routing Park et al. [216] showed that correlations can exist in travel

times between roads, with coefficients as high as 0.75. They note that traffic

congestion in upstream roads can correlate with increased travel times in the

near future. Conversely, Nicholson [228], highlights that negative correlation can

occur in road networks as a result of drivers increasing speed to make up for

delays caused by congestion. Bakach et al. [215] study vehicle routing problems

under correlated uncertainty and show that considering correlations can result

in a 13.76% reduction in solution make span. For delivery companies, whose

profit is driven by how many customers can be served in a set time, considering

correlation could yield a significant improvement in profits.

5.4 Motivating Example

We motivate our approach by discussing the toy example given in Figure 5.4.

Consider a drone used in the transportation of medical supplies. After being

102

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

b1 e1 b2 e2
Travel
N (60, 10)

Collect

[0,∞]
Travel

N (100, 25)

Deadline

[0, 160]

Figure 5.4: Image showing toy example

notified of a potential delivery, the drone must fly from a depot, to a location to

pick it up. The travel time of this leg of the journey (e1 − b1) is described by

the random variable X1 ∼ N (60, 10). After it has collected the supplies it must

fly to the drop off point and deliver the supplies within the required time-frame

(between 0 and 160 minutes after setting out e2 − b1). This leg of the journey

(e2 − b2) can be described by the random variable X2 ∼ N (100, 25).

We want to find the schedule that maximizes robustness Γ. We have two

uncontrollable constraints c(b2, e1) and c(e2, b1). From Equations (5.1) and (5.2)

we have:

c(b2, e1) ≡ 0 ≤ b2 − b1 −X1 ≤ ∞

c(e2, b1) ≡ 0 ≤ b2 +X2 − b1 ≤ 160

The only decision variable is the difference between the time assigned to b2 and

b1. W.l.o.g. we assume b1 = 0.

Boole’s Inequality Using Boole’s inequality we can formulate the objective

as:

max
b2
{P (b2 −∞ ≤ X1 ≤ b2) + P (−b2 ≤ X2 ≤ −b2 + 160)}

If we consider first that b2 = 75 then we have:

(FX1(75)− FX1(−∞)) + (FX2(85)− FX2(−75)) = 1.21

103

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

Next we consider that b2 = 67 so we have:

(FX1(67)− FX1(−∞)) + (FX2(93)− FX2(−67)) = 1.14

Using Boole’s, b2 = 75 is clearly the better schedule.

Joint Outcome with Independence If we consider the joint outcome with

independence then the objective is:

max
b2
{P (b2 −∞ ≤ X1 ≤ b2)P (−b2 ≤ X2 ≤ −b2 + 160)}

For b2 = 75:

(FX1(75)− FX1(−∞)) (FX2(85)− FX2(−75)) = 0.26

And b2 = 67:

(FX1(67)− FX1(−∞)) (FX2(93)− FX2(−67)) = 0.30

Considering the joint outcome, the optimal solutions are switched with the sched-

ule b2 = 67, offering a 15% increase in robustness versus the solution returned

using Boole’s inequality. This effect is observed in greater detail in Figure 5.5.

Joint Outcome with Correlation We will now show that, even consider-

ing the joint outcome with independence is not necessarily guaranteed to return

optimal solutions if the correlation is experienced when the schedule is executed.

We return to the drone example and consider that the travel times X1 and

X2 are correlated due to uncertainty in wind speed. We plotted the robustness

for varying b2 and varying correlation coefficient ρ in Figure 5.5. Note that

positive correlation could occur when the two legs of the drones journey are in

104

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

Figure 5.5: Comparison of robustness using Boole’s versus actual robustness with
varying correlation coefficient ρ (below).

the same direction (if one leg encounters a headwind, then the other leg should

also encounter a headwind). On the other hand, negative correlation could occur

if the two legs are in opposite directions (if one leg encounters a headwind, the

other should encounter a tailwind and consequently take longer). Considering a

fixed schedule of b2 = 67, with ρ = 0 we have independence and consequently

the robustness is as per the previous section Γ = 0.30. On the other hand, if the

two variables have correlation ρ = 0.9 then the robustness Γ = 0.39. If we were

to assume independence in the optimization then this is the best robustness we

can hope for. It is clear from Figure 5.5, that better robustness can be achieved

through scheduling b2 five minutes earlier (b2 = 62) such that the robustness

Γ = 0.44. In this case, considering correlation in the scheduling process offers a

12.8% improvement in robustness.

To explain this difference, we refer to Figure 5.6, which shows a contour plot

of the joint probability density function of X = [X1, X2]. With b2 = 67, the ro-

bustness is given by the volume beneath the contour plot within a rectangle with

dimensions −∞ ≤ X1 ≤ 67 and −67 ≤ X2 ≤ 93 (shown by the vertical and hor-

105

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

izontal blue lines). The dimensions of the box are fixed by the constant bounds,

[lc, uc] associated with each uncontrollable constraint. Finding the schedule that

optimizes robustness, involves moving the box (by changing the schedule), such

that it covers as much of the probability mass as possible. This in turn is depen-

dent on the underlying distribution - for which correlation may have a significant

effect. For the correlated case the optimal occurs at b2 = 62, such that the rect-

angle has bounds −∞ ≤ X1 ≤ 62 and −62 ≤ X2 ≤ 98 (shown by the vertical

and horizontal red lines).

Objective Accuracy It’s worth noting that if you assume independence, you

are not guaranteed to have a conservative estimate of the actual robustness. For

example in Figure 5.5, with ρ = 0, the robustness from the model would be

Γ = 0.3. The decision maker would be expected to make a decision based on

this value, whereas in reality the robustness experienced could be much lower. If

correlation ρ = −0.9 was experienced at execution time, the actual robustness

from the schedule b2 = 67 would be Γ = 0.16. Referring to Figure 5.6 can offer

some insight into this effect. When we solve assuming independence, the solution

is a conservative approximation of the probability mass under the blue contour

plot, enclosed within the blue box. The actual robustness is the probability mass

under the red contour plot (also within the blue box). This is not guaranteed

to be strictly less than the equivalent probability mass under the independent

probability density function. While the optimal schedule for Boole’s and corre-

lation ρ = −0.9 are similar, the objective of Boole’s Γ = 1.2, offers nothing to

a decision maker who has to reason over the risk of the schedule. Under such

circumstances it becomes necessary to consider the correlation directly. We now

formally introduce the Corr-STN:

Definition 11 (Corr-STN). A Corr-STN is a tuple, SC = ⟨Tc, Tu, C,D,R⟩,

where Tc, Tu and C are as per the PSTN. R is the set of correlations involv-

106

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

Figure 5.6: Image showing bi-variate Gaussian distribution probability density
function with and without correlation.

ing a number of probabilistic constraints with correlation matrix ϱ. Each r ∈ R

defines an n dimensional multivariate Gaussian vector X ∼ (µ,Σ) with mean

vector µ and covariance matrix Σ. The set D is the set of independent proba-

bilistic constraints. If there are no correlations, then the set R = ∅ and the set

D is the set of all independent probabilistic constraints as per the PSTN.

5.5 Corr-STN SC is Convex

In this section we show how Corr-STN SC can be formulated as a convex opti-

mization problem.

Decision Variables The decision variables include the vector of controllable

time-points x, and the vector of lower and upper bounds z (introduced below).

Controllable Constraints The controllable constraints can be written in the

form of two less than inequalities: bj−bi ≤ uc,ij and bi−bj ≤ −lc,ij, such that they

107

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

represent a polyhedron: Ax ≤ β, where A is the coefficient matrix of values,

Aij ∈ {−1, 1, 0}, β is the vector of bounds βi ∈ {uc,−lc} and x is the decision

variable vector.

Independent Probabilistic Constraints For each d ∈ D, we have a number

of uncontrollable constraints preceding/succeeding it. From (5.3) to (5.6), we can

write the uncontrollable constraints in the form: bi−bj+ lc,ij ≤ Xj ≤ bi−bj+uc,ij

and bj−bi−uc,ij ≤ Xi ≤ bj−bi−lc,ij. Consequently, we have the matrix inequality

zd ≤ T dx+qd, where zd,i ∈ {ud,−ld}, Td,ij ∈ {−1, 1, 0} and qd,i ∈ {uc,−lc}. The

probability that the constraint is satisfied is given by the probability function

Fd = P (ld ≤X ≤ ud).

Correlations For each correlation r ∈ R, we write the nr uncontrollable con-

straints involved in the correlation in the form: zr ≤ T rx + qr. The difference

here is that we have more than one random variable involved in each correlation.

The vector of upper and lower bounds are in the form ur = [ur,1, . . . , ur,nr]
T and

lr = [lr,1, . . . , lr,nr]
T , and therefore calculating the probability that the constraints

are satisfied involves calculating the joint probability function Fr = P (lr ≤X ≤

ur), for the multivariate distribution X ∼ N (µ,Σ) as per Definition 11.

Objective Function For each d ∈ D and r ∈ R, we know that the lower

and upper bounds ld,ud and lr,ur are directly encoded in the vectors zd and zr

which represent rows of a vector z, such that z = [zd1 , . . . ,zd|D| , zr1 , . . . ,zr|R|]
T .

The objective function is to maximize the robustness Γ, giving the following

optimization problem:

max
x,z
{
∏
r∈R

Fr

∏
d∈D

Fd | z ≤ Tx+ q, Ax ≤ β}

108

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

On Convexity Following from above, the only non-linear function here is the

robustness Γ =
∏

r∈R Fr

∏
d∈D Fd, used in the objective.

Proposition 1 (Corr-STN SC is Convex). Let X ∼ N (µ,Σ) be the multi-

variate Gaussian random vector representing the random durations. Prèkopa [33]

shows that the multi-variate Gaussian distribution is log-concave. Note that we

can rewrite P (l ≤ X ≤ u), as P (ηX ≤ z), where η = [I,−I]T and z =

[u,−l]T [229]. If X is log-concave, then so is ξ = ηX, since it is a linear

transformation of a log-concave distribution (Prèkopa [33] Theorem 10.2.4). If ξ

is log-concave, then the function P (ξ ≤ z) is log-concave since it is the cumulative

probability function of a log-concave distribution (Prèkopa [33] Theorem 10.2.1).

This implies that the functions Fr and Fd are log-concave. If Fr and Fd are log-

concave then so is Γ since it is the product of log-concave functions [230] and

therefore:

log

(∏
r∈R

Fr

∏
d∈D

Fd

)
=
∑
r∈R

logFr +
∑
d∈D

logFd

is concave. As a result we can reformulate the optimization problem as a convex

one:

min
x,z
{
∑
r∈R

ϕr +
∑
d∈D

ϕd | z ≤ Tx+ q, Ax ≤ β} (5.7)

In fact, the result in Proposition 1 is not unique to multi-variate Gaussian dis-

tributions: the result stands so long as the random vectors X have log-concave

probability distributions. Many useful distributions contain this characteristic, a

survey of which is provided by Bagnoli et al. [113].

Running Example Consider the small Corr-STN from Figure 5.4. In this

example, we have no controllable constraints, no independent probabilistic con-

straints and only one correlation defining a multivariate Gaussian distribution

X = [X1, X2]. The uncontrollable constraints associated with the correlation are

109

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

c(b2, e1) for X1 and c(e2, b1) for X2 respectively. We encode this as:

[
ur,1
ur,2

−lr,1
−lr,2

]
≤
[−1 1

1 −1
1 −1
−1 1

] [
b1
b2

]
+

[
0

160
∞
0

]

The objective is to find the value of vectors:

x = [b1, b2]
T

z = [ur,1, ur,2,−lr,1,−lr,2]T

that minimizes ϕr.

5.6 Method

The result of the previous section is that the problem is convex, allowing use of a

rich suite of existing solution methods. For a recent survey of techniques, we refer

to Van Ackooij [231]. In the coming section, we introduce one such method that

forms an inner approximation of the convex functions ϕd and ϕr using a number

of generated approximation points (hereby referred to as columns) [29, 232].

The problem is then solved via the column generation procedure as outlined in

Algorithm 2, in which two optimization phases are iteratively solved:

1. The Restricted Master Problem (RMP), which solves the probability

maximisation problem using the columns generated so far (line 4).

2. A Column Generation Problem (CGP) for each function ϕd and ϕr,

which finds the best new column to include in the RMP (line 7).

The results of the RMP and CGP are stored in modelR and modelC respec-

tively. We extract the dual values (modelR.duals) from the solution to the RMP,

and use them to model the reduced cost which we set as the objective to the CGP

110

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

(modelC.objective). Since we are minimizing reduced cost, any column whose

reduced cost is negative is called an improving column. If an improving column

can be found (line 8), we set terminate to False (line 9), and add the new column

(line 10). The process then repeats until no improving column can be found.

Algorithm 2: Algorithm for SC of Corr-STN

Input : A Corr-STN, SC

Output: An optimization model modelR containing a schedule that
optimizes robustness.

1 columns← getInitialColumn(SC);
2 terminate← False;
3 while terminate← False do
4 modelR← RMP(columns, SC);
5 terminate← True;
6 for function ∈ D ∪R do
7 modelC ← CGP(modelR.duals, function);
8 if modelC.objective < 0 then
9 terminate← False;

10 columns.add(modelC.solution)

11 end

12 end

13 end
Return: modelR

Inner Approximation Note that ϕr and ϕd are the only nonlinear functions

in Equation (5.7) and they are convex. For any convex function ϕ, if we have

enumerated sufficiently many finite points, {z1, z2, ...,zK}, referred to as base

(see Geoffrion [233]), in its domain, and let ϕi := ϕ(zi), then we can approximate

minϕ(z) with :

min{
K∑
i=1

ϕiλi :
K∑
i=1

λi = 1, λi ≥ 0} (5.8)

where K depends on the desired level of approximation (see Figure 5.7). Note

that from henceforth the notation i refers to the ith column. Since the inner

111

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

approximation is an over-estimate of the convex functions ϕr and ϕd, it is a

conservative approximation of the robustness Fr and Fd.

Figure 5.7: Inner approximation for a bivariate convex function ϕ(z). The red
crosses are the approximation points (columns) zi at which the function has been
evaluated and the black dots are the function evaluations ϕi.

Running Example To highlight this we return to the running example. As-

sume that we have evaluated the function ϕr at a number of points: li,ui for

i = 1, 2, .., K, such that ϕi
r refers to ϕr(l

i,ui). The inner approximation would

be:  u1
r,1 ... uK

r,1

u1
r,2 ... uK

r,2

−l1r,1 ... −lKr,1
−l1r,2 ... −lKr,2

[λ1
r

...
λK
r

]
≤
[−1 1

1 −1
1 −1
−1 1

] [
b1
b2

]
+

[
0

160
∞
0

]

[1...1]

[
λ1
r

...
λK
r

]
= 1, λi

r ≥ 0, ϕr =
K∑
i=1

ϕi
rλ

i
r (5.9)

While the column: zi = [ui
r,1, u

i
r,2,−lir,1,−lir,2].

112

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

min
x,λ

∑
r∈R

Kr∑
i=1

ϕi
rλ

i
r +

∑
d∈D

Kd∑
i=1

ϕi
dλ

i
d

s.t. Ax ≤ β

Kr∑
i=1

λi
rz

i
r ≤ T rx+ qr r ∈ R (dual : πr)

Kd∑
i=1

λi
dz

i
d ≤ T dx+ qd d ∈ D (dual : πd)

Kr∑
i=1

λi
r = 1 r ∈ R (dual : νr)

Kd∑
i=1

λi
d = 1 d ∈ D (dual : νd)

xi, λ
i ≥ 1

Figure 5.8: Master Problem

Restricted Master Problem If we form an inner approximation for each

independent probabilistic constraint and correlation using Equation (5.8), we

can re-write Equation (5.7) in its approximate form as a linear program as shown

in Figure 5.8. We refer to this as the Master Problem (MP). Notice that we

have replaced the z variables in Equation (5.7) with λ variables. With each

point, zi, in our base we can associate a column of coefficients in the constraint

matrix corresponding to the variable λi (as shown in Equation (5.9)). The value

of the λ variables allow for the convex combination of the columns enumerated

so far. We refer Kr, Kd as the number of columns generated for each correlation

r and independent probabilistic constraint d. Likewise we refer λr as the Kr

dimensional vector of variables associated with the columns of a correlation r

and λd as the Kd dimensional vector of variables associated with the columns

generated for an independent probabilistic constraint d.

K can be prohibitively large when solving the MP in Figure 5.8 directly.

113

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

In addition, we are only interested in the columns from our base that are in

the vicinity of the optimal solution. The key idea is that we iteratively solve a

restricted version, that we refer to as the Restricted Master Problem (RMP),

where only a subset, {z1, . . . ,zk} such that k << K, of our base is considered.

Note that the optimal solution to the RMP is always feasible to the MP. For it

to be optimal, none of the unconsidered columns in our base would improve the

objective when included in the RMP. If no such column exists, then the optimal

solution of the RMP is also optimal to the MP.

Finding an Initial Feasible Point In order to initialise the algorithm, we

must find an initial column z0, for which the RMP has a feasible solution. Any

previous PSTN SC algorithm can be used to generate a feasible point. To see

this, consider that we obtain a schedule, i.e. an assignment of a value to all

the controllable time-points: x0 ∈ Rn
+, which satisfies all the constraints. The

equivalent column can then be evaluated as z0 = Tx0 + q. Many efficient PSTN

SC algorithms exist capable of finding such a feasible point, for details on how to

implement such an algorithm, we refer the reader to the relevant paper [13,100–

102]. In this chapter, we chose to use the algorithm of Santana et al. [101] since

it is an LP and can be solved efficiently.

Column Generation Problem A column is said to be an improving column

if the reduced cost is negative [234]. Given a linear program minx{cTx | Ax ≤

b, xi ≥ 0}, any variable xi that takes a zero value in the simplex procedure

is known as a non-basic variable. The reduced cost of introducing a non-basic

variable xi into the simplex basis is: ci −AiTy, where Ai refers to column i of

matrix A and y is the dual vector.

Running Example Returning to the ongoing example, we show how to gen-

erate an improving column zk+1
r , for ϕr. The objective coefficient would be

114

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

ck+1 = ϕk+1
r . From Equation (5.9), the column of coefficients in the constraint

matrix associated with variable λk+1 is Ak+1 = [zk+1
r , 1]T and from Figure 5.8

the dual vector y = [πr,νr]. We can therefore find the best improving column

by minimizing reduced cost, which amounts to solving the following optimization

problem.

min
zr

{ϕr(zr)− zT
r πr − νr} := min

lr ,ur

{− logF (lr,ur)

−[ur,−lr]

πur

πlr

− νr | ur > lr} (5.10)

Such that πur,i
=
∑

{j:zr,j=ur,i} πr,j refers to element i in vector πur , where j =

1, 2, ...,m and m is the number of rows in constraint matrix zr ≤ T rx + qr.

Similarly πlr,i =
∑

{j:zr,j=−lr,i} πr,j refers to element i in vector πlr . To prevent

domain errors with log(0), we constrain the upper bound to be greater than the

lower bound, ur > lr.

We refer to this as the Column Generation Problem (CGP). We solve

one CGP for all r ∈ R and d ∈ D. If no improving column can be found for

any function, at any iteration, then it is not possible to find another variable

λk+1 (and column zk+1) which will improve the objective when entered into the

simplex basis. In other words, our inner approximation already contains the

optimal solution and so we can terminate the algorithm. The convergence of this

procedure has been shown in Dantzig [234].

In order to solve Equation (5.10), it is necessary to efficiently compute the

gradient vector. This can be evaluated as:

∇
(
ϕ(zr)− zT

r πr − νr
)
= −∇F (lr,ur)

F (lr,ur)
−

πur

πlr


There exists efficient algorithms capable of calculating cumulative probabilities of

115

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

multivariate Gaussian distributions (e.g. [235]). Prekopa [33] proves it is possible

to analytically evaluate the gradient of the function F (z) for multi-variate Gaus-

sian distributions using the same efficient algorithm [236, 237]. Van Ackooij et

al. [236] present a formula for the case, ∇F (l,u) which relies on the same result.

On Correlated Chance Constrained STNs In this chapter we focus on

problems in which the objective it to optimize robustness. Often it is the case that

some other objective function cTx, should be optimized subject to a user-defined

tolerance on risk [13]. As an example we may want to deliver all medicines while

minimizing the number of trips used (since this may be a proxy for cost), subject

to the constraint that the plan has a 95% chance of succeeding. In this section

we show that this approach can easily be adapted to solve a chance-constrained

problem while considering correlation.

We define an allowable tolerance on risk δ such that we can model the chance

constraint as: 1 −
∏

r∈R Fr

∏
d∈D Fd ≤ δ. Taking the log of both sides as per

Section 5.5 and substituting ϕδ = log(δ − 1) we have:

∑
r∈R

ϕr +
∑
d∈D

ϕd ≤ ϕδ

Again, we are free to form an inner approximation of the functions ϕr and ϕd

as outlined in Equation (5.8). The only difference versus the probability maxi-

mization case, is that the reduced cost function needs some minor modification.

The objective is now some arbitrary function cTx and so the objective coefficient

associated with each new approximation point is zero. Furthermore we now have

a dual variable associated with the chance constraint which we will call µ. The

column generation problem then becomes:

min
zr

{−µϕr(zr)− zT
r πr − νr}

116

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

which relies on exactly the same functions and derivatives and so can be solved

using the same approach.

5.7 Experimental Setup

We experimentally validated our approach on a number of Corr-STNs generated

for the drone delivery planning domain introduced in Section 5.4. In this section

we discuss the generation of the Corr-STN instances.

5.7.1 Planning Domain and Problem

To generate Corr-STN instances, a temporal planning domain and problems were

first constructed using PDDL [238].

Description of PDDL Domain

The domain file is provided in Appendix A and contains information describing

the rules of how the world works.

In the drone planning domain, we have a set of drones which must deliver a

set of medicines to their respective delivery points. Here, we have two classes

of objects, those which can be located at a place, denoted locatables and the

locations themselves. The locatables contain the drones as well as the medicines

to be delivered.

The drone can perform a number of actions to achieve the goal of delivering

the medicine. First it can move between two locations. For this action to take

place, the drone must be located at the initial location, the two locations must

be connected and the drone must have sufficient battery to complete the journey.

The battery used for the journey is a function of the battery rate and the travel

time between the two locations.

117

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

When the battery of the drone reduces below a certain level, it may wish

to recharge the batteries. Only some of the locations contain charging facilities,

which we refer to as the depots. Once the recharge action has taken place,

the battery of the drone is refilled to its full capacity. The time it takes to

complete this action depends on the recharge rate of the drone and the battery

level remaining.

If the drone is at the same location as a medicine and the medicine is not

too heavy, then it may wish to pick-up the medicine. Each medicine has a fixed

weight, and each drone has a load capacity which defines the maximium weight

it can carry. Conversely, if the drone is carrying a medicine then it can drop-off

the medicine at a given location, providing that it is located at that location.

Finally, to model the expiration deadline of the medicines, we create an addi-

tional action complete-delivery, which is conditional on: the medicine being at the

location and the medicine not being expired. Timed intitial literals (TIL), were

used to model the expiration of each medicine. TILs enforce that a predicate

becomes true at a given time. In this instance, the medicines become expired

when their expiration time is reached. The effect of the complete-delivery action

is that the medicine is considered delivered at the location.

PDDL Problem Generation

Each PDDL problem involved a number of deliveries which must be completed by

the drones. To generate problems of different size, we varied the number of drones

and medicines to be delivered. Ten cases were generated for each combination of

drones from the set {1, 2, 3, 4}, and medicines from the set {1, 2, 4, 8}.

Each drone was sampled from three sizes: small, medium and large, with vary-

ing load capacity, battery capacity, battery rate and recharge rate, as outlined in

Table 5.1. Similarly, each medicine delivery was sampled from 9 different medicine

types with varying weight, probability and expiration time as per Table 5.2.

118

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

Table 5.1: Drone types

Size
Load

Capacity
Battery
Capacity

Battery Rate
Recharge

Rate

Small 10 50 1 10

Medium 20 100 1 5

Large 50 150 1 4

Table 5.2: Medicine Types

Name Weight
Expiration

Time
Probability

Penicillin 2 400 0.25

Insulin 1 180 0.15

Defibrillator 20 100 0.05

Blood 10 120 0.15

Organ 20 100 0.1

Vaccine 2 150 0.1

Atorvastatin 2 200 0.05

Levothyroxine 3 300 0.05

Metformin 5 500 0.1

The number of locations was kept constant at 10, with the number of depots

containing charging facilities fixed at 2. The depots were uniformly sampled for

each problem instance from the 10 locations available. Finally, the distances

between each location was sampled in the range of 10 to 100.

Each drone and medicine was then randomly assigned to one of the 10 loca-

tions. Thus the initial state was composed of the drones being located at their

given locations, drones having full battery and load capacity, medicines being

located at their given locations and not currently expired.

The goal was to complete the delivery of all medicines to their respective

delivery location. Each delivery location was also randomly sampled from the

available locations. One example problem file is provided in Appendix B for

119

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

reference.

5.7.2 Corr-STN Instance Generation

Each PDDL problem instance was then solved using the temporal planner OP-

TIC [239], resulting in a temporal plan. The plan output for the PDDL problem

file in Appendix B is shown in Listing 5.1.

Listing 5.1: Example of PDDL plan file.

0 .000 : (move d0 l 7 l 4) [2 0 . 0 0 0]

20 .001 : (move d0 l 4 l 8) [2 0 . 0 0 0]

40 .002 : (move d0 l 8 l 5) [3 0 . 0 0 0]

70 .002 : (pick−up d0 l 5 m0) [5 . 0 0 0]

75 .002 : (move d0 l 5 l 8) [3 0 . 0 0 0]

105 .003 : (move d0 l 8 l 3) [3 0 . 0 0 0]

135 .004 : (drop−off d0 l 3 m0) [5 . 0 0 0]

140 .005 : (complete−del ivery m0 l 3) [0 . 0 0 1]

An STN was then constructed from each PDDL plan file using the Open Task

Planning Library1, as shown in Figure 5.9.

For each STN, we then generated 10 separate PSTN instances by sampling

mean and standard deviations to apply to actions. For each PSTN, we then

create 3 separate Corr-STN instances by sampling random correlation matrices

of size 2, 3 and 4. Finally, TIL deadlines were then varied to generate Corr-STN

problems with a wide variety of robustness. The result was a total of 5850 Corr-

STN problem instances of which 4872 could be solved (the unsolvable ones had

a robustness of zero)2.

1https://github.com/taskplanning/otpl
2Source code and benchmark problems can be accessed online at: https://anonymous.

4open.science/r/CORRSTN-3E78/

120

https://github.com/taskplanning/otpl
https://anonymous.4open.science/r/CORRSTN-3E78/
https://anonymous.4open.science/r/CORRSTN-3E78/

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

Figure 5.9: Image showing STN example constructed from plan.

121

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

5.7.3 Solution Methods

Each Corr-STN was then solved using three methods: an SC Linear Program

with Boole’s inequality (implementation of the PARIS algorithm from Santana

et al. [101]) (referred to as Boole’s); Column Generation method assuming inde-

pendence (referred to as Independent); Column Generation with correlation (re-

ferred to as Correlated). Python was used for the implementation with Gurobi

as the linear programming optimizer, and the SLSQP solver within the Python

package SciPy as the column generation solver.

5.8 Results

Plots showing results for robustness, runtime and accuracy are provided in Fig-

ures 5.10, 5.11 and 5.12 respectively. Note that ΓMC and ΓTH refer to the

Monte Carlo robustness, and theoretical robustness obtained from the optimiza-

tion model. The notation b, i, c, c2, c3 and c4 refer to the results for Boole’s,

independent, all correlated cases, and correlated cases of sizes 2, 3 and 4 re-

spectively (number of events that are considered correlated with one another).

Figures 5.10 and 5.12 are plotted against the optimal probability, as obtained

from the Monte Carlo simulations considering correlation.

Robustness To assess the robustness we simulated each schedule, for each

Corr-STN, 20,000 times and calculated the Monte-Carlo robustness. Boole’s and

independent robustness were then compared to correlated, and the percentage

difference plotted in Figure 5.10.

The improvement in robustness when we consider correlation versus using

Boole’s is substantial but has a wide variance. In general, we see a significant

improvement on problems in which the optimal robustness is low with some cases

offering up to 80% improvement. The intuition for this can be gained from

122

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

Figure 5.10: Plot showing % difference in Monte Carlo robustness for different
solutions: θx,y = (ΓMC

x −ΓMC
y)/ΓMC

x ×100. Boole’s and independent are compared
to correlated of different sizes.

Figure 5.11: Plot showing % of cases solved versus runtime for Boole’s, indepen-
dent and correlated.

123

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

Figure 5.12: Plot showing % difference in Monte Carlo and theoretical robustness:
αx,y = (ΓMC

x − ΓTH
y)/ΓMC

x × 100. Theoretical for independent and correlated are
compared to correlated Monte-Carlo.

Figure 5.6. As discussed in Section 5.4, the problem of Corr-STN SC involves

moving a box (by varying the schedule) of n dimensions over the n dimensional

multivariate Gaussian probability density function. When the box is small and

constrained to the outer corners of the distribution, the optimal location of the

box can be quite different. Of the 928 cases where the correlated Monte Carlo

robustness was less than 0.5, correlated offered a mean improvement of 8.51%

over Boole’s and 3.50% over independent.

Runtime Figure 5.11 plots the percentage of cases solved versus runtime for

the Boole’s, independent and correlated of varying correlation sizes. As expected

using the Boole’s LP is substantially faster with all cases solved within 1 second.

This is a result of the fact that the encoding is entirely linear. On the other

hand approximately 90% of the independent cases and 80% of the correlated size

2 cases could be solved within 1 second. The runtime grows exponentially with

124

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

the size of the distribution, some cases with correlation size 4 took up to 400

seconds. Nonetheless approximately 80% of the correlated size 3 cases and 50%

of the correlated size 4 cases could be solved within 10 seconds.

Note that the stopping criteria allows for a trade-off between the solution

quality and runtime. All of the problems were solved with a gap of 1% (i.e.

ε = 0.01), however it is possible to terminate the algorithm earlier, and return

the best solution found so far. Generally, we found that the column generation

procedure tends to struggle to close the gap for some instances, hence those which

took significantly longer than other cases of a comparable size, tended to reach

a reasonable intermediate solution quite quickly. Of course, the amount of time

that it is acceptable to dedicate to the scheduling depends on the application

domain, for example a robot domain may require very fast solutions, whereas a

crew scheduling domain may not. It’s also important to mention, that since we

initialise the column generation procedure with the solution using Boole’s inequal-

ity, the column generation solution is at least as good as the Boole’s inequality

solution from the start of the procedure.

Accuracy To measure accuracy, we compare the theoretical robustness ob-

tained from the objective for independent and correlated, with the Monte-Carlo

robustness considering the correlation. The percentage difference is plotted in

Figure 5.12. If we assume independence, we can obtain theoretical robustness val-

ues which are up to 3 times higher than the actual robustness observed through

Monte-Carlo simulation. This is because assuming independence is not guar-

anteed to provide a bounding approximation of the correlated robustness (see

Section 5.4 and Figure 5.6). We do not plot the theoretical versus experimental

robustness using Boole’s since the objective is not representative of the actual

probability.

125

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

Comparison on other Domains In order to show the applicability of our

approach to other domains, we provide a comparison of robustness Γ, and runtime

t, for Boole’s, independent and correlated on International Planning Competition

[240] domains: rovers and crew-planning. We solved 10 instances from each

domain and generated 3 Corr-STNs for each instance. To highlight the percentage

improvement in robustness for low versus high robustness cases, we generated 3

instances from each STN associated with low, mid and high robustness (identified

in the Robustness Level column). Correlation size 2 was selected as it offered a

good improvement in robustness for minimal impact in runtime. Similarly, we

add correlation coefficients of 0.9 across constraints involved in the correlations,

as high correlation instances were shown to result in the greatest improvement

in robustness of correlated versus Boole’s and independent. Standard deviations

were randomly sampled to apply to actions as per the drone domain. Results for

the rovers domain is provided in Table 5.3, whereas results for the crew-planning

domain is provided in Table 5.4. Note that θc,b and θc,i refers to the percentage

difference in robustness of correlated versus Boole’s and independent (as outlined

at the start of this section) and that #Cts refers to the number of constraints

involved in the network.

First, it is important to note that the trend observed in the drone planning

domain (greater percentage improvement in robustness when the overall robust-

ness is low) is also observed in the rovers and crew-planning domain. In general,

considering correlation appears to be more effective on the rovers domain versus

the crew-planning domain. This is thought to be attributed to the difference

in structure of the two domains. Whereas rovers problem instances tend to in-

volve consecutive actions to achieve the goals (as per the drone planning prob-

lem), the crew-planning domain often involves more concurrent actions occurring.

Nonetheless, we still see a significant improvement in robustness in both domains.

In the rovers domain we observe an average improvement of 20.61%, 7.56% and

126

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

Instance
Robustness

Level
Cts ΓMC

b ΓMC
i ΓMC

c tb (s) ti (s) tc (s)
θc,b
(%)

θc,i
(%)

1 Low 44 0.041 0.042 0.061 0.177 0.289 1.523 32.869 30.574
1 Mid 44 0.377 0.445 0.467 0.177 0.296 1.494 19.244 4.594
1 High 44 0.948 0.949 0.950 0.182 0.346 2.411 0.237 0.158
2 Low 26 0.106 0.120 0.155 0.134 0.246 0.677 31.266 22.739
2 Mid 26 0.515 0.526 0.547 0.132 0.217 0.662 5.982 3.891
2 High 26 0.952 0.953 0.954 0.131 0.221 1.476 0.283 0.100
3 Low 64 0.378 0.404 0.412 0.332 0.514 1.403 8.172 1.858
3 Mid 64 0.892 0.895 0.897 0.335 0.502 1.157 0.547 0.167
3 High 64 0.957 0.959 0.960 0.336 0.456 4.584 0.323 0.099
4 Low 28 0.169 0.161 0.170 0.158 0.268 1.153 0.881 5.316
4 Mid 28 0.510 0.566 0.580 0.153 0.258 1.605 12.131 2.473
4 High 28 0.905 0.907 0.907 0.156 0.254 1.237 0.210 0.033
5 Low 94 0.001 0.002 0.002 0.405 0.699 2.302 29.730 16.216
5 Mid 94 0.249 0.260 0.270 0.397 0.734 2.709 7.765 3.558
5 High 94 0.788 0.790 0.794 0.403 0.733 3.107 0.768 0.497
7 Low 73 0.213 0.208 0.232 0.379 0.440 1.702 8.523 10.375
7 Mid 73 0.588 0.589 0.605 0.372 0.446 1.098 2.908 2.644
7 High 73 0.873 0.882 0.886 0.374 0.554 2.955 1.372 0.350
8 Low 143 0.009 0.014 0.016 0.658 1.174 4.098 42.188 14.688
8 Mid 143 0.366 0.373 0.381 0.646 1.100 4.627 4.051 2.281
8 High 143 0.930 0.935 0.936 0.649 0.976 12.753 0.662 0.112
10 Low 152 0.018 0.020 0.023 0.706 1.127 2.644 21.245 14.592
10 Mid 152 0.195 0.206 0.223 0.706 1.075 3.615 12.371 7.297
10 High 152 0.907 0.913 0.916 0.706 1.144 4.317 0.939 0.289
11 Low 145 0.110 0.119 0.136 0.644 1.036 4.274 18.950 12.266
11 Mid 145 0.593 0.604 0.613 0.641 0.890 3.310 3.302 1.459
11 High 145 0.891 0.901 0.902 0.638 0.973 2.643 1.175 0.122
12 Low 91 0.010 0.010 0.012 0.461 0.709 2.619 12.340 13.617
12 Mid 91 0.353 0.370 0.381 0.468 0.679 1.785 7.284 2.809
12 High 91 0.949 0.952 0.953 0.474 0.705 8.324 0.430 0.058

Table 5.3: Table showing results for rover domain.

127

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

Instance
Robustness

Level
Cts ΓMC

b ΓMC
i ΓMC

c tb (s) ti (s) tc (s)
θc,b
(%)

θc,i
(%)

1 Low 86 0.219 0.219 0.235 0.068 0.112 0.275 6.729 6.729
1 Mid 86 0.739 0.746 0.755 0.069 0.134 1.237 2.191 1.271
1 High 86 0.995 0.995 0.995 0.068 0.322 0.116 0.000 0.000
2 Low 73 0.216 0.215 0.232 0.090 0.129 0.821 7.272 7.293
2 Mid 73 0.405 0.405 0.423 0.091 0.134 0.620 4.291 4.291
2 High 73 0.841 0.849 0.852 0.092 0.435 1.210 1.274 0.340
3 Low 82 0.110 0.110 0.121 0.111 0.168 1.192 8.838 8.838
3 Mid 82 0.284 0.284 0.300 0.112 0.167 0.623 5.343 5.343
3 High 82 0.849 0.858 0.860 0.111 0.536 0.651 1.296 0.302
4 Low 116 nan 0.052 0.056 nan 0.362 1.503 100.000 8.363
4 Mid 116 0.620 0.620 0.625 0.136 0.244 0.533 0.832 0.832
4 High 116 0.929 0.929 0.931 0.142 0.200 1.512 0.204 0.204
5 Low 89 0.052 0.052 0.058 0.155 0.697 0.643 9.801 9.801
5 Mid 89 0.656 0.664 0.673 0.154 0.264 1.091 2.556 1.330
5 High 89 0.898 0.904 0.904 0.157 0.303 1.218 0.658 0.044
6 Low 133 0.041 0.041 0.043 0.178 0.870 1.601 5.665 5.665
6 Mid 133 0.585 0.593 0.601 0.183 0.308 1.260 2.638 1.248
6 High 133 0.896 0.900 0.900 0.187 0.342 2.119 0.455 0.056
7 Low 160 0.045 0.045 0.049 0.141 0.211 0.597 7.536 7.434
7 Mid 160 0.783 0.784 0.790 0.140 0.278 0.923 0.855 0.665
7 High 160 0.958 0.958 0.958 0.135 0.214 0.943 0.026 0.031
8 Low 142 0.039 0.039 0.043 0.157 0.238 0.757 9.618 9.618
8 Mid 142 0.249 0.249 0.255 0.159 0.238 0.929 2.312 2.312
8 High 142 0.950 0.951 0.951 0.156 0.280 1.400 0.131 0.074
9 Low 158 0.012 0.012 0.013 0.222 0.326 0.996 11.364 11.364
9 Mid 158 0.466 0.467 0.479 0.222 0.414 1.593 2.661 2.556
9 High 158 0.718 0.723 0.730 0.231 0.450 3.339 1.644 0.891
11 Low 212 0.092 0.098 0.108 0.245 0.501 1.640 14.444 8.843
11 Mid 212 0.213 0.223 0.230 0.245 0.479 2.782 7.599 3.300
11 High 212 0.996 1.000 1.000 0.250 0.271 3.684 0.360 0.005

Table 5.4: Table showing results for crew-planning domain.

128

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

0.64% over Boole’s and 14.22%, 3.12% and 0.18% improvement over independent

for low, mid and high robustness respectively. In the crew planning domain we

observe an average improvement of 18.13%, 3.13% and 0.60% over Boole’s and

8.39%, 2.31% and 0.19% over independent for low, mid and high robustness re-

spectively. All rover instances considering correlation are solved within 12.753s,

whereas all crew-planning problems are solved within 3.684s.

5.9 Conclusion

To summarise, we formally define the Corr-STN and show that Corr-STN SC is

convex for multivariate (log-concave) distributions. We introduce one solution

method using column generation, in which we iteratively refine and optimize on

an approximation of the distributions.

In our experimental validation we solved a number of Corr-STNs using 1.

Boole’s inequality, 2. column generation with independence and 3. column gen-

eration with correlations of varying sizes. We compared schedules in terms of

robustness, runtime and accuracy. We find that, for problems in which the opti-

mal probability is small, considering correlation can offer a significant robustness

improvement versus Boole’s inequality and column generation with independence.

Since these cases have a high probability of failure, it may be worth spending ad-

ditional time to ensure that the schedule has the best chance of succeeding. We

generalise this result by comparing our approach versus Boole’s and indepen-

dent on a number of International Planning Competition domains. To ensure an

accurate, bounding approximation of robustness, considering correlation is nec-

essary, however it comes with additional computational expense which may be

prohibitive for many applications. Nonetheless, the any-time nature of our ap-

proach means that the decision maker can spend as long as they want finding a

schedule: the more time spent, the better the solution will be.

129

Chapter 5. A Column Generation Approach to Correlated Simple Temporal
Networks

While we have empirically shown that considering the correlation in the

scheduling process can be important and have outlined a method for doing so, we

note that the value of considering the correlation varies significantly. For some

cases, the improvement is substantial, however for others it is not worth the addi-

tional computational effort. There are a vast number of problem specific factors

which affect this: size/magnitude of correlation, tightness of constraints as well

as which constraints we consider correlated to name a few. In future work we

hope to define a metric which can be used to determine the benefit of considering

the correlation for particular networks.

130

Chapter 6

Conclusion

Planning and scheduling are necessary functions for autonomous agents to be

able to act rationally to achieve their goals. Due to the increased use of AI in

sensitive applications, developing planning and scheduling models which are ro-

bust to uncertainty is becoming increasingly important. In this thesis we tackled

robustness from a probabilistic perspective, and developed approaches to solving

planning and scheduling problems with robustness guarantees using the column

generation method.

Our conclusions are presented in two sections. First, we summarise the key

insights and contributions presented in this thesis. After this, we briefly mention

a number of potential directions for future work related to the thesis.

6.1 Summary and Contributions

In Chapter 2, we reviewed, and then classified past approaches for achieving

robustness in planning and scheduling according to proactive, reactive and prob-

abilistic. Taking a proactive approach and considering ways to account for the

uncertainty in advance can prevent delays at execution time. In reality however,

it is not possible to consider in advance all possible outcomes that may arise in

131

Chapter 6. Conclusion

the real world. Reacting to issues dynamically as they arise may be preferable in

some cases, however it can lead to delays at execution time. Furthermore, sensi-

tive applications may require a numeric guarantee on how robust the solution is.

This can only be achieved by explicitly modelling the uncertainty using probabil-

ities, and then solving an optimization problem to reason over the uncertainty.

By reviewing techniques for handling uncertainty in optimization, we motivate

the use of the column generation method.

In Chapter 3, we introduced the reader to the column generation method.

We mention that a number of other excellent sources are available outlining the

fundamentals of column generation (perhaps my favourite being Desrosiers and

Lübbecke’s “a primer in column generation” [241]), however our overview differs

in that it is intended to give the reader an intuition for how it works. This is

achieved through the use of numerous figures and examples. The justification

for this, was to make it easier for readers to apply the technique to solving new

problems, as has been the core focus of this thesis.

In Chapter 4, we introduced a column generation approach to solving the

VNF-PRP that amounts to iteratively solving the RMP, which places VNFs onto

the network and routes the SFCs; and a CGP for each SFC that generates a new

improving path. We highlight that prior approaches to this problem typically

only handle a subset of the features required for 5G network slicing. By treating

QoS metrics such as latency, data-rate or availability as the objective, they do not

distinguish between the different levels required for each slice use case. Most past

approaches use either exact ILPs which are not scalable; or meta-heuristics which

give no guarantee of solution quality. While column generation can find bounded-

optimal solutions to practical sized problems, past attempts at using it to solve

the VNF-PRP contain numerous issues: they assume that VNF instances can be

fractionally split in terms of CPU and RAM, they do not consider replication,

assume that the routing flow is known a priori and do not model availability. In

132

Chapter 6. Conclusion

this chapter our contribution is as follows:

• The first VNF placement model capable of computing a full placement, rout-

ing and replication solution while providing guarantees on solution quality.

• The first VNF-PRP model capable of handling throughput, latency and

availability QoS constraints, while maximizing QoS. This makes it the first

approach capable of satisfying the diverse service requirements expected in

5G and beyond.

• We show that the VNF-PRP for network slicing can be solved via a column

generation procedure in which the sub problem is a shortest path problem

on an augmented network, enabling the application of efficient solution

methods.

• We experimentally show that our VNF-PRPmodel is capable of finding near

optimal solutions on a realistic MEC network test case within a reasonable

time-frame.

In Chapter 5, we formally introduced the definition of Corr-STN and presented

a column generation approach to Corr-STN SC. This amounts to iteratively solv-

ing the RMP, which finds the optimal schedule given an approximation of the

joint distribution; and a CGP, which finds a new point to refine the approxima-

tion. Past approaches to solving the problem of PSTN SC assume independence

and either use Boole’s inequality to bound above the risk, or solve a generic

non-linear optimization problem. Assuming independence is not guaranteed to

find the most robust schedule, or even return a conservative approximation of

the robustness if correlations are experienced at execution time. Using Boole’s

can be overly conservative and grossly inaccurate, whereas solving a non-linear

optimization problem can be computationally inefficient and is not guaranteed to

find the global optimum. In this chapter our contribution is as follows:

133

Chapter 6. Conclusion

• We introduce and define for the first time the Corr-STN and the problem of

Corr-STN SC. This makes it possible to model many practical scheduling

problems containing correlations.

• We show that Corr-STN SC can be framed as a convex optimization prob-

lem, when the uncertain durations are modelled using a multivariate Gaus-

sian distribution.

• We present an inner approximation approach to solving Corr-STN SC using

column generation. This is the first algorithm for solving Corr-STN SC.

• We empirically show that prior approaches to PSTN SC assuming inde-

pendence are not guaranteed to give a conservative approximation of ro-

bustness. Likewise, approaches leveraging Boole’s inequality can be grossly

inaccurate.

• Our experimental validation shows that by considering correlations, our

Corr-STN SC algorithm finds strictly more robust solutions versus prior

PSTN SC algorithms.

6.2 Future Research Directions

Planning and Scheduling for the Unknown Unknowns In Chapter 2,

we reviewed methods for achieving robustness in planning and scheduling and

mentioned the importance of robustness guarantees. It’s worth mentioning that

in order to derive a robustness guarantee, we need to be able to accurately capture

the uncertainty using probabilities. Where sufficient data is available, this can be

leveraged to derive or predict a distribution. Going forward it will be important

to develop models which are robust to all uncertainty, not just that which we

have sufficient data to model or predict. This is highlighted by Dietterich [242]

who commented on the use of AI models in high stakes applications:

134

Chapter 6. Conclusion

“Such applications require AI methods to be robust to both the

known unknowns (those uncertain aspects of the world about which

the computer can reason explicitly) and the unknown unknowns (those

aspects of the world that are not captured by the system’s models)”

The author goes on to discuss a number of approaches to dealing with the lat-

ter. Model failure prediction can be used to detect when a model has insufficient

knowledge before it makes a mistake. Chang and Frank [243] use an online plan

viability checker for autonomous robot task planning in space. The plan viabil-

ity checker is able to continuously monitor changes to the world and determine

conditions that lead to a partially executed plan no longer being valid, thus ini-

tiating a re-planning procedure. Using an ensemble of AI models [244] can help

to improve robustness, since it introduces diversity to the decision making. Fern

and Lewis [245] demonstrate this in a planning context by using an ensemble

of Monte Carlo tree search models to make planning decisions in a variety of

domains. Ensemble reinforcement learning models have also shown promise in

planning [246,247].

Improving the Efficiency of Decomposition Methods In Chapter 5 we

present an approach to stochastic optimization in which the sub problem involves

computing multi-variate probabilities and gradients. This procedure is particu-

larly time consuming. Recently there has been a great deal of focus on improving

the speed of decomposition methods using heuristics and surrogate models.

Ruszczyński and Świtanowski [248] present numerous techniques for accelerat-

ing Benders decomposition to solve stochastic network design problems. By lever-

aging a combination of cutting planes, partial decomposition, heuristics, stronger

cuts, reduction and warm-start strategies they are able to achieve significant run

time improvements. Lee et al. [249] proposed using a machine learning regressor

and classifier to predict practically useful cuts. Rather than using machine learn-

135

Chapter 6. Conclusion

ing in place of the sub problem, Mana et al. [250] use a reinforcement learning

surrogate model in place of the master problem, resulting in a 30% reduction in

run time. In column generation, Yu et al. [251] use a hybrid column generation

algorithm, in which the CGP is solved using a number of meta heuristics. Finally

Kraul et al. [252] use machine learning to predict the optimal dual variables for

instances of the cutting stock problem. In general, the use of machine learning

technologies to improve the efficiency of decomposition methods such as the col-

umn generation method has shown promising results, however it’s worth noting

that this is only the case if a similar problem will be solved repeatedly, else the

training time is prohibitive.

Dynamic Virtual Network Function Placement and Routing In Chap-

ter 4, our approach produced a static solution to the VNF-PRP. In reality, a

number of events can occur which result in a violation of the SLA [253, 254]. A

dynamic VNF-PRP solution requires the capability of predicting SLA violations

and computing a plan to reconfigure the network so as to avoid the violation. It’s

also worth mentioning that the arrival time of SLA violations is uncertain but

can often be predicted using historical data. It may be the case that the new

configuration is more costly than the latter, hence it is beneficial to delay the

reconfiguration as long as possible. On the other hand, if the SLA violation is

encountered, the ISP may be responsible for paying a premium.

Hence, a dynamic VNF-PRP may involve: planning a sequence of actions

to reconfigure the network so as to satisfy the SLAs and scheduling the actions

so as to minimize cost subject to some tolerance on risk. We envision such a

problem could be solved using a combination of the techniques from Chapters 4

and 5. The column generation procedure in Chapter 4 could be warm started

using the pre-existing paths, alongside some additional constraints to generate a

new optimal state. This goal state could then be passed to a planner to compute

136

Chapter 6. Conclusion

the sequence of actions required to achieve it; and a CC-PSTN SC problem could

be formulated and solved using the plan, to decide when to schedule the actions

while trading off against operational expenditure and SLA violation cost.

Correlated Dynamic Controllability In Chapter 5, we tackled the problem

of Corr-STN SC, but did not attempt to solve the problem of Corr-STN dynamic

controllability. Dynamic controllability enables the agent to leverage informa-

tion gained at execution time to improve robustness. Dynamic controllability

of PSTNs is an ongoing research problem but has been addressed recently in a

number of papers [102,255,256].

From a Corr-STN perspective, each time an uncertain outcome is observed we

have access to new information which can be used to inform our strategy. For ex-

ample, consider two sequential actions whose durations are positively correlated.

If we observe that the first action takes longer than expected, then the correla-

tion tells us we can expect that the latter uncertain duration will also take longer.

Thus our schedule can be adjusted taking into account this new information.

Combined Temporal and Resource Controllability It’s worth mentioning

that correlated uncertainty can also exist in resources. Considering correlations

across resources and durations could be achieved through the use of a Correlated

Simple Temporal Network with Resources (Corr-STNR).

We mention that temporal networks with resources are not new - Laborie

introduced them in 2003 [257] and Combi et al. [258] address resource availability

in the context of conditional STNUs. Cashmore et al. [259] compute the set of

all parameters for which a temporal plan is valid - including resource parameters

such as consumption rates. Extending Corr-STNs to handle resources could be

achieved by deriving a joint distribution over the set of all uncertain parameters,

as opposed to just action durations.

137

139

Appendix A. PDDL Drone Delivery Domain

Appendix A

PDDL Drone Delivery Domain

(define (domain drone−del ivery)

(:requirements :typing :durative−actions : f luents : t im e d− i n i t i a l− l i t e r a l s)

(:types

l o c a t i o n l o c a t ab l e − ob j e c t

drone medic ine − l o c a t ab l e

)

(:predicates

(noexpired ?m − medicine)

(d e l i v e r e d ?m − medicine ? l − l o c a t i o n)

(located−at ?o − l o c a t ab l e ? l − l o c a t i o n)

(connected ? l 1 ? l 2 − l o c a t i o n)

(ca r ry ing ?d − drone ?m − medicine)

(is−depot ? l − l o c a t i o n)

(nocharging ?d − drone)

(no loading ?d − drone)

)

(: functions

(load−capacity ?d − drone)

(weight ?m − medicine)

(battery−capac i ty ?d − drone)

(ba t t e ry− l eve l ?d − drone)

(battery−rate ?d − drone)

(recharge− rate ?d − drone)

(trave l−t ime ? l 1 ? l 2 − l o c a t i o n)

)

140

Appendix A. PDDL Drone Delivery Domain

(:durative−action move

:parameters (?d − drone ? l 1 ? l 2 − l o c a t i o n)

:duration (= ? durat ion (trave l−t ime ? l 1 ? l 2))

:condition (and

(at s t a r t (located−at ?d ? l 1)) (over a l l (connected ? l 1 ? l 2))

(over a l l (nocharging ?d)) (over a l l (no loading ?d))

(at s t a r t (>= (bat t e ry− l eve l ?d)

(∗ (battery−rate ?d) (trave l−t ime ? l 1 ? l 2)))))

: e f f e c t (and

(at s t a r t (not (located−at ?d ? l 1))) (at end (located−at ?d ? l 2))

(at end (decrease (ba t t e ry− l eve l ?d)

(∗ (battery−rate ?d) (trave l−t ime ? l 1 ? l 2)))))

)

(:durative−action r echarge

:parameters (?d − drone ? l − l o c a t i o n)

:duration (= ? durat ion (/ (− (battery−capac i ty ?d)

(ba t t e ry− l eve l ?d)) (recharge− rate ?d)))

:condition (and

(over a l l (located−at ?d ? l)) (over a l l (is−depot ? l))

(over a l l (no loading ?d)))

: e f f e c t (and

(at s t a r t (not (nocharging ?d))) (at end (nocharging ?d))

(at end (assign (ba t t e ry− l eve l ?d) (battery−capac i ty ?d))))

)

(:durative−action pick−up

:parameters (?d − drone ? l − l o c a t i o n ?m − medicine)

:duration (= ? durat ion 5)

:condition (and

(over a l l (located−at ?d ? l)) (at s t a r t (located−at ?m ? l))

(at s t a r t (> (load−capacity ?d) (weight ?m)))

(over a l l (nocharging ?d)))

: e f f e c t (and

(at s t a r t (not (no loading ?d)))

(at s t a r t (decrease (load−capacity ?d) (weight ?m)))

(at s t a r t (not (located−at ?m ? l))) (at end (ca r ry ing ?d ?m))

(at end (no loading ?d)))

)

141

Appendix A. PDDL Drone Delivery Domain

(:durative−action drop−off

:parameters (?d − drone ? l − l o c a t i o n ?m − medicine)

:duration (= ? durat ion 5)

:condition (and

(at s t a r t (located−at ?d ? l)) (at s t a r t (ca r ry ing ?d ?m))

(over a l l (nocharging ?d)))

: e f f e c t (and

(at s t a r t (not (no loading ?d))) (at s t a r t (not (ca r ry ing ?d ?m)))

(at end (located−at ?m ? l)) (at end (no loading ?d))

(at s t a r t (increase (load−capacity ?d) (weight ?m))))

)

(:action complete−del ivery

:parameters (?m − medicine ? l − l o c a t i o n)

:precondition (and

(noexpired ?m) (located−at ?m ? l))

: e f f e c t (and

(not (located−at ?m ? l)) (d e l i v e r e d ?m ? l))

)

)

142

Appendix B

PDDL Drone Delivery Problem

(define (problem instance−1)

(:domain drone−del ivery)

(:objects

d0 − drone

l 0 l 1 l 2 l 3 l 4 l 5 l 6 l 7 l 8 l 9 − l o c a t i o n

m0 − medicine

)

(: i n i t

; ; depo t s

(is−depot l 8) (is−depot l 7)

; ; drones

(located−at d0 l 7) (no loading d0) (nocharging d0)

(= (load−capacity d0) 50) (= (battery−capac i ty d0) 150)

(= (bat t e ry− l eve l d0) 150) (= (battery−rate d0) 1) (= (recharge−rate d0) 4)

; ; medic ines

(located−at m0 l 5) (noexpired m0) (at 300 (not (noexpired m0))) (= (weight m0) 3)

; ; l o c a t i o n s

(connected l 0 l 7) (= (trave l−t ime l 0 l 7) 70) (connected l 0 l 9) (= (trave l−t ime l 0 l 9) 50)

(connected l 1 l 2) (= (trave l−t ime l 1 l 2) 30) (connected l 1 l 6) (= (trave l−t ime l 1 l 6) 30)

(connected l 1 l 7) (= (trave l−t ime l 1 l 7) 20) (connected l 1 l 9) (= (trave l−t ime l 1 l 9) 60)

(connected l 2 l 1) (= (trave l−t ime l 2 l 1) 30) (connected l 2 l 6) (= (trave l−t ime l 2 l 6) 60)

(connected l 3 l 4) (= (trave l−t ime l 3 l 4) 80) (connected l 3 l 5) (= (trave l−t ime l 3 l 5) 70)

(connected l 3 l 7) (= (trave l−t ime l 3 l 7) 40) (connected l 3 l 8) (= (trave l−t ime l 3 l 8) 30)

(connected l 3 l 9) (= (trave l−t ime l 3 l 9) 50) (connected l 4 l 3) (= (trave l−t ime l 4 l 3) 80)

143

Appendix B. PDDL Drone Delivery Problem

(connected l 4 l 7) (= (trave l−t ime l 4 l 7) 20) (connected l 4 l 8) (= (trave l−t ime l 4 l 8) 20)

(connected l 5 l 3) (= (trave l−t ime l 5 l 3) 70) (connected l 5 l 6) (= (trave l−t ime l 5 l 6) 40)

(connected l 5 l 8) (= (trave l−t ime l 5 l 8) 30) (connected l 5 l 9) (= (trave l−t ime l 5 l 9) 30)

(connected l 6 l 1) (= (trave l−t ime l 6 l 1) 30) (connected l 6 l 2) (= (trave l−t ime l 6 l 2) 60)

(connected l 6 l 5) (= (trave l−t ime l 6 l 5) 40) (connected l 6 l 7) (= (trave l−t ime l 6 l 7) 30)

(connected l 6 l 9) (= (trave l−t ime l 6 l 9) 80) (connected l 7 l 0) (= (trave l−t ime l 7 l 0) 70)

(connected l 7 l 1) (= (trave l−t ime l 7 l 1) 20) (connected l 7 l 3) (= (trave l−t ime l 7 l 3) 40)

(connected l 7 l 4) (= (trave l−t ime l 7 l 4) 20) (connected l 7 l 6) (= (trave l−t ime l 7 l 6) 30)

(connected l 8 l 3) (= (trave l−t ime l 8 l 3) 30) (connected l 8 l 4) (= (trave l−t ime l 8 l 4) 20)

(connected l 8 l 5) (= (trave l−t ime l 8 l 5) 30) (connected l 9 l 0) (= (trave l−t ime l 9 l 0) 50)

(connected l 9 l 1) (= (trave l−t ime l 9 l 1) 60) (connected l 9 l 3) (= (trave l−t ime l 9 l 3) 50)

(connected l 9 l 5) (= (trave l−t ime l 9 l 5) 30) (connected l 9 l 6) (= (trave l−t ime l 9 l 6) 80)

)

(:goal

(and (d e l i v e r e d m0 l 3))

))

144

Bibliography

[1] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network slicing

in 5G: Survey and challenges,” IEEE Communications Magazine, vol. 55,

no. 5, pp. 94–100, 2017.

[2] Q. Zhang, F. Liu, and C. Zeng, “Adaptive interference-aware VNF place-

ment for service-customized 5G network slices,” in IEEE International Con-

ference on Computer Communications, 2019, pp. 2449–2457.

[3] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,

T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the game of Go

without human knowledge,” Nature, vol. 550, pp. 354–359, 2017.

[4] J. Tromp and G. Farnebäck, “Combinatorics of Go,” in International Con-

ference on Computers and Games. Springer, 2006, pp. 84–99.

[5] D. Dietrich, C. Papagianni, P. Papadimitriou, and J. S. Baras, “Network

function placement on virtualized cellular cores,” in International Confer-

ence on Communication Systems and Networks, 2017, pp. 259–266.

[6] A. Pozanco, K. Papasotiriou, D. Borrajo, and M. Veloso, “Combining

heuristic search and linear programming to compute realistic financial

plans,” in International Conference on Automated Planning and Scheduling,

vol. 33, no. 1, 2023, pp. 527–531.

145

Bibliography

[7] S. Khan, S. Parkinson, M. Roopak, R. Armitage, and A. Barlow, “Auto-

mated planning to prioritise digital forensics investigation cases containing

indecent images of children,” in International Conference on Automated

Planning and Scheduling, vol. 33, no. 1, 2023, pp. 500–508.

[8] M. Veale and F. Zuiderveen Borgesius, “Demystifying the draft EU artificial

intelligence act—analysing the good, the bad, and the unclear elements of

the proposed approach,” Computer Law Review International, no. 4, pp.

97–112, 2021.

[9] N. A. Smuha, “The EU approach to ethics guidelines for trustworthy arti-

ficial intelligence,” Computer Law Review International, vol. 20, no. 4, pp.

97–106, 2019.

[10] IEEE, “IEEE standard glossary of software engineering terminology,” Stan-

dard 610.12, 1990.

[11] S. Chaudhuri, S. Gulwani, and R. Lublinerman, “Continuity and robustness

of programs,” Communications of the ACM, vol. 55, no. 8, pp. 107–115,

2012.

[12] M. Fox, R. Howey, and D. Long, “Exploration of the robustness of plans,”

in AAAI Conference on Artificial Intelligence, 2006, pp. 834–839.

[13] C. Fang, P. Yu, and B. C. Williams, “Chance-constrained probabilistic

simple temporal problems,” in AAAI Conference on Artificial Intelligence,

2014, pp. 2264–2270.

[14] D. Bertsimas, D. B. Brown, and C. Caramanis, “Theory and applications

of robust optimization,” SIAM review, vol. 53, no. 3, pp. 464–501, 2011.

[15] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,”

Operations Research, vol. 8, no. 1, pp. 101–111, 1960.

146

Bibliography

[16] P. C. Gilmore and R. E. Gomory, “A linear programming approach to the

cutting-stock problem,” Operations Research, vol. 9, no. 6, pp. 849–859,

1961.

[17] ——, “A linear programming approach to the cutting stock problem—part

II,” Operations Research, vol. 11, no. 6, pp. 863–888, 1963.

[18] J. Desrosiers, F. Soumis, and M. Desrochers, “Routing with time windows

by column generation,” Networks, vol. 14, no. 4, pp. 545–565, 1984.

[19] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”

Operations Research, vol. 14, no. 4, pp. 699–719, 1966.

[20] D. Soldani, F. Fadini, H. Rasanen, J. Duran, T. Niemela, D. Chandramouli,

T. Hoglund, K. Doppler, T. Himanen, J. Laiho et al., “5G mobile systems

for healthcare,” in 2017 IEEE 85th vehicular technology conference (VTC

Spring). IEEE, 2017, pp. 1–5.

[21] M. Gidlund, T. Lennvall, and J. Åkerberg, “Will 5G become yet another

wireless technology for industrial automation?” in 2017 IEEE International

Conference on Industrial Technology (ICIT). IEEE, 2017, pp. 1319–1324.

[22] S. Hakak, T. R. Gadekallu, P. K. R. Maddikunta, S. P. Ramu, M. Parimala,

C. De Alwis, and M. Liyanage, “Autonomous vehicles in 5G and beyond:

A survey,” Vehicular Communications, vol. 39, p. 100551, 2023.

[23] 3GPP, “Service requirements for the 5G system, rel. 15,” Tech. Rep. 22.261,

2016.

[24] A. Chabrier, “Vehicle routing problem with elementary shortest path based

column generation,” Computers & Operations Research, vol. 33, no. 10, pp.

2972–2990, 2006.

147

Bibliography

[25] Y. Zhang, X. Jin, Y. Feng, and G. Rong, “Data-driven robust optimiza-

tion under correlated uncertainty: a case study of production scheduling in

ethylene plant,” Computers & Chemical Engineering, vol. 109, pp. 48–67,

2018.

[26] X. Xu, Z. Yan, M. Shahidehpour, Z. Li, M. Yan, and X. Kong, “Data-

driven risk-averse two-stage optimal stochastic scheduling of energy and

reserve with correlated wind power,” IEEE Transactions on Sustainable

Energy, vol. 11, no. 1, pp. 436–447, 2019.

[27] A. Prékopa, “Probabilistic programming,” Handbooks in operations re-

search and management science, vol. 10, pp. 267–351, 2003.

[28] D. Dentcheva, B. Lai, and A. Ruszczyński, “Dual methods for probabilis-

tic optimization problems,” Mathematical methods of operations research,

vol. 60, no. 2, pp. 331–346, 2004.

[29] C. I. Fábián, E. Csizmás, R. Drenyovszki, W. van Ackooij, T. Vajnai,

L. Kovács, and T. Szántai, “Probability maximization by inner approxi-

mation,” Acta Polytechnica Hungarica, vol. 15, no. 1, pp. 105–125, 2018.

[30] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and

Practice. Elsevier, 2004.

[31] M. L. Pinedo, Scheduling. Springer, 2012, vol. 29.

[32] S. Sinha,Mathematical Programming: Theory and Methods. Elsevier, 2005.

[33] A. Prékopa, Stochastic Programming. Springer Science & Business Media,

2013, vol. 324.

[34] J. Vermaelen, H. T. Dinh, and T. Holvoet, “A survey on probabilistic plan-

ning and temporal scheduling with safety guarantees,” in ICAPS Workshop

on Planning and Robotics, 2020.

148

Bibliography

[35] S. Bensalem, K. Havelund, and A. Orlandini, “Verification and validation

meet planning and scheduling,” International Journal on Software Tools

for Technology Transfer, vol. 16, pp. 1–12, 2014.

[36] P. M. Verderame, J. A. Elia, J. Li, and C. A. Floudas, “Planning and

scheduling under uncertainty: a review across multiple sectors,” Industrial

& Engineering Chemistry Research, vol. 49, no. 9, pp. 3993–4017, 2010.

[37] A. J. Davenport and J. C. Beck, “A survey of techniques for

scheduling with uncertainty,” Unpublished manuscript. Available from

http://tidel.mie.utoronto.ca/publications.php, 2000.

[38] T. Chaari, S. Chaabane, N. Aissani, and D. Trentesaux, “Scheduling un-

der uncertainty: Survey and research directions,” in IEEE International

Conference on Advanced Logistics and Transport, 2014, pp. 229–234.

[39] C. C. Marinagi, T. Panayiotopoulos, and C. D. Spyropoulos, “AI planning

and intelligent agents,” in Intelligent Techniques for Planning. IGI Global,

2005, pp. 225–258.

[40] C. Aeronautiques, A. Howe, C. Knoblock, I. D. McDermott, A. Ram,

M. Veloso, D. Weld, D. W. SRI, A. Barrett, D. Christianson et al., “PDDL

the planning domain definition language,” Technical Report, 1998.

[41] M. Fox and D. Long, “The third international planning competition: Tem-

poral and metric planning.” in Artificial Intelligence Planning and Schedul-

ing, 2002, pp. 333–335.

[42] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,” Artifi-

cial Intelligence, vol. 49, no. 1-3, pp. 61–95, 1991.

[43] R. W. Floyd, “Algorithm 97: Shortest path,” Communications of the ACM,

vol. 5, p. 345, 1962.

149

Bibliography

[44] G. E. Vieira, J. W. Herrmann, and E. Lin, “Rescheduling manufacturing

systems: a framework of strategies, policies, and methods,” Journal of

Scheduling, vol. 6, pp. 39–62, 2003.

[45] R. Howey and D. Long, “VAL’s progress: The automatic validation tool

for PDDL2. 1 used in the international planning competition,” in ICAPS

Workshop on the International Planning Competition, 2003, pp. 28–37.

[46] B. J. Clement and M. D. Johnston, “Design of a deep space network schedul-

ing application,” in International Workshop on Planning and Scheduling for

Space, 2006, pp. 22–25.

[47] M. D. R-Moreno, G. Brat, N. Muscettola, and D. Rijsman, “Validation

of a multi-agent architecture for planning and execution,” in International

Workshop on Principles of Diagnosis, 2007, pp. 368–371.

[48] J. Penix, C. Pecheur, and K. Havelund, “Using model checking to validate

AI planner domain models,” in Annual Software Engineering Workshop,

NASA Goddard, 1998.

[49] F. Raimondi, C. Pecheur, and G. Brat, “PDVer, a tool to verify PDDL

planning domains,” in ICAPS Workshop on Verification and Validatio of

Planning and Scheduling Systems, 2009.

[50] A. Goldberg, K. Havelund, and C. McGann, “Runtime verification for au-

tonomous spacecraft software,” in IEEE Aerospace Conference, 2005, pp.

507–516.

[51] R. P. Goldman and M. S. Boddy, “Conditional linear planning.” in Artificial

Intelligence Planning and Scheduling, 1994, pp. 80–85.

150

Bibliography

[52] D. S. Weld, C. R. Anderson, and D. E. Smith, “Extending graphplan to

handle uncertainty & sensing actions,” in AAAI Conference on Artificial

Intelligence, 1998, pp. 897–904.

[53] R. P. Petrick and F. Bacchus, “A knowledge-based approach to planning

with incomplete information and sensing.” in Artificial Intelligence Plan-

ning and Scheduling, vol. 2, 2002, pp. 212–222.

[54] B. Bonet and H. Geffner, “Planning with incomplete information as heuris-

tic search in belief space,” in International Conference on Artificial Intelli-

gence Planning Systems, 2000, pp. 52–61.

[55] P. Bertoli, A. Cimatti et al., “Improving heuristics for planning as search in

belief space.” in Artificial Intelligence Planning and Scheduling, 2002, pp.

143–152.

[56] P. Bertoli, A. Cimatti, and M. Roveri, “Conditional planning under par-

tial observability as heuristic-symbolic search in belief space,” in European

Conference on Planning, 2001, pp. 379–384.

[57] D. Bryce, S. Kambhampati, and D. E. Smith, “Planning graph heuristics

for belief space search,” Journal of Artificial Intelligence Research, vol. 26,

pp. 35–99, 2006.

[58] J. Hoffmann and R. Brafman, “Contingent planning via heuristic forward

search with implicit belief states,” in International Conference on Auto-

mated Planning and Scheduling, 2005, pp. 71–80.

[59] A. Albore, H. Palacios, and H. Geffner, “A translation-based approach

to contingent planning.” in International Joint Conference on Artificial

Intelligence, vol. 9, 2009, pp. 1623–1628.

151

Bibliography

[60] R. Brafman and G. Shani, “A multi-path compilation approach to con-

tingent planning,” in AAAI Conference on Artificial Intelligence, vol. 26,

no. 1, 2012, pp. 1868–1874.

[61] B. Bonet and H. Geffner, “Belief tracking for planning with sensing:

Width, complexity and approximations,” Journal of Artificial Intelligence

Research, vol. 50, pp. 923–970, 2014.

[62] C. Muise, V. Belle, and S. McIlraith, “Computing contingent plans via fully

observable non-deterministic planning,” in AAAI Conference on Artificial

Intelligence, vol. 28, no. 1, 2014.

[63] Y. Carreno, Y. Petillot, and R. P. Petrick, “Compiling contingent planning

into temporal planning for robust AUV deployments,” in ICAPS Workshop

on Planning and Robotics, 2021.

[64] M. Drummond, J. Bresina, and K. Swanson, “Just-in-case scheduling,” in

AAAI Conference on Artificial Intelligence, vol. 94, 1994, pp. 1098–1104.

[65] S. V. Mehta, “Predictable scheduling of a single machine subject to

breakdowns,” International Journal of Computer Integrated Manufactur-

ing, vol. 12, no. 1, pp. 15–38, 1999.

[66] R. O’Donovan, R. Uzsoy, and K. N. McKay, “Predictable scheduling of a

single machine with breakdowns and sensitive jobs,” International Journal

of Production Research, vol. 37, no. 18, pp. 4217–4233, 1999.

[67] A. Davenport, C. Gefflot, and C. Beck, “Slack-based techniques for robust

schedules,” in European Conference on Planning, 2014, pp. 7–18.

[68] A. Cimatti, M. Do, A. Micheli, M. Roveri, and D. E. Smith, “Strong tem-

poral planning with uncontrollable durations,” Artificial Intelligence, vol.

256, pp. 1–34, 2018.

152

Bibliography

[69] R.-K. Li, Y.-T. Shyu, and S. Adiga, “A heuristic rescheduling algorithm for

computer-based production scheduling systems,” International Journal of

Production Research, vol. 31, no. 8, pp. 1815–1826, 1993.

[70] M. Yamamoto and S. Nof, “Scheduling/rescheduling in the manufacturing

operating system environment,” International Journal of Production Re-

search, vol. 23, no. 4, pp. 705–722, 1985.

[71] R. J. Abumaizar and J. A. Svestka, “Rescheduling job shops under random

disruptions,” International Journal of Production Research, vol. 35, no. 7,

pp. 2065–2082, 1997.

[72] J. Kuster, D. Jannach, and G. Friedrich, “Applying local rescheduling in

response to schedule disruptions,” Annals of Operations Research, vol. 180,

pp. 265–282, 2010.

[73] C. Bierwirth and D. C. Mattfeld, “Production scheduling and rescheduling

with genetic algorithms,” Evolutionary Computation, vol. 7, no. 1, pp. 1–17,

1999.

[74] M. Fox, A. Gerevini, D. Long, and I. Serina, “Plan stability: Replanning

versus plan repair,” in International Conference on Automated Planning

and Scheduling, 2006, pp. 212–221.

[75] R. Van Der Krogt and M. De Weerdt, “Plan repair as an extension of plan-

ning.” in International Conference on Automated Planning and Scheduling,

2005, pp. 161–170.

[76] S. W. Yoon, A. Fern, and R. Givan, “FF-Replan: A baseline for proba-

bilistic planning.” in International Conference on Automated Planning and

Scheduling, 2007, pp. 352–359.

153

Bibliography

[77] S. S. Panwalkar andW. Iskander, “A survey of scheduling rules,” Operations

Research, vol. 25, no. 1, pp. 45–61, 1977.

[78] P. Morris, “Dynamic controllability and dispatchability relationships,” in

International Conference on the Integration of Contstraint Programming,

Artificial Intelligence and Operations Research. Springer, 2014, pp. 464–

479.

[79] M. Cairo and R. Rizzi, “Dynamic controllability made simple,” in Inter-

national Symposium on Temporal Representation and Reasoning, 2017, p.

8:1–8:16.

[80] A. Cimatti, L. Hunsberger, A. Micheli, R. Posenato, and M. Roveri, “Dy-

namic controllability via timed game automata,” Acta Informatica, vol. 53,

pp. 681–722, 2016.

[81] M. B. Do and S. Kambhampati, “Improving temporal flexibility of posi-

tion constrained metric temporal plans.” in International Conference on

Automated Planning and Scheduling, 2003, pp. 42–51.

[82] O. Lima, M. Cashmore, D. Magazzeni, A. Micheli, and R. Ventura, “Ro-

bust execution of deterministic plans in non-deterministic environments,”

in ICAPS Workshop on Integrated Planning, Acting and Execution, 2020.

[83] A. Orlandini, A. Finzi, A. Cesta, and S. Fratini, “TGA-based controllers

for flexible plan execution,” in Annual German Conference on AI, 2011,

pp. 233–245.

[84] M. Fox, D. Long, and D. Magazzeni, “Plan-based policy-learning for au-

tonomous feature tracking,” in International Conference on Automated

Planning and Scheduling, vol. 22, 2012, pp. 38–46.

154

Bibliography

[85] N. Kushmerick, S. Hanks, and D. S. Weld, “An algorithm for probabilistic

planning,” Artificial Intelligence, vol. 76, no. 1-2, pp. 239–286, 1995.

[86] R. Bellman, “A Markovian decision process,” Journal of Mathematics and

Mechanics, vol. 6, pp. 679–684, 1957.

[87] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, 2014.

[88] B. Lacerda, F. Faruq, D. Parker, and N. Hawes, “Probabilistic planning

with formal performance guarantees for mobile service robots,” Interna-

tional Journal of Robotics Research, vol. 38, no. 9, pp. 1098–1123, 2019.

[89] G. E. Monahan, “State of the art—a survey of partially observable Markov

decision processes: theory, models, and algorithms,” Management Science,

vol. 28, no. 1, pp. 1–16, 1982.

[90] A. Nilim and L. El Ghaoui, “Robust control of Markov decision processes

with uncertain transition matrices,” Operations Research, vol. 53, no. 5, pp.

780–798, 2005.

[91] E. Altman, Constrained Markov Decision Processes. Routledge, 2021.

[92] S. Thiébaux, B. Williams et al., “RAO*: An algorithm for chance-

constrained POMDP’s,” in AAAI Conference on Artificial Intelligence,

2016, pp. 3308–3314.

[93] F. Teichteil-Königsbuch, “Path-constrained Markov decision processes:

bridging the gap between probabilistic model-checking and decision-

theoretic planning.” in European conference on artificial intelligence, 2012,

pp. 744–749.

155

Bibliography

[94] H. L. Younes and M. L. Littman, “PPDDL1. 0: An extension to pddl for

expressing planning domains with probabilistic effects,” Technical Report

CMU-CS-04-162, 2004.

[95] S. Sanner et al., “Relational dynamic influence diagram language (RDDL):

Language description,” Technical Report NICTA, 2010.

[96] M. Steinmetz, J. Hoffmann, and O. Buffet, “Goal probability analysis in

probabilistic planning: Exploring and enhancing the state of the art,” Jour-

nal of Artificial Intelligence Research, vol. 57, pp. 229–271, 2016.

[97] T. Keller and P. Eyerich, “PROST: Probabilistic planning based on UCT,”

in International Conference on Automated Planning and Scheduling, 2012,

pp. 119–127.

[98] E. Beaudry, F. Kabanza, and F. Michaud, “Planning with concurrency

under resources and time uncertainty.” in European Conference on Artificial

Intelligence, vol. 2010, 2010, p. 217.

[99] A. J. Coles, “Opportunistic branched plans to maximise utility in the pres-

ence of resource uncertainty.” in European Conference on Artificial Intelli-

gence, vol. 2012, 2012, p. 252.

[100] I. Tsamardinos, “A probabilistic approach to robust execution of temporal

plans with uncertainty,” in Hellenic Conference on Artificial Intelligence,

2002, pp. 97–108.

[101] P. Santana, T. Vaquero, C. Toledo, A. Wang, C. Fang, and B. Williams,

“Paris: A polynomial-time, risk-sensitive scheduling algorithm for proba-

bilistic simple temporal networks with uncertainty,” in International Con-

ference on Automated Planning and Scheduling, 2016, pp. 267–275.

156

Bibliography

[102] K. Lund, S. Dietrich, S. Chow, and J. Boerkoel, “Robust execution of prob-

abilistic temporal plans,” in AAAI Conference on Artificial Intelligence,

2017, pp. 3597–3604.

[103] P. Yu, C. Fang, and B. Williams, “Resolving over-constrained probabilistic

temporal problems through chance constraint relaxation,” in AAAI Con-

ference on Artificial Intelligence, 2015, pp. 3425–3431.

[104] A. Charnes, W. W. Cooper, and G. H. Symonds, “Cost horizons and cer-

tainty equivalents: an approach to stochastic programming of heating oil,”

Management Science, vol. 4, no. 3, pp. 235–263, 1958.

[105] A. Charnes and W. W. Cooper, “Deterministic equivalents for optimiz-

ing and satisficing under chance constraints,” Operations Research, vol. 11,

no. 1, pp. 18–39, 1963.

[106] A. Prékopa, “On probabilistic constrained programming,” in Princeton

Symposium on Mathematical Programming, 1970, pp. 113–138.

[107] ——, “On logarithmic concave measures and functions,” 1973.

[108] ——, “Logarithmic concave measures with applications to stochastic pro-

gramming,” 1971.

[109] A. Prekopa, “Contributions to the theory of stochastic programming,”

Mathematical Programming, vol. 4, pp. 202–221, 1973.

[110] R. Henrion and C. Strugarek, “Convexity of chance constraints with inde-

pendent random variables,” Computational Optimization and Applications,

vol. 41, no. 2, pp. 263–276, 2008.

[111] ——, “Convexity of chance constraints with dependent random variables:

the use of copulae,” in Stochastic Optimization Methods in Finance and

157

Bibliography

Energy: New Financial Products and Energy Market Strategies. Springer,

2011, pp. 427–439.

[112] M. Lubin, D. Bienstock, and J. P. Vielma, “Two-sided linear chance con-

straints and extensions,” arXiv preprint arXiv:1507.01995, 2015.

[113] M. Bagnoli and T. Bergstrom, “Log-concave probability and its applica-

tions,” in Rationality and Equilibrium: A Symposium in Honor of Marcel

K. Richter. Springer, 2006, pp. 217–241.

[114] G. Zoutendijk, Methods of Feasible Directions, 1960.

[115] A. Prékopa, S. Ganczer, I. Deák, and K. Patyi, “The stabil stochastic pro-

gramming model and its experimental application to the electrical energy

sector of the Hungarian economy,” Stochastic Programming, pp. 369–385,

1980.

[116] J. Luedtke and S. Ahmed, “A sample approximation approach for opti-

mization with probabilistic constraints,” SIAM Journal on Optimization,

vol. 19, no. 2, pp. 674–699, 2008.

[117] J. E. Kelley, Jr, “The cutting-plane method for solving convex programs,”

Journal of the society for Industrial and Applied Mathematics, vol. 8, no. 4,

pp. 703–712, 1960.

[118] A. Prékopa, B. Vizvari, and T. Badics, “Programming under probabilistic

constraint with discrete random variable,” in New trends in mathematical

programming: homage to Steven Vajda. Springer, 1998, pp. 235–255.

[119] F. Serrano, R. Schwarz, and A. Gleixner, “On the relation between the

extended supporting hyperplane algorithm and Kelley’s cutting plane algo-

rithm,” Journal of Global Optimization, vol. 78, no. 1, pp. 161–179, 2020.

158

Bibliography

[120] A. F. Veinott Jr, “The supporting hyperplane method for unimodal pro-

gramming,” Operations Research, vol. 15, no. 1, pp. 147–152, 1967.

[121] T. Arnold, R. Henrion, A. Möller, and S. Vigerske, “A mixed-integer

stochastic nonlinear optimization problem with joint probabilistic con-

straints,” Pacific Journal of Optimization, vol. 10, pp. 5–20, 2014.

[122] T. Szántai, “A computer code for solution of probabilistic-constrained

stochastic programming problems,” Numerical Techniques for Stochastic

Optimization, vol. 10, p. 229, 1988.

[123] A. Prékopa, “Dual method for the solution of a one-stage stochastic pro-

gramming problem with random RHS obeying a discrete probability distri-

bution,” Zeitschrift für Operations Research, vol. 34, pp. 441–461, 1990.

[124] D. Dentcheva, A. Prékopa, and A. Ruszczynski, “Concavity and efficient

points of discrete distributions in probabilistic programming,” Mathemati-

cal programming, vol. 89, pp. 55–77, 2000.

[125] L. Ricciardi Celsi, “The dilemma of rapid AI advancements: Striking a

balance between innovation and regulation by pursuing risk-aware value

creation,” Information, vol. 14, no. 12, p. 645, 2023.

[126] B. Verweij, S. Ahmed, A. J. Kleywegt, G. Nemhauser, and A. Shapiro,

“The sample average approximation method applied to stochastic routing

problems: a computational study,” Computational optimization and appli-

cations, vol. 24, pp. 289–333, 2003.

[127] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear programming and

network flows. John Wiley & Sons, 2011.

159

Bibliography

[128] A. J. Conejo, E. Castillo, R. Minguez, and R. Garcia-Bertrand, Decom-

position techniques in mathematical programming: engineering and science

applications. Springer Science & Business Media, 2006.

[129] M. E. Lübbecke and J. Desrosiers, “Selected topics in column generation,”

Operations research, vol. 53, no. 6, pp. 1007–1023, 2005.

[130] G. B. Dantzig, A. Orden, P. Wolfe et al., “The generalized simplex method

for minimizing a linear form under linear inequality restraints,” Pacific

Journal of Mathematics, vol. 5, no. 2, pp. 183–195, 1955.

[131] V. Chvatal, Linear programming. Macmillan, 1983.

[132] G. Desaulniers, J. Desrosiers, and M. M. Solomon, Column generation.

Springer Science & Business Media, 2006, vol. 5.

[133] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and

P. H. Vance, “Branch-and-price: Column generation for solving huge integer

programs,” Operations research, vol. 46, no. 3, pp. 316–329, 1998.

[134] L. V. Kantorovich, “Mathematical methods of organizing and planning pro-

duction,” Management science, vol. 6, no. 4, pp. 366–422, 1960.

[135] J. Sessions, E. Olsen, and J. Garland, “Tree bucking for optimal stand value

with log allocation constraints,” Forest Science, vol. 35, no. 1, pp. 271–276,

1989.

[136] G. A. Ogunranti and A. E. Oluleye, “Minimizing waste (off-cuts) using

cutting stock model: The case of one dimensional cutting stock problem

in wood working industry,” Journal of Industrial Engineering and Manage-

ment (JIEM), vol. 9, no. 3, pp. 834–859, 2016.

[137] C. Kazunga, L. Mutambara, and J. Mapurisa, “A column generation ap-

proach to a carpentry cutting stock problem: a case study for planks cutting

160

Bibliography

in Zimbabwe,” African Journal of Educational Studies in Mathematics and

Sciences, vol. 9, no. 1, pp. 49–59, 2011.

[138] C. Goulimis, “Optimal solutions for the cutting stock problem,” European

Journal of Operational Research, vol. 44, no. 2, pp. 197–208, 1990.

[139] F. K. Lemos, A. C. Cherri, and S. A. de Araujo, “The cutting stock problem

with multiple manufacturing modes applied to a construction industry,”

International Journal of Production Research, vol. 59, no. 4, pp. 1088–1106,

2021.

[140] S. L. Non̊as and A. Thorstenson, “A combined cutting-stock and lot-sizing

problem,” European Journal of Operational Research, vol. 120, no. 2, pp.

327–342, 2000.

[141] S. Martello and P. Toth, Knapsack problems: algorithms and computer

implementations. John Wiley & Sons, Inc., 1990.

[142] M. Johnson, C. Rennick, and E. Zak, “Case studies from industry: skiving

addition to the cutting stock problem in the paper industry,” SIAM Review,

vol. 39, no. 3, pp. 472–483, 1997.

[143] F. Vanderbeck, “Computational study of a column generation algorithm

for bin packing and cutting stock problems,” Mathematical Programming,

vol. 86, pp. 565–594, 1999.

[144] H. Yang, T. So, and Y. Xu, “5G network slicing,” in 5G NR and Enhance-

ments. Elsevier, 2022, pp. 621–639.

[145] ETSI, “Network functions virtualisation (NFV) architectural framework,”

Tech. Rep. NFV-002, 2014.

161

Bibliography

[146] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualiza-

tion: Challenges and opportunities for innovations,” IEEE Communications

Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[147] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network functions

placement and routing optimization,” in IEEE International Conference on

Cloud Networking. IEEE, 2015, pp. 171–177.

[148] H. Moens and F. De Turck, “VNF-P: A model for efficient placement of

virtualized network functions,” in International Conference on Network and

Service Management, 2014, pp. 418–423.

[149] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orches-

trating virtual network functions,” in International Conference on Network

and Service Management, 2015, pp. 50–56.

[150] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gas-

pary, “Piecing together the NFV provisioning puzzle: Efficient placement

and chaining of virtual network functions,” in IFIP/IEEE International

Symposium on Integrated Network Management, 2015, pp. 98–106.

[151] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan,

“Optimal virtual network function placement in multi-cloud service func-

tion chaining architecture,” Computer Communications, vol. 102, pp. 1–16,

2017.

[152] A. Laghrissi, T. Taleb, M. Bagaa, and H. Flinck, “Towards edge slicing:

VNF placement algorithms for a dynamic & realistic edge cloud environ-

ment,” in IEEE Global Communications Conference, 2017, pp. 1–6.

[153] L. Yala, P. A. Frangoudis, G. Lucarelli, and A. Ksentini, “Cost and avail-

ability aware resource allocation and virtual function placement for CD-

162

Bibliography

NaaS provision,” IEEE Transactions on Network and Service Management,

vol. 15, no. 4, pp. 1334–1348, 2018.

[154] F. Carpio and A. Jukan, “Improving reliability of service function

chains with combined VNF migrations and replications,” arXiv preprint

arXiv:1711.08965, 2017.

[155] P. Vizarreta, M. Condoluci, C. M. Machuca, T. Mahmoodi, and

W. Kellerer, “QoS-driven function placement reducing expenditures in

NFV deployments,” in IEEE International Conference on Communications,

2017, pp. 1–7.

[156] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “SNDlib 1.0—sur-

vivable network design library,” Networks: An International Journal,

vol. 55, no. 3, pp. 276–286, 2010.

[157] S. Haller, “The things in the internet of things,” Poster at the (IoT 2010).

Tokyo, Japan, November, vol. 5, no. 8, pp. 26–30, 2010.

[158] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,

“Internet of things: A survey on enabling technologies, protocols, and ap-

plications,” IEEE communications surveys & tutorials, vol. 17, no. 4, pp.

2347–2376, 2015.

[159] M. Series, “IMT vision–framework and overall objectives of the future de-

velopment of IMT for 2020 and beyond,” Recommendation ITU, vol. 2083,

no. 0, pp. 11–12, 2015.

[160] C-RAN, “C-RAN: The road towards green RAN,” Tech. Rep. 2.5, 2011.

[161] J. Wu, Z. Zhang, Y. Hong, and Y. Wen, “Cloud radio access network (C-

RAN): a primer,” IEEE Network, vol. 29, no. 1, pp. 35–41, 2015.

163

Bibliography

[162] L. I. Barona López, Á. L. Valdivieso Caraguay, L. J. Garćıa Villalba, and

D. López, “Trends on virtualisation with software defined networking and

network function virtualisation,” IET Networks, vol. 4, no. 5, pp. 255–263,

2015.

[163] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A compre-

hensive survey,” IEEE Transactions on Network and Service Management,

vol. 13, no. 3, pp. 518–532, 2016.

[164] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and

R. Boutaba, “Network function virtualization: State-of-the-art and research

challenges,” IEEE Communications surveys & tutorials, vol. 18, no. 1, pp.

236–262, 2015.

[165] C. Cui, H. Deng, D. Telekom, U. Michel, and H. Damker, “Network func-

tions virtualisation,” 2012.

[166] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and

F. Huici, “{ClickOS} and the art of network function virtualization,” in

Symposium on Networked Systems Design and Implementation, 2014, pp.

459–473.

[167] W. Attaoui, E. Sabir, H. Elbiaze, and M. Guizani, “VNF and CNF place-

ment in 5G: Recent advances and future trends,” IEEE Transactions on

Network and Service Management, vol. 20, pp. 4698–4733, 2023.

[168] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break

in the clouds: towards a cloud definition,” ACM SIGCOMM Computer

Communication Review, vol. 39, no. 1, pp. 50–55, 2008.

164

Bibliography

[169] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role

in the internet of things,” in MCC workshop on Mobile cloud computing,

2012, pp. 13–16.

[170] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and

challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646,

2016.

[171] A. Laghrissi and T. Taleb, “A survey on the placement of virtual resources

and virtual network functions,” IEEE Communications Surveys & Tutori-

als, vol. 21, no. 2, pp. 1409–1434, 2018.

[172] J. Sun, Y. Zhang, F. Liu, H. Wang, X. Xu, and Y. Li, “A survey on the

placement of virtual network functions,” Journal of Network and Computer

Applications, vol. 202, p. 103361, 2022.

[173] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal place-

ment of virtual network functions,” in IEEE Conference on Computer Com-

munications, 2015, pp. 1346–1354.

[174] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,

“Virtual network embedding: A survey,” IEEE Communications Surveys

& Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[175] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains

of virtual network functions,” in IEEE International Conference on Cloud

Networking, 2014, pp. 7–13.

[176] F. Carpio, S. Dhahri, and A. Jukan, “VNF placement with replication for

loac balancing in NFV networks,” in IEEE International Conference on

Communications, 2017, pp. 1–6.

165

Bibliography

[177] M. Golkarifard, C. F. Chiasserini, F. Malandrino, and A. Movaghar, “Dy-

namic vnf placement, resource allocation and traffic routing in 5g,” Com-

puter Networks, vol. 188, p. 107830, 2021.

[178] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service function

chain deployment and readjustment,” IEEE Transactions on Network and

Service Management, vol. 14, no. 3, pp. 543–553, 2017.

[179] A. Baumgartner, V. S. Reddy, and T. Bauschert, “Mobile core network vir-

tualization: A model for combined virtual core network function placement

and topology optimization,” in IEEE Conference on Network Softwariza-

tion, 2015, pp. 1–9.

[180] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K. Ramakrishnan, and

T. Wood, “Virtual function placement and traffic steering in flexible and

dynamic software defined networks,” in IEEE International Workshop on

Local and Metropolitan Area Networks, 2015, pp. 1–6.

[181] R. Riggio, A. Bradai, T. Rasheed, J. Schulz-Zander, S. Kuklinski, and

T. Ahmed, “Virtual network functions orchestration in wireless networks,”

in International Conference on Network and Service Management, 2015,

pp. 108–116.

[182] F. B. Jemaa, G. Pujolle, and M. Pariente, “QoS-aware VNF placement

optimization in edge-central carrier cloud architecture,” in IEEE Global

Communications Conference, 2016, pp. 1–7.

[183] M. Ghaznavi, N. Shahriar, R. Ahmed, and R. Boutaba, “Service function

chaining simplified,” arXiv preprint arXiv:1601.00751, 2016.

[184] A. Hmaity, M. Savi, F. Musumeci, M. Tornatore, and A. Pattavina, “Vir-

tual network function placement for resilient service chain provisioning,” in

166

Bibliography

International Workshop on Resilient Networks Design and Modeling, 2016,

pp. 245–252.

[185] Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-assisted NFV service chain

deployment based on affiliation-aware VNF placement,” in IEEE Global

Communications Conference. IEEE, 2016, pp. 1–6.

[186] A. Gupta, M. F. Habib, U. Mandal, P. Chowdhury, M. Tornatore, and

B. Mukherjee, “On service-chaining strategies using virtual network func-

tions in operator networks,” Computer Networks, vol. 133, pp. 1–16, 2018.

[187] A. Ali, C. Anagnostopoulos, and D. P. Pezaros, “On the optimality of

virtualized security function placement in multi-tenant data centers,” in

IEEE International Conference on Communications, 2018, pp. 1–6.

[188] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,” Man-

agement science, vol. 6, no. 1, pp. 80–91, 1959.

[189] M. L. Balinski and R. E. Quandt, “On an integer program for a delivery

problem,” Operations research, vol. 12, no. 2, pp. 300–304, 1964.

[190] N. Huin, B. Jaumard, and F. Giroire, “Optimal network service chain pro-

visioning,” IEEE/ACM Transactions on Networking, vol. 26, no. 3, pp.

1320–1333, 2018.

[191] J. Cao, Y. Zhang, W. An, X. Chen, J. Sun, and Y. Han, “VNF-FG design

and VNF placement for 5G mobile networks,” Science China Information

Sciences, vol. 60, pp. 1–15, 2017.

[192] S. Agarwal, F. Malandrino, C.-F. Chiasserini, and S. De, “Joint VNF place-

ment and CPU allocation in 5G,” in IEEE Conference on Computer Com-

munications, 2018, pp. 1943–1951.

167

Bibliography

[193] P. M. Mohan and M. Gurusamy, “Resilient VNF placement for service chain

embedding in diversified 5G network slices,” in IEEE Global Communica-

tions Conference, 2019, pp. 1–6.

[194] S. Yang, F. Li, S. Trajanovski, X. Chen, Y. Wang, and X. Fu, “Delay-

aware virtual network function placement and routing in edge clouds,”

IEEE Transactions on Mobile Computing, vol. 20, no. 2, pp. 445–459, 2019.

[195] A. Varasteh, B. Madiwalar, A. Van Bemten, W. Kellerer, and C. Mas-

Machuca, “Holu: Power-aware and delay-constrained VNF placement

and chaining,” IEEE Transactions on Network and Service Management,

vol. 18, no. 2, pp. 1524–1539, 2021.

[196] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. De Foy, and Y. Zhang,

“Mobile edge cloud system: Architectures, challenges, and approaches,”

IEEE Systems Journal, vol. 12, no. 3, pp. 2495–2508, 2017.

[197] D. Li, P. Hong, K. Xue, and J. Pei, “Availability aware VNF deployment in

datacenter through shared redundancy and multi-tenancy,” IEEE Transac-

tions on Network and Service Management, vol. 16, no. 4, pp. 1651–1664,

2019.

[198] Y. Alahmad, A. Agarwal, and T. Daradkeh, “Cost and availability-aware

VNF selection and placement for network services in NFV,” in International

Symposium on Networks, Computers and Communications, 2020, pp. 1–6.

[199] S. Yang, S. Trajanovski, and F. A. Kuipers, “Availability-based path selec-

tion,” in International Workshop on Reliable Networks Design and Model-

ing, 2014, pp. 39–46.

[200] A. Goldberg and T. Radzik, “A heuristic improvement of the Bellman-Ford

algorithm,” Stanford University Department of Computer Science, Tech.

Rep., 1993.

168

Bibliography

[201] N. Promwongsa, A. Ebrahimzadeh, R. H. Glitho, and N. Crespi, “Joint

VNF placement and scheduling for latency-sensitive services,” IEEE Trans-

actions on Network Science and Engineering, vol. 9, no. 4, pp. 2432–2449,

2022.

[202] S. M. Araujo, F. S. de Souza, and G. R. Mateus, “A demand aware strategy

for a machine learning approach to VNF-PC problem,” in IEEE Interna-

tional Conference on Cloud Networking, 2022, pp. 211–219.

[203] Y. Gu, Y. Hu, Y. Ding, J. Lu, and J. Xie, “Elastic virtual network function

orchestration policy based on workload prediction,” IEEE Access, vol. 7,

pp. 96 868–96 878, 2019.

[204] J. Cai, K. Qian, J. Luo, and K. Zhu, “SARM: service function chain active

reconfiguration mechanism based on load and demand prediction,” Inter-

national Journal of Intelligent Systems, vol. 37, no. 9, pp. 6388–6414, 2022.

[205] M. Wang, B. Cheng, and J. Chen, “Joint availability guarantee and re-

source optimization of virtual network function placement in data cen-

ter networks,” IEEE Transactions on Network and Service Management,

vol. 17, no. 2, pp. 821–834, 2020.

[206] A. Jalalian, S. Yousefi, and T. Kunz, “Network slicing in virtualized 5G

core with VNF sharing,” Journal of Network and Computer Applications,

p. 103631, 2023.

[207] 3GPP, “Service requirements for cyber-physical control applications in ver-

tical domains, rel. 16,” Tech. Rep. 22.104, 2018.

[208] Cisco, “Cisco annual internet report (2018–2023) white paper,” Tech. Rep.,

2020.

169

Bibliography

[209] Gurobi, “Gurobi 8 performance benchmarks,” https://assets.gurobi.com/

pdfs/benchmarks.pdf, 2019, [Online; accessed 17-May-2024].

[210] T. Achterberg, “SCIP: solving constraint integer programs,” Mathematical

Programming Computation, vol. 1, pp. 1–41, 2009.

[211] S. Maher, M. Miltenberger, J. P. Pedroso, D. Rehfeldt, R. Schwarz, and

F. Serrano, “Pyscipopt: Mathematical programming in python with the

scip optimization suite,” in International Conference on Mathematical Soft-

ware. Springer, 2016, pp. 301–307.

[212] T. Vidal and M. Ghallab, “Dealing with uncertain durations in temporal

constraint networks dedicated to planning,” in European Conference on

Artificial Intelligence, 1996, pp. 48–54.

[213] T. Vidal and H. Fargier, “Handling contingency in temporal constraint

networks: From consistency to controllabilities,” Journal of Experimental

and Theoretical Artificial Intelligence, vol. 11, pp. 23–45, 01 1999.

[214] G. Filippi, M. Vasile, E. Patelli, and M. Fossati, “Generative optimisation

of resilient drone logistic networks,” in IEEE Congress on Evolutionary

Computation, 2022.

[215] I. Bakach, A. M. Campbell, J. F. Ehmke, and T. L. Urban, “Solving vehicle

routing problems with stochastic and correlated travel times and makespan

objectives,” EURO Journal on Transportation and Logistics, vol. 10, p.

100029, 2021.

[216] D. Park and L. R. Rilett, “Forecasting freeway link travel times with a

multilayer feedforward neural network,” Computer-Aided Civil and Infras-

tructure Engineering, vol. 14, no. 5, pp. 357–367, 1999.

170

https://assets.gurobi.com/pdfs/benchmarks.pdf
https://assets.gurobi.com/pdfs/benchmarks.pdf

Bibliography

[217] J. Gondzio, P. González-Brevis, and P. Munari, “Large-scale optimization

with the primal-dual column generation method,” Mathematical Program-

ming Computation, vol. 8, no. 1, pp. 47–82, 2016.

[218] P. H. Morris and N. Muscettola, “Temporal dynamic controllability revis-

ited,” in AAAI Conference on Artificial Intelligence, 2005, pp. 1193–1198.

[219] A. Cimatti, A. Micheli, and M. Roveri, “Solving strong controllability of

temporal problems with uncertainty using SMT,” Constraints, vol. 20, pp.

1–29, 2015.

[220] T. Vidal and H. Fargier, “Contingent durations in temporal CSPs: from

consistency to controllabilities,” in International Workshop on Temporal

Representation and Reasoning, 1997, pp. 78–85.

[221] A. Wang and B. Williams, “Chance-constrained scheduling via conflict-

directed risk allocation,” in AAAI Conference on Artificial Intelligence,

vol. 29, no. 1, 2015, pp. 3620–3627.

[222] C.-C. Lu, K.-C. Ying, and S.-W. Lin, “Robust single machine scheduling for

minimizing total flow time in the presence of uncertain processing times,”

Computers & Industrial Engineering, vol. 74, pp. 102–110, 2014.

[223] A. Moreira, A. Street, and J. M. Arroyo, “Energy and reserve scheduling

under correlated nodal demand uncertainty: An adjustable robust opti-

mization approach,” International Journal of Electrical Power & Energy

Systems, vol. 72, pp. 91–98, 2015.

[224] Ö. Ökmen and A. Öztaş, “Construction project network evaluation with

correlated schedule risk analysis model,” Journal of Construction Engi-

neering and Management, vol. 134, no. 1, pp. 49–63, 2008.

171

Bibliography

[225] W.-C. Wang and L. A. Demsetz, “Model for evaluating networks under

correlated uncertainty—NETCOR,” Journal of Construction Engineering

and Management, vol. 126, no. 6, pp. 458–466, 2000.

[226] G. Maronati and B. Petrovic, “Estimating cost uncertainties in nuclear

power plant construction through monte carlo sampled correlated random

variables,” Progress in Nuclear Energy, vol. 111, pp. 211–222, 2019.

[227] R. Eiris Pereira and I. Flood, “Impact of linear correlation on construction

project performance using stochastic linear scheduling,” Visualization in

Engineering, vol. 5, no. 1, pp. 1–12, 2017.

[228] A. Nicholson, “Travel time reliability benefits: Allowing for correlation,”

Research in Transportation Economics, vol. 49, pp. 14–21, 2015.

[229] R. Henrion and A. Möller, “A gradient formula for linear chance constraints

under gaussian distribution,” Mathematics of Operations Research, vol. 37,

no. 3, pp. 475–488, 2012.

[230] A. Saumard and J. A. Wellner, “Log-concavity and strong log-concavity: a

review,” Statistics surveys, vol. 8, p. 45, 2014.

[231] W. Van Ackooij, “A discussion of probability functions and constraints from

a variational perspective,” Set-Valued and Variational Analysis, vol. 28,

no. 4, pp. 585–609, 2020.

[232] C. I. Fábián, “Gaining traction: on the convergence of an inner approxi-

mation scheme for probability maximization,” Central European Journal of

Operations Research, vol. 29, no. 2, pp. 491–519, 2021.

[233] A. M. Geoffrion, “Elements of large-scale mathematical programming part

I: concepts,” Management Science, vol. 16, no. 11, p. 652–675, 1970.

172

Bibliography

[234] G. B. Dantzig, Linear Programming and Extensions. Princeton: Princeton

University Press, 1963.

[235] A. Genz, “Numerical computation of multivariate normal probabilities,”

Journal of Computational and Graphical Statistics, vol. 1, no. 2, pp. 141–

149, 1992.

[236] W. Van Ackooij, R. Henrion, A. Möller, and R. Zorgati, “On probabilistic

constraints induced by rectangular sets and multivariate normal distribu-

tions,” Mathematical Methods of Operations Research, vol. 71, no. 3, pp.

535–549, 2010.

[237] W. Van Ackooij, R. Zorgati, R. Henrion, and A. Möller, “Chance

constrained programming and its applications to energy management,”

Stochastic Optimization-Seeing the Optimal for the Uncertain, pp. 291–320,

2011.

[238] M. Fox and D. Long, “PDDL2. 1: An extension to PDDL for expressing

temporal planning domains,” Journal of Artificial Intelligence Research,

vol. 20, pp. 61–124, 2003.

[239] J. Benton, A. Coles, and A. Coles, “Temporal planning with preferences

and time-dependent continuous costs,” in International Conference on Au-

tomated Planning and Scheduling, vol. 22, 2012, pp. 2–10.

[240] A. Coles, A. Coles, A. G. Olaya, S. Jiménez, C. L. López, S. Sanner, and

S. Yoon, “A survey of the seventh international planning competition,” Ai

Magazine, vol. 33, no. 1, pp. 83–88, 2012.

[241] J. Desrosiers and M. E. Lübbecke, “A primer in column generation,” in

Column Generation. Springer, 2005, pp. 1–32.

173

Bibliography

[242] T. G. Dietterich, “Steps toward robust artificial intelligence,” AI Magazine,

vol. 38, no. 3, pp. 3–24, 2017.

[243] E. Zemler, S. Azimi, K. Chang, J. Frank, and R. Morris, “Integrating task

planning with robust execution for autonomous robotic manipulation in

space,” in ICAPS Workshop on Planning and Robotics, vol. 3, 2020.

[244] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble

learning,” Frontiers of Computer Science, vol. 14, pp. 241–258, 2020.

[245] A. Fern and P. Lewis, “Ensemble Monte-Carlo planning: An empirical

study,” in International Conference on Automated Planning and Scheduling,

vol. 21, 2011, pp. 58–65.

[246] S. Ghosh, S. Laguna, S. H. Lim, L. Wynter, and H. Poonawala, “A deep

ensemble method for multi-agent reinforcement learning: A case study on

air traffic control,” in International Conference on Automated Planning and

Scheduling, vol. 31, 2021, pp. 468–476.

[247] M. Shen and J. P. How, “Robust opponent modeling via adversarial en-

semble reinforcement learning,” in International Conference on Automated

Planning and Scheduling, vol. 31, 2021, pp. 578–587.

[248] A. Ruszczyński and A. Świtanowski, “Accelerating the regularized decom-

position method for two stage stochastic linear problems,” European Jour-

nal of Operational Research, vol. 101, no. 2, pp. 328–342, 1997.

[249] M. Lee, N. Ma, G. Yu, and H. Dai, “Accelerating generalized Benders de-

composition for wireless resource allocation,” IEEE Transactions on Wire-

less Communications, vol. 20, no. 2, pp. 1233–1247, 2020.

[250] K. Mana, S. Mak, P. Zehtabi, M. Cashmore, D. Magazzeni, and M. Veloso,

“Accelerating Benders decomposition via reinforcement learning surrogate

174

Bibliography

models,” ICAPS Workshop on Planning and Scheduling for Financial Ser-

vices, p. 12, 2023.

[251] N. Yu, B. Qian, R. Hu, Y. Chen, and L. Wang, “Solving open vehicle prob-

lem with time window by hybrid column generation algorithm,” Journal of

Systems Engineering and Electronics, vol. 33, no. 4, pp. 997–1009, 2022.

[252] S. Kraul, M. Seizinger, and J. O. Brunner, “Machine learning–supported

prediction of dual variables for the cutting stock problem with an applica-

tion in stabilized column generation,” INFORMS Journal on Computing,

2023.

[253] F. Nawaz, O. Hussain, F. K. Hussain, N. K. Janjua, M. Saberi, and

E. Chang, “Proactive management of SLA violations by capturing rele-

vant external events in a cloud of things environment,” Future Generation

Computer Systems, vol. 95, pp. 26–44, 2019.

[254] F. Nawaz, N. K. Janjua, O. K. Hussain, F. K. Hussain, E. Chang, and

M. Saberi, “Event-driven approach for predictive and proactive manage-

ment of SLA violations in the cloud of things,” Future Generation Computer

Systems, vol. 84, pp. 78–97, 2018.

[255] M. Gao, L. Popowski, and J. Boerkoel, “Dynamic control of probabilistic

simple temporal networks,” in AAAI Conference on Artificial Intelligence,

vol. 34, no. 06, 2020, pp. 9851–9858.

[256] M. Saint-Guillain, T. S. Vaquero, J. Agrawal, and S. Chien, “Robustness

computation of dynamic controllability in probabilistic temporal networks

with ordinary distributions,” in International Joint Conferences on Artifi-

cial Intelligence, 2021, pp. 4168–4175.

[257] P. Laborie, “Resource temporal networks: Definition and complexity,” in

International Joint Conference on Artificial Intelligence, 2003, pp. 948–953.

175

Bibliography

[258] C. Combi, R. Posenato, L. Viganò, and M. Zavatteri, “Conditional simple

temporal networks with uncertainty and resources,” Journal of Artificial

Intelligence Research, vol. 64, pp. 931–985, 2019.

[259] M. Cashmore, A. Cimatti, D. Magazzeni, A. Micheli, and P. Zehtabi, “Ro-

bustness envelopes for temporal plans,” in AAAI Conference on Artificial

Intelligence, vol. 33, no. 01, 2019, pp. 7538–7545.

176

Bibliography

177

	Abstract
	Publications
	List of Figures
	List of Tables
	Acronyms
	Source Code
	Preface/Acknowledgements
	Introduction
	Background
	Outline
	Motivation
	Contribution

	A Survey of Robust Planning and Scheduling
	Introduction
	Background
	Mathematical Optimization
	Planning
	Scheduling

	Robust Planning and Scheduling
	Proactive Approaches
	Reactive Approaches
	Probabilistic Approaches

	Optimization under Uncertainty
	Stochastic Optimization
	Solution Methods

	Discussion and Conclusions

	Technical Preliminaries on the Column Generation Method
	Introduction
	Linear Programming
	Column Generation Method
	Example: Cutting Stock
	Compact Model
	Column Generation Model
	Running Example

	SLA Aware VNF Placement and Routing using Column Generation
	Introduction
	Background
	Related Work
	VNF Placement in General
	Solution Methods
	Use Case
	Optimization Metric

	Motivating Example
	Method
	Restricted Master Problem
	Column Generation Problem
	Network Transformation

	Experimental Setup
	Results
	Conclusion

	A Column Generation Approach to Correlated Simple Temporal Networks
	Introduction
	Background
	Related work
	Algorithms for PSTN SC
	Correlations in Scheduling

	Motivating Example
	Corr-STN SC is Convex
	Method
	Experimental Setup
	Planning Domain and Problem
	Corr-STN Instance Generation
	Solution Methods

	Results
	Conclusion

	Conclusion
	Summary and Contributions
	Future Research Directions

	PDDL Drone Delivery Domain
	PDDL Drone Delivery Problem
	Bibliography

