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Abstract 

 
 
This thesis exploits copula function theory to addresses critical problems in image processing, 

ranging from image registration, image fusion, band selection for hyperspectral images to 

change detection. Copula functions offer insight into the dependence structure between two 

entities, when their individual properties are known. Mathematically, for two random 

variables with known marginal distributions, the copula function acts as a bridge between the 

marginal distributions and their joint distribution. The copula functions also extend the 

concept of correlations to a wider class of dependence structures that may be non-linear. 

 

This thesis first presents the background on copula function theory, including copula density 

functions, conditional copulas, and addresses aspects of simulation, and modelling of copulas, 

as well as the estimation of copula parameters and optimal copula selection for later 

applications. 

 

It is well known that the efficacy of registration methods relies on similarity measure such as 

mutual information and the associated divergence fields. Thus the area of mutual information 

is next explored and the divergence based information between distributions is studied. These 

concepts are then embedded in the framework of copula functions. A large class of 

divergences, such as Kullback-Liebler and the more generalised divergences such as Csiszar 

and Renyi–like divergences, the Bregman divergences are formulated within the structure of 

the attendant copula functions. New definitions are offered for the modified Bregman and 

Burbea–Rao divergences. It is shown that for all these divergence measures the associated 

copula functions definitions offer a much more effective approach to computing the 

complicated divergences.  

 

Computing complicated calculation of these divergence based information by using copula 

density is proposed. The modified Bregman divergence is validated by comparing with 

conventional Bregman divergence by using smallest enclosing curve and K-means 

classification. 

 

As a follow on, copula functions are used for image registration. Here copula functions are 

exploited for maximizing the divergence based information. Experiments are conducted to 

show that the copula based measures improve the accuracy of registration results; and   

comparisons are made with conventional methods such as the joint histogram based mutual 

information, and those based on Gaussian assumptions. 

 

Another application of copulas explored in this thesis is the evaluation of the performance of 

multi-sensor image fusion methods based on criteria such as Mutual Information, Tsallis and 

Renyi divergence based information. Conventional fusion techniques include simple average, 

Principal Component Analysis (PCA), Gradient Pyramid (GP), Laplacian Pyramid (LP), 

Ratio Pyramid (RP) and Discrete Wavelet Transform (DWT). Their performance is compared 

by copula based methods. Using the criterion of fusion performance - Fusion Symmetry (FS)- 

it is shown that copula based measures provides effective evaluation of fusion performance, 

and that by tuning its key parameter, it is shown that the Tsallis divergence based information 

offers improved ability of discrimination.  
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There has been recent interest in analysing hyperspectral images, i.e. images collected with 

systems that cover a fine resolution over a large number of spectral bands. In this thesis  

methods are developed for the selection of bands in hyperspectral images that exploit copula 

based divergence based information. The band images which have higher mutual information 

with a reference image are selected.  When the reference image is not available a spectral 

library can be used to generate the reference image. A rejection bandwidth measure is applied 

to reduce the redundancy information between neighbouring bands, which may 

synchronously have the higher mutual information with the reference image. 

 

Finally, conditional copula techniques are developed for change detection that deal with the 

complicated situation where the objects in two images respectively are very similar or even 

same but their statistical distribution of pixel intensities vary remarkably due to the external 

factors such as climate changing or the use of different sensors. It leads to wrong change 

indicator. Conditional copulas solve this problem by training on the ‘no change’ areas 

between two images. It is shown that the results of copulas based measures are better than the 

‘difference’ and ‘statistical similarity’ measures. The work is validated by plotting the 

Receiver Operating Characteristic (ROC) curve for the different methods. 

 

The approach taken in this thesis is to seek new techniques to solve problems, seek to develop 

theoretical frameworks, and then test the concepts on simulation and wherever possible on 

real data. 

 

The work has been presented at several international conferences, and a number of journal 

papers are currently being prepared. 
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Chapter 1 

Introduction 

 

Digital processing of images has gained in popularity with the ready availability of 

conversion devices, and the attendant ability to perform computing operations or 

algorithms for a variety of purposes, in order to improve the images or to extract 

relevant information.  Functionally an image may be considered as a two-dimensional 

signal and can be described by the function z=f(x, y) where x and y are spatial 

coordinates and the amplitude z is the corresponding intensity or gray level of the 

image. The images are called digital images when x, y and z are finite. A digital image 

is composed of a finite number of element values at each location; the element is 

called pixel (picture element). With the availability and use of fast computers, digital 

image processing has become increasingly practical and popular [Gonzalez & Woods, 

2008].  

While there exists a large range of operations; typical digital image processing 

operations may be classified into a generic set of actions, including [Gonzalez & 

Woods, 2008]:  

 Image transformations: Such as image enlargement, reduction, translating and 

rotation. 

 Colour corrections: Such as brightness and contrast adjustments which make the 

images clearer to see. 

 Image enhancement: Operations to improve the subjective appearance of an image, 

such as noise reduction, image de-blurring, i.e. bringing into focus;  

 Image registration: Alignment of two or more images. 

 Image change detection: Estimate change areas between two or more images. 
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 Image segmentation: Partitioning image into multiple segments which is more 

intuitive and easier to analyse. 

 Image recognition: Determining whether the image data contains some specific 

object, feature or activity.  

 Image fusion: Combining a series of relevant two or more images to one single 

image for obtaining more information in this single image. 

 Image restoration: Making the image more closely resemble the original image 

which is noised or blurred. 

 Image coding or compression: To reduce the footprint of an image without 

necessarily reducing its information content. 

 

A large compendium of algorithms exists to perform the above operations [Gonzalez 

& Woods, 2008]. Almost all rely on apriori information or prior knowledge to 

improve an image. Several algorithms are based on implicit assumptions regarding the 

nature of the data or the image, such as Gaussianity or linearity, where specific 

evidence or information is not available. The image registration, performance 

evaluation of image fusion, band selection for hyperspectral images and change 

detection will be addressed in this thesis. 

 

 

1.1 Introduction to copulas in image processing 

 

As a preamble, in this Section we give a general background to the approach proposed 

in this thesis for the use of copulas in image processing. Detailed definitions and 

mathematical descriptions are given in later chapters. 

Many digital image processing techniques such as image registration, change 

detection, image fusion and image classification require an estimate of dependence 

and the associated joint probability density function between image pixel intensities.  

In the familiar multivariate Gaussian case, the dependence is described by the Pearson 

linear correlation, and the associated joint probability density function is easy to 
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estimate based on a multivariate Gaussian distribution model of image pixel 

intensities.  

However, it has been proven that non-linear dependence in stochastic processes 

renders the use of Pearson linear correlations impractical and mutual information is 

more robust than conventional Pearson correlation for intensity based image 

registration [Viola & Wells, 1997].  

Furthermore, the Pearson linear correlation is only effective for elliptical (joint) 

distributions [Fang et al., 1987]. The elliptical distribution represent joint distribution 

that have elliptical contours, the definition is given in Chapter 2. The well-known 

elliptical distributions are multivariate Gaussian, Student t, Logistic and Laplace 

which means that their corresponding marginal distributions are Gaussian, Student t, 

Logistic and Laplace distributions respectively [Landsman & Valdez, 1999].  

However, non-elliptical distributions always exist in the real world. For examples, 

radar images, it is well known that it‟s distribution of pixel intensity are considered as 

gamma distributions, therefore multi-Gamma distribution were proposed to deal with 

Radar image registration and change detection [Chatelain et al., 2007]. Besides, 

Magnetic Resonance images are considered as Rician distribution [Sijbers et al., 

1998]. Specifically in the real world, the distribution of pixel intensity of images may 

be arbitrary, therefore their types of marginal distributions may be not consistent, and 

there is no multivariate distribution available to deal with these non-elliptical cases. 

In order to solve these problems, a new statistical tool called the copula function will 

be investigated in this thesis. The copula function is a joint distribution function with 

uniform marginal distributions [Nelsen, 1999]. It represents a dependency structure 

which may be non-linear of multidimensional variables and can be estimated in terms 

of only related marginal distributions. Another significant advantage of copula 

function is that it is able to estimate the joint distribution for arbitrary marginal 

distributions. 

 

1.1.1 Copulas for divergence based measures 

The divergence-based information (see Section 3.1 of Chapter 3 for the definition) 
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such as mutual information gives a measure of the distance between two distributions, 

and it is actually the Kullback-Leibler based information [Thomas & Joy, 1991]. This 

measure represents an eminent tool to determine the quantitative dependency between 

two or more variables. There are four categories of conventional and generalized 

divergences that include the Csiszar, Renyi-like, Bregman and Burbea-Rao 

divergences [Pardo & Vajda, 2003], [Martin,  2006] are applied widely in the image 

processing field, in applications such as image registration, image classification 

[Banerjee, et al., 2005], [Ozturk & Abut, 1990], [Pluim, et al., 2004], [He, et al., 

2003], [Maes et al., 1997]. In this thesis the corresponding divergences based 

information for these four categories of measures will be investigated in some detail, 

and copula function based frameworks will be developed to show the applicability of 

the copula functions to evaluate these measures. 

   It is well-known that the joint probability density function can be expressed as the 

product of copula density function and marginal probability density functions 

[Durrani & Zeng, 2007]. Copulas thus offer a natural way to estimate divergence-

based information, and more details are given in Chapter 3. 

In Chapter 3, we show that both of the Csiszar and Renyi-like divergences based 

information can be expressed directly in terms of copula density function only, and a 

modified version of the Bregman divergence based information can be expressed in 

terms of copula density only as well. By transforming the formula of Burbea-Rao 

divergence, it will be shown that Burbea-Rao divergence is a special case of Bregman 

divergence, so Burbea-Rao divergence based information can also be expressed by a 

copula density function. This means that only copula parameters are needed to 

estimate, the joint probability density function, and marginal density functions are not 

required to estimate for the divergence based information.  

 

1.1.2 Relevance to image registration techniques 

 

The use of divergences based information has been widely accepted as one of the 

most accurate and robust image registration techniques [He, et al., 2003], [Pluim, et 

al., 2004]. Furthermore, the four categories of divergences mentioned above, are more 

generalized than mutual information. And in later chapters it is shown that they 

provide improved ability to control the measurement sensitivity and hence better 
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accuracy for image processing.  

The key to the estimation of divergence based information is the evaluation of the 

joint probability density function. It has already been stated earlier, that it is extremely 

difficult to estimate the joint probability density function without apriori information 

about the underlying models such as multi-Gaussian, multi-Gamma. However, 

actually these models may not be suitable since the marginal distributions may not be 

always Gaussian or Gamma and may be arbitrary. The comments hold for different 

type of marginal distributions. Copulas offer a more general model and are able to 

deal with cases where the marginal distributions are not consistent.  

The pixel intensity based image registration process can be described as: given the 

first image as reference image and the second image as float image, by rotating, 

translating and rescaling the float image to find the optimal space transformation for 

the float image until the divergence based information between the overlapping parts 

of reference and transformed float images reaches to the maximum. Four categories 

and eleven types of divergences based information based on copulas will be applied to 

achieve image registration. The results will be compared with conventional 

techniques including the Gaussian assumption based mutual information and the non-

parametric method which uses the joint histogram of pixel intensity to estimate the 

joint probability density function [Maes, et al., 1997]. 

 

1.1.3 Copulas for performance evaluation of image fusions 

Conventional techniques to evaluate the effectiveness of image fusion techniques 

include the following:  Simple average, Principal Component Analysis (PCA) [Jia, 

1998], Gradient Pyramid (GP) [Burt & Kolczynski, 1993], Laplacian Pyramid (LP) 

[Burt & Adelson, 1983], Ratio Pyramid (RP) [Toet, 1989] and Discrete Wavelet 

Transform (DWT) methods [Mallat, 1989]. In this thesis, copula methods are 

developed as an alternative approach to assess the effectiveness of image fusion 

techniques for multi-sensor images without ground truth. 

 

1.1.4 Support for hyperspectral imaging 
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Another application of copula functions will be explored in the context of band 

selection for hyper-spectral image processing. Hyperspectral imaging can cover the 

entire spectral band range, with around 10 nm spectral bandwidth. Hyper-spectral 

images represent high-dimensional data with relatively much more information than 

visible light images. However such large amounts of data is not convenient for the 

further image processing such as image classification, transmission and real time 

application. Hence band selection for the high-dimensional image is necessary.  

Given a reference image, copulas based mutual information may be calculated and 

band images chosen that have the higher mutual information with the reference image. 

To reduce the reliance of reference image, spectral signatures may be used, and other 

thresholding techniques may be exploited to improve the results of band selection by 

removing the redundant information between neighbouring bands [Guo, et al., 2006]. 

 

1.1.5 Conditional copulas for image change detection 

The requirement of automated techniques for detecting the changes between images 

of the same scene, arise in several image processing applications, e.g. in remote 

sensing [Bruzzone & Prieto, 2002], where changes in scenes offer relevant 

information; or in patient monitoring using biomedical imaging [Wakuya et al., 2007], 

where the efficacy of treatment is recognized by changes in images taken at different 

times, and in many more applications. In this thesis copula based techniques are 

developed for image change detection. Since the copula function reveals the 

dependence between the random variables, once the dependency structure is estimated; 

this characteristic can be used for complicated image change detection. For example, 

some observations in two images may be very similar or even same and the 

corresponding pixel intensity distributions should be similar or same as well. 

However if the two images were obtained by different sensors, or  under different 

weather conditions or due to other external conditions, the pixel intensity distribution 

may be affected remarkably, and it is this difference in distributions that is readily 

identified by copula based techniques, that offer the prospect of new approaches to 

change detection, whereas statistical similarity based change detection techniques can 

often lead to erroneous change detection [Inglada, 2003], [ Inglada & Mercier, 2007].    
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1.2 Organisation of this thesis 

The introduction in Chapter 1 has set out some of issues concerned with Image 

Processing, such as the Pearson correlation being effective only when dealing with 

elliptical distributions, and the difficulties in the estimation of the divergence based 

information in image processing, and more. It is conjectured (and proven in 

subsequent chapters), that copula functions may resolve these problems. 

Chapter 2 introduces the copula functions and their properties, description is provided 

of three typical copulas such as Clayton, Frank, Gaussian copula, and two new 

copulas called Exponential and Rayleigh copula are introduced. Details of the 

definition of copula density functions and associated computation of copula 

distribution function are considered, and aspects of the generation of random variables 

for copulas, copula parameter estimation and the optimal copula selection techniques 

are presented. This chapter lays the foundation for the use of copulas later on. 

Chapter 3 is concerned with information theoretic concepts related to measure such as 

distances between distributions, given in terms of divergences. Four types of 

divergences are studied here: Csiszar, Renyi-like, modified Bregman and Burbea-Rao 

divergence based information, and these are embedded with the framework of 

associated copula density functions only. Illustrative examples are included. The 

modified Bregman divergence is evaluated and compared with the conventional 

Bregman divergence by using the smallest enclosing curve and K-means classification. 

Chapter 4 proposes an approach for image registration based on maximizing 

divergence-based information using copulas. Theoretical concepts are first developed 

and then the work is illustrated first on synthetic images with added noise to verify the 

registration techniques. The work is then extended to test the registration algorithms 

firstly CT (Computerized Tomography) and MRI (Magnetic Resonance Imaging) 

images, then data available from Thales, visible light images and thermal images are 

registered. To assess the performance, copula methods are compared with the classic 

methods such as Gaussian assumption based mutual information and joint histogram 

based mutual information. 

Besides, Tsallis and Renyi divergence based information is applied to evaluate the 

performance of image fusion, higher information between fused image and input 
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images are considered as better performance [Cvejic et al., 2006]. The fusion 

algorithms such as simple average, Principal Component Analysis (PCA), Gradient 

Pyramid (GP), Laplacian Pyramid (LP), Ratio Pyramid (RP) and Discrete Wavelet 

Transform (DWT) methods are assessed for multi-sensor image data follow the 

criterion of Fusion Symmetry [Stathaki, 2008]. The Tsallis divergence based 

information has been found that it can provide better ability of discrimination by 

adjusting its parameter than classic mutual information.  

In Chapter 5 a new method is introduced, which uses copulas-based „mutual 

information‟ to solve the classic problem of band selection for hyperspectral images. 

Band images which have higher mutual information with reference image are retained. 

The copula functions are used to evaluate the mutual information. Results of 

experiment are provided that compare the proposed approach with conventional 

methods such as Gaussian assumption and joint histogram based mutual information. 

Chapter 6 addresses the problems in image change detection for remote sensing, for 

images taken by the different sensors, or in the different weather condition. Here the 

issue that the pixel intensity distributions are much different is exploited to analyse 

the data, while the observations may be very similar or even the same.  Conditional 

copulas are used to solve this problem. For two registered images, information for 

neighbouring pixels is exploited in addition to the value of each pixel to calculate the 

symmetric Kullback-Leibler divergence (SKLD) between neighbours as the change 

indicator. The results are compared with conventional methods such as statistical 

similarity based method and pixel based method, and illustrated on real data. 

Finally, Chapter 7 provides some discussion and conclusions on the work reported in 

this thesis, and further research to extend the work is also proposed. 

 

1.3 Original contribution 

 

The major contribution of this thesis is the invention of copulas for divergence-based 

information, and the divergence framework including the frequently-used Csiszar, 

Renyi-like, modified Bregman and Burbea-Rao divergences. The copula-based 

information offers a robust method to estimate all kinds of divergence-based 
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information even when the marginal distributions are not consistent. The approach 

thus handles the cases where the marginal distributions can be arbitrary. Copulas are 

applied for image registration by searching the optimal spatial transformation which 

makes the divergence-based information maximal between the overlapping parts of 

reference image and float image transformed through operations such as rotation, 

translation and rescaling.   

Furthermore, copulas based mutual information is proposed for the evaluation of the 

performance of image fusion where the ground truth is not available. Higher 

information between fused image and input images is considered and shown to yield 

better performance [Cevjic et al., 2006]. 

In addition, while hyper-spectral images offer more information than visible light 

images, they are too large to conduct the further processing. Thus a new method 

named copulas-based mutual information is proposed for band selection by choosing 

the band images which have higher mutual information with reference image [Guo et 

al., 2006].  

Finally, the pixel intensity distributions are affected when the images taken by the 

different sensors, as in the different weather condition. This can make the pixel 

intensity distributions be much different although the observations in a real situation 

may be very similar or even are the same. Since copulas can measure the complex 

dependency relationship which allows evaluation of this dependence, which may not 

be linear between the random variables; this property is exploited for change detection 

[Inglada, 2003], [Mercier et al., 2008].  

 

1.4 List of Publications 

 

During the duration of the PhD degree studies, the following research papers have 
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● X. Zeng & T.S Durrani, “Image change detection using copulas, 9
th

 IEEE 

International Conference on Signal Processing”, pp. 909-913, Oct. 26-29, Beijing, 

China, 2008. 
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● T. S Durrani & X. Zeng, “Copula based Divergence Measures and their use in 

Image Registration”, 17
th

 European Signal Processing Conference, pp. 1309 -1313, 

Aug. 24-28, Glasgow, U.K, 2009.  

● X. Zeng & T. S Durrani, “Band Selection for Hyperspectral Images using Copulas-

based Mutual Information”, IEEE Workshop on Statistical Signal Processing, pp. 

341-344, 31 Aug – 3 Sep, Cardiff, U.K, 2009. 

●  X Zeng & T.S Durrani, “Performance Evaluation of Image Fusion using Copulas”, 

10
th
 IEEE International Conference on Signal Processing, Oct. 24-28, Beijing, China, 

2010. Accepted on 15 July 2010. 

 

Earlier publication includes: 

● T.S Durrani and X. Zeng, “Copulas for bivariate probability distributions”, IET 

electronic letters, Vol. 43 , Issue 4, pp.248-249, 2007. 
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Chapter 2  

Introduction to Copulas 

 

The copula function describes the „coupling‟ between a multivariate function and its 

marginals. The concept was first proposed in a famous theorem by Abe Sklar in 1959 

[Sklar, 1959]. Traditionally, when a multivariate joint distribution function is given, 

the marginal distribution functions can be found through straight forward integration. 

However, conversely, if the marginal distributions are known, a unique joint 

distribution cannot be found.  With the help of copulas, the joint distribution functions 

can be estimated for the arbitrary marginal distribution functions since a copula can 

link the joint distribution to its marginal distributions, it has become a new popular 

statistical tool to model the dependency structure among variables. One of the most 

interesting new statistical ideas to emerge from financial options theory in recent 

years is the copula [Murphy et al., 2006] and it has been recently applied in many 

fields such as earth science [Li et al., 2008] and risk analysis [Perrone et al., 2006]. 

However, as yet copulas have not found a role in image processing, and are an almost 

unexplored area. Nevertheless, considering the robustness, convenience, accuracy and 

effectiveness of copulas, their use in the area of image processing offers a worthwhile 

opportunity for further exploration. 

 

2.1 Copula definition 

 

Sklar‟s theorem [Sklar, 1959] lays the foundation for the definition of the copula 

functions which can be described as:  
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Let H(x, y) be a joint cumulative distribution function with two marginal cumulative 

distribution functions F(x) and G(y) for two random variables x and y respectively, 

then there exists a copula function C for all x and y such that 

                                                  H(x, y) = C(F(x),G(y))                                           (2.1) 

If F(x) and G(y) are continuous, then the copula function C is unique. According to 

Sklar‟s theorem, the two-dimensional copula function can be defined as:  

A two-dimensional copula is a bivariate cumulative distribution function defined on 

the unit cube with uniform marginal distributions on the interval [0, 1]. As the 

extension, the copula function C (u, v) has been defined as [Nelsen, 1999]: 

                                                 
1 1( , ) ( ( ), ( ))C u v H F u G v                                     (2.2) 

where u = F(x)  and v=G(y) . 

In addition, for any [0,1]u and [0,1]v , copula function should satisfy the following 

conditions [Nelsen, 1999]:     

  ( ,1) ;  (1, )   ( ,0) 0;  (0, ) 0C u u C v v and C u C v                                      (2.3)  

   If 1 2;  1 2u u v v   then, ( 2, 2) - ( 2, 1) - ( 1, 2) ( 1, 1) 0C u v C u v C u v C u v    (2.4)  

 

2.2 Properties 

 

There is an important property which is called Fr échet-Hoeffding bounding for 

copula function and can be described as [Nelsen, 1999]: 

                      ( , ) max( 1,0) ( , ) min( , ) ( , )W u v u v C u v u v M u v                     (2.5)  

Here, M(u,v) is usually called Fréchet-Hoeffding upper bound. It means that for any 

given copula function C, we can get C(u,v)   M(u,v) for arbitrary u,v   [0, 1]. 

Similarly, the Fréchet-Hoeffding lower bound is defined by W(u,v) =max(u + v −1, 0). 

It has been proven that both of the Fréchet-Hoeffding upper and lower bounds are 

copulas themselves. 
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2.3 Copula example 

 

After introduction of the definition of copula function, a copula example with one 

parameter will be derived from the joint cumulative distribution function ( , )H x y . 

                   
( )1 0 0

( , )
0

x y x y xye e e x and y
H x y

otherwise





         
 
  

where   is a parameter in the range of  [0,1]. The corresponding inverse marginal 

cumulative distribution function of u and v in [0, 1] are:  

                                        
1 1( ) ln(1 ); ( ) ln(1 )F u u G v v        

According to the copula definition in Eq. (2.2), the corresponding copula function can 

be found as:  

                                   ln(1 )ln(1 )( , ) 1 (1 )(1 ) u vC u v u v u v e 



         

Specifically, let 0.5  , then the corresponding copula function becomes: 

                                 
ln(1 ) ln(1 )

2( , ) 1 (1 )(1 )
u v

C u v u v u v e
 



                                 (2.6) 

The diagram of this copula distribution function is shown in Figure 2.1.  To obtain the 

better visual effects, the contour figure for displaying the isoline of copula distribution 

function has been drawn and shown in Figure 2.2. 

This example shows how does the copula distribution function can be generated when 

the joint probability distribution is known. It can be achieved by the following two 

steps:  

Firstly, estimate the marginal distribution function and inverse marginal distribution 

function from the joint distribution function. 

Secondly, calculate the copula distribution function by using the Eq. (2.2), this shows 

that the copula distribution function is just the joint cumulative distribution of two 

inverse marginal cumulative distribution functions. 
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                            Figure 2.1:  Copula distribution function for Eq. (2.6) 

 

                       

                  Figure 2.2:  Contour of copula distribution function for Eq. (2.6) 
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2.4 Pearson correlations 

 

Before the research of copula function, we review the Pearson correlation which is an 

important correlation measure in statistics. The Pearson correlation shows whether a 

pairs of variables are related to each other and how strongly they are related. The 

Pearson correlation coefficients describe the strength of the relationship between two 

variables, and the range of correlation coefficient is from -1.0 to +1.0. The Pearson 

correlation coefficient of 1.0 indicates a perfect positive relationship since high values 

in one of the variables are related to high values in another variable. The correlation 

coefficient 0 means no relationship between two variables. Moreover, the correlation 

coefficient –1 means a perfect negative relationship since variables with high values 

are related perfectly to low values in another variable, and conversely, low values in 

one of variable are perfectly related to high values in another variable.  

Pearson correlation coefficient is also called linear correlation and is defined as 

follows [Gibbons, 1985]:  

                                             
cov( , ) [( )( )]X Y

XY

X Y X Y

X Y E X Y 


   

 
                 (2.7)           

where XY  is the Pearson correlation between two random variables X and Y, μX and μY 

and are expected values, σX and σY are standard deviations of X and Y respectively. 

Here E is the expectation operation and cov is covariance.  

For ( )X E X  ; 2 2 2( ) ( )X E X E X   and ( )Y E Y  ; 2 2 2( ) ( )Y E Y E Y   . The 

Pearson correlation becomes: 

                                   
2 22 2

( ) ( ) ( )
=

( ) ( ) ( ) ( )
XY

E XY E X E Y

E X E X E Y E Y




 
                            (2.8)               

The correlation exists only when two standard deviations are finite and both of them 

are nonzero. If the variables are independent then the correlation is 0, however, the 

converse is not true, that is to say, the variables are not possibly independent when the 

correlation is zero because correlation coefficient can be used to describe linear 
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dependencies between two variables. For example: assume a random variable X is 

uniformly distributed on the interval from −1 to 1, and Y = X
2
. Then Y is completely 

determined by X, so that X and Y are obviously dependent, but their correlation is zero.  

Pearson correlation is a very important correlation and is applied in several areas.   

However, it is not the perfect measure of dependence since correlation is limited to 

elliptical distributions [Kumar & Shoukri, 2007] which can be defined as following 

[Fang et al., 1987]:  

An elliptical distribution [Fang et al., 1987] is the generalization of the multivariate 

normal distribution. Let n be a class of functions ( )t where [0, )t  such that 

function 2

1

( )
n

i

i

t


 is an n-dimensional characteristic function. It is clear that 

                                                1 1...n n     

Consider a n-dimensional random vector X=( X1, X2,…Xn )
T
, the random vector X has 

a multivariate elliptical distribution, denoted by X~ ( , , )nE   , if its characteristic 

function can be expressed as: 

                                                             
1

( ) ( )
2

Tit T

X t e t t  
                            

(2.9)  

for some column vector  , n by n positive definite matrix   and for some function 

( ) nt   which is called the characteristic generator. If the joint density function 

exists, it has the following form [Fang et al., 1987]: 

                                             11
( ) [ ( ) ( )]

2

Tn
X n

c
f x g x x    


                   

(2.10)  

where function ng  is called the density generator and  

                                                 
1

12
/ 2

0

(n/2)
[ ( ) ]

(2 )

n

n nn
c x g x dx







 

                            

(2.11)  

where function   is called Gamma function [Abramowitz & Stegun, 1965] which is 

defined as: 
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                                                         1

0

( ) z tz t e dt



   
                                          

(2.12)

                

 

when z is a positive integer, then ( ) ( 1)!z z   . 

For example, the multivariate normal distribution has the density generator function: 

( ) ug u e , then it is easy to get the joint density function: 

                                                    
11

( ) ( )
2( )

Tx x
n

X

c
f x e

    




                           (2.13)  

and 2(2 )
n

nc 


 , so the joint multivariate normal distribution function can be written 

as: 

                                                  
11

( ) ( )
2

2

1
( )

(2 )

Tx x

X n
f x e

 



   




                     

(2.14)  

Moreover, an important property of elliptical distribution is that any linear 

combination of elliptically distributed variables is elliptical. The common elliptical 

distributions are multivariate Gaussian, Student t distributions [Landsman & Valdez, 

2002]. 

Pearson correlation is effective for elliptical distribution but may not be a suitable 

way of dealing with joint multivariate distribution without the assumption of elliptical 

distribution and it is also useless when the types of marginal distribution are not 

consistent. 

 

2.5 Typical copulas 

 

A number of copula functions have been defined in [Nelsen, 1999]. This thesis will 

consider some typical copulas. Firstly, the Archimedean copulas are widely applied in 

several fields such as finance by the reasons of simplicity and efficiency [Cherubini et 

al., 2006]. A bivariate Archimedean copula function C(u,v) can be expressed as 
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[Nelsen, 1999]: 

                                                    
1( , ) ( ( ) ( ))C u v u v                                      (2.15)  

 

It should satisfy the following conditions: 

a) 0u1, 0v1. Function   is strictly decreasing and  (1) = 0. 

b)   is convex function, that is to say, the second order of derivative of  , '' 0  . 

The function   is called generator function. Two important Archimedean copulas 

which are used widely named Clayton and Frank copula will be introduced as follows. 

 

2.5.1 Clayton copula: 

 

The Clayton copula was firstly mentioned by [Clayton, 1978], it can be written by  

 

                                

1/( , ) max([ 1] ,0)C u v u v                              (2.16) 

 

where [ 1, )     and 0   and when 0  , the variables are independent. The 

generator function is:  

                                                          ( ) ( 1)t t     

 

2.5.2 Frank copula 

 

The Frank copula was firstly introduced by [Frank, 1979] and it can be written by 

 

                                    

1 ( 1)( 1)
( , ) ln[1 ]

1

u ve e
C u v

e

 



 



 
  


                            (2.17) 

where ( , )      and  0  , when 0  , the variables are independent. The 

generator function is 
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1

( ) ln
1

te
t

e











 


  

Note that Archimedean copula function cannot independently exist without generator 

function, so the generator function must be specified. 

 

2.5.3 Bivariate Gaussian copula 

 

The Gaussian copula [Nelsen, 1999] is also called Normal copula. The bivariate 

Gaussian joint probability density function can be written as [Hamedani & Tata, 1975]: 

 

                                      

2 2

2

1 2
[( ) ( ) ]

2(1 )

2

1
( , )

2 1

X Y

X X Y Y

x yxy

XY

X Y

f x y e

 

   

  

 
  




         (2.18)  

                                                                                  

where X  , Y  are the mean values, X , Y  are the standard deviations and  is the 

Pearson correlation of two random variables x and y respectively. The standard 

bivariate Gaussian joint probability density function can be obtained by letting 

0X Y   and 1X Y    as: 

 

                                                   

2 2

2

2

2(1 )

2

1
( , )

2 1

x xy y

XYf x y e





 

 





                        

(2.19)

 

 

The standard joint Gaussian cumulative distribution function H(x, y) can be obtained 

by the following double integrals as: 

 

                                              

2 2

2

2

2(1 )

2
,

1
( , )

2 1

x xy y

X Y

H x y e dxdy





 

 






                    

(2.20)

 

 

So, the Gaussian copula distribution function can be written as: 

 

                                      

2 21 1

2

2( ) ( )

2(1 )

2

1
( , )

2 1

x xy yu v

C u v e dxdy

 



 

   




 




 
                     

(2.21)

 

where function  is the standard Gaussian cumulative distribution function. The 
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variables are independency when 0  . The closer the Pearson correlation coefficient 

is to 1 and -1, the stronger the correlation and negative correlation respectively 

between the variables. 

 

More copula functions can be found in [Nelsen, 1999], besides, except in [Nelsen, 

1999], two new copulas called Exponential and Rayleigh copula have been developed 

in [Durrani & Zeng, 2007]. Similar to Gaussian copula which extracts the dependency 

structure between two standard Gaussian distributions; these two new copulas extract 

the dependency structures between two exponential distributions and two Rayleigh 

distributions respectively. Considering two exponential marginal probability density 

functions ( )Xf x  and  ( )Yf y  are respectively as: 

 

                            

( )
0

x

X

e
f x

 
 


  
0

0

x

x




   ; ( )

0

y

Y

e
f y

 
 


 
0

0

y

y




   

where λ, μ are the variances of variables X and Y respectively. 

Then the two cumulative distribution functions: ( )xF x  and ( )YF y can be calculated 

as: 

                          
1

( )
0

x

X

e
F x

 
 


  
0

0

x

x




  ;  

1
( )

0

y

Y

e
F y

 
 


 
0

0

y

y




 

And the two inverse marginal cumulative distribution functions of u and v are: 

                                           )1ln(
1

)(
1

uuFx X 



 

                                          )1ln(
1

)(
1

vvFy Y 



 

The joint exponential probability density function can be written as [Downton, 1970]:  
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(2.22)  
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where ρ is the associated Pearson linear correlation and 0I is the first kind Modified 

Bessel function [Carrier et al., 1983] with order 0. So, the exponential copula function 

can be defined as: 

               

log(1 )log(1 )

0

0 0

2
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(2.23)  

Similarly, considering two Rayleigh marginal probability density functions )(xfX  and 

( )Yf y of two variables X and Y as: 
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The joint Rayleigh probability density function can be written as: [Abu-Dayya & 

Beaulieu, 1994] 
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(2.24)  

The two marginal cumulative distribution functions are: 
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The two inverse marginal cumulative distributions can be calculated as: 

                                            1 2( ) 2 ln(1 )X Xx F u u     

                                           1 2( ) 2 ln(1 )Y Yy F v v     

The corresponding copula function is called Rayleigh copula and it can be defined as: 
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where 2

1 2 ln(1 )X ua    ; 2

2 2 ln(1 )Ya v  
,
 



22 
Chapter 2: Introduction to Copulas 

X and Y are standard deviations of variables X and Y respectively, and ρ is the 

associated linear correlation and 0I is the first kind Modified Bessel function with 

order 0.  

Considering Clayton, Frank and Gaussian are applied frequently, so these three copula 

functions will be computed for modeling and simulated by generation of random 

variables in the following sections. As for the two new copulas: Exponential and 

Rayleigh copula will be investigated in Appendix 1. 

 

 

2.6   Copula parameter estimation 

 

There are two approaches for estimation of copula parameter. The first method is 

parametric method which relies on the special relationships between the copula 

parameter and Kendall‟s tau or Spearman rank correlations [Nelsen, 1999]. The 

second method is non-parametric method which is called maximum likelihood 

method [Cherubini et al., 2004]. 

 

2.6.1 Kendall’s tau and Spearman correlation based method 

 

Kendall‟s tau correlation is a non-parametric statistic tool which is used to measure 

the association or statistical dependence between random variables.  

Let 1 1 2 2{( , ),( , ),...,( , )}n nx y x y x y denote a random sample of observations from a 

vector ( , )X Y of continuous random variables, there are 
2

n 
 
 

different pairs ( , )i ix y and 

( , )j jx y of observations in the sample and each pair is either concordant or discordant. 

If i jx x and i jy y or i jx x  and i jy y , then we say ( , )i ix y and ( , )j jx y  are 

concordant pairs. Conversely, if i jx x and i jy y or i jx x  and i jy y , we say 
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( , )i ix y  and ( , )j jx y are discordant pairs. More specifically, the Kendall‟s tau 

correlation for the sample can be defined as [Kruskal, 1958]: 
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1
( 1)

22

c d c d c d

nc d
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
  

  
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 
                                 

(2.26)

   

 where c and d are the number of concordant pairs and discordant pairs respectively 

for samples.  The denominator in the definition of τ can be interpreted as the total 

number of concordant and discordant pairs. So, a high value in the numerator means 

that most pairs are concordant.  The arrangement of Kendall‟s tau correlation is 

between [-1, 1].  If the ranking correlation of two random variables is in perfect 

agreement then the Kendall‟s tau correlation is 1.  If the disagreement between the 

two rankings is perfect, the coefficient has the value −1.  If the rankings are 

completely independent, the coefficient has value 0.  Another version of Kendall‟s 

tau correlation is defined as the probability of concordance minus the probability of 

discordance and can be written as [Schweizer & Wolff, 1981], [Nelsen, 1999]: 

                         1 2 1 2 1 2 1 2Pr[( )( ) 0] Pr[( )( ) 0]X X Y Y X X Y Y        
         

(2.27)
 

where (X1,Y1) and (X2, Y2) are independent vectors of continuous random variables 

with same joint distribution function and common marginal distributions. Kendall‟s 

tau correlation can also be expressed simply in term of the copula functions as 

[Schweizer & Wolff, 1981], [Nelsen, 1999]:  

                                                    
2[0,1]

4 ( , ) ( , ) 1C u v dC u v  
                              

(2.28)  

This formula shows the relationship between the Kendal‟s tau correlation and the 

copula parameter, some typical copula parameter estimations by Kendall‟s tau 

correlation have been listed in the Table 2.1 [Huard et al., 2006].  

Another important rank correlation is called Spearman correlation which is also a 

non-parametric rank correlation used to measure the strength of the association 

between two variables.  Given n raw samples ix  and iy  and convert ix  and iy  to the 
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rank xir  and 
yir .  The difference between the ranks is

i xi yid r r  . The Spearman rank 

correlation coefficient can be defined as [Maritz, 1981]: 
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2

6

1
( 1)

n

i

i
S

d

n n
  




                                           (2.29) 

If there is a perfect agreement between two sets of ranks, then 1S  ; If there is a 

complete disagreement between two sets of ranks, then, 1S   ; If  the variables are 

independent, then, 0S  .  Spearman correlation also can be expressed in term of the 

copula distribution function as [Nelsen, 1999]: 

                                                 
2[0,1]

12 ( , ) 3S uvdC u v  
                             

(2.30)  

The corresponding formulas between copula parameter and Spearman rank 

correlation are also been listed in the Table 2.1 [Huard et al., 2006].  

 

 

2.6.2 Maximum Likelihood Estimation (MLE) method    

 

Maximum likelihood estimation is a popular statistical method for parameter 

estimation. Given a fixed dataset, MLE chooses the parameter value which makes the 

dataset more likely to happen than other parameter values [Stuart & Ord, 1987].  

Let  1 2 1
( , )

Tt t

t
X X X


  denotes a sample where 1

tX  and 2

tX  are two vectors with the 

length T, the expression of log-likelihood of joint probability density function can be 

written in terms of the copula density and marginal probability density functions as 

[Cherubini et al., 2004]:  

                           
2

1 1 1 2 2 2

1 1 1

( ) ln ( ( , ), ( , )) ln ( ; )
T T

t t t

n n n

t t n

c F x F x f x   
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            (2.31)  
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Copula 'Kendall s   and Range Spearman  S  and Range 

Clayton 

2
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





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No Simple Form
 

0 1S   

Frank 
1

4
1 [1 ( )]D 


    

0

( )
1

x k

k k t

k t
D x dt

x e


  

[ 1,1]    

1 2
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D x dt

x e


  

1 1S    

Gaussian 2
arcsin 


  

[ 1,1]    

6
arcsin( )

2
S





  

1 1S    

 

Table 2.1: Copula parameter expressed in terms of the Kendall‟s tau and Spearman 

rank correlation [Huard et al., 2006]. 

 

where c is the copula density function, 1F and 2F  are two marginal distributions with 

parameters 1  and 2  respectively and function nf are marginal probability density 

functions.  There are two popular MLE methods for this parameter estimations, the 

first is called Inference for Margins (IFM) which estimates the copula parameter by 

two steps [Cherubini et al., 2004]. 

Step 1: Estimate the parameter   of marginal firstly. 

                                               

2
'

1 1

argmax ln ( ; )
T

t

n n n n

t n

f x 
 

 
                           

(2.32)  
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Step 2: Estimate the copula parameter   by using marginal parameter   which has 

been found above.  

                         1 1 1 2 2

1

' argmax ( ) argmax ln ( ( ; ), ( ; ), )
T

t t

n

t

c F x F x    


  
        

The second MLE method is called Canonical Maximum Likelihood method (CML) 

[Cherubini et al., 2004], [Durrleman et al., 2000]. Here, the data 
1

tx  and 
2

tx   are first 

transformed into the uniform variants 
1

tu  and 
2

tu  by using empirical distributions, 

then use the following MLE formula to estimate the parameters of the copula. 

                                                   

2

1 2

1

' argmax ln ( , ; )
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c u u 


                                     

The empirical distribution has been defined as [Shorack & Wellner, 1986]: 
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n i
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F x I X x
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                                          (2.33)  

where function ( )AI x  is indicator function given by: 

                                                 
1

( )
0

AI x


 


    
if

if
  

x A

x A



  

 

 

2.6.3 Comparing the measures of copula parameter estimation 

The first method of copula parameter estimation which is based on Kendall‟s tau and 

Spearman correlation are the methods of precise formula derivation. However, the 

significant disadvantage is the time consuming computing effort which increases with 

the increasing size of data. Specifically, the direct computation of Kendall‟s tau 

correlation between n pairs of samples is O(n
2
) in complexity and becomes very slow 

on large dataset. Fast algorithm with expected calculating complexity of O(nlogn) 

have been proposed in [Dwork et al., 2001], [Christensen, 2005]. Besides, not all 

copulas have the simple expression linking the copula parameter and Kendall‟s tau or 
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Spearman correlation, some of them may be very complicated and someone cannot be 

found.  

The MLE method is an alternative method which is feasible for data with a large size, 

and deals with the case of high dimension data. Furthermore, CML method considers 

the attractive advantage of copula that copula separates the dependence structure and 

marginal distributions. 

Consequently, the measure based on the Kendall‟s tau and Spearman correlation is 

used when the size of the dataset is small and a simple expression can be found 

between copula parameter and Kendall‟s tau or Spearman correlation. The MLE 

measure is suitable for the data with large size or high dimensional data. 

 

2.7 Copula distribution function computation 

 

In this part, Clayton, Frank and Gaussian copula distribution functions will be 

computed for modelling copula distributions. 

 

2.7.1 Clayton, Frank and Gaussian Copula 

After the estimation of copula parameters, the copula can be modeled by computing 

copula distribution function with uniform marginal distributions. The expression of 

Clayton and Frank copulas are quite simple, and are easy to calculate. As for the 

Gaussian copula, it is not feasible to process the double integrals directly. The 

following transforming which reduces the double integrals to one integral can be used 

to calculate the Gaussian copula distribution function [Genz, 2004]:
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where   and  are the standard Gaussian cumulative distribution function and 

Pearson correlation of variables x and y respectively. The modelling results of Clayton 

copula with parameter = 2, Frank copula with parameter =0.5 and Gaussian copula 

with parameter = 0.5 are shown in Figure 2.3, 2.4 and 2.5 respectively. It may be seen 

that these three copulas always have the similar pyramid shapes but different values 

for the same variables u and v which were demonstrated clearly in the contour plots.     

  

 

2.7.2 Calculation joint distribution by using copulas 

Once the copula cumulative distribution function is estimated, the joint cumulative 

distribution can be calculated by these copula distribution functions and the inverse 

marginal distribution functions determined. For example, given two vector samples 

with size 2000 respectively, the first vector is a Gaussian distributed data with the 

parameters: mean value = 2.0441  and standard deviation = 2.0220 . The Gaussian 

probability density function can be written as: 

             

2

2

( )

2
1

( )
2

x

f x e





 






                                
(2.35)

 

The second vector is a Student t distributed data with the parameter freedom degree 

5.3654v  and the Student t probability density function can be written as:          

                                                 
12

2

1
( )

1 12( )

( ) (1 )
2

v

v

f x
v xv

v





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

 
                         

(2.36)  

 

Here,   is called Gamma function which has been defined in Eq. (2.12). These two 

marginal probability density functions are shown in Figure 2.6. 
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Figure 2.3: Clayton copula with parameter = 2 

Figure 2.4: Frank copula with parameter = 0.5 

Figure 2.5: Gaussian copula with parameter = 0.5 



30 
Chapter 2: Introduction to Copulas 

                         

            Figure 2.6: Gaussian and Student t marginal probability density functions 

 

To calculate the joint cumulative distribution, the first step is to estimate the copula 

parameter. Here CML method which has been introduced in Eq. (2.21) is adopted to 

estimate the Gaussian copula parameter and the result is: 
1

0.6992



   

    
0.6992

1





. 

After the estimation of Gaussian copula parameter, the next step is to calculate the 

corresponding Gaussian copula cumulative distribution function by the method which 

has been described in Eq. (2.23). The result of Gaussian copula cumulative 

distribution and the corresponding contour plot are given in Figure 2.7 and 2.8 

respectively. 

Finally, compute the inverse Gaussian distribution and inverse Student t distribution 

for the two marginals respectively to obtain the joint cumulative distribution function. 

The figure of the joint cumulative distribution function and its corresponding contour 

figure are given in Figure 2.9 and Figure 2.10 respectively and x1 and x2 represents 

the Gaussian and Student t distributed data respectively. 

 

       

x 
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           Figure 2.8: Contour of Gaussian copula distribution 
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Figure 2.7: Gaussian copula distribution 
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                                Figure 2.9: The joint cumulative distribution         

   

                           Figure 2.10: Contour plot of joint cumulative distribution 
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which indicates the dependence between random variables are known, then how can 

the second copula variable v be estimated?  

   Similar to the definition of joint conditional probability, the bivariate copula case 

can be expressed by [Trivedi & Zimmer, 2007]  
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For example, given a joint cumulatvie distribution function H(x, y) as: 
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with two marginal cumulative distribution functions: F(x) and G(y) as: 
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Then,
1( ) 2 1F u u    and 

1( ) ln(1 )G v v     for 0 1u   and 0 1v  , then, 

substitute the two inverse marginal cumulative distributions into H (x, y), let x=

1( ) 2 1F u u   , and y=
1( ) ln(1 )G v v    , then the copula function can be expressed 

as:  

 

                                                    ( , )
uv

C u v
u v uv


                                             

(2.38)  

 

The corresponding conditional copula can be calculated by using the partial 

differential operation described in Eq. (2.37) and the following result is obtained: 
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(2.39)  

 

The inverse conditional copula is also can be obtained as: 
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u
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                                 (2.40)  

 

The method of generation of random variables (u, v) for copula function C(u, v) can 

be described as following steps: 

Firstly, generate two independent uniform variables u and t with the range in [0, 1]. 

Secondly, let 

                                                                
1 (1 )

u t
v

u t


                                    

(2.41)

 

 

Furthermore, the corresponding random variables (x, y) are also can be achieved by 

setting: 

                                                              
2 1

ln(1 )

x u

y v

 


    

 

Similar to the example above, the formulas for generation of the random variables (u, 

v) for Clayton and Frank copula function C (u, v) can be found as: 

For Clayton copula:  

                                                       
1

1( ( 1) 1)v u t


  
 

                                     

(2.42)  

 

For Frank Copula:  

                                                  
1 (1 )

ln(1 )
(1 )u u

t e
v

t e e



 



 


  

                             
(2.43)  

 

As for Gaussian copula simulation, firstly, we can review the generation of random 

variables [X, Y] for joint bivariate Gaussian distribution.  
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Similar to the simulation of joint standard Gaussian distribution which is shown in 

Appendix 2, the Gaussian copula simulation can be achieved using the following 

steps: 

Firstly, using Cholesky decomposition [David & Lloyd, 1997] to produce an upper 

triangular A so that A
T
A=R where R is the strictly positive defined covariance matrix. 

This can be achieved by: 
1

1





 
 
  , 

where   is the parameter of Gaussian Copula, 

then the lower triangular can be calculated as: 

  

                                                           
2

1 0

1
A

 

 
  
    

The next step is to generate two independent standard normal random variables Z1 and 

Z2, and 
1

2

Z
Z

Z

 
  
 

;  Let 
1

2

*
X

X A Z
X

 
   

 
 

 The last step is to calculate the cumulative distribution function by using standard 

Gaussian distribution for X.  

 

                                                1 2( ) ( )u X and v X 
 

 

where  is univariate standard Gaussian distribution function.  

The simulation of Clayton, Frank and Gaussian copula function with different 

parameters from low to high dependence are given in Figure 2.11, 2.12and 2.13 

respectively. It may be found the variables of copulas concentrates around the 

diagonal when they have high dependence and disperse when they have low 

dependence. 

   

2.9 Copula density function 

The joint probability density function (pdf) can be derived by the second order partial 

differential operation on the joint cumulative distribution function as: 

                                                   

2 ( , )
( , ) XY

XY

F x y
f x y

x y




 
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Figure 2.11: Simulation of Clayton copula 

Figure 2.12: Simulation of Frank copula 

 

  Figure 2.13: Simulation of Gaussian copula 
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where ( , )XYf x y and ( , )XYF x y are joint probability density function and  joint 

cumulative distribution function of random variables x and y respectively. Note from 

the Eq. (2.1), the following equation can be obtained as [Durrani & Zeng, 2007]: 

                                
2 2( , ) ( ( ), ( ))

( , ) XY X Y
XY

F x y C F x F y
f x y

x y x y

 
 

      

 

Let 
2 ( ( ), ( ))

( , ) X YC F x F y
c u v

x y




   

be the copula density function, then 

  

2 2 2( , ) [ ( ), ( )] ( ) ( )( , )
( , ) ( , ) ( ) ( )XY X Y X Y

XY X Y

F x y C F x F y F x F yC u v
f x y c u v f x f y

x y x y u v x y

   
   

          

                                                                                                                              

(2.44)

 

So, the copula density function can be expressed as:                                                                                                                                                      

                                                    
( , )

( , )
( ) ( )

XY

X Y

f x y
c u v

f x f y


                                       

(2.45)  

and ( , ) ( , ) ( ) ( )XY X Yf x y c u v f x f y , the copula density function can be considered as 

the dependency structure part of the two marginal distributions and the product of the 

two marginal probability density functions can be regarded as the independent part of 

the marginal distributions. The copula density functions for Clayton, Frank and 

Gaussian copulas are listed in Table 2.2 [Huard et al., 2006]. 

The next section gives an approach for estimation of the copula probability density 

and joint probability density functions. The same dataset which was used in Section 

2.72 and Gaussian copula is applied. Firstly, estimate the Gaussian copula parameter, 

and then calculate the joint probability density function. The result is shown in Figure 

2.14. According to the Eq. (2.35), the joint probability density function can be 

calculated by the product of copula density function and the two marginal probability 

density functions. The plot of joint probability density function is shown in Figure 

2.15. 
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                 Figure 2.14: Gaussian copula density function 

 

                               

Copula                Copula density function c(u,v) 

Clayton 1 2 1/(1 ) ( 1 )u u v              

Frank [ (1 )]( 1 )

(1 ) (1 ) [ ( )] 2[ ]

u v e

u v u v

e

e e e e



   

    

    
 

Gaussian 1 2 1 2 1 11 2 1 2

2

[ ( )] [ ( )] 2 ( ) ( )[ ( )] [ ( )]

2(1 )2

2

1

1

u v u vu v

e e

    




       




 

 
       Table 2.2: Clayton, Frank and Gaussian Copula density 

function 
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             Figure 2.15: Joint probability density function 

 

Another experiment was carried out to validate the effectiveness of copula density 

function in representing the joint probability density function. Firstly, generate a two-

dimensional dataset which has the bivariate Gaussian distribution with the parameters: 

mean values   and covariance cov as:  

 

                                                      
1

1

X

Y






   
      

  

            

                                              

                                       

2

cov X

X Y



 


 


  
2

X Y

Y

 







= 
0.9

0.4





   
0.4

0.9



  

 

Step 1: use the joint Gaussian assumption probability density function in Eq. (2.9) to 

calculate the joint Gaussian probability density function. The joint density function 

and its contour plot results are shown in Figure 2.16 and 2.17 respectively.  

 

Step 2: Estimate the Gaussian copula parameter for this two-dimensional dataset and 

the result is:  

              

                                               
1 0.7743

0.7743 1
Gau

 
  
 

     

 

  

Step 3: Estimate the copula density function and then the joint probability density 

function can be calculated as the product of copula density function and two Gaussian 

marginal probability density functions. The joint density function and its contour plots 

of copulas based joint probability density function are given in Figure 2.18.and 2.19 

respectively.  

 

Step 4: In order to obtain better visual effects, we overlap the two contour plots to 

observe the difference between the joint Gaussian probability density function and 

copulas based joint probability density function. 
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      Figure 2.16: Joint probability density function of bivariate Gaussian distribution 

            

                

 

Figure 2.17: Contour of joint probability density function of bivariate Gaussian  

distribution  

-5

0

5

-5

0

5
0

0.1

0.2

0.3

0.4

0.5

x1x2

Jo
in

t 
p
ro

b
a
b
ili

ty
 d

e
n
si

ty
 f
u
n
ct

io
n

0
.0

5

0.
05

0.05

0
.0

5

0.
05

0.05

0
.1

0.1

0.1

0.
1

0.1 0
.1

5

0.
15

0.15

0.
15

0.15

0
.2

0.2

0
.2

0.2

0.
25

0.25

0.
25

0
.3

0.3

0.3

0.
35

0
.3

5

0.
4

0.
4

0.
45

x1

x
2

-2 -1 0 1 2 3 4
-2.5

-2

-1.5

-1

-0.5

0

0.5



41 
Chapter 2: Introduction to Copulas 

 

 

               Figure 2.18: Joint probability density function using Gaussian copula  

           

               

      Figure 2.19: Contour of joint probability density function using Gaussian copula            
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Figure 2.20: Comparison of joint probability density function obtained by bivariate 

 Gaussian distribution and Gaussian copula respectively 

 

As can be found in Figure 2.20, the difference between Bivariate Gaussian based joint 

probability density shown in solid lines and Gaussian copula based joint probability 

density function shown in dashed lines are very similar, and even almost same in the 

areas with low joint density values. It shows copula method is competent for 

estimation of joint probability density function between two random variables. 

 

2.10 Copula selection 

 

As there are several copula functions that have been defined, and subtle differences 

exist among these copulas. Hence, it is necessary to choose the „best‟ copula which is 

optimal to describe the dependence between variables. 
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Firstly, it should be noted that some copulas have a narrow range to describe the 

dependency between random variables. For example, Farlie-Gumbel-Morgenstern 

(FGM) copula is defined as [Nelsen, 1999]: 

                                                   ( , ) (1 )(1 )C u v uv uv u v                                  (2.46) 

 where 1 1    , with the corresponding copula density function is: 

                                                  ( , ) 1 (1 2 )(1 2 )c u v u v                                      (2.47) 

For FGM copula, there are simple expressions for both copula distribution and copula 

density function.  However, note the corresponding formula between copula 

parameter and Kendall‟s tau correlation [Nelsen, 1999]: 

                                      
2[0,1]

1 2
4 ( , ) ( , ) 1 4( ) 1

4 18 9
C u v dC u v


                   (2.48) 

Hence, the Kendall‟s tau correlation range is limited to the narrow bound as: 

                  

2 2

9 9
    

Due to the narrow range of correlation, some copulas are not robust to process the 

different dataset.  

Secondly, considering some copulas have very complicated expressions and are not 

convenient for applications. However, among the known copulas, seems Clayton, 

Frank and Gaussian copula are reasonable choices. 

More specifically, Empirical copula based method for the selection of the optimal 

copula has been proposed [Durrleman et al., 2000]. 

Given a two vector data sample a and b with the vector length d, Euclidean distance:  

can be calculated as:  

                                          
2

2

1

( , ) ( )
d

i i

i

d a b a b


                                 (2.49) 

 where 1 2[ , , ]da a a a  and 1 2[ , , ]db b b b . 
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Similar to the definition of the empirical distribution in Eq. (2.33), the empirical 

copula distribution can be defined as follows: 

Let 1{( , )}n

k k kx y    denotes a sample of size n from a continuous bivariate 

distribution, and then the empirical copula nC  can be defined by [Nelsen, 1999]:  

 

    

( ) ( ) (number of pairs(x, y) in the sample with  ,  )
( , )

i i

n

x x y yi j
C

n n n

 


        
(2.50)

  

 

where ( ) ( ), ,1 ,i ix x y y i j n     denotes order statistics from the sample. 

Considering a finite subset of copulas, there should be a Minimal Euclidean distance 

between the optimal copula and the empirical copula. This distance can be written as:  

   

2

1

1

2
21 1

2

1 1 1

( , ) { [ ( , , , ) ( , , , )] }
n N

T T T
n N n N

e e eL
t t t

t t t tt t
d C C C C C C

T T T T T T  

     
 

For the bivariate case, the distance becomes: 

                              

2

1 2

1

21 2 1 2 2
2

1 1

( , ) { ( , ) ( , )] }
T T

e e eL
t t

t t t t
d C C C C C C

T T T T 

                (2.51)          

 where Ce is empirical copula and C is the candidate copula. It means that both the 

cumulative distribution function (CDF) of candidate copula and the empirical copula 

are required to be calculated respectively. 

 

 

2.11 Conclusion 

In this chapter, the copula function theory has been introduced which include copula 

function definition and its properties, copula density function, conditional copula, 

estimation of copula parameters, modelling of copula distribution function and 
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generation of random variables for typical copulas. It also analyzed the benefits of 

copula function, and compared with the conventional dependency tools such as 

Pearson correlation which is only effective for the elliptical distributions such as 

multivariate Gaussian, Student t distributions that require the marginal distributions 

are Gaussian or Student t distributions respectively and must be consistent. Copulas 

extend the concept of dependence which may not be linear and are able to deal with 

arbitrary marginal distributions. Furthermore, the estimations of the joint cumulative 

distribution function and density function for arbitrary marginal distributions using 

copulas are proposed. Finally, dependency range of copula and empirical copula were 

explored for the selection of optimal copula. 
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Chapter 3 

Divergence based Information using Copulas 

 

Summary 

In this chapter, four classes of generalized divergences: Csiszar, Renyi-like, modified 

Bregman and Burbea-Rao divergence based information which are generally defined 

in terms of joint and marginal density functions are explored and frameworks are 

developed to express these divergence in terms of copula density functions only. 

Algorithms for the calculation of such divergence based information using copula 

density functions are proposed. Algorithm of computation of these divergence based 

information by using Gaussian copula density is proposed. Copula based method is 

compared with the Gaussian assumption and joint histogram based method, and the 

modified Bregman divergence is validated using smallest enclosing curve and K-

means classification. 

 

3.1 Introduction 

Based on the works of Csiszar [Csiszar, 1967], Ali and Silvery [Ali & Silvey, 1966], 

the definition of divergence can be summarized as:  

Consider p=p(x) and q=q(x) are two probability density functions of two probability 

distribution P and Q respectively in the same space X, where ( ) 0p x  and ( ) 0q x   

for each x X and ( ) 1
x X

p x


 ; ( ) 1
x X

q x


 .  

 

In the discrete case, the divergence can be defined as: 

                                                  
( , ) ( , )

x X

D P Q p q


  

In the continue case, it can be written as: 

 



47 
Chapter 3:Divergence based Information using Copulas  

 

 

                                                 

( , ) ( , )
X

D P Q p q dx 
 

where the function ( , )p q  is called kernel function. For instance, if the kernel 

function ( , ) log( )
p

p q p
q

  , then the corresponding divergence is Kullback-Leibler 

divergence. Obviously, divergence is determinate by kernel functions, and the 

divergences vary with different kernel functions. Moreover, divergence D must satisfy 

the following conditions: First, divergence D must be defined for all the samples. 

Secondly, with the moving apart of P and Q, the divergence D should increases, and it 

reaches the maximal value when P is orthogonal to Q.  It has the only minimal value 0 

when P = Q.  Finally, considering another distribution S, if S is closer to Q than P, 

then, ( , ) ( , )D P S D Q S  [Osterreicher, 2002]. 

The divergence based information can be defined as: The divergence between the 

joint probability density function and the product of the marginal density functions. 

For example, mutual information is Kullback-Leibler based information and 

Kullback-Leibler divergence is the special case of Csiszar divergence. It has been 

recognised that generalized divergence based information can provide the ability to 

control the measurement sensitivity and hence better accuracy and is more efficient 

than the classic Kullback-Leibler divergence based information. [He, et al., 2003], 

[Pluim, et al., 2004]. So, the generalized divergences based information are worth 

exploring. 

 In this chapter, four classes of generalized divergences [Pardo & Vajda, 2003] & 

[Martin, 2006]: Csiszar, Renyi-like, Bregman and Burbea-Rao divergence are 

explored. These four classes of divergence have been summarized in Table 3.1 and 

the function ()f  is convex function and called kernel function. For example, if the 

kernel function ( ) log( )f t t t  for the Csiszar divergence, then Csiszar divergence 

becomes:  

                                  ( , ) ( ) ( )log( ) log( )CS

p p p p
D p q qf q p

q q q q
    

 

Let ( , )XYp p x y be the joint probability density function, ( ) ( )X Yq q x q y  be the  
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Csiszar Divergence 

( , ) ( )CS

p
D p q qf

q
  

Renyi-like Divergence 

1

Re ( , ) log[ ( ( )]nyi

p
D p q f pf

q

  

Bregman Divergence 

( , ) ( ) ( ) ( ) ( )BreD p q f p f q p q f q     

Burbea-Rao Divergence 

( ) ( )
( , ) ( )

2 2
BR

f p f q p q
D p q f

 
   

p=p(x) and q=q(x) are probability density functions
 

 

Table 3.1: Definition of Csiszar, Renyi-like, Bregman and Burbea-Rao Divergence 

 

product of two marginal probability density function: qX(x) and qY(y) of random 

variables X and Y respectively, then this Csiszar divergence based information 

becomes the familiar mutual information: 

 

                                  
( , )

( , ) ( , )log
( ) ( )

XY
XY

X YXY

p x y
D x y p x y dxdy

q x q y
 

 

 

 

3.2 Problem description 

 

The key to divergence based information method is the calculation of joint probability 

density functions. However, in the non-elliptical distribution case, it is difficult to 
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estimate the joint probability density function precisely. The measures of computing 

the joint probability density function in image processing can be classified into two 

categories: Non-parametric and parametric methods.  The typical Non-parametric 

methods compute the normalization of the joint histograms of pixel intensity of the 

overlapping parts of two images. This is called joint histogram method which is a 

simple approach to estimate the joint probability density function [Maes et al., 1997]. 

This method usually requires a large amount of data for reliable results. However, 

some data within a small size such as that of neighbours for certain pixel may be 

required to process. Moreover, the pixel intensity distributions usually offer more 

stable information than pixel intensities themselves, while the joint histogram method 

just counts the number of occurrences of pixel intensity pairs. 

   For the parametric methods, although some multivariate models such as multivariate 

Gaussian, Gamma distribution have been used [Chatelain et al., 2007], the 

distributions of the image pixel intensity in the real world usually do not obey the 

Gaussian or other certain probability distributions. Furthermore, the multivariate 

distributions require that the types of marginal distributions are consistent. However, 

if the margins do not have the same type of distributions, for example, one image is 

Gaussian distributed, and another one is Gamma distributed, then there is no 

obviously known multivariate distribution model that can deal with this situation. 

 

 

3.2.1 Use of copulas 

 

Copulas [Nelsen, 1999] offer an alternative robust parametric based technique for the 

modeling of the dependency structure between random variables. The copula function 

extends the correlation concept to a wider dependence class, which may be not linear 

and it separates the marginal distributions and dependency structure. 

Due to the special relationship between copula density functions, joint probability 

density function and marginal density functions shown in Eq. (2.45), copula functions 

offer a natural and robust way for the estimation of the divergence based information 

from observed data. It is shown later that that the Csiszar, Renyi-like, modified 

Bregman and Burbea-Rao divergence based information can be expressed only by 

copula density function.  
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3.3 Generalized divergence based information and their copula representation 

 

In this section, the definitions of Csiszar, Renyi-like, modified Bregman and Burbea-

Rao divergences based information in terms of copula density functions are 

introduced. Some limitations of Bregman and Burbea-Rao divergences have been 

found. To improve them, modified definitions are proposed and the test of smallest 

enclosing curve for Itakura-Saito and modified Itakura-Saito are carried out. Another 

test is K-means classification by using Itakura-Saito [Banerjee et al., 2005] and the 

modified Itakura-Saito as the distance have been applied to check the efficiency of the 

modified Bregman divergence. 

 

3.3.1 Csiszar divergence 

Csiszar divergence is also called f divergence which was introduced and studied 

independently by Csiszar [Csiszar, 1967], Ali and Silvery [Ali & Silvey, 1966]. 

Considering two probability density functions p(x) and q(x) for two probability 

distributions P and Q.  As mentioned earlier, the Csiszar divergence measures the 

difference between P and Q and it can be written as: 

 

                                             
( )

( , ) ( ) ( )
( )

CS

p x
D P Q q x f

q x
                                     (3.1)  

where kernel function f( ) is a convex function on [0, ] . With the different kernel 

functions, several Csiszar divergences such as Kullback-Leibler, Tsallis, I
 , Chi-

square and Matusita divergences have been defined,  and are shown in Table 3.2. 

Considering P and Q as two symmetrical Bernoulli distributions [Stuart & Ord, 1987] 

such as P= {t, 1-t} and Q={1-t, t} with 0 1t  . The Csiszar divergence for P and Q 
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Csiszar Divergence Kernel function f(t) Csiszar Divergence ( , )CSD p q  Range 

Kullback –Leibler         logt t  ( )
( )log[ ]

( )
X

p x
p x dx

q x  
 

      Tsallis 

 
  

1

( 1)

t t  



  


       

1

1 ( )
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( )
X

p x
dx

q x



 
  

0   

         
I
  

  

1

( 1)

t t  

 

  


 

  
1

1 ( )
[ 1]

( 1) ( )
X

p x
dx

q x



  


   
0   

1   

          
2
            

2( 1)t   
       

2( )
1

( )
X

p x
dx

q x
  

 

        Matusita 
         

1

| 1 |t        
1

| ( ) ( ) |
X

p x q x             
0 1   

                                        Table 3.2:  Csiszar Divergence 

                     

                             Figure 3.1:  Comparison of Csiszar divergence 
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is shown in Figure 3.1. It can be found that all the divergence reach the minimal value 

0 when t=0.5 (P=Q). All the divergences become greater when t moves away from 

0.5 (P moves away from Q). 

It has been pointed out in Section 3.2 that it is difficult to estimate the joint density 

probability function for non-elliptical case. This difficulty can be solved by exploiting 

copula density function. For example, considering the Kullback-Leibler divergence 

with the kernel function: f(t) = tlogt. 

        

( ) ( ) ( ) ( )
( , ) ( ) [ ] ( ) log[ ] ( ) log[ ]

( ) ( ) ( ) ( )
X X X

p x p x p x p x
D P Q q x f dx q x dx p x dx

q x q x q x q x
      

Then, the corresponding Kullback-Leibler divergence based information (Mutual 

information) becomes: 

                                        

( , )
( , ) ( , )log

( ) ( )

XY
KL XY

X YXY

p x y
D x y p x y dxdy

q x q y
 

                

(3.2)

            

 

The joint probability density function has been found that it is the product of copula 

density and marginal densities and shown in the Eq. (2.45):                                 

                                                ( , ) ( , ) ( ) ( )XY X Yp x y c u v q x q y   

The Kullback-Leibler divergence based information can be obtained as:            

, ,

( , )
( , ) ( , ) log ( , ) ( ) ( ) log ( , )

( ) ( )

XY
KL XY X Y

X YX Y X Y

p x y
D x y p x y dxdy c u v q x q y c u v dxdy

q x q y
  

 

where u and v are marginal distributions with the marginal density function ( )Xq x  

and ( )Yq y  respectively, and note following equations, 

                                                        

( )

( )

X

Y

du q x dx

dv q y dy




  



53 
Chapter 3:Divergence based Information using Copulas  

 

 

So, the final expression of Kullback-Leibler divergence based information by using 

copulas can be found as: 

                                         
2[0,1]

( , ) ( , )log ( , )KLD x y c u v c u v dudv 
                           

(3.3)

 

Precisely, the more generalized formula for Csiszar divergence can be expressed as: 

                         
2, [0,1]

( , ) ( ) ( ) ( ) [ ( , )]CS X Y

X Y

D x y q x q y f c dxdy f c u v dudv  
            

(3.4)

 

According to the Eq. (3.4), all the Csiszar divergence based information can be 

expressed by using copula density function only and are listed as given in Table 3.3. 

Csiszar divergence has the non-negative and convexity properties. It has the minimal 

value 0 only when two distributions are equivalent. Another important property is the 

linear property [Osterreicher, 2002], considering two kernel functions of two 

distributions P and Q with marginal probability density function p=p(x) and q=q(x) 

respectively, the first kernel function is 1()f  and the corresponding Csiszar 

divergence 1D  can be calculated as: 

                                      
2

1 1 1

, [0,1]

( , ) ( ) [ ( , )]
X Y

p
D P Q qf dxdy f c u v dudv

q
  

 

The second kernel function is 2( )f x and the corresponding Csiszar divergence 2D is 

calculated as:  

                                  
2

2 2 2

, [0,1]

( , ) ( ) [ ( , )]
X Y

p
D P Q qf dxdy f c u v dudv

q
    

Let the third kernel function be 12 1 2() () ()f f f  , then the corresponding Csiszar 

divergence is: 

                                                    
12 12

,

( , ) ( )
X Y

p
D P Q qf dxdy

q
 
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Csiszar 

Divergence 

Csiszar Divergence based information Using copulas 

Kullback-

Leibler ,

( )
( , )log[ ]

( )

X
XY

YX Y

q x
p x y dxdy

q y  
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( , )log ( , )c u v c u v dudv  

Tsallis 

1 1
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XY

X YX Y
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
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   
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c u v dudv
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
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2  
2

,

( , )
1

( ) ( )

XY

X YX Y

p x y
dxdy

q x q y
  

2

2

[0,1]

[ ( , ) 1]c u v dudv  

Matusita 1

,

| ( , ) ( ) ( ) |XY X Y

X Y

p x y q x q y     
2[0,1]

| [ ( , )] 1|c u v dudv   

Table 3.3: Csiszar divergence based information expressed in terms of copula density 

functions

 

 

                                    
1 2 1 2( , ) ( , ) [ ( ) ( )]

p p
D P Q D P Q q f f

q q
                               

Notice 12 1 2() () ()f f f 
 
then, the above formula becomes:

  

                                     
1 2 12 12( , ) ( , ) ( ) ( , )

p
D P Q D P Q qf D P Q

q
  

                        
(3.5)

 

The Csiszar divergence based information has been successfully applied for medical 

image registration in [Pluim et al., 2004]. 

 

3.3.2 Renyi-like divergence 
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Considering two probability density functions p=p(x) and q=q(x) for two probability 

distributions P and Q, Renyi-like divergence can be defined as  [Martin & Durrani., 

2007], [Martin, 2006]:                 

                                             1

Re ( , ) log[ ( ( ))]nyi

p
D P Q f pf

q



                                

(3.6) 

where the kernel function f( )is a monotonously continuous function on [0, ) .The 

Renyi divergence is defined as the special case when the kernel function
1( ) rf t t  . 

The inverse kernel function is
1

1 1( ) rf x x   , so the Renyi divergence can be 

calculated as:    

                              1 1

Re

1
( , ) log[ ( ( )] log( )

1

r r

n

p
D P Q f pf p q

q r

  
              

(3.7)  

It has been found that Renyi-like divergence is the generalized expression of the 

Kullback-Leibler divergence by L‟Hopital Rule [He et al., 2003]:  

                                                  
Re

1
lim ( , ) ( , )n KL
r

D P Q D P Q



 

The Renyi-like divergences have been summarized in the Table 3.4. 

Considering P and Q as two symmetrical Bernoulli distributions such as P= {t, 1-t} 

and Q={1-t, t} with 0 1t  . The Renyi-like divergence as a function of t is shown in 

Figure 3.2. Note that when t=0.5, the Renyi divergence reaches a minimal value 0 for 

all the Renyi-like divergence and becomes greater when t moves away from 0.5. 

Similar to the case of the Csiszar divergence based information, copula density 

function can be used to calculate the Renyi divergence based information as: 

            
2

Re 1 1

, [0,1]

1 ( , ) 1
log log ( , )

( 1) ( ) ( ) ( 1)

r
rXY

n r r

X YX Y

p x y
D dxdy c u v dudv

r q x q y r 
 

  
     

(3.8)  
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Renyi-like 

Divergence 

Kernel function               

          f(t) 

Renyi-like Divergence  
Re nyiD  Range 

Renyi 
        

1rt 
 

1

1 ( )
log[ ]

1 ( )

r

r

X

p x
dx

r q x   
0, 1r r   

Bhattacharyya 

        

1

2t


 
2log ( ) ( )

X

p x q x dx   
 

                           

                                           Table 3.4  Renyi-like divergence 

                 

                            Figure 3.2:   Comparison of Renyi-like divergence 

 

Some of Renyi-like divergence based information are listed in the Table 3.5. It has 

been found that the Renyi-like divergence based information offers a more robust 

method than mutual information, achieved by adjusting its parameters and 

successfully applied for image registration [He et al., 2003]. 
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Renyi-like 

Divergence 

  Divergence based information         Using copulas 

Renyi 

1 1

,

1 ( , )
log

( 1) ( ) ( )

r

XY

r r

X YX Y

p x y
dxdy

r q x q y    
2[0,1]

1
log ( , )

( 1)

rc u v dudv
r    

Bhattacharyya 

,

2log ( , ) ( ) ( )XY X Y

X Y

p x y q x q y dxdy   
2[0,1]

2log ( , )c u v dudv 
 

 

  Table 3.5: Renyi-like divergence-based information expressed in terms of copula 

density functions 

               

3.3.3 Bregman divergence 

 

Bregman divergence is derived from Taylor expansion of a function and can be 

defined as [Banerjee et al, 2005]: Any function f(x) satisfying the differentiable 

conditions can be expressed as a Taylor series at the point x=y as: 

 

               
( )

2( ) ( )
( ) ( ) ( )( ) ( ) ... ( ) ...

2! !

n
nf y f y

f x f y f y x y x y x y
n


        

 

 

Bregman divergence can be intuitively thought of as the difference between the value 

of strictly convex and differentiable function f() at the point x and the value of the first 

order Taylor expansion of f( ) around point y evaluated at point x in Figure 3.3.  

Specifically, Bregman divergence has been defined as [Bregman, 1967]:  

 

                                        ( , ) ( ) ( ) ( ) ( )BreD x y f x f y x y f y   
                         

(3.9)  

 

Considering two probability distribution p(x) and q(x) for random variables X, some 

Bregman divergences can be obtained by different kernel functions. For example, the 
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                                             Figure 3.3: Bregman divergence  

 

     

square loss divergence is defined by the kernel function
2( )f t t , then the 

corresponding Bregman divergence becomes
2[ ( ) ( )]p x q x . 

 If the kernel function is ( ) log( )f t t  , the corresponding Bregman divergence is 

( ) ( )
log 1

( ) ( )

p x p x

q x q x
  and this is called Itakura-Saito divergence. 

In the special case ( ) log( )f t t t , the corresponding Bregman divergence becomes 

( )
( )log [ ( ) ( )]

( )

p x
p x p x q x

q x
   and is the Kullback-Leibler divergence.   

The Bregman divergence has the properties of non-negativity, convexity, linearity, 

and so on [Banerjee et al., 2005]. All the Bregman divergences have been summarized 

in the Table 3.6. 

Assume P and Q as two symmetrical Bernoulli distributions such as P= {t, 1-t} and 

Q={1-t, t} with 0 1t  . The diagram of Bregman divergence is given in the Figure 

3.4. All the divergences have a minimal value 0 when P=Q and their value increases 

when P moves away from Q.  
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Bregman Divergence Kernel function f(t) Bregman divergence
BregD  

Squared loss 2t  2[ ( ) ( )]
X

p x q x dx  

Itakura-Saito log( )t  ( ) ( )
( log 1)

( ) ( )
X

p x p x
dx

q x q x
   

Kullback-Leibler log( )t t  ( )
{ ( )log [ ( ) ( )]}

( )
X

p x
p x p x q x dx

q x
   

                                        

                                              Table 3.6 Bregman divergence 

 

 

                 

 

                               Figure 3.4: Comparison of Bregman divergence 

 

 The Bregman divergence has been applied for data clustering in [Banerjee et al., 

2005], and the Itakura-Saito divergence is used to image analysis and classification 

[Ozturk & Abut 1990] and enhance speech [Cho et al., 2001]. 

 

3.3.4 Modified  Bregman divergence 
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It may be noted from the square loss divergence that as long as (x-y) does not change 

then the square loss divergence will be invariable. Similarly, as long as (x/y) does not 

change, the Itakura-Saito divergence will be invariable as well. It means that the 

square loss and Itakura-Saito divergences are only sensitive to the value of (x-y) and 

(x/y) respectively. Note that they cannot distinguish cases that have the same value of 

(x-y) and (x/y) respectively. Furthermore, since the Bregman divergence is derived 

from the Taylor expansion, and only the first order item is considered. To improve the 

sensitivity of the Bregman divergence, the second order of Taylor expansion may be 

considered.  According to the Taylor expansion: 

 

                         

2( )
( ) ( ) ( ) ( ) ( )

2

x y
f x f y x y f y f y


    

 

                    

2( )
( ) ( ) ( ) ( ) ( )

2
Bre

x y
D f x f y x y f y f y


       

                                      

2( ) ( ) ( ) ( ) ( )

( ) 2

f x f y x y f y x y

yf y y

   



                              (3.10) 

Notice the right hand side of the equation (3.10), 

2( )

2

x y

y


is just the 

2 (Chi-square) 

divergence [Pardo et al., 2003] which is given in Table 3.3 as belonging to the family 

of Csiszar divergence. 

 Considering the second order item of Taylor expansion as: 

                                 

2

1

( )
( ) ( ) ( ) ( ) ( )

2

x y
f x f y x y f y f y D


       

                                 

2

1

( )
( ) ( ) ( ) ( ) ( )

2

x y
D f x f y x y f y f y


       

                                                    
2

1

( )
( )

2
Bre

x y
D D f y


 

                                  
(3.11)

 

Divide ''( )yf y both sides of equation (3.11),  
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1 ( )

( ) ( ) 2

BreD D x y

yf y yf y y


 

 
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Bre
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D
D

yf y



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1
( )

new

D
D

yf y



 , then 

                                                

2

1

( )

2
Bnew new

x y
D D

y


                                                 

So, the new Bregman divergence can be defined as: 

                                    

( ) ( ) ( ) ( )

( ) ( )

Bre
Bnew

Df x f y x y f y
D

yf y yf y

  
 

 
                    (3.12) 

 

The modified Bregman divergence has the non-negative property, and it has the 

minimum value 0 only when x=y. It also has the convexity property only when y>0.  

For example, if the kernel function
2( )f t t , then 1 0newD  ; 

2( )

2
Bnew

x y
D

y




 
is just 

the Chi-Square divergence. From the above modified squared loss divergence based 

information becomes: 

                          
2

2
2

, [0,1]

[ ( , ) ( ) ( )] 1
[ ( , ) 1]

2 ( ) ( ) 2

XY X Y

X YX Y

p x y q x q y
dxdy c u v dudv

q x q y


         

The modified Bregman divergence based information expressed in terms of copulas 

are listed in Table 3.7. It may be found that the modified Bregman divergence can be 

expressed by copula density function only, the joint and marginal probability density 

functions do not need to be considered any more. 

Assume P and Q as two symmetrical Bernoulli distributions such as P= {t, 1-t} and 

Q={1-t, t} with 0 1t  . Then the modified Bregman divergence may be compared 

with the conventional Bregman divergence, and the results are shown in Figure 3.5. It 

can be found that all the divergence values are equivalent to 0 when t=0.5 and, the 

Kullback-Leibler divergence is congruent with the modified Itakura-Saito divergence 

in this experiment of symmetrical Bernoulli distribution. 
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                     Figure 3.5: Comparison of modified Bregman divergence 
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,
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( , )[log ( , )]c u v c u v dudv

 

 

Table 3.7: Modified Bregman divergence based information expressed in terms 

of copulas 
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3.3.5 Smallest enclosing ball (curve) 

Given a set of observed data 1 2{ , }S S S where 1 2S and S are vector data, the smallest 

enclosing Bregman ball for S is a Bregman ball 
,c rB with the minimal radius r so that 

,c rS B [Nock  et al., 2005]. 

                                                
, { : ( , ) }c r BregB s S D c s r  

 

The smallest enclosing Bregman ball may be calculated using centre c and radius r. 

The radius r can be considered as the maximal Bregman divergence between the 

centre c and s which is an arbitrary point in data S. The algorithm for estimation of the 

centre has been described as [Nock  et al., 2005]:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input:  Data 1 2{ , }S S S
 
 

Output: Centre c 

Initialization: choose a point randomly in data S as centre c. 

Choose a loop size T 

 

Loop start 

for t=1 to T-1 

       Find the point smax in S which has the maximal Bregman divergence                                       

       between c and each point in S.                   

        
1 1
[ ( ) ( max)]

1 1

t
c f f c f s

t t

   
 

 

        where function f()  is kernel function 

end 

Loop end 
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Considering a point with coordinate (x = 0.3709, y = 0.2878) as the centre of Itakura-

Saito divergence and the radius is 0.7276, then the corresponding smallest enclosing 

ball can be drawn as shown in the Figure 3.6.  Similarly, the smallest enclosing curve 

for modified Itakura-Saito divergence can be drawn by using the same algorithm as 

well. It should note that the shape for modified Itakura-Saito divergence is not a 

closed figure so that it is called smallest enclosing curve instead of ball. This is 

because that there are two corresponding answers when we look for the maximal 

Itakura-Saito divergence between c and each point in data S, however, there is only 

one answer for modified Itakura-Saito divergence.  

3.3.6 K-means classification by modified Bregman divergence 

K-means [Seber, 1984] is an unsupervised algorithm for data classification, it assigns 

each sample to the cluster whose centre is nearest, and the centre is the average of all 

the samples in the cluster. Firstly, choose the number of cluster k, and then randomly 

choose k samples as the cluster centre then assign each sample to the cluster centre 

which has the shortest distance between the centre and sample, and re-compute the 

new cluster centre. Repeat until the convergence criterion is met. The distance can be 

squared Euclidean, Bregman divergnece [Banerjee et al., 2005] such as Itakura-Saito 

divergence [Jain, 2010], and so on. 

In the following experiment, a 1000x2 dataset is randomly generated with Gaussian 

distribution. The squared Euclidean, Itakura-Saito and modified Itakura-Saito as the 

distances for K-means algorithm are tested to check their ability for data classification.  

The classification results are shown in Figure 3.7. The top left corner is the original 

data. The top right corner, the lower left corner and the lower right corner are the K-

means classification results with the distance of Itakura-Saito, squared Euclidean and 

modified Itakura-Saito divergence respectively. The original data have been separated 

to two classifications: blue points and red points with symbol and the crosses in circle 

are their centres. 

As can be seen, the results in Figure 3.7 show that the modified Itakura-Saito 

divergence and squared Euclidean as the distances of K-means are more reliable than 

conventional Itakura-Saito divergence for this Gaussian distributed dataset since some  
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Figure 3.6:  Smallest enclosing Itakura-Saito ball and smallest enclosing modified 

Itakura-Saito curve 
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Figure 3.7: K-means classification using squared Euclidean, Itakura-Saito and 

modified Itakura-Saito divergence as distance 
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samples are classified into cluster 1 by using Itakura-Saito divergence, however, they 

are obviously more close to cluster 2, and more reasonable to be classified into cluster 

2. 

 

3.3.7 Burbea-Rao divergence 

The definition of Burbea-Rao divergence can be found in [Burbea et al., 1982] and is 

defined as follow: 

 

                                              
( ) ( )

( )
2 2

BR

f x f y x y
D f

 
                              (3.13) 

 

where the kernel function f( ) is convex function, the intuitive diagram of Burbea-Rao 

divergence can be found in Figure 3.8. Some Burbea-Rao divergences have been 

summarized in Table 3.8.  

 

  Assume P and Q to be two symmetrical Bernoulli distributions such as P= {t, 1-t} 

and Q={1-t, t} with 0 1t  . The diagram of Burbea-Rao divergence is shown in 

Figure 3.9. All the divergences reach the minimal value 0 when P = Q and become 

greater when P moves apart from Q.  

 

 

3.3.8 Modified Burbea-Rao divergence 

 

Referring to the definition of Burbea-Rao divergence in Eq. (3.13) and considering 

the following equation: 

                                2 [ ( ) ( )] [ ( ) ( )]
2 2

BR

x y x y
D f x f f y f

 
     

 

Let 1BreD be the Bregman divergence between x and (x+y)/2. 2BreD  be the Bregman 

divergence between y and (x+y)/2. 
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                                   Figure 3.8: Burbea-Rao Divergence 
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                                    Table 3.8:   Burbea-Rao divergence 
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Then we can obtain the relationship between Bregman and Burbea-Rao divergence as: 

 

                                                       1 2

2

Bre Bre
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D D
D




                                    
(3.14)

 



68 
Chapter 3:Divergence based Information using Copulas  

 

 

 

            

                      Figure 3.9: Comparison of  Burbea-Rao Divergence 

 

So, Burbea-Rao can be considered as the linear combination of two Bregman 

divergences. Hence, we can use the same approach as in Eq. (3.12) to modify the 

Burbea-Rao divergence as: 

                                                           
''( )

BR
BRNew

D
D

yf y
                                         (3.15)  

The modified Burbea-Rao divergence based information may be expressed in terms of 

copula density functions as given in Table 3.9. The modified Burbea-Rao divergence 

and the modified Bregman divergence have similar properties, since Burbea-Rao 

divergence is the linear combination of Bregman divergence. Assume P and Q are 

two symmetrical Bernoulli distributions such as P= {t, 1-t} and Q={1-t, t} with 

0 1t  . The diagram of modified Burbea-Rao divergence is shown in Figure 3.10. 

All the divergences reach the minimal value 0 when P = Q and increases when P 

moves apart from Q. 

 

3.3.9 Comparison of divergences 
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After introduction of four categories divergences: Csiszar, Renyi-like, modified 

Bregman and Burbea-Rao divergence and corresponding divergence based 

information; it may be found that all the divergences have similar performance: 

divergence has the minimal value when marginal distributions equal and increases 

when two marginal distributions move apart.  

Moreover, Chi-square (Csiszar), Itakura-Saito (Bregman), modified square loss 

(modified Bregman) and modified square t divergence (modified Burbea-Rao 

divergence) can offer better ability to control the measurement sensitivity since these 

divergences change more obviously for the same change of marginal distributions 

(same change of t) than other divergences and they are different with other divergence 

which have the approximately value 0 when two distributions are close ( P Q  or 

0.5t  ). 

In addition, better ability of discrimination can be acquired by adjusting the 

parameters of Tsallis, Iα and Renyi divergences.  

Finally, modified Itakura-Saito (Bregman) divergence offers much better 

classification performance of Gaussian distributed data than conventional Itakura-

Saito divergence with the algorithm of K-means classification. 

 

3.4 Calculation of divergence based information using copulas 

 

Since all kinds of divergence based information have been defined, the next step is to 

compute them. Gaussian copula density function has complicated expression, so it is 

difficult to compute its double integral. However, it has the perfect correlation range 

so it is worth exploring the calculation of its double integral. The Gaussian copula 

density function has been defined as: 
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                  Figure 3.10:  Comparison of  Modified Burbea-Rao Divergence 
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Table 3.9: Modified Burbea-Rao divergence based information expressed in 

terms of copula density functions 
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The copula density based mutual information can be written as: 
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(3.17)

                                                                                                             

where function 1()  is the inverse standard Gaussian cumulative distribution function. 

As can be seen, the expression of Gaussian copula based mutual information is very 

complicated to compute, and the inverse standard Gaussian cumulative distribution 

should be calculated firstly. The essence of calculation 1()  is the process of 

calculation of inverse error function 1()erf   by the following formula [Philip, 1960]: 

                                                        1 1( ) 2 (2 1)z erf z                                   (3.18) 

where [0,1]z .The following two ways can be used to calculate the inverse error 

function. The first way is based on the Taylor expansion and iteration algorithm, the 

inverse error function can be written as [Philip 1960]:                                                   
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Then the inverse error function can be written as:        

  

2 3 4 5
1 3 5 7 9 117 127 4369 34807
( ) ( ...)

2 12 480 40320 5806080 182476800
erf z z z z z z z

                (3.19)  

The second way has been proposed by [Winitzki, 2008], the error function erf(z) and 

inverse error function 1( )erf z can be expressed as: 
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The result of inverse Gaussian distribution by Taylor expansion shown in Eq. (3.19) 

and  Winitzki shown in Eq. (3.21) are given in Figure 3.11. 

   These two methods have been validated by the rule: the double integral of copula 

density function equals to 1, it can be expressed by the following formula:                                                               
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Finally, numerically evaluate double integral [Press et al., 1992], [Gander & Gautschi, 

2000] to compute the Gaussian copula based mutual information. The results are 

given in Figure 3.12 and it can be found that the Gaussian copula based mutual 

information is very close to the bivariate Gaussian distribution based mutual 

information for the bivariate Gaussian distributed data.  

Given two marginal Gaussian probability density functions ( )Xf x  and ( )Yf y of 

random variables X and Y respectively:  
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The joint density function ( , )XYf x y  has been given in Eq. (2.9): 

According to the information theoretic definition of mutual information [Thomas et 

al., 1991]: 

                         ( , ) ( ) ( | ) ( ) ( ) ( , )MI X Y H Y H Y X H X H Y H X Y               (3.23)  

 

where H is Shannon entropy and the Shannon entropy of these two marginals can be 
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                     Figure 3.11: Inverse standard Gaussian cumulative distribution 
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The entropy of joint distribution is: 
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So, the mutual information of these two Gaussian marginal distribution is: 
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Figure 3.12: Bivariate Gaussian distribution and Gaussian copula based mutual 

information 

 

It should note that if the probability distribution of data is far from Gaussian 

distribution then the bivariate Gaussian distribution is not appropriate any more. 

Moreover, if the types of marginal distributions are not consistent, there is no 

appropriate bivariate distribution can be used, and copula is a good choice to deal 

with the joint distributions with arbitrary marginal distributions. 

 

 

3.5 Conclusion 

 

In this chapter, the divergence-based information in terms of copula density function 

is introduced. It is shown that the Csiszar, Renyi-like divergence based information 

can be directly expressed using copula density function only. The limitations of 

Bregman divergence have been improved by proposing a modified definition. 

Similarly, the Burbea-Rao divergence is modified to provide a more effective 

definition. Copulas have been applied to estimate the mutual information, the results 

of mutual information by using copula is very close to the bivariate Gaussian 
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distribution based mutual information for Gaussian distributed data. The modified 

Bregman divergence has been validated by smallest enclosing curve and K-means 

classification. 

  



76 
Chapter 4: Copulas for Image Registration and Evaluation of Image Fusion Algorithms  

 

 

 

 

Chapter 4 

Copulas for Image Registration and Evaluation 

of Image Fusion Algorithms 

 

Summary 

Following the definition of four generalized divergence based information given in 

Chapter 3, in this chapter, image registration techniques are developed by maximizing 

the divergence-based information using copula density functions between the 

overlapping areas of the first (reference) image and the second (float) image which is 

transformed by rotating, translating and rescaling. Experiment results are provided on 

both synthetic and real data that show that the copulas-based methods offer more 

accurate registration results than Gaussian assumption and joint histogram based 

mutual information.  

Algorithms such as simple average, Principal Component Analysis (PCA) [Jia, 1998], 

Gradient Pyramid (GP) [Burt and Kolczynski, 1993], Laplacian Pyramid (LP) [Burt 

and Adelson, 1983], Ratio Pyramid (RP) [Toet, 1989] and Discrete Wavelet 

Transform (DWT) [Mallat, 1989] methods have been successfully applied in 

conventional system for image fusion. A concern here is the evaluation of 

performance, which is difficult to determine. Mutual information (MI), Tsallis and 

Renyi divergence based information have been applied to assess the performance of 

image fusion without ground truth [Cvejic et al., 2006].  However they are difficult to 

estimate precisely. In this chapter, a copula based approach is proposed for evaluating 

the performance of image fusion algorithms. Copulas are proposed for the estimation 

of the MI, Tsallis and Renyi divergence based information and are used to evaluate 

the quality of image fusion. 

 



77 
Chapter 4: Copulas for Image Registration and Evaluation of Image Fusion Algorithms  

 

 

4.1 Introduction 

 

Image registration is the process of alignment geometrically two or more images 

taken for the same scene usually at different times, or from different viewpoints or by 

different sensors. It transforms the different sets of data into the same coordinate 

system. Image registration is a fundamental technique of image processing and has 

been applied widely for a range of fields such as in medical imaging for monitoring 

tumor growth, treatment verification; remote sensing, geographic information systems 

(GIS), image fusion, target localization, automatic quality control, and so on [Barbara 

et al., 2003].  

 

The key for effective image registration is to find the optimal spatial relationship 

between two or more images. In the recent decades, image acquisition devices have 

developed and grown rapidly, the advanced automatic image registration techniques 

are required to be explored.  Image registration techniques can be classified into two 

categories: [Barbara, et al., 2003] Feature based method and Area based methods. The 

feature based methods do not directly process image pixel intensity values. These 

techniques process features which represent higher level of information. Image 

features can be region features, line features, edge features and point features such as 

centroid. Feature based methods require that the image contain distinctive and easily 

detectable objects. These methods usually find application in remote sensing and 

compute vision. Area based methods work directly with the image pixel intensity in 

the region of interest of images. For example, medical images usually do not contain 

enough distinctive objects and thus area based methods are usually employed 

[Barbara et al., 2003]. For area based techniques, divergence based measure have 

been widely accepted as one of the most accurate and robust registration techniques 

[Maes et al., 1997], [Viola & Wells, 1997], [He et al., 2003]. In this chapter, 

divergence based information by using copulas is applied for image registration and is 

compared with Gaussian assumption and joint histogram based measure. 

Image fusion is the process of combining relevant information from two or more 

images into a single image which is more informative than any of the input images.  

Image fusion has been applied widely in the fields of medical imaging, remote 

sensing image applications, and so on.  
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The area of information fusion has been received increasing attention in recent years 

due to the ready availability of multiple sensors. For multi-sensor images, algorithms 

such as simple average, PCA and multi-scale decomposition method which may be 

pyramidal transform such as Gradient Pyramid (GP) method, Laplacian Pyramid (LP) 

method and Ratio Pyramid (RP) method or wavelet transform such as Discrete 

Wavelet Transform (DWT) methods have been successfully applied for image fusion. 

Nevertheless a crucial issue that arises in image fusion is that the performance of 

image fusion with the associated algorithms is difficult to evaluate, especially when a 

clearly defined ground-truth image is not available.  

To evaluate the effectiveness of image fusion techniques, divergence based 

information measures are usually used since it is feasible to assess the case without 

the ground truth [Cvejic et al., 2006]. As stated in the section 3.1, divergence is a 

measure of distance between the distributions P and Q of two random variables X and 

Y. One of the commonly used divergences is Kullback-Leibler divergence which has 

been defined in Table 3.2, and the Kullback-Leibler divergence based information: 

mutual information are defined in Table 3.3.  

 

4.2 Current techniques and problem description 

 

Considering the situation that some images maybe do not contain distinctive and 

easily detectable objects, so that the Feature based method are not feasible. In this 

thesis, we focus on the Area based registration by maximizing divergence based 

information. The key of divergence based information for image registration is to 

precisely estimate the joint probability density function. Gaussian assumption and 

joint histogram are two conventional approaches to estimate joint probability density 

function for image registration. The disadvantages of these two conventional 

measures have been pointed out in Section 3.2. Considering the special relationship 

between joint probability density function, copula density function and marginal 

probability density functions, and copulas can deal with any marginal distributions, 

copula functions offer a nature and robust way to estimate divergence based 

information, and so it will be applied for image registration in this chapter.  
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The disadvantage of mutual information based method is that it does not have 

parameter that could be adjusted to achieve the better results of performance 

evaluation of image fusion. In this section, some generalized divergence such as 

Tsallis and Renyi divergence which have been defined in Chapter 3 are used to 

evaluate the performance of image fusion since these divergence based information 

are considered that they can provide the better ability of discrimination by adjusting 

their parameters.   

 

4.3  Copulas based image registration 

 

In this section, an image registration criterion, optimal parameter searching method 

and image registration techniques are introduced, and we tested the synthetic MRI 

images, real medical images (CT-MRI) and visible light-thermal images. The results 

of image registration using copulas are compared with Gaussian assumption and joint 

histogram based mutual information. 

 

4.3.1 Image registration criterion 

Let I1 and I2 be two digital image pixel intensities. The objective of image registration 

is to find the optimal spatial transformation parameters which maximize the 

divergence-based information between the overlapping areas of reference image and 

transformed float image. 

These transforming parameters usually include c1 and c2 which represent the 

geometric centre of I1 and I2 respectively, rescaling parameters and the rotating degree 

θ. For example, given the first image I1 as reference image, we translate, rotate and 

rescale the second image I2 until that the maximal divergence-based information 

between the overlapping area of reference image and transformed float image is 

found, and then the images are considered to be aligned correctly.  

Two methods such as Gaussian assumption based mutual information and the joint 

histogram based mutual information [Maes, et al., 1997] will be computed and 

compared with the results obtained using copulas method. The copulas based mutual 

information has been defined as: 
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2[0,1]

( , ) log ( , )CopMI c u v c u v dudv 
                           

(4.1)  

Gaussian assumption based mutual information has been defined in Eq. (3.24) as: 

[Thomas and Joy, 1991] 
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ln(1 )
2

GauMI   
                                   

(4.2)

where ρ is the Pearson correlation between variables. 

The joint image intensity histogram of the overlapping volume of both images is 

computed by binning the image intensity pairs, the number of bins in the joint 

histogram is typically 256 [Maes, et al., 1997]. 

 

4.3.2 Optimization method 

In image registration, estimation of maximal divergence based information is a 

multidimensional optimization problem, where the number of dimensions depends on 

how many parameters of geometrical transformation such as size rescale at x-

coordinate and y-coordinate, translating at x-coordinate and y-coordinate and rotation 

degree are required to be estimated. The computation is complicated when several 

parameters are required to be estimated together or when the images have the large 

size.  

In the case of transformations with more parameters, sophisticated optimization 

algorithms are necessary. Powell‟s multidimensional direction set method with 

Brent‟s method for one-dimensional optimization [Press, et al., 1992] has been 

applied to search the maximal value of divergence based information [Maes, et al., 

1997]. In their work, the images are initially positioned such that their centre coincide 

and have the same orientation, to reduce the complexity of computing. 

The Nelder-Mead Simplex method [Press, et al., 1992], [Lagarias, et al., 1998] is 

sometimes used as it is derivative-free, and as such is very fast. 
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The application of Gauss-Newton numerical minimization algorithm for minimizing 

the sum of squared differences in described in [Sharma, et al., 1997]; while [Viola, et 

al., 1997] have used the gradient descent optimization method to estimate the 

maximal mutual information and [Sawhney, et al., 1999] have used Levenberg-

Marquardt optimization method for image registration. 

It is worth noting that the initial parameters are crucial for these searching methods, 

since it is possible that these algorithms may yield local optimal value. To improve 

the accuracy and to reduce the complexity of computing, some useful techniques for 

image registration are introduced as follows. 

 

4.3.3 Image registration techniques 

 

In this section, some useful techniques of the selection of initial parameters for image 

registration are introduced. Firstly, the centre of gravity of image [Assen, et al., 2002] 

is often used to evaluate the initial position parameters for image registration. The 

centre of gravity normally keeps more stable position information than the 

geometrical centre for medical images, so the centre of gravity is a good choice for 

the initial searching parameter. The may be defined as: 

Let ( , )f i j where 1 ,1i N j N    denotes the pixel intensity of image. The centre 

of gravity ( , )X YC C C can be calculated by the formula: 
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(4.3)  

Secondly, once an original pixel is given, there are some ways to obtain its 

neighbourhood. Firstly, the square neighbourhood [van den Boomgard and van Balen, 

1992] are applied frequently. A square neighbourhood with parameter r=3 and 

window size 7x7 is shown in Figure 4.1. 
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                                   Figure 4.1: Square neighbourhood 

 

Alternatively, the circle neighbourhood [Adams, 1993] can be used to estimate the 

rescale parameter since it is not affected by any rotation of image. The circle 

neighbourhood with radius r=3 is shown in Figure 4.2. 

 

             

                               Figure 4.2: Circle neighbourhood 

 

Another important technique for image registration is interpolation; the common 

methods are nearest neighbour, bilinear and bicubic interpolation. 

Original Pixel 

Square Neighbourhood 

Original Pixel 

Circle Neighbourhood 
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In the nearest neighbour interpolation process [Parker, 1983], the problem involves 

approximating the value for a point in some space, when some values of points 

around that point are given. The nearest neighbour algorithm simply selects the value 

of the nearest point, and does not consider the values of other neighbouring points at 

all. The algorithm is very simple to implement however it may just make the 

neighbouring pixels have the same intensity values. 

Bilinear interpolation [Parker, 1983] considers the closest 2x2 neighbourhood that 

surround the unknown pixel.  A weighted average is then taken of the four pixels to 

arrive at its final interpolated value.  The results usually have much smoother looking 

than nearest neighbour interpolation. 

Bicubic interpolation [Keys, 1981] considers the surrounding 4x4 neighbours of 

unknown pixels.  The closest pixels are given a higher weighting in the calculation. 

Bicubic interpolation is a more sophisticated and the interpolated surface is smoother 

than the nearest neighbourhood and bilinear interpolation methods.  

 

4.3.4 Synthetic medical image registration 

The image shown in Figure 4.4 (a) is a Magnetic Resonance Imaging (MRI) image of 

a human brain scan which can be found online at: (www.itk.org) and is used as the 

reference image with the size 249x249 pixels. The coordinate of centre of gravity of 

the reference image is [125.27; 124.96]. The float image shown in Figure 4.4 (b) 

which is obtained from the first image by rotating it by 10 counter clockwise degrees, 

and the algorithm of Bicubic interpolation is used, it has the same size with reference 

image. To improve robustness, 10%, 20% and 30% salts and pepper noise were added 

to the float images, as shown in Figure 4.4 (c), (d) and (e) respectively. 

The objective is to find a point in float image as the centre, and then rotate the float 

image with respect to this centre until the maximal Gaussian assumption based mutual 

information, or the joint histogram based mutual information or divergence based 

information using copulas is found. Then to check how far these centres from the 

centres of gravity of float images are, and to evaluate the difference between the 

computed degree of rotation from the original rotation degree. 

http://www.itk.org/
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To initiate the algorithms, the centres of gravity of the float images are calculated as 

the initial parameter values. The copula parameters are calculated using the canonical 

maximal likelihood (CML) given in Equation (2.21). The Clayton copula model is 

selected for calculation of the divergence based information by copulas, and square 

neighbours are applied to choose the overlapping part of images. The Bicubic 

algorithm is used for image interpolations, and Nelder-Mead Simplex method is used 

for the searching the maximal value. The process of image registration is described in 

the following flow chart shown in Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               

 

Estimate divergence-based information between 

the overlapping areas of reference image and the 

transformed float image using copula density 

functions 

Figure 4.3: Flow Chart of Image Registration 

Optimization 

Output Image 

Reference Image Float Image 

Input Images 

Image Transforming 



85 
Chapter 4: Copulas for Image Registration and Evaluation of Image Fusion Algorithms  

 

 

                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

                           

                        

                                         

 

Figure 4.4 Image Registration of synthetic MRI image 

(a) Reference image (b): Float image 

Method centre on x axis centre on y axis Rotation degree 

Gaussian 125.17 125.05 -10.00 

Joint histogram 124.45 125.12 -10.08 

Copulas 125.08 125.05 -9.98 

          

                       

                 

 

Gravity centre of float image = [125.26; 124.91] 

Table 4.1: Results of synthetic MRI image registration without noise 

                                 

                            

 

(c): Float image with 10% salt and pepper noise 
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Method centre on x axis centre on y axis Rotation degree 

Gaussian 125.23 125.19 -10.17 

Joint histogram 123.97 125.06 -10.08 

Copulas 124.85 125.22 -9.90 

                 

                         

 

                   Gravity centre of float image = [124.7795; 124.8561] 

Table 4.2: Results of synthetic MRI image registration with 10% salt and 

pepper noise 

 

Method centre on x axis centre on y axis Rotation degree 

Gaussian 125.32 125.18 -10.21 

Joint histogram 124.32 124.43 -10.32 

Copulas 125.10 124.86 -10.05 

                 

                         

 

                    Gravity centre of float image = [125.41; 125.00] 

Table 4.3: Results of synthetic MRI image registration with 20% salt and 

pepper noise 

 

                                              

(d): Float image with 20% salt and pepper noise 
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The registration results are shown in Table 4.1, Table 4.2, Table 4.3 and Table 4.4. As 

may be seen from these tables, the copula measure offers acceptable results for image 

registration since the results are close to the original values applied. Furthermore, with 

increasing level of the added noise, the copula based measure provider better result 

than Gaussian assumption based and histogram based mutual information.  

 

4.3.5 Medical image (CT-MRI) registration 

The image shown in the Figure 4.5 (a) is a brain MRI image with size 328x328 pixels 

and Figure 4.5 (b) is a Computed Tomography (CT) brain image with size 656x656  

Method centre on x axis centre on y axis Rotation degree 

Gaussian 124.81 125.07 -10.17 

Joint histogram 123.75 124.65 -10.33 

Copulas 124.77 125.02 -9.94 

                 

                         

 

                    Gravity centre of float image = [125.12; 125.23] 

     Table 4.4: Results of image registration with 30% salt and pepper noise 

                                      

    (e): Float image with                          

30% salt and pepper noise                                       

 

(f): Registered Image 
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pixels for the same person and can be found online (www.itk.org). Firstly, the size of 

CT image is adjusted to be the same as the MRI image by subsampling. Similar to the 

approach taken for the synthetic image registration, the centre of gravity, circle 

neighbour and Bicubic interpolation are applied. The image registration result is 

shown in Figure 4.5 (c) where the registered CT image is overlaid on the semi-

transparent MRI image. To improve the visual effects, the pixel intensity sum of the 

registered CT image and MRI image is illustrated in Figure 4.5 (d). The parameters 

results are given in Table 4.5. 

  

               

 

                

                          

   (c): Registered CT overlaid by 

semi-transparent MRI 

(d): Sum of each corresponding 

pixel intensity of registered CT 

and MRI    

 Figure 4.5: Image registration of CT-MRI images 

(a): Reference image (MRI)                         (b): Float image (CT) 
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4.3.6 Visible light image and thermal image registration 

 

In this section, the registration techniques are applied to three real datasets of visible 

light images and thermal images provided by Thales. In Figure 4.6, 4.7 and 4.8, (a) 

and (b) represent visible light images and thermal images respectively while (c) and (e) 

are the registered images by using joint histogram method and copula method 

respectively, (d) and (f) are registered thermal images overlaid on the semi-

transparent visible light images.  The registration technique is based on the following 

approach. A reference point was firstly selected in visible light image, and then 

searches the corresponding point in the thermal image. This corresponding point in 

the thermal image should be located at the same position as the reference point of 

visible light image. This is achieved by adjusting the rescaling parameter on x and y 

plane. So, the transforming parameters include the rescaling parameters on x and y 

plane and the coordinates of corresponding point in the thermal image after selecting 

the reference point in reference image. The initial parameters are selected as follows: 

[x-coordinate of corresponding point; y-coordinate of corresponding point; rescaling 

parameter on x plane; rescaling parameter on y plane] = [340; 217; 1.4; 1.4]. The 

coordinates of reference point of visible light image and corresponding point of 

thermal image and rescaling parameters on x and y are listed in Table 4.6, 4.7 and 4.8 

for Figure 4.6, 4.7 and 4.8 respectively.  

 

 

 

Method centre on x axis centre on y axis Rotation degree 

Gaussian 152.36 179.92 3.13 

Joint Histogram 152.74 182.84 3.07 

Copulas-based 152.16 180.01 3.44 

                 

                         

 

                        Table 4.5: Result of CT-MRI image registration 
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It may be seen that the results of copula method shown in (d) of Figure 4.6, 4.7 and 

4.8 are better than joint histogram method shown in (f) of Figure 4.6, 4.7 and 4.8 by 

observing the distinct objects such as roads and vehicles in images. It can be clearly 

found that the vehicles are registered in (f) by copula based measure, but they are not 

registered accurately by joint histogram based measure in (d). 

Method Corresponding point Rescaling on x Rescaling on y 

Joint histogram 339.17;  219.39 1.48 1.40 

Copulas 339.60;  219.93 1.45 1.44 

 

    The coordinates of reference point of visible light image is [370; 64]. 

Table 4.6: Results of visible light/thermal image registration for Figure 4.6 

Method Corresponding point Rescaling on x Rescaling on y 

Joint histogram 339.58; 221.12 1.45 1.43 

Copulas 339.31;  220.89 1.44 1.43 

 

     The coordinates of reference point of visible light image is [370; 65]. 

Table 4.7: Results of visible light-thermal image registration for Figure 4.7 

 Corresponding point Rescaling on x Rescaling on y 

Joint histogram 341.99;  219.37 1.46 1.41 

Copulas 342.03; 219.84 1.44 1.44 

 

    The coordinates of reference point of visible light image is [374; 61]. 

Table 4.8: Results of visible light/thermal image registration for Figure 4.8 
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In this experiment for visible light – thermal image registration, 20 image pairs were 

tested for registration,  and in all cases the copulas based method always offer better 

result than joint histogram based method. The figures given include representative 

results from this test. Besides, it is worth noting that the same image registration 

parameters are obtained by Csiszar, Renyi-like, modified Bregman and modified 

Burbea-Rao divergence based information using Clayton copula, for the synthetic 

MRI, real image (CT-MRI) and visible light-thermal images registration. 

 

4.4 Copulas based performance evaluation of image fusion 

 

The objective of image fusion is to integrate the complementary information from 

input images, so that the fused image is more informative and suitable for visual 

perception. Based on the information theory, the performance evaluation is usually 

achieved by the estimation of the amount of information obtained from the individual 

input images. The common evaluation methods of information theory are Fusion 

Factor (FF) and Fusion Symmetry (FS) [Stathaki, 2008]. 

 

4.4.1 Fusion Factor 

Fusion Factor (FF) simply sums the information between fused image and input 

images [Stathaki, 2008]. Considering X and Y as two input images, and F as the fused 

image, then the Fusion Factor has been defined as [Cvejic et al., 2006]:   

 

                                                  ( , ) ( , )FX FYFF I F X I F Y                                   (4.4)  

where IFX represents the information between fused image and image X and I can be 

mutual information, Tsallis divergence based information and Renyi divergence based 

information. Higher value of FF means better performance of image fusion. However, 

a significant disadvantage of FF is that, FF cannot indicate whether the input images 

are fused symmetrically or not. To deal with this problem, the concept of Fusion 

Symmetry is introduced as follow. 
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 Figure 4.6: The first image registration of visible light/thermal image  

(a): Visible light image, (b): Thermal image, (c): Registered thermal image using copula 

method, (d): Registered thermal image using copulas overlaid on the semi-transparent 

visible light image, (e): Registered thermal image using joint histogram method, (f): 

Registered thermal image using joint histogram method overlaid on semi-transparent 

visible light image. 

 

                        (a)                                                               (b) 

                       (c)                                                              (d) 

                         (e)                                                            (f) 
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Figure 4.7: The second image registration of visible light/thermal image  

(a): Visible light image, (b): Thermal image, (c): Registered thermal image using copula 

method, (d): Registered thermal image using copulas overlaid on the semi-transparent 

visible light image, (e): Registered thermal image using joint histogram method, (f): 

Registered thermal image using joint histogram method overlaid on semi-transparent 

visible light image. 

 

                     (a)                                                             (b) 

                         (c)                                                              (d) 

                      (e)                                                                (f) 
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   Figure 4.8: The third image registration of visible light/thermal image  

(a): Visible light image, (b): Thermal image, (c): Registered thermal image using copula 

method, (d): Registered thermal image using copulas overlaid on the semi-transparent 

visible light image, (e): Registered thermal image using joint histogram method, (f): 

Registered thermal image using joint histogram method overlaid on semi-transparent 

visible light image. 

 

                    (a)                                                             (b) 

                 (c)                                                               (d) 

                      (e)                                                                (f) 
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 4.4.2 Fusion Symmetry (FS) 

The Fusion Symmetry has been defined as: [Stathaki, 2008]  

                                       
( , )

( 0.5)
( , ) ( , )

FX

FX FY

I F X
FS abs

I F X I F Y
 


                           (4.5)  

where IFX represents the information between fused image and image X; and the 

information I can be mutual information or Tsallis and Renyi divergence based 

information.  

FF considers the factor whether the input images are fused symmetrically and it 

considers that the image fused symmetrically performs better than the fused image 

simply with high FF. The smaller the FS, better the performance of image fusion.  

 

 

4.4.3  Divergence based information using copulas for Gaussian distributed data 

 

In the following experiment, dataset are randomly generated with standard bivariate 

Gaussian distribution by using different Pearson correlations from 0 to 1. The result of 

mutual information using copulas and Gaussian assumption, Tsallis and Renyi 

divergence based information are compared. Tsallis and Renyi divergence based 

information with parameters that equal to 0.5 and 1.5 respectively have been 

computed using a Gaussian copula, and the copula parameters estimated by using the 

Canonical Maximum Likelihood (CML) technique [Cherubini et al., 2004].  

The results are given in Figure 4.9. It may be observed that, the result of copula based 

mutual information is very close to the Gaussian assumption based mutual 

information for the Gaussian distributed data. Moreover, the parameters of Tsallis and 

Renyi based divergence can be adjusted so that they may offer better ability to control 

the measurement sensitivity, and hence better image fusion accuracy than the 

conventional Kullback-Leibler divergence. 
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4.4.4 Performance evaluation of image fusion using copulas 

 

Two images obtained at the same scene are shown in Figure 4.10 (a) and (b) where (a) 

is an infrared image and (b) is visible light image, they are available online at: 

(www.imagefusion.org). Several algorithms including the Simple Average (AVER), 

PCA, GP, LP, RP and the DWT have been applied for the fusion of these two images, 

and the results are given in Figure 4.10. To evaluate these methods, firstly, the mutual 

information based performance measure of FF shown in Eq. (4.4) was computed for 

all these algorithms. The results indicate the PCA method performs the best, since it 

has the highest MIFXY value, while the other methods obtained approximately similar 

MIFXY values. However there is a dichotomy in these observations, as the PCA method 

 

Figure 4.9: Mutual information and Tsallis, Renyi divergence based 

information using Gaussian copula 
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is the worst performing since fused image by PCA method looks very similar to 

visible image but it is very „distant‟ from infrared image. Note that there is a human in 

the visible image, but is not in the fused image at all. 

Sine PCA fused image is very close to the visible image, so that very high mutual 

information is found between PCA fused image and the visible image. Although PCA 

fused image is „very distant‟ from infrared image so that the mutual information 

between PCA fused image and the infrared is very low, mutual information is always 

equal or greater than 0. So the PCA method is mistakenly considered as the best 

algorithm. It shows that FF measure cannot indicate whether the images are fused 

symmetrically. To avoid this type of error, the Fusion Symmetry is used to deal with 

this problem.                

The FF based mutual information and Renyi divergence based information and FS 

based mutual information, Renyi divergence and Tsallis divergence based information 

for all the mentioned fusion algorithm are summarized in Table 4.9. The algorithm 

with higher FF value or lower FS value is considered as better algorithm of image 

fusion. Gaussian copula was applied and CML method used to estimate the copula 

parameter. It may be found that FS measure is much better than the FF measure 

which simple sums the information between fused image and infrared image, visible 

image respectively.  

The next step is to compare the methods based on mutual information, Tsallis and 

Renyi divergence based information. Since the fusion symmetric measure is 

obviously better than fusion factor, hence only the fusion symmetry measure is 

considered. Based on the criterion: the smaller FS, better the performance of image 

fusion. All of image fusion algorithms mentioned in this chapter can be ranked by 

using FS measure as:  

 

 

 

 

 

 

Mutual information: 

LP>AVER>DWT>GP>RP>PCA 

Tsallis divergence based information with parameter α=3. 

LP>AVER>DWT>GP>RP>PCA 

Renyi divergence based information with parameter r=3. 

LP>AVER>DWT>GP>RP>PCA 



98 
Chapter 4: Copulas for Image Registration and Evaluation of Image Fusion Algorithms  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         

                             

                                      (a)                                               (b) 

 

   

             (c)                                             (d)                                             (e) 

 

    

                     (f)                                               (g)                                                 (h) 

                                                   

                                                     Figure 4.10: Fused images 

 

(a): Infrared image. (b): Visible image. (c): Fused image by PCA. (d): Fused image by 

averaging. (e): Fused image by gradient pyramid. (f): Fused image by Laplace pyramid. (g): 

Fused image by Ratio pyramid. (h): Fused image by discrete wavelet transform. 
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It may be observed that the performance of these three information based measures 

are exactly the same, and is also consistent with the rankings observed. 3 other 

experiments were carried out for performance evaluations of image fusion, and all of 

these experiments yielded the same results for mutual information, Tsallis and Renyi 

divergence based information with FS method, and the results were also consistent 

with the rankings observed. It should be noted that the significant advantage of Tsallis 

and Renyi method is that they can adjust the associated parameters to obtain better 

discrimination. For example, in the method of mutual information by FS measure, 

DWT=0.1146 is very close to GP=0.1179. If Tsallis method is used, and the 

parameter is adjusted to α=3, the results obtained are: DWT=0.1338 and GP=0.1409. 

Here the difference between DWT and GP measures become clearer. This 

characteristic is useful for the situations when the very similar fused results are 

obtained by different algorithms, and the performance of image fusion is to be 

evaluated.  

 

4.5 Conclusion 

 

In this chapter, the divergence-based information by using copulas is applied for 

image registration. To reduce the computation complexity and keep the robustness, 

some techniques such as centre of gravity, circle neighbours, Bicubic interpolation are 

applied to improve image registration. The results are compared with the registration 

 PCA Aver GP LP RP DWT 

MI(FF) 1.9751 0.374 0.3557 0.3377 0.2925 0.3062 

Renyi(FF) 2.6282 0.8591 0.8250 0.7940 0.6914 0.7291 

MI(FS) 0.4755 0.0890 0.1179 0.0683 0.2124 0.1146 

Tsallis(FS) 0.4979 0.1078 0.1409 0.0816 0.2412 0.1338 

Renyi(FS) 0.4497 0.0731 0.0978 0.0567 0.1834 0.0965 

 
Table 4.9: Performance evaluation of image fusion 
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methods that utilize the Gaussian assumption and joint histogram based mutual 

information. It is shown that the copulas-based method offer the better results 

especially for noisy and real images between visible light images and thermal images. 

Furthermore, the performance evaluation of image fusion using copulas has been 

presented.  Gaussian copula density functions have been studied to estimate the 

mutual information, Tsallis and Renyi divergence based information, and their 

performance for image fusion is assessed, based on the fusion factor and fusion 

symmetry measures.  Experiment shows that FS measure is much better than FF 

measure and the Tsallis divergence offers improved ability to discriminate by 

adjusting its parameter. An approach to choose the optimal values of the parameter 

will be researched in the future. The results of experiment also show that the copula 

density as an alternative and robust way can deal with any marginal distributions, to 

calculate the mutual information, and the Tsallis and Renyi divergence based 

information for the performance evaluation of image fusion. 
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Chapter 5 

Band Selection for Hyperspectral Images 

 

Summary 

The previous chapter was concerned with the application of image registration which 

is achieved by maximizing the divergence based information between the overlapping 

area of reference image and transformed float image using copulas. In this chapter, 

copulas based information is applied to select the appropriate band images for 

hyperspectral images by choosing the band images that have higher copulas based 

mutual information with reference image. The result of experiment on Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) data shows copula based method 

offer more reasonable band selection results than conventional methods such as 

Gaussian assumption and joint histogram based mutual information. 

 

5.1 Introduction 

Hyperspectral images are taken by the use of specialist equipment that includes 

hundreds of different detectors, each within a wavelength sensitive range called 

spectral bandwidth, for example, the Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) instrument, contains 224 different detectors which cover the entire 

wavelength range from 380nm to 2500nm, with approximately 10 nm spectral 

bandwidth. The detail can be found online at: (http://aviris.jpl.nasa.gov). 

Hyperspectral image contains much richer information and provide better 

discrimination ability than visible light images and are able to distinguish between 

objects which may have the same external appearance but with different interiors.  As 

an illustration of hyperspectral imaging, mantis shrimp can see not only visible light 

images but also images from the ultraviolet to infrared light. The hyperspectral 

capabilities enable mantis shrimp to recognize different types of coral or prey which 

http://en.wikipedia.org/wiki/Mantis_shrimp
http://en.wikipedia.org/wiki/Visible_spectrum
http://en.wikipedia.org/wiki/Ultraviolet
http://en.wikipedia.org/wiki/Infrared
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may appear as the same colour to the human eyes. Thus hyperspectral imaging offers 

a richer seam of image processing for the analysis and detection of image features.  

Hundreds of bands imply high-dimensional data which requires huge storage space 

and transmission bandwidth. Moreover, the performance of hyperspectral image 

processing for functions such as image classification is strongly affected by the 

dimensionality, and high-dimensional data it is difficult to process [Guo et al., 2006]. 

Furthermore, it is likely that redundant information exists and only parts of the data 

can offer high discrimination, so that band selection between bands from the available 

high-dimensional data is usually necessary.  

The objective of band selection is to remove the bands which contain little or no 

discriminatory information. In the past, many criteria have been applied for the band 

selection of hyperspectral images. The common methods include distance measures 

such as Bhattacharyya distance and Matusita distance, information-theoretic 

approaches such as mutual information and all kinds of divergence based information 

and eigen analysis measure such as Principal Components analysis (PCA) [Chang et 

al., 1999]. Bhattacharyya and Matusita distance [Ifarraguerri & Prairie 2004] are the 

special case of Renyi-like divergence and Csiszar divergence respectively which 

measures the similarity of two probability distributions and have been defined in 

Table 3.4 and Table 3.2 of Chapter 3 respectively. PCA [Pu & Gong‟ 2000] is 

mathematically defined
 
as an orthogonal linear transformation that transforms the data 

to a new coordinate system such that the greatest variance of any projection of the 

data comes to lie on the first coordinate (called the first principal component), the 

second greatest variance on the second coordinate. PCA has the distinction of being 

the optimal linear transformation that provides a subspace that has the largest variance. 

The components with low eigenvalues are neglected to reduce the dimensions. 

Specifically, suppose we have a matrix 
1 2[ , ,... ]T

nX X X X , PCA looks for a linear 

transform of X into Y which satisfies ( )XY A X   where 
X is the mean value of X. 

The algorithm using the covariance method can be achieved by the following steps: 

Step 1: Input matrix data.  

Step 2: Subtract the mean to generate a new data. 

Step 3: Calculate the covariance matrix of the new data. 
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Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix. 

Step 5: Choose components and forming a feature vector. Once the eigenvector are 

found, the next step is to rank them by eigenvalue from high to low and then ignore 

the components which have lower eigenvalues. This does not lose much 

information. 

Step 6: Using eigenvectors chosen in step 5 multiply the new data generated in Step 

2. 

 

In this chapter, we focus on the mutual information method which offers a measure of 

the dependence between random variables. This can be achieved by selecting specific 

bands for the analysis of hyperspectral images by comparing mutual information 

values between each of the band images and the reference map. The well known 

definition for mutual information between two random variables X and Y is given as: 

                            
( , )

( , ) ( , ) log
( ) ( )

XY
XY

X Y

f x y
MI X Y f x y dxdy

f x f y
                              (5.1) 

where ( , )XYf x y  is the joint probability density function of the variables (X,Y), ( )Xf x  

and ( )Yf y are the marginal densities of variables X and Y respectively.  

 

5.2 Current techniques and problem description 

 

Comparing to the PCA method, mutual information based method requires a reference 

map (Ground Truth) which may not always be available. A compensatory approach 

was proposed in [Guo et al., 2006] for the estimation of the reference map that 

employs a priori knowledge of spectral signature which significantly reduces the 

reliance of reference map. Spectral signatures are the specific combination of 

reflected and absorbed electromagnetic radiation at varying wavelengths, the 

approximate wavelength range for certain material, even for very similar materials 

can be identified since different material has the different reflectance in the same 

wavelength range so that it may uniquely identify as an object. The spectral signature 

has been collected in the spectral signature library such as USGS Digital Spectral 

Libraries which can be found online at: (http://speclab.cr.usgs.gov). The reference 

http://en.wikipedia.org/wiki/Electromagnetic_radiation
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map can be synthesized by averaging the bands which have the significant different 

reflectance and these bands are called key bands. 

The shortcomings of Gaussian assumption and joint histogram have been pointed out 

in Section 3.2. Copulas offer an alternative parametric technique for mutual 

information within the observed data and copula based mutual information can be 

written as: 

                                           
2[0,1]

( , ) ( , )log ( , )MI x y c u v c u v dudv 
                               

(5.2)

 

Furthermore, the rejection bandwidth and setting complementary threshold method is 

applied to remove the redundancy bands between neighbouring bands. This method is 

based on whether significant changes of mutual information are detected in the 

neighbouring bands. If there is no significant change of mutual information, it means 

that the redundancy information between neighbours, and then these band images can 

be neglected, even if they have higher mutual information with the reference image. 

 

5.3 Application to hyperspectral images 

 

Experiments were conducted on the AVIRIS data: 92AV3C hyperspectral image 

dataset collected over a test site called Indian Pine in north-western Indiana, and is 

available online at: (ftp://ft.enc.purdue.edu/biehl/MultiSpec). After removing four null 

data, 220 bands are available in the 92AV3C dataset. The size of each image is 

145x145 pixels. The prior knowledge based on the spectral signature library such as 

USGS Digital Spectral Libraries can be used to estimate the reference image to reduce 

the reliance on a ground truth map. From the libraries, the approximate wavelength 

range for certain material is identified even for very similar materials. To choose the 

appropriate group of bands which have the greatest reflectance diversity between the 

interested material and these bands are used to estimate the reference map by 

averaging the corresponding band images as [Guo et al., 2006].                                     

                                           
1

1 N

i

i

R I
N 

                                             (5.3) 
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where R is the estimated reference image, N is the number of selected band images, i 

is the index of images and 1 i N  . 

Some band images samples are shown in Figures 5.1(a – e). The estimated reference 

map is shown in Figure 5.1 (f) which is computed by averaging images from the 

bands 170 to 210 using equation (5.3) [Guo et al., 2006].  

After establishing the estimated reference image, the mutual information, between 

each band image and estimated reference image, is computed using equation (5.2). 

The Clayton and Gaussian Copula density functions are used to estimate mutual 

information and results are shown in Figure 5.2. 

It can be found from Figure 5.2 that joint histogram method has the worst 

discrimination ability since the difference of mutual information between reference 

map and each band image is small. Similarly, the Gaussian assumption based method 

does not have a good ability to discriminate in the region of bands 10 to 30. The 

Clayton copula method does not have sufficient discrimination ability for low 

correlation values, since all the mutual information are approximately equal to 0 

between bands 40 and 80. The Gaussian copula method seems to have the best 

discrimination ability. 

Referring to the Figure 5.2, the bands with higher mutual information are patently 

obvious, and should be retained. However, some redundant information may exist in 

the neighbouring bands. To avoid inclusion of the redundant information between 

neighbours, two ancillary selection parameters are adopted here – (i): rejection 

bandwidth B which stands for a bandwidth measured from the centre of a selected 

band; (ii): complementary threshold t. These are used to reduce the redundant 

information between neighbouring bands. The measure is based on whether 

significant mutual information changes are detected in the neighbouring bands.  

 

The algorithm is described in Appendix 3 [Guo et al., 2006], to select bands, the 

values for the rejection bandwidth B and complementary threshold t are chosen as 5 

and 0.5 respectively and the results are given in Figure 5.3. Here the expected number 

(expnum) is selected as 15. As can be seen from Figure 5.3, some bands have been 

removed even if these bands have higher mutual information with respect to the  
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estimated reference image. This measure is more reasonable than a setup that uses a 

simple threshold, since it removes redundant information between neighbouring bands. 

The final bands selected using the Clayton, Gaussian copula, Gaussian assumption 

and joint histogram are shown in Table 5.1. It may be seen that the band selection  

should concentrate between 115 to 145 and 175 to 210.  Bands from 5 to 35 may be 

also considered, when the retention of more bands are required. From the Figure 5.3 

and Table 4.1, it is found Clayton and Gaussian copula provide more resonable results 

for band selection than Gaussian assumption and joint histogram based mutual 

information. 

       

                           

 

 

                      

 

 

 Figure 5.1: Hyperspectral images (a): Band 5 (b): Band 50 (c): Band 125 (d): Band 

200 (e): Band 218 (f): Estimated Reference image 

 

(a)                                        (b)                                         (c) 

                  (d)                                        (e)                                          (f) 
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        Figure 5.2: Mutual Information between each band image and reference image 

           

Figure 5.3: Selected band number using rejection bandwidth and complementary 

measure 
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5.4 Conclusion 

 

In this chapter, a band selection approach has been presented for hyperspectral images 

that exploit copula functions. The Clayton and Gaussian copula have been used to 

calculate the mutual information between each band image and the estimated 

reference image based on the prior knowledge of spectral signatures.  Experiments on 

the AVIRIS dataset show that copulas offer an alternative and robust way to calculate 

the mutual information for band selection of hyperspectral images. The results are 

compared for methods using the Clayton, Gaussian copula, Gaussian assumption and 

joint histogram based mutual information, and found Gaussian copula method offers 

the better results than, Clayton copula, Gaussian assumption and joint histogram 

based methods. 

    

 

 

 Measure                                                         Selected 15 bands 

Clayton 

Copula 

118 124 125 126 127 128 129 130 131 137 144 183 191 197 203 

Gaussian 

Copula 

118 124 125 126 127 128 129 130 131 137 144 183 193 199 206 

Bivariate 

Gaussian 

168 172 173 174 175 176 183 195 201 202 203 204 205 206 207 

Joint 

Histogram 

30 117 123 124 125 131 138 145 174 183 194 205 211 212 213 

 

                                              Table 5.1: 15 Selected Bands 
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Chapter 6 

Conditional Copula for Image Change Detection 

 

Summary 

Conventional change detection techniques such as statistical similarity based measure 

cannot accurately deal with complicated scenes, e.g. where the objects in two images 

are very similar or even the same but their pixel intensities and the statistical 

distribution of pixel intensities can vary due to the external factors such as the use of 

different sensors or climate changing. In this chapter, conditional copulas are applied 

to deal with the problem of variability by training the „no change‟ areas between two 

images. The results of copula based measure are better than „statistical similarity‟ and 

„difference‟ measure by observing and are validated by Receiver Operating 

Characteristic (ROC) curve. 

 

6.1 Introduction 

 

The objective of image change detection is to produce a binary map which represents 

two classes: change and no change for two images usually taken at the same scene but 

different time. Automated change detection is required in several fields such as 

remote monitoring [Bruzzone & Prieto, 2002], defence surveillance systems [Stauffer 

& Grimson, 2000], non-invasive assessment of medical conditions [Wakuya et al., 

2007] and so on. In some cases, the sensors with different modalities are employed, 

for example, sensors may use hyperspectral bands to collect data in remote earth 

observations or as in medical imaging, different modalition such as MRI, CT and PET 

(Positron Emission Tomography) are used to monitor patients.  
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In this chapter, the current techniques are first reviewed and the problems of 

complicated situation are considered where images are taken by the different sensors 

or where climate changes affect imaging condition. Next, the applications of image 

change detection are analysed for two cases: (i) Synthetic Aperture Radar (SAR) 

images: to estimate the scene change before and after earthquake. (ii) CT images: to 

monitor the calcification in human brain change before and after treatment and 

conditional copulas are developed for image change detection, early ideas were first 

proposed by [Mercier et al., 2008]. Finally, the results of copulas-based measure are 

compared with the conventional measure such as: Pixel-based and Statistical 

similarity based measures. 

 

6.2 Image change detection techniques review 

 

For two registered images taken at different time, the change detection can be 

accomplished in two stages: the first stage is to generate the change indicator and the 

next stage is to determine the optimal threshold for change indicator to achieve the 

final change detection. Both of these two stages are important for the performance of 

overall detection. In this chapter, we concentrate on the first stage: generation of 

change indicator. The algorithms of change detection indicator can be classified into 

two categories. 

(i): Pixel-based measures [Inglada & Mercier, 2007]  

(ii): Statistical similarity based measure [Inglada, 2003] 

In the Pixel-based measure, the common change indicators are Mean Ratio Detector 

(MRD) and Difference Detector (DD). MRD is achieved by calculating the ratio of 

the local mean pixel intensity values for each pixel which is located at the same 

position within a fixed window of neighbourhood. MRD can be defined as: 

                                              ( , ) 1 min ,X Y
MRD

Y X

D X Y
 

 

 
   

                             

(6.1)  
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where X and Y are the mean values of each pixel computed in relation to its 

neighbourhood for the two images respectively. 

The difference detector is obtained by calculating to pixel intensity difference 

between each pixel, which is at the same position within the two images. 

It is known that the probability distribution of pixel intensity usually offers more 

stable information than pixel intensity themselves [Inglada, 2003]. The measure based 

on the local pixel probability distribution investigates the distance between two image 

pixel intensity probability distributions instead of the pixel intensities. The change 

indicator is achieved by the calculation of the symmetric Kullback-Leibler distance 

(SKLD). The Kullback-Leibler distance has been defined as [Inglada & Mercier, 

2007]:  

                                                

( )
( | ) log ( )

( )

X
X

Y

f x
K Y X f x dx

f x
                               (6.2) 

where fX(x) and  fY(y) are the probability density functions (pdf) of  the random 

variables X and Y respectively. The Kullback-Leibler distance is asymmetric and the 

symmetric version of Kullback -Leibler distance (SKLD) can be defined as [Inglada 

& Mercier, 2007]:  

                                     ( , ) ( , ) ( | ) ( | )D X Y D Y X K Y X K X Y                         (6.3)  

The key to Statistical similarity based measure is to estimate the probability density 

function for the local pixel intensity within a fixed window. Some well-known 

parametric distributions such as the Gaussian, Rayleigh distribution [White, 1991] 

have been proposed. Moreover, the Gamma distribution has been applied for 

Synthetic Aperture Radar (SAR) images since in this case; it is well known that the 

pixel intensity is distributed according to the Gamma distribution [Chatelain et al., 

2007]. A more generalised distribution: Pearson System has been proposed for one 

dimensional probability density distribution estimation [Inglada, 2003]. The detail of 

Pearson System is shown in Appendix 4. Some non-parametric methods such as 

Gram-Charlier, Edgeworth series expansion also have been proposed [Inglada & 

Mercier, 2007], and the detail is given in Appendix 5. Furthermore, the kernel 

smoothing density estimation [Bowman & Azzalini, 1997] is an efficient and robust 
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tool for the estimation of probability density function, and is introduced in Appendix 

6. 

6.3:  Comparison of Pearson system, Gram-Charlie series, Edgeworth series and 

kernel smoothing technique 

 

The Pearson system has been applied for change detection in [Inglada, 2003], it 

includes eight probability densities but it is impossible to cover all the probability 

densities. Gram-Charlie and Edgeworth series have been applied for change detection 

in [Inglada & Mercier, 2007], but it has been found that the approach works for the 

probability distribution of image pixel intensity that is not far from the Gaussian 

distribution. In the following experiments, the Kernel smoothing technique seems a 

robust measure for the estimation of one dimensional probability density function. 

A dataset with size 1500x2 was randomly generated by Gaussian distribution with 

parameters: mean value = 2.0220 and standard deviation = 4.9524.  The results of 

simulations by using Gram-Charlier and Edgeworth series to estimate the probability 

density function for this dataset is shown in Figure 6.1 (a). With the size of dataset 

increases, the results of simulation become better and even as good as Gaussian 

probability density function itself. 

Next, student t distribution is used to test the simulation ability of Gram-Charlie and 

Edgeworth series. A dataset with size 1500x2 is generated by Student t distribution 

with freedom degree = 8.0074, that is to say this student t is close to the Gaussian 

distribution since it has a high freedom degree. The simulation result is shown in 

Figure 6.1 (b). It may be found that the simulation results are not satisfactory when 

the freedom degree is low (lower than 7). The simulation result of freedom degree = 

6.2413 is shown in the Figure 6.1 (c). That is to say, with the decreasing of freedom, 

the student t is more and more distant from Gaussian distribution, and the simulation 

results get worse. 

The simulation of the probability density function for the same Student t distributed 

data with freedom degree = 6.2413 by using kernel smoothing technique is shown in 

Figure 6.1 (d). It can be seen that the result is much better than Gram-Charlier and 

Edgeworth series based probability density function estimation. 
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6.4 Problems description 

 

The Statistical similarity based measures are usually more reliable than Pixel based 

measures since the pixel intensity distribution offer more stable information than pixel 

intensities themselves. However, it has been found that the results are disappointing 

when the observations are very similar or even same, but the local pixel intensities 

and their statistical distribution varies remarkably due to the external factors such as 

the affect of climate changes, or use of different sensors. It leads to wrong change 

indicators so that the results of change detection are disappointing. 
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(a)                                                                      (b) 
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Figure 6.1: Probability density function estimation 
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An approach to compensate for this variability is to generate new pixel intensities to 

replace the pixel intensities of the first image by using the dependence between the 

„no change‟ areas of the first and second images. This dependence may be non-linear 

and thanks to the advantage of copulas, this dependence can be modelled by copulas. 

The generated pixel intensities are that the pixel intensities of the first image should 

be if it was taken by the same imaging conditions with the second image. Finally, 

calculate the symmetric Kullback-Leibler distance between the generated pixel 

intensities and the pixel intensities of the second image to produce the change 

indicator. 

 

6.5 Applications  

 

The approach to image change detection using conditional copula is illustrated by the 

flow chart in Figure 6.2. Considering two registered I1 (the first image) and I2 (the 

second image), firstly choose the training area where „no change‟ occurs in I1 and I2. 

The „no change‟ areas means that the objects in this area should be very similar or 

same, but actually they have different pixel intensities and statistical distribution of 

pixel intensity due to external factors such as affects of climate changes, or using 

different sensors. 

Secondly, use the copula to model the dependence between the two „no change‟ areas 

in I1 and I2. Let FX(x) represents the pixel intensity cumulative distribution of I1. 

Transform the pixel intensity to uniform variant u by using empirical distribution 

which has been defined in Eq. (2.33). The corresponding conditional variant v can be 

obtained by using u and copula parameter by using the concept of conditional copula 

introduced in Eq. (2.37) as: 

                  
0

( , ) ( , ) ( , )
( ) Pr[ | ] lim

( )
u

u

C u u v C u v C u v
C v V v U u

u u

   
    

   

For example, for Clayton copula, v can be estimated by using u and copula parameters 

θ as:
     

                                                

1

1( ( 1) 1)v u t


  
 

   
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where t is generated randomly to have the uniform distribution on [0, 1]. 
 

The next step is to simulate new pixel intensities by using the cumulative distribution 

of the „no change‟ area of the second image F2(x2) which is usually different from the 

distribution of the second image and v using the following mapping as: 

                                                         1

2X' = (v)F                                                      (6.4)  

Finally, the symmetric version of the Kullback-Leibler distance is calculated between 

the new simulated pixel intensities and the pixel intensities of the second image, as 

the final change indicator. The kernel smoothing technique can be used to estimate the 

probability density function. The flow chart of change detection using copulas is 

shown in Figure 6.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

         

 

 

 

 

           

             

 

 

 

                    

 

 

               Figure 6.2: Flow chart of change detection using conditional copula 
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6.5.1  Change detection for remotely sensed images 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          

                                        (a)                                                     (b)    

                        

                                       (c)                                                      (d) 

                

                                   (e)  

Figure 6.3: Change detection of SAR images of Earthquake using conditional copula 

 (a): SAR Image taken on 14 May 2006 (around two years before earthquake) (b): 

SAR image after flooding on 14 May 2008 (two days after earthquake) (c): Change 

detection results by pixel intensity „difference‟ based change detector (d) Change 

detection result by Statistical Similarity based change detector (e) Change detection 

results using Clayton copula based change detector.  
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Figure 6.3 represents the SAR images of Earthquake at Sichuan, China in May 2008 

which can be found online at (http://earthobservatory.nasa.gov). After earthquake, the 

objects that were affected greatly were the river and the residence areas near the river 

which were flooded, but the objects that were far away from the river were affected 

slightly or even not affected at all, so we can select the same areas that far away from 

the river in Figure 6.3 (a) and (b) respectively as „no change‟ areas.  

The next step is to estimate the copula parameter for these two „no change‟ areas to 

model the dependence between these two images. These parameters are calculated for 

Clayton, Frank and Gaussian copula as: 0.1238; 0.8759 and 0.1537 respectively. 

In this application, it has been found that the Clayton copula has the minimal 

Euclidean distance from the empirical copula among Clayton, Frank and Gaussian 

copula, so that Clayton copula is chosen to applied to model the dependence between 

the „no change‟ areas of these two images. 

The new pixel intensities can be generated by using conditional copula and the 

cumulative distribution of the „no change‟ area of image Figure 6.3 (b) using the Eq. 

(6.4).  Finally, calculate the symmetric version of Kullback-Leibler distance between 

new generated pixel intensities and the pixel intensities of Figure 6.3(b). 

The final result of change detection using Clayton copula is shown in Figure 6.3 (e). 

Figure 6.3 (c) is the change detection result using the Pixel-based measure of the 

differences between images Figure 6.3 (a) and (b). Figure 6.3 (d) is the change 

detection result obtained by the Statistical similarity base measure, obtained by using 

the symmetric Kullback-Leibler distance as change indicator. The same 

neighbourhood size 3x3 for each pixel and kernel smoothing technique are applied to 

estimate the probability density function for both Statistical similarity and copula 

based measures.  

It can be seen that the key flooding areas (shown in the red circle in Figure 6.3 (e)) is 

missed out by the first and the second detector in Figure 6.3 (c) and (d) respectively 

but picked by using the copula approach. 

To compare the performance of change detection among the „difference‟, „Statistical 

similarity‟ and copula measures, the Receiver Operating Characteristic (ROC) 

[Fawcett, 2006] is computed. ROC is defined as a plot of the true positive rate (as the  
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                   Figure 6.4: ROC plot of performance of image change detection 

 

y coordinate) versus false positive rate (as the x coordinate). ROC offers a measure of 

the true detection performance against false alarm. The closer the curve is to the left-

hand border and the top border of the ROC space, the more accurate the test. Since 

there is no ground truth available for this change detection, the „ground truth‟ is 

manually obtained by the rule: the objects affected are only the whole river and parts 

of residence area flooded and the objects far away from river was considered as non-

affected. The result of ROC test is shown in the Figure 6.4. It can be found the copula 

based measure provides better result than „statistical similarity‟ and „difference‟ 

measures. 

 

6.5.2 Change detection for medical images 

 

Figure 6.5 represents the CT image of human brain, the areas interested is the 

calcification area which changed before and after treatment, and the rest area should 

be very similar or even same, however actually they have the very different looking 

and statistical distribution of pixel intensity. It is a problem to obtain the satisfactory 

results by the conventional measures such as „difference‟ and „statistical similarity‟ 
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measures. Copulas can be used to deal with this problem, firstly, the same areas 

located in the non-calcification areas of Figure 6.5 (a) and (b) are selected as the „no 

change‟ areas, and then use these „no change‟ areas to estimate the copula parameter. 

Then use the conditional copula and the cumulative distribution of the „no change‟ 

area of Figure 6.5 (b) to simulate new pixel intensities. Finally calculate the 

symmetric Kullback-Leibler distance between the simulated pixel intensities and the 

                    

                                         

                                                (a)                                                     (b) 

 

                                         

                                               (c)                                                      (d) 

 

                                   Figure 6.5: Change detection of CT images 

(a): Before treatment (b): After treatment; (c): Change detection result of using 

difference measure. (d): Change detection using Frank copula measure. 
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pixel intensities of Figure 6.5 (b) as the change indicator, and the kernel smoothing 

technique is used to estimate the probability density function. 

The result of change detection by using conditional copula is shown in the Figure 6.5 

(d). The red circled area in Figure 6.5 (d) indicates the key change picked by the 

copula approach but missed by the difference measure. 

In addition to the above two experiments, three other experiments were carried out. In 

all cases it was observed that the conditional copula based method always offered 

better results than the „difference‟ and „statistical similarity‟ methods when two 

images were obtained under different imaging conditions such as for different weather 

or when different sensors are used. 

6.6 Conclusion  

 

In this chapter, image change detection techniques based on conditional copula has 

been presented for the complicated situation where the objects in two images 

respectively are very similar or even same, but the pixel intensities their statistical 

distribution of pixel intensity vary remarkably due to the external factors such as 

climate changing or the use of different sensors. Here, copulas have been used to 

model the dependence structure between the „no change‟ areas of two images, and 

then use the conditional copula and the cumulative distribution of the „no change‟ 

area of the second image to simulate new pixel intensities. The simulated pixel 

intensities are that the pixel intensities of the first image should be if it was taken by 

the same imaging conditions with the second image. The final change indicator is 

obtained by calculating the symmetric version of Kullback-Leibler divergence 

between the simulated pixel intensities and the pixel intensities of the second image. It 

is shown that the results of copulas based measures are better than the „difference‟ and 

„statistical similarity‟ measures. Furthermore, the work is validated by plotting the 

Receiver Operating Characteristic (ROC) curve for the different methods. 
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Conclusion and Further Research 

 

 

7.1 Introduction 

 

The purpose of the work presented in this thesis was to develop novel and original 

approaches for image processing using the copula functions. The consequential 

contributions are: 

  Estimation of joint cumulative distributions and joint probability density 

functions from arbitrary marginal distributions using copula and copula 

density functions. 

 

  The definitions of four categories of generalized divergences which include 

Csiszar, Renyi-like divergence, modified Bregman and Burbea-Rao 

divergence based information developed in terms of copula density 

functions only. These provided the ability to control measurement 

sensitivity. The modified Bregman divergence is established in terms of the 

smallest enclosing curve and K-means classification. Computing techniques 

for these divergence based information have been proposed, and the 

performance of these divergence based information were compared using 

Bernoulli distributions. 

 

 An algorithm developed for maximizing the generalized divergence based 

information using copula density functions only for image registration. Two 

synthetic images with added noise, CT-MRI images and visible light image-
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thermal images were employed to analyse the copula based techniques for 

image registration. 

 

 Performance evaluation for different image fusion algorithms by 

generalized divergence such as Tsallis and Renyi divergence based 

information using copulas for multi-sensor images were proposed. 

 

 A robust band selection method for hyperspectral images using copula 

based mutual information was developed and spectral signatures were 

introduced to reduce the reliance on reference image.  

 

  The implementations of conditional copulas for complicated image change 

detection. The images taken by multiple sensors or under different climate 

change conditions were analysed. In such cases, the pixel intensities and the 

statistical distribution of pixel intensity are much different although the 

observations are very similar or even same. This makes change detection 

difficult using conventional techniques. 

 

Within this thesis, an introduction to the thesis was proposed in Chapter 1; the chapter 

provides a brief introduction of image processing, the current problems of image 

processing and the reasons of using copulas for image processing. The subjects 

covered in this thesis include image registration, performance evaluation of image 

fusion, band selection for hyperspectral images and image change detection.  

 

Copula function theory was introduced in Chapter 2 to provide the necessary 

background to the subject. In Chapter 2, the copula function was firstly introduced as 

a joint distribution function with uniform marginal distributions according to the 

Sklar‟s theorem, and then copula density function was deduced as the quotient of joint 

probability density function and product of marginal probability density functions.  

Next, similar to the definition of joint conditional distributions, the conditional copula 

was developed, based on exploiting a set of partial differential operations. It was 
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shown that a marginal distribution can be estimated if another marginal distribution 

and the associated conditional copula is known, since the copula offers a measure of 

the dependence between these two marginal distributions.  

Further, Kendall‟s tau, Spearman correlation and Maximum likelihood were 

introduced to estimate the parameters of copulas.  

It was shown that the measures based on the Kendall‟s tau and Spearman correlation 

are only suitable for the copulas that have simple expressions linking the copula 

parameters and Kendall‟s tau or Spearman correlation. Some expressions for the two 

measures can be very complicated and some cannot be found. A further disadvantage 

of Kendall‟s tau and Spearman correlation is the computing effort involved. In such 

cases, the maximum likelihood measure should be applied. 

In addition, the limitation of conventional dependency tools: the Pearson correlation 

was analyzed. It is known that the Pearson correlation, as a linear correlation, is only 

effective for the elliptical distributions. However in the real world, most of joint 

distributions of images are not necessarily elliptical. Moreover, a further significant 

limitation of all the known multivariate distribution models, such as multivariate 

Gaussian, Gamma, Exponential and Rayleigh distributions, is that they require 

consistent marginal distributions. By contrast, copulas are able to model the 

dependence which may not be linear and deal with arbitrary marginal distributions.  

Experiment results in Chapter 2 showed that the joint density function estimated by 

copula density function has very similar results to the measure based on the classic 

joint Gaussian function for Gaussian distributed dataset. Further, using copula based 

measures, the joint cumulative distribution and probability density functions were also 

estimated for the datasets which have Gaussian and Student t marginal distributions 

respectively, thus proving the efficacy of copula techniques, in determining marginals 

that do not belong to the same family of distributions.  

Finally, the dependency ranges of copulas were used for preliminary selection of 

optimal copulas, since some copulas such as Farlie-Gumbel-Morgenstern (FGM) 

copula only can model distributions that exist for the narrow bounds of Kendall‟s tau 

correlation, in the range [-2/9,2/9]. Note that some copulas have very complicated 

expressions and are not convenient for applications. Our studies have shown that the 
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Clayton, Frank and Gaussian copulas are reasonable choices among the known 

families of copulas, as they are relatively simple expressions and are relatively easy to 

compute. Finally, empirical copula was introduced to determine the optimal copula 

from a finite set of copulas, and the candidate copula with the minimal Euclidean 

distance with the empirical copula was chosen as the optimal copula. 

The divergence-based information using copula density function is introduced in 

Chapter 3. Firstly, Csiszar and Renyi-like divergence based information were proven 

that they can be expressed in terms of copula density function only.  

Next, the limitation of the Bregman divergence was found. For example, analysing 

the Bregman divergence between two variables x and y, the Square loss and Itakura-

Saito divergences are only sensitive to their difference (x-y) and quotient (x/y) 

respectively. It means that the square loss and Itakura-Saito divergences do not have 

good discrimination ability in the case that have the same value of (x-y) and (x/y) 

respectively. 

To improve the ability of discrimination, a modified definition was proposed, by 

considering an extended Taylor expansion than that used for the conventional 

Bregman divergence. Similarly, the same modification was proposed for Burbea-Rao 

divergence since the Burbea-Rao divergence is the special case of Bregman 

divergence.  Further, the Itakura-Saito divergence was modified, and then utilized as 

the distance for K-means classification. The classification results for Gaussian 

distributed data showed that the modified Itakura-Saito was more reliable and 

accurate than the conventional Itakura-Saito divergence. The smallest enclosing curve 

was applied to validate the effectiveness of modified Itakura-Saito divergence. 

Experiments were conducted using two symmetrical Bernoulli distributions to 

analysis and compare all the divergences mentioned in this thesis, and it was shown 

that the general performance trend is similar for all the divergences, (though there are 

subtle nuances that differentiate them): each divergence has the minimal value of 0 

when two marginal distributions have the same value, and the divergence values 

increase when two marginal distributions move apart. Moreover, Chi-square, Itakura-

Saito, modified square loss and square t divergence have been found to offer better 

ability to control the measurement sensitivity, since these divergences change more 

obviously than other divergences for the same change of marginal distributions, and 
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other divergences have the approximately  value of 0 when two marginal distributions 

are similar. 

Finally, the estimation of mutual information using Gaussian copula was proposed 

based on the inverse standard Gaussian cumulative distribution function. The results 

showed that Gaussian copula based mutual information is very close to the bivariate 

Gaussian distribution based mutual information for Gaussian distributed data.  

In chapter 4, the current techniques of image registration and performance evaluation 

of image fusion were firstly reviewed. This thesis then focused on the Area based 

image registration techniques, since some images do not contain enough distinctive 

objects that render them unsuitable for Feature based method. Image registration was 

achieved using copula density function techniques, by maximizing the divergence-

based information between the overlapping parts of the first image (reference image) 

and the transformed second (float) image (that included rotation, translation and 

rescaling). Experiments on synthetic medical images, real medical (CT and MRI) 

images and real images (visible light and thermal images) showed that the copulas-

based method offer more accurate results than the „Gaussian assumption‟ and joint 

histogram based methods, especially for visible light and thermal images. This shows 

that copula based methods are more reliable than the Gaussian assumption based and 

joint histogram based methods for the estimation of divergence based information, 

since Gaussian assumptions are not accurate for these real images, and their pixel 

intensity distributions may be non-Gaussian. Note that the pixel intensity distributions 

usually offer more stable information than pixel intensities themselves, while the joint 

histogram method counts the number of occurrences of pixel intensity pairs.  

As for the performance evaluation of image fusion, this thesis focuses on the 

information based measure since this measure does not require ground truth which, in 

many cases, may be not available. The algorithms of image fusion such as the 

Average method, Principal Component Analysis (PCA), Gradient Pyramid (GP), 

Laplacian Pyramid (LP), Ratio Pyramid (RP) and Discrete Wavelet Transform (DWT) 

methods are evaluated using the Tsallis and Renyi divergence based information for 

the fusion factor and fusion symmetry measures, and experiments were conducted on 

multi-sensor images. The results have shown that the Fusion Symmetry measure is 

much more accurate than Fusion Factor measure. Both Tsallis and Renyi divergence 
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based measure offered effective evaluation results based on the Fusion Symmetry 

measure. Moreover, Tsallis divergence based information offered improved ability of 

discrimination than conventional mutual information by adjusting its only parameter 

  to 3.  

In chapter 5, the current techniques of band selection of hyperspectral images were 

firstly reviewed, and Spectral signatures were introduced to estimate a reference 

image in the absence of a reference image. Next, Clayton and Gaussian copula were 

applied to band selection for hyperspectral images, by calculating the mutual 

information between each band image and the reference image; and the band images 

which have higher mutual information with reference image were retained.  

Experiments on AVIRIS dataset (220 band images) showed that Gaussian copulas 

based measures offer the most reasonable results for the band selection of 

hyperspectral images. The Clayton copula method does not offer sufficient 

discrimination ability when the dependency is low between reference image and band 

images from band 40 – 80, that make the Clayton copula based mutual information 

values very close to 0. The Gaussian assumption based method does not have a good 

ability to discriminate in the region of bands 10 to 30. The joint histogram based 

mutual information offered the worst results of band selection since the differences of 

mutual information between reference map and each band image are not evident. This 

means that Gaussian copulas offer a more robust and reliable measure to estimate 

mutual information between reference image and hyperspectral images than Clayton 

copula, bivariate Gaussian distribution and joint histogram based measures.  

Finally, the rejection bandwidth and complementary measure were introduced to 

reduce the redundant information between neighbouring band images. 

In chapter 6, the current image change detection techniques were reviewed firstly. The 

thesis focus on the Statistical similarity based measure rather than Pixel based 

measure since the statistical distribution of pixel intensity usually offers more stable 

information than the pixel intensities themselves. However, the results are 

disappointing for both the conventional Statistical similarity and Pixel based measure, 

for the complicated situation where the objects in two images respectively are very 

similar or same, even though, in this case, the statistical distribution of pixel 
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intensities may vary remarkably due to the external factors such as climate changing 

or the use of different sensors.  

Copulas were used to model the dependence structure between two images by training 

the „no change‟ areas of two images, and then using the conditional copula to simulate 

new pixel intensities to replace the pixel intensities of the first image. The final 

change indicator is obtained by calculating of the symmetric version of Kullback-

Leibler divergence between the simulated pixel intensities and the second image. The 

Clayton copula and Frank copula were chosen, from amongst the Clayton, Frank and 

Gaussian copulas,  to model the dependence for SAR and CT images respectively, 

since they had the minimal Euclidean distance from the empirical copula. The 

experimental results showed that copula based measures provided most accurate 

change detection than the „difference‟ and „statistical similarity‟ measures for SAR 

and CT images. The key changed areas (that indicated flooding) in SAR images, were 

only picked by the conditional copula measure, and missed out by methods based on 

the „difference‟ and „Statistical similarity‟ measures. The „difference‟ measure offered 

the worst results since some areas that were not changed (affected) by flood but they 

were considered as changed areas since the images were affected by a great change in 

the weather.  

Finally, the work was validated by plotting the Receiver Operating Characteristic 

(ROC) curve to verify the performance of the algorithms. 

 

7.2 Future Research 

 

Firstly, from the perspective of copula theory, there are two issues that need 

improvement. The first is to improve the estimation of copula parameters. Although 

Kendall‟s tau correlation based method is quite reasonable, it is time-consuming, and 

the computing effort increases with the increase in data size. Moreover, the method is 

only applicable for a few copula functions. The maximum likelihood method is an 

alternative fast approach for estimating the copula parameters, and is feasible for any 

copula function; however the accuracy of estimation seems not good as Kendall‟s tau 

correlation based method. So, the algorithm to calculate the Kendall‟s tau correlation 



128 
Chapter 7: Conclusion and Further Research 

 

 

should be further developed, and better and faster estimation methods should be 

explored. 

The second is to design a better approach for choosing the best copula which can 

model the dependency structure optimally between marginal distributions since 

several copula families are available. Although an empirical copula has been proposed 

for the selection of the best copula, it is time-consuming with the increasing of data 

size and is only as effective as the finite set of copula families that are used to choose 

the best copula. 

Moreover, from the point of view of applications, robust algorithms for optimization 

which are especially suitable for image registration are required. The algorithm of 

estimation of initial parameters for optimization should be studied for fast and 

automatic image registration using copulas.  

In addition, the selection of appropriate parameters for generalized divergence such as 

Tsallis and Renyi divergence based information need to be researched to provide the 

ability to control the measurement sensitivity and hence achieve better accuracy and 

efficiency than the classic Kullback-Leibler divergence based information (Mutual 

Information), and their applications for image registration and performance evaluation 

for image fusion.  

Another aspect of future work is to explore the optimal divergence for image 

processing since four categories of generalized divergences, eleven divergences using 

copulas have been researched. 

Finally, the areas in signal processing can be further explored where the joint 

probability distributions, divergence based information and dependence between 

marginal distributions are required to be estimated. For examples, copulas may be 

explored to model signal correlation in Multi-Input Multi-Output (MIMO) for 

wireless communications. Moreover, copulas may be researched for Blind Source 

Separation (BSS) by copula based Independent Component Analysis (ICA) [Abayomi 

et al., 2007]. In addition, copulas may be applied for Bayesian classification using 

copula based joint probability density function. 
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Appendix 

 

Appendix 1: 

Computation and Simulation of Exponential and Rayleigh Copula 

 

According the works of [Luke, 1962], [Brusset & Temme, 2007], the following 

double integrals can be calculated as: 
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In the following computation, the Exponential and Rayleigh copula will be 

transformed to obtain the above expression fro computing the double integrals 

conveniently. 

 

 

Computation of Exponential Copula: 

 

The Exponential copula has been defined as [Durrani & Zeng, 2007]: 
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where λ, μ are the variances of random variables X and Y respectively. 

Marginal propabitliy density functions: 
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Computation of Rayleigh Copula: 
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The Rayleigh copula can be written as [Durrani & Zeng, 2007]: 
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Inverse marginal cumulative distribution function: 
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Consequently, the bivariate Rayleigh copula can be expressed as: 
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Simulation of Exponential copula:   

 

Step 1: 

Generate n by 2 uniform random variables. 
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Let A is the Cholesky decomposition [David & Lloyd, 1997] of sigma. 

 

Step 4: 
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Simulation of Rayleigh Copula: 

Step 1: 

Generate n by 2 uniform random variables 

Let x = [x1; x2]; 
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Appendix 2:  

Simulation of Bivariate Gaussian distribution [Scheuer & Stoller, 1962]; 

 

Suppose 
1z  and 

2z  are two independent random variables with the standard normal 
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distribution. Let 
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standard deviations = 1, then, 
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Appendix 3:  

Algorithm of rejection bandwidth and setting the complementary threshold for 

band selection: [Guo, et al., 2006]

 

 

 

Let the expected selected band number be „expnum‟ and selected band is set as „sb‟ 

which has an initial value as empty. 

Remaining bands are set as „rb‟ and with initial values={1,2...220}. Mutual 

information change between neighbours is designated as: d(n)=MI(n)-MI(n-1). 

Next, the algorithm for rejection bandwidth and setting the complementary threshold 

for band selection can be executed as: 
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Appendix 4:  

Pearson System distribution 

 

Pearson system [Stuart & Ord, 1987] shows many probability density functions f(x) 

satisfy a differential equation as follows: 
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parameters β1 and β2 are: 

2
23

1 3

2

skewness





   ;
4

2 2

2
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while(length(sb)<expnum)  

     sbi=argmax(MI(between s and estimated reference))  

     where s ∈  rb and sbi is the selected band index. 

     neighbour set N={n=sbi-(B+1),...sbi,...sbi+B}; 

        if max(d(n))<t then 

             sb=sb∪ sbi; rb = {rb remove sbi and N from rb}; 

       else 

            sb=sb∪ sbi; rb = {rb remove sbi from rb};   

  end if 

end while 
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where
k is called central moment of order k of  random variables X and has been 

defined as:
 

      
{[ ( )] }k

k E X E X  
                                        

The different probability distributions of Pearson system can be distinguished by 
1

and
2 . Hence the probability distribution of the Pearson system can be evaluated by 

calculating the first four central moments. For examples, the Gaussian distribution is 

located at 
1 0  and

2 3  , and the Gamma distribution can be determined by

2 1

3
3

2
   , more distributions can be found in [Stuart & Ord, 1987]. 

 

Appendix 5:  

Gram-Charlie and Edgeworth Series 

 

Considering a probability density which is not too far from and has same mean value 

and variance with Gaussian probability density may be expressed in terms of the 

Gram-Charlie series as [Stuart & Ord, 1987]:  

                                 3 3 4 4

1 1
( ) (1 ( ) ( 3) ( ) ...) ( )

6 24
X Xf x H x H x G x     

        
 

where H(x) is the Hermite polynomials. Considering the standard Gaussian 

probability density function: 
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XG x e
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Its derivatives can be calculate as: 
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The Hermite polynomial H(x) for standard Gaussian distribution is defined in the 

following formula as: 
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The first six items has been calculated as: 
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The Edgeworth series provides the approximation of the probability density function 

in terms of cumulant
XK  and Hermite polynomials ( )H x  of order r which is truncated 

to 6 as [Stuart & Ord, 1987]:        
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Formally, the cumulant kr is defined as [Stuart & Ord, 1987]:
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where
r is called raw moment and has been defined as: 

                                                             
{ }r

r E X 
                                             

 



138 
Appendix 

 

The relationship between the raw moment and cumulant has been found as [Stuart & 

Ord, 1987]: 
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The first cumulant is the expected value; the second and third cumulants are the 

second and third central moments respectively (the second central moment is the 

variance); but the higher cumulants are neither raw moments nor central moments, but 

rather more complicated polynomial functions of the moments. The first 6 equations 

between cumulant and raw moment are: 
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Appendix 6:  

Kernel smoothing technique 

 

 Kernel smoothing which has been defined as [Bowman & Azzalini, 1997]:  
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1
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n
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x X
f x K
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where n is the number of sample, h is called smoothing parameter or bandwidth, K is 

called kernel function and satisfy the condition: 

http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Central_moment
http://en.wikipedia.org/wiki/Variance
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
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The common kernel function is standard Gaussian probability density function which 

is also known as Parzen window technique.  
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It should note that the selection of bandwidth is much important than the selection of 

kernel function. The optimal bandwidth of Gaussian kernel smoothing is suggested as 

[Bowman & Azzalini, 1997]:  

                                                             

1

5
4

( )
3

h
n

   

where σ is the standard deviation. 
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