
DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF STRATHCLYDE

MULTIDIMENSIONAL AGGREGATION
IN OLAP SYSTEMS

A THESIS SUBMITTED TO

THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE FOR POSTGRADUATE STUDIES

OF THE UNIVERSITY OF STRATHCLYDE

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Nikolaos Kotsis

February 2000

i

@ Nikolaos Kotsis 2000

The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by the University of Strathclyde Regulation 3.49.

Due acknowledgement must be made of the use of any material contained in, or derived

from, this thesis.

ii

Declaration

I declare that this Thesis embodies my own research work and that it is composed by

myself. Where appropriate I have made acknowledgement to the work of others.

Nikolaos Kotsis

To my Family

iii

Abstract

On-line analytical processing (OLAP) provides multidimensional data analysis to support

decision making. OLAP queries require extensive computation based on aggregation along many

dimensions and hierarchies. The time required to process these queries has traditionally prevented

the interactive analysis of large databases and in order to accelerate query-response time, pre-

computed results are often stored as materialised views for later retrieval. This adds a prohibitive

storage overhead when applied to the whole set of aggregates, known as the data cube. Storage

space and computation time can be significantly reduced by partial computation.

The challenge in implementing the data cube has been to select the minimum number of views

for materialisation, while retaining fast query response time.

This thesis makes significant contributions to this area by introducing the Low Redundancy

(L-R) approach which provides the means for the selection, computation and storage of non-

redundant aggregates.

Firstly, through the introduction of a novel technique, redundant aggregates are identified thus

allowing only distinct aggregates to be computed and stored.

Secondly, further redundancy is identified and eliminated using a second novel technique which

stores these distinct aggregates in a compact differential form.

Novel algorithms were introduced to implement these techniques and provide a solution which

is both scalable and low in complexity.

Both techniques have been evaluated using real and synthetic datasets with experimental

results, and have achieved significant savings in computation time and storage space compared

to the conventional approach. Savings have been shown to increase as dimensionality increases.

Existing techniques for implementing the data cube differ from the L-R approach but they can

be integrated with it to achieve faster query-response time.

Finally, the implications of this work reach beyond the area of OLAP to the fields of decision

support systems, user interfaces and data mining.

iv

Acknowledgements

I would like to thw1k my supervisor Douglas McGregor for his financial support and

advice during my thesis, especially during his absence caused by serious illness. I am glad

that he was able to make a complete return to work and I wish him continued good health.

My special thanks to Andrew McGettrick for acting as a temporary supervisor for a

yeax and a haX I aJso thank him for his advice and support thereafter.

I would also like to acknowledge George Weir, Mohamed Ould-Khaoua and Akis

Petropoulakis for their valuable advice and discussions during my research and especially

for reading this thesis.

Richard Fryer, Andrew Forrest, yvind Stromme, Antoan Izmirlief and Robert Lambert

were great company during my studies and it was my pleasure to be involved with them

in different research activities.

I am grateful to my fwnily for the support they have given me not only during my

PhD degree but throughout my education and life. I thank my brother Thomas for his

encouragement and interest during my studies and for helping me to find the right path.

I also thank my brother Kostis for his enthusiasm about my work. They both gave me

strength and motivation. Last but not least, I thank my parents for their endless help and

trust in my decisions throughout my life and studies.

My greatest thanks goes to my wife Geraldine for her constant patience and under-

standing during the long hours of my studies. With admirable strength and ability, she

undertook the strain of managing everything else to allow me to stay focused on my work.

This thesis would not have started or finished without her.

Contents

Declaration

Abstract iii

Acknowledgements iv

Table of Contents

List of Figures ix

List of Tables xii

Introduction 1

1.1 The Traditional Relational Database Model 3

1.1.1 Relational Algebra and SQL 4

1.1.2 Redundancy in Existing RelationaJ Theory 5

1.2 The MultidimensionaJ ConceptuaJ Model 5

1.2.1 The ROLAP Model 7

1.3 The Aggregate Functions 9

1.4 Main Issues in the Implementation of the Data Cube 10

1.5 Approaches to the Implementation of the Data Cube 12

V

CONTENTS vi

1.5.1 Trade-off between Time and Space 13

1.6 Contributions
................................... 14

1.7 Thesis Outline 16

2 Background 18

2.1 The Cube-by Operator 18

2.2 The Set of Aggregations: A Hypercube Lattice 19

2.2.1 The Dimension Hierarchy Lattice 21

2.3 The Role of Materialised Views in Data Warehousing 22

2.3.1 Related Work
............................... 24

2.3.2 Methods for Aggregation
........................ 24

2.3.3 Computing the Data Cube
....................... 25

2.3.4 Selection of Views for Materialisation 27

2.3.5 Further Related Work 29

The Low Redundancy Concept 31

3.1 TotaJly-Redundant Views 32

3.1.1 Extending the Relational Theory: Totally-Redundant Views 33

3.1.2 Example of Totally-Redundant Views 35

3.2 Partially-Redundant Views 35

3.2.1 Extending the Relational Theory: Partially-Redundant Views 36

3.2.2 Example of Partially-Redundant Views 37

3.3 Difference Algebraic Equations 37

3.4 Implementation Considerations 39

3.4.1 View Types 40

3.5 Implementing the Totally-Redundant views 42

3.5.1 The Key Algorithm 42

CONTENTS vii

3.5.2 The Complexity and Performance of the Key Algorithm
....... 43

3.5.3 The Recursive Key Algorithm 46

3.6 Implementing the Partially-Redundant Views 47

3.6.1 The Aggregation Algorithms 47

3.6.2 The B-Aggregator 48

3.6.3 The V-Aggregator 49

3.6.4 Example of the V-Aggregator 49

3.7 Computing the L-R Data Cube 50

4 Experimental Confirmation 54

4.1 The ExperimentaJ Configuration 55

4.1.1 The Datasets 55

4.2 Computing the Data Cube - Performance Timings 57

4.2.1 The Performance of the Key algorithm 57

4.2.2 Full Computation of the Data Cube 59

4.3 Storage of the Materialized Views - space savings 62

4.4 Totally-Redundant Views of Derivative Relations 64

4.5 Query Response Time - Performance Timings 65

Conclusion 68

5.1 Implications of the L-R approach 70

5.1.1 Indexing in OLAP
............................ 70

5.1.2 The User Interface 71

5.1.3 The Main Store 72

5.2 Future Work 73

Bibliography 75

CONTENTS viii

Appendices 82

A Source code: L-R aggregation 83

B Source code: L-R data cube 90

C Analytical Results 114

C. 1 Computing the Data Cube 114

C. 2 Storage of Materialised Views 122

C. 3 Totally-Redundant Views in Derivative Relations 130

D The Semi-Join 138

List of Figures

1.1 A Three Dimensional tuple (Product, Time, Location, Sales) 7

1.2 The Star schema 8

1.3 The Location hierarchy
............................. 8

1.4 Data cube size (in tuples) vs dimensions
.................... 11

1.5 Implementing the data cube 12

1.6 The curve of benefit
............................... 14

2.1 The Hypercube lattice
.............................. 20

2.2 The dimensions hierarchy
............................ 21

3.1 The g-equivaJent tuple 33

3.2 Producing the Difference representation 38

3.3 The types of views in L-R 41

3.4 The cube lattice 43

3.5 The performance of the Key algorithm 44

3.6 Performing an aggregation using the B-Aggregator 48

3.7 Extracting the differences during aggregation using the V-Aggregator ... 51

3.8 The L-R data cube 52

ix

LIST OF FIG URES

4.1 The conventional data cube time compared to the Key-algorithm time in

the TPC-D 600K dataset 58

4.2 The conventional data cube time compared to the Key-algorithm time in

the Hotel dataset 58

4.3 Time required to compute the data cube: conventionally over L-R, average

of the six datasets 61

4.4 Performance in time of the L-R approach compared to the conventionaJ

approach in different datasets 61

4.5 Space savings growth ratio in aU datasets 63

4.6 Performance in space savings of the L-R approach compared to the conven-

tional approach in different datasets 63

4.7 Group-by's response time 67

5.1 Elimination of Totally-Redundant views 72

CA Time performance of the L-R approach in TPC-D Lineitem Table (600K) 116

C. 2 Time performance of the L-R approach in TPC-D Lineitem Table (60K) 117

C. 3 Time performance of the L-R approach in TPC-D Lineitem Table (6K) 118

CA Time performance of the L-R approach in Hotel dataset, 119

C. 5 Time performance of the L-R approach in the Weather dataset, 120

C. 6 Time performance of the L-R approach in the Adult dataset 121

C. 7 Space savings of the L-R approach in TPC-D Lineitem Table (600K)
.. .. 124

C. 8 Space savings of the L-R approach in TPC-D Lineitem. Table (60K)
.- .. 125

C. 9 Space savings of the L-R approach in TPC-D Lineitem Table (6K)
... .. 126

C. 10 Space savings of the L-R approach in the hotel dataset 127

C. 11 Space savings of the L-R approach in the weather dataset 128

C. 12 Space savings of the L-R approach in the Adult dataset 129

LIST OF FIGURES xi

C. 13 The effect of Totally-Redundant views on space in the TPC-D Lineitem

Table (600K) 132

C. 14 The effect of Totally-Redundant views on space in the TPC-D Lineitem

Table (60K) 133

C. 15 The effect of Totally-Redundant views on space in the TPC-D Lineitem

Table (6K) 134

C. 16 The effect of Totally-Redundant views on space in the Hotel dataset 135

C. 17 The effect of Totally-Redundant views on space in the Weather dataset 136

C. 18 The effect of Totally-Redundant views on space in the Adult dataset . 137

List of Tables

1.1 Compaxison between OLTP and OLAP applications 2

1.2 The Customer relation 4

1.3 The Sales- Transaction Relation 6

1.4 The Aggregate Relation 10

2.1 The Sales- Transaction Relation 19

3.1 Notation of main components 32

3.2 The Input Relation R.............................. 36

3.3 The g-eq-udvalent aggregate relation R' of relation R (Table 3.2) 36

C. 1 Time performance of the L-R approach in TPC-D Lineitem Table (600K) 116

C. 2 Time performance of the L-R approach in TPC-D Lineitem Table (60K) 117

C. 3 Time performance of the L-R approach in TPC-D Lineitem Table (6K) 118

CA Time performance of the L-R approach in Hotel dataset 119

C. 5 Time performance of the L-R approach in the Weather dataset 120

C. 6 Time performance of the L-R approach in the Adult dataset 121

C. 7 Space savings of the L-R approach in TPC-D Lineitem Table (600K)
.... 124

C. 8 Space savings of the L-R approach in TPC-D Lineitem Table (60K)
.... 125

C. 9 Space savings of the L-R approach in TPC-D Lineitem Table (6K)
..... 126

xii

LIST OF TABLES xiii

C-10 Space savings of the L-R approach in the hotel dataset 127

C-11 Space savings of the L-R approach in the weather dataset 128

C-12 Space savings of the L-R approach in the Adult dataset 129

C. 13 The effect of Totally-Redundant views on space in the TPC-D Lineitem

Table (600K)
................................... 132

C. 14 The effect of Totally-Redundant views on space in the TPC-D Lineitem

Table (60K)
.................................... 133

C. 15 The effect of Totally-Redundant views on space in TPC-D Lineitem Table

(6K)
.. 134

C. 16 The effect of Totally-Redundant views on space in the Hotel dataset 135

C. 17 The effect of Totally-Redundant views on space in the Weather dataset .. 136

C-18 The effect of Totally-Redundant views on space in the Adult dataset 137

Chapter 1

Introduction

Technological developments which assist in the abstraction of useful insights from large

volumes of data are becoming increasingly important today as industrial, commercial and

scientific databases proliferate and grow in volume. This thesis introduces novel theory

and system's design that greatly contribute to one such area - the provision of multi-

dimensional aggregates in On-Line-Analytical-Processing (OLAP). OLAP tools provide

multidimensional data analysis by computing summaries and breakdowns along many di-

mensions [FSS95]. They are designed for decision support where historical, summarised

and consolidated data is more important than detailed, individual records [CD97].

The functional and performance requirements of OLAP systems differ from those of

On-Line-Ransaction-Processing (OLTP) which were traditionally supported by opera-

tional databases [Codd93]. OLTP applications typically automate the day-to-day opera-

tions such of an organization as clerical data processing tasks, order entry and banking

transactions. These applications axe structured, repetitive and consist of short, atomic,

isolated transactions. Thus, while an OLTP application needs to record details of an in-

dividual transaction, an OLAP application provides analysis of consolidated information

about large numbers of transactions. OLAP queries are complex, read-only queries, in

I

CHAPTER 1. INTRODUCTION 2

contrast to those posed in OLTP systems which usually deal with less complex read/write

queries. Table 1.1 surnmarises the differences between OLTP and OLAP database appli-

catiom [Sch97].

OLTP OLAP
Data atomic summarised

Usage of system run business analyse business
User interaction pre-determined ad-hoc

Work characteristics read/write read mostly
Typical user clerical professional
Unit of work transaction query

Records accessed tens millions
Number of users thousands hundred

Focus data in info out

Table 1.1: Comparison between OLTP and OLAP applications

Decision support systems (DSS) provide large-scale data analysis with facts from previ-

ously stored, historical data. Data warehouses, through their integrated collection of data,

provide the infrastructure for DSS applications [Wid95], [BZ98]. OLAP tools, as a paxt

of DSS, are designed to provide multidimensional breakdowns involving large numbers

of aggregate queries on detailed data [Gm99]. Aggregation operates by grouping records

belonging to a specified set of domains. In line with [John98], an aggregate is a function

- count, sum, avevage, maximum, minimum - which operates on some specific column of

a relation and is applied separately inside each set of grouping attributes.

OLAP queries may have to process millions, if not billions, of records in a data ware-

house, which increases the processing cost. The key problem is that the number of possible

aggregates in a database can be laxge and the time required to process any of these ag-

gregates 'on the fly' as a part of an interactive diaJogue is prohibitive.

One approach to accelerate the querying response time is to pre-compute and store

the results in advance for later retrieval. However, for large relations with a large num-

CHAPTER 1. INTRODUCTION 3

ber of dimensions full pre-computation and storage increases storage overheads and the

processing time required to compute all the aggregations.

The proposed Low-Redundancy (L-R) approach introduced in this thesis is a novel

way of achieving fast computation and compact storage of the aggregates, through the

selection of non-redundant aggregates. This is achieved by extending relational theory and

applying it to the OLAP environment. The L-R approach differs from existing techniques

for selecting and storing the multidimensional aggregates [HRU96], [SDN98], [BPT97],

[BR99]. This novel approach is however compatible, and could be combined, with these

techniques.

1.1 The 'Eraditional Relational Database Model

The main structure of the relational model is the relation. Following the mathematical

description of Codd [Codd77], given the sets S1, S2, .. -, Sn, R is a relation on these n

sets if it is a subset of the Cartesian product S, x S2 x ... x Sn. In line with [Ram98],

a relation consists of a relation schema and a relation instance. The relation schema

describes the relation name, the name of its columns (fields or attributes) and the domain

of each column. The following example shows a relation schema for the relation Customer

shown in Table 1.2:

Customer(Nam e: St ring, Address: String, Age. -Integer, TelephoneNo., -Integer)

The above schema indicates that the attributes Name, Address, Age and TelephoneNo

have domains named String, String, Integer and Integer respectively.

A relation instance is a set of tuples, also called records, in which each tuple has the

same number of fields as the relation schema.

CHAPTER 1. INTRODUCTION

Customer
Name Address Age TelephoneNo

cl Adl 34 4506632
C2 Ad2 23 3050312
C3 Ad3 45 2242342
C4 Ad4 56 8202356
C5 Ad2 25 9657302
C6 Ad4 23 5034366
C7 Ad5 42 4524504
C8 A5 33 9855652
C9 Ad6 34 3380867

Table 1.2: The Customer relation

4

When a domain (or combination of domains) of a given relation has values which

uniquely identify each element (n-tuple) of that relation it is called a candidate key. A

candidate key is non-redundant and is either a single domain or a combination such that

none of the participating domains are superfluous in uniquely identifying each tuple. A

relation may have more than one candidate key and when this occurs, one of them is

arbitraxily selected and called the pTimary key.

1.1.1 Relational Algebra and SQL

A database can be accessed using two formal languages - relational algebra and relationaJ

calculus [Ram98]. Relational algebra allows the user to compose operators to form a com-

plex query through its relational algebra expressions. Operators such as selection, pro-

jection, union, cross-product and difference can be expressed in relational algebra as well

as join and division. Relational calculus provides a declarative, non-procedural language

in which users can express the answer of interest. However, their mathematical notation,

relational algebra and relational calculus makes them unsuitable for non-technical users.

Another language, the structured query language (SQL), is more appropriate for a wider

CHAPTER 1. INTRODUCTION

audience. A basic form of an SQL syntax with its intepretation is as follows:

SELECT (projected attributes)

FROM (relation name)

WHERE (selected tuples)

GROUP BY (aggregate attributes)

1.1.2 Redundancy in Existing Relational Theory

5

Codd [Codd7O] referred to the redundancy in the named set of relations and the stored

set of relations and identified two categories as follows:

a Strong Redundancy. A set of relations is strongly redundant if it contains at least

one relation that possesses a projection which is derivable from other projections of

relations in the set.

e Weak Redundancy. A collection of relations is weakly redundant if it contains a

relation that has a projection which is not derivable from other members but is at

all times a projection of some join of other projections of relations in the collection.

These methods for redundancy may be useful in traditional relational system's design but

not in OLAP where the main problem is the expansion of data in the formation of the

data cube. This will be discussed later in this chapter.

1.2 The Multidimensional Conceptual Model

The motivation behind the multidimensional approach is the need to describe complex

OLAP queries in an intuitive way. The multidimensionaJ conceptua. 1 model has been

adopted fairly widely as an alternative to the relational conceptual model for OLAP ap-

CHAPTER 1. INTRODUCTION 6

plications. Consider the Sales- Ransaction relation in Table 1.3 with three attributes

Product, Location and Time.

Sales- Transaction
ProductID LocationID TimeID Sales

p1 L1 20/01/99 50
p1 L1 20/01/99 34
p1 L2 03/03/96 22
P2 L3 16/10/98 8
P2 L3 16/10/98 96
P2 L1 20/01/99 56
P2 L1 09/04/95 45
P3 L2 26/02/97 98
P3 L2 26/02/97 33

Table 1.3: The Sales- Transaction Relation

TypicaJly, the user is interested in aggregating an attribute of interest called the mea-

sure (e. g., the attribute Sales in Table 1.3). The relationship between the measure and

other attributes in a relation can be realised in the multidimensional domain when at-

tributes on which the measure depends are considered to be dimensions. This transfor-

mation from the relational to multidimensional model may be represented as a Hypercube

[HRU96]. Figure 1.1 shows the tuple (P2, L11 09104195,45) as a point in the three di-

mensional space, with coordinates being the values of the dimension attributes. This is a

simple example of a transformation from the relational to multidimensional model.

When the underlying structure of data is orgainised as relations, the approach is called

Relational OLAP or ROLAP [CD97], [MUW99]. When the physicaJ structure for OLAP

databases is a multidimensional cube the approach is called Multidimensional OLAP or

MOLAR In the latter approach, the physical data storage in mudtidimensional arrays

corresponds to the conceptual multidimensional model and OLAP queries can then be

answered directly.

CHAPTER 1. INTRODUCTION

C

Q
3

Product

, Z) oll

Figure 1.1: A Three Dimensional tuple (Product, Time, Location, Sales)

The ROLAP Model

7

The typical data organization in a ROLAP model is to store the detailed data in a table

known as the fact table (as shown in Table 1.3) and any information related to the detailed

data in separate tables known as the dimension tables. This structure is called the star

schema [Kim96]. An example of a star schema is shown in shown in Figure 1.2 with the

following schema for the fact table:

Sales- Transaction(ProductID, LocationID, TimeID, Sales)

CHAPTER 1. INTRODUCTION

and the following dimension tables:

Product(ProductID, Type, Category)

Location (LocationID, City, Country, Continent)

Time(TimeID, Month, Year)

Dimension tables

Fact table Product dimension

ProductID
LocationlD Ucation dimension
TimelD

Sales I Time dimension

Figure 1.2: The Star schema

8

The relation Sales-Ransaction contains a tuple for every product sold in a transaction.

Thus, the fact table shown in Table 1.3 contains three dimensions and a measure of in-

terest, namely Sales. Each dimension may have a set of attributes denoting the hierarchy

in this dimension. A simple example of a hierarchy is the LocationID, in the Location

dimension schema, in which City belongs to Country and Country belongs to Continent.

This hierarchy is illustrated in Figure 1.3.

LocationlD --I, - City Am Country NN. Continent

Figure 1.3: The Location hierarchy

CHAPTER 1. INTRODUCTION 9

Navigation through different levels of summary information is achieved by operations

such 'drill-down' and 'roll-up'. The drill-down operation is the process of examining the

data from the abstract to a more detailed level of the hierachy. As the drilling progresses

more detailed information is revealed e. g., from Continent to Country to City to particular

location (LocationID). The opposite operation is called roll-up in which the examination

of data moves from a more detailed to abstract level.

OLAP queries often require multiple joins between the fact table and the dimension

tables. For example, the query "Give me the total sales of the product P1 by Year and

City", would require the aggregation in ProductID and the join between the fact table

and the dimension tables Location and Time respectively. The dimension attributes in the

fact table are foreign keys of the corresponding dimension tables. When dimension tables

are further normalised to reduce redundancy, the resulting data organisation is referred

to as a snowflake schema [CD97].

1.3 The Aggregate]Functions

Aggregations are classified into scalar aggregates and aggregate functions [Gra93]. Scalar

aggregates calculate a single scalar value from an unary input relation, e. g., the maximum

value of an attribute of a relation. Users often seek information of larger granularity, e. g.,

Sales per Product and Time, irrespective of the Location. This aggregation of Sales over

the Product and Time dimensions can be expressed using the following SQL statement:

SELECT Product. ProductID, Time. TimelD as (SUM)Sales

FROM Sales-7ýunsaction

GROUP-BY Product. ProductlD , Time. TimeID

CHAPTER 1. INTRODUCTION 10

The aggregation functions are relational operators; they consume and produce relations

[Gra931. An aggregation function takes a binaxy input relation (e. g., totaJ of Sales in

each month). The key element of the obtained new relation is the 'BY-list' or grouping

attributes. Applying the above statement to the Sales- Transaction relation in Table 1.3

produces the derivative relation ProductID by TimeID shown in Table 1.4.

Product by Time
ProductID TimeID SaJes

Pi 20/01/99 84_
Pi 03/03/96 22
P2 16/10/98 _ 104
P2 20/01/99 56
P2 09/04/95 _ 45
P3 26/02/97 _ 131

Table 1.4: The Aggregate Relation

Gray et al. [GBLP96] classify Aggregate functions into the following categories :

a Distributive - Counto, Mino, Maxo, Sumo

e Algebraic - Averageo, Standard Deviationo, MaxNO, Mino, centre of masso

e Holistic - Mediano.

Work by [Klug82] and [OOM87] presents aggregation expressions by extending the rela-

tional algebra and relational calculus.

1.4 Main Issues in the Implementation of the Data Cube

The main issue in the computation of multidimensionaJ aggregates, known as the data

cube, is the presence of large tables with large numbers of dimensions which presents a

CHAPTER 1. INTRODUCTION

a)
E
0

0
Q)

_0

0

75_

E

0

>

1000

900

800

700

600

500

400

300

200

100

I)

IIIIII TPC-D 60K

6789 10
Number of Dimensions

Figure 1.4: Data cube size (in tuples) vs dimensions

11

performance problem for the database designer. A given measure in n dimensions gives

rise to 2' possible combinations or aggregates (thus a relation with 16 attributes would

require 65,536 aggregates, excluding hierarchies).

Another issue is that the fact tables in OLAP databases are usually sparse. Sparseness

occurs when a table has a small cardinality (number of tuples) compared to the cross

product of the cardinalities of its dimension domains. Sparseness causes the volume of

materialized views to be orders of magnitude larger than the input relation. The effect

of sparseness on multidimensional aggregates has been considered by [RS97], [Kim96]

and [Pen99]. Figure 1.4 shows the growth (in tuples) experienced during this research

work when materialising the full data cube of a ten-dimension dataset using the TPC-D

benchmark dataset. The experiments demonstrate that, for the particular example, the

data volume required for the datacube (using the TPC-D, 60K) was approximately two

orders of magnitude greater than the base relation. The efficient implementation of the

data cube is the main focus of this thesis.

CHAPTER 1. INTRODUCTION 12

1.5 Approaches to the Implementation of the Data Cube

There are three approaches which may be adopted in implementing the data cube.

In the first approach, shown in Figure 1.5(a), the data retrieval mechanism directly

computes the necessary aggregation. This is caRed the 'on-the-fly' approach which com-

putes every requested aggregate on demand. Although the 'on-the-fly' approach is very

economical in storage terms, it is too slow for large fact tables.

InpuUOuput

Data Retrieval Mechanism

On- e- y
aggregation

I

Input DB

View Indexing
mechanism

Materialised
Views

Aggregator View Indexing
mechanism

I

Input DB Materialised
Views

(a) (b) (c)

Figure 1.5: Implementing the data cube

The second approach, depicted in Figure 1.5(b), pre-computes all possible aggregates

in advance and stores them as summary tables for later retrieval. These summary tables

are referred to as materialised views. This approach has been adopted to overcome the

poor response of 'on the fly' implementation. For high level aggregatioins, the materialised

CHAPTER 1. INTRODUCTION 13

views approach is not expensive in terms of additional storage resources and provides

rapid response. The low-level abstractions, however, axe large and numerous, resulting

in a many-fold expansion of the originaJ relation. Though significant research has been

carried out to optimize the materialized view approach, the method encounters several

difficulties mainly due to the large number of views [HRU96]. It also implies a long pre-

computation time and precludes even modest updating. The experiments conducted in

this thesis (refer to Chapter 4) show that full materialisation typicaJly requires at least

two orders of magnitude more space than the input base table.

Finally, the third approach attempts to select only a subset of the views for mate-

rialisation, as illustrated in Figure 1.5(c). Selecting a subset of aggregates reduces the

computation time and also minimizes the space requirements. Systems which adopt this

method attempt to reduce the total query response and the cost of computing the selected

views, given limited amounts of resources (time and space). Existing techniques (algo-

rithms) for the selection of materialised views have been proposed by [HRU96], [Gupt97],

[BPT97] and [SDN98]. Chapter 2 presents a more detailed description of the main tech-

niques for selection of the multidimensional aggregates.

1.5.1 'JI)rade-off between Time and Space

The long processing time required to compute an OLAP query, forces database workers to

trade space for time. Consider the schematic curve illustrated in Figure 1.6, first presented

by [SDN98] which shows the problem facing the database designer. The x-axis represents

the storage cost and the y-axis the time required for a database to answer an OLAP

query. The horizontal dashed-line of the curve denotes the trade-off of space against time

(query response) in the materialised view approach and the vertical dashed-line denotes

the trade-off of time against space. The optimum solution is represented by the solid

line in which the balance between time and space cost provides an economical and fast

CHAPTER 1. INTRODUCTION 14

OLAP system. The closer the curve moves to the origin the greater the balance between

space and time. Achieving this optimum with existing techniques is a computationally

intractable problem [SDN98] as will be shown in Chapter 2.

slow but not expensive

1 on-the-fly

u
optimal
balance

mv

fast but expensive

1.6 Contributions

Space cost

Figure 1.6: The curve of benefit

The fundamental problem encountered by all OLAP systems when they adopt the ma-

terialized view approach is that the volume of materialized views expands exponentially

with the number of dimensions. Existing techniques, described in Chapter 2, attempt

to overcome the problem by selecting an appropriate subset of views for materialisation,

on the basis that others can be computed more easily from the stored subset. However,

no method to date has considered redundancy in the data representation and how this

concept can lead to a new optimised approach.

The main contribution of this thesis is the introduction and proposition of the L-R

CHAPTER 1. INTRODUCTION 15

approach as a new efficient way of selecting and storing multidimensional aggregates in

an OLAP system.

The L-R first identifies the redundant views and then computes and stores only the

distinct or non-redundant ones. The whole set of aggregates can however be retrieved later

in the querying process without any significant compromise in time. More specifically, the

novel L-R methodology claims to:

Select only a subset of the distinct aggregates for computation and storage on the

basis that only this subset needs to be processed. The distinct aggregates can be

used later to produce the full set of aggregates (the full data cube) without any

additional cost. The selection algorithm requires approximately 10% of the time

conventionally required to compute the data cube. As the selected distinct subset

is smaller than the whole set of aggregates, the overall computation is considerably

faster than the conventional method described by [GBLP96].

e Efficiently store the computed aggregates. This can be achieved by introducing a

differential representation explicitly storing only those tuples which are distinct from

those of the input relation. This technique can achieve remarkable savings in storage

space.

9 Retrieve any aggregate relation (or group-by) almost instanteneously as if it were

a conventional materialised view. This performance can be achieved with a small

additional cost in storage space for each aggregate relation.

CHAPTER 1. INTRODUCTION 16

Futher contributions of this thesis are:

e Proposing novel extensions to relational theory and applying it in an OLAP context.

Standard relational theory does not take account of the problem of data expansion in

implementing the data cube. The work presented in this thesis provides extensions

to relational theory pertinent to the data cube.

9 Introducing new algorithms for the selection, computation and storage of multidi-

mensional aggregates. The proposed algorithms are scalable with low complexity.

e Providing an extensive set of experimental results confirming the theory by empirical

measurements with the goal of demonstrating fairly the practicability of the new

approach.

1.7 Thesis Outline

In Chapter 2, the state of the art in the field of OLAP is described. Existing methods for

the selection, computation and storage of multidimensional aggregates are discussed.

Chapter 3 presents the Low-Redundancy (L-R) approach. The theoretical and practi-

cal issues of the approach are discussed. A set of algorithms is also presented as a basis

for implementation techniques.

Chapter 4 details the experimental work which has been caxried-out. The experiments

use two real datasets, the 'Iýansaction Processing Council (TPQ benchmark dataset in

three different scale factors and one synthetic dataset. These demonstrate that the the-

oretical advantages of the L-R approach can be achieved in practice and also that it is

scalable.

Chapter 5 presents the conclusion and proposed future work. The implications of the

L-R approach in the area of decision support systems, such as the user interface for OLAP,

CHAPTER 1. INTRODUCTION 17

data mining and indexing of the materialised views, are discussed. Appendix A and B

present the source code which was used to evaluate the L-R approach. Appendix A shows

the aggregation routine. Appendix B presents the Group-By and Cube-By objects with

their methods. Appendix C presents the analytical experimental results carried-out in this

thesis. Finally Appendix D discusses the conventional implementation of the Semi-join

operator.

Chapter 2

Background

2.1 The Cube-by Operator

With the introduction of the cube-by operator by Gray et al. [GBLP96], all possible aggre-

gates can be expressed in one SQL statement. The cube-by operator is presented as the

n-generalisation of simple aggregate functions and the system which executes the cube-by

operator has to provide all the possible aggregates. In the relation Sales- Transaction in Th,

ble 2.1, the following aggregations are possible: (ProductID-LocationID), (ProdudID-

TimeID), (LocationID-TimelD), (ProductID-LocationID-TimeID), (ProdudID),

(LocationID), (TimeID), (All). A given measure in n dimensions gives rise to 2n possible

combinations. Thus the cube-by operator computes every group--by corresponding to all

possible combinations from a list of dimensions. In the above example, all the 2n possible

combinations can be expressed in SQL by one cube-by statement as follows:

SELECT S. ProductID, S. LocationID, S. TimelD AS (SUM)Sales

FROM S (Sales
-'Iýansaction)

CUBE-BY S. ProductlD, S. LocationID, S. TimeID

18

CHAPTER 2. BACKGROUND

Sales- Transaction
ProductID LocationID TimeID Sales

pI L1 20/01/99 50
p1 L1 20/01/99 34
p1 L2 03/03/96 22
P2 L3 16/10/98 8
P2 L3 16/10/98 96
P2 L1 20/01/99 56
P2 Ll 09/04/95 45
P3 L2 26/02/97 98
P3 L2 26/02/97 33

Table 2.1: The Sales- Transaction Relation

19

The benefit of the cube-by operator is that the user is no longer required explicitly to

issue all the possible group--by statements. The user can now more conveniently navigate

through the various levels of summary information in the database. The impact of the

cube-by operator is greater when dimensions with multiple hierarchies are considered, the

result of which may be equivalent to thousands of explicit group-bys.

2.2 The Set of Aggregations: A Hypercube Lattice

The aggregations derived from the relation in Table 2.1 can be organised into a lattice as

illustrated in the direct acyclic graph (DAG) of Figure 2.1. [HRU96] introduced the lattice

framework for OLAP to express the dependency between the queries (or aggregations) in

the data cube. For example, if aggregation AI can be computed from aggregation A2 then

it can be said that Al is dependent on A2. In the example of the Sales- Transaction relation,

ProductID can be computed from the ProductID-LocationlD, hence, the ProductlD is

dependent on ProductID-LocationID. The cube lattice of the Sales- Transaction relation

CHAPTER 2. BACKGROUND

ProductID-LocationID-TimelD

(Productl]D-LocationID) (ProductBD-TimeDD) (LocationID-TimeID)

(ProductID) (LocationID) (TimeID)

All

Figure 2.1: The Hypercube lattice

20

is shown in Figure 2.1. Following [KR82], a partially ordered set, where every finite subset

has a least upper bound (lub) and greatest lower bound (glb), is called a lattice. The

partial ordering of the queries is expressed by the
--< operator.

The Hypercube lattice is defined if the following criteria are preserved [HRU96]:

e There is a partial order -< between the aggregate views in the lattice.

e There is a top view in the lattice and all views axe dependent on the top view.

The ancestors and descendants of a lattice axe defined as follows:

ancestor (a) = lb Ia -< bl

descendant (a) = lb Ib -< al

CHAPTER 2. BACKGROUND

equaJly for an aggregate a:

parent (a) = lb I a -< b, c, a -< c, c -< bj

child (a) = lb I b -< a, c, b -< c, c -< al

where a -< b means a -< bAa =ýk

2.2.1 The Dimension Hierarchy Lattice

21

In Section 1.2.1 it was noted that the data in the dimension tables define dimension

hierarchies. The hierarchies in the dimension tables can also be represented by a lattice.

The Product, Location and Time dimensions could have lattices as shown in Figure 2.2.

The bottom element 'none', means that there is no grouping by that dimension. Although

ProductlD

Type

Category

none

LocationED

City

Country

Continent

none

Date

Month

Year

none

Figure 2.2: The dimensions hierarchy

CHAPTER 2. BACKGROUND 22

the month and year in the Time hierarchy axe comparable, some of the elements may not

be directly comparable. For example, weeks and months do not strictly contain each other.

A lattice representing the set of views - from the data cube and the hierarchies - can be

obtained by grouping each combination of elements from the set of dimension hierarchies.

The result is the direct product of the lattice for the fact table along with the lattices for

the dimension hierarchies [HRU96]. Thus, instead of aggregating only a single value in

the data cube, the various levels of each dimension hierarchy are aggregated.

2.3 The Role of Materialised Views in Data Warehousing

Before discussing the materialised views, the concept of a relational view will be discussed.

A view is a virtual representation of a relation and defines a function from a set of base

tables to a derived table. Every time the view is referenced, the function is recomputed.

The existence of the views is significant because usually the actual schema of the database

is normalised and the querying process is less effective when applied to the

normalised relations (i. e., the join of dimension tables with the fact table) [GM99]. Thus to

increase effectiveness, the views axe defined as de-normalised relations. Consider a relation

R with attributes a, b, c, d, e referred to as R(a, b, c, d, e). The view V1 is defined as an

aggregation of R in the grouping attributes R(a, b, c) and can be expressed in SQL as

follows:

CREATE VIEW Vl(Vl. a, Vl. b, Vl. c) AS

SELECT R. a, R. b, R. c

FROM R

GROUP BY R. a, R. b, R-c

CHAPTER 2. BACKGROUND 23

A view is called a materialised view when its tuples are stored explicitly in the data-

base. The benefit of materialised views is that accessing the view is normally much faster

than recomputing the view [Rous97]. The materialised view has the same characteris-

tics as any data held in relational form and thus is like a copy of the data already in a

form which can be accessed quickly. Materialised views aJso eliminate the need to expand

and recompute the view definition each time the view is used [GM99]. Using the previous

example, a new query on attributes a, b could utilise the materialised view VI. The benefit

of using the view V1 instead of the base relation R is that V1 is already computed and is

smaller in cardinality than R. The following SQL statement computes this aggregation in

the grouping attributes a, b of the view V1:

SELECT Vl. a, VI. b

FROM Vi

GROUP BY Vl. a, Vl-b

Speed of access to information can be critical in a data warehouse environment where

the query rate is high and the views are complex thus it is not feasible to recompute

the view for every query. A view may also underlie many higher-level interfaces that are

collectively queried at a frequency high enough to require this view to be materialised.

To increase the efficiency of retrieval from views, index structures can be built on the

materialised views [Rou82], [HRU96]. [GM99] and [SDJL96] have proposed algorithms

to answer aggregation and groul>-by queries through materialised views. The process of

updating a materialised view in response to changes in underlying data is called view

maintenance [MQM97], [CKL+97].

CHAPTER 2. BACKGROUND

2.3.1 Related Work

24

Earlier in Section 1.4 it was noted that the data cube can be implemented in three ways.

In the first, no views are materialised and the aggregates are computed on-the-fly. In

the second, everything is pre-computed and stored and in the third a subset of the ag-

gregates is pre-computed and stored. However none of the previous techniques has made

any systematic use of redundancy in multidimensional aggregates and there has been no

work on the elimination of redundancy as a basis for the efficient selection and storage of

materialised views. The following section will discuss the main methods for computation

and selection of materialised views.

2.3.2 Methods for Aggregation

In the aggregation process, tuples belonging to the same grouping attributes must be

brought together [Gra93]. There are three recognised methods for aggregation and these

are based on nested loops, sorting and hashing. The analysis of general sorting and hashing

algorithms is beyond the scope of this thesis so discussion will be restricted to their use

in association with aggregation.

The Nested Loops method is the simplest, wherein the algorithm loops, for each input

item, over a temporary file or array and accumulates this item. This method is not efficient

for large inputs as the expected complexity is O(N 2)1 where N is the number of tuples in

a relation [Knu98].

In the sorting method, the goal is to bring equal items together so that aggregation in

grouping attributes is easier. Sort-based aggregation is favoured in disk-based aggregation

mostly because it does not requdre the output relation to fit into main memory. Expected

complexity of the sorting is O(NIogN) [Knu98].

In hashed-based aggregation, the grouping attributes are hashed and equal items can

be found and aggregated when they are inserted into the hash table. If the entire hash

CHAPTER 2. BACKGROUND 25

table fits into main memory, hash-based aggregation is easy to design and faster than

sorting. The expected complexity of hashing is O(N) [Knu98].

If the hash table does not fit into the main memory the table may be partitioned. Each

paxtition requires a partial pass through the input relation. Novel methods of minimising

the amount of data representing the aggregate views are presented in this thesis (refer to

Chapter 3).

2.3.3 Computing the Data Cube

The goal in data cube implementation is to compute all 2' possible aggregates as quickly

as possible. To achieve fast computation, several optimisations are possible. For any given

input base relation of arity k, there axe k derivative aggregations of order k-1. Each of

k aggregates can in turn be a parent of other derivative aggregates. However, as can be

seen from Figure 2.1, each aggregation can be derived from several parents. [GBLP96]

proposes an optimisation in which every group-by is computed from the smallest parent.

For example, it is obviously faster to compute the aggregate AB from its parent ABC

with size 1,000 records, compared to another parent ABD with 50,000 records. Other

optimisations proposed by [AAD+96] and [SAG96] are: to cache results, amortise scains,

share sorts and share partitions.

[GBLP96] proposed implementing the data cube using a main memory technique called

the 2N algorithm, where N is the number of dimensions. Providing the N-dimensional

array can be fitted into the memory, the N-1 dimensional super-aggregates can be com-

puted by projecting one dimension at a time. [GBLP96] also suggested that if the array

is laxger than the available memory, the cube must be organised by value, using sorting

and hashing techniques and then computed by aggregating the organised data.

[SAG96] introduced the Pipe-sort and Pipe-hash algorithms. The Pipe-sort algorithm

annotates each edge in the search lattice with two costs. The A(eij) is the cost of

CHAPTER 2. BACKGROUND 26

computing a child j from a parent i without sorting and S(ei, j) is the cost of computing

i from a parent i which needs sorting. In a graph representing the lattice, (eij) is the

edge between i and j. The algorithm proceeds level-by-level from the minimum to the

maximum number of attributes. For each level k in the lattice, it finds the best way

of computing level k from level k+1, thus reducing the problem to the weighted bipar-

tite matching problem [SAG96]. Pipe-sort includes optimisations such as sharing sorting

orders, smallest-parent, cache-results and amortized scans.

The Pipe-hash algorithm computes the group-by j from the smallest parent. The

decision is based on size estimation techniques and the result is a minimum spanning

tree (MST). When memory restrictions prohibit computing all the group-bys in the MST

together, it has to be decided which group-bys should be computed together, when to

allocate and de-allocate memory for different hash tables and which partitions to compute

first. This problem is NP-complete and [SAG96] has proposed a heuristic which selects the

largest subtree. The Pipe-hash aJgorithin includes various optimisations such as smallest

parent, cache results, amortize scans and share partitions.

PANR96] presents the Overlap method which takes advantage of any sorted aggregate

and 'overlaps' the computation of different aggregates, reducing the number of sorting

stages. Thus aggregates can be computed from a sorted parent in sorted order. Overlap

minimises the number of scam needed using size estimation techniques to determine a

plan for computing the aggregates. Thereafter, it sorts the base relation according to the

order in which the rest of the group-bys will be computed. Several aggregates thus can be

computed concurrently in the memory.

[ZDN97] presents an array based algorithm utilising 'chunks' of memory for efficient

storage on disk. A chunk of an n-dimensional array is an n-dimensional sub-array which

corresponds to a page. The array is stored in units of chunks so fragments of data are stored

in memory at each processing time. This is similar to Overlap [DANR96] but provides

CHAPTER 2. BACKGROUND 27

better memory utilisation for storing partitions. Although the algorithm is proposed for

multidimensional data organisation, it is also suitable for relational structures.

[RS97] introduces a partition algorithm that divides the relation into small data cubes

which are fitted into memory. Partition-Cube partitions the data on some attribute into

small data units which fit into the memory. The algorithm breaks the relation into n+1

smaller sub-cubes computations, n of which are likely to be smaller than the base rela-

tion. If there are T tuples in R then T/n tuples should be expected in each partition.

The Memory-Cube algorithm is similar to Pipe-sort but performs better, determining the

optimal set of paths needed to compute each group-by in the data cube. Potentially, this

results in an optimal number of sorts.

2.3.4 Selection of Views for Materialisation

The selection of materialised views balances the trade-off between space and time in a

more efficient way and is considered the most desirable. The selection of materialised

views has been studied by [HRU96], [BPT97], [Gup97] and [SDN98]. These algorithms

select a subset of aggregates for computation which is based on available disk space, the

estimated size of the aggregate and the estimated benefit of pre-computing the aggregate.

However, none of the existing techniques for the selection of materialised views has made

any contribution to the elimination of redundancy in data representation.

[HRU96] considers a lattice with 21 views and assigns each view a cost according

to its size. The goal is to select which views to materialise so that the average query

cost is minimised, given a fixed amount of space. The cost of the query is based on the

'linear cost model' in which the time to answer a query is taken to be equal to the space

occupied by the view from which the query is answered. [HRU96] proposes a 'Greedy'

algorithm which chooses to materialise a fixed number of views regardless of the space

they use. After selecting a subset of views for materialisation, the benefit of a view is

CHAPTER 2. BACKGROUND 28

computed by considering how this view can improve the cost of evaluating others, including

itself. The view with the maximum benefit is selected for materialisation and this process

continues until the fixed number of views have been selected. In the next step, the Greedy

algorithm considers the problem of aJlocating a fixed amount of space instead of a fixed

number of views. Here, the algorithm uses the benefit per unit space of an aggregate.

Given the amount of space available for pre-computation and a set initially containing all

aggregates in the lattice (except the raw data), the goal is to find the set of aggregates to

be materialised. [HRU96] claimed that the benefit of the Greedy aJgorithm is at least 63%

of the optimal case and also that the performance of the algorithm remains the same even

when each view is unlikely to have the same probability of being requested in a query.

[SDN98] have evaJuated the Greedy Algorithm [HRU96] and have shown that it needs

a prohibitive amount of processing. Instead, the authors of [SDN98] proposed the PBS

(Picked By Size) algorithm which picks aggregates for pre-computation in increasing or-

der of their size. Given the amount of space available for pre-computation and a set

initially containing all aggregates in the lattice, the goal is to find a set of aggregates to be

materialised. [SDN98] claimed that the benefit of this algorithm is the same as the pre-

vious greedy algorithm [HRU96] but requires a fraction of the time. [SDN98] have noted

that all aggregates equal in size to the database size have zero benefit. This means that

any query which can be answered by scanning a view, can be answered at equal cost by

scanning the raw data. PBS assumed that all aggregates have an equal probability of

being queried. The authors of [SDN98] have also proposed a variation of PBS, the PBS-U,

in which a user can assign probabilities to aggregates.

[BPT97] introduces the idea of user's response utilisation. If a set of user-specified

relevant queries is available, exploiting this information may yield a significant reduction

in resources (time and space). The authors of [BPT97] have also observed that the number

of representative queries is extremely small in respect to the total number of elements of the

CHAPTER 2. BACKGROUND 29

complete datacube. Thus, the information about which queries are required is utilised

to guide the selection of candidate views, i. e., which views if materialised, may yield a

reduction in the total cost. However, note that this technique is application-oriented and

requires a set of queries defined by previous requests.

Recently, [BR99] introduced the Iceberg-Cube as a reformulation of the data cube

problem to selectively compute only those partitions that satisfy a user-specified aggre-

gate condition defined by a selectivity predicator (HAVING clause). Thus the Iceberg-

Cube problem is to compute only those group-by paxtitions with an aggregate value (e. g.,

count) above some minimum threshold. [BR99] compute the Iceberg-Cube in a bottom-

up order by introducing the bottom-up-Cube algorithm (BUC). BUC builds the data

cube by starting from a group-by on a single attribute, then a group-by on a pair of

attributes and so on. Potentially BUC avoids the computation of large group-bys that

do not satisfy the condition defined by the selectivity predicator (HAVING clause). The

authors [BR99] claim that this optimisation improves computation by 40%. However,

this approach is inherently limited by the level of aggregation specified by the selectivity

predicate HAVING-COUNT(*).

2.3.5 Further Related Work

[RSC97] provides methods for partitioning the attributes in order to answer complex

aggregate queries.

Compressed methods to reduce the data volume of the materialised views have also

been proposed by [OG95], [WB98] and [KM99]. [OG95] presented an approach for joins

between the fact tables and the dimension tables, based on the combination of join in-

dices and bitmap, indices. [WB98] introduced the Encoded Bitmap Indexing (EBI) as an

optimisation of the simple bitmap indexing initially proposed by [087]. The EBI, instead

of storing n bitmap vectors (where n is the cardinality of an attribute) required by the

CHAPTER 2. BACKGROUND 30

simple technique [087], only requires 1092n bitmap vectors and a mapping table. EBI is

proposed by [WB98] as a solution for attributes with large cardinalities in a data ware-

house. [KM99] proposed a compressed architecture for the data warehouse environment.

By distributing a dictionary across the users, the querying stage operates in a compressed

representation. The updating of the views can also operate in the proposed compact form.

As a result, faster computation time and lower storage cost compared to the uncompressed

representation can be aebieved.

Approximate methods have been proposed by [BS98] and [VW99]. [BS98] introduces

the Quasi-Cubes as an alternative to the data cube. The proposed method is based on sta-

tistical, models (linear regression) and stores multidimensional aggregates in a form wbich

provides fast approximate answers. [VW99] method constructs the data cube through

multiresolution wavelet decomposition. This method performs well in sparse multidimen-

sional arrays.

Query optimisation techniques are also applied to the aggregate problem, e. g., [Se188],

[CS94], [YL95]. [Klug82] and [OOM87] present aggregation expressions, while aggregation

processing in a data warehouse envirorunent has been proposed by [GHQ95], [Wid95] and

[LQA97].

Chapter 3

The Low Redundancy Concept

To allow users fast access to specified aggregate, the prevailing paradigm in OLAP has been

for systems to pre-compute results and store them as materialised views. This requires

a large amount of storage, which is justified on the traditional grounds that obtaining a

result by accessing a table is faster than computing it -a speed for space trade-off.

This thesis introduces the L-R approach as a novel alternative paradigm for OLAP. The

L-R identifies and eliminates redundancy in multidimensional aggregates. The approach

is based on the fundamental observation that if redundant data can be identified then it

need neither be processed nor stored.

The two key elements of the L-R approach are as follows:

1. Many of the possible aggregates are directly derivable from their parent input relation

without any processing. These redundant aggregates provide little, if any, benefit to

the user and will be referred as Totally-Redundant aggregates. New theory proposed

here, derived from relational theory, provides a means of determining by inspection

which views belong to this category. The practical implication of this are that a

large percentage of views require neither processing nor storage (e. g., 70% - 85%

in TPC-D 60K, with 10 dimensions).

31

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 32

2. In the remaining aggregates, a further redundancy occurs when a subset of the tuples

of the aggregate relation is directly derivable from a subset of its parent relation,

in which case only those tuples which axe different from the parent need be stored.

These aggregates will be referred to as Partially-Redundant views. The differential

representation requires only a fraction of the space compared to that required by

conventional storage of materialised views (e. g., approximately 27 times less space

is required in TPC-D 60K with 10 dimensions).

Table 3.1 introduces notation wbich will be used in later discussion.

Notation Description
R Input (or parent relation of R')
R' Aggregation (or cbild relation of R)
tR Tuple in R
tRI Tuple in R'
CR Cardinality of R
CR' Cardinality of R'
St Set of grouping attributes in tR
Se Set of grouping attributes in tR'
MR Measure of interest in R
MR' Measure of interest in R'

Table 3.1: Notation of main components

3.1 Totally-Redundant Views

The candidate keys are classified into two types: Definitional and Observational keys.

Definition 3.1.1 Definitional Keys are those keys which are defined as part of the data-

base schema (e. g., by the database designer).

Definition 3.1.2 Observational Keys are those keys which are defined empirically.

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 33

Thus an ObservationaJ key is invaxiant in a read-only database but may be modified by

updates to the dataset. A Definitional key always possess a unique identification property

despite updates.

Definition 3.1.3 A tuple tR, is defined to be group-by - equivalent or g-equivalent

(z--, >) to a tuple tR if, and only if, the set of grouping attributes St, is a subset of the set of

grouping attributes St and the measure of interest is equal for both R' and R (see Figure

3.1).

tR, : -ý> tR iff Se C St and MR, = MR

(P2, Ll, 12,30) -,, E 10 (P2, LI, 30)

Figure 3.1: The g-equivalent tuple

Definition 3.1.4 A relation R' is defined to be g-equivalent (: -: ý>) to a relation R if,

and only if, for every tuple in R' there is a g-equivalent corresponding tuple in R and both

relations have the same cardinality.

R =-> R' iff (V tR El tR' such that tR' =-> tR) and CR, = CR

3.1.1 Extending the Relational Theory: Totally-Redundant Views

Theorem 3.1 When the result relation R' of an aggregation has the same cardinality as

the parent relation R then each tuple tR, is g-equivalent to the corresponding tUP16 tR, both

in its grouping attributes and in its measure of interest.

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 34

Proof In an aggregation operation each tuple tRi is derived either from a single tuple or

from several tuples of the input relation R (refer to Section 3.1). If a tuple tR, is a result

of several tuples in R then there is a reduction in cardinality of the relation R' relative

to the relation R. Thus, if the cardinality of R and R' is the same, then each tuple tR,

must have been derived from only a single tuple tR, and hence must be g-equivalent to

the corresponding tuple of R in both its projected dimensional values and its measure of

interest.

Theorem 3.2 Any aggregation of a relation R over any set of domains which includes

a Candidate Key, produces a result relation R' in which each resulting tuple must be g-

equivalent to the corresponding tuple of R in both its grouping attributes and its measure

of interest.

Proof Each candidate key of a relation R has the property of uniquely identifying each

tuple of that relation. Any projection or aggregation of R that includes a candidate key

preserves the same number of tuples. Thus, any aggregation or projection which includes

a candidate key of R, produces a result relation R' with the same cardinaJity as R. Thus,

(by Theorem 3.1) each tuple in R' must be identical to the corresponding tuple of R in

both its projected dimensional values and its measure of interest.

Theorem 3.3 (Converse of Theorem 1): When an aggregation or projection of a parent

relation R over a set of domains produces a result relation R' with the same cardinality

as in R, then that set of domains contains an Observational candidate Key of both R and

R'.

Proof FYom the theory described in Section 1.1, a domain (or combination of domains)

of a given relation, whose values uniquely identify each element (n-tuple) of that relation,

is called a candidate key. If an aggregation or projection of a parent relation R produces

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 35

a resulting relation R' with the same cardinality, then the dimensions over which the

aggregation has been carried out must uniquely distinguish each tuple of R. Each resulting

tuple must have been derived from a single parent tuple (if this were not so, then some

aggregations from several tuples would have occurred, with a resultant reduction in the

cardinality of R'). Thus, if the cardinalities of R' and R are the same, the dimensions of

the aggregation must include a candidate key of R.

3.1.2 Example of Totally-Redundant Views

Table 3.2 shows the input relation R and Table 3.3 shows the g-equivalent aggregate

relation R'. R and R' have equal cardinality and for every tuple in R, there is a g-

equivalent corresponding tuple in R. The aggregate relation R' is redundant since it can

always be produced by a simple 1 projection of R.

3.2 Partially-Redundant Views

Definition 3.2.1 A relation R' is defined to be similar to a relation R if the fraction

CR, ICR of g- equivalent tuples in R' is within a threshold t,.

CRICR-< 1

The vaJue of the threshold t, is a dynamic variable which can be defined by the database

designer.

'Simple projection refers to a projection which does not require duplicate elimination

CHAPTER 3. THE LOW REDUNDANCY CONCEPT

R
Product Location Time Total-Sales

Pi Ll T1 80
P2 L3 T4 20
PI L2 T3 50
P4 Ll TI 30
P3 Ll T3 80
P4 L3 T2 100
PI L3 T1 45
P3 L2 T3 70
P2 Ll T2 30

Table 3.2: The Input Relation R

R'
Product Location Total-Sales

Pi Ll 80
P2 L3 20
Pi L2 50
P4 Ll 30
P3 Ll 80
P4 L3 100
Pi L3 45
P3 L2 70
P2 LI 30

Table 3.3: The g-equivalent aggregate relation R' of relation R (Table 3.2)

3.2.1 Extending the Relational Theory: Partially-Redundant Views

36

Theorem 3.4 An aggregate relation R' is Part ially- Redundant with regard to the par-

ent relation R, if a subset of tuples in R' are g-equivalent to those in R.

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 37

Proof Since R' has fewer tuples than R, some of the tuples in R' must be aggregates of

several tuples in R, while the remaining tuples in R' must be directly g-equivalent (simple

projection) to the corresponding individual tuples present in R.

Partially-Redundant views may be represented by means of the union of two relations.

The first relation, is the set of tuples in which each tuple is an aggregate of several tuples

in the input relation. The second relation is the set of tuples which are g-equivalent to

and thus can be derived from the parent relation.

By storing only the first relation significant changes can be achieved. This relation

is called the Difference or Delta relation. In the querying stage the aggregation can be

reconstituted from its Difference representation as will be discussed in Section 3.3.

3.2.2 Example of Partially-Redundant Views

Figure 3.2 shows the relation R(p, sj) and its aggregation Rc(p, s). In Re two tuples (P2,

S2,70) and (P1, S2,20) are g-equivalent to the corresponding tuples in R (P2, S2, T11

70) and (P1, S2, T2,20) respectively. The remainder is the Difference or Delta relation

(Rd), which is an aggregate of three tuples in R represented by R,

The two relations R and R, are presented indirectly. R, can be partitioned into two

relations Rd and R'. The tuples of 14 are g-equivalent to the corresponding tuples Rt of t
R and thus redundant. This redundancy in the data representation of R, is avoided by

storing only Rd, ass-uming that the parent relation is stored. The Rd relation consists of

the tuples of R, which are not g-equivalent to any tuples in the parent relation R.

3.3 Difference Algebraic Equations

The realisation of the Partially-Redundant view approach implies two-stages. In the first

stage (the computation stage), the Difference relation is extracted from the aggregation

CHAPTER 3. THE LOW REDUNDANCY CONCEPT

R

PI Rot Sl Tl 10':
' Pl Sl T3 30

R P2 t S2 TI 70:
PI

.....
S2

.....
T2
....

20:
.....

Rc

Rd
P2 S2 70

R' PI S2 20 t

Figure 3.2: Producing the Difference representation

38

using the Aggregation Difference (AD) algebraic equation. In the second stage (the re-

trieval stage), the aggregate is reconstructed from its Difference form using the Aggrega-

tion Reconstruction (AR) algebraic equation. These stages are similar to the well-known

computation of multidimensional aggregates and their later access from the materialised

views.

The AD Equation

The AD equation would require the following operations:

R't = Re >< R

Rd -- R, - R't

where (><) is the semi-join 2 operator in the grouping attributes and (-) is the difference

operator.
'Given two relation R, and R2, a natural join followed by a projection on the first operand is a semijoin

written Ri>< R2. So Ri >< R2 ---: 7r(Ri * R2). Because only Ri attributes enter into the answer relation,
the purpose of R2 is simply to reduce Ri to those tuples for which the common attribute values also appear
in R2 [John97].

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 39

The AR Equation

The AR equation reconstructs the aggregation relation R, from its Difference Rd in the

following operations:

R't = (Rd 5F, R)

R, = Rd U R't

where (5;; ý) is the anti-semi-join 3 operator in the grouping attributes and (U) is the

union operator.

The above equations show that the difference representation can, in principle, be

implemented in any relational system.

3.4 Implementation Considerations

Totally-Redundant views can be identified by the Key-algorithm which reduces the prob-

lem of redundancy by finding the set of Observational keys in the base relation. The

detection of Observational keys is accomplished by checking for duplicity of tuples exist-

ing in some group-bys. In this sense, the algorithm might appear to be simple or slow.

On the contrary however, the algorithm is very fast due to its bottom-up order; the Key

algorithm starts from the bottom (or the small group-bys) and moves to the top of the

lattice and examines - by scanning for duplicates - if the particular group-by schema is a

key of the base relation. If the algorithm identifies a key, this key will then automatically

eliminate from further examination all those group-bys with schema, including the key

schema. This process follows an exponential reduction of group-bys for examination and

3The anti-semijoin is a semijoin with an inequality (<>) predicate.

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 40

is responsible for the fast performance of the Key-algorithm. The benefits derived from

the bottom-up order dictates that the Key-algorithm operates separately to the data-cube

computation and not simultaneously. Section 3.6.1 describes the complexity of the Key

algorithm in more depth.

Totally-Redundant views can be identified in relations other than the base input rela-

tion. A recursive version of the Key-algorithm can be applied to examine the derivative

aggregations for keys. This method provides an optimised solution especially when there

are no Observational keys in the base input relation.

The equations given earlier present the realisation of PaxtiaJly-Redundant views as an

extraction of the Difference representation (aggregate tuples) from the already aggregated

relation. The algorithm proposed in this thesis (refer to Section 3.6) adopts a different

route, whereby the separation between the aggregate and the non-aggregate tuples takes

place during the aggregation operation and not after it.

3.4.1 View Types

The types of views used to handle the different data representations axe:

a The View as defined in section 2.2. This view is utilised to represent the virtual

representation of a relation. It includes a pointer to the parent input relation and

may have the means to select the tuples and domains from the parent input relation.

The View in the L-R approach represents a Totally-Redundant view.

e The Stored-Relation is the conventional materialised view which is used to store

either the whole aggregation or the Difference representation.

rM
he Semi-Stored View is the view which represents a union of a Stored-Relation and

a View.

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 41

The View and Semi-Stored View can be applied recursively. For example, it is possible

to construct a View of a View, or a View of a Semi-Stored View as well as a View of a

Stored-Relation. To avoid dealing with different levels of interpretations, the preferred

implementation path is to materialise any View which is a paxent of another. The cost of

this materialisation is discussed in section 4.2.3. and shown in Figure 4.7. The different

types of views are shown in Figure 3.3.

Input relation

P1 50
P2 20
P2 10
P3 55
P4 12

conventional
aggregation

I

L-R

L-R
aggregafion

Stored relation

P1 50
P2 30
P3 55
P4 12

Senii-Stored View

Stored relation
I P2 1-30-1

View

PI
P2
P2
P3

: 50
t 20

10
t ----- 55

11:; ý P4 : 12 :
.

Figure 3.3: The types of views in L-R

View

3ý: PI : 50
----- t ----- P2 : 20

--- --------- P2 : 10
... t -----

.................
1_J.. -. >. p3 : 55:

p4 12

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 42

3.5 Implementing the Totally-Redundant views

A system can utilise Theorem 3.1 by avoiding the explicit computation and separate

storage of any aggregate which includes a key. The original relation may then be treated

as containing the aggregate's virtual representation. This not only has a major impact

on the computation time, but it also reduces the storage requirements of the materialised

views. The approach proceeds in two stages:

9 Stage 1: Determination of the set of Observational keys.

e Stage 2: Computation of the data cube by utilising the set of Observational keys

(found in stage 1). This excludes the processing and storage of Totally-Redundant

views.

3.5.1 The Key Algorithm

Briefly stated, the approach adopted empirically determines all the Observational keys 4

present in a given parent relation prior to the materialisation of the data cube. The

algorithm examines all possible aggregates in the data cube and classifies each either as

Totally-Redundant or not.

Thus, the algorithm examines whether each group-by includes one of the already

detected keys - if so it can be categorised immediately as g-equivalent to the input rela-

tion and hence Totally-Redundant. The remaining group-by, with maximum size smaller

than the size of the input relation, can not be candidates for the equivalence property.

Potential aggregates which are not in either of the above categories are tested - to see

whether any two tuples of the input relation are combined during aggregation - using the

4 The candidate key can be determined either by definition (database cataJogs) or using the [L078] algo-
rithm to find keys for a given set of attributes' names and a given set of fiinctional dependencies. However,
this approach would require knowledge of the functional dependencies. Therefore the Key Algorithm is
proposed for the identification of Observational keys in the data cube.

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 43

First Duplicate Detector (FDD) routine described later in this section.

The Key algorithm proceeds from the minimum (level K-2 in Figure 3.4) to the

maximum arity (level K) and uses the FDD to scan each group-by until it detects the

first duplicate tuple. When a duplicate is found, the current group-by is an aggregate (not

g-equivalent relation) and hence, according to theorem 3.1, not a key.

If there axe no duplicates, then the schema of the group-by is an Observational Key.

With the discovery of a key, the algorithm eliminates from further consideration all

subsequent group-bys of greater arity including the key in their schemas. Such group-

bys are thus also Totally-Redundant views.

Level K
ABC

Level K- I AB AC BC

Level K-2 ABC
ýýý I

"-ý
Level 0 None

Figure 3.4: The cube lattice

3.5.2 The Complexity and Performance of the Key Algorithm

Given a relation R(Al, A2,... ' An) with n dimensions, the complexity of the algorithm is

O(C * 2n), where n is the number of dimension attributes and C is the cardinality of each

group-by. C is an upper bound since the Key algorithm exits at the first duplicate which

is normally detected before completing the scan of the whole groul>-by. The supersets

of each Observational key must also possess the unique identification property and hence

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 44

these group-bys too can also be eliminated by inspection. If a schema of m attributes has

been recognized as an Observational key of an n-dimension relation R, then the number of

times the schema's m attributes will appear in the 2' possible aggregations is 2n-rn. Thus,

the smaller m, the greater the savings. The maximum benefit which can be derived occurs

when m=1 and the least benefit when m=n and thus there is no key (n is the superset

in R). This provides very significant leverage in the algorithm. For example a data cube

of ten-dimensions would produce 1,024 aggregates. A key of two dimensions would reject

2 10-2 =28= 256 aggregates as Totally-Redundant and thereby no computation or storage

would be required for them.

To further reduce the number of candidate keys, a group-by is not considered if the

upper bound of its cardinality is smaller than that of the input relation. The pro-

posed method to identify the upper-bound is the computed product of the dimension

cardinalities.

The performance of the Key-algorithm is very efficient as it requires only approximately

10% of the conventional cube time. Figure 3.5 illustrates the time taken to compute a

complete data-cube of 4,5,6, and 7 dimensions for the TPC-D [TPC98] dataset in the

scale factor 0.1 (600K tuples).

10000

1000
cn -0

100 7

10

Key-Algo(ithm
Conventional

.. _B

- ----0
.

56
Number of Dimensions

7

Figure 3.5: The performance of the Key algorithm

CHAPTER 3. THE LOW REDUNDANCY CONCEPT

The Key algorithm

Input: search lattice of the input Relation R

Output: Set of ObservationaJ Keys K- array of strings

i: = 0;

8 :=

K: = null;

while i< NoOf Combinations -I do (* NoOf Combinations = 2n *)

if GroupBy[fl. size < R-size then begin (* The size is an upper bound *)

if GroupBy [i]. schema E K(s) then (* This is a redundant GroupBy *)

i: = i+1;

else if found duplicate then (* First Duplicate Detector *)

45

i :=i+1; (* This GroupBy is an aggregated relation - it's schema is not a Key *)

else begin

S :=S+1;

add the GroupBy schema to K(s)

end;

end;

i+1;

return set K;

end;

To examine whether a specific set of domains is an Observation key the First Duplicate

Detector (FDD) is used.

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 46

The First Duplicate Detector

This is a simplified hash-based aggregation which exits true when a duplicate is found,

false if none is detected. The complexity of the first duplicate detector is C, where C is

the cardinality of group--by. In practice however, the average complexity is much smaller

since a duplicate tuple is usually found (if it exists) before the full scan of the group--by.

The FDD is closely related to theorem 3.1.

3.5.3 The Recursive Key Algorithm

The Key-algorithm, as described earlier, identifies Totally-Redundant views on the basis

that they are g-equivalent to the input base relation. Further redundancy can be elimi-

nated by applying the Key-algorithm recursively to the derivative aggregate views. The

experiments outlined in Chapter 4 indicate that a further reduction in storage of up to

60% can be achieved when redundancy of the derivative relations is eliminated. Over-

all, Totally-Redundant views effect storage savings of up to 85% (TPC-D 60K with 10

dimensions) of the volume.

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 47

3.6 Implementing the Partially-Redundant Views

In implementing the Partially-Redundant views the goal is to extract the Difference tuples

from the aggregate relation (refer to Figure 3.2).

Each Different view has an associated schema denoting the grouping attributes and

a bit-array where a bit is set to one, corresponding to each tuple in the parent relation

which is also found in the aggregate. The next section describes two algorithms for fast

implementation of the Partially-Redundant views. The task of the proposed algorithms

is to filter out the aggregated tuples (or Differences) from the aggregate relation and

also identify the g-equivalent ones. These algorithms have been used to demonstrate the

feasibility of the L-R methods and although axe not proposed as the optimum solution,

they have successfully demonstrated the effect of the L-R approach.

3.6.1 The Aggregation Algorithms

The first algorithm, called the Bit-array aggregator or B-aggregator, utilises bit-arrays.

The B-aggregator has been used to evaluate the L-R experimentally. The method is similar

to that of [Bloom7O], [MTD76], [SL76] and [Babb79] and is described in Appendix D.

The second algorithm, called the Vector aggregator (or V-aggregator), is an improve-

ment of the B-aggregator algorithm. Section 3.6.2 describes how the V-aggregator op-

erates more efficiently in extracting the Differences. This is achieved by introducing a

dual-resolution vector which filters the aggregated tuples from the g-equivalent ones while

aggregating.

The innovation in both aJgorithms is that the extraction of the Differences occurs

during aggregation and not after it.

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 48

3.6.2 The B-Aggregator

The B-aggregator algorithm is a hash-based aggregation in which a hash function is applied

to the tuples, defined by the grouping attributes, in the parent relation. During the first

pass over the input relation, hash values generated by tuples are entered into the first bit-

array B, - Tuples which generate a hash value already present in B1, enter their hash value

into a second bit-array B2. Thus the hashed values entered into B2 indicate candidate

aggregated tuples of the input relation.

Collisions may be caused by the hashing function. Therefore the algorithm performs

a second scan of the input relation to ensures that the tuples axe 'real' aggregate tuples.

The scan achieves this by searching for tuples whose values are in B2 and compares these

tuples with a table containing the 'real' aggregates. After this scan, any aggregate tuple

found to be derived from a single tuple of the input relation is transferred to the set of

g-equivalent tuples. This algorithm is illustrated in Figure 3.6.

The result of the aggregation is two sets of tuples, the set of the 'real' aggregates

and the set of g-equivalent tuples contained in the parent relation. Both are represented

explicitly as a Semi-Stored view which behaves as the union of the two components (see

section 3.4.1).

Semi-Stored View

Input relation B1 B2
Stored relation

Pi 50 -
P2 20 -

-LO
112 1- ,

ýý<

View
P3 55 -I ---------- P1 50
P4 12 - : P2 20

......... : : P2 10

... P3 ! 55
------------- I P4 : 12

.................

Figure 3.6: Performing an aggregation using the B-Aggregator

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 49

3.6.3 The V-Aggregator

The vector or V-algorithm. is also a hash-based aggregation but one which accomplishes

the aggregation in a single pass of the input relation. Initially, a hash function is applied

to the tuples, defined by the grouping attributes, in the parent relation. The tuple hash

value is used as the offset to a vector and this ofFset position contains the tuple number.

At the first tuple, a hash vaJue is encountered and the corresponding entry in the

vector will be in its initial value (0) and is assigned the negative sign (-). A negative

entry in the vector corresponds to a tuple in the input relation. When a tuple hashes to

a non-zero entry in the vector and the value is negative, the corresponding tuple is then

copied from the input relation to the stored relation (The Difference Rd) and the entry is

now switched to positive to give the tuple number in Rd- If, however, the vector's entry

in the vector is already positive, the new tuple is aggregated with the corresponding tuple

in Rd. The entries of the vector are assigned accordingly:

(-) for g-equivalent (or non-aggregate) tuples allocated in R

(+) for Difference (or aggregate) tuples allocated in Rd

3.6.4 Example of the V-Aggregator

Given the relation R in Figure 3.7, the first tuple PI in position R[1] in R is hashed and

its hashed value is stored in the vector (hash access table) at the 4th position. The entry

(-1) in the vector denotes the position of the tuple P1 in the input relation R. Similarly,

tuple P2 is hashed in position 1 with the entry (-2) (Figure 3.7(a)). When an aggregation

occurs, e. g., the 3rd tuple P2, a re-arrangement occurs. The entry (-2) of the tuple P1

in the vector is changed to point to the new location of the tuple P2 in relation Rd (i. e.,

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 50

Rd[ll---':: J), so the first entry of the vector becomes (+l) (Figure 3.7(b)). After the re-

arrangement the second tuple P2 will aggregate with the tuple in position 1 in the table

Rd (Figure 3.7(c)). In sequence, tuple P3 is then hashed in position 2 with the entry (4).

When a collision occurs, a two step procedure takes place. In this example (see Fig-

ure 3.7(c)), tuple P4 collides with the tuple PI in the hashed entry 4, (-1). The first step

is for the tuple P1 to be transferred to the table Rd in the next available position (Rd[2])

and the 4th entry in the vector becomes (2), denoting the 2nd position in table Rd. In the

second step, tuple P4 is ready to be allocated to the next available entry in the hash access

table, thus it allocates the 5th position to the entry (-5) (Figure 3.7(d)). The appropriate

changes are assigned to Rd and the single access table. Every time a tuple is aggregated

the single table entry becomes 0.

Finally, the single table is examined and the set of tuples with zero entries is thus the

Difference relation which is stored in a Stored-Relation (Rd). This set has been separated

from the set of g-equivalent tuples, which is stored in a View (bit-array or R- Rd). The

final aggregate relation R, is the union of the Rd (Stored-Relation) and R- Rd (View)

(in line with equation AD in Section 3.2).

3.7 Computing the L-R Data Cube

The Implementation of the optimised cube is performed in two stages.

During the first stage, aggregations wbich are Totally-Redundant axe identified and

each is represented by a view structure. This process is carried-out by the Key Algorithm

which constructs a key list, as was described in section 3.6. The output includes the set

of keys and the set of Totally-Redundant views, each represented by its view structure.

In the second stage, the data cube is computed according to the traditional 2n combi-

nations. However, now the algorithm utilises the information captured at the first stage,

CHAPTER 3. THE LOW REDUNDANCY CONCEPT

Bit-array

I

(a)

(b)

(c)

(d)

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

R(-)
P1 50
P2 20
P2 10
P3 55
P4 12

Pi 50
P2 20
P2 10
P3 1 55
P4 12

P1 50
P2 20
P2 10
P3 55
P4 12

P1 50
P2 20
P2 10
P3 55
P4 12

Hash Access
Table

4Z.

I= ry.)

C

0

collision

1-2 1

1-1 1

Rd (+) Single Table

+1 P2 20

0

-4

+2

P2 30
-0

P2 30
P1 50
P4 19

0
1
5

51

Figure IT Extracting the differences during aggregation using the V-Aggregator

CHAPTER 3. THE LOW REDUNDANCY CONCEPT 52

avoiding computation of aggregates already calculated. The Partially-Redundant views

are thus processed and stored as compact materialised views. The abstract form of the

proposed computation is shown in Figure 3.8, followed by the implementation of the L-R

data cube.

-. 0 No,
Aggregator

-0 BID

t

Difference
Extraction
Mechanism

Store

Figure 3.8: The L-R data cube

CHAPTER 3. THE LOW REDUNDANCY CONCEPT

The Optimised Cube-By operator

Input: search lattice of the input Relation R

Set of Keys K, array of Keys

Output: Set of computed aggregates as views V

begin

i: - 0;

i: == 0;

null;

while NoOf Combinations -1>i do (* From maximum to miinimum arity

where NoOf Combinations = 2n *)

begin

for j: =O to entries in K

begin

if K(j) C GroupBy[i]. schema (* Totally redundant view *)

then

i: = i+1;

else (* not a Totally-Redundant view-candidate for computation

Aggregate (GroupBy[i]);

add the GroupBy schema to V[i]

i: = i+1;

end;

end;

return set V; (* the set of computed views *)

53

end;

Chapter 4

Experimental Confirmation

The objective of the experimental work is to verify the feasibility and scalability of the

L-R methods and algorithms and prove that the new approach significantly improves

the performance of OLAP systems with regaxd to space and time requirements. The

experiments evaJuated the new methods using a wide vaxiety of real and synthetic datasets.

There are three groups of experiments. The first group relates to the performance of

L-R in the computation of the full set of multidimensional aggregates (the data cube).

The second relates to storage savings effected. The final group relates to query response

times (or user's access time) from the already computed data cube. The three groups may

be summarised as:

1. Computing the Data Cube - performance timings

2. Storage of the Materialised Views - space savings

3. The Querying Response Time - performance timings

54

CHAPTER 4. EXPERIMENTAL CONFIRMATION 55

4.1 The Experimental Configuration

The L-R algorithms were implemented as explained in Chapter 3. The tests were run

on a Dual Pentium 200 MHz with 128 Mb of RAM and IGB of virtual memory under

Windows NT. There were no attempts to utilize the memory in a more efficient way than

that provided by the operating system and also no attempt was made to utilize the second

processor.

4.1.1 The Datasets

Both real and synthetic datasets were used in these experiments. There were four synthetic

and two real datasets. Three of the synthetic datasets were taken from the TPC-D [TPC98]

benchmaxk dataset and one from a hotel dataset [Kim96]. The real datasets were weather

data [HWL941 and the adult dataset [Koh96]. Note that all datasets are considered sparse.

The TPC-D Datasets

The Transaction Processing Council (TPC) is an official benchmarking group supported

by several hardware and database systems vendors. The TPC-D is a decision support

dataset which can be generated at different scale factors defining the number of tuples

in the fact table. In these tests, the lineitem table, from the TPC-D dataset, was used

at three scale factors 0.1 (600K tuples), 0.01 (60K tuples) and 0.001 (6K tuples). In

all datasets the measure of interest is the fifth attribute. The 6K dataset's attributes'

cardinalities were: (1,500), (200), (10), (7), (50), (3), (2), (2,249), (2,234), (2,241), (4).

For the 60K dataset, the attributes' caxdinalities were: (15,000), (2,000), (100), (7), (50),

(35,967), (2,520), (2,464), (2,531), (4), (7). The 600K dataset was generated with the scale

factor sf=O. l and the cardinalities were: (150,000), (20,000), (1,000), (7), (50), (2,526)7

(2,466), (2,548).

CHAPTER 4. EXPERIM-ENTAL CONFIRMATION 56

The Weather Dataset

This dataset is an archive of real weather data indicating cloud coverage over the ocean

[HWL94]. The dataset contains (116,635) tuples with 20 dimensions. Ten of these were

selected with the following cardinalities: (612), (2), (1,425), (3,599), (5), (1), (101), (9),

(24), (10). The measure attribute was the sixth dimension.

The Adult Database

This is a real dataset from the US Census Bureau in 1994 which was first presented

by [Koh96]. The original dataset size was 48,842 records with 14 attributes. Six of the

attributes are numerical and the remaining six are categorical attributes. The down-loaded

version contained 32,000 records and was projected to a relation with nine attributes, with

the 9th attribute defined as the measured attribute. The cardinalities of the new dataset

were: (72), (10), (19,988), (16), (16), (16), (7), (16), (7), (1). The last attribute was used

for measure of interest.

The Hotel Dataset

This dataset, taken from a business example [Kim96], is a synthetic dataset with a fact

table of Hotel Stays schema with eight dimensions and three measure attributes. The size

of the dataset is 2,249 tuples. The small size was selected to ensure that the performance

results in time were not effected by disk thrashing. The dataset and all its derivative

aggregates, even in the conventionaJ approach, almost fitted into the main memory. The

cardinalities of the dataset were: (183), (26), (100), (20), (20), (2,168), (2), (20), (4),

(907), (366) and (10).

CHAPTER 4. EXPERIMENTAL CONFIRMATION 57

4.2 Computing the Data Cube - Performance Timings

The computation of the data cube in L-R is performed in two stages (as explained in

section 3.8).

o Stage 1: Determination of the set of Observational keys. In this stage, the Key-

algorithm is responsible for the identification of non-redundant views, through the

key extraction mechanism.

9 Stage 2: Computation of the data cube by utilising the set of Observational keys

(found in stage 1) to determine and eliminate Totally-Redundant views.

4.2.1 The Performance of the Key algorithm

Figure 4.1 compares timings for the key algorithm with the time required to compute the

data cube using the conventional method [GBLP96] for the TPC-D 600K dataset. The

experiment computed the data cube in different numbers of dimensions ranging from four

to seven. The results show that on average the Key-algorithm only takes one tenth of the

conventional time.

Figure 4.2 compares the timings between the key algorithm and the conventional time

required to compute the data cube for the hotel dataset. The experimental configuration

remains the same but now, in this test, it computes the data cube in different numbers of

dimensions ranging from three to eleven.

The time required by the key algorithm is only of the order of 10% of that required to

compute the data cube conventionally. Savings increase as the dimensionality increases.

CHAPTER 4. EXPERIMENTAL CONFIRMATION

10000

1000
-0
c
0

a)
E

Key-Algorithm
Conventional

100

58

10 11
4567

Number of Dimensions

Figure 4.1: The conventional data cube time compared to the Key-algorithm time in the
TPC-D 600K dataset

100

-j;,
c

a) E
P

10

I

nI

Key-A ithm
Convlegno)týional

3456789 10 11
Number of Dimensions

Figure 4.2: The conventional data cube time compared to the Key-algorithm time in the
Hotel dataset

CHAPTER 4. EXPERlMENTAL CONFIRMATION 59

4.2.2 Full Computation of the Data Cube

The experiments in the second stage compare the following three timings:

e The time taken for full materialisation of the data cube using the conventional

approach, implemented here as described in [GBLP96].
-ju,

9 The time taken for full materialisation of the data cube, which includes and utilises

the Totally-Redundant views.

1D The time taken for full materialisation of the data cube, which includes and utilises

the combined approach (consisting of both Totally-Redundant and Partially-Redundant

views).

Figure 4.3 and Figure 4.4 present averages taken from aJI datasets. Appendix C. 1

presents analytical results from the six datasets used in this thesis. For each dataset,

three different data cube implementations were tested using several dimensions varying

from three to twelve. The total number of runs was approximately one hundred and

seventy (170).

Figure 4.3 illustrates the two average times taken to compute the data cube conven-

tionally over the combined approach in five and six datasets 1. The results indicate that

the performance of the combined approach increases as the number of dimensions increase

and that after the ten-dimension data cube the combined outperforms the conventional

computation.

'Because the tests for the 600K TPC-D dataset were run on up to seven dimensions, after the 7 th

dimension the average was taken from the remaining five datasets.

CHAPTER 4. EXPERIMENTAL CONFIRMATION 60

Figure 4.4 illustrates the ratio of the conventional to combined approach for computing

a data cube of seven dimensions for all six datasets used in this thesis. The result shows

that the combined approach in small dimensionality (seven dimensions) is slower than

the conventional approach. The tests on the combined approach, however, utilised the

B-aggregator algorithm whose performance is slower compared to the improved version

(V-aggregator). The increase in savings with dimensionality indicates the scalability of

the L-R approach.

CHAPTER 4. EXPERIMENTAL CONFIRMATION

1.3

1.2

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Average ratio of six datasets

5 datasets
6 datasets

x

3456789 10
Number of Dimensions

61

Figure 4.3: Time required to compute the data cube: conventionally over L-R, average of
the six datasets

1.2

Q)
E1

73

0.8

T3
Q)

0.6

0
0.4

0.2

0

Computation of the Materialised views in 7 dimensions

6k 60k 600k adult hotel weather

Figure 4.4: Performance in time of the L-R approach compared to the conventional ap-
proach in different datasets

CHAPTER 4. EXPERIMENTAL CONFIRMATION 62

4.3 Storage of the Materialized Views - space savings

For each dataset, the two L-R storage optimisations were compared to the conventionaJ

approach.

In the first L-R optimisation, only the Totally-Redundant views were utilised and in the

second, both Totally-Redundant and Partially-Redundant views were utilised to eliminate

redundancy.

The impact of L-R optimisation is significant. Savings of up to 30 times in space (adult

dataset in 10 dimensions), compared to the conventional implementation, axe achieved.

Figure 4.5 and Figure 4.6 show average results for six datasets.

Figure 4.5 illustrates the average ratio of space required (conventional over L-R) in

6 datasets 1. As expected, in all datasets, dimensionality is the crucial factor in the

improving space savings.

Figure 4.6 shows the ratios for individual datasets. The ratio is never below six and

at best, in the 60K dataset, rises to more than nine. Appendix C. 2 shows analyticaJ

results from all datasets. One hundred and seventy (170) sepaxate runs were conducted

for different dimensions (varying from three to twelve).

2 For the same reasons as explained earlier (section 4.2.2), the average time after the 7 th dimension has

been taken from five datasets.

CHAPTER 4. EXPERIMENTAL CONFIRMATION

r_

c2-
0

ID

0
0

-0
(D
C»

E
CL
0

0
c

0 L)
0
0

50

45

40

35

30

25

20

15

10

5

0
3456789 10

Number of Dimensions

Figure 4.5: Space savings growth ratio in all datasets

10

9

8

7

6

5

4

3

2

1

0

Volume of Materialised views in 7 dimensions
IIIIII

-- - _J_ - -- --- _J___

6k 60k 600k adult hotel weather

63

Figure 4.6: Performance in space savings of the L-R approach compared to the conven-
tional approach in different datasets

CHAPTER 4. EXPERIMENTAL CONFIRMATION 64

4.4 Totally-Redundant Views of Derivative Relations

In Chapter 3, it was shown that Totally-Redundant views can be found in aggregates other

than the base relation. Appendix C. 3 presents all the experiments which were conducted

and compares the savings in space when the base relation is used as a reference to the

savings achieved when the derivative relations axe used as references. On average, for a

base relation with ten dimensions, applying the optimisation recursively to all derivative

relations increased total savings to, on average, 90% of the total views in the data cube.

This is in contrast to an average of 74% of total views achieved when the base relation was

used. Using nine dimensions, the average savings are lower at 77% and 44% respectively.

Appendix C. 3 presents the detailed results from tests run in six datasets. For each dataset,

the tests were run in several dimensions with the number vaxying from three to twelve.

Altogether approximately fifty runs were conducted.

The savings in space and time after the elimination of the Totally-Redundant views

are significant for relations with high dimensionality. Savings in storage and time for the

Totally-Redundant approach vary according to the distribution and sparsity of the trial

datasets. Partially-Redundant views, however, axe much less sensitive to the distribution

and sparsity of the trial datasets.

CHAPTER 4. EXPERIMENTAL CONFIRMATION 65

4.5 Query Response Time - Performance Timings

The query response time is the time taken by the database to respond to a user's query.

The L-R methodology selects, computes and stores the materialised views in a com-

pact form. The rationale of L-R storage optimisation is that it does not significantly

slow the query response time compared to the conventional materialised view approach.

This section will show that the L-R's retrieval time satisfies the above requirement, (i. e.,

fast retrieval of any aggregate). The experiments conducted for this purpose demon-

strate that remarkable savings in storage space can be achieved without a significant

trade-off in time. This group of experiments measured the time required to access ag-

gregates stored in Difference form compared to the time required to retrieve the con-

ventional materialised view. Both timings are compared to the 'on-the-fly' approach.

Queries were made to aggregations varying from three to ten grouping attributes. The

TPC-D 60K dataset was used with the following attributes: Orderkey, Partkey, Suppkey,

Linenumber, Returnflag, Linestatus, Shipdate, Commitdate, Receiptdate, Shipinstruct.

Figure 4.7 compares five different measured timings for two different cases. Each timing

was taken with eight different dimensionalities. In both cases, the result retrieved is a full

aggregate relation and not a subset (resulting from a selective query). In the first case,

the output group-by was returned as a 'deep-copy' of the aggregate (i. e., the deep-copy is

a materialised view open to read/write operations).

In the second case, the resulting group-by is returned by reference or a 'shallow-copy'

(i. e., the shallow copy is a view open to read-only operations). This eliminates additional

storage and time to return the answer but it is slightly slower for subsequent accesses.

Thus in the second case, the results are faster than the first. Note, in the second case the

slightly slower performance of the combined approach compared to the materialised views

(MV) approach occurs as a result of an operation which ensures that the system never

CHAPTER 4. EXPERIMENTAL CONFIRMATION 66

returns a 'view of a view' (refer to Section 3.4.1). The first three results relate to the first

case in which the answer returns a deep copy of the group-by.

The timings shown in Figure 4.7 are taken from:

1. The on-the-fly computation. In this method it is assumed that only the base relation

is available.

2. The combined approach. This is the time required to reconstruct the aggregation

from its Difference representation. For this process, the parent relation and the

Difference representation are stored in the backing store.

3. The conventionaJ materiahsed view.

4. The combined approach. This is the time required to reconstruct the aggregation

from its Difference representation. For this process the parent relation and the

Difference representation axe present in the main memory.

5. The conventional materialised approach when all the materialised views are present

in the main memory.

The results indicate the benefits of pre-computation of the multidimensional aggre-

gates; the materialised views are faster but the data volume required is much higher (27

times larger for the TPC-D lineitem dataset in 10 dimensions) than the combined L-R

approach. The 'on-the-fly' approach is always slower, as was expected. Both the com-

bined and the materialised views in the 'by-reference mode' are faster than their retrieval

from secondary storage. The advantage of the L-R approach is that its compact storage

enables the data to be retained in the main store. This implies that the majority of the

aggregates will be restored from their stored-in-memory parent and thus the speed will be

equal to that of the fourth timing (see Figure 4.7). The large volume of conventional ma-

terialised views prohibits in-memory aggregation and thus the majority of the aggregates

will operate through secondary storage.

CHAPTER 4. EXPERIMENTAL CONFIRMATION 67

1

0.1

(n -0 0.01

CD
E 0.001
F-

0.0001

I,. -nx;

L
-------- --- I --- - ----- - C13 ---- ----- --- 6 1ý - ---------- 6 ----- --- --I

(1) on-the-fly -e (2) combined -
(3) MV

(4) combined (reference)
(5) MV(reference)

& -------------- ------------- & -------------------------- - ------------ A ------------

-- --- --- -- -------

-- --- --- -- I ----- ------------------ -- -- --- -- --- - "I - ----- - ------ - ------- .i
67

Number of Dimensions

Figure 4.7: Group-by's response time

10

Chapter 5

Conclusion

Information integration requires the collection of data from several information sources and

incorporation into a data warehouse which lays the foundation for OLAP applications. The

key problem is that the processing time required for a database to answer OLAP queries

'on the fly' is too expensive to accommodate an effective interactive dialogue. To accelerate

the query response time, pre-computed queries are usuafly stored as materialised views.

To avoid the large additional storage overhead of materialised views, selection of a subset

of the aggregate views has been proposed in the past [HRU96], [BPT97], [Gup97], [SDN98]

and [BR99]. However, the selection of the appropriate subset is a crucial issue.

This thesis contributes to the fundwnental understanding of the nature of the data

cube process and has introduced the Low-Redundancy (L-R) approach. The proposed

L-R approach is novel and differs from any previous approach [HRU96], [BPT97], [Gup97],

[SDN98] and [BR99]. The approach achieves fast computation and compact storage of the

aggregates through methods based on extending traditional relational theory to the OLAP

environment. Specifically, this work has shown that:

68

CHAPTER 5. CONCLUSION 69

Many of the possible aggregates are directly derivable from the parent input (base)

relation without any processing. These aggregates axe called Totally-Redundant

views and a new formalism, derived from relational theory, provides a means of

determining which views belong to this category only by inspection, avoiding addi-

tional processing cost. The practical implication of this is that a large percentage of

views require no processing or storage (e. g. 44% - on average for all datasets used in

this thesis in 9 dimensions - directly from the input (base) relation). Further savings

of up to 77% are achieved - on average for all datasets in 9 dimensions - when the

optimisation is applied to the whole set of the derivative aggregates (not merely to

the input (base) relation).

a Aggregates not belonging to the set of TotaJly-Redundant views are classified as

Partially-Redundant. A subset of each Partially-Redundant view is g-equivalent to

a subset of, and thus derivable from, its parent relation. Hence only those tuples,

which are different from those in its parent relation need be stored resulting in

remarkable savings in space. Typically, the Partially-Redundant views require 30

times less space than those stored conventionally.

o The L-R approach has been evaluated with the set of algoritluns provided in this

thesis and the experimental work has demonstrated that the approach provides an

efficient, practical and scalable methodology for OLAP systems.

e The new approach is independent of the structure of data and can be applied to

either ROLAP and MOLAP systems and can be also integrated with other existing

techniques such those described in Chapter 2.

CHAPTER 5. CONCLUSION 70

e At the querying stage, the retrieval of any aggregate must appear almost as fast

as a materialised views. The reconstruction of any aggregate from its Difference

representation satisfies this criterion, with only a small cost in memory for each

view.

5.1 Implications of the L-R approach

The implications of the L-R approach will be discussed in the following sections. The L-R

approach positively affects indexing, the user interface and the main store.

5.1.1 Indexing in OLAP

Randomly accessing records in large relations typically requires indices. [Ram98] defines

the index as an auxiliary data structure designed to speed up operations which are not

efficiently supported by the basic organisation of records in that file. Consider the relation

R which is a set of products P1, P2,.., Pn in a company and the following query:

SELECT *

FROM R

WHERE Product = P2

The above query requires scanning of the whole relation to retrieve the tuples on product

P2. Having an index for the relation R would speed-up the searching of qualifying tuples.

In OLAP databases, indexing is an important issue since the materiaJised views have

to be indexed to accelerate access to them. The volume of materialised views in an

OLAP database and the additional overhead from indices, results in very expensive sys-

tems in storage terms. [Rous82] and [GHRU96] have analysed the topic of the index for

CHAPTER 5. CONCLUSION 71

materialised. views. The expansion of multidimensional aggregates follows 2n combina-

tions in which the number of subsets of a set with n-elements is 21. There can be several
indices in a view and the n-umber of indices varies according to the number of attributes
in the view. The effect of the L-R approach on indexing is significant. Totally-Redundant

views avoid any indexing overhead since they are never stored. Accessing tuples from a
Totally-Redundant view is achieved by pointing to the index of a parent stored relation.
Thus Totally-Redundant views can utilise the index of their parent views.

Partially-Redundant views, as described earlier in section 3.2, contain two subset views,

one with the g-eq-udvalent tuples and a second with the aggregate tuples. The view with

the g-equivalent tuples requires no indexing. For the second view - the one with the

Differences - the construction of an index is necessary. However, the index size in this

view is smaller than the whole Partially-Redundant view.

5.1.2 The User Interface

The potential of the L-R approach is significant in the user interface. For OLAP naviga-

tion, it is important to reduce the time spent by the user extracting useful information from

the data. Browsing views can be very effective when it supplies the user with information

regarding redundant views. For example, if a view is 'TotaJly-Redundant' then it needs no

exploration. By supplying the user with this information, it facilitates faster navigation

and exploration through the aggregates. The effect is more obvious in cases with large

dimensionality datasets. For example, a sixteen dimension dataset would require 65,356

views to explore it. For obvious reasons, the user is unable to navigate through all of these

views. The L-R enhancement thus provides the means for faster exploration of aggregate

views since approximately 50% of the views (TPC-D 60 K) are Totally-Redundant.

The implementation of a user interface could be enhanced by integrating tools to

CHAPTER 5. CONCLUSION 72

improve the navigation process. Such tools could be based on: audio, visual, colour

and graphs with fewer vertices and edges than the original (see Figure 5.1). Further

exploitation of the 'Paxtially-Redundant' views could reveal useful information about the

similarity between groups of tuples. Figure 5.1 (a) shows the graph of a three dimensional

cube and its transformation to the low-redundant cube in Figure 5.1(b). The solid lines

denote the edges of the graph which represent the unique aggregates. The dashed lines

denote the paths which have been eliminated due to g-equivalent views (in circle).

(a)

ABC

AB AC BC

L: ><ý
ABc

none

(b)

ABC

AB AC BC

c

none

A-BC Eý> AB

BC => B

Figure 5.1: Elimination of Totally-Redundant views

5.1.3 The Main Store

Data warehouses typically axe large repositories of data which are stored in order of

Petabytes (106 Gigabytes). [FSM91] observed that data doubles in size every twenty

months. Conventional implementations of the data cube incorporate algorithms to par-

tition data into the secondary store and transfer them to main memory for computation

[RS97], [BR99]. In these implementations, the goal is to utilise the main store to the maxi-

mum.

CHAPTER 5. CONCLUSION 73

Those systems which adopt secondary storage techniques can take advantage of the L-R

method to reduce 1/0 traffic, allowing more data to be retained in the cache or m in

memory. The important feature of the L-R approach is that its performance in time and

space savings increases as the number of dimensions increase. Thus, for high dimension-

ality datasets, L-R will outperform conventional implementations. Hence, the benefit of

L-R is in retaining faster RAM-accelerated performance while also reducing the required

RAM storage.

The methods proposed in this thesis are based on a conceptual data model and not

on special data structures. In Chapter 3 it was indicated that the approach is based on

the redundancy of aggregate views or tuples in the database, so any fast data processing

technique could be combined with the L-R approach. The compatibility of L-R with

other approaches for selection and computation of multidimensiona. 1 aggregates is a further

strong advantage.

5.2 Future Work

The future work of this research could be to explore the potential of the new L-R approach

in areas other than the implementation of the data cube. These are:

e OLAP and data mining which are closely related research areas and support the

same group of users. The desire to extract useful information from the data has

introduced new methodologies to the knowledge discovery process. [FSM91] defines

knowledge discovery in databases as the non-trivial process of identifying vaJid, po-

tentiaJly useful and ultimately understandable patterns of data. Data mining, as paxt

of the knowledge discovery process, searches for patterns of interest in a particular

representationaJ form or a set of such representations [FSSU95]. The L-R method-

ology identifies and extracts the non-redundant groups of views or groups of tuples

as was described in Chapter 4. The importance of redundancy in multidimensional

CHAPTER 5. CONCLUSION 74

aggregates from an information perspective is an area wbich could be investigated.

Since the L-R approach is the only method of identifying redundancy in the mul-

tidimensional. aggregates, it could provide meaningful information which may be of

significant benefit to the user.

a The implications for the user interface need further research. The evaluation of a

'new interface' compared to existing implementations would reveal the importance

of the new method.

e The compatibility of the L-R with other techniques should also be investigated. This

area of work would focus on finding possible integrations with methods for selection,

computation of the data cube and storage of the aggregates as materiaJised views.

Bibliography

[AAD+96] S. AgarwaJ, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ra-

makrishnan, and S. Sarawagi. On the Computation of Multidimensional Ag-

gregates. In Proceedings of the 22nd International Conference on Very Large

Databases, pages 506-521, Mumbai, Sept. 1996.

[Babb79] E. Babb. Implementing a Relational Database by Means of Spesialized Hard-

ware. In A CM Transactions on Database Systems, V61.4, No. 1, March 1979,

Pages 1-29.

[BZ98] C. Bontempo, G. Zagelow. The IBM Data Warehouse Architecture. In Com-

munication of the A CM 41(9): 38-48,1998.

[Bloom70] B. H., Bloom. Space/Time trade-offs in hash coding with allowable errors. In

Communication of the A CM 13(7): 422-426.

[BPT97] E. Baralis, S. Paraboschi, E. Teniente. Materiahzed View Selection in a Mul-

tidimensional Database. In Proceedings of the 23rd International Conference

on Very Large Databases, pages 156-165, Athens 1997.

[BS98] D. Barbara, M. Sullivan. Quasi-Cubes: A space-efficient way to support ap-

proximate multidimensional databases. Technical Report, Department of In-

formation and Software Engineering, George Mason University 1998.

75

BIBLIOGRAPHY 76

[BR99] K. Beyer, R. Ramakrishnan. Bottom-Up Computation and Iceberg CUBEs.

[Codd70]

[Codd93]

[CS94]

[CD97]

In Proceedings of the ACM SIGMOD International Conf. on Management of

Data, pages 359-370, Pbiladelpbia PA, USA, June 1999.

E. F. Codd. A relational model for large shared data banks. Comm. A CM,

13(6): 377-387,1970.

E. F. Codd, S. B. Codd, C. T. SaJley. Providing OLAP (On-Line Analyt-

icaJ Processing) to User Analyst: An IT Mandate. Arbor Software at

http: //www. arborsoft. com/OLAP. html.

S. Chaudhuri, K. Shim. Optimizing queries with aggregate views. In Proceed-

ings of the Extending Database Technology (EDBT) pages 167-182,1996.

S. Chaudhuri, U. Dayal. An Overview of Data Warehousing and OLAP Tech-

nology. Technical Report MSR-TR-97-14, Microsoft Research Advanced Tech-

nology, Redmond March 1997.

[CKL+97] L. Colby, A. Kawaguchi, D. Lieuwen, I. S. Mumick, K. Ross. Supporting multi-

ple view maintenance policies: concepts, algorithms and performance analysis.

In Proceedings of the A CM SIGMOD International Conference on Manage-

ment of Data, Tucson, AZ, May 1997.

[DANR96] P. M. Despande, A. Shukla, J. F. Naughton, K. Ramaswamy. Storage Estimation

of the Multidimensional Aggregates. In Proceedings of the 22nd International

Conference on Very Large Databases, pages 522-531, Mumbai, Sept. 1996.

[FSM91] W. J. Frawley, G. Piatetsky- Shapiro, C. J. Matheus. Knowledge Discovery in

Databases: An Overview. In Knowledge Discovery in Databases, eds. G.

Piatetsky- Shapiro and W. J. Rawley. pages 1-27. Meinlo-Park, California: The

AAAI press.

BIBLIOGRAPHY 77

[FSSU95] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusami. Advances in

Knowledge Discovery and Data Mining. AAAI Press / MIT Press.

[Gra93] G. Graefe. Query Evaluation Techniques for Large Databases, A CM Computing

Surveys 25(2): 73-170, June 1993.

[GBLP96] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A Re-

lational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-

TotaJs. Technical Report MSR-TR- 95-22, Nficrosoft Research Redmond 1995.

[GHRU96] H. Gupta, V. Harinarayan, A. Rajaraman, J. D. Ullman. Index Selection for

OLAP. In Proc. of the 13th ICDE, pages 208-219, Manchester, UK, 1997.

[Gupt97] H. Gupta. Selection of Views to Materialize in a Data Warehouse. In Proceed-

ings of the 6th International Conference in Database Theory (ICDT), pages

98-112, Delphi, Jan 1997.

[GHQ95] A. Gupta, V. Harinarayan, D. Quass. Aggregate-query processing in data ware-

housing environments. In Proceedings of the 21-'t International Conference on

Very Large Databases, pages 358-369, Zurich, Switzerland 11-15 1995.

[GM99] A. Gupta, I. S. Mumick. Materialised Views - Techniques, Implementations and

Applications. The MIT Press 1999.

[Hans99] E. N. Hanson. A performance analysis of view materialization strategies. In

Materialised Views - Tec1miques, Implementations and Applications. pages

511-533 The MIT Press 1999

[HRU96] V. Harinarayan, A. Rajaxaman, J. D. Ullman. Implementing Data Cubes Effi-

ciently. In Proc. A CM SIGMOD International Conference on Management of

Data, pages 205-227,1996.

BIBLIOGRAPHY 78

[HWL94] C. J. Hahn, S. G. Warren, J. London. Edited synoptic cloud reports

from ships and land stations over the globe, 1982-1991. Available from

http.. -Ilcdiae. esd. ornl. gov/cdiac/ýdps/ndp026b. htmL

[Joh97] J. L. Johnson. Database-Models, Languages, Design. pages 90-91, Oxford Uni-

versity Press Inc. 1997.

[Kim96] R. Kimball. The Data Warehouse Toolkit. John Wiley, 1996.

[Klug82] A. Klug. Equivalence of relational algebra and relational calculus query lan-

gruages having aggregate functions. In Journal of the A CM, 29(3): 699717,1982.

[Knu98] D. E. Knuth. The Art of Computer Programming. Volume 3, Second edition,

Addison Wesley 1998.

[KM99] N. Kotsis, D. R. McGregor. Compact Representation: An Efficient Imple-

mentation for the Data Warehouse Architecture. In Proceedings of the lst

International Conference in Data Warehousing and Knowledge Discovery

(DAWAK), pages 78-85. Florence, Italy, August 1999.

[Koh96] R. Kohavi. Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-kee

Hybrid. In Proceedings of the Second International Conference on Knowledge

Discovery and Data Mining, 1996.

[KR82] G. P. McKeown, V. J Rayward-Smith. Mathematics for Computing. The McMil-

lan Press ltd. Pages 349-355,1982.

[LQA97] W. J. Labio, D. Quass, B. Adelberg. Physical Database Design for Data Ware-

houses. In Proceeding of the International Conference on data Engineering

(ICDE), 1997.

BIBLIOGRAPHY 79

[L078] C. L. Lucchesi, Sylvia L. Osborn. Candidate Keys for Relations. Journal of

Computer and System Science 17, pages 270-279 (1978).

[ME92] P. Mishra, M. H. Eicli. Join Processing in Relational Databases. A CM Com-

puting Surveys 24(l): 63-113, March 1992.

[ML86] L. F. Mackert, G. M. Lohman. R* Optimizer: Validation and performance eval-

uation for distributed queries. In Proceedings of Conference on Very Large

Databases pages 149-159,1986.

[MTD76] D. R. McGregor, R. G. Thomson, W. N. Dawson. High performance hardware

for database systems. Appeared on Systems for Large Data Bases. Editors P. C.

Lockemann and E. J. Neuhold. North-Holland Publidhinh Company, 1976.

[MUW99] H. Garcia-Molina, J. D. Ullman, I Windom. Database System Implementation.

Prentice Hall, Upper Saddle River, New Jersey 07458,1999.

[MQM97] I. S. Mumick, D. Quass, B. S. Mumick. Maintenance of summary tables in ware-

house. In Proceedings of A CM SIGMOD 1997 International Conference on

Management of Data, Tucson, AZ, May 1997.

[OOM87] G. Ozsoyoglu, M. Ozsoyoglou, V. Matos. Extending relational algebra and

relational calculus with set-valued attributes and aggregate functions. In A CM

transactions on Database Systems, 12(4): 566-592,1987.

[OG95] P. O'Neil, G. Graefe. Multi-Table Joins tbrough Bitmapped Join Indices. In

Proc. A CM SIGMOD International Conference on Management of Data, 1996.

[087] P. O'Neil. Model 204 Architecture and Performance. Springer- Verlag

LNCS359,2nd Intl. Workshop on High Performance Transctions Systems

Asilomar, CA, Sept 1987.

BIBLIOGRAPHY 80

[Pen99] N. Pendse. Database explosion available at www. olapreport-c0m/ Database Ex-

plosion. htm.

[R, am98] R. Ramakrishnan. Database Management Systems. WCBIMcGraw Hill, 1998.

[RS97] K. A. Ross, D. Srivastava. Fast Computation of Sparse Datacubes. In Proc. of

the 23rd International Conference on Very Large Databases, pages 116-125,

Athens 1997.

[RSC97] K. Ross, D. Srivastava, D. Chatziantoniou. Quering Multiple Features of

Groups in Relational Databases. In Proceedings of the 22nd International Con-

ference on Very Large Databases, pages 295-306, Mumbai, Sept. 1996.

[Rous82] N. Roussopoulos. View Indexing in Relational Databases. In A CM Transac-

tions on Database Systems. Vol. 7, NO. 2, June 1982, Pages 258-290.

[Rous97] N. Roussopoulos. Materialised Views and Data Warehouses. Technical Report,

Department of Computer Science and Institute of Advanced Computer Studies,

University of Maxyland, 1997.

[SAG96] S. Sarawagi, R. Agrawal, A. Gupta. On Computing the Data Cube. Research

report 10026, IBM Almaden Research Center, San Jose, California, 1996.

[SDN98] A. Shukla, P. M. Despande, J. F. Naughton. Materialized View Selection for

Multidimensional Datasets, In Proceedings of the 24th International Confer-

ence on Very Large Databases, pages 488-499, New York 1998.

[SDJL96] D. Srivastava, S. Dar, H. V. Jagadish, A. Y. Levy. Answering Queries with Ag-

gregation Using Views. In Proceedings of the 22nd Conference on Very Large

Data Base pages 318-329. Mumbai(Bombay), India 1996.

BIBLIOGRAPHY 81

[Sel88] T. Sellis. Multiple query optimization. In A CM Ransactions on Database Sys-

tems, 13(l): 23-52,1998.

[Schn97] D. Schneider. The Ins & Outs (and everything in between) of Data Waxe-

housing. Tutorial in 23rd International Conference on Very Large Data bases.

Athens, Greece 1997.

[SL76] D. G. Severance, G. Lobman. Differential filesL Their application to the main-

tenance of large databases. A CM Transactions on Databases Systems (TODS),

1(3): 256-267, September 1976.

[TPC98] F. Raab, editor. TPC Benchmark TM D Standard Specification Revision 1.3.1

Transaction Processing Council 1998

[VW99] J. S. Vitter and M. Wang. Approximate Computation of Multidimensional Ag-

gregates of Sparse Data Using Wavelets. In Proceedings of the A CM SIGMOD

International Conference on Management of Data, pages 193-204, Philadelpbia

PA, USA, June 1999.

[Wid95] I Widom. Research Problems in Data Warehousing. In Proceedings of the 4th

International Conference of CIKM, pages 25-30, Nov. 1995.

[WB98] M. C. Wu and A. Buchmann. Encoded bitmap indexing for data Warehouses.

In Proceedings of the International Conference on data Engineering (ICDE),

pages 220-230,1998.

[YL95] W. Yan, P. Larson. Eager aggregation and lazy aggregation. In Proc. of

the Twenty-First International Conference on Very Large Databases (VLDB),

pages 345-357,1995.

[ZDN97] Y. Zhao, P. M. Deshpande, J. F. Naughton. An Array based Algorithm for Si-

multaneous Multidimensional Aggregates, In Proc. of the A CM SIGMOD In-

ternational Conference On Management of Data, pages 159-170,1997.

82

APPENDICES

Appendix A

Source code: L-R aggregation

fAuthor: Nikolaos Kotsis

Synopsis: The main algorithm to perform an aggregation and

also extracts the Difference representation I

function TRelat ion. Aggregate (aFirstGroupBy: Boolean; aCountBool: Boolean;

aKeyPresent: boolean): TRelation;

var

i, j, k, m, n, tS, step, hNo, c, y, z: integer;

found: boolean;

tupleI, tupleJ: TTuple;

vAccessTable: array of integer;

vSingleTable, vHashNo: array of integer;

relDiff: TRelationDiff;

x: TRelation;

newRelation: TRelationStored;

83

APPENDIX A. SOURCE CODE: L-R AGGREGATION

bset3, bset4: TBitset;

bsetl, bset2: ThashSet;

begin

if not aKeyPresent then

begin

n: =self. NoOfTuples;

bsetl: =Thashset. Create;

bset2: =Thashset. Create;

bset3: =TBitset. Create;

bset4: =TBitset. Create;

84

newRelation: =TRelationStored. init(self. tupleSize, self. noOfTuples,

self. schema,, self. dict);

newRelation - measureCol: =self . schema. index0f (measureName) +1;

newRelation. measureName: --measureName;

fself is view of oldRelationl

ts: =tuplesize;

setLength(vAccesstable, (3*n)+l);

setLength(vHashNo, n+l);

TupleI: =self. get(l); TupleJ: =self-get(l);

JFind B2 the set of tuple hash values which are held

by more than one tuplel

for i: =l to n do

begin

self. getTuple(i, TupleI);

hNo: =tupleI. hashDims; vHashNo[il: =hNo;

APPENDix A. SOURCE CODE: L-R AGGREGATION

if not bsetl. inset(hNo) then

fFirst time this hash value has appearedl

bsetl. insert(hNo)

ýAt least one previous tuple has this hash valuej

else bset2. insert(hNo);

end;

setLength(vSingleTable, n+l);

for i: = 1 to n do

begin

hNo: =vHashNo[i];

if bset2. inset(hNo) then

begin

self. getTuple(i, TupleI);

found: =false;

j: =(hNo mod (3*n));

step: = hNo mod 13 + 1;

k: =vAccessTable[j]; c: =O;

while (not found)and (k<>O) do

begin

newRelation-getTuple(k, tupleJ);

c: =c+l;

jCheck is the ith tuple found in the m tuples

already being used by the aggregationj

if tupleI. equalFields(tupleJ, ts-1) then

85

begin

APPENDIX A. SOURCE CODE: L-R AGGREGATION 86

lExisting aggregation foundl

found: =true;

if countIsl Jor (aCountBool and aFirstGroupBy)l

then y: =1

else

y: =strToInt(dictionary. stringForToken(TupleI. get(ts)))

newRelation. A. put(k, ts, (newRelation. A. get(k, ts) + y));

vSingleTable[kl: =O;

end

else

begin

if c<=5 then j: =(j+step) mod (3*n)

else

j: =(j+l) mod (3*n);

k: =vAccessTable[j];

end ,

end;

if not found then

begin

M: =M+ 1;

vAccessTable[jl: --m;

vSingleTable[ml: =i;

fmapping from the view to the parent relationl

for k: =l to tS-1 do

newRelation. A. put(m, k, tupleI. A[kl);

if countIsl for (aCountBool and aFirstGroupBy)l then

APPENDIX A. SOURCE CODE: L-R AGGREGATION 87

begin

newRelation-A. put(m, tsfnewRelation. TupleSizel, l)

end

else

begin

newRelation-A. put(m, tsýnewRelation. TupleSizels

strToInt(dictionary. stringForToken(TupleI. get(ts))));

end;

end;

end ýbitlist2 checkl

else

begin

end;

end;

bset4. insert (i) ;

if m>O then

begin

fStorage optimization through "perfect split-out

of several aggregated tuples"I

for i: =l to m do

begin

if vSingleTable[i]<>() then

bset4. insert(VSingleTable[il)else

begin

newRelation. getTuple(i, tupleI);

APPENDIX A. SOURCE CODE: LR AGGREGATION

k: =k+1;

if k<>i then

newRelation. putTuple(k, tupleI);

end;

end;

m: =k;

end;

if m>O then // m= NoofTuples

begin

fFinally convert Count or total to string or

token as appropriatel

for i: =l to m do

88

newRelation. A. put(i, ts, dictionary. insertStringToken(IntToStr

(newRelation. A. get(i, ts))));

newRelat ion. reSize (t sf tuplesizel, mfno of aggregate tuplesl);

relDiff: =TRelationDiff. create(newRelation, self, self. schema);

relDif f. partRelation2. selectedTuples: = bset4;

if (relDiff. partrelationl. noOfTuples>

relDiff. partrelation2. noOfTuples*10)

then

begin

aggregate: =relDiff. Deepcopy;

relDiff. free;

fSo few parent tuples remaining that it is better with a

simple Stored Relation instead of a Difference Relationj

end else

APPENDIX A. SOURCE CODE: L-R AGGREGATION

begin

aggregate: =relDiff;

end;

end else

begin

newRelation. free;

aggregate: = self;

bset4. free;

end;

vAccessTable: =nil; vHashNo: =nil; vSingleTable: =nil;

bsetl. free; bset2. free; bset3. free;

tupleI. free; tupleJ. free;

end else aggregate: =self;

89

end;

Appendix B

Source code: L-R data cube

ýAuthor: Nikolaos Kotsis

Synopsis: The following methods belong to Group-by and Cube-by objects

which were used for the evaluation of the L-R approachl

constructor TGroupBy. initColumnNumber (aRelat ion: TRelat ion;

const aColumnNumber, aNeasureNumber: integer;

aggregate: TVariantFunc);

var newCol: integer;

begin

projectedColumns: =TTuple. init (aRelation. tupleSize*2);

relation: =aRelation;

parentNoOfTuples: =relation. NoOfTuples;

newSchema: =TStringlist. create; firstGroupBy: =true;

if aColumnNumber>aRelat ion. tUPle size then

begin

90

APPENDIX B. SOURCE CODE: L-R DATA CUBE

writeln('Error : ColumnNumber l, aColumnNumber,

I exceeds tuple size 1, aRelation. tuplesize);

readln;

end else

begin

91

newCol: =newSchema. add(aRelation. schema. strings[aColumnNumber-11);

projectedColilmns. put(newCol+l, aColumnNumber);

NoOfColumns: =newCol;

end;

if aMeasureNumber>aRelat ion. tuple size then

begin

writeln('Error : MeasureColumnNumber l, aColumnNumber,

I exceeds tuple size 1, aRelation. tuplesize);

readln;

end else

begin

measureCol: =aMeasureNumber; aggregatel: =aggregate;

end ,

end;

constructor TGroupBy. initAllDimensionsMeasureMame (aRelat ion: TRelat ion;

const aMeasureName: string; aggregate: TVariantFunc;

firstGB: boolean; aRootRelation: TRelation);

var i, j, coliimn: integer;

begin

firstGroupBy: =firstGB; fFor use in CubeBy initialisationl

APPENDlX B. SOURCE CODE: L-R DATA CUBE

if firstGB then

RootRelation: =aRelation else RootRelation: =aRootRelation;

projectedColumns: =TTuple. init(aRelation. tupleSizef+ll);

relation: =aRelation;

parentNoOfTuples: =relation. NoOfTuples;

newSchema: =TStringlist. create;

j: =O; i: =O;

while j<= (aRelation-schema. count-1) do

begin

if aRelat ion. schema. Strings [i I <>aMeasureName then

begin

newSchema. add(aRelation. Schema. strings[jl);

projectedColumns. put(i+lj+l);

end;

j: =j+l;

end;

column: = aRelation. Schema. indexof(aMeasureName);

if column= (-I) then

begin writeln('Error - l, aMeasureName, l not found in schema');

readln;

end else

begin

measureCol: =colliTnn+l; measureName: =aMeasureName;

aggregatel: =aggregate;

92

end;

APPENDIX B. SOURCE CODE: L-R DATA CUBE

end;

constructor TGroupBy. initColumnName(aRelation: TRelation;

const aColumnName, aMeasureName: string;

aggregate: TVariantFunc);

var newCol2colliTnn: integer;

begin

projectedColumns: =TTuple. init (aRelation. tupleSize*2);

relation: =aRelation;

parentNoOfTuples: =relation. NoOfTuples;

newSchema: =TStringlist. create; f irstGroupBy: =true;

colilTnn: = aRelation. Schema. indexof(aColumnName);

if column= (-I) then

begin

writeln('Error - l, acolumnName, l not found in schema,);

readln;

end else

begin

newCol: = newschema. add(aColumnName)+I;

column: =column+l;

projectedColilmns. put (newCol, cobimn);

NoOfColumns: =newCol;

end;

Collimn: = aRelat ion. Schema. indexof(aMeasureName);

if colilmn= (-l) then

93

begin

APPENDLX B. SOURCE CODE: L-R DATA CUBE

writeln('Error - l, aMeasureName, l not found in schema');

readln;

end else

begin

measureCol: =coluTnn+l; measureName: =aMeasureName;

aggregatel: =aggregate;

end;

end;

constructor TGroupBy. initMeasureName (aRelat ion: TRelat ion;

const aMeasureName: string; aggregate: TVariantFunc;

firstGB: Boolean; aRootRelation: TRelation);

var coliTnn: integer;

begin

firstGroupBy: =firstGB;

94

if FirstGB then RootRelat ion: =aRelat ion else RootRelation: = aRootRelation;

projectedColilmns: =TTuple. init (aRelation. tupleSize*2);

relation: =aRelation;

parentNoOfTuples: =relation. NoOfTuples;

column: = aRelation. Schema. indexof (aMeasureName) ;

if column= (-I) then

begin

writeln('Error - I, aMeasureName, l not found in schema');

readln;

end else

begin

APPENDIX B. SOURCE CODE: L-R DATA CUBE

measureCol: =coluTnn+l; measureName: =aMeasureName;

aggregatel: =aggregate; newSchema: =TStringList. create;

end;

end;

function TGroupBy. hashschema: integer;

var i, sum, dsum: integer;

begin

f$Q-1 fOverflowchecks offl

dsum: =O; sum: =O;

for i: = 0 to newSchema. count-1 do

begin

sum: =sum + hash(newSchema. strings[i]);

dsum: =dsum+sum;

end;

if dsum<O then dsum: = dsum shr 1;

hashschema: =dsum;

end;

constructor TGroupby. initMeasureNamefromGB(aGB: TGroupBy;

const aMeasureName: string; aggregate: TVariantFunc;

firstGB: boolean; aRootRelation: TRelation);

var column : integer;

begin

firstGroupBy: =firstGB;

95

if firstGB then rootRelation: =aGB. Relation else rootRelat ion: =aRootRelat ion;

APPENDLX B. SOURCE CODE: L-R DATA CUBE

projectedColumns: =TTuple - init (aGB. newSchema - count*2);

relation: =aGB. newRelation;

parentNoOfTuples: =aGB. relation. NoOfTuples;

column: =aGB. newschema. indexof (aMeasureName) ;

if column= (-1) then

begin

writeln('Error - l, aMeasureName, l not found in schema');

readln;

end else

begin

measureCol: =coliimn+l;

measureName: =aMeasureName;

aggregatel: =aggregate;

newSchema: =TStringList. create;

end;

end;

procedure TGroupBy-execl;

var newCol: integer;

begin

newCol: = newschema. add(measureName)+I;

proj ectedColiimns. put (newCol, MeasureCol) ;

NoOfColilmns: =newCol;

hNo: = self. hashschema;

execlDone: =true;

96

end;

APPENDIX B. SOURCE CODE: L-R DATA CUBE

destructor TGroupBy. free;

begin

measureName: =";

inherited free;

end;

procedure TGroupBy. freeRelation;

begin

inherited freeRelation;

exec2Done: =false;

end;

function TGroupBy. reducedAggregate: boolean;

var oldrelation: TRelationView;

begin

if not execldone then

begin

noOfColumns: = newschema. add(measureName)+l;

projectedColi, Tnn s. put (noOf ColiiTnns, MeasureCol) ;

end;

97

oldRelat ion: =TRelationView. create (relation, newSchema, projectedColumns) ;

reducedAggregate: =oldRelation. reducedAggregate;

oldRelation. free;

end;

APPENDIX B. SOURCE CODE: L-R DATA CUBE

procedure TGroupBy. exec;

var

oldRelation: TRelationView;

newCol: integer;

newRel: TRelation;

diffRel: TRelationDiff;

begin

if m<>-l then

begin

if not execldone then

begin

newCol: = newschema. add(measureName)+l;

projectedColilmns. put(newCol, MeasureCol);

NoOfColumns: =newCol;

hNo: = self. hashschema;

end;

countBool: =Caggregatel=Qcount;

98

oldRelation: =TRelationView. create (relation, newSchema, projectedColumns) ;

oldRelation. measurecol: =oldRelation. tupleSize;

if firstGroupBy and countBool then oldRelation. setCountIsi;

parentNoOfTuples: = relation. NoOfTuples;

newRel: =oldRelation. aggregate (f irstGroupBy, countBool, keyPresent);

resultRelation: =newRel;

newRelation: =newRel;

end;

APPENDLX B. SOURCE CODE: L-R DATA CUBE

end;

procedure TGroupBy. setKeyPresent;

begin

keyPresent: =true;

end;

function TGroupBy. tupleCost: integer;

begin

tupleCost: =parentNoOfTuples; I+ newRelation. noOfTuples; l

end;

function TGroupBy-estCost: integer;

begin

if storedEstCost<=O then StOredEstCost: =self. tuplecost;

estCost: =storedEstCost;

end;

fstart of Cubel

procedure TCubeBy-display;

var i: integer;

begin

writeln;

writeln(lNumber of GroupBys in CubeBy = 1, NoOfGroupBys);

99

for i: =l to NoOfGroupBys do

APPENDLX B. SOURCE CODE: L-R DATA CUBE

begin

writeln('Tuple cost vGroupBy[il. tupleCost);

readln;

end;

end;

function TCubeBy-getValue(i: integer): TRelation;

begin

getValue: =vGroupBy[il. value

end;

function TCubeBy. getValueSchema(s: TStringList): TRelation;

var

found: boolean; i: integer;

begin

i: =l;

found : =false;

while (i<=noOfGroupBys) and (not found) do

begin

found: =s. equals(self. getValue(i). Schema);

i: =i+l;

end;

i: =i-1;

if (not f ound) then

getValueSchema: =nil

else

100

APPENDIX B. SOURCE CODE: L-R DATA CUBE

getValueSchema: =self-getValue(i);

end;

destructor TCubeBy. free;

var i: integer;

begin

vGroupBy: =nil; vGBAccessTable: =nil;

for i: =l to noOfCompGBs do

compGBList[il. free;

compGBList: =nil;

for i: =l to noOfKeys do

keyList[il. free;

keyList: =nil;

linherited free; j

end;

procedure TCubeBy. freeAllGroupBys;

var i: integer;

begin

for i: =1 to noOfGroupBys do

begin

vGroupBy[il. freeRelation;

vGroupBy[il.: free;

end;

self. free;

end;

procedure TCubeBy. fetchAllGroupBys;

101

APPENDIX B. SOURCE CODE: L-R DATA CUBE

var i: integer;

begin

for i: =i to noOfGroupBys do

begin

vGroupBy[il. copyOfValue. free;

end;

end;

function TCubeBy. must Be Small erThanBas eRe lat ion (aDimens ionS, chema:

TstringList): boolean;

var i: integer; minteger;

begin

i: =1;

102

while (n<=baseRelat ion. Noof Tuples) and (i<=aDimensionSchema. count) do

begin

n: =n*baseRelation. cardinal ity (aDimens ionS chema. strings U-11);

i: =i+l;

end;

mustBesmallerThanBaseRelation: =n<baseRelation. NoOfTuples;

end;

function TCubeBy. reducedAggregate(anAggregateSchema: TstringList): boolean;

va-r

aGB: TGroupBy;

i: integer;

APPENDIX B. SOURCE CODE: L-R DATA CUBE

begin

aGB: =TGroupBy. initMeasurename (baseRelat ion, measureName, aggregatef .
false, nil);

for i: =O to anAggregateSchema-count-I do

if measureName<>anAggregateSchema. strings [il then

aGB. addColumnname(anAggregateSchema. strings[il);

reducedaggregate: =aGB. reducedAggregate;

aGB-free;

end;

function TCubeBy. Containskey(y: Tstringlist; x: Tstringlist) : boolean;

var

i, l, size: integer;

contain: boolean;

begin

contain: =false;

1:

size: =y. count;

for i: =O to size-1 do

begin

if x. indexof (y. strings [il) <> -1 then

end;

if 1=size then

contain: =true

else

103

APPENDIX B. SOURCE CODE: L-R DATA CUBE

Containskey: =false;

Containskey: =contain;

end;

function TCubeBy. ContainsAnykey(x: Tstringlist) : boolean;

var

i: integer;

keyfound: boolean;

begin

i: =1;

keyfound: =false;

while (i<=noOfKeys) and (not keyfound) do

begin

keyfound: =containskey(Keylist[il, x);

i: =i+l;

end;

Containsanykey: =keyfound;

end;

function TCubeBy. power(x: integer): integer;

var

i: integer;

y, k: integer;

begin

104

y: 2;

APPENDIX B. SOURCE CODE: L-R DATA CUBE

for i: =l to x do

begin

k: =Y*k;

end;

power: =k;

end;

105

procedure TCubeBy. makeKeyList (aRelat ion: TRelat ion; const aMeasureName: string;

aggregate: TVariantFunc);

var

posin, line: integer; fl, f2: textfile;

j, i, n: integer;

noOfCombinations: integer;

mask: integer;

dimensionSchema: TStringList;

newAggregateSchema: TstringList;

begin

assignfile(fl, lc: \GBList. txt');

assign-file(f2, lc: \Klist. txt');

Rewrite (f 1) ;

Rewr it e (f 2) ;

fObtain the dimensions-only schema, leaving out the measure of interestj

dimensionSchema: =TStringList. Create;

for i: =O to aRelat ion. schema. count- 1 do

if aMeasureName <> aRelat ion. schema. strings [il then

dimensionSchema. add(aRelation. schema. strings [il);

APPENDIX B. SOURCE CODE: L-R DATA CUBE

noOfCombinations: =power(dimensionschema. count);

setLength (keyList, noOfCombinations+l);

setLength(compGBList, noOfCombinations+l);

noOfCompGBs: =O; noOfKeys: =O;

for i: =l to noOfCombinations do

begin

fForm. the schema required by the current ith. combinationj

newAggregateSchema: =TStringList-create;

for j: =O to dimensionSchema. count-1 do

begin

mask: =1 shl

if (i and mask)<>O then

newAggregateSchema. add(dimensionSchema. strings [j]);

end;

fDecide what to do with itl

if must Be smallerThanBas eRe lat ion (newAggregat e Schema) then

begin

fIt can't be a key so add it to the compGBListl

noOfCompGBs: =noOfCompGBs+i;

compGBList[noOfCompGBs] : =newAggregateSchema;

end

else if containsanykey(newAggregateSchema) then

begin

newAggregateSchema. free;

ýminiznum number of minimal keysl

106

end

APPENDIX B. SOURCE CODE: L-R DATA CUBE

else if reducedAggregate(newAggregateSchema) then

begin

fAdd it to the compGBListl

noOfCompGBs: =noOfCompGBs+l;

compGBList[noOfCompGBs] : =newAggregateSchema;

end else

begin

I This is a new key: add it to the keyListl

noOfKeys: =noQfKeys+l;

keyList[noOfKeysl: =newAggregateSchema;

end;

end;

dimensionSchema. free;

end;

procedure TCubeBy. initMeasureName2(aRelation: TRelation;

const aMeasureName: string;

aggregate: TVariantFunc);

var start, jPos: integer;

function sameGB(gBl, gB2: TGroupBy): boolean;

var i : integer; same: boolean;

begin

i:

107

same: =(gbl. hNo=gB2. hNo) and(gBl. newSchema. count=gB2. newSchemA. count);

while same and (i<gBi. newSchema. count) do

APPENDIX B. SOURCE CODE: L-R DATA CUBE

begin

same: = gbl. newSchema. strings[il=gB2. newSchema. strings[i];

if same then i: =i+l;

end;

sameGB: =same;

end;

function alreadyPresent(aGB: TGroupBy): boolean;

var found: boolean; i, j, step, c: integer;

begin

found: =false; fhno=hashSchema(aGB. newSchema); I

j: = aGB. hNo mod (ma NoOfGroupBys*3);

step: = aGB-hNo mod 13 +1; c: =O;

i: =vGBAccessTable[j];

while (i<>OMOfGroupBysj) and (not found) do

begin

108

f ound: = (aGB. hNo=vGroupBy [il
. hNO) and sameGB (aGB, vGroupBy [il);

if not found then

begin

if c>5 then step: =I;

j: =(j+step)mod (maxNoOfGroupbys*3);

c: =c+l;

i: =vGBAccessTable[j];

end;

end;

APPENDIX B. SOURCE CODE: L-R DATA CUBE 109

if found then

begin

ýi: =i-l; I

if (i>=start) and (aGB. estCost<vGroupBy[il. estCost) then

begin

vGroupBy[il. free;

vGroupBy[il : =aGB;

end else aGB. free;

end;

jpos: =3 ;

alreadyPresent: =found;

end;

procedure makeGBs(aGB: TGroupBy);

var

ts, k, j, ii: integer;

gB: TGroupBy;

r: TRelation;

keyPresent: boolean;

testSchema: TstringList;

begin

ts: =aGB. NoOfColilTnns ;

for k: = 1 to (ts-i) do

begin

r: =aGB. value;

TestSchema: =TStringList. Create;

APPENDIX B. SOURCE CODE: L-R DATA CUBE

for j: = 1 to (ts-1) do

if (j<>k)and(r. schema. strings[j-ll<>aMeasureName) then

testSchema. add(aGB. newschema. strings[j-11);

keypresent: =containsAnyKey(testSchema);

Ikeypresent: =false; l

if keypresent then

begin

110

gb: =TGroupBy. initMeasureNamefromGB(aGB, aMeasureName,

aggregate, FALSE, aGB. rootRelation);

gb. setKeyPresent;

end

else

gB: =TGroupBy. initMeasureNamefromGB(aGB, aMeasureName,

aggregate, FALSE, aGB. rootRelation);

for j: =l to TestSchema. count do

gB. addColumnName(TestSchema-strings[j-11);

testSchema. free;

cr'h . b. execl;

if not alreadyPresent(gB) then

begin

ii: =ii+l;

vGroupBy[iil: =gB;

NoOfGroupBys: =NoOfGroupBys+l;

vGBAccessTable[jPosl: =NoOfGroupBys;

end;

end;

APPENDIX B. SOURCE CODE: L-R DATA CUBE

end;

var

ts: integer;

gB: TGroupBy;

r: Trelation;

k3: integer;

fl: textfile;

begin

assignfile(fl, lc: \outGBs. txt');

rewrite(fl);

NoOfGroupBys: =I; start: =l;

f Allocate max number GroupBys which might be neededl

ts: =aRelation. tupleSize;

ts :=2 shl ts; maxNoOfGroupBys: =ts;

setlength(vGroupBy, ts); setlength(vGBAccessTable, ts*3+1);

ill

gB: =TGroupBy. initAllDimensionsMeasureName(aRelation, aMeasureName,

aggregate, true, nil);

gb. execl;

vGroupBy[NoOfGroupBysl: = gB;

while start<=NoOfGroupBys do

begin

start: =start+l;

makeGBs(vGroupBy[start-11);

end;

setlength(vGroupBy, start); fReduce to required lengthl

closefile(fl);

APPENDIX B. SOURCE CODE: L-R DATA CUBE

end;

constructor TCubeBy. initMeasureName(aRelation: TRelation;

const aNeasureName: string; aggregate: TVariantFunc);

var

timerl, timer2, timer3, timer4: comp;

existingSelectedIndex: boolean;

begin

if aRelation. selectedindex then

existingselectedindex: =true else

aRelation. makeSelectedIndex;

baseRelation: =aRelation;

MeasureName: =aMeasureName;

aggregatef: =aggregate;

self makeKeyList (aRelation, aMeasureName, aggregate);

self. initMeasureName2 (aRelation, aMeasureName, aggregate);

if not existingselectedindex then

aRelation. freeSelectedIndex;

end;

function TCubeBy. tupleCost: integer;

var i: integer; cost: integer;

begin

cost: =O;

for i: =l to NoOfGroupBys do

112

begin

APPENDIX B. SOURCE CODE: L-R DATA CUBE

cost: =cost+ vGroupBy[il. tupleCost;

end;

tupleCost: =cost;

end;

113

end.

Appendix C

Analytical Results

C-1 Computing the Data Cube

The timings shown are the total time, consisting of the time to select the non-redundant

views utilising the Key-algorithm and the time required to compute the non-redundant

data cube. These timings are compared to those taken for the conventionaJ data cube

approach. All figures in this section show the results in a logarithmic scale and every

figure has an associated table showing the results anaJyticaJly.

The synthetic datasets

Figure CA and Table C-1 show time performance of the L-R approach using the 600K

TPC-D dataset. Figure C. I illustrates that the Totally-Redundant approach (g-equivalent)

is faster than the conventiona. 1 data cube and its performance depends on the dimension-

ality of the dataset. The combined version is slower than the Totally-Redundant ver-

sion but is still faster than the conventional one. Table CA gives the results in detail.

The results using the 60K dataset TPC-D are shown in Figure C. 2 and Table C-2. The

114

APPENDIX C. ANALYTICAL RESULTS 115

Totally-Redundant approach is again faster than the conventiona. 1 approach and increases

its performance after the five-dimension data cube has been used- The combined version

is slower until it reaches the ten-dimension data cube. In the ten-dimension data cube, the

combined approach is faster than the conventional data cube. Figure C. 3 and Table C. 3

show the experimental results taken from 6K dataset TPC-D. The Totally-Redundant

approach is slower until the five-dimension data cube is used, but after the six-dimension

data cube it its performance increases and after this point, remains faster than the con-

ventional data cube. The combined approach is slower than both the Totally-Redundant

and conventional approaches but matches the performance of the conventional approach

with the ten-dimension data cube. Figure CA and Table CA show the results using the

hotel dataset. Similar conclusions can be drawn from this test. The Totally-Redundant

approach is faster than both the conventional and the combined approach after the five-

dimension data cube. The combined approach is slower than both the conventionaJ and

Totally-Redundant approaches but it increases its performance in the inine-dimension data

cube where it becomes faster than the conventional data cube.

The real datasets

In both the weather and adult datasets, the performance time of the L-R approach is

similar. Figure C. 5 and Table C. 5 show the results using the weather dataset and Fig-

ure C. 6 and Table C. 6 show the results using the adult dataset. These results, when

compared to the synthetic datasets, demonstrate that the performance of the Totally-

Redundant approach is affected negatively. The conventional data cube is faster in all

cases and only in the weather dataset (see Figure C. 5) is it close to the combined ap-

proach. This arises from the non-existence of keys in these real datasets, as was discussed

in section 3.5.2. The time overhead, in the Totally-Redundant approach, is time expended

by the Key algorithm without benefit.

APPENDIX C. ANALYTICAL RESULTS

-0
c

10000

1000

100

conventional
totally-redundant

combined

10 L

4 56
Number of Dimensions

116

Figure C. I: Time performance of the L-R approach in TPC-D Lineitern Table (600K)

Time(sec)
Dimensions Conventional Totally-Redundant Combined

4 60.74 65.6 165
5 164 144.5 317
6 415 353.3 558
7 1500 734.3 1309

----- - E) " --,

Table C. I: Time performance of the L-R approach in TPC-D Lineitem Table (600K)

APPENDIX C. ANALYTICAL RESULTS

1000

100
U)

0
0
a) U)

a)
E

ýý- --I

13'

1- 10

conventional
total ly- redundant

combined --E) --

1
3 6789 10

Number of Dimensions

117

Figure C. 2: Time performance of the L-R approach in TPC-D Lineitem Table (60K)

Time(seconds)
Dimensions Conventional Totally-Redundant Combined

3 1.72 2.77 8.8
4 4.11 4.71 20.9
5 9.89 9.95 37
6 22-98 20.54 66-32
7 68.37 38.87 116.05
8 172.7 68.98 204.7
9 410 147 394.8
10 810 312 641

Table C. 2: Time performance of the L-R approach in TPC-D Lineitem Table (60K)

-A

APPENDIX C. ANALYTICAL RESULTS

100

10
(1)

c

a)
E

1

coriventionaf
totally- redundant

combined

0.1 L
3 6789 10

Number of Dimensions

Figure C. 3: Time performance of the L-R approach in TPC-D Lineitem Table (6K)

Time(seconds)
Dimensions Conventional Totally-Redundant Combined

3 0.21 0.29 0.83
4 0.0.47 0.53 1.41
5 1.04 1.13 2.46
6 2.270 2.31 4.04
7 6.61 6.09 12.8
8 12.55 10-30 22.1
9 29.68 19.2 40.15
10 71.89 40.24 79-89
11 167 91.82 163

Table C. 3: Time performance of the L-R approach in TPC-D Lineitem Table (6K)

118

APPENDIX C. ANALYTICAL RESULTS

100

10
-C3
c

0.1

conventional
totally- redundant

combined
. 0, ",

456789 10 11 12
Number of Dimensions

Figure CA: Time performance of the L-R approach in Hotel dataset

Time(seconds)
Dimensions Conventional Totally-Redundant Combined

4 0.11 0.13 0.42
5 0.21 0.27 0.745
6 0.46 0.47 1.30
7 0.96 0.82 2.36
8 2.20 1.75 4.35
9 5.72 3.45 8.10
10 13.43 7.2 13.76
11 29.90 19.39 26.02
12 72.78 48.19 61.58

119

Table CA: Time performance of the L-R approach in Hotel dataset

APPENDIX C. ANALYTICAL RESULTS

1000

-ý31
-0 c

100

a)
E
F-

10

conventional
totally- redundant

combined

67
Number of Dimensions

Figure C-5: Time performance of the L-R approach in the Weather dataset

Time(seconds)
Dimensions Conventional Totally-Redundant Combined

4 11.48 15.4 22.3
5 24.18 30.21 44.7
6 58.33 73-16 88.31
7 135.7 171-11 184.34
8 303.8 372.9 381.6
9 729 896.5 785

120

Table C. 5: Time performance of the L-R approach in the Weather dataset

APPENDIX C. ANALYTICAL RESULTS

1000

100

10

0.1
3

conventional
total ly- redundant

combined -Eel

f3

13-

6789 10
Number of Dimensions

Figure C. 6: Time performance of the L-R approach in the Adult dataset

Time (seconds)
Dimensions conventional Totally-Redundant Combined

3 0.79 1.23 4.27
4 1.99 2.78 7.33
5 4.55 5.93 11.26
6 10.61 14.27 22.06
7 24.61 34.71 47.27
8 56.48 80-15 98.47
9 150 204.51 203
10 307-57 486 424

Table C. 6: Time performance of the L-R approach in the Adult dataset

121

-A

APPENDIX C. ANALYTICAL RESULTS 122

C-2 Storage of Materialised Views

The Synthetic datasets

ExperimentaJ results from the TPC-D datasets are shown in Figures C. 7, C. 8, C. 9 and

Tables C. 7, C. 8, C. 9 for the 600K, 60K and 6K datasets, respectively. Figure C. 7 shows

the results from the test run on the 600K TPC-D dataset. Memory limitations restricted

the tests using the conventional approach to seven dimensions. The space required for the

Totally-Redundant and the combined approaches is 1.8 and 7.7 times smaller, respectively,

than the space required for the conventional storage. These results are shown in detail in

Table C. 7.

Figure C. 8 illustrates the space savings of the L-R approach in ten dimensions for the

TPC-D 60K dataset. Due to the higher dimensionality, the savings are higher than those

achieved using the 600K dataset. Here the space requirements are 3.6 (Totally-Redundant)

and 26.7 (combined) times smaller than the conventional approach. The results can be

seen in Table C. 8.

Similar results were recorded using the 6K dataset and are shown in Figure C. 9 and

in detail in Table C. 9. These results show that space requirements are 3.26 (Totally-

Redundant) and 24.5 (combined) times smaller than the conventional method.

The hotel dataset has produced similar results to the TPC-D data. This was expected

since it is a uniform dataset. These results are shown in Figure C. 10 and Table C-10.

Experiments were run with up to twelve dimensions and the indicated savings are larger

than the TPC-D datasets; space savings are 7.66 (Totally-Redundant) and 38.1 (combined)

times smaller than the conventional storage method.

APPENDIX C. ANALYTICAL RESULTS 123

The Real datasets

Results from the weather dataset are shown in Figure C. 11 and Table C. 11. One difference

between this dataset and the synthetic ones, is that the Totally-Redundant method does

not perform as well, in terms of space savings. This results from the small number of keys

found by the Key-algorithm. Note however, that the savings increase with the number of
dimensions and that after the ninth-dimension cube, the savings are more apparent than

those achieved in a smaller number of dimensions. The combined method is insensitive

to data skewness and performs equally as well in terms of space savings, as the synthetic

datasets discussed previously. The space requirements were 1.1 (Totally-Redundaait) and

15.3 (combined) times smaller than the conventional approach in nine dimensions.

'0-
For the adult dataset the test results are shown in Figure C. 12 and Table C. 12. The

performance of the Totally-Redundant approach is also poorer in this dataset than in that

of the uniform (synthetic) datasets. The combined version, however, is insensitive to data

skewness and dramatically reduces space requirements in the storage of materiahsed views.

Space savings are up to 30 times greater than for the conventional approach. This is shown

in Table C. 12. With the same number of dimensions, the g-equivalent approach is at least

2.2 times more economical than the conventional approach in ten dimensions. Note the

sudden increase in space savings of the g-equivalent approach in the transition from 9

to 10 dimensions. This change occurred because the observational keys found previously

affect more views in ten dimensions than in any smaller dimensionality.

APPENDIX C. ANALYTICAL RESULTS

1.2e+09

1 e+09

8e+08

6e+08
-0

4e+08

2e+08

total ly-red undant
conventional

combined

--------------- - 4-3 -------------------------- ----------

4 56
Number of Dimensions

7

Figure C. 7: Space savings of the L-R approach in TPC-D Lineitem Table (600K)

Memory allocated (bytes)
Dimensions Conventional Totally-Redundant Combined

4 162,723,092 136,298,576 88,434,024
5 305,755,268 221,675,992 108,385,160
6 636,167,484 374,318,332 124,770,880
7 11300,0007000 722,573,540 167,893,536

124

Table C. 7: Space savings of the L-R approach in TPC-D Lineitem Table (600K)

APPENDIX C. ANALYTICAL RESULTS

1.4e+09

1.2e+09

1 e+09

8e+08

6e+08

4e+08

2e+08

ol
3 456789 10

Number of Dimensions

Figure C. 8: Space savings of the L-R approach in TPC-D Lineitem Table (60K)

Memory allocated (bytes)
Dimensions Conventional Totally-Redundant Combined

3 12,668,100 12,656,196 91787,756
4 17,460,120 14,812,988 91816,276
5 32,468,468 22,118,688 11,506,872
6 66,2647468 36,898,344 13,7617780
7 142,350,724 62,433,700 15,166,048
8 3103612,908 99,743,252 18,554,036
9 672,372,452 185,156,856 301622,664
10 112501360,420 347,195,728 46,746,652

Table C. 8: Space savings of the L-R approach in TPC-D Lineitem Table (60K)

conventional
totally-redundani

combined --E)

125

APPENDIX C. ANALYTICAL RESULTS

3.5e+08

3e+08

2.5e+08

2e+08

-0 1.5e+08

1 e+08

5e+07

C)

conventional
totally-redundant

combined

------------- - ---------- ------------

3456789 10 11
Number of Dimensions

Figure C. 9: Space savings of the L-R approach in TPC-D Lineitem Table (6K)

Time(sec)
Dimensions Conventional Totally-Redundant Combined

3 1,644,740 11645,300 943,567
4 21121,536 11857,852 11138,956_
5 31130,460 21410,580 11310,004
6 5,302,204 3,550,080 11549,676
7 12,760,780 7,356,324 20,232,605
8 29,469,580 13,804,896 21490,540
9 66,209,240 24,099,268 21914,036
10 143,761,944 44,036,512 51845,800
11 312,391,104 8019101700 9,133,652

Table C-9: Space savings of the L-R approach in TPC-D Lineitem Table (6K)

126

0

APPENDIX C. ANALYTICAL RESULTS

1.4e+08

1.2e+08

1 e+08

8e+07

-0 6e+07

4e+07

2e+07

0

conventional
totally-redundant

combined

-- -----------
------------ ----------- _Eflý ---- ------

456789 10 11 12
Number of Dimensions

Figure C. 10: Space savings of the L-R approach in the hotel dataset

Memory allocated (bytes)
Dimensions Conventional Totally-Redundant Combined

4 656,044 627,044 253,240
5 877,604 7701436 305,728
6 11423,672 11081,468 376,152
7 21855,160 114423908 405,132
8 5,734,132 21546,156 662,560
9 12,428,092 41440,444 936,060
10 27,569,012 61236,620 11159,964
11 60,352,868 81922,480 11638,860_
12 1301535,816 17,019,420 31423,164_

Table C-10: Space savings of the L-R approach in the hotel dataset

127

APPENDIX C. ANALYTICAL RESULTS

1.4e+09

1.2e+09

1 e+09

8e+OS

-0 6e+08

4e+08

2e+08

01
4 678 10

Number of Dimensions

Figure C. 11: Space savings of the L-R approach in the weather dataset

Memory allocated (bytes)
Dimensions Conventional Totally-Redundant Combined

4 24,224)308 22,343,788 12,214,472
5 4017591772 38,408,936 13,566,378
6 83,271,824 757277,160 14,244,316
7 183,996,368 163,301,248 2016801660
8 406,705,552 358,258,956 33)3511124
9 886,559,064 778,375,868 58,122,528
10 out of memory out of memory 103,316,944

Table C. 11: Space savings of the L-R approach in the weather dataset

conventional
totally-redundant

combined

------------- -----------------

128

APPENDIX C. ANALYTICAL RESULTS

1 e+09

9e+08

8e+08

7e+08

6e+08

5e+08
-0

4e+08

3e+08

2e+08

1 e+08

0

conventional
lotally-redundant

combined

45678
Number of Dimensions --------------

- ------------

9 10

Figure C. 12: Space savings of the L-R approach in the Adult dataset

Memory allocated (bytes)
Dimensions conventional Totally-Redundant Combined

3 413511036 413511648 2,888,260
4 613311296 61332,480 _ 31112,19 6
5 10,600,732 91456,104 31168,372
6 201292,488 18,913,620 _ 410891700
7 43,665,852 42,049,492 _ 61388,900
8 94,838,596 93,001,120 10,498,208
9 20674611812 2011510,012 187318,068
10 982,046,644 436,772,964 32,067,976

Table C. 12: Space savings of the L-R approach in the Adult dataset

129

m

APPENDIX C. ANALYTICAL RESULTS 130

C. 3 Totally-Redundant Views in Derivative Relations

The previous sections demonstrate the significance of the Totafly-Redundant views ap-

proach for the computation of multidimensional aggregates and their storage as ma-

terialised views. Experiments in real datasets show that the performance of Totally-

Redundant approach was negatively affected by the skewness of the datasets. The aim of

this series of experiments was to identify the redundancy in derivative aggregate relations

and show that applying the Key-algorithm recursively can lead to substantial increases in

space savings.

The figures described below reveal the potential of the Totally-Redundant approach

when the Key-algorithm is utilised recursively.

The synthetic datasets

Figure C. 13 and Table C. 13 compare the volume of the Totally-Redundant views when

they are g-equivalent to the base relation with the volume of the Totally-Redundant views

when they are g-equivalent to the derivatives. For the 600K dataset in seven dimensions,

the results show a further redundancy of 23.5% compared to those found in the base

relation.

Figure C. 14 and Table C. 14 illustrate the results of experiments using the TPC-D 60K

dataset. This shows that redundancy is approximately 15% more than the redundancy

found by the simple key algorithm when the derivative aggregates have been searched.

Figure C. 15 and Table C. 15 compare the same quantities for the 6K dataset. The

redundancy found in this method is approximately 21% more than that found by using

the input relation as a reference for the equdvalence property.

APPENDIX C. ANALYTICAL RESULTS 131

For the hotel dataset, the redundancy in ten dimensions was 13.3% more than the

simple (base relation) method. These results are illustrated in Figure C. 16 and Table C. 16.

The real clatasets

The effect of the recursive Key-algorithm on the derivative relations using real datasets

underpins the importance of the technique. Results for the weather dataset reveal that

redundancy is 48.41% more than that found by the simple key algorithm. The simple

Key-algorithm had identified only 10.26% of the data cube redundancy, compaxed to tests

run in the derivative relations, in which the redundancy was 59.93%. Figure C-17 and

Table C. 17 show the results of six different data cube trials.

Figure C. 18 and Table C. 18 show results for the adult dataset. For the simple Key-

algorithm, redundancy of Totally-Redundant views (based on the base relation) was 1.88%,

in contrast to the redundancy identified in derivative relations of 65.28%.

APPENDIX C. ANALYTICAL RESULTS

100

80

En c
.2

60

40 A2
CL

20

0

Total Redundancy

132

4567
Number of Dimensions

Figure C. 13: The effect of Totally-Redundant views on space in the TPC-D Lineitem
Table (600K)

Tot ally- Redundant views %
Dimensions Totally-Redundant (base relation) Totally-Redundant (derivatives)

4 36.54 43.06
5 36.35 36.25
6 43.97 43-97
7 45.87 56.66

Table C. 13: The effect of Totally-Redundant views on space in the TPC-D Lineitem Table
(600K)

APPENDIX C. ANALYTICAL RESULTS 133

Tolal Redundancy
luu

80

iF

60
.2

40

20

n

.
g-eq u ivalent (base

g-equivalent(derivativesý

---. L
I

456789 10
Number of Dimensions

Figure C. 14: The effect of Totally-Redundant views on space in the TPC-D Lineitem
Table (60K)

Totally-Redundant views %
Dimensions Tot ally-Redundant (base relation) Totally-Redundant (derivatives)

4 36-62 36.62
5 43.06 43.06
6 48.72 54.35
7 54.60 65.86
8 63.47 76.33
9 66.80 84.47
10 70.39 84.79

Table C. 14: The effect of Totally-Redundant views on space in the TPC-D Lineitem Table
(60K)

-M

APPENDIX C. ANALYTICAL RESULTS 134

Total Redundancy
100 1

80

.2
60

I-

40

a-

20

0111. IIIII, iI. 11, I11

456789 10
Number of Dimensions

Figure C. 15: The effect of Totally-Redundant views on space in the TPC-D Lineitem
Table (6K)

Totally-Redundant views %
Dimensions Totally-Redundant (base relation) Totally-Redundant (derivatives)

4 37.75 37.75
5 41.65 41.65
6 43.94 55.59
7 43-33 68.91
8 49.76 75-84
9 58.34 82.90
10 68-18 89.70

Table C. 15: The effect of Totally-Redundant views on space in TPC-D Lineitem Table
(6K)

.
g-eq u ivalent (base

g -equivale nt(deri vativesý

APPENDIX C. ANALYTICAL RESULTS

100

80

.2
60

40

0- :3
ri

20

Total Redundancy

----1
1

01; I'l III ill ill Ili ill 11

3456789 10
Number of Dimensions

Figure C. 16: The effect of Totally-Redundant views on space in the Hotel dataset

Totally-Redundant views %
Dimensions Tot ally-Redundant (base relation) Totally-Redundant (derivatives)

3 34.04 34.04
4 37.64 37-68
5 56.48 60.26
6 56.51 68.56
7 61.97 75.04
8 73.64 86.62
9 81.41 91-95
10 83.03 94-08

Table C. 16: The effect of Totally-Redundant views on space in the Hotel dataset

135

APPENDIX C. ANALYTICAL RESULTS

100

80

.2
60

40
A2
CL

20

C)

Total Redundancy

.
g-eq uivalent (base

g-equivalent(derivativesý

136

456789 10
Number of Dimensions

Figure C. 17: The effect of Totally-Redundant views on space in the Weather dataset

Totally-Redundant views %
Dimensions Totally-Redundant(base relation) Totally-Redundant (derivatives)

4 14.91 14.91
5 7.199 14.39
6 10.79 57-19
7 11.13 59.54
8 10.19 20.39
9 10.26 59.93

Table C. 17: The effect of Totally-Redundant views on space in the Weather dataset

-M

APPENDIX C. ANALYTICAL RESULTS

100

80

.2
60

40

20

0
3

Total Redundancy

g-equivalent(base)
g-equivalent(derivatives)

I-Ir

=J 56789 10
Number of Dimensions

Figure C. 18: The effect of Totally-Redundant views on space in the Adult dataset

137

Totally-Redundant views %
Dimensions Totally-Redundant (base relation) Totally-Redundant (derivatives)

4 none none
5 12.95 51.91
6 6.28 51-80
7 2.94 51.66
8 1.42 51.72
9 1.73 60.06
10 1.88 65.28

Table C. 18: The effect of Totally-Redundant views on space in the Adult dataset

APPENDIX D. THE SEAff-JOIN

Appendix D

The Semi-Join

138

Reconstruction of the aggregate requires a semi-join operation after aggregation, which is

an expensive operation. Faster implementation of the semi-join operator can be achieved

using the Bloomjoin [Bloom7O] rather than a conventional join algorithm [ML86], [ME92].

This method is based on Bloom filters which is an array of bits Bfl.. M] with every bit

initially set to zero. Given two relations, the approach for joins is described in the following

stages. For the first relation, a hash function h, is applied to the join attributes. The

hash value h(s) points to a bit in the Bloom filter and this bit is set to 1. At the end

of the process the array bits axe either Is or Os. The array is then used to determine

whether a given attribute value is present in the relation. For the second relation, the

join attributes are hashed and if the hash value points to a bit set to 1 in the Bloom

filter, the corresponding tuple is likely to have a match in the first relation. The Bloom-

filter has been developed by [SL76] to screen out most accesses to a differential file for

view maintenance purposes [Hans99]. [Babb79] and [MTD76] have also used bit-arrays

for faster joins. However, applying this technique to extract the Difference representation

from the aggregate relation would require the scanning of the two relations (parent and

aggregate) for every Partially-Redundant relation. The aggregate algorithms described in

section 3.6 achieve this extraction in a more efficient way.

