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Abstract 

On-line analytical processing (OLAP) provides multidimensional data analysis to support 

decision making. OLAP queries require extensive computation based on aggregation along many 

dimensions and hierarchies. The time required to process these queries has traditionally prevented 

the interactive analysis of large databases and in order to accelerate query-response time, pre- 

computed results are often stored as materialised views for later retrieval. This adds a prohibitive 

storage overhead when applied to the whole set of aggregates, known as the data cube. Storage 

space and computation time can be significantly reduced by partial computation. 

The challenge in implementing the data cube has been to select the minimum number of views 

for materialisation, while retaining fast query response time. 

This thesis makes significant contributions to this area by introducing the Low Redundancy 

(L-R) approach which provides the means for the selection, computation and storage of non- 

redundant aggregates. 

Firstly, through the introduction of a novel technique, redundant aggregates are identified thus 

allowing only distinct aggregates to be computed and stored. 

Secondly, further redundancy is identified and eliminated using a second novel technique which 

stores these distinct aggregates in a compact differential form. 

Novel algorithms were introduced to implement these techniques and provide a solution which 

is both scalable and low in complexity. 

Both techniques have been evaluated using real and synthetic datasets with experimental 

results, and have achieved significant savings in computation time and storage space compared 

to the conventional approach. Savings have been shown to increase as dimensionality increases. 

Existing techniques for implementing the data cube differ from the L-R approach but they can 

be integrated with it to achieve faster query-response time. 

Finally, the implications of this work reach beyond the area of OLAP to the fields of decision 

support systems, user interfaces and data mining. 
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Chapter 1 

Introduction 

Technological developments which assist in the abstraction of useful insights from large 

volumes of data are becoming increasingly important today as industrial, commercial and 

scientific databases proliferate and grow in volume. This thesis introduces novel theory 

and system's design that greatly contribute to one such area - the provision of multi- 

dimensional aggregates in On-Line-Analytical-Processing (OLAP). OLAP tools provide 

multidimensional data analysis by computing summaries and breakdowns along many di- 

mensions [FSS95]. They are designed for decision support where historical, summarised 

and consolidated data is more important than detailed, individual records [CD97]. 

The functional and performance requirements of OLAP systems differ from those of 

On-Line-Ransaction-Processing (OLTP) which were traditionally supported by opera- 

tional databases [Codd93]. OLTP applications typically automate the day-to-day opera- 

tions such of an organization as clerical data processing tasks, order entry and banking 

transactions. These applications axe structured, repetitive and consist of short, atomic, 

isolated transactions. Thus, while an OLTP application needs to record details of an in- 

dividual transaction, an OLAP application provides analysis of consolidated information 

about large numbers of transactions. OLAP queries are complex, read-only queries, in 

I 
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contrast to those posed in OLTP systems which usually deal with less complex read/write 

queries. Table 1.1 surnmarises the differences between OLTP and OLAP database appli- 

catiom [Sch97]. 

OLTP OLAP 
Data atomic summarised 

Usage of system run business analyse business 
User interaction pre-determined ad-hoc 

Work characteristics read/write read mostly 
Typical user clerical professional 
Unit of work transaction query 

Records accessed tens millions 
Number of users thousands hundred 

Focus data in info out 

Table 1.1: Comparison between OLTP and OLAP applications 

Decision support systems (DSS) provide large-scale data analysis with facts from previ- 

ously stored, historical data. Data warehouses, through their integrated collection of data, 

provide the infrastructure for DSS applications [Wid95], [BZ98]. OLAP tools, as a paxt 

of DSS, are designed to provide multidimensional breakdowns involving large numbers 

of aggregate queries on detailed data [Gm99]. Aggregation operates by grouping records 

belonging to a specified set of domains. In line with [John98], an aggregate is a function 

- count, sum, avevage, maximum, minimum - which operates on some specific column of 

a relation and is applied separately inside each set of grouping attributes. 

OLAP queries may have to process millions, if not billions, of records in a data ware- 

house, which increases the processing cost. The key problem is that the number of possible 

aggregates in a database can be laxge and the time required to process any of these ag- 

gregates 'on the fly' as a part of an interactive diaJogue is prohibitive. 

One approach to accelerate the querying response time is to pre-compute and store 

the results in advance for later retrieval. However, for large relations with a large num- 
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ber of dimensions full pre-computation and storage increases storage overheads and the 

processing time required to compute all the aggregations. 

The proposed Low-Redundancy (L-R) approach introduced in this thesis is a novel 

way of achieving fast computation and compact storage of the aggregates, through the 

selection of non-redundant aggregates. This is achieved by extending relational theory and 

applying it to the OLAP environment. The L-R approach differs from existing techniques 

for selecting and storing the multidimensional aggregates [HRU96], [SDN98], [BPT97], 

[BR99]. This novel approach is however compatible, and could be combined, with these 

techniques. 

1.1 The 'Eraditional Relational Database Model 

The main structure of the relational model is the relation. Following the mathematical 

description of Codd [Codd77], given the sets S1, S2, .. -, Sn, R is a relation on these n 

sets if it is a subset of the Cartesian product S, x S2 x ... x Sn. In line with [Ram98], 

a relation consists of a relation schema and a relation instance. The relation schema 

describes the relation name, the name of its columns (fields or attributes) and the domain 

of each column. The following example shows a relation schema for the relation Customer 

shown in Table 1.2: 

Customer(Nam e: St ring, Address: String, Age. -Integer, TelephoneNo., -Integer) 

The above schema indicates that the attributes Name, Address, Age and TelephoneNo 

have domains named String, String, Integer and Integer respectively. 

A relation instance is a set of tuples, also called records, in which each tuple has the 

same number of fields as the relation schema. 
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Customer 
Name Address Age TelephoneNo 

cl Adl 34 4506632 
C2 Ad2 23 3050312 
C3 Ad3 45 2242342 
C4 Ad4 56 8202356 
C5 Ad2 25 9657302 
C6 Ad4 23 5034366 
C7 Ad5 42 4524504 
C8 A5 33 9855652 
C9 Ad6 34 3380867 

Table 1.2: The Customer relation 

4 

When a domain (or combination of domains) of a given relation has values which 

uniquely identify each element (n-tuple) of that relation it is called a candidate key. A 

candidate key is non-redundant and is either a single domain or a combination such that 

none of the participating domains are superfluous in uniquely identifying each tuple. A 

relation may have more than one candidate key and when this occurs, one of them is 

arbitraxily selected and called the pTimary key. 

1.1.1 Relational Algebra and SQL 

A database can be accessed using two formal languages - relational algebra and relationaJ 

calculus [Ram98]. Relational algebra allows the user to compose operators to form a com- 

plex query through its relational algebra expressions. Operators such as selection, pro- 

jection, union, cross-product and difference can be expressed in relational algebra as well 

as join and division. Relational calculus provides a declarative, non-procedural language 

in which users can express the answer of interest. However, their mathematical notation, 

relational algebra and relational calculus makes them unsuitable for non-technical users. 

Another language, the structured query language (SQL), is more appropriate for a wider 
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audience. A basic form of an SQL syntax with its intepretation is as follows: 

SELECT (projected attributes) 

FROM (relation name) 

WHERE (selected tuples) 

GROUP BY (aggregate attributes) 

1.1.2 Redundancy in Existing Relational Theory 

5 

Codd [Codd7O] referred to the redundancy in the named set of relations and the stored 

set of relations and identified two categories as follows: 

a Strong Redundancy. A set of relations is strongly redundant if it contains at least 

one relation that possesses a projection which is derivable from other projections of 

relations in the set. 

e Weak Redundancy. A collection of relations is weakly redundant if it contains a 

relation that has a projection which is not derivable from other members but is at 

all times a projection of some join of other projections of relations in the collection. 

These methods for redundancy may be useful in traditional relational system's design but 

not in OLAP where the main problem is the expansion of data in the formation of the 

data cube. This will be discussed later in this chapter. 

1.2 The Multidimensional Conceptual Model 

The motivation behind the multidimensional approach is the need to describe complex 

OLAP queries in an intuitive way. The multidimensionaJ conceptua. 1 model has been 

adopted fairly widely as an alternative to the relational conceptual model for OLAP ap- 
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plications. Consider the Sales- Ransaction relation in Table 1.3 with three attributes 

Product, Location and Time. 

Sales- Transaction 
ProductID LocationID TimeID Sales 

p1 L1 20/01/99 50 
p1 L1 20/01/99 34 
p1 L2 03/03/96 22 
P2 L3 16/10/98 8 
P2 L3 16/10/98 96 
P2 L1 20/01/99 56 
P2 L1 09/04/95 45 
P3 L2 26/02/97 98 
P3 L2 26/02/97 33 

Table 1.3: The Sales- Transaction Relation 

TypicaJly, the user is interested in aggregating an attribute of interest called the mea- 

sure (e. g., the attribute Sales in Table 1.3). The relationship between the measure and 

other attributes in a relation can be realised in the multidimensional domain when at- 

tributes on which the measure depends are considered to be dimensions. This transfor- 

mation from the relational to multidimensional model may be represented as a Hypercube 

[HRU96]. Figure 1.1 shows the tuple (P2, L11 09104195,45) as a point in the three di- 

mensional space, with coordinates being the values of the dimension attributes. This is a 

simple example of a transformation from the relational to multidimensional model. 

When the underlying structure of data is orgainised as relations, the approach is called 

Relational OLAP or ROLAP [CD97], [MUW99]. When the physicaJ structure for OLAP 

databases is a multidimensional cube the approach is called Multidimensional OLAP or 

MOLAR In the latter approach, the physical data storage in mudtidimensional arrays 

corresponds to the conceptual multidimensional model and OLAP queries can then be 

answered directly. 
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, Z) oll 

Figure 1.1: A Three Dimensional tuple (Product, Time, Location, Sales) 

The ROLAP Model 

7 

The typical data organization in a ROLAP model is to store the detailed data in a table 

known as the fact table (as shown in Table 1.3) and any information related to the detailed 

data in separate tables known as the dimension tables. This structure is called the star 

schema [Kim96]. An example of a star schema is shown in shown in Figure 1.2 with the 

following schema for the fact table: 

Sales- Transaction(ProductID, LocationID, TimeID, Sales) 
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and the following dimension tables: 

Product(ProductID, Type, Category) 

Location (LocationID, City, Country, Continent) 

Time(TimeID, Month, Year) 

Dimension tables 

Fact table Product dimension 

ProductID 
LocationlD Ucation dimension 
TimelD 

Sales I Time dimension 

Figure 1.2: The Star schema 

8 

The relation Sales-Ransaction contains a tuple for every product sold in a transaction. 

Thus, the fact table shown in Table 1.3 contains three dimensions and a measure of in- 

terest, namely Sales. Each dimension may have a set of attributes denoting the hierarchy 

in this dimension. A simple example of a hierarchy is the LocationID, in the Location 

dimension schema, in which City belongs to Country and Country belongs to Continent. 

This hierarchy is illustrated in Figure 1.3. 

LocationlD --I, - City Am Country NN. Continent 

Figure 1.3: The Location hierarchy 
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Navigation through different levels of summary information is achieved by operations 

such 'drill-down' and 'roll-up'. The drill-down operation is the process of examining the 

data from the abstract to a more detailed level of the hierachy. As the drilling progresses 

more detailed information is revealed e. g., from Continent to Country to City to particular 

location (LocationID). The opposite operation is called roll-up in which the examination 

of data moves from a more detailed to abstract level. 

OLAP queries often require multiple joins between the fact table and the dimension 

tables. For example, the query "Give me the total sales of the product P1 by Year and 

City", would require the aggregation in ProductID and the join between the fact table 

and the dimension tables Location and Time respectively. The dimension attributes in the 

fact table are foreign keys of the corresponding dimension tables. When dimension tables 

are further normalised to reduce redundancy, the resulting data organisation is referred 

to as a snowflake schema [CD97]. 

1.3 The Aggregate ]Functions 

Aggregations are classified into scalar aggregates and aggregate functions [Gra93]. Scalar 

aggregates calculate a single scalar value from an unary input relation, e. g., the maximum 

value of an attribute of a relation. Users often seek information of larger granularity, e. g., 

Sales per Product and Time, irrespective of the Location. This aggregation of Sales over 

the Product and Time dimensions can be expressed using the following SQL statement: 

SELECT Product. ProductID, Time. TimelD as (SUM)Sales 

FROM Sales-7ýunsaction 

GROUP-BY Product. ProductlD , Time. TimeID 
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The aggregation functions are relational operators; they consume and produce relations 

[Gra931. An aggregation function takes a binaxy input relation (e. g., totaJ of Sales in 

each month). The key element of the obtained new relation is the 'BY-list' or grouping 

attributes. Applying the above statement to the Sales- Transaction relation in Table 1.3 

produces the derivative relation ProductID by TimeID shown in Table 1.4. 

Product by Time 
ProductID TimeID SaJes 

Pi 20/01/99 84_ 
Pi 03/03/96 22 
P2 16/10/98 _ 104 
P2 20/01/99 56 
P2 09/04/95 _ 45 
P3 26/02/97 _ 131 

Table 1.4: The Aggregate Relation 

Gray et al. [GBLP96] classify Aggregate functions into the following categories : 

a Distributive - Counto, Mino, Maxo, Sumo 

e Algebraic - Averageo, Standard Deviationo, MaxNO, Mino, centre of masso 

e Holistic - Mediano. 

Work by [Klug82] and [OOM87] presents aggregation expressions by extending the rela- 

tional algebra and relational calculus. 

1.4 Main Issues in the Implementation of the Data Cube 

The main issue in the computation of multidimensionaJ aggregates, known as the data 

cube, is the presence of large tables with large numbers of dimensions which presents a 
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Figure 1.4: Data cube size (in tuples) vs dimensions 
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performance problem for the database designer. A given measure in n dimensions gives 

rise to 2' possible combinations or aggregates (thus a relation with 16 attributes would 

require 65,536 aggregates, excluding hierarchies). 

Another issue is that the fact tables in OLAP databases are usually sparse. Sparseness 

occurs when a table has a small cardinality (number of tuples) compared to the cross 

product of the cardinalities of its dimension domains. Sparseness causes the volume of 

materialized views to be orders of magnitude larger than the input relation. The effect 

of sparseness on multidimensional aggregates has been considered by [RS97], [Kim96] 

and [Pen99]. Figure 1.4 shows the growth (in tuples) experienced during this research 

work when materialising the full data cube of a ten-dimension dataset using the TPC-D 

benchmark dataset. The experiments demonstrate that, for the particular example, the 

data volume required for the datacube (using the TPC-D, 60K) was approximately two 

orders of magnitude greater than the base relation. The efficient implementation of the 

data cube is the main focus of this thesis. 
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1.5 Approaches to the Implementation of the Data Cube 

There are three approaches which may be adopted in implementing the data cube. 

In the first approach, shown in Figure 1.5(a), the data retrieval mechanism directly 

computes the necessary aggregation. This is caRed the 'on-the-fly' approach which com- 

putes every requested aggregate on demand. Although the 'on-the-fly' approach is very 

economical in storage terms, it is too slow for large fact tables. 

InpuUOuput 

Data Retrieval Mechanism 

On- e- y 
aggregation 

I 

Input DB 

View Indexing 
mechanism 

Materialised 
Views 

Aggregator View Indexing 
mechanism 

I 

Input DB Materialised 
Views 

(a) (b) (c) 

Figure 1.5: Implementing the data cube 

The second approach, depicted in Figure 1.5(b), pre-computes all possible aggregates 

in advance and stores them as summary tables for later retrieval. These summary tables 

are referred to as materialised views. This approach has been adopted to overcome the 

poor response of 'on the fly' implementation. For high level aggregatioins, the materialised 
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views approach is not expensive in terms of additional storage resources and provides 

rapid response. The low-level abstractions, however, axe large and numerous, resulting 

in a many-fold expansion of the originaJ relation. Though significant research has been 

carried out to optimize the materialized view approach, the method encounters several 

difficulties mainly due to the large number of views [HRU96]. It also implies a long pre- 

computation time and precludes even modest updating. The experiments conducted in 

this thesis (refer to Chapter 4) show that full materialisation typicaJly requires at least 

two orders of magnitude more space than the input base table. 

Finally, the third approach attempts to select only a subset of the views for mate- 

rialisation, as illustrated in Figure 1.5(c). Selecting a subset of aggregates reduces the 

computation time and also minimizes the space requirements. Systems which adopt this 

method attempt to reduce the total query response and the cost of computing the selected 

views, given limited amounts of resources (time and space). Existing techniques (algo- 

rithms) for the selection of materialised views have been proposed by [HRU96], [Gupt97], 

[BPT97] and [SDN98]. Chapter 2 presents a more detailed description of the main tech- 

niques for selection of the multidimensional aggregates. 

1.5.1 'JI)rade-off between Time and Space 

The long processing time required to compute an OLAP query, forces database workers to 

trade space for time. Consider the schematic curve illustrated in Figure 1.6, first presented 

by [SDN98] which shows the problem facing the database designer. The x-axis represents 

the storage cost and the y-axis the time required for a database to answer an OLAP 

query. The horizontal dashed-line of the curve denotes the trade-off of space against time 

(query response) in the materialised view approach and the vertical dashed-line denotes 

the trade-off of time against space. The optimum solution is represented by the solid 

line in which the balance between time and space cost provides an economical and fast 
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OLAP system. The closer the curve moves to the origin the greater the balance between 

space and time. Achieving this optimum with existing techniques is a computationally 

intractable problem [SDN98] as will be shown in Chapter 2. 

slow but not expensive 

1 on-the-fly 

u 
optimal 
balance 

mv 

fast but expensive 

1.6 Contributions 

Space cost 

Figure 1.6: The curve of benefit 

The fundamental problem encountered by all OLAP systems when they adopt the ma- 

terialized view approach is that the volume of materialized views expands exponentially 

with the number of dimensions. Existing techniques, described in Chapter 2, attempt 

to overcome the problem by selecting an appropriate subset of views for materialisation, 

on the basis that others can be computed more easily from the stored subset. However, 

no method to date has considered redundancy in the data representation and how this 

concept can lead to a new optimised approach. 

The main contribution of this thesis is the introduction and proposition of the L-R 
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approach as a new efficient way of selecting and storing multidimensional aggregates in 

an OLAP system. 

The L-R first identifies the redundant views and then computes and stores only the 

distinct or non-redundant ones. The whole set of aggregates can however be retrieved later 

in the querying process without any significant compromise in time. More specifically, the 

novel L-R methodology claims to: 

Select only a subset of the distinct aggregates for computation and storage on the 

basis that only this subset needs to be processed. The distinct aggregates can be 

used later to produce the full set of aggregates (the full data cube) without any 

additional cost. The selection algorithm requires approximately 10% of the time 

conventionally required to compute the data cube. As the selected distinct subset 

is smaller than the whole set of aggregates, the overall computation is considerably 

faster than the conventional method described by [GBLP96]. 

e Efficiently store the computed aggregates. This can be achieved by introducing a 

differential representation explicitly storing only those tuples which are distinct from 

those of the input relation. This technique can achieve remarkable savings in storage 

space. 

9 Retrieve any aggregate relation (or group-by) almost instanteneously as if it were 

a conventional materialised view. This performance can be achieved with a small 

additional cost in storage space for each aggregate relation. 
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Futher contributions of this thesis are: 

e Proposing novel extensions to relational theory and applying it in an OLAP context. 

Standard relational theory does not take account of the problem of data expansion in 

implementing the data cube. The work presented in this thesis provides extensions 

to relational theory pertinent to the data cube. 

9 Introducing new algorithms for the selection, computation and storage of multidi- 

mensional aggregates. The proposed algorithms are scalable with low complexity. 

e Providing an extensive set of experimental results confirming the theory by empirical 

measurements with the goal of demonstrating fairly the practicability of the new 

approach. 

1.7 Thesis Outline 

In Chapter 2, the state of the art in the field of OLAP is described. Existing methods for 

the selection, computation and storage of multidimensional aggregates are discussed. 

Chapter 3 presents the Low-Redundancy (L-R) approach. The theoretical and practi- 

cal issues of the approach are discussed. A set of algorithms is also presented as a basis 

for implementation techniques. 

Chapter 4 details the experimental work which has been caxried-out. The experiments 

use two real datasets, the 'Iýansaction Processing Council (TPQ benchmark dataset in 

three different scale factors and one synthetic dataset. These demonstrate that the the- 

oretical advantages of the L-R approach can be achieved in practice and also that it is 

scalable. 

Chapter 5 presents the conclusion and proposed future work. The implications of the 

L-R approach in the area of decision support systems, such as the user interface for OLAP, 
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data mining and indexing of the materialised views, are discussed. Appendix A and B 

present the source code which was used to evaluate the L-R approach. Appendix A shows 

the aggregation routine. Appendix B presents the Group-By and Cube-By objects with 

their methods. Appendix C presents the analytical experimental results carried-out in this 

thesis. Finally Appendix D discusses the conventional implementation of the Semi-join 

operator. 



Chapter 2 

Background 

2.1 The Cube-by Operator 

With the introduction of the cube-by operator by Gray et al. [GBLP96], all possible aggre- 

gates can be expressed in one SQL statement. The cube-by operator is presented as the 

n-generalisation of simple aggregate functions and the system which executes the cube-by 

operator has to provide all the possible aggregates. In the relation Sales- Transaction in Th, 

ble 2.1, the following aggregations are possible: (ProductID-LocationID), (ProdudID- 

TimeID), (LocationID-TimelD), (ProductID-LocationID-TimeID), (ProdudID), 

(LocationID), (TimeID), (All). A given measure in n dimensions gives rise to 2n possible 

combinations. Thus the cube-by operator computes every group--by corresponding to all 

possible combinations from a list of dimensions. In the above example, all the 2n possible 

combinations can be expressed in SQL by one cube-by statement as follows: 

SELECT S. ProductID, S. LocationID, S. TimelD AS (SUM)Sales 

FROM S (Sales 
-'Iýansaction) 

CUBE-BY S. ProductlD, S. LocationID, S. TimeID 

18 
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Sales- Transaction 
ProductID LocationID TimeID Sales 

pI L1 20/01/99 50 
p1 L1 20/01/99 34 
p1 L2 03/03/96 22 
P2 L3 16/10/98 8 
P2 L3 16/10/98 96 
P2 L1 20/01/99 56 
P2 Ll 09/04/95 45 
P3 L2 26/02/97 98 
P3 L2 26/02/97 33 

Table 2.1: The Sales- Transaction Relation 

19 

The benefit of the cube-by operator is that the user is no longer required explicitly to 

issue all the possible group--by statements. The user can now more conveniently navigate 

through the various levels of summary information in the database. The impact of the 

cube-by operator is greater when dimensions with multiple hierarchies are considered, the 

result of which may be equivalent to thousands of explicit group-bys. 

2.2 The Set of Aggregations: A Hypercube Lattice 

The aggregations derived from the relation in Table 2.1 can be organised into a lattice as 

illustrated in the direct acyclic graph (DAG) of Figure 2.1. [HRU96] introduced the lattice 

framework for OLAP to express the dependency between the queries (or aggregations) in 

the data cube. For example, if aggregation AI can be computed from aggregation A2 then 

it can be said that Al is dependent on A2. In the example of the Sales- Transaction relation, 

ProductID can be computed from the ProductID-LocationlD, hence, the ProductlD is 

dependent on ProductID-LocationID. The cube lattice of the Sales- Transaction relation 
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ProductID-LocationID-TimelD 

(Productl]D-LocationID) (ProductBD-TimeDD) (LocationID-TimeID) 

(ProductID) (LocationID) (TimeID) 

All 

Figure 2.1: The Hypercube lattice 
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is shown in Figure 2.1. Following [KR82], a partially ordered set, where every finite subset 

has a least upper bound (lub) and greatest lower bound (glb), is called a lattice. The 

partial ordering of the queries is expressed by the 
--< operator. 

The Hypercube lattice is defined if the following criteria are preserved [HRU96]: 

e There is a partial order -< between the aggregate views in the lattice. 

e There is a top view in the lattice and all views axe dependent on the top view. 

The ancestors and descendants of a lattice axe defined as follows: 

ancestor (a) = lb Ia -< bl 

descendant (a) = lb Ib -< al 
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equaJly for an aggregate a: 

parent (a) = lb I a -< b, c, a -< c, c -< bj 

child (a) = lb I b -< a, c, b -< c, c -< al 

where a -< b means a -< bAa =ýk 

2.2.1 The Dimension Hierarchy Lattice 

21 

In Section 1.2.1 it was noted that the data in the dimension tables define dimension 

hierarchies. The hierarchies in the dimension tables can also be represented by a lattice. 

The Product, Location and Time dimensions could have lattices as shown in Figure 2.2. 

The bottom element 'none', means that there is no grouping by that dimension. Although 

ProductlD 

Type 

Category 

none 

LocationED 

City 

Country 

Continent 

none 

Date 

Month 

Year 

none 

Figure 2.2: The dimensions hierarchy 
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the month and year in the Time hierarchy axe comparable, some of the elements may not 

be directly comparable. For example, weeks and months do not strictly contain each other. 

A lattice representing the set of views - from the data cube and the hierarchies - can be 

obtained by grouping each combination of elements from the set of dimension hierarchies. 

The result is the direct product of the lattice for the fact table along with the lattices for 

the dimension hierarchies [HRU96]. Thus, instead of aggregating only a single value in 

the data cube, the various levels of each dimension hierarchy are aggregated. 

2.3 The Role of Materialised Views in Data Warehousing 

Before discussing the materialised views, the concept of a relational view will be discussed. 

A view is a virtual representation of a relation and defines a function from a set of base 

tables to a derived table. Every time the view is referenced, the function is recomputed. 

The existence of the views is significant because usually the actual schema of the database 

is normalised and the querying process is less effective when applied to the 

normalised relations (i. e., the join of dimension tables with the fact table) [GM99]. Thus to 

increase effectiveness, the views axe defined as de-normalised relations. Consider a relation 

R with attributes a, b, c, d, e referred to as R(a, b, c, d, e). The view V1 is defined as an 

aggregation of R in the grouping attributes R(a, b, c) and can be expressed in SQL as 

follows: 

CREATE VIEW Vl(Vl. a, Vl. b, Vl. c) AS 

SELECT R. a, R. b, R. c 

FROM R 

GROUP BY R. a, R. b, R-c 
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A view is called a materialised view when its tuples are stored explicitly in the data- 

base. The benefit of materialised views is that accessing the view is normally much faster 

than recomputing the view [Rous97]. The materialised view has the same characteris- 

tics as any data held in relational form and thus is like a copy of the data already in a 

form which can be accessed quickly. Materialised views aJso eliminate the need to expand 

and recompute the view definition each time the view is used [GM99]. Using the previous 

example, a new query on attributes a, b could utilise the materialised view VI. The benefit 

of using the view V1 instead of the base relation R is that V1 is already computed and is 

smaller in cardinality than R. The following SQL statement computes this aggregation in 

the grouping attributes a, b of the view V1: 

SELECT Vl. a, VI. b 

FROM Vi 

GROUP BY Vl. a, Vl-b 

Speed of access to information can be critical in a data warehouse environment where 

the query rate is high and the views are complex thus it is not feasible to recompute 

the view for every query. A view may also underlie many higher-level interfaces that are 

collectively queried at a frequency high enough to require this view to be materialised. 

To increase the efficiency of retrieval from views, index structures can be built on the 

materialised views [Rou82], [HRU96]. [GM99] and [SDJL96] have proposed algorithms 

to answer aggregation and groul>-by queries through materialised views. The process of 

updating a materialised view in response to changes in underlying data is called view 

maintenance [MQM97], [CKL+97]. 
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2.3.1 Related Work 

24 

Earlier in Section 1.4 it was noted that the data cube can be implemented in three ways. 

In the first, no views are materialised and the aggregates are computed on-the-fly. In 

the second, everything is pre-computed and stored and in the third a subset of the ag- 

gregates is pre-computed and stored. However none of the previous techniques has made 

any systematic use of redundancy in multidimensional aggregates and there has been no 

work on the elimination of redundancy as a basis for the efficient selection and storage of 

materialised views. The following section will discuss the main methods for computation 

and selection of materialised views. 

2.3.2 Methods for Aggregation 

In the aggregation process, tuples belonging to the same grouping attributes must be 

brought together [Gra93]. There are three recognised methods for aggregation and these 

are based on nested loops, sorting and hashing. The analysis of general sorting and hashing 

algorithms is beyond the scope of this thesis so discussion will be restricted to their use 

in association with aggregation. 

The Nested Loops method is the simplest, wherein the algorithm loops, for each input 

item, over a temporary file or array and accumulates this item. This method is not efficient 

for large inputs as the expected complexity is O(N 2)1 where N is the number of tuples in 

a relation [Knu98]. 

In the sorting method, the goal is to bring equal items together so that aggregation in 

grouping attributes is easier. Sort-based aggregation is favoured in disk-based aggregation 

mostly because it does not requdre the output relation to fit into main memory. Expected 

complexity of the sorting is O(NIogN) [Knu98]. 

In hashed-based aggregation, the grouping attributes are hashed and equal items can 

be found and aggregated when they are inserted into the hash table. If the entire hash 



CHAPTER 2. BACKGROUND 25 

table fits into main memory, hash-based aggregation is easy to design and faster than 

sorting. The expected complexity of hashing is O(N) [Knu98]. 

If the hash table does not fit into the main memory the table may be partitioned. Each 

paxtition requires a partial pass through the input relation. Novel methods of minimising 

the amount of data representing the aggregate views are presented in this thesis (refer to 

Chapter 3). 

2.3.3 Computing the Data Cube 

The goal in data cube implementation is to compute all 2' possible aggregates as quickly 

as possible. To achieve fast computation, several optimisations are possible. For any given 

input base relation of arity k, there axe k derivative aggregations of order k-1. Each of 

k aggregates can in turn be a parent of other derivative aggregates. However, as can be 

seen from Figure 2.1, each aggregation can be derived from several parents. [GBLP96] 

proposes an optimisation in which every group-by is computed from the smallest parent. 

For example, it is obviously faster to compute the aggregate AB from its parent ABC 

with size 1,000 records, compared to another parent ABD with 50,000 records. Other 

optimisations proposed by [AAD+96] and [SAG96] are: to cache results, amortise scains, 

share sorts and share partitions. 

[GBLP96] proposed implementing the data cube using a main memory technique called 

the 2N algorithm, where N is the number of dimensions. Providing the N-dimensional 

array can be fitted into the memory, the N-1 dimensional super-aggregates can be com- 

puted by projecting one dimension at a time. [GBLP96] also suggested that if the array 

is laxger than the available memory, the cube must be organised by value, using sorting 

and hashing techniques and then computed by aggregating the organised data. 

[SAG96] introduced the Pipe-sort and Pipe-hash algorithms. The Pipe-sort algorithm 

annotates each edge in the search lattice with two costs. The A(eij) is the cost of 
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computing a child j from a parent i without sorting and S(ei, j) is the cost of computing 

i from a parent i which needs sorting. In a graph representing the lattice, (eij) is the 

edge between i and j. The algorithm proceeds level-by-level from the minimum to the 

maximum number of attributes. For each level k in the lattice, it finds the best way 

of computing level k from level k+1, thus reducing the problem to the weighted bipar- 

tite matching problem [SAG96]. Pipe-sort includes optimisations such as sharing sorting 

orders, smallest-parent, cache-results and amortized scans. 

The Pipe-hash algorithm computes the group-by j from the smallest parent. The 

decision is based on size estimation techniques and the result is a minimum spanning 

tree (MST). When memory restrictions prohibit computing all the group-bys in the MST 

together, it has to be decided which group-bys should be computed together, when to 

allocate and de-allocate memory for different hash tables and which partitions to compute 

first. This problem is NP-complete and [SAG96] has proposed a heuristic which selects the 

largest subtree. The Pipe-hash aJgorithin includes various optimisations such as smallest 

parent, cache results, amortize scans and share partitions. 

PANR96] presents the Overlap method which takes advantage of any sorted aggregate 

and 'overlaps' the computation of different aggregates, reducing the number of sorting 

stages. Thus aggregates can be computed from a sorted parent in sorted order. Overlap 

minimises the number of scam needed using size estimation techniques to determine a 

plan for computing the aggregates. Thereafter, it sorts the base relation according to the 

order in which the rest of the group-bys will be computed. Several aggregates thus can be 

computed concurrently in the memory. 

[ZDN97] presents an array based algorithm utilising 'chunks' of memory for efficient 

storage on disk. A chunk of an n-dimensional array is an n-dimensional sub-array which 

corresponds to a page. The array is stored in units of chunks so fragments of data are stored 

in memory at each processing time. This is similar to Overlap [DANR96] but provides 
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better memory utilisation for storing partitions. Although the algorithm is proposed for 

multidimensional data organisation, it is also suitable for relational structures. 

[RS97] introduces a partition algorithm that divides the relation into small data cubes 

which are fitted into memory. Partition-Cube partitions the data on some attribute into 

small data units which fit into the memory. The algorithm breaks the relation into n+1 

smaller sub-cubes computations, n of which are likely to be smaller than the base rela- 

tion. If there are T tuples in R then T/n tuples should be expected in each partition. 

The Memory-Cube algorithm is similar to Pipe-sort but performs better, determining the 

optimal set of paths needed to compute each group-by in the data cube. Potentially, this 

results in an optimal number of sorts. 

2.3.4 Selection of Views for Materialisation 

The selection of materialised views balances the trade-off between space and time in a 

more efficient way and is considered the most desirable. The selection of materialised 

views has been studied by [HRU96], [BPT97], [Gup97] and [SDN98]. These algorithms 

select a subset of aggregates for computation which is based on available disk space, the 

estimated size of the aggregate and the estimated benefit of pre-computing the aggregate. 

However, none of the existing techniques for the selection of materialised views has made 

any contribution to the elimination of redundancy in data representation. 

[HRU96] considers a lattice with 21 views and assigns each view a cost according 

to its size. The goal is to select which views to materialise so that the average query 

cost is minimised, given a fixed amount of space. The cost of the query is based on the 

'linear cost model' in which the time to answer a query is taken to be equal to the space 

occupied by the view from which the query is answered. [HRU96] proposes a 'Greedy' 

algorithm which chooses to materialise a fixed number of views regardless of the space 

they use. After selecting a subset of views for materialisation, the benefit of a view is 
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computed by considering how this view can improve the cost of evaluating others, including 

itself. The view with the maximum benefit is selected for materialisation and this process 

continues until the fixed number of views have been selected. In the next step, the Greedy 

algorithm considers the problem of aJlocating a fixed amount of space instead of a fixed 

number of views. Here, the algorithm uses the benefit per unit space of an aggregate. 

Given the amount of space available for pre-computation and a set initially containing all 

aggregates in the lattice (except the raw data), the goal is to find the set of aggregates to 

be materialised. [HRU96] claimed that the benefit of the Greedy aJgorithm is at least 63% 

of the optimal case and also that the performance of the algorithm remains the same even 

when each view is unlikely to have the same probability of being requested in a query. 

[SDN98] have evaJuated the Greedy Algorithm [HRU96] and have shown that it needs 

a prohibitive amount of processing. Instead, the authors of [SDN98] proposed the PBS 

(Picked By Size) algorithm which picks aggregates for pre-computation in increasing or- 

der of their size. Given the amount of space available for pre-computation and a set 

initially containing all aggregates in the lattice, the goal is to find a set of aggregates to be 

materialised. [SDN98] claimed that the benefit of this algorithm is the same as the pre- 

vious greedy algorithm [HRU96] but requires a fraction of the time. [SDN98] have noted 

that all aggregates equal in size to the database size have zero benefit. This means that 

any query which can be answered by scanning a view, can be answered at equal cost by 

scanning the raw data. PBS assumed that all aggregates have an equal probability of 

being queried. The authors of [SDN98] have also proposed a variation of PBS, the PBS-U, 

in which a user can assign probabilities to aggregates. 

[BPT97] introduces the idea of user's response utilisation. If a set of user-specified 

relevant queries is available, exploiting this information may yield a significant reduction 

in resources (time and space). The authors of [BPT97] have also observed that the number 

of representative queries is extremely small in respect to the total number of elements of the 
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complete datacube. Thus, the information about which queries are required is utilised 

to guide the selection of candidate views, i. e., which views if materialised, may yield a 

reduction in the total cost. However, note that this technique is application-oriented and 

requires a set of queries defined by previous requests. 

Recently, [BR99] introduced the Iceberg-Cube as a reformulation of the data cube 

problem to selectively compute only those partitions that satisfy a user-specified aggre- 

gate condition defined by a selectivity predicator (HAVING clause). Thus the Iceberg- 

Cube problem is to compute only those group-by paxtitions with an aggregate value (e. g., 

count) above some minimum threshold. [BR99] compute the Iceberg-Cube in a bottom- 

up order by introducing the bottom-up-Cube algorithm (BUC). BUC builds the data 

cube by starting from a group-by on a single attribute, then a group-by on a pair of 

attributes and so on. Potentially BUC avoids the computation of large group-bys that 

do not satisfy the condition defined by the selectivity predicator (HAVING clause). The 

authors [BR99] claim that this optimisation improves computation by 40%. However, 

this approach is inherently limited by the level of aggregation specified by the selectivity 

predicate HAVING-COUNT(*). 

2.3.5 Further Related Work 

[RSC97] provides methods for partitioning the attributes in order to answer complex 

aggregate queries. 

Compressed methods to reduce the data volume of the materialised views have also 

been proposed by [OG95], [WB98] and [KM99]. [OG95] presented an approach for joins 

between the fact tables and the dimension tables, based on the combination of join in- 

dices and bitmap, indices. [WB98] introduced the Encoded Bitmap Indexing (EBI) as an 

optimisation of the simple bitmap indexing initially proposed by [087]. The EBI, instead 

of storing n bitmap vectors (where n is the cardinality of an attribute) required by the 
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simple technique [087], only requires 1092n bitmap vectors and a mapping table. EBI is 

proposed by [WB98] as a solution for attributes with large cardinalities in a data ware- 

house. [KM99] proposed a compressed architecture for the data warehouse environment. 

By distributing a dictionary across the users, the querying stage operates in a compressed 

representation. The updating of the views can also operate in the proposed compact form. 

As a result, faster computation time and lower storage cost compared to the uncompressed 

representation can be aebieved. 

Approximate methods have been proposed by [BS98] and [VW99]. [BS98] introduces 

the Quasi-Cubes as an alternative to the data cube. The proposed method is based on sta- 

tistical, models (linear regression) and stores multidimensional aggregates in a form wbich 

provides fast approximate answers. [VW99] method constructs the data cube through 

multiresolution wavelet decomposition. This method performs well in sparse multidimen- 

sional arrays. 

Query optimisation techniques are also applied to the aggregate problem, e. g., [Se188], 

[CS94], [YL95]. [Klug82] and [OOM87] present aggregation expressions, while aggregation 

processing in a data warehouse envirorunent has been proposed by [GHQ95], [Wid95] and 

[LQA97]. 
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The Low Redundancy Concept 

To allow users fast access to specified aggregate, the prevailing paradigm in OLAP has been 

for systems to pre-compute results and store them as materialised views. This requires 

a large amount of storage, which is justified on the traditional grounds that obtaining a 

result by accessing a table is faster than computing it -a speed for space trade-off. 

This thesis introduces the L-R approach as a novel alternative paradigm for OLAP. The 

L-R identifies and eliminates redundancy in multidimensional aggregates. The approach 

is based on the fundamental observation that if redundant data can be identified then it 

need neither be processed nor stored. 

The two key elements of the L-R approach are as follows: 

1. Many of the possible aggregates are directly derivable from their parent input relation 

without any processing. These redundant aggregates provide little, if any, benefit to 

the user and will be referred as Totally-Redundant aggregates. New theory proposed 

here, derived from relational theory, provides a means of determining by inspection 

which views belong to this category. The practical implication of this are that a 

large percentage of views require neither processing nor storage (e. g., 70% - 85% 

in TPC-D 60K, with 10 dimensions). 

31 
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2. In the remaining aggregates, a further redundancy occurs when a subset of the tuples 

of the aggregate relation is directly derivable from a subset of its parent relation, 

in which case only those tuples which axe different from the parent need be stored. 

These aggregates will be referred to as Partially-Redundant views. The differential 

representation requires only a fraction of the space compared to that required by 

conventional storage of materialised views (e. g., approximately 27 times less space 

is required in TPC-D 60K with 10 dimensions). 

Table 3.1 introduces notation wbich will be used in later discussion. 

Notation Description 
R Input (or parent relation of R') 
R' Aggregation (or cbild relation of R) 
tR Tuple in R 
tRI Tuple in R' 
CR Cardinality of R 
CR' Cardinality of R' 
St Set of grouping attributes in tR 
Se Set of grouping attributes in tR' 
MR Measure of interest in R 
MR' Measure of interest in R' 

Table 3.1: Notation of main components 

3.1 Totally-Redundant Views 

The candidate keys are classified into two types: Definitional and Observational keys. 

Definition 3.1.1 Definitional Keys are those keys which are defined as part of the data- 

base schema (e. g., by the database designer). 

Definition 3.1.2 Observational Keys are those keys which are defined empirically. 
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Thus an ObservationaJ key is invaxiant in a read-only database but may be modified by 

updates to the dataset. A Definitional key always possess a unique identification property 

despite updates. 

Definition 3.1.3 A tuple tR, is defined to be group-by - equivalent or g-equivalent 

(z--, >) to a tuple tR if, and only if, the set of grouping attributes St, is a subset of the set of 

grouping attributes St and the measure of interest is equal for both R' and R (see Figure 

3.1). 

tR, : -ý> tR iff Se C St and MR, = MR 

(P2, Ll, 12,30) -,, E 10 (P2, LI, 30) 

Figure 3.1: The g-equivalent tuple 

Definition 3.1.4 A relation R' is defined to be g-equivalent (: -: ý>) to a relation R if, 

and only if, for every tuple in R' there is a g-equivalent corresponding tuple in R and both 

relations have the same cardinality. 

R =-> R' iff (V tR El tR' such that tR' =-> tR) and CR, = CR 

3.1.1 Extending the Relational Theory: Totally-Redundant Views 

Theorem 3.1 When the result relation R' of an aggregation has the same cardinality as 

the parent relation R then each tuple tR, is g-equivalent to the corresponding tUP16 tR, both 

in its grouping attributes and in its measure of interest. 
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Proof In an aggregation operation each tuple tRi is derived either from a single tuple or 

from several tuples of the input relation R (refer to Section 3.1). If a tuple tR, is a result 

of several tuples in R then there is a reduction in cardinality of the relation R' relative 

to the relation R. Thus, if the cardinality of R and R' is the same, then each tuple tR, 

must have been derived from only a single tuple tR, and hence must be g-equivalent to 

the corresponding tuple of R in both its projected dimensional values and its measure of 

interest. 

Theorem 3.2 Any aggregation of a relation R over any set of domains which includes 

a Candidate Key, produces a result relation R' in which each resulting tuple must be g- 

equivalent to the corresponding tuple of R in both its grouping attributes and its measure 

of interest. 

Proof Each candidate key of a relation R has the property of uniquely identifying each 

tuple of that relation. Any projection or aggregation of R that includes a candidate key 

preserves the same number of tuples. Thus, any aggregation or projection which includes 

a candidate key of R, produces a result relation R' with the same cardinaJity as R. Thus, 

(by Theorem 3.1) each tuple in R' must be identical to the corresponding tuple of R in 

both its projected dimensional values and its measure of interest. 

Theorem 3.3 (Converse of Theorem 1): When an aggregation or projection of a parent 

relation R over a set of domains produces a result relation R' with the same cardinality 

as in R, then that set of domains contains an Observational candidate Key of both R and 

R'. 

Proof FYom the theory described in Section 1.1, a domain (or combination of domains) 

of a given relation, whose values uniquely identify each element (n-tuple) of that relation, 

is called a candidate key. If an aggregation or projection of a parent relation R produces 
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a resulting relation R' with the same cardinality, then the dimensions over which the 

aggregation has been carried out must uniquely distinguish each tuple of R. Each resulting 

tuple must have been derived from a single parent tuple (if this were not so, then some 

aggregations from several tuples would have occurred, with a resultant reduction in the 

cardinality of R'). Thus, if the cardinalities of R' and R are the same, the dimensions of 

the aggregation must include a candidate key of R. 

3.1.2 Example of Totally-Redundant Views 

Table 3.2 shows the input relation R and Table 3.3 shows the g-equivalent aggregate 

relation R'. R and R' have equal cardinality and for every tuple in R, there is a g- 

equivalent corresponding tuple in R. The aggregate relation R' is redundant since it can 

always be produced by a simple 1 projection of R. 

3.2 Partially-Redundant Views 

Definition 3.2.1 A relation R' is defined to be similar to a relation R if the fraction 

CR, ICR of g- equivalent tuples in R' is within a threshold t,. 

CRICR-< 1 

The vaJue of the threshold t, is a dynamic variable which can be defined by the database 

designer. 

'Simple projection refers to a projection which does not require duplicate elimination 
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R 
Product Location Time Total-Sales 

Pi Ll T1 80 
P2 L3 T4 20 
PI L2 T3 50 
P4 Ll TI 30 
P3 Ll T3 80 
P4 L3 T2 100 
PI L3 T1 45 
P3 L2 T3 70 
P2 Ll T2 30 

Table 3.2: The Input Relation R 

R' 
Product Location Total-Sales 

Pi Ll 80 
P2 L3 20 
Pi L2 50 
P4 Ll 30 
P3 Ll 80 
P4 L3 100 
Pi L3 45 
P3 L2 70 
P2 LI 30 

Table 3.3: The g-equivalent aggregate relation R' of relation R (Table 3.2) 

3.2.1 Extending the Relational Theory: Partially-Redundant Views 
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Theorem 3.4 An aggregate relation R' is Part ially- Redundant with regard to the par- 

ent relation R, if a subset of tuples in R' are g-equivalent to those in R. 
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Proof Since R' has fewer tuples than R, some of the tuples in R' must be aggregates of 

several tuples in R, while the remaining tuples in R' must be directly g-equivalent (simple 

projection) to the corresponding individual tuples present in R. 

Partially-Redundant views may be represented by means of the union of two relations. 

The first relation, is the set of tuples in which each tuple is an aggregate of several tuples 

in the input relation. The second relation is the set of tuples which are g-equivalent to 

and thus can be derived from the parent relation. 

By storing only the first relation significant changes can be achieved. This relation 

is called the Difference or Delta relation. In the querying stage the aggregation can be 

reconstituted from its Difference representation as will be discussed in Section 3.3. 

3.2.2 Example of Partially-Redundant Views 

Figure 3.2 shows the relation R(p, sj) and its aggregation Rc(p, s). In Re two tuples (P2, 

S2,70) and (P1, S2,20) are g-equivalent to the corresponding tuples in R (P2, S2, T11 

70) and (P1, S2, T2,20) respectively. The remainder is the Difference or Delta relation 

(Rd), which is an aggregate of three tuples in R represented by R, 

The two relations R and R, are presented indirectly. R, can be partitioned into two 

relations Rd and R'. The tuples of 14 are g-equivalent to the corresponding tuples Rt of t 
R and thus redundant. This redundancy in the data representation of R, is avoided by 

storing only Rd, ass-uming that the parent relation is stored. The Rd relation consists of 

the tuples of R, which are not g-equivalent to any tuples in the parent relation R. 

3.3 Difference Algebraic Equations 

The realisation of the Partially-Redundant view approach implies two-stages. In the first 

stage (the computation stage), the Difference relation is extracted from the aggregation 
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R 

PI Rot Sl Tl 10': 
' Pl Sl T3 30 

R P2 t S2 TI 70: 
PI 

..... 
S2 

..... 
T2 
.... 

20: 
..... 

Rc 

Rd 
P2 S2 70 

R' PI S2 20 t ............... 

Figure 3.2: Producing the Difference representation 
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using the Aggregation Difference (AD) algebraic equation. In the second stage (the re- 

trieval stage), the aggregate is reconstructed from its Difference form using the Aggrega- 

tion Reconstruction (AR) algebraic equation. These stages are similar to the well-known 

computation of multidimensional aggregates and their later access from the materialised 

views. 

The AD Equation 

The AD equation would require the following operations: 

R't = Re >< R 

Rd -- R, - R't 

where (><) is the semi-join 2 operator in the grouping attributes and (-) is the difference 

operator. 
'Given two relation R, and R2, a natural join followed by a projection on the first operand is a semijoin 

written Ri>< R2. So Ri >< R2 ---: 7r(Ri * R2). Because only Ri attributes enter into the answer relation, 
the purpose of R2 is simply to reduce Ri to those tuples for which the common attribute values also appear 
in R2 [John97]. 
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The AR Equation 

The AR equation reconstructs the aggregation relation R, from its Difference Rd in the 

following operations: 

R't = (Rd 5F, R) 

R, = Rd U R't 

where (5;; ý) is the anti-semi-join 3 operator in the grouping attributes and (U) is the 

union operator. 

The above equations show that the difference representation can, in principle, be 

implemented in any relational system. 

3.4 Implementation Considerations 

Totally-Redundant views can be identified by the Key-algorithm which reduces the prob- 

lem of redundancy by finding the set of Observational keys in the base relation. The 

detection of Observational keys is accomplished by checking for duplicity of tuples exist- 

ing in some group-bys. In this sense, the algorithm might appear to be simple or slow. 

On the contrary however, the algorithm is very fast due to its bottom-up order; the Key 

algorithm starts from the bottom (or the small group-bys) and moves to the top of the 

lattice and examines - by scanning for duplicates - if the particular group-by schema is a 

key of the base relation. If the algorithm identifies a key, this key will then automatically 

eliminate from further examination all those group-bys with schema, including the key 

schema. This process follows an exponential reduction of group-bys for examination and 

3The anti-semijoin is a semijoin with an inequality (<>) predicate. 
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is responsible for the fast performance of the Key-algorithm. The benefits derived from 

the bottom-up order dictates that the Key-algorithm operates separately to the data-cube 

computation and not simultaneously. Section 3.6.1 describes the complexity of the Key 

algorithm in more depth. 

Totally-Redundant views can be identified in relations other than the base input rela- 

tion. A recursive version of the Key-algorithm can be applied to examine the derivative 

aggregations for keys. This method provides an optimised solution especially when there 

are no Observational keys in the base input relation. 

The equations given earlier present the realisation of PaxtiaJly-Redundant views as an 

extraction of the Difference representation (aggregate tuples) from the already aggregated 

relation. The algorithm proposed in this thesis (refer to Section 3.6) adopts a different 

route, whereby the separation between the aggregate and the non-aggregate tuples takes 

place during the aggregation operation and not after it. 

3.4.1 View Types 

The types of views used to handle the different data representations axe: 

a The View as defined in section 2.2. This view is utilised to represent the virtual 

representation of a relation. It includes a pointer to the parent input relation and 

may have the means to select the tuples and domains from the parent input relation. 

The View in the L-R approach represents a Totally-Redundant view. 

e The Stored-Relation is the conventional materialised view which is used to store 

either the whole aggregation or the Difference representation. 

rM 
he Semi-Stored View is the view which represents a union of a Stored-Relation and 

a View. 
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The View and Semi-Stored View can be applied recursively. For example, it is possible 

to construct a View of a View, or a View of a Semi-Stored View as well as a View of a 

Stored-Relation. To avoid dealing with different levels of interpretations, the preferred 

implementation path is to materialise any View which is a paxent of another. The cost of 

this materialisation is discussed in section 4.2.3. and shown in Figure 4.7. The different 

types of views are shown in Figure 3.3. 

Input relation 

P1 50 
P2 20 
P2 10 
P3 55 
P4 12 

conventional 
aggregation 

I 

L-R 

L-R 
aggregafion 

Stored relation 

P1 50 
P2 30 
P3 55 
P4 12 

Senii-Stored View 

Stored relation 
I P2 1-30-1 

View 

PI 
P2 
P2 
P3 

: 50 
t 20 

10 
t ----- 55 

11:; ý P4 : 12 : 
. .............. 

Figure 3.3: The types of views in L-R 

View 

3ý: PI : 50 
----- t ----- P2 : 20 

--- --------- P2 : 10 
... t ----- 

................. 
1_J.. -. >. p3 : 55: 

p4 12 
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3.5 Implementing the Totally-Redundant views 

A system can utilise Theorem 3.1 by avoiding the explicit computation and separate 

storage of any aggregate which includes a key. The original relation may then be treated 

as containing the aggregate's virtual representation. This not only has a major impact 

on the computation time, but it also reduces the storage requirements of the materialised 

views. The approach proceeds in two stages: 

9 Stage 1: Determination of the set of Observational keys. 

e Stage 2: Computation of the data cube by utilising the set of Observational keys 

(found in stage 1). This excludes the processing and storage of Totally-Redundant 

views. 

3.5.1 The Key Algorithm 

Briefly stated, the approach adopted empirically determines all the Observational keys 4 

present in a given parent relation prior to the materialisation of the data cube. The 

algorithm examines all possible aggregates in the data cube and classifies each either as 

Totally-Redundant or not. 

Thus, the algorithm examines whether each group-by includes one of the already 

detected keys - if so it can be categorised immediately as g-equivalent to the input rela- 

tion and hence Totally-Redundant. The remaining group-by, with maximum size smaller 

than the size of the input relation, can not be candidates for the equivalence property. 

Potential aggregates which are not in either of the above categories are tested - to see 

whether any two tuples of the input relation are combined during aggregation - using the 

4 The candidate key can be determined either by definition (database cataJogs) or using the [L078] algo- 
rithm to find keys for a given set of attributes' names and a given set of fiinctional dependencies. However, 
this approach would require knowledge of the functional dependencies. Therefore the Key Algorithm is 
proposed for the identification of Observational keys in the data cube. 
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First Duplicate Detector (FDD) routine described later in this section. 

The Key algorithm proceeds from the minimum (level K-2 in Figure 3.4) to the 

maximum arity (level K) and uses the FDD to scan each group-by until it detects the 

first duplicate tuple. When a duplicate is found, the current group-by is an aggregate (not 

g-equivalent relation) and hence, according to theorem 3.1, not a key. 

If there axe no duplicates, then the schema of the group-by is an Observational Key. 

With the discovery of a key, the algorithm eliminates from further consideration all 

subsequent group-bys of greater arity including the key in their schemas. Such group- 

bys are thus also Totally-Redundant views. 

Level K ....... 
ABC 

Level K- I ....... AB AC BC 

Level K-2 ....... ABC 
ýýý I 

"-ý 
Level 0 ....... None 

Figure 3.4: The cube lattice 

3.5.2 The Complexity and Performance of the Key Algorithm 

Given a relation R(Al, A2,... ' An) with n dimensions, the complexity of the algorithm is 

O(C * 2n), where n is the number of dimension attributes and C is the cardinality of each 

group-by. C is an upper bound since the Key algorithm exits at the first duplicate which 

is normally detected before completing the scan of the whole groul>-by. The supersets 

of each Observational key must also possess the unique identification property and hence 
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these group-bys too can also be eliminated by inspection. If a schema of m attributes has 

been recognized as an Observational key of an n-dimension relation R, then the number of 

times the schema's m attributes will appear in the 2' possible aggregations is 2n-rn. Thus, 

the smaller m, the greater the savings. The maximum benefit which can be derived occurs 

when m=1 and the least benefit when m=n and thus there is no key (n is the superset 

in R). This provides very significant leverage in the algorithm. For example a data cube 

of ten-dimensions would produce 1,024 aggregates. A key of two dimensions would reject 

2 10-2 =28= 256 aggregates as Totally-Redundant and thereby no computation or storage 

would be required for them. 

To further reduce the number of candidate keys, a group-by is not considered if the 

upper bound of its cardinality is smaller than that of the input relation. The pro- 

posed method to identify the upper-bound is the computed product of the dimension 

cardinalities. 

The performance of the Key-algorithm is very efficient as it requires only approximately 

10% of the conventional cube time. Figure 3.5 illustrates the time taken to compute a 

complete data-cube of 4,5,6, and 7 dimensions for the TPC-D [TPC98] dataset in the 

scale factor 0.1 (600K tuples). 

10000 

1000 
cn -0 

100 7 

10 

Key-Algo(ithm 
Conventional 

.. _B 

- ----0 
. 

56 
Number of Dimensions 

7 

Figure 3.5: The performance of the Key algorithm 
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The Key algorithm 

Input: search lattice of the input Relation R 

Output: Set of ObservationaJ Keys K- array of strings 

i: = 0; 

8 := 

K: = null; 

while i< NoOf Combinations -I do (* NoOf Combinations = 2n *) 

if GroupBy[fl. size < R-size then begin (* The size is an upper bound *) 

if GroupBy [i]. schema E K(s) then (* This is a redundant GroupBy *) 

i: = i+1; 

else if found duplicate then (* First Duplicate Detector *) 

45 

i :=i+1; (* This GroupBy is an aggregated relation - it's schema is not a Key *) 

else begin 

S :=S+1; 

add the GroupBy schema to K(s) 

end; 

end; 

i+1; 

return set K; 

end; 

To examine whether a specific set of domains is an Observation key the First Duplicate 

Detector (FDD) is used. 
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The First Duplicate Detector 

This is a simplified hash-based aggregation which exits true when a duplicate is found, 

false if none is detected. The complexity of the first duplicate detector is C, where C is 

the cardinality of group--by. In practice however, the average complexity is much smaller 

since a duplicate tuple is usually found (if it exists) before the full scan of the group--by. 

The FDD is closely related to theorem 3.1. 

3.5.3 The Recursive Key Algorithm 

The Key-algorithm, as described earlier, identifies Totally-Redundant views on the basis 

that they are g-equivalent to the input base relation. Further redundancy can be elimi- 

nated by applying the Key-algorithm recursively to the derivative aggregate views. The 

experiments outlined in Chapter 4 indicate that a further reduction in storage of up to 

60% can be achieved when redundancy of the derivative relations is eliminated. Over- 

all, Totally-Redundant views effect storage savings of up to 85% (TPC-D 60K with 10 

dimensions) of the volume. 
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3.6 Implementing the Partially-Redundant Views 

In implementing the Partially-Redundant views the goal is to extract the Difference tuples 

from the aggregate relation (refer to Figure 3.2). 

Each Different view has an associated schema denoting the grouping attributes and 

a bit-array where a bit is set to one, corresponding to each tuple in the parent relation 

which is also found in the aggregate. The next section describes two algorithms for fast 

implementation of the Partially-Redundant views. The task of the proposed algorithms 

is to filter out the aggregated tuples (or Differences) from the aggregate relation and 

also identify the g-equivalent ones. These algorithms have been used to demonstrate the 

feasibility of the L-R methods and although axe not proposed as the optimum solution, 

they have successfully demonstrated the effect of the L-R approach. 

3.6.1 The Aggregation Algorithms 

The first algorithm, called the Bit-array aggregator or B-aggregator, utilises bit-arrays. 

The B-aggregator has been used to evaluate the L-R experimentally. The method is similar 

to that of [Bloom7O], [MTD76], [SL76] and [Babb79] and is described in Appendix D. 

The second algorithm, called the Vector aggregator (or V-aggregator), is an improve- 

ment of the B-aggregator algorithm. Section 3.6.2 describes how the V-aggregator op- 

erates more efficiently in extracting the Differences. This is achieved by introducing a 

dual-resolution vector which filters the aggregated tuples from the g-equivalent ones while 

aggregating. 

The innovation in both aJgorithms is that the extraction of the Differences occurs 

during aggregation and not after it. 
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3.6.2 The B-Aggregator 

The B-aggregator algorithm is a hash-based aggregation in which a hash function is applied 

to the tuples, defined by the grouping attributes, in the parent relation. During the first 

pass over the input relation, hash values generated by tuples are entered into the first bit- 

array B, - Tuples which generate a hash value already present in B1, enter their hash value 

into a second bit-array B2. Thus the hashed values entered into B2 indicate candidate 

aggregated tuples of the input relation. 

Collisions may be caused by the hashing function. Therefore the algorithm performs 

a second scan of the input relation to ensures that the tuples axe 'real' aggregate tuples. 

The scan achieves this by searching for tuples whose values are in B2 and compares these 

tuples with a table containing the 'real' aggregates. After this scan, any aggregate tuple 

found to be derived from a single tuple of the input relation is transferred to the set of 

g-equivalent tuples. This algorithm is illustrated in Figure 3.6. 

The result of the aggregation is two sets of tuples, the set of the 'real' aggregates 

and the set of g-equivalent tuples contained in the parent relation. Both are represented 

explicitly as a Semi-Stored view which behaves as the union of the two components (see 

section 3.4.1). 

Semi-Stored View 

Input relation B1 B2 
Stored relation 

Pi 50 - 
P2 20 - 

-LO 
112 1- , 

ýý< 

View 
P3 55 -I ---------- ...... P1 50 
P4 12 - ................ : P2 20 

......... ..... : : P2 10 

... ......... P3 ! 55 
------------- I .... P4 : 12 

................. 

Figure 3.6: Performing an aggregation using the B-Aggregator 
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3.6.3 The V-Aggregator 

The vector or V-algorithm. is also a hash-based aggregation but one which accomplishes 

the aggregation in a single pass of the input relation. Initially, a hash function is applied 

to the tuples, defined by the grouping attributes, in the parent relation. The tuple hash 

value is used as the offset to a vector and this ofFset position contains the tuple number. 

At the first tuple, a hash vaJue is encountered and the corresponding entry in the 

vector will be in its initial value (0) and is assigned the negative sign (-). A negative 

entry in the vector corresponds to a tuple in the input relation. When a tuple hashes to 

a non-zero entry in the vector and the value is negative, the corresponding tuple is then 

copied from the input relation to the stored relation (The Difference Rd) and the entry is 

now switched to positive to give the tuple number in Rd- If, however, the vector's entry 

in the vector is already positive, the new tuple is aggregated with the corresponding tuple 

in Rd. The entries of the vector are assigned accordingly: 

(-) for g-equivalent (or non-aggregate) tuples allocated in R 

(+) for Difference (or aggregate) tuples allocated in Rd 

3.6.4 Example of the V-Aggregator 

Given the relation R in Figure 3.7, the first tuple PI in position R[1] in R is hashed and 

its hashed value is stored in the vector (hash access table) at the 4th position. The entry 

(-1) in the vector denotes the position of the tuple P1 in the input relation R. Similarly, 

tuple P2 is hashed in position 1 with the entry (-2) (Figure 3.7(a)). When an aggregation 

occurs, e. g., the 3rd tuple P2, a re-arrangement occurs. The entry (-2) of the tuple P1 

in the vector is changed to point to the new location of the tuple P2 in relation Rd (i. e., 
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Rd[ll---':: J), so the first entry of the vector becomes (+l) (Figure 3.7(b)). After the re- 

arrangement the second tuple P2 will aggregate with the tuple in position 1 in the table 

Rd (Figure 3.7(c)). In sequence, tuple P3 is then hashed in position 2 with the entry (4). 

When a collision occurs, a two step procedure takes place. In this example (see Fig- 

ure 3.7(c)), tuple P4 collides with the tuple PI in the hashed entry 4, (-1). The first step 

is for the tuple P1 to be transferred to the table Rd in the next available position (Rd[2]) 

and the 4th entry in the vector becomes (2), denoting the 2nd position in table Rd. In the 

second step, tuple P4 is ready to be allocated to the next available entry in the hash access 

table, thus it allocates the 5th position to the entry (-5) (Figure 3.7(d)). The appropriate 

changes are assigned to Rd and the single access table. Every time a tuple is aggregated 

the single table entry becomes 0. 

Finally, the single table is examined and the set of tuples with zero entries is thus the 

Difference relation which is stored in a Stored-Relation (Rd). This set has been separated 

from the set of g-equivalent tuples, which is stored in a View (bit-array or R- Rd). The 

final aggregate relation R, is the union of the Rd (Stored-Relation) and R- Rd (View) 

(in line with equation AD in Section 3.2). 

3.7 Computing the L-R Data Cube 

The Implementation of the optimised cube is performed in two stages. 

During the first stage, aggregations wbich are Totally-Redundant axe identified and 

each is represented by a view structure. This process is carried-out by the Key Algorithm 

which constructs a key list, as was described in section 3.6. The output includes the set 

of keys and the set of Totally-Redundant views, each represented by its view structure. 

In the second stage, the data cube is computed according to the traditional 2n combi- 

nations. However, now the algorithm utilises the information captured at the first stage, 
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Figure IT Extracting the differences during aggregation using the V-Aggregator 
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avoiding computation of aggregates already calculated. The Partially-Redundant views 

are thus processed and stored as compact materialised views. The abstract form of the 

proposed computation is shown in Figure 3.8, followed by the implementation of the L-R 

data cube. 

-. 0 No, 
Aggregator 

-0 BID 

t 

Difference 
Extraction 
Mechanism 

Store 

Figure 3.8: The L-R data cube 
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The Optimised Cube-By operator 

Input: search lattice of the input Relation R 

Set of Keys K, array of Keys 

Output: Set of computed aggregates as views V 

begin 

i: - 0; 

i: == 0; 

null; 

while NoOf Combinations -1>i do (* From maximum to miinimum arity 

where NoOf Combinations = 2n *) 

begin 

for j: =O to entries in K 

begin 

if K(j) C GroupBy[i]. schema (* Totally redundant view *) 

then 

i: = i+1; 

else (* not a Totally-Redundant view-candidate for computation 

Aggregate (GroupBy[i]); 

add the GroupBy schema to V[i] 

i: = i+1; 

end; 

end; 

return set V; (* the set of computed views *) 
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end; 



Chapter 4 

Experimental Confirmation 

The objective of the experimental work is to verify the feasibility and scalability of the 

L-R methods and algorithms and prove that the new approach significantly improves 

the performance of OLAP systems with regaxd to space and time requirements. The 

experiments evaJuated the new methods using a wide vaxiety of real and synthetic datasets. 

There are three groups of experiments. The first group relates to the performance of 

L-R in the computation of the full set of multidimensional aggregates (the data cube). 

The second relates to storage savings effected. The final group relates to query response 

times (or user's access time) from the already computed data cube. The three groups may 

be summarised as: 

1. Computing the Data Cube - performance timings 

2. Storage of the Materialised Views - space savings 

3. The Querying Response Time - performance timings 

54 
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4.1 The Experimental Configuration 

The L-R algorithms were implemented as explained in Chapter 3. The tests were run 

on a Dual Pentium 200 MHz with 128 Mb of RAM and IGB of virtual memory under 

Windows NT. There were no attempts to utilize the memory in a more efficient way than 

that provided by the operating system and also no attempt was made to utilize the second 

processor. 

4.1.1 The Datasets 

Both real and synthetic datasets were used in these experiments. There were four synthetic 

and two real datasets. Three of the synthetic datasets were taken from the TPC-D [TPC98] 

benchmaxk dataset and one from a hotel dataset [Kim96]. The real datasets were weather 

data [HWL941 and the adult dataset [Koh96]. Note that all datasets are considered sparse. 

The TPC-D Datasets 

The Transaction Processing Council (TPC) is an official benchmarking group supported 

by several hardware and database systems vendors. The TPC-D is a decision support 

dataset which can be generated at different scale factors defining the number of tuples 

in the fact table. In these tests, the lineitem table, from the TPC-D dataset, was used 

at three scale factors 0.1 (600K tuples), 0.01 (60K tuples) and 0.001 (6K tuples). In 

all datasets the measure of interest is the fifth attribute. The 6K dataset's attributes' 

cardinalities were: (1,500), (200), (10), (7), (50), (3), (2), (2,249), (2,234), (2,241), (4). 

For the 60K dataset, the attributes' caxdinalities were: (15,000), (2,000), (100), (7), (50), 

(35,967), (2,520), (2,464), (2,531), (4), (7). The 600K dataset was generated with the scale 

factor sf=O. l and the cardinalities were: (150,000), (20,000), (1,000), (7), (50), (2,526)7 

(2,466), (2,548). 
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The Weather Dataset 

This dataset is an archive of real weather data indicating cloud coverage over the ocean 

[HWL94]. The dataset contains (116,635) tuples with 20 dimensions. Ten of these were 

selected with the following cardinalities: (612), (2), (1,425), (3,599), (5), (1), (101), (9), 

(24), (10). The measure attribute was the sixth dimension. 

The Adult Database 

This is a real dataset from the US Census Bureau in 1994 which was first presented 

by [Koh96]. The original dataset size was 48,842 records with 14 attributes. Six of the 

attributes are numerical and the remaining six are categorical attributes. The down-loaded 

version contained 32,000 records and was projected to a relation with nine attributes, with 

the 9th attribute defined as the measured attribute. The cardinalities of the new dataset 

were: (72), (10), (19,988), (16), (16), (16), (7), (16), (7), (1). The last attribute was used 

for measure of interest. 

The Hotel Dataset 

This dataset, taken from a business example [Kim96], is a synthetic dataset with a fact 

table of Hotel Stays schema with eight dimensions and three measure attributes. The size 

of the dataset is 2,249 tuples. The small size was selected to ensure that the performance 

results in time were not effected by disk thrashing. The dataset and all its derivative 

aggregates, even in the conventionaJ approach, almost fitted into the main memory. The 

cardinalities of the dataset were: (183), (26), (100), (20), (20), (2,168), (2), (20), (4), 

(907), (366) and (10). 
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4.2 Computing the Data Cube - Performance Timings 

The computation of the data cube in L-R is performed in two stages (as explained in 

section 3.8). 

o Stage 1: Determination of the set of Observational keys. In this stage, the Key- 

algorithm is responsible for the identification of non-redundant views, through the 

key extraction mechanism. 

9 Stage 2: Computation of the data cube by utilising the set of Observational keys 

(found in stage 1) to determine and eliminate Totally-Redundant views. 

4.2.1 The Performance of the Key algorithm 

Figure 4.1 compares timings for the key algorithm with the time required to compute the 

data cube using the conventional method [GBLP96] for the TPC-D 600K dataset. The 

experiment computed the data cube in different numbers of dimensions ranging from four 

to seven. The results show that on average the Key-algorithm only takes one tenth of the 

conventional time. 

Figure 4.2 compares the timings between the key algorithm and the conventional time 

required to compute the data cube for the hotel dataset. The experimental configuration 

remains the same but now, in this test, it computes the data cube in different numbers of 

dimensions ranging from three to eleven. 

The time required by the key algorithm is only of the order of 10% of that required to 

compute the data cube conventionally. Savings increase as the dimensionality increases. 
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4.2.2 Full Computation of the Data Cube 

The experiments in the second stage compare the following three timings: 

e The time taken for full materialisation of the data cube using the conventional 

approach, implemented here as described in [GBLP96]. 
-ju, 

9 The time taken for full materialisation of the data cube, which includes and utilises 

the Totally-Redundant views. 

1D The time taken for full materialisation of the data cube, which includes and utilises 

the combined approach (consisting of both Totally-Redundant and Partially-Redundant 

views). 

Figure 4.3 and Figure 4.4 present averages taken from aJI datasets. Appendix C. 1 

presents analytical results from the six datasets used in this thesis. For each dataset, 

three different data cube implementations were tested using several dimensions varying 

from three to twelve. The total number of runs was approximately one hundred and 

seventy (170). 

Figure 4.3 illustrates the two average times taken to compute the data cube conven- 

tionally over the combined approach in five and six datasets 1. The results indicate that 

the performance of the combined approach increases as the number of dimensions increase 

and that after the ten-dimension data cube the combined outperforms the conventional 

computation. 

'Because the tests for the 600K TPC-D dataset were run on up to seven dimensions, after the 7 th 

dimension the average was taken from the remaining five datasets. 
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Figure 4.4 illustrates the ratio of the conventional to combined approach for computing 

a data cube of seven dimensions for all six datasets used in this thesis. The result shows 

that the combined approach in small dimensionality (seven dimensions) is slower than 

the conventional approach. The tests on the combined approach, however, utilised the 

B-aggregator algorithm whose performance is slower compared to the improved version 

(V-aggregator). The increase in savings with dimensionality indicates the scalability of 

the L-R approach. 
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4.3 Storage of the Materialized Views - space savings 

For each dataset, the two L-R storage optimisations were compared to the conventionaJ 

approach. 

In the first L-R optimisation, only the Totally-Redundant views were utilised and in the 

second, both Totally-Redundant and Partially-Redundant views were utilised to eliminate 

redundancy. 

The impact of L-R optimisation is significant. Savings of up to 30 times in space (adult 

dataset in 10 dimensions), compared to the conventional implementation, axe achieved. 

Figure 4.5 and Figure 4.6 show average results for six datasets. 

Figure 4.5 illustrates the average ratio of space required (conventional over L-R) in 

6 datasets 1. As expected, in all datasets, dimensionality is the crucial factor in the 

improving space savings. 

Figure 4.6 shows the ratios for individual datasets. The ratio is never below six and 

at best, in the 60K dataset, rises to more than nine. Appendix C. 2 shows analyticaJ 

results from all datasets. One hundred and seventy (170) sepaxate runs were conducted 

for different dimensions (varying from three to twelve). 

2 For the same reasons as explained earlier (section 4.2.2), the average time after the 7 th dimension has 

been taken from five datasets. 
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4.4 Totally-Redundant Views of Derivative Relations 

In Chapter 3, it was shown that Totally-Redundant views can be found in aggregates other 

than the base relation. Appendix C. 3 presents all the experiments which were conducted 

and compares the savings in space when the base relation is used as a reference to the 

savings achieved when the derivative relations axe used as references. On average, for a 

base relation with ten dimensions, applying the optimisation recursively to all derivative 

relations increased total savings to, on average, 90% of the total views in the data cube. 

This is in contrast to an average of 74% of total views achieved when the base relation was 

used. Using nine dimensions, the average savings are lower at 77% and 44% respectively. 

Appendix C. 3 presents the detailed results from tests run in six datasets. For each dataset, 

the tests were run in several dimensions with the number vaxying from three to twelve. 

Altogether approximately fifty runs were conducted. 

The savings in space and time after the elimination of the Totally-Redundant views 

are significant for relations with high dimensionality. Savings in storage and time for the 

Totally-Redundant approach vary according to the distribution and sparsity of the trial 

datasets. Partially-Redundant views, however, axe much less sensitive to the distribution 

and sparsity of the trial datasets. 
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4.5 Query Response Time - Performance Timings 

The query response time is the time taken by the database to respond to a user's query. 

The L-R methodology selects, computes and stores the materialised views in a com- 

pact form. The rationale of L-R storage optimisation is that it does not significantly 

slow the query response time compared to the conventional materialised view approach. 

This section will show that the L-R's retrieval time satisfies the above requirement, (i. e., 

fast retrieval of any aggregate). The experiments conducted for this purpose demon- 

strate that remarkable savings in storage space can be achieved without a significant 

trade-off in time. This group of experiments measured the time required to access ag- 

gregates stored in Difference form compared to the time required to retrieve the con- 

ventional materialised view. Both timings are compared to the 'on-the-fly' approach. 

Queries were made to aggregations varying from three to ten grouping attributes. The 

TPC-D 60K dataset was used with the following attributes: Orderkey, Partkey, Suppkey, 

Linenumber, Returnflag, Linestatus, Shipdate, Commitdate, Receiptdate, Shipinstruct. 

Figure 4.7 compares five different measured timings for two different cases. Each timing 

was taken with eight different dimensionalities. In both cases, the result retrieved is a full 

aggregate relation and not a subset (resulting from a selective query). In the first case, 

the output group-by was returned as a 'deep-copy' of the aggregate (i. e., the deep-copy is 

a materialised view open to read/write operations). 

In the second case, the resulting group-by is returned by reference or a 'shallow-copy' 

(i. e., the shallow copy is a view open to read-only operations). This eliminates additional 

storage and time to return the answer but it is slightly slower for subsequent accesses. 

Thus in the second case, the results are faster than the first. Note, in the second case the 

slightly slower performance of the combined approach compared to the materialised views 

(MV) approach occurs as a result of an operation which ensures that the system never 
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returns a 'view of a view' (refer to Section 3.4.1). The first three results relate to the first 

case in which the answer returns a deep copy of the group-by. 

The timings shown in Figure 4.7 are taken from: 

1. The on-the-fly computation. In this method it is assumed that only the base relation 

is available. 

2. The combined approach. This is the time required to reconstruct the aggregation 

from its Difference representation. For this process, the parent relation and the 

Difference representation are stored in the backing store. 

3. The conventionaJ materiahsed view. 

4. The combined approach. This is the time required to reconstruct the aggregation 

from its Difference representation. For this process the parent relation and the 

Difference representation axe present in the main memory. 

5. The conventional materialised approach when all the materialised views are present 

in the main memory. 

The results indicate the benefits of pre-computation of the multidimensional aggre- 

gates; the materialised views are faster but the data volume required is much higher (27 

times larger for the TPC-D lineitem dataset in 10 dimensions) than the combined L-R 

approach. The 'on-the-fly' approach is always slower, as was expected. Both the com- 

bined and the materialised views in the 'by-reference mode' are faster than their retrieval 

from secondary storage. The advantage of the L-R approach is that its compact storage 

enables the data to be retained in the main store. This implies that the majority of the 

aggregates will be restored from their stored-in-memory parent and thus the speed will be 

equal to that of the fourth timing (see Figure 4.7). The large volume of conventional ma- 

terialised views prohibits in-memory aggregation and thus the majority of the aggregates 

will operate through secondary storage. 
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Chapter 5 

Conclusion 

Information integration requires the collection of data from several information sources and 

incorporation into a data warehouse which lays the foundation for OLAP applications. The 

key problem is that the processing time required for a database to answer OLAP queries 

'on the fly' is too expensive to accommodate an effective interactive dialogue. To accelerate 

the query response time, pre-computed queries are usuafly stored as materialised views. 

To avoid the large additional storage overhead of materialised views, selection of a subset 

of the aggregate views has been proposed in the past [HRU96], [BPT97], [Gup97], [SDN98] 

and [BR99]. However, the selection of the appropriate subset is a crucial issue. 

This thesis contributes to the fundwnental understanding of the nature of the data 

cube process and has introduced the Low-Redundancy (L-R) approach. The proposed 

L-R approach is novel and differs from any previous approach [HRU96], [BPT97], [Gup97], 

[SDN98] and [BR99]. The approach achieves fast computation and compact storage of the 

aggregates through methods based on extending traditional relational theory to the OLAP 

environment. Specifically, this work has shown that: 

68 
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Many of the possible aggregates are directly derivable from the parent input (base) 

relation without any processing. These aggregates axe called Totally-Redundant 

views and a new formalism, derived from relational theory, provides a means of 

determining which views belong to this category only by inspection, avoiding addi- 

tional processing cost. The practical implication of this is that a large percentage of 

views require no processing or storage (e. g. 44% - on average for all datasets used in 

this thesis in 9 dimensions - directly from the input (base) relation). Further savings 

of up to 77% are achieved - on average for all datasets in 9 dimensions - when the 

optimisation is applied to the whole set of the derivative aggregates (not merely to 

the input (base) relation). 

a Aggregates not belonging to the set of TotaJly-Redundant views are classified as 

Partially-Redundant. A subset of each Partially-Redundant view is g-equivalent to 

a subset of, and thus derivable from, its parent relation. Hence only those tuples, 

which are different from those in its parent relation need be stored resulting in 

remarkable savings in space. Typically, the Partially-Redundant views require 30 

times less space than those stored conventionally. 

o The L-R approach has been evaluated with the set of algoritluns provided in this 

thesis and the experimental work has demonstrated that the approach provides an 

efficient, practical and scalable methodology for OLAP systems. 

e The new approach is independent of the structure of data and can be applied to 

either ROLAP and MOLAP systems and can be also integrated with other existing 

techniques such those described in Chapter 2. 
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e At the querying stage, the retrieval of any aggregate must appear almost as fast 

as a materialised views. The reconstruction of any aggregate from its Difference 

representation satisfies this criterion, with only a small cost in memory for each 

view. 

5.1 Implications of the L-R approach 

The implications of the L-R approach will be discussed in the following sections. The L-R 

approach positively affects indexing, the user interface and the main store. 

5.1.1 Indexing in OLAP 

Randomly accessing records in large relations typically requires indices. [Ram98] defines 

the index as an auxiliary data structure designed to speed up operations which are not 

efficiently supported by the basic organisation of records in that file. Consider the relation 

R which is a set of products P1, P2,.., Pn in a company and the following query: 

SELECT * 

FROM R 

WHERE Product = P2 

The above query requires scanning of the whole relation to retrieve the tuples on product 

P2. Having an index for the relation R would speed-up the searching of qualifying tuples. 

In OLAP databases, indexing is an important issue since the materiaJised views have 

to be indexed to accelerate access to them. The volume of materialised views in an 

OLAP database and the additional overhead from indices, results in very expensive sys- 

tems in storage terms. [Rous82] and [GHRU96] have analysed the topic of the index for 
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materialised. views. The expansion of multidimensional aggregates follows 2n combina- 

tions in which the number of subsets of a set with n-elements is 21. There can be several 
indices in a view and the n-umber of indices varies according to the number of attributes 
in the view. The effect of the L-R approach on indexing is significant. Totally-Redundant 

views avoid any indexing overhead since they are never stored. Accessing tuples from a 
Totally-Redundant view is achieved by pointing to the index of a parent stored relation. 
Thus Totally-Redundant views can utilise the index of their parent views. 

Partially-Redundant views, as described earlier in section 3.2, contain two subset views, 

one with the g-eq-udvalent tuples and a second with the aggregate tuples. The view with 

the g-equivalent tuples requires no indexing. For the second view - the one with the 

Differences - the construction of an index is necessary. However, the index size in this 

view is smaller than the whole Partially-Redundant view. 

5.1.2 The User Interface 

The potential of the L-R approach is significant in the user interface. For OLAP naviga- 

tion, it is important to reduce the time spent by the user extracting useful information from 

the data. Browsing views can be very effective when it supplies the user with information 

regarding redundant views. For example, if a view is 'TotaJly-Redundant' then it needs no 

exploration. By supplying the user with this information, it facilitates faster navigation 

and exploration through the aggregates. The effect is more obvious in cases with large 

dimensionality datasets. For example, a sixteen dimension dataset would require 65,356 

views to explore it. For obvious reasons, the user is unable to navigate through all of these 

views. The L-R enhancement thus provides the means for faster exploration of aggregate 

views since approximately 50% of the views (TPC-D 60 K) are Totally-Redundant. 

The implementation of a user interface could be enhanced by integrating tools to 
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improve the navigation process. Such tools could be based on: audio, visual, colour 

and graphs with fewer vertices and edges than the original (see Figure 5.1). Further 

exploitation of the 'Paxtially-Redundant' views could reveal useful information about the 

similarity between groups of tuples. Figure 5.1 (a) shows the graph of a three dimensional 

cube and its transformation to the low-redundant cube in Figure 5.1(b). The solid lines 

denote the edges of the graph which represent the unique aggregates. The dashed lines 

denote the paths which have been eliminated due to g-equivalent views (in circle). 
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Figure 5.1: Elimination of Totally-Redundant views 

5.1.3 The Main Store 

Data warehouses typically axe large repositories of data which are stored in order of 

Petabytes (106 Gigabytes). [FSM91] observed that data doubles in size every twenty 

months. Conventional implementations of the data cube incorporate algorithms to par- 

tition data into the secondary store and transfer them to main memory for computation 

[RS97], [BR99]. In these implementations, the goal is to utilise the main store to the maxi- 

mum. 
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Those systems which adopt secondary storage techniques can take advantage of the L-R 

method to reduce 1/0 traffic, allowing more data to be retained in the cache or m in 

memory. The important feature of the L-R approach is that its performance in time and 

space savings increases as the number of dimensions increase. Thus, for high dimension- 

ality datasets, L-R will outperform conventional implementations. Hence, the benefit of 

L-R is in retaining faster RAM-accelerated performance while also reducing the required 

RAM storage. 

The methods proposed in this thesis are based on a conceptual data model and not 

on special data structures. In Chapter 3 it was indicated that the approach is based on 

the redundancy of aggregate views or tuples in the database, so any fast data processing 

technique could be combined with the L-R approach. The compatibility of L-R with 

other approaches for selection and computation of multidimensiona. 1 aggregates is a further 

strong advantage. 

5.2 Future Work 

The future work of this research could be to explore the potential of the new L-R approach 

in areas other than the implementation of the data cube. These are: 

e OLAP and data mining which are closely related research areas and support the 

same group of users. The desire to extract useful information from the data has 

introduced new methodologies to the knowledge discovery process. [FSM91] defines 

knowledge discovery in databases as the non-trivial process of identifying vaJid, po- 

tentiaJly useful and ultimately understandable patterns of data. Data mining, as paxt 

of the knowledge discovery process, searches for patterns of interest in a particular 

representationaJ form or a set of such representations [FSSU95]. The L-R method- 

ology identifies and extracts the non-redundant groups of views or groups of tuples 

as was described in Chapter 4. The importance of redundancy in multidimensional 
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aggregates from an information perspective is an area wbich could be investigated. 

Since the L-R approach is the only method of identifying redundancy in the mul- 

tidimensional. aggregates, it could provide meaningful information which may be of 

significant benefit to the user. 

a The implications for the user interface need further research. The evaluation of a 

'new interface' compared to existing implementations would reveal the importance 

of the new method. 

e The compatibility of the L-R with other techniques should also be investigated. This 

area of work would focus on finding possible integrations with methods for selection, 

computation of the data cube and storage of the aggregates as materiaJised views. 
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Appendix A 

Source code: L-R aggregation 

fAuthor: Nikolaos Kotsis 

Synopsis: The main algorithm to perform an aggregation and 

also extracts the Difference representation I 

function TRelat ion. Aggregate (aFirstGroupBy: Boolean; aCountBool: Boolean; 

aKeyPresent: boolean): TRelation; 

var 

i, j, k, m, n, tS, step, hNo, c, y, z: integer; 

found: boolean; 

tupleI, tupleJ: TTuple; 

vAccessTable: array of integer; 

vSingleTable, vHashNo: array of integer; 

relDiff: TRelationDiff; 

x: TRelation; 

newRelation: TRelationStored; 
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bset3, bset4: TBitset; 

bsetl, bset2: ThashSet; 

begin 

if not aKeyPresent then 

begin 

n: =self. NoOfTuples; 

bsetl: =Thashset. Create; 

bset2: =Thashset. Create; 

bset3: =TBitset. Create; 

bset4: =TBitset. Create; 
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newRelation: =TRelationStored. init(self. tupleSize, self. noOfTuples, 

self. schema,, self. dict); 

newRelation - measureCol: =self . schema. index0f (measureName) +1; 

newRelation. measureName: --measureName; 

fself is view of oldRelationl 

ts: =tuplesize; 

setLength(vAccesstable, (3*n)+l); 

setLength(vHashNo, n+l); 

TupleI: =self. get(l); TupleJ: =self-get(l); 

JFind B2 the set of tuple hash values which are held 

by more than one tuplel 

for i: =l to n do 

begin 

self. getTuple(i, TupleI); 

hNo: =tupleI. hashDims; vHashNo[il: =hNo; 
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if not bsetl. inset(hNo) then 

fFirst time this hash value has appearedl 

bsetl. insert(hNo) 

ýAt least one previous tuple has this hash valuej 

else bset2. insert(hNo); 

end; 

setLength(vSingleTable, n+l); 

for i: = 1 to n do 

begin 

hNo: =vHashNo[i]; 

if bset2. inset(hNo) then 

begin 

self. getTuple(i, TupleI); 

found: =false; 

j: =(hNo mod (3*n)); 

step: = hNo mod 13 + 1; 

k: =vAccessTable[j]; c: =O; 

while (not found)and (k<>O) do 

begin 

newRelation-getTuple(k, tupleJ); 

c: =c+l; 

jCheck is the ith tuple found in the m tuples 

already being used by the aggregationj 

if tupleI. equalFields(tupleJ, ts-1) then 
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begin 
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lExisting aggregation foundl 

found: =true; 

if countIsl Jor (aCountBool and aFirstGroupBy)l 

then y: =1 

else 

y: =strToInt(dictionary. stringForToken(TupleI. get(ts))) 

newRelation. A. put(k, ts, (newRelation. A. get(k, ts) + y)); 

vSingleTable[kl: =O; 

end 

else 

begin 

if c<=5 then j: =(j+step) mod (3*n) 

else 

j: =(j+l) mod (3*n); 

k: =vAccessTable[j]; 

end , 

end; 

if not found then 

begin 

M: =M+ 1; 

vAccessTable[jl: --m; 

vSingleTable[ml: =i; 

fmapping from the view to the parent relationl 

for k: =l to tS-1 do 

newRelation. A. put(m, k, tupleI. A[kl); 

if countIsl for (aCountBool and aFirstGroupBy)l then 
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begin 

newRelation-A. put(m, tsfnewRelation. TupleSizel, l) 

end 

else 

begin 

newRelation-A. put(m, tsýnewRelation. TupleSizels 

strToInt(dictionary. stringForToken(TupleI. get(ts)))); 

end; 

end; 

end ýbitlist2 checkl 

else 

begin 

end; 

end; 

bset4. insert (i) ; 

if m>O then 

begin 

fStorage optimization through "perfect split-out 

of several aggregated tuples"I 

for i: =l to m do 

begin 

if vSingleTable[i]<>() then 

bset4. insert(VSingleTable[il)else 

begin 

newRelation. getTuple(i, tupleI); 
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k: =k+1; 

if k<>i then 

newRelation. putTuple(k, tupleI); 

end; 

end; 

m: =k; 

end; 

if m>O then // m= NoofTuples 

begin 

fFinally convert Count or total to string or 

token as appropriatel 

for i: =l to m do 
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newRelation. A. put(i, ts, dictionary. insertStringToken(IntToStr 

( newRelation. A. get(i, ts)))); 

newRelat ion. reSize (t sf tuplesizel, mfno of aggregate tuplesl); 

relDiff: =TRelationDiff. create(newRelation, self, self. schema); 

relDif f. partRelation2. selectedTuples: = bset4; 

if (relDiff. partrelationl. noOfTuples> 

relDiff. partrelation2. noOfTuples*10) 

then 

begin 

aggregate: =relDiff. Deepcopy; 

relDiff. free; 

fSo few parent tuples remaining that it is better with a 

simple Stored Relation instead of a Difference Relationj 

end else 
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begin 

aggregate: =relDiff; 

end; 

end else 

begin 

newRelation. free; 

aggregate: = self; 

bset4. free; 

end; 

vAccessTable: =nil; vHashNo: =nil; vSingleTable: =nil; 

bsetl. free; bset2. free; bset3. free; 

tupleI. free; tupleJ. free; 

end else aggregate: =self; 
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end; 
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Source code: L-R data cube 

ýAuthor: Nikolaos Kotsis 

Synopsis: The following methods belong to Group-by and Cube-by objects 

which were used for the evaluation of the L-R approachl 

constructor TGroupBy. initColumnNumber (aRelat ion: TRelat ion; 

const aColumnNumber, aNeasureNumber: integer; 

aggregate: TVariantFunc); 

var newCol: integer; 

begin 

projectedColumns: =TTuple. init (aRelation. tupleSize*2); 

relation: =aRelation; 

parentNoOfTuples: =relation. NoOfTuples; 

newSchema: =TStringlist. create; firstGroupBy: =true; 

if aColumnNumber>aRelat ion. tUPle size then 

begin 
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writeln('Error : ColumnNumber l, aColumnNumber, 

I exceeds tuple size 1, aRelation. tuplesize); 

readln; 

end else 

begin 
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newCol: =newSchema. add(aRelation. schema. strings[aColumnNumber-11); 

projectedColilmns. put(newCol+l, aColumnNumber); 

NoOfColumns: =newCol; 

end; 

if aMeasureNumber>aRelat ion. tuple size then 

begin 

writeln('Error : MeasureColumnNumber l, aColumnNumber, 

I exceeds tuple size 1, aRelation. tuplesize); 

readln; 

end else 

begin 

measureCol: =aMeasureNumber; aggregatel: =aggregate; 

end , 

end; 

constructor TGroupBy. initAllDimensionsMeasureMame (aRelat ion: TRelat ion; 

const aMeasureName: string; aggregate: TVariantFunc; 

firstGB: boolean; aRootRelation: TRelation); 

var i, j, coliimn: integer; 

begin 

firstGroupBy: =firstGB; fFor use in CubeBy initialisationl 
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if firstGB then 

RootRelation: =aRelation else RootRelation: =aRootRelation; 

projectedColumns: =TTuple. init(aRelation. tupleSizef+ll); 

relation: =aRelation; 

parentNoOfTuples: =relation. NoOfTuples; 

newSchema: =TStringlist. create; 

j: =O; i: =O; 

while j<= (aRelation-schema. count-1) do 

begin 

if aRelat ion. schema. Strings [i I <>aMeasureName then 

begin 

newSchema. add(aRelation. Schema. strings[jl); 

projectedColumns. put(i+lj+l); 

end; 

j: =j+l; 

end; 

column: = aRelation. Schema. indexof(aMeasureName); 

if column= (-I) then 

begin writeln('Error - l, aMeasureName, l not found in schema'); 

readln; 

end else 

begin 

measureCol: =colliTnn+l; measureName: =aMeasureName; 

aggregatel: =aggregate; 
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end; 
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end; 

constructor TGroupBy. initColumnName(aRelation: TRelation; 

const aColumnName, aMeasureName: string; 

aggregate: TVariantFunc); 

var newCol2colliTnn: integer; 

begin 

projectedColumns: =TTuple. init (aRelation. tupleSize*2); 

relation: =aRelation; 

parentNoOfTuples: =relation. NoOfTuples; 

newSchema: =TStringlist. create; f irstGroupBy: =true; 

colilTnn: = aRelation. Schema. indexof(aColumnName); 

if column= (-I) then 

begin 

writeln('Error - l, acolumnName, l not found in schema, ); 

readln; 

end else 

begin 

newCol: = newschema. add(aColumnName)+I; 

column: =column+l; 

projectedColilmns. put (newCol, cobimn); 

NoOfColumns: =newCol; 

end; 

Collimn: = aRelat ion. Schema. indexof(aMeasureName); 

if colilmn= (-l) then 
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begin 
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writeln('Error - l, aMeasureName, l not found in schema'); 

readln; 

end else 

begin 

measureCol: =coluTnn+l; measureName: =aMeasureName; 

aggregatel: =aggregate; 

end; 

end; 

constructor TGroupBy. initMeasureName (aRelat ion: TRelat ion; 

const aMeasureName: string; aggregate: TVariantFunc; 

firstGB: Boolean; aRootRelation: TRelation); 

var coliTnn: integer; 

begin 

firstGroupBy: =firstGB; 
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if FirstGB then RootRelat ion: =aRelat ion else RootRelation: = aRootRelation; 

projectedColilmns: =TTuple. init (aRelation. tupleSize*2); 

relation: =aRelation; 

parentNoOfTuples: =relation. NoOfTuples; 

column: = aRelation. Schema. indexof (aMeasureName) ; 

if column= (-I) then 

begin 

writeln('Error - I, aMeasureName, l not found in schema'); 

readln; 

end else 

begin 
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measureCol: =coluTnn+l; measureName: =aMeasureName; 

aggregatel: =aggregate; newSchema: =TStringList. create; 

end; 

end; 

function TGroupBy. hashschema: integer; 

var i, sum, dsum: integer; 

begin 

f$Q-1 fOverflowchecks offl 

dsum: =O; sum: =O; 

for i: = 0 to newSchema. count-1 do 

begin 

sum: =sum + hash(newSchema. strings[i]); 

dsum: =dsum+sum; 

end; 

if dsum<O then dsum: = dsum shr 1; 

hashschema: =dsum; 

end; 

constructor TGroupby. initMeasureNamefromGB(aGB: TGroupBy; 

const aMeasureName: string; aggregate: TVariantFunc; 

firstGB: boolean; aRootRelation: TRelation); 

var column : integer; 

begin 

firstGroupBy: =firstGB; 
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if firstGB then rootRelation: =aGB. Relation else rootRelat ion: =aRootRelat ion; 



APPENDLX B. SOURCE CODE: L-R DATA CUBE 

projectedColumns: =TTuple - init (aGB. newSchema - count*2); 

relation: =aGB. newRelation; 

parentNoOfTuples: =aGB. relation. NoOfTuples; 

column: =aGB. newschema. indexof (aMeasureName) ; 

if column= (-1) then 

begin 

writeln('Error - l, aMeasureName, l not found in schema'); 

readln; 

end else 

begin 

measureCol: =coliimn+l; 

measureName: =aMeasureName; 

aggregatel: =aggregate; 

newSchema: =TStringList. create; 

end; 

end; 

procedure TGroupBy-execl; 

var newCol: integer; 

begin 

newCol: = newschema. add(measureName)+I; 

proj ectedColiimns. put (newCol, MeasureCol) ; 

NoOfColilmns: =newCol; 

hNo: = self. hashschema; 

execlDone: =true; 
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end; 
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destructor TGroupBy. free; 

begin 

measureName: ="; 

inherited free; 

end; 

procedure TGroupBy. freeRelation; 

begin 

inherited freeRelation; 

exec2Done: =false; 

end; 

function TGroupBy. reducedAggregate: boolean; 

var oldrelation: TRelationView; 

begin 

if not execldone then 

begin 

noOfColumns: = newschema. add(measureName)+l; 

projectedColi, Tnn s. put (noOf ColiiTnns, MeasureCol) ; 

end; 
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oldRelat ion: =TRelationView. create (relation, newSchema, projectedColumns) ; 

reducedAggregate: =oldRelation. reducedAggregate; 

oldRelation. free; 

end; 
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procedure TGroupBy. exec; 

var 

oldRelation: TRelationView; 

newCol: integer; 

newRel: TRelation; 

diffRel: TRelationDiff; 

begin 

if m<>-l then 

begin 

if not execldone then 

begin 

newCol: = newschema. add(measureName)+l; 

projectedColilmns. put(newCol, MeasureCol); 

NoOfColumns: =newCol; 

hNo: = self. hashschema; 

end; 

countBool: =Caggregatel=Qcount; 
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oldRelation: =TRelationView. create (relation, newSchema, projectedColumns) ; 

oldRelation. measurecol: =oldRelation. tupleSize; 

if firstGroupBy and countBool then oldRelation. setCountIsi; 

parentNoOfTuples: = relation. NoOfTuples; 

newRel: =oldRelation. aggregate (f irstGroupBy, countBool, keyPresent); 

resultRelation: =newRel; 

newRelation: =newRel; 

end; 
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end; 

procedure TGroupBy. setKeyPresent; 

begin 

keyPresent: =true; 

end; 

function TGroupBy. tupleCost: integer; 

begin 

tupleCost: =parentNoOfTuples; I+ newRelation. noOfTuples; l 

end; 

function TGroupBy-estCost: integer; 

begin 

if storedEstCost<=O then StOredEstCost: =self. tuplecost; 

estCost: =storedEstCost; 

end; 

fstart of Cubel 

procedure TCubeBy-display; 

var i: integer; 

begin 

writeln; 

writeln(lNumber of GroupBys in CubeBy = 1, NoOfGroupBys); 
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for i: =l to NoOfGroupBys do 
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begin 

writeln('Tuple cost vGroupBy[il. tupleCost); 

readln; 

end; 

end; 

function TCubeBy-getValue(i: integer): TRelation; 

begin 

getValue: =vGroupBy[il. value 

end; 

function TCubeBy. getValueSchema(s: TStringList): TRelation; 

var 

found: boolean; i: integer; 

begin 

i: =l; 

found : =false; 

while (i<=noOfGroupBys) and (not found) do 

begin 

found: =s. equals(self. getValue(i). Schema); 

i: =i+l; 

end; 

i: =i-1; 

if (not f ound) then 

getValueSchema: =nil 

else 
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getValueSchema: =self-getValue(i); 

end; 

destructor TCubeBy. free; 

var i: integer; 

begin 

vGroupBy: =nil; vGBAccessTable: =nil; 

for i: =l to noOfCompGBs do 

compGBList[il. free; 

compGBList: =nil; 

for i: =l to noOfKeys do 

keyList[il. free; 

keyList: =nil; 

linherited free; j 

end; 

procedure TCubeBy. freeAllGroupBys; 

var i: integer; 

begin 

for i: =1 to noOfGroupBys do 

begin 

vGroupBy[il. freeRelation; 

vGroupBy[il.: free; 

end; 

self. free; 

end; 

procedure TCubeBy. fetchAllGroupBys; 
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var i: integer; 

begin 

for i: =i to noOfGroupBys do 

begin 

vGroupBy[il. copyOfValue. free; 

end; 

end; 

function TCubeBy. must Be Small erThanBas eRe lat ion (aDimens ionS, chema: 

TstringList): boolean; 

var i: integer; minteger; 

begin 

i: =1; 
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while (n<=baseRelat ion. Noof Tuples) and (i<=aDimensionSchema. count) do 

begin 

n: =n*baseRelation. cardinal ity (aDimens ionS chema. strings U-11); 

i: =i+l; 

end; 

mustBesmallerThanBaseRelation: =n<baseRelation. NoOfTuples; 

end; 

function TCubeBy. reducedAggregate(anAggregateSchema: TstringList): boolean; 

va-r 

aGB: TGroupBy; 

i: integer; 
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begin 

aGB: =TGroupBy. initMeasurename (baseRelat ion, measureName, aggregatef . 
false, nil); 

for i: =O to anAggregateSchema-count-I do 

if measureName<>anAggregateSchema. strings [il then 

aGB. addColumnname(anAggregateSchema. strings[il); 

reducedaggregate: =aGB. reducedAggregate; 

aGB-free; 

end; 

function TCubeBy. Containskey(y: Tstringlist; x: Tstringlist) : boolean; 

var 

i, l, size: integer; 

contain: boolean; 

begin 

contain: =false; 

1: 

size: =y. count; 

for i: =O to size-1 do 

begin 

if x. indexof (y. strings [il ) <> -1 then 

end; 

if 1=size then 

contain: =true 

else 
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Containskey: =false; 

Containskey: =contain; 

end; 

function TCubeBy. ContainsAnykey(x: Tstringlist) : boolean; 

var 

i: integer; 

keyfound: boolean; 

begin 

i: =1; 

keyfound: =false; 

while (i<=noOfKeys) and (not keyfound) do 

begin 

keyfound: =containskey(Keylist[il, x); 

i: =i+l; 

end; 

Containsanykey: =keyfound; 

end; 

function TCubeBy. power(x: integer): integer; 

var 

i: integer; 

y, k: integer; 

begin 
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y: 2; 
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for i: =l to x do 

begin 

k: =Y*k; 

end; 

power: =k; 

end; 
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procedure TCubeBy. makeKeyList (aRelat ion: TRelat ion; const aMeasureName: string; 

aggregate: TVariantFunc); 

var 

posin, line: integer; fl, f2: textfile; 

j, i, n: integer; 

noOfCombinations: integer; 

mask: integer; 

dimensionSchema: TStringList; 

newAggregateSchema: TstringList; 

begin 

assignfile(fl, lc: \GBList. txt'); 

assign-file(f2, lc: \Klist. txt'); 

Rewrite (f 1) ; 

Rewr it e (f 2) ; 

fObtain the dimensions-only schema, leaving out the measure of interestj 

dimensionSchema: =TStringList. Create; 

for i: =O to aRelat ion. schema. count- 1 do 

if aMeasureName <> aRelat ion. schema. strings [il then 

dimensionSchema. add(aRelation. schema. strings [il); 
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noOfCombinations: =power(dimensionschema. count); 

setLength (keyList, noOfCombinations+l); 

setLength(compGBList, noOfCombinations+l); 

noOfCompGBs: =O; noOfKeys: =O; 

for i: =l to noOfCombinations do 

begin 

fForm. the schema required by the current ith. combinationj 

newAggregateSchema: =TStringList-create; 

for j: =O to dimensionSchema. count-1 do 

begin 

mask: =1 shl 

if (i and mask)<>O then 

newAggregateSchema. add(dimensionSchema. strings [j] ); 

end; 

fDecide what to do with itl 

if must Be smallerThanBas eRe lat ion (newAggregat e Schema) then 

begin 

fIt can't be a key so add it to the compGBListl 

noOfCompGBs: =noOfCompGBs+i; 

compGBList[noOfCompGBs] : =newAggregateSchema; 

end 

else if containsanykey(newAggregateSchema) then 

begin 

newAggregateSchema. free; 

ýminiznum number of minimal keysl 
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end 
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else if reducedAggregate(newAggregateSchema) then 

begin 

fAdd it to the compGBListl 

noOfCompGBs: =noOfCompGBs+l; 

compGBList[noOfCompGBs] : =newAggregateSchema; 

end else 

begin 

I This is a new key: add it to the keyListl 

noOfKeys: =noQfKeys+l; 

keyList[noOfKeysl: =newAggregateSchema; 

end; 

end; 

dimensionSchema. free; 

end; 

procedure TCubeBy. initMeasureName2(aRelation: TRelation; 

const aMeasureName: string; 

aggregate: TVariantFunc); 

var start, jPos: integer; 

function sameGB(gBl, gB2: TGroupBy): boolean; 

var i : integer; same: boolean; 

begin 

i: 

107 

same: =(gbl. hNo=gB2. hNo) and(gBl. newSchema. count=gB2. newSchemA. count); 

while same and (i<gBi. newSchema. count) do 
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begin 

same: = gbl. newSchema. strings[il=gB2. newSchema. strings[i]; 

if same then i: =i+l; 

end; 

sameGB: =same; 

end; 

function alreadyPresent(aGB: TGroupBy): boolean; 

var found: boolean; i, j, step, c: integer; 

begin 

found: =false; fhno=hashSchema(aGB. newSchema); I 

j: = aGB. hNo mod (ma NoOfGroupBys*3); 

step: = aGB-hNo mod 13 +1; c: =O; 

i: =vGBAccessTable[j]; 

while (i<>OMOfGroupBysj) and (not found) do 

begin 
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f ound: = (aGB. hNo=vGroupBy [il 
. hNO) and sameGB (aGB, vGroupBy [il ); 

if not found then 

begin 

if c>5 then step: =I; 

j: =(j+step)mod (maxNoOfGroupbys*3); 

c: =c+l; 

i: =vGBAccessTable[j]; 

end; 

end; 
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if found then 

begin 

ýi: =i-l; I 

if (i>=start) and (aGB. estCost<vGroupBy[il. estCost) then 

begin 

vGroupBy[il. free; 

vGroupBy[il : =aGB; 

end else aGB. free; 

end; 

jpos: =3 ; 

alreadyPresent: =found; 

end; 

procedure makeGBs(aGB: TGroupBy); 

var 

ts, k, j, ii: integer; 

gB: TGroupBy; 

r: TRelation; 

keyPresent: boolean; 

testSchema: TstringList; 

begin 

ts: =aGB. NoOfColilTnns ; 

for k: = 1 to (ts-i) do 

begin 

r: =aGB. value; 

TestSchema: =TStringList. Create; 
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for j: = 1 to (ts-1) do 

if (j<>k)and(r. schema. strings[j-ll<>aMeasureName) then 

testSchema. add(aGB. newschema. strings[j-11); 

keypresent: =containsAnyKey(testSchema); 

Ikeypresent: =false; l 

if keypresent then 

begin 
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gb: =TGroupBy. initMeasureNamefromGB(aGB, aMeasureName, 

aggregate, FALSE, aGB. rootRelation); 

gb. setKeyPresent; 

end 

else 

gB: =TGroupBy. initMeasureNamefromGB(aGB, aMeasureName, 

aggregate, FALSE, aGB. rootRelation); 

for j: =l to TestSchema. count do 

gB. addColumnName(TestSchema-strings[j-11); 

testSchema. free; 

cr'h . b. execl; 

if not alreadyPresent(gB) then 

begin 

ii: =ii+l; 

vGroupBy[iil: =gB; 

NoOfGroupBys: =NoOfGroupBys+l; 

vGBAccessTable[jPosl: =NoOfGroupBys; 

end; 

end; 
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end; 

var 

ts: integer; 

gB: TGroupBy; 

r: Trelation; 

k3: integer; 

fl: textfile; 

begin 

assignfile(fl, lc: \outGBs. txt'); 

rewrite(fl); 

NoOfGroupBys: =I; start: =l; 

f Allocate max number GroupBys which might be neededl 

ts: =aRelation. tupleSize; 

ts :=2 shl ts; maxNoOfGroupBys: =ts; 

setlength(vGroupBy, ts); setlength(vGBAccessTable, ts*3+1); 

ill 

gB: =TGroupBy. initAllDimensionsMeasureName(aRelation, aMeasureName, 

aggregate, true, nil); 

gb. execl; 

vGroupBy[NoOfGroupBysl: = gB; 

while start<=NoOfGroupBys do 

begin 

start: =start+l; 

makeGBs(vGroupBy[start-11); 

end; 

setlength(vGroupBy, start); fReduce to required lengthl 

closefile(fl); 
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end; 

constructor TCubeBy. initMeasureName(aRelation: TRelation; 

const aNeasureName: string; aggregate: TVariantFunc); 

var 

timerl, timer2, timer3, timer4: comp; 

existingSelectedIndex: boolean; 

begin 

if aRelation. selectedindex then 

existingselectedindex: =true else 

aRelation. makeSelectedIndex; 

baseRelation: =aRelation; 

MeasureName: =aMeasureName; 

aggregatef: =aggregate; 

self makeKeyList (aRelation, aMeasureName, aggregate); 

self. initMeasureName2 (aRelation, aMeasureName, aggregate); 

if not existingselectedindex then 

aRelation. freeSelectedIndex; 

end; 

function TCubeBy. tupleCost: integer; 

var i: integer; cost: integer; 

begin 

cost: =O; 

for i: =l to NoOfGroupBys do 
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begin 
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cost: =cost+ vGroupBy[il. tupleCost; 

end; 

tupleCost: =cost; 

end; 
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end. 



Appendix C 

Analytical Results 

C-1 Computing the Data Cube 

The timings shown are the total time, consisting of the time to select the non-redundant 

views utilising the Key-algorithm and the time required to compute the non-redundant 

data cube. These timings are compared to those taken for the conventionaJ data cube 

approach. All figures in this section show the results in a logarithmic scale and every 

figure has an associated table showing the results anaJyticaJly. 

The synthetic datasets 

Figure CA and Table C-1 show time performance of the L-R approach using the 600K 

TPC-D dataset. Figure C. I illustrates that the Totally-Redundant approach (g-equivalent) 

is faster than the conventiona. 1 data cube and its performance depends on the dimension- 

ality of the dataset. The combined version is slower than the Totally-Redundant ver- 

sion but is still faster than the conventional one. Table CA gives the results in detail. 

The results using the 60K dataset TPC-D are shown in Figure C. 2 and Table C-2. The 

114 
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Totally-Redundant approach is again faster than the conventiona. 1 approach and increases 

its performance after the five-dimension data cube has been used- The combined version 

is slower until it reaches the ten-dimension data cube. In the ten-dimension data cube, the 

combined approach is faster than the conventional data cube. Figure C. 3 and Table C. 3 

show the experimental results taken from 6K dataset TPC-D. The Totally-Redundant 

approach is slower until the five-dimension data cube is used, but after the six-dimension 

data cube it its performance increases and after this point, remains faster than the con- 

ventional data cube. The combined approach is slower than both the Totally-Redundant 

and conventional approaches but matches the performance of the conventional approach 

with the ten-dimension data cube. Figure CA and Table CA show the results using the 

hotel dataset. Similar conclusions can be drawn from this test. The Totally-Redundant 

approach is faster than both the conventional and the combined approach after the five- 

dimension data cube. The combined approach is slower than both the conventionaJ and 

Totally-Redundant approaches but it increases its performance in the inine-dimension data 

cube where it becomes faster than the conventional data cube. 

The real datasets 

In both the weather and adult datasets, the performance time of the L-R approach is 

similar. Figure C. 5 and Table C. 5 show the results using the weather dataset and Fig- 

ure C. 6 and Table C. 6 show the results using the adult dataset. These results, when 

compared to the synthetic datasets, demonstrate that the performance of the Totally- 

Redundant approach is affected negatively. The conventional data cube is faster in all 

cases and only in the weather dataset (see Figure C. 5) is it close to the combined ap- 

proach. This arises from the non-existence of keys in these real datasets, as was discussed 

in section 3.5.2. The time overhead, in the Totally-Redundant approach, is time expended 

by the Key algorithm without benefit. 



APPENDIX C. ANALYTICAL RESULTS 

-0 
c 

10000 

1000 

100 

conventional 
totally-redundant 

combined 

10 L 

4 56 
Number of Dimensions 

116 

Figure C. I: Time performance of the L-R approach in TPC-D Lineitern Table (600K) 

Time(sec) 
Dimensions Conventional Totally-Redundant Combined 

4 60.74 65.6 165 
5 164 144.5 317 
6 415 353.3 558 
7 1500 734.3 1309 

------------ 
----- - E) " --, 

Table C. I: Time performance of the L-R approach in TPC-D Lineitem Table (600K) 
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Figure C. 2: Time performance of the L-R approach in TPC-D Lineitem Table (60K) 

Time(seconds) 
Dimensions Conventional Totally-Redundant Combined 

3 1.72 2.77 8.8 
4 4.11 4.71 20.9 
5 9.89 9.95 37 
6 22-98 20.54 66-32 
7 68.37 38.87 116.05 
8 172.7 68.98 204.7 
9 410 147 394.8 
10 810 312 641 

Table C. 2: Time performance of the L-R approach in TPC-D Lineitem Table (60K) 
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Figure C. 3: Time performance of the L-R approach in TPC-D Lineitem Table (6K) 

Time(seconds) 
Dimensions Conventional Totally-Redundant Combined 

3 0.21 0.29 0.83 
4 0.0.47 0.53 1.41 
5 1.04 1.13 2.46 
6 2.270 2.31 4.04 
7 6.61 6.09 12.8 
8 12.55 10-30 22.1 
9 29.68 19.2 40.15 
10 71.89 40.24 79-89 
11 167 91.82 163 

Table C. 3: Time performance of the L-R approach in TPC-D Lineitem Table (6K) 
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Figure CA: Time performance of the L-R approach in Hotel dataset 

Time(seconds) 
Dimensions Conventional Totally-Redundant Combined 

4 0.11 0.13 0.42 
5 0.21 0.27 0.745 
6 0.46 0.47 1.30 
7 0.96 0.82 2.36 
8 2.20 1.75 4.35 
9 5.72 3.45 8.10 
10 13.43 7.2 13.76 
11 29.90 19.39 26.02 
12 72.78 48.19 61.58 
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Table CA: Time performance of the L-R approach in Hotel dataset 
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Figure C-5: Time performance of the L-R approach in the Weather dataset 

Time(seconds) 
Dimensions Conventional Totally-Redundant Combined 

4 11.48 15.4 22.3 
5 24.18 30.21 44.7 
6 58.33 73-16 88.31 
7 135.7 171-11 184.34 
8 303.8 372.9 381.6 
9 729 896.5 785 
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Table C. 5: Time performance of the L-R approach in the Weather dataset 
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Figure C. 6: Time performance of the L-R approach in the Adult dataset 

Time (seconds) 
Dimensions conventional Totally-Redundant Combined 

3 0.79 1.23 4.27 
4 1.99 2.78 7.33 
5 4.55 5.93 11.26 
6 10.61 14.27 22.06 
7 24.61 34.71 47.27 
8 56.48 80-15 98.47 
9 150 204.51 203 
10 307-57 486 424 

Table C. 6: Time performance of the L-R approach in the Adult dataset 
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C-2 Storage of Materialised Views 

The Synthetic datasets 

ExperimentaJ results from the TPC-D datasets are shown in Figures C. 7, C. 8, C. 9 and 

Tables C. 7, C. 8, C. 9 for the 600K, 60K and 6K datasets, respectively. Figure C. 7 shows 

the results from the test run on the 600K TPC-D dataset. Memory limitations restricted 

the tests using the conventional approach to seven dimensions. The space required for the 

Totally-Redundant and the combined approaches is 1.8 and 7.7 times smaller, respectively, 

than the space required for the conventional storage. These results are shown in detail in 

Table C. 7. 

Figure C. 8 illustrates the space savings of the L-R approach in ten dimensions for the 

TPC-D 60K dataset. Due to the higher dimensionality, the savings are higher than those 

achieved using the 600K dataset. Here the space requirements are 3.6 (Totally-Redundant) 

and 26.7 (combined) times smaller than the conventional approach. The results can be 

seen in Table C. 8. 

Similar results were recorded using the 6K dataset and are shown in Figure C. 9 and 

in detail in Table C. 9. These results show that space requirements are 3.26 (Totally- 

Redundant) and 24.5 (combined) times smaller than the conventional method. 

The hotel dataset has produced similar results to the TPC-D data. This was expected 

since it is a uniform dataset. These results are shown in Figure C. 10 and Table C-10. 

Experiments were run with up to twelve dimensions and the indicated savings are larger 

than the TPC-D datasets; space savings are 7.66 (Totally-Redundant) and 38.1 (combined) 

times smaller than the conventional storage method. 
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The Real datasets 

Results from the weather dataset are shown in Figure C. 11 and Table C. 11. One difference 

between this dataset and the synthetic ones, is that the Totally-Redundant method does 

not perform as well, in terms of space savings. This results from the small number of keys 

found by the Key-algorithm. Note however, that the savings increase with the number of 
dimensions and that after the ninth-dimension cube, the savings are more apparent than 

those achieved in a smaller number of dimensions. The combined method is insensitive 

to data skewness and performs equally as well in terms of space savings, as the synthetic 

datasets discussed previously. The space requirements were 1.1 (Totally-Redundaait) and 

15.3 (combined) times smaller than the conventional approach in nine dimensions. 

'0- 
For the adult dataset the test results are shown in Figure C. 12 and Table C. 12. The 

performance of the Totally-Redundant approach is also poorer in this dataset than in that 

of the uniform (synthetic) datasets. The combined version, however, is insensitive to data 

skewness and dramatically reduces space requirements in the storage of materiahsed views. 

Space savings are up to 30 times greater than for the conventional approach. This is shown 

in Table C. 12. With the same number of dimensions, the g-equivalent approach is at least 

2.2 times more economical than the conventional approach in ten dimensions. Note the 

sudden increase in space savings of the g-equivalent approach in the transition from 9 

to 10 dimensions. This change occurred because the observational keys found previously 

affect more views in ten dimensions than in any smaller dimensionality. 
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Figure C. 7: Space savings of the L-R approach in TPC-D Lineitem Table (600K) 

Memory allocated (bytes) 
Dimensions Conventional Totally-Redundant Combined 

4 162,723,092 136,298,576 88,434,024 
5 305,755,268 221,675,992 108,385,160 
6 636,167,484 374,318,332 124,770,880 
7 11300,0007000 722,573,540 167,893,536 
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Table C. 7: Space savings of the L-R approach in TPC-D Lineitem Table (600K) 
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Figure C. 8: Space savings of the L-R approach in TPC-D Lineitem Table (60K) 

Memory allocated (bytes) 
Dimensions Conventional Totally-Redundant Combined 

3 12,668,100 12,656,196 91787,756 
4 17,460,120 14,812,988 91816,276 
5 32,468,468 22,118,688 11,506,872 
6 66,2647468 36,898,344 13,7617780 
7 142,350,724 62,433,700 15,166,048 
8 3103612,908 99,743,252 18,554,036 
9 672,372,452 185,156,856 301622,664 
10 112501360,420 347,195,728 46,746,652 

Table C. 8: Space savings of the L-R approach in TPC-D Lineitem Table (60K) 
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Figure C. 9: Space savings of the L-R approach in TPC-D Lineitem Table (6K) 

Time(sec) 
Dimensions Conventional Totally-Redundant Combined 

3 1,644,740 11645,300 943,567 
4 21121,536 11857,852 11138,956_ 
5 31130,460 21410,580 11310,004 
6 5,302,204 3,550,080 11549,676 
7 12,760,780 7,356,324 20,232,605 
8 29,469,580 13,804,896 21490,540 
9 66,209,240 24,099,268 21914,036 
10 143,761,944 44,036,512 51845,800 
11 312,391,104 8019101700 9,133,652 

Table C-9: Space savings of the L-R approach in TPC-D Lineitem Table (6K) 
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Figure C. 10: Space savings of the L-R approach in the hotel dataset 

Memory allocated (bytes) 
Dimensions Conventional Totally-Redundant Combined 

4 656,044 627,044 253,240 
5 877,604 7701436 305,728 
6 11423,672 11081,468 376,152 
7 21855,160 114423908 405,132 
8 5,734,132 21546,156 662,560 
9 12,428,092 41440,444 936,060 
10 27,569,012 61236,620 11159,964 
11 60,352,868 81922,480 11638,860_ 
12 1301535,816 17,019,420 31423,164_ 

Table C-10: Space savings of the L-R approach in the hotel dataset 
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Figure C. 11: Space savings of the L-R approach in the weather dataset 

Memory allocated (bytes) 
Dimensions Conventional Totally-Redundant Combined 

4 24,224)308 22,343,788 12,214,472 
5 4017591772 38,408,936 13,566,378 
6 83,271,824 757277,160 14,244,316 
7 183,996,368 163,301,248 2016801660 
8 406,705,552 358,258,956 33)3511124 
9 886,559,064 778,375,868 58,122,528 
10 out of memory out of memory 103,316,944 

Table C. 11: Space savings of the L-R approach in the weather dataset 

conventional 
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combined 

------------- ----------------- 
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Figure C. 12: Space savings of the L-R approach in the Adult dataset 

Memory allocated (bytes) 
Dimensions conventional Totally-Redundant Combined 

3 413511036 413511648 2,888,260 
4 613311296 61332,480 _ 31112,19 6 
5 10,600,732 91456,104 31168,372 
6 201292,488 18,913,620 _ 410891700 
7 43,665,852 42,049,492 _ 61388,900 
8 94,838,596 93,001,120 10,498,208 
9 20674611812 2011510,012 187318,068 
10 982,046,644 436,772,964 32,067,976 

Table C. 12: Space savings of the L-R approach in the Adult dataset 
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C. 3 Totally-Redundant Views in Derivative Relations 

The previous sections demonstrate the significance of the Totafly-Redundant views ap- 

proach for the computation of multidimensional aggregates and their storage as ma- 

terialised views. Experiments in real datasets show that the performance of Totally- 

Redundant approach was negatively affected by the skewness of the datasets. The aim of 

this series of experiments was to identify the redundancy in derivative aggregate relations 

and show that applying the Key-algorithm recursively can lead to substantial increases in 

space savings. 

The figures described below reveal the potential of the Totally-Redundant approach 

when the Key-algorithm is utilised recursively. 

The synthetic datasets 

Figure C. 13 and Table C. 13 compare the volume of the Totally-Redundant views when 

they are g-equivalent to the base relation with the volume of the Totally-Redundant views 

when they are g-equivalent to the derivatives. For the 600K dataset in seven dimensions, 

the results show a further redundancy of 23.5% compared to those found in the base 

relation. 

Figure C. 14 and Table C. 14 illustrate the results of experiments using the TPC-D 60K 

dataset. This shows that redundancy is approximately 15% more than the redundancy 

found by the simple key algorithm when the derivative aggregates have been searched. 

Figure C. 15 and Table C. 15 compare the same quantities for the 6K dataset. The 

redundancy found in this method is approximately 21% more than that found by using 

the input relation as a reference for the equdvalence property. 
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For the hotel dataset, the redundancy in ten dimensions was 13.3% more than the 

simple (base relation) method. These results are illustrated in Figure C. 16 and Table C. 16. 

The real clatasets 

The effect of the recursive Key-algorithm on the derivative relations using real datasets 

underpins the importance of the technique. Results for the weather dataset reveal that 

redundancy is 48.41% more than that found by the simple key algorithm. The simple 

Key-algorithm had identified only 10.26% of the data cube redundancy, compaxed to tests 

run in the derivative relations, in which the redundancy was 59.93%. Figure C-17 and 

Table C. 17 show the results of six different data cube trials. 

Figure C. 18 and Table C. 18 show results for the adult dataset. For the simple Key- 

algorithm, redundancy of Totally-Redundant views (based on the base relation) was 1.88%, 

in contrast to the redundancy identified in derivative relations of 65.28%. 
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Figure C. 13: The effect of Totally-Redundant views on space in the TPC-D Lineitem 
Table (600K) 

Tot ally- Redundant views % 
Dimensions Totally-Redundant (base relation) Totally-Redundant (derivatives) 

4 36.54 43.06 
5 36.35 36.25 
6 43.97 43-97 
7 45.87 56.66 

Table C. 13: The effect of Totally-Redundant views on space in the TPC-D Lineitem Table 
(600K) 
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Figure C. 14: The effect of Totally-Redundant views on space in the TPC-D Lineitem 
Table (60K) 

Totally-Redundant views % 
Dimensions Tot ally-Redundant (base relation) Totally-Redundant (derivatives) 

4 36-62 36.62 
5 43.06 43.06 
6 48.72 54.35 
7 54.60 65.86 
8 63.47 76.33 
9 66.80 84.47 
10 70.39 84.79 

Table C. 14: The effect of Totally-Redundant views on space in the TPC-D Lineitem Table 
(60K) 
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Figure C. 15: The effect of Totally-Redundant views on space in the TPC-D Lineitem 
Table (6K) 

Totally-Redundant views % 
Dimensions Totally-Redundant (base relation) Totally-Redundant (derivatives) 

4 37.75 37.75 
5 41.65 41.65 
6 43.94 55.59 
7 43-33 68.91 
8 49.76 75-84 
9 58.34 82.90 
10 68-18 89.70 

Table C. 15: The effect of Totally-Redundant views on space in TPC-D Lineitem Table 
(6K) 
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Figure C. 16: The effect of Totally-Redundant views on space in the Hotel dataset 

Totally-Redundant views % 
Dimensions Tot ally-Redundant (base relation) Totally-Redundant (derivatives) 

3 34.04 34.04 
4 37.64 37-68 
5 56.48 60.26 
6 56.51 68.56 
7 61.97 75.04 
8 73.64 86.62 
9 81.41 91-95 
10 83.03 94-08 

Table C. 16: The effect of Totally-Redundant views on space in the Hotel dataset 
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Figure C. 17: The effect of Totally-Redundant views on space in the Weather dataset 

Totally-Redundant views % 
Dimensions Totally-Redundant(base relation) Totally-Redundant (derivatives) 

4 14.91 14.91 
5 7.199 14.39 
6 10.79 57-19 
7 11.13 59.54 
8 10.19 20.39 
9 10.26 59.93 

Table C. 17: The effect of Totally-Redundant views on space in the Weather dataset 
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Figure C. 18: The effect of Totally-Redundant views on space in the Adult dataset 
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Totally-Redundant views % 
Dimensions Totally-Redundant (base relation) Totally-Redundant (derivatives) 

4 none none 
5 12.95 51.91 
6 6.28 51-80 
7 2.94 51.66 
8 1.42 51.72 
9 1.73 60.06 
10 1.88 65.28 

Table C. 18: The effect of Totally-Redundant views on space in the Adult dataset 
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Reconstruction of the aggregate requires a semi-join operation after aggregation, which is 

an expensive operation. Faster implementation of the semi-join operator can be achieved 

using the Bloomjoin [Bloom7O] rather than a conventional join algorithm [ML86], [ME92]. 

This method is based on Bloom filters which is an array of bits Bfl.. M] with every bit 

initially set to zero. Given two relations, the approach for joins is described in the following 

stages. For the first relation, a hash function h, is applied to the join attributes. The 

hash value h(s) points to a bit in the Bloom filter and this bit is set to 1. At the end 

of the process the array bits axe either Is or Os. The array is then used to determine 

whether a given attribute value is present in the relation. For the second relation, the 

join attributes are hashed and if the hash value points to a bit set to 1 in the Bloom 

filter, the corresponding tuple is likely to have a match in the first relation. The Bloom- 

filter has been developed by [SL76] to screen out most accesses to a differential file for 

view maintenance purposes [Hans99]. [Babb79] and [MTD76] have also used bit-arrays 

for faster joins. However, applying this technique to extract the Difference representation 

from the aggregate relation would require the scanning of the two relations (parent and 

aggregate) for every Partially-Redundant relation. The aggregate algorithms described in 

section 3.6 achieve this extraction in a more efficient way. 


