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Abstract

A new general three-port systems model of the
thickness-mode piezoelectric transducer is proposed.
This model is considered to have several substantial
advantages over existing modelling techniques. 1In
particular, it may be readily used to explain the
underlying physical operation of ultrasonic transducers.
The model has been developed in such a manner that the
effects of arbitrary electrical load and source elements

and mechanical matching layers may be incorporated.

The use of z-transforms in the calculation of the

transducer transient response has been investigated.
This has resulted in a fast, efficient and accurate
method for calculating the transducer response to

arbitrary transient excitation.

In the course of this work, the model has been

verified extensively by computer simulation and experi-
mental measurement. Excellent agreement was obtained
between the theoretical and practical results for a
comprehensive range of electrical and mechanical

configurations.



Techniques for controlling piezoelectric trans-

mitters electrically have been investigated. This

involves the generation of a precisely defined force

transient,

calculated
simulation
they offer

transducer

by exciting the transducer system with a
voltage. These methods were verified by
and experiment, and it is concluded that
a significant improvement over existing

control strategies.

Finally, it is considered that the techniques and

models proposed have made a significant contribution

to the investigation of thickness-mode piezoelectric

devices.
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Symbol Table

This symbol table contains the more important
symbols and indices used in the mathematical expressions
and systems diagrams of this thesis. Less common or
rarely occurring terms are defined in the text when

required.

(i) Transducer Quantities
C0 Transducer Static Capacitance
h Piezoelectric Charge Constant
Zt Characteristic acoustic impedance of the
transducer
- RF Transducer front-face acoustic reflection
coefficient
RB Transducer rear-face acoustic reflection
coefficient
Tt Transducer transit period
(ii) Transform Notation
S Complex Laplace operator
(ﬁ) Bar symbol signifies a Laplace quantity
Z Z-transform operator
NZ Z superscript indicates a z-transformed

(vii)



(iii)

) |

el

<l|

quantity.
Transformed Quantities

Laplace transform of a forward-travelling

force component

Laplace transform of a backward-travelling

force component

Laplace transform of the particle displa-
cement of a wave travelling in the

forward direction

Laplace transform of the particle displa-
cement of a wave travelling in the

backward direction

Laplace transform of total particle

displacement

Laplace transform of total force

Laplace transform of the excitation vol-

tage

Laplace transform of the transducer vol-

tage

Laplace transform of the total charge on

the transducer

éat) Laplace transform of the current flowing

in the transducer

Three~-port system matrix, (in Laplace
transfer function form), describing the

no-layer transducer

(viii)



Ps Transfer function element of [P]

[ﬁ] Three-port system matrix, (in Laplace

transfer function form), describing the

layered transducer

w. . Traﬁéfer function element of [y]

[;E] Two-port system matrix, describing front-

face layers

TI-Fi'j Transfer function element of EIF:I
[b%l Two-port system matrix, describing rear-
face layers
-ﬁij - Transfer function element of EJB]
E& Differential Laplace polynomial, of the
form
Y a.s
i=0 *
'ﬁj Delay-only Laplace polynomial of the form
M ~sT,
) bje J
j=0
(iv) Layer Index Notation and Parameters
h subscript identifying the layér structure.

For the layered transducer system, the

following convention is assumed,

n0 refers to rear-face media

n=0 refers to the transducer

n>0 refers to front-face media

(ix)



X Defined co-ordinate system for the

f th
n layer
: th
£n Thickness of the n layer
v Veloci th
n elocity of the n layer
Tn(= n/Vn) Propagation time of the nth layer
Zn Characteristic acoustic impedance of the
nth layer

(Note: Occasionally the subscript t is used when refer-
ing to transducer terms. This is used either to agree

with convention or to avoid confusion which may result

from using n=0. These usages are clearly defined in the

text).
(v) General Index Notation
NN N superscript refers to a numerator
polynomial
ND D superscript refers to a denominator
polynomial
ND D subscript refers to a desired quantity

(vi) Miscellaneous Quantities

[Q] Q-matrix used to perform algebraic

(x)



z-transform operations.,

Sampling period of a discrete time

system.

Flow graph symbol used in the systems
d{agrams. The lines connect quantities
and the direction of the flow is shown

by the arrow.

Double arrow is used to highlight or

stress a particular flow-path.

(xi)



Piezoelectric transducers have found widespread
application in the generation and detection of ultra-
sound. These devices may be manufactured from a wide
range of both naturally occurring, (for example,
quartz, tourmaline) or synthetic, (lead zirconate-
titanate, polyvinyldene fluroride) materials. The
transducers may be used as either single, independent
devices, or arranged as arrays of individual elements,
which radiate together to produce a sound beam of
specific characteristics. However, the devices to be
considered here are thickness-mode transducrs. These
may be defined as thin plates or discs of piezoelectric
material which undergo uniform compressional vibration
in the thickness direction. Other modes of vibration
may occur in practice, but it will be assumed here
that these may be safely ignored. It will also be
assumed that the devices operate in their fundamental
mode, and that this lies in the range 0.1 - 10 MHz.
(This range may vary in practice depending upon the
material and application considered, but includes

most of the commercial devices which are available.)



CHAPTER 1
INTRODUCTION



1.1 Background Review

Thickness-mode piezoelectric transducers have found

widespread application in the following main areas.

.Sonar (Underwater navigation, target identification
and communication.)

.Ultrasonic non-destructive evaluation (nde) systems

.Medical diagnosis and imaging

.Acoustic emission;systems

.Acoustic holography

.Materials and tissue characterisation.

In almost every case, the transducer is a key element
in the system. Consequently, it is imperative that the
response of the transducer is known sufficiently well

to allow optimal design of the system. For example,

(i) That the remainder of the system may be

designed to accommodate the transducer for
the application considered.

(ii) That the transducer may be construtted to meet
specific requirements and performance criteria

imposed by the system and application.



(iii) That the system may be designed to control
the transducer. That is, the system is
designed around the transducer, such that the
response of the transducer‘isppre-defined,
hence permitting the generation of specific

outputs by mechanical and electrical control.

To these ends, it is highly desirable that a model
of the transducer should be available, which accurately
predicts both the temporal and. spectral characteristics
of the transducer system. Clearly, such a model should
also include, the acoustic and electrical parameters
associated with the transducer. Thus, a suitable model

must incorporate-the following practical features.

a) The electrical source and passive electrical
load elements.

b) In many applications, transducers are construc-
‘ted with front and rear mechanical layers.

These should be included, as should the effects
of electrodes, bondlines and couplant layers.

c) If possible, the model should reflect the under-
lying physical principles upon which the trans-
ducer operates . This may allow specific cause

and effect relationships to be established,



which may aid the design and construction
of the devices.

d) The model should be amenable to computer imple-
mentation, both in terms of speed and storage.
It is also desirable that any computer model
should be structured such that the elements of
a), b) and c) are readily identified and may be
used as design tools.

e) The model should be amenable to mathematical
inversion -~ that is, the describing equations
may be manipulated to permit the generation of

a mathematically derived excitation function.

The behaviour of piezoelectric transducers, and the
development of transducer models has been widely
investigated. Among the different methods which have
been used to model the devices are:- equivalent circuits,
transmission-line analogies, finite-element techniques,
functional analysis, and systems modelling techniques.
These have had varying degrees of success with each
possessing relative advantages and drawbacks. Most of

the techniques are well-documented in the literature.

However, some of the more important and successful
methods are presented now in further detail. Each -

method is critically assessed using the criteria a) to



e) described prev‘iously*. Its. relative merits are

then clearly outlined.



1.2 Present Modelling Techniques

Three main techniques for modelling the thickness-
mode piezoelectric transducer are considered. Their
merits and drawbacks are then compared with the previ-

ously identified desirable model characteristics.

1.2(1) The Equivalent Circuit Approach

‘These models were developed as an extension of the
techniques used to model piezoelectric crystal oscillat-
ors. Much of the original work in this area was carried
out by W P MASON (42), and his book contains a compre-
hensive treatment of equivélent circuit modelling for

various piezoelectric configurations.

The models are based upon the electro-mechanical

analogies of force-voltage and velocity-current. Thus,

the mechanical parameters of the transducer correspond

to the appropriate electrical parameters in the circuit

model. The differential equations which describe the
transducer and the equivalent circuit are thus of the

same form.

The circuits are derived from the fundamental piezo-



electric relationships (2 ), (9 ), (42), and may be
represented in several ways. For example, Fig 1.1

shows the lumped parameter model of MASON, while Fig 1.2
shows the KLM model proposed by LEEDOM et al. (36), (37).
Both models represent the thickness-mode piezoelectric
transducer. Clearly, the models have been formed in
quite a different manner, although they are mathemati-

cally identical.

Both of these dynamic analogies have found widespread
use in transducer modelling. For example, both KOSSOFF
(35) and SITTIG (62) use the Mason model as a starting
point for their analyses of multilayered ‘transducer
structures. However, the KLM model has now largely
superseded that of Mason for two reasons. Firstly, it
is of a simpler structure - the transmission line is
intuitively a better method of representing the trans-

" ducer propagation delay. Secondly, it separates the
electrical and mechanical quantities and is thus more

amenable to implementation on a computer. This has

resulted in several computerised modelling packages,
notably those of SILK (59), KERVEL and THIJSSEN (34),
DeSILETS et.al,.(14) and SELFRIDGE et. al, (55), which

satisfy requirements (a), (b) and (d) as described in

the previous section.



However, neither model relates to the underlying
physical operation of the trgnsducer. For example,
consider Fig 1.2 . It appears from this model that
electromechanical interaction occurs at the centre of
the transducer. This is not the case, as REDWOOD (°1)
#has shown. Plane wave propagation through a piezo-
electric and a non-piezoelectric matgrial is identical
with the piezoelectric effect occurring only at the
electroded boundaries of the piezoelectric material.,

Each model also contains an unreal circuit element.
In the Mason model, this is a negative capaciéance, and
in the KLM model, a frequency-dependent reactance and
acousto-electric transformer. These elements are
necessary to accurately model the acousto-electric inter-
action within the transducer, but offer limited physical
insight into how these processes occur. Thus the trans-
mission-line models do not fully meet requirement (c) of

the preceeding section.

LIU (39) has used the KLM model to derive the gener-
ating voltage required to produce a specified force out-
put from a transducer. This involves calculating the
spectra of the transducer system and the desired output,
and then evaluating the spectrum of the required input.
The temporal excitation voltage was then obtained using

an Inverse-Fast-Fourier Trans-



form (IFFT) routine. However, this necessitated the

use of a window function to render the required input

spectrum causal, and hence realisable.

The cases considered by Liu were narrowband and the
window function had little discernible effect on the
output. For broadband cases, however, it is possible
that these functions could distort the required input to
such an extent that there may be marked differences

between the actual and the desired outputs.

Thus, the mathematical equatibns which define the

equivalent circuit models are not generally suitable for

inversion and electronic control of the transducer.

All equivalent circuit models are essentially based
upon spectral techniques. In each of the cases consid-
ered here, the transient response is obtained by calcu-
lating the appropriate spectrum, and using an IFFT
procedure. This works well for narrowband cases, but
may cause problems for wideband applications. The
reason for this is the transit delay of the transducer
system which_may, for some cases, result in a spectrum

with a very large bandwidth. To obtain good resolution

with such a spectrum, it is necessary to substantially



increase the total number of sample points used in the
IFFT. This is often unacceptable in many cases. 1If,
however,- the spectrum is truncated so that fewer sample
points are used, then the resultant transient may exhibit

severe distortion which is clearly undesirable. One .
solution to this problem which has been proposed, is to
use z-transform techniques, whereby the transit-delay of

the transducer is modelled directly in the z-domain, and

the differential elements of the system are approximated

by z-domain transfer functions.

Rhynne (53) first attempted this by transforming the
Mason model into a z-domain model. This was of limited

use however, since it proved difficult to include arbit-

rary electrical load elements.

Stepanishen (63) developed a z-transform model for a
length-expansion transducer, based on an equivalent
circuit approach. The fesultant model provided a simple,
accurate method of determining the transient response of
the transducer. However, again this was of limited
value, since the case considered was not of great pract-

ical importance.

CHALLIS and HARRISON (10), (11) have more recently

10



developed a z-domain equivalent of the Mason model.

This has been experimentally verified for several casés,
and, like the method of Stepanishen, is a fast, accurate
method of calculating the transient response. Howvever,
the techniques used there are extremely limited in extent

and application. .

Hence, it appears that, while z-transform techniques
do offer advantages over IFFT methods 'in calculating

the transducer transient response, their applicatioms to
date have been limited. Thus, the inherent frequency
domain approach of equivalent circuit models may present
difficulties in the calculation of the transducer

transient response.
1.2(ii) Finite Element Techniques

These techniques have, for the most part, been used

toanalyse the behaviour of complex vibratory structures.
For example, LLOYD and REDWOOD (40) have used a finite
element technique to investigate the vibrations of a
thin, rectangular piezoelectric plate. KAGAWA et al
(24), (25), (26), (27), (28), (29), (30), (31), (69),
have used several finite element techniques to analyse

a variety of transducer configurations and applications.

11
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This method may be briefly summarised as follows.

The transducer or structure under investigation is

theoretically broken down into a number of small
elements which are connected by a grid or mesh. The
describing differential equations are then applied to
each element in turn, and the relationships between
adjacent elements calculated. This process is repeated
using an iterative procedure until a steady state
solution is obtained. For most applications, this
involves a great deal of repetitive calculation, and a

suitable computer is essential.

The major advantage of this method over other model-
ling techniqdes is the ability to handle transducers
with complex geometries. However, for the application
considered here, the thickness-mode transducer, this
technique offers no improvement on the equivalent
circuit method. It provides no physical insight into
the underlying transducer operation, is not well suited
to transient analysis, and has limited potential for
the investigation of electronic control strategies.

Consequently, finite element methods do not merit

further investigation in the present context.

12
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1.2(4iii) Mathematical Analyses based upon the

Laplace Transform

This method involves finding a closed~form Laplace
transform solution for the relevant piezoelectric and
differential equations which describe the transducer.
This solution may then be used to obtain either the
spectral or transient response of the device under con-

sideration.

Laplace techniques were first developed by COOK (12)

who used the piezoelectric constant e 1 (9) to relate

1

stress and applied voltage within the transducer. He

then solved the relevant system and boundary conditions
to develop a model, comprising two stress generators,
one at each face of the transducer. While this model
is simplistic, (it does not include the effects of

electrical load elements), it does show how the voltage-

stress relationship occurs physically within the device.

This method was further extended by REDWOOD (51),

(52) SINHA (60) and FILIPCZYNSKI (16) who applied
Laplace transform techniques to the fundamental trans-

ducer equations of Mason (42). Redwood analysed the

transducer for both reception and transmission, and,

13



for each case, he developed transfer functions relating

voltage and force. However, he was unable to analyse
the transducer completely due to the complexity of the
resultant tramsfer functions. This arises from the.
negative capacitance, shown in the Mason model of

Fig 1.1 , which accounts for secondary piezoelectric
action. When this component is included in the Laplace
trénsform analysis, it may produce transfer functions
of a mixed differential/delay nature., These are, in
many cases, extremely difficult to inverse transform

into the time domain.

Instead, Redwood examined a series of specific trans-
mission and reception configurations, and analysed the
response of each case. This provided a valuable
insight into the transient -response of piezoelectric
devices. SINHA (60) exten&ed this work by investigating
the effects of specific excitation functions on the

‘transducer; for example, step and ramp functions.

FILIPCZYNSKI (16) employed a similar analysis to that
of Redwood, however, he examined the effects of the

negative capacitance in greater depth. From this, he
was able to show that the negative capacitance has a

direct effect upon the resonant properties of the

14



transducer because of its influence on the electrical

and mechanical resonances.

More recently, LEWIS (58), HAYWARD (19), (20) and
YING (70) have employed Laplace transform techniques to

analyse transducer behaviour.

Lewis investigated the effects of both mechanical
matching layers, and electrical tuning components upon
the transducer response. To do this, he implemented a
generalised computer model for the multilayer transducer.
However, he did not attempt to develop a physical model
nor did he investigate the physical operation of the

transducer.

Hayward extended the Redwood technique, and developed
the Laplace transfer functions into two block-diagram

systems models of the transducer; one for transmission

and one for reception. This method has the advantage

over other modelling techniques in that the individual
blocks within the system may be manipulated into diff-
erent configurations. From this, it is possible to form
physically meaningful relationships between the vari-
ables and parameters of the transducer system. By

doing this, Hayward was able to andlyse fully the oper-

15



ation of the thickness-mode piezoelectric transducer.

He showed that secondary piezoelectric action is essent-
ially a positive feedback effect, and that this is
accounted for in the Mason model by the negative
capacitance. In (19), Hayward presents a complete
analysis of the application of systems modelling
techniques to the thickness-mode piezoelectric trans-
ducer and concludes that this method is superior in

many instances to existing dynamic analogies. This is
particularly true of the ability of the systems approach
to highlight the underlying physical operation of the

transducer.

Ying (70) has analysed the transmitter-only case, by
means of a direct Laplace transform approach. While
this method is complicated and, in view of the work of
Hayward, somewhat clumsy, he reaches the same conclus-
ions as Hayward, regarding secondary piezoelectric

action.,

Thus, from the work of Lewis and Hayward, it is ..
apparent that Laplace transforh techniques and systems

modelling in particular, may be used to satisfy criteria

a), b), ¢c), and d) of the preceding section. However,

some work is still required in the application of these

16



techniques. For example, the systems-diagrams developed
by Hayward are not in a form which readily allows the

addition of mechanical layers.

The last criterion, e) - the amenability of the model
to mathematical inversion, is well suited to Laplace
techniques, and has been investigated by several
authors) in particular, KAZYS and LUKOéEVIéIUS (33),
COURSANT (13), and MEL'KANOVICH (45).Kazys and
Lukosevicius employed a mixture of passive and active
correction to generate acoustic impulses. Their system
was designed using a Laplace transform impedance model

of the transducer.

Coursant and Mel'Kanovich both used the transfer
function for a piezoelectric transmitter to calculate
the Laplace transform of the excitation voltage
required to generate a series of desired acoustic
pulses. Coursant investigated the use of this technique
with low-efficiency devices, where secondary piezo-
electric action may be neglected. However, he gener-
ated the calculated voltages and confirmed the technique
experimentally, thus controlling thg transmitter
response electronically. Mel'Kanovich analysed the more

difficult case, that where secondary action is present.

17



He also calculated the required excitation voltages
for several desired outputs, although it is not clear

from (45) whether these were validated experimentally.

Thus, Laplace transform techniques are suitable for the

development of electronic control strategies.

Finally, the Laplace modelling technique may be used
to calculate the transient response of the transducer
directly, by inverse transformation into the time
domain. However, as was noted earlier, this may present
difficulties in certain cases. To this end, several
different Lechniques have been developed to calculate

the transient respomnafroﬁ the Laplace transform.

Hayward (19) and Lewis (38) have both used the
Laplace transform to calculate the spectrum of the
system and thence, using an IFFT routine, the transient
response. This method is straightforward but suffers

from the disadvantages outlined earlier.

Ying (70), Mel'Kanovich (44) and Gitis and Shenker
(17), inverse transform the system transfer functions

direétly, by der{ving the descfibiﬁg Laplace transform
into a suitable form., The methods used to do this,

while mathematically rigorous, tend to be unduly

18



complicated and are not readily implemented on a

computer.

Hayward (19) has investigated the use of z-trans-
formation for the case of a transducer without secondary

piezoelectric action. It is apparent from his results,
and those discussed earlier, that the z-transform offers
considerable scope for calculating the transient

response, although some development is still required.

Thus, comparing the three modelling techniques which

have been discussed, it is apparent that finite element
techniques are inappropriate for the case under consid-

eration. Of the remaining two techniques, equivalent
circuit methods are the more widely used. These, how-

ever, lack two important points. They give little or no

insight into the underlying physical operation of
the transdcuer, and they are not well suited for the
development of electronic control strategies. They
may also present difficulties in the calculation of

the transducer transient response,

Laplace transform and systems modelling techniques
have been used to satisfy all five of the desirable

model criteria. However, these techniques lack coher-

19



ence - that is, they have been developed independently
by several authors to solve specific problems. No one
Laplace or systems model has been developed which
satisfies all five criteria. Comparing these two
methods, it may be observed from section 1.2(i) that
the problems with the equivalent circuit methods arise
from the dependence of these methods on frequency
domain techniques, and the use of frequency dependent
components in the models. There is no simple method of
overcoming this problem, other than to use an alter-

native technique to form the equivalent circuits.

The problems with the Laplace and systems modelling
techniques are largely due to the manner in which these
techniques have been applied and are not fundamental

to the method,

Thus, it may be concluded that Laplace transform
and systems modelling techniques in particular, offer
the greatest scope for the development of a general

transducer model which meets the five criterdia defined.

previously.

20



1.3 Required Improvements in Systems Modelling

It is now possible to identify the improvements

which are required in systems modelling techniques to
produce a transducer model which meets the requirements
of section 1.1 . The systems models proposed by

Hayward (19), already meet several of these criteria.

In particular, they have been developed to show the
underlying physical operation of the transducer; they
have been used with a wide range of electrical load

and source elements; and they have been implemented on

a computer. S0, assuming thgt the systems model already

contains these points, the further requirements are:-

The systems approach developed by Hayward results
in two separate models., This is inherently
unsuitable because the piezoelectric effect
should be combined in a unified fashion. Conse-
quently, the fundamental approachof Hayward
requires further investigation, particularly for
the development of a general three-port systems

model encompassing both transmission and recep-

tion.

21



The model must include the effects of mechanical
layers. The systems models of Hayward are not
developed into a form whereby layers may be
readily incorporated. Since many practical
transducers and probe assemblies include match-
ing and couplant layers, the systems modelling

technique must be extended to allow the inclusion

of these.

Further development of techniques for calculating
the transducer transient response are required,

particularly the z-transform method.

Further investigation and development of inver-
sion techniques for electronic control is
required, particularly to deal with the effects

of passive electrical load elements and mechanical
matching layers. This is necessary before

electronic control can become a practical.

proposition,

22



layers,

minimises the degree of algebraic manipulation

normally associated with this method.

A strategy has been developed for calculating
the optimal acoustic impedance of multiple

matching layers.

The effects of passive electrical load elements
upon the calculation of the inverse voltage has
been investigated, and it is shown that these
may have a significant influence on the order

and realisability of the generated output.

The effects of mechanical layers upon the calcu-

lation of the inverse control voltage has been

investigated, both theoretically and experiment-

ally.

The following chapters present the derivation of the
model and its associated techniques. Chapter 2 presents
the derivation of the basic transducer model. This is

extended in Chapter 3 to include multiple mechanical

Chapter 4 investigates z-transform techniques

and develops a method suitable for transfer functions

25"



of the transducer type. The model, and the z-transform
techniques are verified extensively in Chapter 5 by the
comparison of simulated and experimental results.,

Finally, Chapter 6 investigates the methods and useful-

ness of electronic control.
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CHAPTER 2
A NEW THREE-PORT LATTICE MODEL



2.1 INTRODUCTION

This chapter presents the derivation of a three-
port linear systems model of the thickness-mode
piezoelectric transducer. Unlike transmission line
models, for example, MASON (42), and LEEDOM et al (37),
this approach uses Laplace transforms and. 1inear

systems techniques. These techniques are based on
the methods developed by, principally, REDWOOD (51)

and HAYWARD ( 19).

In a similar manner to the models developed by

Hayward, this model also uses a feedback mechanism to
account for secondary piezoelectric action. However,
acoustical reverberation is modelled by an acoustic
lattice, similar to that developed by ROBINSON and
TREITEL (54) for modelling multilayered structures in

geophysics.

This model has three main advantages:-

1. A single general model may be used for both
transmission and reception. (It may be
shown that the general model reduces to the
models proposed by Hayward, for the cases
he considers.)

2. The addition of further mechanical layers

27



is straightforward (as will be shown in

Chapter 3).

3. This model provides a greater insight into
the interaction between the electrical and

mechanical effects which are inherent in

the transducer.

28



2.2 THE ACOUSTIC LATTICE

Consider the single-layer structure shown in
Fig 2.1, in which medium 2 is positioned between
media 1 and 3. Each of the media is assumed to be

acoustically. lossless, so that their associated acoustic

impedances 21, 22 and Z3 are real.

Media 1 and 3 are considered to be semi-infinite
in the negative and positive x-directions respectively,

and medium 2 has a finite thickness 22. All three

media are assumed to be infinite in the lateral
dimensions. Each mediumalso has an associated propa-

gation velocity, Vl, V2 and V3 respectively.

Then, if it is assumed that only thickness~mode,
plane-wave propagation occurs in the system, it may be
shown that the equations for particle displacement (Ed,

and force (Td, in the nﬁlmedium, may be expressed in

Laplace Transform notation as_|:38],

e+s(xn/vn) 2.1



' = sZ (-A

o o fne-s(xn/vn)+3'

bne+S(xn/Vn)) 2,2

where Afn is the amplitude of the particle displace-

ment of a wave travelling in the positive x-direction,

at position xn,

and Abn is the amplitude of the particle displace-

ment of a wave travelling in the negative x-direction,

at position X . Zn is the acoustic impedance,

Then, defining the force components at position X

to be,
F = "SZnAfn 2.3
Bn = SznAbn 2.4

3 = -s(x_/v. ). = +s(x_/v_),/sZ
En = (-Fne UV +Bne SUXn/Vn ) S&y 2.5
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[ = F_e n" n’+B e n° n 2.6

Applying the normal boundary conditions, namely
continuity of particle displacement, and continuity
of force, to the interface between media 1 and 2, and

media 2 and 3 gives:~

1 2=0
AN AN
Tllic1=0 - T, |x2=0
F2'x 2.~ T3 |x =0

2.7

Next, defining the forward and backward force

components inside the nth layer at its boundaries.

That is, at xn=0 and xn=2n to be,
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n0 n x =0
n
- =  4s(x /v )
n0 Bn € 0k =0
n
F o=F e S /v)|
12 n f Xn=tn
T _.F ets(x /v _)
n%n a xn=9‘n 2.8

The transit—-time for mechanical waves to cross the

nﬁllayer may. be defined as,

Tn=£n/vn

So, applying this, and equations 2.8 to the system of
Fig 2.1, ‘wave propagation through medium 2 is described

in matrix form as,
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2.9

Equations 2.5, 2.6, 2.8 and 2.9 may now be used to
solve the boundary conditions 2.7, in force-component

form, yielding;

10 ~

30 2.10
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These may be rearranged

1+ 42

£y
-1
2

1 - %2

49

1+ %3

Ly
- 1
2

1 - %3

Zy

into matrix

1 - 22
2y
1+ 22
4y
1 - %3
Z,
1+ %3
£y

form,

2.11

2.12

Equations 2.11 describe wave propagation across the

medium 1:2 interface, in force-component form; simi-

larly, equations 2.12 describe the 2:3 interface.

The equations may be be rewritten in terms of the

reflection coefficients at the media interfaces.

Defining
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Where R12 is the reflection coefficient for waves of

force travelling from medium 1 to medium 2, and R23

the reflection coefficient going from medium 2 to

medium 3.

Rearranging equations 2.11 and 2.12 gives,

1 + R -R

12 12 10

Ri9 1 -Ry2 1 | B2o 2.13
Fap 1 + Ryg  =Ryg
B)s. Ra3 1 -Ryq 2.14
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Equations 2.13 and 2.14 describe waves of force
leaving the 1:2 and 2:3 interfaces, in terms of the
force waves incident upon them. This is shown in

block diagram form in Figs 2.2A and 2.2B.

Equation 2.9 describes wave propagation through

medium 2 and is shown in Fig 2.2C.

Combining Figs 2.2A, B and C gives the overall

systems diagram Fig 2.3 .

Comparing Figs 2.1 and 2.3 , it may be observed
that Fig 2.3 resembles the original system diagram,
Fig 2.1, but also contains the matﬁematical information
describing the system. That is, Fig 2.3 clearly shows
the relationship between the chosen variables within

the systen.

This is the major advantage of the acoustic lattice
model over the transmission-line analogy. Although
transmission line models can be used to obtain the
force and particle displacements in a layered systemn,
they do not show the relationships between the

variables at the interfaces.
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2.3 THE TRANSDUCER LATTICE MODEL

Consider the layered system shown in Fig 2.4, which
depicts a piezoelectric slab positioned between two
semi-infinite non-piezoelectric media, denoted by
-1 and 1 for the rear and front faces respectively.

All media are assumed mechanically lossless, possessing
real acoustic impedances, Z_l, Z, and Z, , and veloc-

t 1

ities V_l, V, and V1 respectively. The piezoelectric

t

layer has a finite thickness L, s and it is assumed that
electrodes of negligible thickness are positioned at

the front and rear faces. All media are assumed to be

infinite in the lateral dimensions,

Attached to the electrodes, as shown, is an arbitrary
electrical load, consisting of a lumped Thevenin

impedance, ZE' in series with a Thevenin source, VE.

The voltage across the electrodes is designated V as

t’

shown.
For plane-wave propagation in the thickness direction,

the expressions for particle displacement in the non-

piezoelectric media are given by equations 2.1 and 2.2.
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The corresponding equations for the piezoelectric

medium are given by LEWIS (38) as,

. = A ms(x /ve) L F . ets(x/vy) 2.15

The voltage across the piezoelectric layer is

proportional to the difference in particle displace-

ment between the front and rear faces.

This may be expressed as (38),

) + Q. /C 2.17

where Qt is the Laplace transform of the total
charge on the electrodes, h 1is the piezoelectric

constant h33 and Ct is the static capacitance of
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the piezoelectric layer (alternatively written as

Ccﬂ'

Applying the same mechanical boundary conditions as

before, namely,

5-1|x_1=0 = E1—.|xt=0
T lyor = Tk
L 11x,=0
_1lx_,=0 Fe lx =0
r T T o
¢ 1 Xe=4 11x,=0

2.18

and defining the force components inside the n
layer (whether it is piezoelectric or not) in exactly

the same manner as equations 2.8 , then equations

2.1, 2.2, 2.15 and 2.16 may be used to solve equations
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2.18, to give,

)
I
el
ol
S’
~
N
I
—~
|
*ry
"
-
+
ool
-t
-
e’
S
N
-t

~
1]
ctr
o
ot
vy
t
20
~/
S
N
ﬂ
|
Py
]
r
Paned
-
+
|
-
L
S~
N
s

t t 2.19

wvhere, in a similar manner to equation 2.9,

t 2.20
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Tt is the transit period of the piezoelectric layer.

Rearranging equations 2.19 gives,

R.i 1 -R, ¥10 L
= + h
_ 5 Qe
b+ R ~R_) Bto R_, +
2.21
Ry 1- Ry R. - 1
1
= + h
b | K
1 + R, -R, R, + 1|
2.22
vhere,
R1 = Zt_zl and R_1 = zt-z--l
Zl+2t Z_1+Zt
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are the reflection coefficients for waves of force
travelling into the piezoelectric layer at the 1,t

and -1,t interfaces respectively.

Equations 2.20, 2.2]1 and 2.22 describe the systems
lattice which is outlined in Fig 2.5 . This is

similar to the acoustic lattice of Fig 2.3. However,

the system now has an extra input, caused by the

charge on the electrodes, Qt'

It is now required to obtain a relationship between
the source voltage and charge, and incorporate this in

an overall model.

From Fig 2.4,.

I, = sQ 2.23

and,

t E t E 2.24
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So, substituting 2.23 and 2.24 into 2.17 gives,

Q. =¢ Sty G, +n (F.) -E.) )
¢ (1+sCtZE) B St X£=% ¢ “t X, =0

2,25

Using equation 2.19, this becomes,

~ C = -sT /o =
Q. = t (Vo + h (1 - e " t)(F.~ +B.. ))
t +SCtZE ) E SZt t0 tjz't

2.26

This is shown in system block diagram form in Fig 2.6

However, it is usually easier to measure the wvoltage

across the transducer, V than the charge on the

t!

electrodes, so, substituting equations 2.23 and 2.24

into equation 2.26 and rearranging,
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This is shown in Fig 2.7 .

Equations 2.21, 2.22 and 2.27 describe the piezo-

electric layer system of Fig 2.4 as a three-port
system. The three input ports are the incident forces

upon the piezoelectric layer, F and B and the

-10 10°
electrical driving voltage, VE. Similarly, the three
output ports comprise the forces leaving the piezo-

electric layer FIO’ B_10 and the voltage across the

electrodes, V As a result, the general lattice

tl

block diagram outlined in Fig 2.8 may be constructed.

Physical interpretation of the lattice block diagram

may be carried out in a relatively straightforward

fashion.

Consider firstly, the device acting as a receiver,

with waves of force, B10 and*F_lO incident on the front

and rear faces respectively. With reference to Fig 2:&‘
a portion of each incident force is reflected, and a
portion, (1+R1)B10, (1+R1)F_10. is transmitted into
the transducer material, whereupon the transmitted

portions reverberate back and forth, as indicated by
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the lattice structure. A component of charge, proport-
jonal to the difference in particle displacement
between the front and rear faces, is also generated

via the blocks .h/sZt and(lt/(1+sCt§é). The latter may
be regarded as a charge modification factor due to the
external electrical load. This charge component is
responsible for the generation of secondary forces,
which propagate into the transducer and the surrounding
media. The secondary piezoelectric action is generated
by the two positive feedback loops, as indicated in

Fig 2.8 by the double arrow symbols,

It may also be observed that, as ZE approaches zero,
(that is, a short-circuit), the generated charge, and
hence the feedback, become maximised. The received

voltage, V is of course, zero under these conditions.

t'

However, as ZE increases, the received voltage increases

and the feedback (and hence the secondary action)
decreases. The amount of feedback also depends on the
piezoelectric properties and mechanical load conditions,

This has been investigated by Hayward, and full details

of these effects are given in (20).

For the device acting as a transmitter, the input to

the system is the electrical excitation voltage, VE'
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The resulting depositionof charge generates waves of
force travelling into the transducer and the load

media at each interface. The nett forces acting on
each face of the device also generate secondary
components of charge, via the feedback voltage quantity,
VF' Once again, secondary piezoelectric action is
represented by a positive feedback section. However,

in this case, the forward and feedback paths are
reversed in comparison to the piezoelectric receiver.
That is, the transmission forward path corresponds to

the reception feedback path. Furthermore, as ZE

approaches zero, transmission efficiency increases,

along with the influence of secondary action. However,
as ZE approaches infinity, the forward path becomes

zero and no transmission takes place.

As with most block systems diagrams, it is possible
to rearrange the blocks to obtain alternative structures.
Such alternatives may enhance the physical understanding

or simplifiythe relationships within the model.
The‘previous systems model of Fig 2.8 was derived

from equations 2.21, 2.22 and 2.27.. Equations 2.26

and 2.27 may be rearranged into the form,
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C J.
£ )(VE Sz ——((1+R )(Blo'F L, )+(1+R 1)(F lo'BtO))

(1+sC Z

= E
= -----———-——--——-C—-———-i———-—————-———-—————
" h
(1 - (T?EZEE_)(zsz (24R)+R_4))) 2.28
t t
= Cy h? NANT Ct
Ve = 10-(qaz e ) (s2ptaez (4R R DDV (T 7))

* (= )((1+R D) (Byg-Frp J+(1+R_)(F_y15-B,0))!

C 2
/(53750 (Zez— (4R #R_1))) 229

E-t t
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