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Abstract 

A new general three-port systems model of the 

thickness-mode piezoelectric transducer is proposed. 

This model is considered to have several substantial 

advantages over existing modelling techniques. In 

particular, it may be readily used to explain the 

underlying physical operation of ultrasonic transducers. 

The model has been developed in such a manner that the 

effects of arbitrary electrical load and source elements 

and mechanical matching layers may be incorporated. 

The use of z-transforms in the calculation of the 

transducer transient response has been investigated. 

This has resulted in a fast, efficient and accurate 

method for calculating the transducer response to 

arbitrary transient excitation. 

In the course of this work, the model has been 

verified extensively by computer simulation and experi- 

mental measurement. Excellent agreement was obtained 

between the theoretical and practical results for a 

comprehensive range of electrical and mechanical 

configurations. 
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Techniques for controlling piezoelectric trans- 

mitters electrically have been investigated. This 

involves the generation of a precisely defined force 

transient, by exciting the transducer system with a 

calculated voltage., These methods were verified by 

simulation and experiment, and it is concluded that 

they offer a significant improvement over existing 

transducer control strategies. 

Finally, it is considered that the techniques and 

models proposed have made a significant contribution 

to the investigation of thickness-mode piezoelectric 

devices. 
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Symbol Table 

This symbol table contains the more important 

symbbls and indices, used in the mathematical expressions 

and systems diagrams of this thesis. Less common or 

rarely occurring terms are defined'in the text when 

required. 

Transducer, Quantities 

C0 Transducer Static Capacitance 

h Piezoelectric Charge Constant 

Zt Characteristic acoustic impedance of the 

transducer 

RF Transducer front-face acoustic reflection 

coefficient 

RB Transducer rear-face acoustic reflection 

coefficient 

Tt Transducer transit period 

(ii) Transform Notation 

s Complex Laplace operator 

(N) Bar symbol signifies a Laplace quantity 

z Z-transform operator 

NzZ superscri'pt indicates a z-transformed 

(vii) 



quantity. 

(iii) Transformed Quantities 

F Laplace transform of a forward-travelling 

force component 

Laplace transform of a backward-travelling 

force component 

At Laplace transform of the particle displa- 

cement of a wave travelling in the 

forward direction 

Ab Laplace transform of the particle displa- 

cement of a wave travelling in the 

backward direction 

Laplace transform of total particle 
displacement 

Laplace transform of total force 

vE Laplace transform of the excitation vol- 

tage 

vt Laplace transform of the transducer vol- 

tage * 

Qt LýLplace transform of the total charge on 

the transducer 

t(=Sýd 
Laplace transform of the current flowing 

in the transducer 

EP] Three-port system matrix, (in Laplace 

transfer function form), describing the 

no-layer transducer 

(Viii) 



pij Transfer function element of 
[Pl' 

[W] Three-port system matrix, (in Laplace 

transfer function form), describing the 

layered transducer 

w Transfer function element of 
[W] 

[Ul 
Two-port system matrix, describing front- 

face layers 

-uF Transfer function element of 
EUF] 

ij 

[Ufl 
Two-port system matrix, describing rear- 
face layers 

UB Transfer function element of 
[UB] 

ij 

d Differential Laplace polynomial, of the 

form 
Ni 
raIs 
i=O 

D. Delay-only Laplace polynomial of the form 

M -sT I: e 
j. 0 i 

Layer Index Notation and Parameters 

h subscript identifying the layer structure. 
For the layered transducer system, the 
following convention is assumed, 

n/, O refers to rear-face media 

n=O refers to the transducer 

00 refers to front-face media 

(ix) 



xn Defined 'Co-ordinate system for the 

n th layer 

In Thickness of the n 
th layer 

Vn Velocity of the n 
th layer 

T 
n(= n 

/V 
n 

Propagation time of the n 
th layer 

zn Characteristic acoustic impedance of the 
th 

n ayer 

(Note: Occasionally the subscript t is used when refer- 

ing to transducer terms. This is used either to agree 

with convention or to avoid confusion which may result 

from using n=O. These usages are clearly defined in the 

text). 

(V) General Index Notation 

NN N superscript refers to a numerator 

polynomial 

NDD superscript refers to a denominator 

polynomial 

NDD subscript refers to a desired quantity 

Miscellaneous Quantities 

IQ] Q-matrix used to perform algebraic 

(x) 



z-transform operations. 

Ts Sampling period of a discrete time 

system. 

Flow graph symbol used in the systems 
diagrams. The lines connect quantities 

and the direction of the flow is shown 
by the arrow. 

Double arrow is used to highlight or 

stress a particular flow-path. 

(xi) 



Piezoelectric transducers have found widespread 

application in the generation and detection of ultra- 

sound. These devices may be manufactured from a wide 

range of both naturally occurring, (for example, 

quartz, tourmaline) or synthetic, (lead zirconate- 

titanate, polyvin. yldene fluroride) materials. The 

transducers may be used as either single, independent 

devices, or arranged as arrays of individual elements, 

which radiate together to produce a sound beam of 

specific characteristics. However, the devices to be 

considered here are thickness-mode transducrs. These 

may be defined as thin plates or discs of piezoelectric 

material which undergo uniform compressional vibration 

in the thickness direction. Other modes of vibration 

may occur in practice, but it will be assumed here 

that these may be safely ignored. It will also be 

assumed that the devices operate in their fundamental 

mode, and that this lies in the range 0.1 - 10 MHz. 

(This range may vary in practice depending upon the 

material and application considered, but includes 

most of the commercial devices which are available. ) 
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CHAPTER 1 

INTRODUCTION 



1.1 Background Review 

Thickness-mode piezoelectric transducers have found 

widespread application in the following main areas. 

. Sonar (Underwater navigation, target identification 

and communication. ) 

. Ultrasonic non-destructive evaluation (nde) systems 

. Medical diagnosis and imaging 

. Acoustic emission systems 

. Acoustic holography 

. Materials and tissue characterisation. 

In almost every case, the transducer is a key element 

in the system. Consequently, it is imperative that the 

response of the transducer is known sufficiently well 

to allow optimal design of the system. For example, 

That the remainder of the system may be 

designed to accommodate the transducer for 

the application considered. 

(ii) That the transducer may be constructed to meet 

specific requirements and performance criteria 

imposed by the system and application. 

2 



(iii) That the system may be designed to control 

the transducer. That is, the system is 

designed around the transducer, such that the 

response of the transducer is-pre-defined, 

hence permitting the generation of specific 

outputs by mechanical and electrical control. 

To these ends, it is highly desirable that a model 

of the transducer should be-available, which accurately 

predicts both the temporal and, spectral characteristics 

of the transducer, system. Clearly, such a model should 

also include, the. acoustic and electrical parameters 

associated with the transducer. Thus, a suitable model 

must incorporate-the following practical features. 

a) The electrical source and passive electrical 

load elements. 

b) In many applications, transducers are construc- 

, 
ted with front and rear mechanical layers. 

These should be included, as should the effects 

of electrodes, bondlines and couplant layers. 

C) If possible, the model should reflect the under- 

lying physical principles upon which the trans- 

ducer operates . This may allow specific cause 

and effect relationships to be established, - 
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which may aid the design and construction 

of the devices. 

d) The model should be amenable to computer imple- 

mentation, both in terms of speed and storage. 

It is also desirable that any computer model 

should be structured such that the elements of 

a), b) and c) are readily identified and may be 

used as design tools. 

e) The model should be amenable to mathematical 

inversion - that is, the describing equations 

may be manipulated to permit the generation of 

a mathematically derived excitation function. 

The behaviour of piezoelectric transducers, and the 

development of transducer models has been widely 

investigated. Among the different methods which have 

been used to model the devices are: - equivalent circuits, 

transmission-line analogies, finite-element techniques, 

functional analysis, and systems modelling techniques. 

These have had varying degrees of success with each 

possessing relative advantages and drawbacks. Most of 

the techniques are well-documented in the literature. 

However, some of the more important and successful 

methods are presented now in further detail. Each 

method is critically assessed using the criteria a) to 

4 



e) described previously. Its- relative merits are 

then clearly outlined. 



1.2 Present Modelling Techniques 

Three main techniques for modelling the thickness- 

mode piezoelectric transducer are considered. Their 

merits and drawbacks are then compared with the previ- 

ously identified desirable model characteristics. 

1.2(i) The Equivalent Circuit Approach 

, 
These modelswere developed as an'extension of the 

techniques used to model piezoelectric crystal oscillat- 

ors. Much of the original work in this area was carried 

out by WP MASON (42), and his book contains a compre- 

hensive treatment of equivalent I circuit modelling for 

various piezoelectric configurations. 

The modefs are based upon the'electro-mechanical 

analogies of force-voltage and velocity-current. Thus, 

the mechanical parameters of the transducer correspond 

to the appropriate electrical parameters in the circuit 

model. The differential equations which describe the 

transducer and the equivalent circuit are thus of the 

same form. 

The circuits are derived from the fundamental piezo- 
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electric relationships (2 ), (9 ), (42), and may be 

represented in several ways. For, example, Fig 1.1 

shows the lumped parameter model of MASON, while Fig 1.2 

shows the KLM model proposed by LEEDOM et al. (36), (37). 

Both models represent the thickness-mode piezoelectric 

transducer. Clearly, the models have been formed in 

quite a different manner, although they are mathemati-, 

cally identical. 

Both of these dynamic analogies have found widespread 

use in transducer modelling. For example, both XOSSOFF 

(35) and'SITTIG (62) use the Mason model as a starting 

point for their analyses of multilayeredýtransducer 

structures. However, the KLM model, has now largely 

superseded that of Mason for two reasons. ' Firstly, it 

is of a simpler structure - the transmission line is 

intuitively a better method of representing the trans- 

ducer propagation delay. Secondly, it separates the 

electrical and mechanical quantities and is thus more 

amenable to implementation on a computer. This has 

resulted in several-computerised modelling packages, 

notably those of SILK (59), KERVEL and THIJSSEN (34), 

DeSILETS et. al. (14) and SELFRIDGE et. al. (55), which 

satisfy requirements (a), (b) and (d) as described in 

the previous section. ' 
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However, neither model relates to the underlying 

physical operation of the transducer. For example, 

consider Fig 1.2 It appears from this model that 

electromechanical interaction occurs at the centre of 

the transducer. This is not the case, as REDWOOD (51) 

has shown. Plane wave propagation through a piezo- 

electric and a non-piezoelectric material is identical 

with the piezoelectric effect occurring only at the 

electroded boundaries of the piezoelectric material. 

Each model also contains an unreal circuit element. 

In the Mason model, this is a negative capacitance, and 

in the KLM model, a frequency-dependent reactance and 

acousto-electric transformer. These elements are 

necessary to accurately model the acousto-electric inter- 

action within the transducer, but offer limited physical 

insight into how these processes occur. Thus the trans- 

mission-line models do not fully meet requirement (c) of 

the preceeding section. 

LIU (39) has used the KLM model to derive the gener- 

ating voltage required to produce a specified force out- 

put from a transducer. This involves calculating the 

spectra of the transducer'system and the desired output., 

and then evaluating the spectrum of the required input. 

The temporal excitation voltage was then obtained using 

an Inverse-Fast-Fourier Trans- 
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form (IFFT) routine. However, this necessitated the 

use of a window function to render the required input 

spectrum causal, and hence realisable. 

The cases considered by Liu were narrowband and the 

window function had little discernible effect on the 

output. For broadband cases, however, it is'possible 

that these functions could distort the required input to 

such an extent that'there may be marked differences 

between the actual and the desired outputs. 

Thus, the mathematical equations which define the 

equivalent circuit models are'not-generally suitable for 

inversion and electronic control of'the transducer. ' 

All equivalent circuit models are essentially based 

upon spectral techniques. In each'of the cases consid- 

ered here, -the transient response is obtained by calcu- 

lating the appropriate spectrum, and using an IFFT 

procedure. This works well for narrowband cases, but 

may cause problems for wideband applications. The 

reason for this is the transit delay of"the transducer 

system which may, for some cases, result in a spectrum 

with a very large bandwidth. To obtain good resolution 

with such a spectrum, -it is necessary to substantially 
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increase the total number of sample points used in the 

IFFT. This is often unacceptable in many cases. If, 

however, -the spectrum is truncated so that fewer sample 

points are used, then the resultant transient may exhibit 

severe distortion which is clearly undesirable. One , 

solution to this problem which has been proposed, is to 

use z-transform techniques, whereby the transit-delay of 

the transducer is modelled. directly in the z-domain, and 

the differential elements of the system are approximated 

by z-domain transfer functions. 

Rhynne (53) first attempted this by transforming the 

Mason model into a z-domain model. This was of limited 

use however, since it proved difficult to include arbit- 

rary electrical load elements. 

Stepanishen (63) developed a z-transform model for a 

length-expansion transducer, based on an equivalent 

circuit approach. The resultant model provided a simple, 

accurate method of determining the transient response of 

the transducer. However, again this was of limited 

value, since the case considered was not of great pract- 

ical importance. 

CHALLIS andHARRISON (10), (11) have more recently 
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developed a z-domain equivalent of the Mason model. 

This has been experimentally verified for several cases, 

and, like the method of Stepanishen, is a fast, accurate 

method of calculating the transient response. However, 

the techniques used there are extremely limited in extent 

and application. 4 

Hence, it appears that, while z-transform techniques 

do offer advantages over IFFT methods, in calculating 

the transducer transient response, their applicationsto 

date have been limited. Thus, the inherent frequency 

domain approach of equivalent circuit models may present 

difficulties in the calculation of the transducer 

transient response. 

Finite Element Techniques 

These techniques have, for the most part, been used 

toanalyse the behaviour of complex vibratory structures. 

For example, LLOYD and REDWOOD (40) have used a finite 

element technique to investigate the vibrations of a 

thin, rectangular piezoelectric plate. KAGAWA et al 

(24), (25). (26), (27), (28), (29), (30), (31), (69), 

have used several finite element techniques to analyse 

a variety of transducer configurations and applications. 
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This method may be briefly summarised as follows. 

The transducer or structure under investigation is 

theoretically broken down into a number of small 

elements which are connected by a grid or mesh. The 

describing differential equations are then applied to 

each element in turn, and the relationships between 

adjacent elements calculated. This process is repeated 

using an iterative procedure until a steady state 

solution is obtained. For most applications, this 

involves a great deal of repetitive calculation, and a 

suitable computer is essential. 

The major advantage of this method over other model- 

ling techniques is the ability to handle transducers 

with complex geometries. However, for the application 

considered here, the-thickness-mode transducer, this 

technique offers no improvement on, the equivalent 

circuit method. It, provides no physical insight into 

the underlying transducer operation, is not well suited 

to transient analysis, and has limited potential for 

the investigation of electronic control strategies. 

Consequently, finite element methods do not merit 

further investigation in the present context. 
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1.2(iii) Mathematical Analyses based upon the 
Laplace Transform 

This method involves finding a closed-form Laplace 

transform solution for the relevant piezoelectric and 

differential equations which describe the trans'ducer. 

This solution may then be used to obtain either the 

spectral or transient response of the device under con- 

sideration. 

Laplace techniques were first developed by COOK (12) 

who used the piezoelectric constant e 11 ( 9) to relate 

stress and applied voltage within the transducer. He 

then solved the relevant system and boundary conditions 

to develop a model, comprising two stress generators, 

one at each face of the transducer. While this m6del 

is simplistic, (it does not include the effects of 

electrical load elements), it does show how the voltage- 

stress relationship occurs physically within'the device. 

This method was further extended by REDWOOD (51), 

(52) SINHA (60) and FILIPCZYNSKI (16)'who applied 

Laplace transform techniques to the fundamental trans- 

ducer equations of Mason (42). ' Redwood analysed the 

transducer for both reception and 'transmission, and, 
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for each case, he developed transfer functions relating 

voltage and force. However, he was unable to analyse 

the transducer completely due to the complexity of the 

resultant transfer functions. This arises from the. 

negative capacitance, shown in the Mason model of 

Fig 1.1 , which accounts for secondary piezoelectric 

action. When this component is included in the Laplace 

transform analysis, it may produce transfer functions 

of a mixed differential/delay nature. These are, in 

many cases, extremely difficult to inverse iransform 

into the time domain. 

Instead, Redwood examined a series of specific trans- 

mission and reception configurations, and analysed the 

response of each case. This provided a valuable 

insight into the transient, response of piezoelectric 

devices. SINHA (60) extended this work by investigating 

the effects of specific excitation functions on the 

transducer; for example, step and ramp functions. 

FILIPCZYNSKI (16) employed a similar analysis to that 

of Redwood, however, he examined the effects of the 

negative capacitance in greater depth. From this, he 

was able to show that the negative capacitance has a 

direct effect upon the resonant properties of the 

14 



transducer because of its influence on the electrical 

and mechanical resonances. 

More recently, LEWIS (58), HAYWARD (1'9), (20) and 

YING (70) have employed Laplace transform techniques to 

analyse transducer behaviour. 

Lewis investigated the effects of both mechanical 

matching layers, -and electrical tuning components upon 

the transducer response. To do this, he implemented a 

generalise'd computer model for the multilayer transducer. 

However, he did not attempt to develop a physical model 

nor did he investigate the physical operation of the 

transducer. I 

Hayward extended the Redwood technique, and developed 

the Laplace transfer functions into two block-diagram 

systems modelsof the transducer; one for transmission 

and one for reception. This method has the advantage 

over other modelling techniques in that the individual 

blocks within the system may be manipulated into diff- 

erent configurations. From this. - it is possible to form 

physically meaningful relationships between the vari- 

ables and parameters'of the transducer system. By 

doing this, Hayward was able to 'anglyse fully the oper- 
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ation of the thickness-mode piezoelectric transducer. 

He showed that secondary piezoelectric action is essent- 

ially a positive feedback effect, and that this is 

accounted for in the Mason model by the negative 

capacitance. In (19), Hayward presents a complete 

analysis of the application of systems modelling 

techniques to the thickness-mode piezoelectric trans- 

ducer and concludes that this method is superior in 

many instances to existing dynamic analogies. This is 

particularly true of the ability of the systems approach 

to highlight the underlying physical operation of the 

transducer. 

Ying (70) has analysed the transmitter-only case, by 

means of a direct Laplace transform approach. While 

this method is complicated and, in view of the work of 

Hayward, somewhat clumsy, he reaches the same conclus- 

ions as Hayward, regarding secondary piezoelectric 

action. 

Thus, from the work of Lewis and Hayward, it is .. 

apparent that Laplace transform techniques and systems 

modelling in particular, may be used to satisfy criteria 

a), b), c), and d) of the preceding section. However, 

some work is still required in the application of these 
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techniques. For example, the systems-diagrams developed 

by Hayward are not in a form which readily allows the 

addition of mechanical layers. 

The'last criterion, e) - the amenability of the model 

to mathematical inversion, is well suited to Laplace 

techniques, and has been investigated by several 

V V, authors in particular, KAZYS and LUKOSEVItIUS (33)t 

COURSANT (13), and MEL'KANOVICH (4-5). Kazys and 

Lukosevicius employed a mixture of passive and active 

correction to generate acoustic impulses. Their system 

was designed using a Laplace transform impedance model 

of the transducer. 

Coursant and Mel'Kanovich both used the transfer 

function for a piezoelectric transmitter to calculate 

the Laplace transform of the excitation voltage 

required to generate a series of desired acoustic 

pulses. Coursant investigated the use of this technique 

with low-efficiency devices, where secondary piezo- 

electric action may be neglected. However, he gener- 

ated the calculated voltages and confirmed the technique 

experimentally, thus controlling the transmitter 

response electronically. Mel'Kanovich analysed the more 

difficult case, that where secondary action is, present. 
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He also calculated the required excitation voltages 

for several desired outputs, although it is not clear 

from (45) whether these were validated experimentally. 

Thus, Laplace transform techniques are suitable for the 

development of electronic control strategies. 

Finally, the Laplace modelling technique-may be used 

to calculate the transient response of the transducer 

directly, by inverse transformation into the time 

domain. However, as was noted earlier, this may present 

difficulties in certain cases. To this end, several 

different techniques have been developed to calculate 

the transient responsefrom the Laplace transform. 

Hayward (19) and Lewis (38) have both used the 

Laplace transform to calculate the spectrum of the 

system and thence, using an IFFT routine, the transient 

response. This method is Straightforward but suffers 

from the disadvantages outlined earli'er. 

Ying (70), Mel'Kanovich (44) and Gitis and Shenker 

(17), inverse transform the system transfer functions 

directly, by deriving the describing Laplace transform 

into a suitable form. The methods used to 'do this, 

while mathematically rigorous, tend to be unduly 
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complicated and are not readily implemented on a 

computer. 

Hayward (19) has investigated the use of z-trans- 

formation for the case of a transducer without secondary 

piezoelectric action. It is apparent from his results, 

and those discussed earlier, that the z-transform offers 

considerable scope for calculating the transient 

response, although some development is still required. 

Thus, comparing the three modelling techniques which 

have been discussed, it is apparent that finite element 

techniques are inappropriate for the case under consid- 

eration. Of the remaining two techniques, equivalent 

circuit methods are the more widely used. These, how- 

ever, lack two important points. They give little or no 

insight into the underlying physical operation of 

the transdcuer, and they are not well suited for the 

development of electronic control strategies. They 

may also present difficulties in the calculation of 

the transducer transient response. 

Laplace transform and systems modelling techniques 

have been used to satisfy all five of the desirable 

model criteria. However, these techniques lack coher- 
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ence - that is, they have been developed independently 

by several authors to solve specific problems. No one 

Laplace or systems model has been developed which 

satisfies all five criteria. Comparing these two 

methods, it may be observed from section 1.2(i) that 

the problems with the equivalent circuit methods arise 

from the dependence of these methods on frequency 

domain techniques, and the use of frequency dependent 

components in the models. There is no simple method of 

overcoming this problem, other than to use an alter- 

native technique to form the equivalent circuits. 

The problems with the Laplace and systems, modelling 

techniques are largely due to the manner in which these 

techniques have been applied and are not fundamental 

to the method. 

Thus,. it may be concluded that Laplace transform 

and systems modelling techniques in particular, offer 

the greatest scope for the development of a general 

transducer model which meets the five criteria defined. 

previbusly. 
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1.3 Required Improvements in Systems Modelling 

It is now possible to identify the improvements 

which are required in systems modelling techniques to 

produce a transducer model which meets the requirements 

of section 1.1 . The systems models proposed by 

Hayward (19), already meet several of these criteria. 

In particular, they have been developed to show the 

underlying physical operation of the transducer; they 

have been used with a wide range of electrical load 

and source elements; and they have been implemented on 

a computer. So, assuming that the systems model already 

contains these points, the further requirements are: - 

The systems approach developed by Hayward results 

in two separate models. This is inherently 

unsuitable because the piezoelectric effect 

should be combined in a unified fashion. Conse- 

quently, the fundamental approachof Hayward 

requires further investigation, particularly for 

the development of a general three-port systems 

model encompassing both transmission and recep- 

tion. 
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The model must include the effects of mechanical 

layers. The systems models of Hayward are not 

developed into a form whereby layers may be 

readily incorporated. Since many practical 

transducers and probe assemblies include match- 

ing and couplant layers, the systems modelling 

technique must be extended to allow the inclusion 

of these. 

Further development of techniques for calculating 

the transducer transient response are required, 

particularly the z-transform method. 

Further investigation and development of inver- 

sion techniques for electronic control is 

required, particularly to deal with the effects 

of passive electrical load elements and mechanical 

matching layers. This is necessary before 

electronic control can become a practical, 

proposition. 
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minimises the degree of algebraic manipulation 

normally associated with this method. 

4. A strategy has been developed for calculating 

the optimal acoustic impedance of multiple 

matching layers. 

The effects of passive electrical load elements 

upon the calculation of the inverse voltage has 

been investigated, and it is shown that these 

may have a significant influence on the order 

and realisability of the generated output. 

The effects of mechanical layers upon the calcu- 

lation of the inverse control voltage has been 

investigated, both theoretically and experiment- 

ally. 

The following chapters present the derivation of the 

model and its associated techniques. Chapter 2 presents 

the derivation of the basic transducer model. This is 

extended in Chapter 3 to include multiple mechanical 

ýayers. Chapter 4-investigates z-transform techniques 

and develops a method suitable for transfer functions 
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ofthe transducer type. The model, and the z-transform 

techniques are verified extensively in Chapter 5 by the 

comparison of simulated and, experimental results. 

Finally, Chapter 6 investigates the methods and useful- 

ness of electronic control. 
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CHAPTER 2 
A NEW THREE-PORT LATTICE MODEL 



2.1 INTRODUCTION 

This chapter presents the derivation of a three- 

port linear systems model of the thickness-mode 

piezoelectric transducer. Unlike transmission line 

models, for example, MASON (42), and*LEEDOM et al (37), 

this approach uses Laplace transforms and. linear 

systems techniques. These techniques are based on 

the methods developed by, principally, REDWOOD (51) 

and HAYWARD 19). 

In a similar manner to the models developed by 

Hayward, this model also uses a feedback mechanism to 

account for secondary piezoelectric action. However, 

acoustical reverberation is modelled by an acoustic 

lattice, similar to that developed by ROBINSON and 

TREITEL (54) for modelling multilayered structures in 

geophysics. 

This model has three main advantages: - 

1. A single general model may be used for both 

transmission and reception. (It may be 

shown that the general model reduces to the 

models proposed by Hayward, for the cases 

he considers. ) 

2. The addition of further mechanical layers 
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is straightforward (as will be shown in 

Chapter 3). 

This model provides a greater insight into 

the interaction between the electrical and 

mechanical effects which are inherent in 

the transducer. 
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2.2 THE ACOUSTIC LATTICE 

Consider the single-layer structure shown in 

Fig 2.1, in which medium 2 is positioned between 

media I and 3. Each of the media is assumed to be 

acoustically. lossless, so that-their associated acoustic 

impedances Zl, Z2 and Z3 are real. 

Media 1 and 3 are considered to be semi-infinite 

in the negative and positive x-directions respectively, 

and mediun) 2 has a finite thickness L 
2' All three 

media are assumed to be infinite in the lateral 

dimensions. Each medium also has an associated propa- 

gation velocity, Vl, V2 and V3 respectively. 

Then, if it is assumed that only thickness-mode, 

plane-wave propagation occurs in the system, it may be 

shown that the equations for particle displacement (T), 

and force J), in the n 
th 

medium, may be expressed in 

Laplace Transform notation as. 
[38]. 

1: 
n ýT fne- 

S(X n 
/V 

n) +1 bn e +S(x n 
/V 

n) 2.1 
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rn= sz n 
(-A fn e- S(X n 

/V 
n)+-T bn e +S(x n 

/V d) 2.2 

where A fn is the amplitude of the particle displace- 

ment of a wave travelling in the positive x-direction, 

at position x n) 

and A bn is the amplitude of the particle displace- 

ment of a wave travelling in the negative x-direction, 

at position x n* 
Zn is the acoustic impedance, 

Then, defining the force components at position xn 

to be, 

Fn sz nA fn 2.3 

Bn- sz nA bn 2.4 

Equations 2.1 and 2.2 may be rewritten as, 

n _Fn e-s 
(xn /V 

n) ý-B 
n e+s(xn 

/v d) /sz 
t 2.5 
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rn = Fn e- S(X n 
/V 

n)+'g ne 
+S(X n 

/V 
n) 2.6 

Applying the normal boundary conditions, namely 

continuity of particle displacement, and continuity 

of force, to the interface between media 1 and 2, and 

media 2 and 3 gives: - 

z, ix 
1 =O = Z21x 

2 =o 

Z21 
x2= 2- 

g31x 
3 =o 

x 
-f ,1'= 

«f 
21x 2 =Z 2. 

r 31x 3 =o 2.7 

Next, defining the forward and backward force 

components inside the n 
th layer at its boundaries. 

That is, at xn =0 and xn =t n 
to be, 
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n0 -Fn e-S(xn 
/v 

n 
ix 

n =C) 

n0 n e+s(xn 
/v 

n 
Ix 

n =O 

F 
nZ nn 

e-s(xn 
/V 

n 
'IX 

n=2n 

Bnn e+s(xnlvn) 
Ix 

ný--Yn 2.8 

The transit-time for mechanical waves to cross the 

n 
th layer may. be defined as, 

2-n /vn 

So, applying this, and equations 2.8 to the system of 

Fig 2.1, wave propagation through medium 2 is described 

in matrix form as, 
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-sT F ZZ 2e20F 20 

+sT B 2. t 20e2B 20 ILJ 2.9 

Equations 2.5,2.6,2.8 and 2.9 may now be used to 

solve the boundary conditions 2.7, in force-component 

form, yielding, 

(-«f 
10 + 'N 

10 
)/Z 

1-( 20 + ii 
20 

)/Z 
2 

-'F +T YZ (--T T 
2. t 2 2Z 22 30 + '30)/Z3 

F 10 +B lo ýF 20 +B 20 

F 2k 2+B 2Y, 2ý 
F 30' +B 30 2.10 
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These may be rearranged into matrix form, 

F 20 1+212 10 z1z1 

zz B21-21+ -2 Blo 

L-- 
z1z1 

F 30 1+313 29- z2z22 

zz 30 1z31+z3B 
29- 2 

L- 22 

2.11 

2.12 

Equations 2.11 describe wave propagation across the 

medium 1: 2 interface, in force-component form; simi- 

larly, equations 2.12 describe the 2: 3 interface. 

The equations may be be rewritten in terms of the 

reflection coefficients at the media interfaces. 

Def ining 
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R 12 =Z 2-Z 1 
Z1 +Z 2 

and R 23 '-- 
z 3- z2 
z2 +Z 3 

Where R 12 is the reflection coefficient for waves of 

force travelling from medium 1 to medium 2, and R 23 

the reflection coefficient going from medium 2 to 

medium 3. 

Rearranging equations 2.11 and 2.12 gives, 

F 20 1+R 12 -R 12 10 

B 10 R 12 1 -R 12 B 20 

F 30 1+R 23 -R 23 F 2P- 2 

B 2ý- 2R 23 1 -R 23 B 30 

2.13 

2.14 
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Equations 2.13 and 2.14 describe waves of force 

leaving the 1: 2 and 2: 3 interfaces, in terms of the 

force waves incident upon them. This is shown in 

block diagram form in Figs 2.2A and 2.2B. 

Equation 2.9 describes wave propagation through 

medium 2 and is shown in Fig 2.2C. 

Combining Figs 2.2A, B and C gives the overall 

systems diagram Fig 2.3 - 

Comparing Figs 2.1 and 2.3 , it may be observed 

that Fig 2.3 resembles the original system diagram, 

Fig 2.1, but also contains the mathematical information 

describing the system. That is, Fig 2.3 clearly shows 

the relationship between the chosen variables within 

the system. 

This is the major advantage of the acoustic lattice 

model over the transmission-line analogy. Although 

transmission line models can be used to obtain the 

force and particle displacements in a layered system, 

they do not show the relationships between the 

variables at the interfaces. 
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2.3 THE TRANSDUCER LATTICE MODEL 

Consider the layered system shown in Fig 2.4, which 

depicts a piezoelectric slab positioned between two 

semi-infinite non-piezoelectric media, denoted by 

-1 and 1 for the rear and front faces respectively. 

All media are assumed'mechanically lossless, possessing 

real acoustic impedances, Z_l, Zt and Z, , and veloc- 

ities V_l, Vt and V1 respectively. The piezoelectric 

layer has afinite thickness Yt, and it is assumed that 

electrodes of negligible thickness are positioned at 

the front and rear faces. - All media are'assumed to be 

infinite in the lateral dimensions. 

Attached to the electrodes, as shown, is an arbitrary 

electrical load, consisting of a lumped Thevenin 

impedance, Z E' in series witha Thevenin source, V E* 

The voltage across the electrodes is designated Vt, as 

shown. 

For plane-wave propagation in the thickness direction, 

the expressions for particle displacement in the non- 

piezoelectric media are given by equations 2.1 and 2.2. 

37 



The corresponding equations for the piezoelectric 

medium are given by LEWIS (38) as, 

Zt = W. 
t e-s 

(X 
t 

/v 
t) +Zbt e+s 

(x 
t 

/v 
t) 2.15 

Ir 
t= sz t 

(-'ift e-s 
(X 

t 
/v 

t) +«i bt e +s(x t 
/v 

t»-hQ t 
2.16 

The voltage across the piezoelect-r'. ic layer is 

proportional to the difference in particle displace- 

ment between the front and rear faces. 

This may be expressed as (38), 

vtd ix 

t=p. t 
-(Z t) 

Ixt=O 

)+qt /C t 2.17 

where Qt is the Laplace transform of the total 

charge on the electrodes, h is the piezoelectric 

c. onstant h 33 and Ct is the static capacitance of 
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the piezoelectric layer (alternatively written as 

Co 

Applying the same mechanical boundary conditions as 

before, namely, 

ý_, 1 
x_ 1 

=O = 
gtlxt=o 

9t 
Ixt= 

kt = glix 
1 

=o 

r-lix- 
1 -0 

rtlxt=o 

rtI 
xt=kt 

r, 
Ix 

102.18 

and defining the force components inside the n th 

layer (whether it is piezoelectric or not) in exactly 

the same manner as equations 2.8 , then equations 

2.1,2.2,2.15 and 2.16 may be used to solve equations 
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2.18, to give, 

Lir 
10 + 'F-lo ) /Z- ,= 

(-Fto + Uto) /Z t 

(-F Ut +Btt 
t) 

/Zt (-Flo + id 
/Zi 

F+ B- +B- hQ 40 lo 2ý F to to t 

F tz t 
+B tz t- 

hQt = Flo + Blo 

where, in a similar manner to equation 2.9, 

2.19 

-sT 0 F 
tz tetF to 

+sT B B 
tz t0et 

to 
2.20 
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Tt is the transit period of the piezoelectric layer. 
I 

Rearranging equations 2.19 gives, 

B_ 10 R_ 1 

F 
to 

R- 1 
-R1 

F 10 

B 
to 

ýQ 
1 1 

2.21 

F 
10 

R1 10 R1 

+h 

Bt1+R -R 1FtR1+I 
L- t--i J-- __j L- -i 

, 

2.22 

where, 

R1=Z Cz 1 and R_ 1=Z 
Cz_ 1 

Z1 +Z t Z- +Z t 
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are the reflection coefficients for waves of force 

travelling into the piezoelectric layer at the 1, t 

and -1, t interfaces respectively. 

Equations 2.20,2.21 and 2.22 describe the systems 

lattice which is outlined in Fig 2.5 . This is 

similar to the acoustic lattice of Fig 2.3. However, 

the system now has an extra input, caused by the 

charge on the electrodes, Qt. 

It is now required to obtain a relationship between 

the source voltage and charge, and incorporate this in 

an overall model. 

From Fig 2.4,. 

it = SQt 

and, 

4 

vt =vE-ItZ 

2.23 

2.24 
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So, substituting 2.23 and 2.24 into 2.17 gives, 

Qt ct (VE +h ((-Et) Ix 
=i - (-Ct) lxt=o 

1+sc 
tzEtt 

2.25 

Using equation 2.19, this becomes, 

Qt ct (VE +h (1 - e-sT t)("f to +B t9, 
sz tt 

2.26 

This is shown in system block diagram form in Fig 2.6 

However, it is usually easier to measure the v61tage 

across the transducer, Vt, than the charge on the 

electrodes, so, substituting equations 2.23 and 2.24 

into equation 2.26 and rearranging, 

2.27 

Vt =- -h 
(1 - e- sT t)(F to + 'N 

t9, 
)( )+ 

vE 

sz tt 1+sCt7, E l+SC tZE 
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This is shown in Fig 2.7 . 

Equations 2.21,2.22 and 2.27 describe the piezo- 

electric layer system of Fig 2.4 as a three-port 

system. The three input ports are the incident forces 

upon the piezoelectric layer, F 10 and Blot and the 

electrical driving voltage, V E* Similarly, the three 

output ports comprise the forces leaving the piezo- 

electric layer Flo, B_ 10 and the voltage across the 

electrodes, Vt. As a result, the general lattice 

- block diagram outlined in Fig 2.8 may be constructed. 

Physical interpretation of the lattice block diagram 

may be carried out in a relatively straightforward 

fashion. 

Consider firstly, the device acting as a receiver, 

with waves of force, B 10 and-F 
-10 

incident on the front 

and rear faces respectively. With reference to Fig 2.8; ' 

a portion of each incident force is reflected, and a 

portion, (1+R, )Blo, (1+R, )F_10, is transmitted into 

the transducer material, whereupon the transmitted 

portions reverberate back and forth, as indicated by 
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the lattice structure. A component of charge, proport- 

ional to the difference in particle displacement 

between the front and rear faces, is also generated 

via the blocks h/sZ 
t and Ct /(I+sc 

tY E) . The latter may 

be regarded as a charge modification factor due to the 

external electrical load. This charge component is 

responsible for the generation of secondary forces, 

which propagate into the transducer and the surrounding 

media. The secondary piezoelectric action is generated 

by the two positive feedback loops, as indicated in 

Fig 2.8 by the double arrow symbols. 

It may also be observed that, as ZE approaches zero, 

(that is, a short-circuit), the generated charge, and 

hence the feedback)become maximised. The received 

voltage, Vt. is of course, zero under these conditions. 

However, as ZE increases, the received voltage increases 

and the feedback (and hence the secondary action) 

decreases. The amount of feedback also depends on the 

piezoelectric properties and mechanical load conditions. 

This has been investigated by Hayward, and full details 

of these effects are given in (20). 

For the device acting as a transmitter, the input to 

the system is the electrical excitation voltage, V 
E* 
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The resulting deposition of charge generates waves of 

force travelling into the transducer and the load 

media at each interface. The nett forces acting on 

each face of the device also generate secondary 

components of charge, via the feedback voltage quantity, 

V F* Once again, secondary piezoelectric action is 

represented by a positive feedback section. However, 

in this case, the forward and feedback paths are 

reversed in comparison to the piezoelectric receiver. 

That is, the transmission forward path corresponds to 

the reception feedback path. Furthermore, as ZE 

approaches zero, transmission efficiency increases, 

along with the influence of secondary action. However, 

as ZE approaches infinity, the forward path becomes 

zero and no transmission takes place. 

As with most block systems di. agrams, it is possible 

to rearrange the blocks to obtain alternative structures. 

Such alternatives may enhance the physical understanding, 

or simplif-y the relationships within the model. 

The previous systems model of Fig 2.8 was derived 

from equations 2.21,2.22 and 2.27.. Equations 2.26 

and 2.27 may be rearranged into the form, 
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0 cth 
(. l+sc z )(V E +-, ýZt((I+Rj)(Bjo-FtX )+(l+R_ 1)("F-lo--Nto)) tEt Qt 

ch2 
0 

sz 
(2+R, +R_, ))) 2.28 7f+T--SZECt 

t 

ch2ct 
'C )(sZ +T- SZ_(2+R, +R_ +( zEtE sZ t 

d))VE 1+sC 
tzE 

-j-Z)«l+R, )(B, ()-Ft't ), +(1+R_ )(F_ lo- 
-g 

to»i 

I 
ct 

(1-(T+. 
Z Ect 

)(2sZ 
t 

(2+R 1 +R- d)) 2.29 

These equations may then be used to form the 

alternative block diagram shown in Fig 2.9 . This 

differs from Fig 2.8 in two important respects. 

Firstly, charge generation is now a function of the 

force components incident upon the interfaces of the 

system. This redu'ced to the nett particle displacement 

within the layer. However, the system of Fig 2.9 

is simpler to manipulate mathematically. 
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Secondly, secondary action has now been reduced 

to a single positive charge feedback block. Positive 

feedback is often associated with unstable or oscill*- 

atory systems. In this case, the system is stable, 

but a general stability analysis is extremely 

difficult because of the mixed differential/delay 

nature of the system. In a later chapter, it will be 

shown that z-transform techniques provide a simple 

mehtod for analysing the stability of the system. 

However, a qualitative explanation ýs as follows. 

Any excitation of the system of Fig 2.9 (either 

by an incident force, or an electrical source), has 

two effects. Firstly, it generates two waves of force 

travelling into the layer from each interface, F 
to 

and B Secondly, it produces a charge on the tk t 

electrodes. (This charge may partially or wholly 

generate the force waves. ) The waves of force take 

a finite time, Tt to cross the piezoelectric layer. 

During this time, the charge on the electrodes 

increases, due to positive feedback. However, when the 
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force waves reach the opposite electrodes, a portion 

of each wave generates charge. This charge has a 

180 phase shift, with respect to the charge on the 
0 

electrodes, and consequently disrupts the positive 

feedback process. 

This mechanism repeats every Tt seconds, thus the 

positive charge feedback does not cause instability 

within the system. Hayward (19) and Ying et. al. (70) 

reach similar conclusions for their analyses. 
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2.4 MATHEMATICAL ANALYSIS 

The transducer lattice models of Figs 2.8 and 2.9 

represent three-port systems. It is convenient to express 

the transducer system as a mathematical transfer 

function of the form, 

F 10 B 10 

-T 
-10 

vt VE 

where is a3x3 system matrix, given by: - 

pil P12 P13 

[-f I= P21 P22 P23 

P31 P32 P33 

2.30 

2.31 
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and the pij elements define the precise input/output 

relationships. 

Consider the lattice model shown in Fig 2.9. In 

the present notation, P33 defines the relationship 

between the voltage across the electrodes, Vt, and 

the driving voltage, VE Assuming that the system 

is driven by VE only, and that the forces leaving the 

transducer into the load media, F 10, Blot may be 

neglected, then the system reduces to that of Fig 2.10. 

Thus, using equations 2.20,2.212 2.22,2.24 and 

2.28, (or directly from Fig 2.10), the following 

relationships are apparent, 

-sTt-g F 
to 

R_ 1e. tj t 
+( 

2)h, 
&t 

B 
tit = -R 1e 

-sTt. -F 
to +( 

2 
)hqt 

thus, 

2.32 

2.33 
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Ln 

17C 0z 
zs 0 ZS+l 

ol 

lzs 

a(10 
ZS+l 

H+J) + a('H+T) qq A) 0 



and, 

vt =vE- sz EQt 

From 2.32 and 2.33, 

sTt - Fto h((R_1+1)-R_, (Rl+l)e A 
2t 

2.35 

1-R1 R_ 1 e- 
2sT 

t 2.36 

B 
tz t= 

h((Rl+l)-R, (R_ 1 +1)e-s 
Tt 

A 2t 

1-R1 R_ 1 e- 
2sT 

t 2.37 

and then, from 2.34,2.36 and 2.37, 

(see next page) 2.38 
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6C*Z 

11SZ-9 I- HIH-II ZSZ 0a ZS+l 
I- H-T)( T H+T)+(, IS-OT 

(-4js-g-T ) :10)-T 

aMD ZS+l 
(-i IS- IX 

io -Z: q 

=2 

Ln Isz- H H- T10a ZS+T Zs Z" - 
If 

c)-T 
(, 4. Ls-a 

T- X-T)(TH+T)+(Ijs- aT H-T)(T-H+T)(IIS- a-T) zq 
114 0 

A(2 
0 21 ZS+T 
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Equation 2.38 is the Laplace Transform of the charge 

on the electrodes, Qt, produced by the driving voltage 

vE 

Thus, combining equations 2.35 and 2.38 gives, 

(see page before) 2.39 

which is the Laplace Transform of the voltage across the 

electrodes, Vt, in terms of the driving voltage, VE 

This procedure may be applied to each successive 

input/output pair to obtain each pi, value of equation 

2.31. The resultant expressions are given as follows. 

Toreduce the complexity of the expressions, define, 

h2c 

2sZ 
t 

(1+SC 
tz E) 2.40 

hC 
t 

2(1+sC 
t E) 2.41 
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pii -- ((R i-R_ 1 e- 
2sTt)+-g( 1-e- sTt) ((e-sTt-1) ( 1+R 1 R_, )+ 

+2(R_ e -sT t-R, ))) / '7D 
(1) 

p 12 'ý ((l-R, )(l+R 1 )e- sT t+ýU( 1-e -sT t)(l+e-sTt) (R -1)(R +1. ))-' 1 -1 
/v 

(ii) 

p 13*ýý 
iT(l-e -sTt) (R 1- 1)(1-R_ 1 e- sTt) / -p 

D 

p 21 2-- ((l-R_, )(l+R_l)e- sT t+'U(I-e- sTt)( 1+e- sTt) (R fv-1)'* 

(Rl+')) /PD 

p 22 2- ((R_, -R 1 e- 
2sTt)+-U(l-e- sTt ) ((e-s Tt_, )(l+R, R_, )+ 

+2(R 1 e- sT t-R_ d)) 1 17D 
(v) 

iT(l-e- sT t)(R_ 1- 1)(1-R e- sTt) p 
23 'o 

p j(-2i /Z )(l+R, )(1-e- sT t)(1-R- e- sTt) /-p 
31 EtD (vii) 

p -d(-2fE/2ý)(l+R_j)(1-e- 
sT t)(1-R 1 e- sTt) /pD (viii) 

32 

-2sT p 33 2-- ((l-R 1 R_ 1e )/(l+sct z E) 2.42 (ix) 

-ff(I-e-s 
T t)((l+R, )(1-R_le- sT t)+(l+R_, )(1-Rle- sT t))) 
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where PD is a common denominator term, given by, 

-F 
D '-- ((l-R, R_le- 2sTt)_-U( 1-e- sTt)* 

-sT ((l+R, )(1-R_le t)+(l+R_, )(1-Rle-sT t))) 

2.43 

Equations 2.42 and 2.43 form the complete set of Laplace 

transform solutions for the original piezoelectric layer 

system of Fig 2.4 . Since the system is linear, the 

system matrix of equations 2.30 and 2.31 may be used for 

multiple input/output cases. 

From equations 2.40 and 2.41 it may be observed that 

the expression for, d contains the term h, while that 

for U contains the term h2. This indicates that is 

associated with a single electro-acoustic (or acousto- 

electric) conversion, while 19 is associated with a 

double conversion, that is electro-acousto-electric or 

vice-versa. From this, it may be concluded that the 

term relates to secondary piezoelectric-action. 

When this is considered in relation to equations 2.42 

and 2.43, it is apparent'that the four p, j terms with a 

single piezoelectr, ic conversion, namel Y P13' P23 

(voltage to force), and P31'P32 (force to voltage), 
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contain the term in the, denominator (PD) only. 

Thus the secondary action is caused by the charge 

feedback due to the outiput term I only. 

However, the other five pij terms, Pll' P12' P21' 

P22 
ý 
(force to force conversion) and P33 (voltage to 

voltage conversion) contain the 19 term in both the 

numerator and the denominator. This indicates that 

secondary action is, claused by charge feedback which is 

due to both the input and output. Thus, in these 

cases, there are two sources of secondary action. 

Although this complicates the, feedback system, this 

point may be observed directly from the lattice models 

of. Fig 2.8 and 2.9 . However, this is not always 

apparent in other transducer models. Consider again 

the KLM model of Fig 1.2.. Assume that the system is 

initially at: rest, with an electrical load, Z E' 

connected across the electrodes but with no electrical 

source, Then, if a wave of force is incident on one 

face of the device, it appears from the KLM model 

that the wave must travel through the transducer. 

until it encounters the electro-acoustic transformer 

before any piezoelectric action can occur. This is 

not the case. 
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Acousto-electric interaction will occur 

instantaneously when the force wave is incident on the 

electrode, and the charge generated will also 

instantaneously produce force waves. leaving both faces 

of the opposite electrode. This effect is certainly 

not apparent from either the KLM (37) or MASON (42) 

models. (These effects are accounted for by the 

frequency dependent electrical terms in these models. ) 

Thus,. it is possible using the lattice model and 

its associated system matrix not only to model the 

interaction of the system with any input/output 
I 

configuration, but also to break the model down to 

examine the relationship between any chosen 

variables within the system. 
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2.5 SUMMARY 

This chapter has presented the derivation of a new 

three-port systems model of the thickness-mode piezo- 

electric transducer. The resultant model makes use of 

Laplace Transforms to model the differential components, 

and acoustic lattices to model acoustic propagation 

through the piezoelectric layer. 

As indicated during the derivation, this type of 

model has several major advantages over conventional 

transmission-line models. 

Firstly, the use of systems block diagrams allows 

the exact relationships between the physical elements 

of the transducer to be examined. Secondly, the 

systems diagrams clearly indicate the mechanisms 

which are responsible for the response of the piezo- 

electric system. For example, the effects of primary 

and secondary piezoelectric action may be considered 

separately. Thirdly, the model is an accurate repre- 

sentation of the-physical processes involved (unlike 

a centre-tapped transmission line, for example). 
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Finally, since the system is linear, the appropriate 

elements of equations 2.42 and 2.43 may be combined 

to model multiple input/output cases. Or, correspond- 

ingly, the effect of each input/output may be considered 

separately. 

However, in its present form, the lattice model does 

not allow the addition of multiple mechanical layers. 

This is considered in the next chapter, 
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CHAPTER 3 

EXTENSION OF THE LATTICE MODEL 

TO GENERAL MULTILAYER CASES 



3.1 INTRODUCTION 

The previous chapter presented the derivation of 

a three-port model of the thickness-mode piezoelectric 

transducer. In this form, the cases covered by the 

model may include complex electrical loads, but do 

not permit the inclusion of layered mechanical 

loads. Multilayered acoustic structures, however, 

form'an important part of any practical transducer 

system. There are two main areas of application 

which necessitate the use of a multilayered system 

model. 

Firstly, in the study and design of acoustic 

matching layers. In these cases, multiple acoustic 

layers are added to the front, and/or rear faces of 

the transducer. The layers are usually designed 

to improve the mechanical energy transfer from the 

transducer to the load medium. For example, the 

piezoelectric material PZT-5A is often used in the 

manufacture of transducers because of its high 

electromechanical conversion efficiency. In cases 

where such a transducer is to be used with a water 

load, there is a 20: 1 difference ratio between 
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the acoustic impedances of the PZT-5A and water, 

and consequently, energy transmission from the 

transducer to the load is poor. The addition of 

one or more matching layers to the front face of the 

transducer can greatly improve the efficiency of 

energy transmission to the load. In Continuous 

Wave, (CW), transducers, the addition of matching 

layers may greatly improve the resonant properties 

of the transducer. (This is analogous to stub 

matching in transmission lines. ) 

Mechanical matching techniques have received 

considerable attention in the literature and some of 

the more important works are covered by SITTIG (61), 

KOSSOFF (35), DeSILETS etal. (14), SELFRIDGE (55), 

KERVEL et al. (34) and SILK (59). 

In addition, multiple acoustic layers may also 

be used to model the media through which the sound 

propagates after leaving the transducer. Some 

examples are ultrasound propagation through metallic 

samples in non-destructive testing and analysis of 

composite material structures. 
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LOW (41) describes a multiple-layer non-destructive 

testing application, in which both the transducer 

matching layers and target media are modelled. 

However, the transducer model employed is extremely 

limited, and does not cover all the types of transducer 

which are used in practical cases. Thits the major 

application of this method is the modelling of the 

layered propagation path. 

Thus it is clear that the maximum benefit of the 

acoustic lattice model will be achieved only with the 

addition of multiple front and rear face layers to the 

model. 

This chapter extends the previous model to incor- 

porate multiple mechanical layers. 
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3.2 THE MULTILAYERED ACOUSTIC LATTICE 

Consider the multiple layer system of Fig 3.1 

which is an extension of the single layer system of 

Fig 2.2 . As with the single layer case, the layers 

are assumed to be semi-infinite in the lateral 

directions, lossless in the thickness direction and 

to possess the acoustic impedance, thickness and 

velocity as shown. Defining, as before, the transit- 

time for mechanical waves to cross the i th layer, Ti, 

as, 

3.1 

the system may be solved in a similar manner to 

the one-layer case. Consider the. 'Irterface between the 

i th and the i+1 th layers. Using a similar notation 

to the single layer case, the force-components in the 

i th 
and i+I th layers at the i: i +1 interface may be 

related in an analogous manner to equations 2.11 and 

2.12. 
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F+ 
Zi+l z i+l 

(i+1)0 zi z Fit 

2 
Zi+l z i+l B1+ Bly (i+1)0 zz 

L 
-j 

i11 t_ I 
_J 

also, mechanical wave propagation through the ith 

layer is given by: - 

-sT F it e10F io 

+sT B iti eiB io 

which is analogous to equation 2.9 . 

Equations 3.2 and 3.3 may now be combined, 

F (1 + 
Zi+l)e-sTi 

(i+1)0 
1zi 

-2 

- sT B (i+1)0 ei 

3.2 

3.3 

-7 
z 

i+l +sT 0z1 )e iF io 

Zi+l 
)e +sT i 

iT 
io Z-i 

-_ _j 
3.4 
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This expression relates the force-components at the 

origin of the layer i co-ordinate system to the force 

components at the origin of the layer i+1 co-ordinate 

system. 

Def ining 

T i+l 

-sT (1 
1 

-sT (1--, -) ei 
1 

z i+l +sT 
21 

Zi+l 
+s .T 

+ Z. )'e 1 
21 

3.5 

as the transmission matrix for the i: i+l interface, 

several layers may now be combined by multiplying the 

transmission matrices in cascade, giving: - 

T 
n+l 

[In 
+ na] 

ýi+] 
x .... xx 

T2 
x1x... xi n n-1 

3.6 

where 
[jn+I 

relates the force components F (n+1)0' 

B(n+1)01 to F 10, B 10* 
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Def ining 

TT Tn+l 11 12 
; F2 

1 
722 

gives 

F (n+1)0 

B (n+1)0 

TTF 11 12 10 

T 21 T 22 B 10 

3.7 

3.8 

In a similar manner to the one layer case, force 

components F 10 and B (n+1)0 may be considered as the 

inputs to the layer system. Correspondingly, force- 

components B 10 and F (n+1)0 become the Outputs. This 

is expressed as follows: - 

F (n+1)0 n+l 
F 10 

1 
B 10 B (n+1)0 

3.9 
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where, 

u 11 u 12 Un+l 
1 u 21 u 22 3.10 

and, solving equations 3.8 and 3.9 gives, 

f2l 
*-ý 12) 

/T 
22 

u 12 T 12 /T 
22 

TR 21 21' '22 

u 22 l/T22 3.11 

The T 
Ij 

terms of equation 3.7 comprise scalar con- 

stants and both e- sT and e +sT terms. Since this is a 

causal, linear system, the U ij terms of equations 3.10 

and 3.11 must comprise only scalar and e-s 
T 

terms. The 

presence of e +sT terms would render the system non- 
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causal. It may be shown that 
13 

terms do represent 

a causal system as follows. 

Each T 
13 

in equation 3.7 is a polynomial function, 

while each Uij term in equations 3.11 is a ratio of 

polynomials. It may be shown by evaluating several 

T i+l 
1 products in equation 3.6 for general layer 

co. nf igurations that pcLynom'fal 'f 
22 will always contain 

+sT the largest e- term, and that this has the value, 

n 

e +(sTm-ax) 
=e 

+(sE Ti) 
i=l 3.12 

+sT Thus the e terms may be cleared from the U ij 

terms by multiplying the numerator and denominator 

polynomials by e- sTmax. 

It may also be shown, that the term j 
ill when 

expressed as, 

T 11* T 22 T 21* T 12 uiiý- 
T 22 

3.13 
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reduces to 

Uli K/i 22 3.14 

where K is a scalar constant. The value of K is given 

by: - 

Z 
n+I 

/Z 
1 

that is, K is the ratio of the acoustic impedances 

of the n+l 
th layer to the 1stlayer in Fig 3.1. 

3.15 

Equation 3.15 may be proved by induction, as follows. 

The transmission matrix for mechanical waves travelling 

between layer 1 and layer i+1, 
I* 

IL 
I- 

is 

j+j =x 

IT 

11 T1- 

i+]- T1 3.16 
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where 
I 

i-+iil is defined by equation 3.5, thus, 

T 11 T 12 T 11 T 12 T 

T 21 T 22 i+l 
T 

21 
y 

22 

and substituting Irom equation 3.5 gives, 

TT1 -sTi 
+0- Zi+l T2e +sT I k. ýp 

12 zi Zi 

7, i+l - -sT 
Zi+l)y +sT 1Tei (l+ e i) 21 (+ 1) 

=-i 1 jý) Z. 211 
111 t) 

Zi+i sT Zi+i 
- +sT T1 l«i+ )y ei (1--Z-)T e i) 12('+1)= 1 2ý* + 1i1 

Zi+i sT zi+l +sT T 22( i+l 1((l- 
Zi 12 ei+ 22* e i) 

12 Zi 
11 

3.17 

3.18 
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The product terms, T ll( i+l )T 22('+') and T 12('+') 

T 21('111) may be evaluated from equations 3.18 to give, 

(see'next page). 3.19 

3.20 

Subtracting equation 3.20 from equation 3.19 and 

factorising gives: - 

(T 11 T 22 -T 12 T 21)(L+-') = (TjjT 22 -T 12 T 21)(') 1 

Zi+l 2 Zi+l 2 * l«l+=) -( 1-=) ) 3.21 

and thus, 

Z 
i+ (T T-TT (i+1) = 

(T�T -TT (-Z ) 
11 22 12 21) 1 22 12 21)(il)(-7, i 

3.22 

This equation may now be evaluated as follows. 

From equation 3.5 , the T.. matrix for a two layer 
13 
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OZOE 

zzIzz -L)zzl(-L)iliz z 
-E Lrz+ I+T 

(IM (, 1: )z1 

WE 

(-L) zz (-L) Iz 4) zz 4) 11 TT+IT I. IT 
zI 

-TZ 
ISZ+ 

ITT 

T 

IZ Ei+TZ 

4)TZ (-! )ZT, z -L)ZTj, 
4)TT TIT )ZZ. 

L( 
T )TTI 

Z[ 
TIT 

IT 
+( TT IT a( 

Z 
I+T J+T 

z Lsz z 
If 
+ TIZ 



system is, 

Z2 
sT (1e-1 

Z 
)e- sT 

i 

L2)e+sT, 
z 

ý2)e+sTj 

z1- 

Thus evaluating the expresssion, 

T 11 T 22 -T 12 T 21 

gives, 

T 11 T 22 T 12 T 21 22 

which reduces to, 

12Z 

T 11 T 22 T 12 T 21 z2z1 

3.23 

3.24 

3.25 

3.36 
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Thus equation 3.15 has been proved 'for the two layer 

case. This may be extended to cover any number of 

layers by the method of induction, using equation 3.22. 

Thus equations 3.6,3.9,3.10,3.11 and 3.15 show 

how a general multilayered system may be reduced to 

a simple acoustic lattice system. This is shown in 

Fig 3.2. 

This method is similar to that pr-oposed by ROBINSON 

and TREITEL (54), to obtain the spectral function of 

a layered system. However, in this application, the 

resultant polynomials must be developed in Laplace 

transforms to comply with the transducer model of 

Chapter 2. 

From reference 9, it is apparent that the poly- 

nomial pairs, Tll, T 22 and T 12' T 21 are reverse poly- 

nomials. That is, 

if T 11 is a polynomial of the form, 

sD +sD t1e1+t2 e'sD 2 ......... tnen3.27 
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where t1 are scalar coefficients, and D1 are delays 

resulting from the multiplicative combinations of 

the layer propagation delays, Tii then, 

sD +sD +te +sD 1, T 22 2- tnen........ .t2e213.28 

and similarly for T 12 ,T 21* 

This condition is useful in reducing the degree of 

calculation required to generate the T. 
1j polynomials 

and hence the 9.. transfer functions. Consider the 
ij 

following case; 

Let T be the transmission matrix for mechanical 

waves propagating between layers 1 and i. Then, from 

equation 3.6, the transmission matrix for waves 

travelling between layers 1 and i+1, i+L1 is given 

by equations 3.16 and 3.17. The recurrence 

relationships between the 
[Till 

and 
: +, Ll- 

trans'mIssion 

matrices are given in equations 3.18. 
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From equations 3.18, it may be seen that the 

polynomial pairs, T ill T 21 and T 121 T 22 are 

generated independently. Thus, either polynomial 

pair may be generatddfor a multilayer system, without 

generating the other pair. The reverse-polynomial 

property, given in equations 3.27 and 3.28, may then 

be-used to generate the second polynomial pair directly 

from the first pair. This method approximately 

halves the amount of calculation required to generate 

the T-matrix for a multilayer system. 

Thus, any multilayer system of the form shown in 

Fig 3.1 may be modelled by the appropriate T and 5 

matrices, and may be represented by the system of Fig 

3.2. 

The relationships presented in equations 3.12,3.14, 

3.15,3.17,3.18 and 3.28 may be used, to signifi- 

cantly reduce the amount of calculation required to 

generate these matrices. 
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3.3 THE MULTILAYERED TRANSDUCER MODEL 

Consider the general multilayered transducer system 

shown in Fig 3.3. The assumptions regarding acoustic 

impedance, losses and propagation delayg, which were 

made in Chapter 2 and the preceding section, also 

apply to this case. Thus, the system of Fig 3.3 

may be re-drawn by combining Figs 2.11 and 3.3 as 

shown in Fig 3.4. 

To reduce the complexity of the diagram, the 

following assumptions are made: - 

1. The positive charge feedback section has been 

replaced by the single block Y. 

2. Superscripts F and B have been adopted for 

the U-matrix components, U ij to distinguish 

between front and rear face layers. 

The positive/negative subscript notation 

has been extended for the layers, so that 

layers with a positive subscript are 

assumed to be front face layers and those 

with a negative subscript are rear face 

layers. Thus, for examPle, the +i th layer 

is the i th layer from the front face of the 

transducer and similarly, the -i 
th layer is 
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the i th layer from the rear face of the transducer. 

(This notation also applies to the properties of 

each layer. ) 

Thus, equations describing the system may be 

written as follows: - 

F 10 p 11 p 12 p 13 Blo 

klo P21 P22 P23 F_10 

vt P31 P32 p vE 3.29 

F UF F (n+1)0 11 12 10 

F -F 10 u21 uD (n+1)0 3.30 

k(m+1)0 UB uB 11 12 B_10 

F_ -Tt -UB - 10 u2 22 F (m+l)o 3.31 L 
-J 

lu 
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where equation 3.29 is given by equations 2.30 

and 2.31- in Chapter 2, and equations . 
3.30 and 3.31 

come from the preceding section. 

Clearly, the multilayer system of Fig 3.4 may be 

considered as a 3-port system, with a describing matrix 

of the form, 

F (n+1)0 B (n+1)0 

B_ (M+1)0 - 
rw] F_ (M+1)0 

vt VE 3.32 
t- -- 

where B (n+1)0, F_ (M+1)01 and VE are the inputs to the 

system, and F (n+1)0' B- (M+1)0 and Vt theý-outputs, and, 

w w 12 w 13 

Ew 
21 22 23 

w 31 w 32 w 33 3.33 
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where the W ij elements are obtained by solving 

equations 3.29,3.30 and 3.31. 

Firstly, equations 3.30 and 3.31 are expanded and 

the terms FB are substituted from equation 10, '-10 

3.29, 

F -uF +P 47U 
F "ý(n+1)0 

(n+1)0 ll(Pll. BlO+PI2 F_10 13*VE) 1 2* 

B -uF '9 JV +F v) +-UF 'N 
10 21 ll* 10 12* -10 13' E 2211 (n+1)0 

B -uB + 4. -UB 
-(m+1)0 ll(F21*1ý10+F22*V-10 

V23*VE) 
12*7-(m+1)0 

(iii) 

r= UB v 4-UB 
- 10 21('F21*"6104V22*7-104V23* E) 22*V-(m+1)0 

3.34 

Next, equations 3.34, (11) and (iv) are substituted 

into each other, giving# 
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SUC 

(TT) 

3M lldlzn czd + cid Iz nizd)lzn + 0(1+')q(zznlZdlzn))- 01-A 
a- - a- - a- - a- - a- 

co 
Lo 

(1) (tZdtZflZtdtZfl - (tdtZfl -- t)) 

(O(t)cj((ZdtZfl -+ 

3A((zzcilzn - ocla + czciiznzld)lzn 0(1+m)-a(zznzlalzn))- OIG 
-- 9- -- q- - a- +- q- - a- - 



Now, equations 3.35 (i) and (ii) may be substituted 

into equations 3.34 (i) and (iii) and 3.29 to give 

the W 
ij 

terms, thus, 

(uB 1 (-UF 1-UF _UF uFF-.. F 
1 22 12 21)(p12p21-pl1P22)+P. 11U11U22 

+ -UF - -uB F -uF »/j 12( 1-P22 21- 11 21 D (i) 

-uF -, ff BF 
12 11 22 

'12 / gD 
(ii) 

uFUB (P p-p 13 p 22) + P13) D 13 11( 21 12 33 

uB -uF F/7 
21 . 11 22 21 D (iv) 

w (uFl(-gBl-gB _UB -gB -B -ffB 
22 21 22 12 21)(pl2p2l.. pllp22)+p22Ull 22+ 

UB (1-P uF- 'F -UB 
12 11 21 22 21» 

/7D 

w -jB Fj * (P - p11p23) '+ p23 D 23 ll(LS Z13 

(P uF (1 -uBp )+ PUBp -jF w 31 31 22 21 22 31 21 21 2ý D 

(P -gB 1 _-jF pT -ffF FuF 
32 = 32 22( 21 11) + 32 21 12 22) 1 IýD (Viii) 

3.36 
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wF +-UF + UB 
33 =( 33 2l(p3lpl3-pllp33) 2l(p23p32-p22p33)+ 

UF -ffB (P (P ppp+p 21 21 31 12 23- 13 22 32(p2lpl3-p23pll)+ 

p 33(pllp22-pl2p2l)))/ D 

3.36 

where WD is a common denominator term, given by: - 

-F -B -F -.. B WD= (l-u2lp 11)(l-U2lp22) - U2lU2lpl2p2l-' 3.37 

Equations 3.36 and 3.37 are the complete solution 

for the multilayered transducer system of-Fig 3.1 

The procedure adopted in this and the preceding 

section may be directly compared with that of LEWIS (381 

Lewis considers a p'iezoelectric transducer with 

multiple front-face layers only. However, the basic 

transducer configuration is identical to-the case 

considered in Chapter 2. The major difference between 

the methods is in the manipulation of the layers. 

Lewis does not attempt to model the layers independ- 
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ently and consequently produces a system matrix with 

dimensions which depend on the number of layers consid- 

ered. It is necessary to invert the system matrix to 

obtain the desired system response. This is a 

straightforward procedure for only a few layers, but 

becomes increasingly complex as the number oflayers 

increases. It is thus necessary to revert to numerical 

inversion techniques. This does not however, allow the 

formation of the system transfer functions, with a 

consequent loss of information. 

The method of section 3.2 avoids this probltým by 

considering the transducer and layer systems independ- 

ently, and then relating the system inputs and outputs 

algebraically. However, for cases'with several layers, 

the degree of algebraic manipulation required is 

excessive. It is possibleito simplify equations 3.36 

and 3.37 for the more important system transfer 

functions. This is dealt with in. the next section. 
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3.4 REDUCTION OF THE MULTILAYER SYSTEM TRANSFER 

FUNCTIONS 

The 
13 

transfer functions of equations 3.36 and 

3.37 describe the general multilayer transducer system. 

However, in practice, only three cases are of great 

importance. These are the transmitter, W139 the 

receiver, W 31' and the voltage across the transmitter 

V 
33* 

' It may be observed from equations 3.36 and 3.37 

that these three cases require substantial manipulation 

of the Pijj -jF and -jB transfer functions to obtain 

the W ii transfer functions in mixed differential/delay 

format. In particular, products of the form, P, j, P ke 

involve complicated algebraic manipulations. 

This may, however, be simplified by rederiving the 
, 

multilayer transducer transfer functions from a simpler 

level. 

Consider the multilayer diagram shown in Fig-3.5. 

This uses the acoustic lattice of Fig2.8to model the 

transducer. It is assumed that the input at the rear 

acoustic port, F_ (M+00 is zero, and that the rear 
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acoustic output, B_ (M+00 is not required. Further, 

for transmitter cases, it is assumed that the front- 

face input force, B (n+1)0 is zero, and that in 

reception, the electrical excitation, VE is zero and 

the front face output force, F (m+1)0 is not required. 

The complexity of Fig. 3.5 may be reduced by 

incorporating the -UF and -UB transfer function blocks 21 21 

into the transducer lattice. Fig 3.6A shows the part 

lattice section for the rear acoustic port. From this 

figure the following relationships are apparent. 

-UB - 
10 21 lýl 0 3.38 

B, R F_ 10 + (1-R_1)Bto +( )hQ 
t 3.39 - lo «ý -12 

Combining these gives: - 

-gB R_ +1 21 1 
F_ 10 -- UB 

((l-R_ 1 )B 
to +( 2 

)hQ d 3.40 
1-R 

21 
a- -. j 
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This is shown in Fig 3.6B. 

Thus the rear port of the acoustic lattice has 

been simplified. 

This method may also be applied to the front-face 

as shown in Fig 3.7A . In this case, the relevant 

describing equations are 

-uF -f 
(n+1)0 11 10 

BFF+UFB 10 21 10 22 (n+1)0 

R1 -1 - F lo -- R1B 10 + (1-R, )Ftt 
t 

+(-ý-)hQt 

Combining equations 3.42 and 3.43 gives: - 

R-1 F -ff "I - R1 22 B (n+1)0 + (1-R, )Fttt +(-2 )h&t 
F 10 1-R -uF 

1 21 

3.41 

3.42 

3.43 

3.44 

89 



-uF ((l-R, )Ftg +(Rl-l)h& 22g(n+11)0+ 2t2t 

10 1-R -ffF 
1 21 3.45 

Equations 3.41,3.44 and 3.45 are shown in Fig 3.7B . 
The complete modified lattice system is shown in 

Fig 3.8 . 
From this diagram, the following equations relating 

the force components and the charge are apparent. 

.. B R1 -1 u 21 FtO 2 )+(l+R- 1)( 
-2 

1-R 'i E-))hQt 

-1 21 
-gB 

21 
-UB 

)(1-R_, )(l+R_l) - R_l)e- sTt-gt 
k 1-R_ 1 21 t 

3.46 

R +1 R-1 -jF 
_9 ((-"-)+(l+R )( 1X 21 ))hlý 

tt t2 1-R -ff Ft 
1 21 

-jF 
21 sT-fto + )(l+R )(1-R_ 

1 Rl)e 
-jF 1 

1 21 
, 

-F 
22 -f (l+R 1)(- -UF 

)B (n+1)0 3.47 1-R 1 21 
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.. F -. F u li*U22 -sT F (n+1)0 1-R UF 
)(R 1B (n+1)0 + (1-R1)e t-F 

t0 
1 21 

)hq 
t 3.48 

However, only three cases will be considered; the 

force output from a transmitter, the voltage across a 

transmitter and the voltage across a receiver. 

Thus several of the blocks of Fig 3,8 become 

redundant. For the transmitter, it was assumed 

earlier that the force input B (n+1)0 is zero. This 

corresponds to removing the last terms in equations 

3.47 and 3.48 and the blocks labelled 2 and 3 in Fig 

3.8 In the receiver, the force output from the trans- 

ducer F(n+1)01 is neglected. So, equation 3.48 does 

not apply and the blocks labelled 1 and 2 in Fig 3.8 

may be omitted. To generalise the analysis, these 

terms will be included for the present and the approp- 

riate terms set to zero when the specific transfer 

functions are considered. 

. Equations 3.46 and 3.47 may be rearranged to give: - 
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F to y 11 y 12 hQ t 

B 
tz ty 

21 y 22 (n+1)0 3.49 

where 

-jB 
21 

22 1-R -jB 
-1 21 

-jB 
21 1 -R 

I-R_ 1u 21 

)+(l+R 1 )( 2 1-R -uF 
»e-sT t) 

/ 7D 

1 21 

21 (1-R R -sT 
12 -ffB _11e 

t (1+Rl) 
1-R_ 1u 21 

-F 
22 7 

1-R -jF 
1 22 
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Rl+l u 21 «ý )+(l+R 
21 2 1)( 2F 1-R 1 21 

-UF 
)(l+R, )(1-R1) - Rl) * 

1-R 1u 21 

-B 

2 )+(l+R_, )( 2Xu 
21 

-B 
))e- sTt) 

1-R_ 1u 21 

and 

u 
y22 (l+RJ)( : TD 

1-R 1u 21 

21 
-F 

)(l+R 1 )(1-R1) - Rl) * 
1-R 1u 21 

(iii) 

(iv) 

3.50 

.. B 
2sT U2 1 )(l+R_, )(1-R_l) Rt 

1-R_ 1u 21 3.51 
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These equations may be further reduced by 

substituting for the -jF/B terms from equation 3.11 ij 

Thus defining 
[yF] 

and 
[fB] 

as the front and rear face 

layer matrices respectively, t'he following relation- 

ships are apparent. 

UB 21 

1-R -UB 
-1 21 

-YB 21 
YB +R TB 22 -1 21 3.52 

UF ýYF 
21 21 

1-R -ffF TF +R YF 
1 21 22 1 21 3.53 

So, substituting into equation 3.50 and 3.51 and 

rearranging the terms gives: - 

y ((T F 
+R -; TF 

R_ 1 +1 
)(T B 

+R- -f B 
j)-(I+R_, )( 

R-1 -1 
22 122 22 122 

=B -B -B -B Týj)- (T 21( 1-R_, )(l+R_l) + R_, (T 22 +R_, T 21)) 

)(fF +R YF (1-+R, )( )YF )e- sTt) 
22 1 21 2 21 

/ (1) 

94 



y (T B (1-R )(1 +R -B +R TB -sTt( I+R 12 '- 21 _1_, 
)+R_, (T 22 _1 21))e 1)17D 

(ii) 

-; FB (Rl+l) +R_ 1F +R lyFl)_( 1+R )TF 
21 22 ((; FB22 

22T 22 212 21 

-=F (-f F jF 
-(T 1-R, )(l+R, )+R, +R 2l( 22 

; fB +R 1-; 
FBJ)_( 1+R )YB )e- sTt) 

2 22 -2-12 21 
YD 

(iii) 

y (1+R, )(T B 
+R- TB 

22 'ý 22 1 21) / YD 

3.54 

and 

,F YF ) (yB BB -TD (; f22+Rl 
21 22+R-lT2, )-(-T21(1+R_, )(1-R_, )+ 

+R (T B 
+R- TB )) *ý-fFjl+rýl-Rj)+R (T F 

+R YF ))e- 2sTt) 
-1 22 1 21 21 22 1 21 

3.55. 
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These equations may be further reduced, to give: - 

1 =F =B =B y=( (-iF +R T )(l+R_1)(T +T 11 22 1 21 22 21)- 

- (1+R 1)(fF +-TFJ)(yB +R JyB )e- sTt) 
22 22 22 

YD 

-B -B )e -sTt / y 12 (1+R 1) (T 21 +R- 1T 22 
-f 

D 

1 =B YB 
1)(fF +fFl) y 21 -ý( (T 22 + R- 1 21 )(l+R 22 2 

-(l+R 1)(T 
B 

+T 
B 

1)(T 
F 

+Rl YF )e- sTt) 
22 22 22 

YD 

(iii) 

=B -B y22 1+Rl) (T 22 +R_, T 21) 1 YD 

and 

3.56 

-fD =( (-f F =F T 
22 +R 1T 21 ) (; 

fB 
2 +R_ j-; 

fB 
1 (; TB 

j+R_ 1TB 2) (fF j+R liF 2) 222222 

e- 
2sTt) 3.57 
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Thus each of the Y 
Ij 

transfer functions is a 

ratio of discrete polynomials whith may be formed 

=F =B directly from the T. . and T. 
: Lj j polynomials given in 

section 3.2 . 

Now, from Chapter 2, the relationships between 

voltage, charge and force in the lattice are: - 

c 
t sTt Qt E+ý( 1-e h )(F + Btt 

S, Z to l+SZ Ecttt3.58 

vt =vE SQ z 

Thus from equations 3.49,3.58 and 3.59, the 

3.59 

transfer functions for the three cases under consider- 

ation may be formed. 

Firstly, W 13 which relates the output force F (n+1)0 

to the driving voltage VE In this case, the input 

force,. B (n+1)0 is assumed to be zero and equations 

3.48 and 3.49 reduce as follows: - 
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-uF 
M )hq +(l-Rl)e- sTt-f 

F (n+l)o 1-R -jF 2t to) 
1 21 

3.60 

F 
to 

y 11 
(hý 

B tk ty 
12 

Equation 3.60 may be rewritten as: - 

F (n+1)0 ý(Z 
n+l 

/Z 
1 

-)(1-RI)(2i7t. e-s 
T t-h«ýt) 

F 
+R -f F 

22 1 21 2 

3.61 

3.62 

Thus substituting equation 3.61ýinto equation 3.58 

gives: - 

ct 
)v E 1+sz Ect Qt 

1- (- 
h2ct 

-)(1-e-s 
T t)(fll +-Y 21) 

sz t 
(1+sz Ecd3.63 
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Also, from equation 3.61, equation 3.62 becomes: - 

FZ n+l 
/Z 

1 
.)( )(27 e- sT t-1)hQ 

(n+1)0 ý (7-F 
iF 2 11 t 3.64 T 22 +R 1 21 

and thus, 

Z 
n+l 

/Z 1 
-)( 2 )(27 11 e- sT t-M )VE (n+1)0 '( iF +R iF l+SZ c 22 1 21 Et 

h2c 
)(1-e sT t)(fil +y 21) 

sz t 
(1+SZ Ecd 

3.65 

Similarly, from equation 3.59 and 3.63, the voltage 

across the transmitter, Vt is given by: - 

hct 
-sT vt )(1-e t)(Y 11 +y 21) 1+sz Ect sz t 

(1+sz Ecd 

hct 
1-e- sTt) (y 3.66, ll+y2l) 

sz t 
(1+sz Ecd 
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and, for the receiver voltage, assuming VE is zero, 

and F (n+1)0 is not required, equation 3.58 becomes: - 

tct -e- 
sTt (Y +Y )hQ +(Y +Y )( h (1 

sz 11 21 t 12 22 1+sZECt t 

13 (n+l )0) 

tiv, ol (, c 

whence 

Qt 

hC t )(1-e -sTt)(y, 
12 +y 22 )B (n+1)0 

sz t 
(1+sz E Cd 

3.67 

h2ctTY 

--)(1-e-S 
t)(Yll+y 21) 3.68 

sz t 
(1+SZ E cd 

and thus from equation 3.58,1 

hC 
tz E_) ( 1-e- sT t) +Y 12 22 (n+1)0 

2ý ( 1+sZ Ect 
vt 

h2c 
1- ( 

sz t 
(1+s -fE cd 

)(1-e-s t)(Y 
11 +y 22) 

3.69 
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Equations 3.65,3.66 and 3.69 give the alternative 

expressions for W 13' w 33 and W31 respectively. These 

may. be compared with the expressions given-inequations 

3.36 Clearly, the expressions of equations 3.65, 

3.66 and 3.69 are simpler. The reason for this is the 

absence of common factor terms which are present in 

equations 3.36 . If these equations were expanded, 

then the common factJors could be eliminated but this' 

generally requiresa great deal of algebraic manipulation.. 

Also, even if only a few layers are considered, the 

complexity of the expanded transfer functions is so 

great that mistakes and inaccuracies may easily occur. 

The alternative derivation presented in this section 

produces the reduced transfer functions in their simplest 

forms directly. 

This analysis has been carried out for only three 

of the 
ij 

transfer functions. It may be extended 

for the remaining terms but the three cases dealt with 

here are the most useful and also, the most likely to 

be implemented in practical applications, as will be 

shown later. 
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3.5 SINGLE LAYER EXAMPLE 

Consider the single system shown in Fig 3.9, where 

the previous assumptions about acoustic impedance, 

losses and index notation all apply. The layer is 

assumed to have a transit-time of T1 seconds. Then, 

since there are no rear face layers, equations 3.11, 

3.30 and 3.31 give: - 

[TBJ 

[ 

:i 
B[ 

:1 
z 

(1+-)e-s z 

[; 
FF] 1 

(1-Z2)e- sTj 
z1 

3.70 

3.71 

Z2 
)e+sT1 

Z2 +sT, lei 
1 

)e 3.72 
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(Z )e- sT 1 

-uF . 

(Z )e- 2sT 1 

(7,1 +Z 2). 

(Z )e- sT 
3.73 

Thus, using the multilayer analysis method of section 

3.2, equations 3.36 and 3.37 yield: - 

sT1- (Z 
1 +Z 2 

j; 
13 

w 13 
i-( Z1 +Z 2 

)e- 2sT1 Pil 
3.74 

(Z 
1 +Z 2 

)e- sT1 i7 
31 

w 31 -, 
_(Z2-Zl )e -2sT1 i; 

Z1 +Z 2 11 3.75 

Z2 -Z 1 p 33 +( Z1 +Z 2 
)e- 2sTl( p31 p 13- 

-F 
11 

F 
33 

) 

33 3-- 
1 -( Z1 +Z 2 

)e- 2sT1 Pil 3.76 
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Alternatively, equations 3.65,3.66 and 3.69 give 

the above transfer functions in their reduced forms 

directly. Firstly, equations 3.70 and 3.72 may be used 

to reduc-e thcý Yij terms of equations 3.56 and 3.57 as 

follows, 

yI ((l+R_, )(1-R, R e- 
2sTl)_( 1+R, )R_le-s Tt 

f 12 

(1; -R 12 e- 
2sTl)) / YD 

(1) 

(1+R, )R -sT (1-R )e- sTj 
_le 

/ : FD 
12 -ý - 12 

((l+R )(1-R e- 
2sTl)_( 1+R_l)e- sTt 

21 "': -i 1 12 

* 1- R 12 e- 
2sTl)) / -y 

D (iii) 

y- (1+R, )(1-R )e -sTj /y 
22 '= 12 D 

and - 

3.77 
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1-R R e- 
2sTl_ R-1 e- 

2sT t(P,, -R e- 
2sT 1) 3.78 D1 12 . 12 

where 

RZ 2-Zi 
12 -Z1 +Z 2 3.79 

Then substituting the 
13 

terms into equations 3.65, 

3.66 and 3.69 and clearing the YY 
D denominator gives: - 

w 13 ý (1+Rl 2 )e- sTj (R 1- 1)(1-e-ST t)(1-R_ 1 e- sT t) 

hC t )/9D3.80 
2(1+sZ Ecd 

w 31 

hC 
tzE )(1-e- sT t)(l+R, )(1-R -R_le- 

. 
12)(1 zt (1+SZ ECd 

e- sTt - /wD 
3.81 
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w )(1-R Re -sTj -R e- 
2sT t(R R e- 

2sT, ) 332-(( -1 12 1 1- 12 1+sz Ect 

h2ct 
2 (2+R 1 +R- i- R 12( 1+R, +R_, +R, R_, )* 

zt S(1+SZ Ecd 

*e- 2sTj )-e- sTt (R 1 +R- 1 +2R 1 R_ 1- R 12( 1+2R_, +R, R_l)e- 2sT, ) )) 

/ WD 

and 

3.82 

-2sTl_- - sTt -2sTj 
hct 

wD +(l-R 1R 12 eR-1e (R, -Rl2e 
zt S(l+sz Ecd 

2 
ýTt 

)(2+R 1 +R_, )-R 12( 1+R, +R_, +R, R_l)e -2sTj )- 

-e- 
sTt (R, +R_ 1 +2R 1 R_ 1- R 12( 1+2R_, +R, R_l)e- 2sTl)) ) 

3.83 

Equations 3.80 to 3.83 give the W 13) w 31 and W 33 

transfer functions in their reduced form. This result 

may alternatively be obtained by expanding equations 

3.74 to 3.76. In this case, where only one front face 

layer is present, the degree of algebra required for 

the two methods is approximately equal. However, if 

more layers are added to either the front or rear 

face, the complexity of the first method (that is 

equations 3.36 and 3.37 ) increases 
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to such an extent that it is not feasible. For these 

cases, the second method must be used. - 

(It will also be shown in a later chapter that the 

second method is better suited to computer implement- 

ation than the first. ) 

The second method also retains the simplest form 

for identifying secondary piezoelectric action. For 

example, in equations 3.36 and 3.37, there are several 

cross-product P ij terms. This implies that there will 

be some dependence on the powers of h higher than h2 

In fact, these terms will always cancel out and the 

transfer functions will reduce to h and h2 terms only. 

However, this is not apparent from the first method. 

Consequently, it is difficult to identify the under- 

lying mechanisms (especially secondary action), 

from equations 3.36 and 3.37. 

This difficulty is avoided in the second method by 

analysing the lattice diagram with the multilayered 

faces added. This allows the internal force-components 

to be related to the force-components at the layer 

faces, and also to the electrical voltage and charge. 
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When these are combined, the result is in the form 

of equations 3.65,3.66 and 3.69 . These equations 

clearly show the dependence of the system on primary 

and secondary piezoelectric action. ' 

This method may be extended to provide a general 

three-port system, having terms similar to equations 

3.36.. However, this has not been done, since the 

remaining terms have little practical application 

and are not relevant to the remainder of this thesis. 
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When these are combined, the result is in the form 

of equations 3.65,3.66 and 3.69 . These equations 

clearly show the dependence of the system on primary 

and secondary piezoelectric action. * 

This method may be extended to provide a general 

three-port system, having terms similar to equations 

3.36, However, this has not been done, since the 

remaining terms have little practical application 

and are not relevant to the remainder of this thesis. 
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3.6 SUMMARY 

This chapter has presented two general procedures 

for analyskngý... multilayered piezoelectric transducer 

systems. 

Firstly, a procedure for analysing - non-piezoel- 

ectric multilayered systems was derived. This produced 

similar results to those obtained in geophysical 

modelling (54), as was expected. However, the more 

general application which is considered here. produced 

several extra results, notably those of equations 3.14 

and 3.15. 

The non-piezoelectric multilayered analysis was 

then applied to a piezoelectric system. Firstly, the 

general multilayered system was analys*, ed using the 

equations for a single piezoelectric layer, presented 

in Chapter 2. This analysis took, the form of a 

2-port: 2-port: 3-port analysis and produced the general 

systems equations 3.36 and 3.37. However, these 

equations were then shown to be difficult to handle, 

especially for cases with several-front and rear face 

layers. It was also indicated that a substantial 
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degree of algebraic reduction was required to reduce 

the equations to a form where primary and secondary 

piezoelectric effects could be easily identified. To 

this end, an alternative set of systems equations 

w as derived. 

The starting point for this analysis was the 

extended lattice model of Fig 3.5 . The procedure 

adopted was similar to that of Chapter 2, however the 

lattice diagram now incorporates front and rear face 

layers. The lattice was remodelled as shown in Fig 3.8 

and then analysed directly. The resulting equations 

relate the initial force components to the force 

components at the layer faces and the charge on the 

transducer. This allows the system transfer functions 

to be derived in such a way that primary and secondary 

piezoelectric action are apparent. 

The second method was not developed into a general 

3-port system but was used to generate the most useful 

system transfer functions, that is, those for trans- 

mission and reception. To illustrate the methods, 

a simple one-layer example was considered. This 

shows the difference between the methods and clearly 

indicates how the second method produces the transfer 
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functions in their reduced form directly (that is, 

with little extra reduction ). It will be shown in a 

later chapter that the second method is also more 

amenable to computerisation than the first. 

Thus, both these methods provide a complete 

mathematical description for a multilayered 

piezoelectric transducer. 
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CHAPTER 4 

THE APPLICATION OF Z-TRANSFORMATION 
TO MIXED DIFFERENTIAL - DELAY 

TRANSFER FUNCTIONS 



4.1 INTRODUCTION 

The, systems models of the preceding chapters 

provide Laplace transform solutions of the general 

3-port transducer. These equations may be used to 

obtain the response of the transducer to a variety of 

input functions, in several ways. 

If the input function is known explicitly as a 

Laplace transform, then it may be convolved with the 

system transfer function to give the Laplace transfer 

function of the desired output. However, this method 

has two drawbacks. Firstly, the input function is 

frequently unobtainable in Laplace form. If sufficient 

informatfon is available about the input, it may be 

possible*to approximate it by a Laplace transform but 

this introduces an extra source of error. Secondly, 

inversion of the resultant Laplace transform into the 

time-domain is compounded by the differential delay 

nature of the transfer functions. This problem has 

been studied by several authors, notably, GITIS and 

SHENKER (17), MEL'KANOVICH (44) and YING (70), as 

mentioned previously. 
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The general method adopted by these authors involves 

expanding the transfer function into an infinite series. 

This procedure becomes increasingly complicated as the 

expansion proceeds, and requires a great deal of 

calculation to evaluate even a few terms. Thus, 

although this method is direct, it is feasible only for 

either simply loaded transducers (that is, transducers 

with only a single electrical load element and no 

layers) or with the aid of a large computer. (Even with 

a computer, the complexity of the algebraic manipu- 

lation involved requires very complex algorithms which, 

consequently, take a long time to evaluate, or require 

a large portion of the computer resources. ) 

An alternative method'is to evaluate the complex 

frequency spectrum of the transducer directly from the 

Laplace transform. The complex frequency spectrum of 

the input may then be convolved with that of the trans- 

ducer to obtain the output. This method has the major 

advantage over the previous method, in that even if 

little is known about the input, it may be measured 

using a spectrum analyser. Inversion of the complex 

frequency spectrum into the time-domain may be achieved 

using a standard Inverse-Fast-Fourier Transform, 

(IFFT) routine which is 
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available for most computers. This is the most 

widely used method of modelling the transducer 

response, as indicated by DESILETS et. al. (14), 

LEWIS (38), KERVEL and THIJSSEN (34) and SILK (59). 

The application of IFFT routines requires the 

original spectrum to be bandlimited. The normal 

assumption that the spectrum is orginally periodic will 

produce aliasing effects if this is not the case. This 

does not pose any problems for most Continuous Wave, (CW) , 

operations, where the spectrum of the transducer is such 

that the majority of the spectral energy is concentrated 

near the resonant frequency. The addition of transducer 

matching layers and electrical tuning elements also 

serves to bandlimit the spectrum, and hence the results 

of (14) - (59) are usually independent of errors 

introduced by the IFFT routines. 

However, when this method is applied to transient' 

analysis, or cases where the transducer is lightly 

loaded mechanically, the energy in the spectrum becomes 

spread out and is no longer concentrated near a single 

frequency. To obtain results in these cases, it is 

necessary either to. truncate the spectrum using a window 

function or to use a larger spectral bandwidth. Both of 

these methods have severe disadvantages. Using the 
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window functions can introduce distortion into the 

transient response, to the extent that the actual and 

predicted responses differ significantly. Utilising a 

much larger bandwidth greatly increases the amount of 

computation required. This may be reduced by increasing 

the frequency sampling interval for the spectrum ( that 

is, spacing the frequency samples further apart, so that 

a given number of samples covers a larger bandwidth 

but this is limited by the nature of the transducer 

spectrum. There is also a direct trade-off between the 

temporal and spectral sampling intervals, such that, as 

the temporal sampling period is reduced, the frequency 

sampling interval increases. Thus, if the entire impulse 

response of a particular transducer is required in the 

time-domain, then, for a given number df samples, there 

is a minimum sampling period which can be used. Below 

this, only a portion of the impulse response will be 

reproduced. This problem may be resolved only' by using 

more samples. HAYWARD (19) describes some of these 

problems, and the degree of error introduced by the 

IFFT for several specific cases. 

So the spectral model, while useful for narrowband 

and highly tuned transducers, can present difficulties 

for wideband analysis. 
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The final method which has been used to solve the 

inverse-Laplace transform problem is that of numerical 

analysis, whereby the Laplace Transform is approximated 

by a difference equation. This technique may be applied 

in two ways: - 

1. The system transfer functions of the-preceding 

chapters are transformed into a difference, 

equation, whose input is the sampled version of 

the input function. 

or 
2. The Laplace transform of the output is solved 

directly using a numerical method. 

Clearly the second case requires information concerning 

the explicit Laplace transform of the input function. 

The first case has the same advantage as the spectral 

method, that is, the input fuction may be measured 

explicitly. This is the method which will be considered 

here. 

There are a large number of numerical methods which 

may be used to solve Laplace transforms. Several ofthese- 

are given by JURY (22) but one of the most widely used, 

and most flexible, is the z-transform. A, comprehensive 
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discussion of the z-transform and its properties may 

be found in, Reference (22). 

Several authors have applied the z-transform to 

the solution of the transducer Laplace transforms. It 

is particularly suited to this case since it accurately 

models the delay terms. 'HAYWARD (19) gives a rigorous 

derivadon of the application of z-transforms to trans- 

ducers and presents some simple examples. STEPANISHEN 

(63) applies the method of BOXER and THALER (6) to the 

lateral vibrations of the transducer. His paper high- 

lights several of the difficulties encountered with 

the z-transform method, notably that of algebraic 

manipulation. CHALLIS (11) used the bilinear transform 

(22) to model several specific transducer examples. 

This method is less involved than that of Stepanishen, 

but has a serious drawback which will be investigated 

later in this chapter. 

It is apparent from the results of these authors that 

the use of the z-transform provides an accurate method 

of obtaining the temporal solution of the transducer 

Laplace transforms. The method also avoids some of the 

problems discussed previously with the IFFT and hence 

it may be applied to both transient and narrowband 

cases but it does have some disadvantages. 
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Firstly, the differential Laplace terms are 

approximated by difference equations. This requires 

a judicious choice of sampling rate to avoid aliasing 

and other truncation errors. Secondly, the method as 

applied in References ( 19)-(63) has been applied only 

to specific transducer transforms. Each different 

transform requires a re-application of the method. 

Thus there is no general z-transform model for the 

transducer. 

This chapter will present a technique for obtaining 

a general z-transform model of differential/delay type 

Laplace transfer functions. The method largely avoids 

problems with algebraic manipulAtion. The different 

z-transforms considered by Challis and Stepanishen 

will be compared and it will be shown that these tend 

to the same solution as the sampling period is reduced 

to zero. Several other problems which may occur, and 

their possible consequences,, will also be discussed. 
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4.2 DIFFERENTIAL/DELAY FUNCTIONS AND Z-TRANSFORMS 

There are four basic types of mixed differential/delay 

transfer function, which may be summarised as follows: - 
Ii 
E ais 

H(s) - 
ii-O J>I 4.1 i 
Z b. si 
j=0 3 

N 
sTn a e- n 

H( S) n=0 
m 

sTm Eb e- 
M=o 

N 
ais' E 

H(S) - 
i=O n-0 

m 
b si E 

L-J: - 01 
_j 

L M. =O 

N I 
E E 

H(s) n, --O -i=O -3 

-M=o 
j. 0 

ce -sTn 
n 

J>l 
d e- sT m 

M. 

a in s'le- sTn 

jm sile- sTm 

4.2 

4.3 

4.4 
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Equation 4.1 represents a normal Laplace transfer 

function. The condition J>I has been imposed to render 

the transfer function low-pass, since this is the 

simplest type of Laplace function to transform into 

the z-domain. (The procedure for high-pass, band-pass 

and band-stop transfer functions is slightly more 

involved and is discussed in References (22) and (48). ) 

Equation 4.2 represents a delay only system. There 

is no requirement for the degree of the numerator and 

denominator in this case. 

Equation 4.3 describes a cascaded differential and 

delay system, where the differential and delay terms 

may be separated. Once again, the condition J>I is 

imposed to render the differential term low-pass. 

Finally, equation 4.4 represents a general mixed 

differential/delay system. No condition has been 

placed on the degree of the numerator and denominator 

differential terms, since the inclusion of the delay 

terms renders consideration of the differential terms 

as low-pass inappropriate. 
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References (22) and (48)'give a comprehensive 

discussion of the different methods of z-transformation 

which exist and their applicability. From them, it is 

apparent that to preserve accurately the temporal 

characteristics of the original Laplace transfer 

functions, only the Impulse Invariance Method, (IIR), 

may be used. The bilinear and other methods will intro- 

duce various errors ( as outlined in (22) and (48) 

and will not generally preserve the original temporal 

response. 

The general procedure for IIR transformation is 

fully detailed in (22) and (48) but may be briefly 

summarised as follows: - 

Def ining 

-1 -sT =es 4.5 

where z -1 is the delay operator and TS the sampling 

period in the z-domain, 

then, functions of the type given in equation 4.1 

may be transformed into the z-domain, as follows. 
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Firstly, it is convenient to express the transfer 

function in partial fraction form, that is: - 

j 

H(s) =E j=ls"j 4.6 

and 0i are generally complex. ) 

Each partial fraction is then transformed into the 

z-domain to give: - 

11v 
H(Z- )=2: 

-1 j=l z +6j 

(again, Vi and 6i are generally complex. ) 

4.7 
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These partial fractions may be recombined, 

H( 1) 
= 

1 
-1 2: e. z 

i=O 1 
i-1 
Z 
j=O J 

; J>I 4.8 

( The coefficients e1 and f will be real if the 

coefficients of equation 4.1 were originally real 

because any complex partial-fraction will exist in 

complex-conjugate pairs. ) 

Functions of the type described by equation 4.2 

may be transformed directly to the z-domain as 

follows: - 

Firstly, Ts is chosen such that, 

k=T/ 4.9 

where k is an integer. Then substituting directly 

from equation 4.5, equation 4.2 becomes: - 
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H(z- 1)= 

N 
-kn az n n=O 

km Zbz 
m=O m 

4.10 

( Note that the coefficients, an and bm are unchanged. ) 

Thus functions of the type described by equation 4.3 

may be transformed into the z-domain by combining the 

methods used for equations 4.1 and 4.2 . In this case, 

the choice of the sampling period, TS is restricted 

by both the aliasing criterion for the differential 

part, and the integerýsub-multiple criterion from 

the delay part. - This may result in the value of 

Ts being lower than for either part individually 

Thus transforming each section of equation 4.3 

gives: - 

N 
-kn e. z EcZ 

H(z- i. o n=O J>I 
iM 
Zfd -km 
j=O m=O m 

L- 1 4.11 
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This may be written as 

I+KN 
E 

H(z- 1 k: 
L =o 

J+KM 
Zf 
9. () 

Z. Zj 
i Z-- 

-3 

which is similar to equation 4.8. 

4.12 

Functions of the. type shown in equation 4.4 however, 

cannot be z-transformed by simply combining the IIR 

methods for equations 4.1. and 4.2, since in this case 

the differential terms in 4.4 cannot be expanded into 

partial fractions. Challis (11) solved this problem 

by using the bilinear transform 

21z 

Ts 1+ z- 
4.13 

The delay term's are now transformed using the 

method applied to equation 4.2 whereas the differential- 

terms are transformed by using the substitution given 
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in equation 4.13. This method of mixing transforms 

is not generally valid, although, as will be shown 

later, it may be used in certain special cases. 

Equation 4.4 may be rewritten in the following 

manner: - 

H(s) = fH£(s) e- sT 
£=O 

4.14 

where each block Hx (s) is a transfer function 

similar to that of equation 4.1 . (Although it does 

not necessarily follow that all, or indeed any of 

the Hk (s) transfer-functions will be low-pass. ) 

This is essentially the method used by Mel'Kanovitýh 

(44), to invert the Laplace transfer functions 

directly into the time-domain. Each block Hk(s) may 

be transformed into the z-domain, by using the 

method of equation 4.1 and the resultant H (Z-1 

transfer functions combined to give the overall 

function, H(z- 1 ). However, the series given by 

equation 4.14 is infinite, therefore realistic 

calculation of H(z- 1) 
will comprise a finite number 

of terms only. The degree of calculation involved 
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in forming H(z- 1) is actually more than that required 

to invert the Laplace transform, so the only advantage 

of z-transformation in this case, is the ability of the 

H(z- 1) 
system to use sampled input data. 

Thus, if z-transformation is to be applied to systems 

of the type given by equation 4.4, an alternative method 

of performing IIR z-transforms must be used. Such a 

method is the z-form method of Boxer and Thaler. 
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4.3 THE IMPULSE INVARIANCE METHOD OF BOXER AND 

THALER 

The method developed by Boxer and Thaler (6 ) is an 

approximation to the impulse invariance metho4 whereby. 

a power-series expansion is employed to provide a 

mapping between s and z domain functions. 

The rigorous derivation of the method is given in 

and for the present context may be briefly 

summarised. as follows, 

e sTs 4.15 

where T. is, as before, the sampling period in the 

time-domain. Then, 

S= 1111(z) 
LT 

4.16 

Y, n may be approximated by the following polynomial 

expansion, 
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n(z) = 2(u+-lu3+1 u 5+**.. 
*Ooooo) 4.17 

35 

where, 

1-z- 
U= 

1+z 4.18 

An expansion for s- 
I 

may now be obtained from 

equations 4.16 and 4.17, 

sT s/2 
U+, 

l 3 
ýU +U5 . ..... 4.19 

By means of synthetic division, the following Laurent 

- series is obtained. 

Ts4t? 
+ 4*4 us . .......... 4.20 

2 -u 9A 5 

Series expansions of higher powers of s-1 may 
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be obtained by raising both sides of equation 4.20 

to the desired power. For example: - 

[u 2- 1 12 ý 
15 u 

32 u2_ 
%5 

u4 4.21 

Boxer and Thaler show that only the principal part 

and constant terms of the Laurent series need be 

retained, therefore equations 4.20 and 4.21 become, 

-11 's 4.22 
2 

4.23 2-d 

Substituting equation 4.18 into equations 4.22 

and 4.23 gives: - 
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Ts1+ 
Z- 

1 4.24 
2 

2 
.1+ . 

10-1 1 -2 
-2 TZ+-Z 

s3334.25 

-2-- 
(1 - Z- 

1)2 

Thus the general expression for s- 
k is given by: - 

Fj 

-N 
k(? '- 

1) 

1 
4.26 

where Nk is a polynomial in z- 
1 

of order k. The 

coefficients of s- 
k, for 1, <k<3 are shown in Table 1. 

(see next page. ) 
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s -k F k(z- 

s z s 
2 1- 

2 
s 2 Ti+ 10 -1 -2 S- TZ3 

-1 

-( 
1-z- 

1) 2 

_2 

-3 s -3 T2 (ý+-4z-1+4z- +CF- [2 

1-z- 
1) 3 

TABLE 1 
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The application of this method to differential/delay 

transfer functions is best illustrated by a simple 

example. 

Consider the differential/delay expression given 

by: - 

H(s) +s e-s 
T+s2e -2sT 4.27 

+ e- sT 

Firstly, this is rewritten in negative powers of s, 

giving: - 

H(s1) = s -2 +s -1 e- sT + 
_e 

-2sT 4.28 

s- 
1+ 

s- 
2 -sT 

Next, the negative powers of s are replaced by the 

appropriate expressions from Table 1, giving: - 

(see next page. ) 4.29 
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Now, if Ts is chosen such that, 

T/=3 

Then equation 4.29 becomes: - 

4.30 

(see page before) 4.31 

This form shows clearly the dependence of the 

coefficients on the value of Ts. However, it may be 

observed from equations 4.29 and 4.30 that the order of 

H(z- 1) depends on Ts. This demonstrates how a judicious 

choice of Ts is required with this type of function. 

In their paper, Boxer and Thaler use the method to 

invert Laplace Transforms. This requires the 

z-transform H(z- 1) 
to be divided by the sampling period 

Ts, before the z-transform is inverted. If, however, 

H(z- 1) is to be implemented as a digital filter, this 

is not required, since the input to the filter will be 

in sampled form. 
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In the applications considered here, Hz -1 ) will 

always be implemented as a digital filter, so H(z- 1 

in equation 4.31 is in its final form. 

This example has illustrated the method developed by 

Boxer and Thaler. HoVever, it still needs a degree of 

algebraic manipulation. It is also necessary to re-apply 

the method for each individual case. This is tedious 

and time consuming. 

However, these problems which are also common to the 

bilinear transform in digital filtering may be 

substantially reduced by application of the Q-matrix 

method, ' (23) - (50). 
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4.4 Q-MATRIX TECHNIQUES FOR THE BILINEAR TRANSFORM 

Matrix techniques for the bilinear transformation 

of single and multivariable polynomials are well 

known, ( 4), (23), (47)9 (5C)). The basis of the 

method may be described briefly, as follows: - 

Consider a transfer function of the form, 

H(s) = 
12n bbb............ bs 

ao + als +a 2s . ......... 
ansn 4.32' - 

where any of the a or b coefficients may be zero as 

required. 

This may be z-transformed using the bilinear 

transform of equation 4.13, to give: - (see next 

page. 4.33 

Clearing the denominator terms 2 (1 + z-1) n 
T 

gives, (see next page again). s 

4.34 
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vc*v 

(I- Z-1 )uq......... ( 
I- Z-1 ) Z+j ) 

3'j, lq+ 

(I- Z-I)uu+***Oooo+( I- Z-1) Z+I)-g- 19+ 
u J-u ýJL 

co 
El I 

U, 0 17 

U 

s 
,Z+s 

ul ---Z-� 
3zj, u, -, * Z+ s 

--- -Z- ', liz': ' 

u 1-2+1> jl, 
oq 

Z)H 

ur( -Z+' )-g-9,010 

Z 
[( 

-Z 
+, L i�oq 

Z Z-1 Z+ Z+ + -Z+, + 
LI- 
-Z-, 

I 
U1+08 

= (I- z)H 



This equation may be rewritten in the form, 

c +c Z- 
1 
+c Z -2 ............. cZ -n 

1012n H(z- )= 

d-+d z- 
1 
+d Z-2 +o49499666 ... d Z- n 4.35 

012n 

where the, values of the c and d coefficients are 

obtained from equation 4.34 . By comparing eqyations 

4.34 and 4.35, it may be seen that each of the c and d 

coefficients comprises a portion of all the a and b 

coefficients respectively. Thus, 

Tn n-1 
c0= 

[-T2 

a0+ 

[L2d 

n n-1 
c1= 

[L2S] 

a0+ 

[L2 

n-2 
a1+ 

[L2d 

a2...... an4.36 

al(n-2) ....... an (-n) 
4.37 

n n-1 n-2 E3 ;saLaa ss 
0+(-')[21.1 + 

[L2 

2n 
s 

4.38 
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and similarly for the d coefficients. 

Equations 4.34 - 4.38 may be interpreted as follows, 

a] =I aot a, ........... a n] 
t 4.39 

b] = 
[bog 

b1........... b 
n] 

t 4.40 

t 
Ci =Lc09c190000000a00c nj 4.41 

d] = 
[dop 

d1posoooesoooodn] t 4o42 

where 73 
,3, 

g, and -ý are column vectors containing 
all of the a, b, c. and d coefficients of equations 

4.32 and 4.35, where t denotes the transpose operation. 

Then equations 4.39 and 4.40 may be directly related 

to equations 4.41 and 4.42, as follows, 

Q1 ,T4.43 

T] 
] 

4.44 
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where, 
]T 

is given by, 

s 
09 

n-1 

400 

Tj= 
I 

0 

0 

ot 

0a 

L2 

00 0'. 0,1 

4.45 

and Q] is defined by its column vectors. 

The first column of Q] is comprised of the 

coefficients of the expression (1 + z-l)n , that is, 
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Q1 iij = 
E1,7n 

. ................... n 
Dllý t 4.46 

the second column by the expansion (1-z- 1 )(l+ z1" 

: Ql 1,2 

4.47 

continuing until the final column which comprises 

the coefficients of (1-z- 1)n, 

-n . ........... 

4.48 

Thus, Q1 is an (n+l)x(n+l) matrix, whose columns 

are defined by equations 4.46 - 4.48 The method 

used here to define the coefficients of 
Q 

was 

chosen to highlight the underlying structure 

of the Q-matrix. References (4 )and ( 50) contain 
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algorithms which may be used to generate the 

coefficients of the Q-matrix directly, given only 

the highest power of s in the transfer function 

H(s). Alternatively, the individual Q-matrices 

for a range of indices may be stored and used as 

required. 

This method allows direct bilinear transformation 

of the s-domain coefficients of equation 4.32 into 

the z-domain coefficients of equation 4.35. The 

Q-matrix itself is independent of the sampling 

period Ts, which is contained in the square matrix T 

Thus, a particular Q-matrix may be generated and used 

with a variety of different sampling periods. 

This method is thus flexible, simple and easy to 

use being particularly suited for computer imple- 

mentation. It will now be demonstrated that a 

similar approach may be developed for the IIR 

method of Boxer and Thaler. 
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4.5 A Q-MATRIX TECHNIQUE FOR THE IIR METHOD 

OF BOXER AND THALER 

Consider the Laplace transfer function defined by 

equation 4.32. If this is to be transformed into 

the z-domain using the z-form method, it must 

first be rewritten in negative powers of s, 

a s- n+as (1-n) 
. ....... a i-'+a H(s o1 n-1 n 

b0 s- n+b1s (1-n) 
......... b 

n-1 
ý-l 4-b n 

4.49 

Each of the negative powers of s in equation 4.49 

may now be replaced by the appropriate z-form giving, 

(see next page). 

4.50 

Clearing the (1 - z- 
1)n denominators, yields 

(see next page again ) 

4.51 
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This equation may be manipulated into the form 

of equation 4.35, in a similar manner to the 

previous section. However, in this case, the poly- 

nomials are no longer simple power series 

expansions, but are defined by the Laurent series 

of equation 4.20. 

It may be observered from Table 1 and equation 

4.51 that the product terms, 

N 
n-k 

(Z -1 ). (1 - Z- 
1)4.52 

produce polynomials of order z- n, hence the 

relationship between the a, b and c, d coefficients 

which was noted for the bilinear transform, will 

also apply here. Consequently, it should be 

possible to form a Q-matrix for the IIR z-transform. 

Three procedures have been developed to generate 

the IIR Q-matrix. 

The first two methods may be conveniently 

separated into two distinct parts. Firstly, a 
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look-up table, which corresponds to the Boxer 

and Thaler transformation, is generated. Then 

the coefficients from this' table are manipulated 

to form the appropriate Q-matrix. 

The third method stores each Q-matrix (which 

is generated by either of the first two methods) 

in a larger look-up table and simply reads the 

required Q-matrix from the table, with no extra 

computation. 
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4.5 (i) GENERATION OF THE LOOK-UP TABLE 

Two methods have been developed for generating 

the z-form look-up tablej their relative merits 

depending on available storage space and 

calculation time. Both algorithms possess a 

common starting point, the generationof the kn(z) 

series of equation 4.17. If it is assumed that 

N is the largest power of s in the mixed differ- 

ential/delay transfer function, it is readily 

shown that: - 

TN1N odd 
MIN ý(N ++ 2N even 

4.53 

where T MIN is the minimum number of terms of the 

in(z) series required to provide the principal 

part and constant term of the Laurent series in 

equation 4.20. 

Thus, a vector containing the Zn(z) series may 

be generated and stored as follows: - 
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L {OP it 

. 

19 Ot it ov. 
*. *O.. 

) 

35 
up to T MIN terms 

4.54 

Furthermore, equation 4.20 may be rewritten as, 

TS) 
(I ) (1 -u2- 4u 4 

2u -5 45 
4.55 

This is in turn generated and stored as the 

following vector, 

fl, 0, -1,0, -4 } 
1 

45 

4.56 

This equation contains the minimum number of 

terms required to generate the largest power of s. 

However, the coefficients for the preceding indices 

of s must also be generated with, for each case, 
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only the principal part and constant term being 

retained. 

It is readily shown that for any given k, where 

k is an index of s, such. that 1<k%<N, the minimum 

number of terms required in the Laurent vector to 

generate the correct principal part and constant 

term is given-by, 

k 
MIN k+1 

,k odd 4.57 
, even 

The specified number of terms in the Laurent 

vector, LIV , may then be raised to the k th 
power 

to produce the following general expression, 

-k T 
m. ( s. 

where 14k<N 

4.58 
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The at terms are coefficients which result from 

raising the Laurent vector to the k th 
power. 

(Note: for k odd, a 0). 0 

The ay coefficients are stored in a matrix, A, 

as follows: - 

a 10 aI1000a& 

a 20 a 21 a 22 0.... 

a 30 a 31 a 32 a 33* 

where A has dimensions Nx (N + 1) and the 

coefficients akZ correspond to the Z th 

4.59 
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coefficient of the k th 
expansion in equation 

4.58. 

From equation 4.58, the s -k terms are pre- 
k 

multiplied by the scalar term, Fs /A. For 

the majority of the applications, the sampling 

period depends on the characteristics of the 

transfer function. Consequently, to maintain the 

generality of the method, the scaling factors are 

included in the algorithm at a later stage. (This 

is similar to the T-vector of equation 4.45. ) 

The coefficients of matrix A may be stored 

sequentially in the following manner: - 

a 10, all; a 20 ,a 21 ,a 22 ;a 30****"**** 
4.60 

The second method for generating the look-up 

table uses the coefficients of the A-matrix, 

along with equation 4.18, to generate the 

coefficients of Table 1, according to the following 
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equation, 

[L 
S]k 

Lk=o 
_1 -k s+z s (1 -za 

(1 -1)k 

4.61 

where equation 4.61 is obtained by substituting 

equation 4.18 into equation 4.58; 

/2k As before, to retain generality, the s 

scaling terms are omitted, giving, 

(k-L) (1 - 

4.62 

where s -k is the unscaled s-term. (The terms 

(I Z- 
1)k 

and (1 - z- 
1)k 

may be generated using 

a Pascal-triangle method, and stored in an array P, 

up to the largest expansion required, N. However, 
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recursive generating procedures for each 

application of equation 4.62 provide an 

alternaeive if an extra storage array is not 

desirable. 

The z-domain coefficients thus generated may 

now be stored in sequential pairs, for both 

numerator and denominator. For example, consider 

the first few expansions of equation 4.62, 

expressed as follows: - 

1 10 1 
-3 - -3 12 10440; 

N1 Dl N2 D2 N3 

4.63 

where, 

Nl - coefficients of s- 
1 

numerator 

Dl = it s- 
1 denominator 

N2 = it s- 
2 

numerator 

D2 = it s- 
2 denominator 

etc. 
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These coefficients are directly comparable with 

the z-coefficients of Table 1. 

4.5 (ii) Q-MATRIX GENERATION 

METHOD 1 

The first method for Q-matrix generation 

assumes that the look-up table contains the 

A-matrix coefficients of equation 4.59, stored in 

the form of equation 4.60. 

The required-number of terms are read from the 

look-up table into an (N + 1) x (N + 1) trans- 

ition matrix, P, and stored as follows: - 
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11 

= 

0.......... 0 

a 10 a 11 

a 20 a 21 a 22 

a 30 a 31 a 32 a 33 ...... 

o9ooa (N + 1)(N + 1) 

4.64 

These coefficients may now be used to generate 

the desired Q-matrix in the following manner. 

Let, 

R k] 
{q k, l q k, 2 q k, 3 kn'4- 1) 

4.65 
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be the k th row of the desired Q-matrix, and P k, i be 

the elements of the P-matrix described by the 

equation 4.64 . 

The desired row vector-, R k' may then be generated 

from the P k, i elements in the k th 
row of P by the 

following expression, which is derived directly from 

equation 4.62, 

Kp 
Rk] - Z= k, k* 6 (1-z- 1) (N+l-K) 

£1 
4.66 

which-yields, 

k 
(1+z- 1 (k-Z) (N+Z-K) 4.67 

Rjk = Z= Pk,. E* 0 (1-z- 1) 

This generates the Q-matrix, but, as stated 

previously, the time-scale terms havý been omitted. 
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METHOD 2 

The method for Q-matrix generation assumes that the 

look-up table contains the coefficients of Table 1, 

stored in the form of equation 4.63 . As before, the 

required number of terms are read from the look-up table 

into the P-matrix. However, there are both numerator and 

denominator coefficients in this case, and inspection 

of the look-up table shows that the number of coeffici- 

ents exceeds (N+l)x(N+1). In fact, there are (N+l)x(N+2) 

coefficients and hence P is defined to be an (N+l)x(N+2) 

matrix for this method. These coefficients are then 

stored as follows: - 

Numerator terms in the lower- triangular portion of 

P, denominator terms in the upper triangular portion 

of P. 

That is, 

NUMERATOR 
TERMS 

DENOMINATOR 

TERMS 

4.68 
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This is best illustrated by considering the 

first few terms of equation 4.63 which are 

stored in the following manner: - 

= 

10 

4 

001 -3 3 

1 7-2 

u............ 01 

4.69 
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If, for example, N-3, then P is a4x5 

matrix, given by, 

1 

PI 

1 10 
- ýT 3 

0 4 

4.70 

Once the data has been read into P in this 

form, each row-of-the desired P-mattix is 

obtained by operating on the exis-ting rows 6f F, 

as follows: - 

Let, 

R k] 2ý fq k, l ;qk, 2 ; .......... q k, N+21 
4.71 
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where Rk is the desired row-vector, as before, 

Then each element of Rk is given by, 

k, i 
N+2 
E Pk, j 'pk, n n=k+l 

4.72 

where, 

k, j are the existing elements of the k th 
row 

in the interval 1<j, <k . (These 

correspond to the numerator terms of 

row k. ) 

p k, n are the existing elements of the k th 
row 

in the interval k+14n, 4N+2. (These 

correspond to the denominator terms of 

row k. ) 

(k + 1) N +]l 

and, q"0 always. k, n+2 -ý 
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This operation corresponds to the creation 

of a common denominator for the a coefficients 

in equation 4.62. The Q-matrix thus generated has 

a zero final column, that is, 

IQ 
= 

qll qq, 12 000000000 
90 

a0 

SS 

00 

00 

q n+1, * ,q n+2, '2 q n+l, n+l 0- 

4.73 

This final column may be omitted, reducing the 

dimensions of Q to (N+l) x (N+1). 

The operation described above is best illus- 

trated by an example. Consider the example 

matrix of equation 4.70. Performing the above 

operation on this matrix, and dropping the final 
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zero column gives, 

1 

1 -1 -1 1 

IQ 
= 

13 -3 -1 

0440 

4.74 

This matrix must now be scaled with the sampling 

terms s/2k 
In this case, the Q-matrix was 

derived to transform negative powers of s, unlike the 

previous bilinear Q-matrix which was derived to 

transform positive powers of s. Thus each row of 
k-l 

equation 4.73 must be multiplied by 
Ifs 

9 

where k is the row number such that 1, <k, <N+l. 

Alternatively, Q may be premultiplied by the matrix 

T, where T is now an (N+l) x (N+1) matrix, of the 

orm, 
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100 

0 IT 
s/ 

2] 0 

00 
IT 

s 
2] 

TI = 

IT 
s/ 

2] n 

4.75 

To illustrate this, consider the following examples, 

Let Ts -2, then 
[Ts /2]-l. Applying this to 

equation 4.74 leaves the Q-matrix unaltered. 
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Ts=l, then[Ts/]2=I, and equation 4.74 

becomes: - 

1 

Q1 

1 3 -3 1 
12 T 7 

00 
22 

(iii) Finally, Ts=I, then 
ITS 

/2]=14, and, 

1 

1 -1 -1 1 

Qj = 
I-3 -3 -1 

48 1-6 -176 48 

0110 
T6- 76 

4.76 

4.77 
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METHOD 3 

The third method of generating the Q-matrix is 

much simpler. Each Q-matrix, for each index of s 

is generated using either of the first two methods. 

These Q-matrices are then stored. sequentially, 

either row by row or column by column, in a simple 

large look-up table. Then, given N for a specific 

case, and knowing that the Q-matrix for any given 

value N has (N+1) x(N+l) elements, the first m 

elements of the look-up table will be the coeffi- 

cients of the preceding Q-matrices,, vhere, 

N-1 2 
m=E (i+l 2< N4 N 

max 4.78 
i=l 

1 

N 
max 

is the largest index of s in the look-up table. 

r 

Thus, the first m elements may be omitted before 

reading the next (N+1) x (N+l) elements directly 

into the desired Q-matrix. 

a 
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This matrix must then be scaled with the 
ITS /]k row multipliers. 

The only drawback with this method, is that the 

look-up table will have a maximum size. Thus there 

will be a maximum value; N 
max , of the s'-indices, 

above which the table cannot be used. 
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4.5 (iii) COMPARISON OF THE ALGORITHMS 

The algorithms may be compared in terms of both 

the storage required for the look-up tables, and 

the degree of calculation required to generate the 

final Q-matrix. In comparing the amount of calcu- 

lation used by each method, the 
E2k 

scaling is 
S/I S 

omitted, since this is common to each method. 

The first method requires least storage, but 

involves a rather complex coefficient evaluation 

procedure. For small Q-matrices, for example, 

N<5, the degree of calculation is trivial, and the 

method may be readily applied. However, for these 

same cases, the degree of storage required is also 

very small, and the degree of extra calculation 

required to generate a Q-matrix directly from 

the initial Laurent vector so little, that the 

method has few or no advantages over direct gener- 

ation. For large Q-matrices, N>10, t#he amount of 

calculation required increases approximately with 
3 N This does not compare favourably with the 

two alternative methods, and hence the first 

method should only be considered for Q-matrices with 

5, <N<10. 
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Theýsecond method requires approximately twice 

the storage of the first for its look-up table. 

The same criticism for N<5 may also be applied to 

this case. However, for N>10, the degree of calcu- 

lation now increases with N2 and this method is 

acceptable for the range 5, <N420. For N>20, the 

degree of calculation required does not compare 

favourably with the third method which involves 

essentially no calculation, simply the access , 

time of the look-up table. This increases with 

N2 but is still significantly less than the time 

required to perform the calculations of the second 

method. 

The amount of storage required for the third 

method is substantially more than that required for 

either the first two methods. For any given N 
maxg 

the total number of elements, N TOT' i: n'th6-required 

look-up table is given by: - 

N 

N TOT =E 
max 

(i+l) 2 

i=l 

4.79 

169 



Applying this to several values of N 
max gives, 

N 
max = 10 N TOT 505 

if = 20 it 3310 

if = 30 , it = 10415 

From this, it is apparent that the look-up table 

2 increases in size at a rate greater than N 

Consequently, an acceptable maximum size must be 

chosen, based on. equation 4.79. 

For the applications considered in this chapter, 

a maximum size of 20 was regarded as acceptable. 

For Q-matrices with N 
max greater than 20, it was 

necessary to generate the matrix from the initial 

Laurent vector, using the second method. 

Finally, it should be noted that the transition 

matrix P, used in methods 1 and 2 may be avoided 

by careful programming as follows: - 

1. The elements of the look-up tables are read 

directly into the Q-matrix which takes the place of 
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the P-matrix. 

2. The algorithms of equations 4.67 and 4.72 

are modified to operate on the rows of the Q-matrix. 

Thus, each row of the Q-matrix is replaced by a new 

row, defined by either 4.67 or 4.72. 

This was the method used in implementing the 

algorithms of methods 1 and 2. It approximately 

halves the amount of storage which would otherwise 

be required. However, the P-matrix was retained 

ih-. deriving these methods to clarify the procedure. 
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4.6 COMPARISON OF THE BILINEAR AND Z-FORM 

Q-MATRICES 

The bilinear Q-matrix of section 4.4 was derived 

to transform s-domain coefficients into z-domain 

coefficients under bilinear'transformations. The 

s-domain coefficients are arranged into vectors in 

ascending positive powers of s. Regarding the 

z-form Q-matrix of the preceding section, it is a 

consequence of Boxer and Thaler's method that the 

s-coefficients must be arranged in descending 

negative powers of s. It is also important to note 

that the z-form Q-matrix is premultiplied by the 

s-vector, in the following manner: - 

Let, 

(a ,a n-l' a,, a 0} 4.80 

b] = (b 
n, 

b 
n-l' 

b1t b 01 4.81 

Defining the matrices ý] and as in equations 

4.41 and 4.42, then 
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C] = a] . T] . Q] 4.82 

d] = b] . T] . 4.83 

Although this method is rather cumbersome, the 

algorithms for generating the Q-matrix are in their 

simplest form. 

If the and vectors are redefined as column 

vectors, then, 

a] {a 
n' a n-l' a,, a0 

}t 4.84 

b] {b 
n, 

bn-l' b1p b0 }t 4.85 

and equations 4.82 and 4.83 become: - 

c] = (Q] 
d. 

a] 4.86 

d] =( Q] T] . b] 4.87 
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However, the al and b-1 vectors are now in an 

inverted form compared to that for the bilinear 

transform. Defining the operator r to represent 

row inversion, and redefining vectors al and 

and matrix Tj , as given in equations 4.39 4.40 

and 4.45 respectively, then equations 4.86 and 4.87 

may be rewritten as, 

tr Cl Q1 ). T] . a] 4.88 

tr d] Q1 ). T] . b] 4.89 

This may be illustrated by considering the 

Q-matrices of equation 4.74,4.76 and 4.77, which, 

under this operation, become: - 

011 

: Ql 

43 -1 -. 3 

4 
. -3 -1 3 

0 1 -1 4.90 
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111 
22 

1 

ýl = 1 -3 
2 2T 

1 

1 1 1 1 
W-8 T 

I 
-3 -3 

16 1-6 

1 -3 -1 
16 16 

0 -1 - ý 8 

4.91 

4.92 

Thus, now the operations for bilinear and IIR trans- 

formation are performed in, the same, manner. 

It is possible to rearrange the algorithms of the 

preceding section to generate the Q-matrices directly 

in this form. However, it is iffore difficult 
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to relate the algorithm derivation to the method 

of Boxer and Thaler. The algorithms themselves 

are also slightly more complicated. For these 

reasons, the derivations chosen here were adopted. 

There is, at first, no apparent reason to 

compare these transformation methods. However, 

from equations 4.34-and4.51, it is apparent that, 

as the term 
I-Ts/ý 

, tends to zero, the dominant 

s-domain coefficients are the same for both cases, 

namely, a n-l and an (and also b 
n-l' 

bn). Thus as, 

T 0 4.93 
2 

then 

T -1 - 1)n- I-1n 

H(z 2s( 
1+z )(l-z .a n-1 +(l-z )an 

T -1 -1 n-1 1)n 
2s( 

1+z M-z .b n-1 +(l-z- bn 

4.94 
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Thus, in the limit, both methods reduce to 

very nearly the same transf6rmation. 

This effect explains why Challis 4.13 obtained 

good results when apparently using an incorrect 

transform. This result also shows that the warping 

which is usually associated with the Bilinear trans- 

form may be neglected if Ts is chosen to be suffic- 

iently small. 

Finally, there is a potentially serious drawback 

to this method, which, in view of the above result 

may also apply to the Bilinear transform. If the 

transfer function of equation 4.32 has common 

factors in the numerator and denominator which ha've 

not been eliminated, then the resulting z-domain 

transfer function will be of a higher order than 

is necessary. This can lead to instability problems, 

therefore each differential transfer function 

considered here was first reduced to its simplest 

form. (For further discussion, see APPENDIX A). 
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4.7 SUMMARY 

This chapter has presented the derivation of a 

Q-matrix for Impulse Invariance z-transforms, based on 

the method of Boxer and Thaler. Although the deriv- 

ation was performed for differential-only trahsfer 

functions, it is apparent that it may also be 

applied to transfer functions of the type given by 

equation 4.4 . The specific application of this 

method to the transducer system equations is 

discussed in the following chapter. 

Three alternative procedures for generating the 

Q-matrix were derived. It was concluded that the 

third method (storing the Q-matrices for each index 

of s in a large look-up table) appeared to be the 

best choice for index values up to 20. Above this, 

it is probably best to generate the specific 

Q-matrix required for each application. 

The procedure used to derive the Q-matrix was 

chosen so as to highlight the method of Boxer 

and Thaler. It also emphasises how the structure 

of the Q-matrix replaces the otherwise necessary 
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algebraic manipulation. It was then shown that 

some further manipulation is required to obtain 

the z-form Q-matrix in the same form as the 

bilinear Q-matrix. This could be performed before 

the look-up table is generated, or the generating 

algorithms for methods one and two rederived to 

include this factor. However, since the main aim 

of this chapter was to illustrate the method, this 

feature was left until the end. 

Once in a compatible form, the bilinear and 

z-form Q-matrices were compared. It was shown that 

as the sampling period reduces to zero, the two 

methods become identical. This result was 

unexpected, since the bilinear and z-form methods 

are dissimilar transforms. 

However, this explains the results obtained by 

Challis, who appeared initially, to be mixing two 

unrelated transforms. (It should be noted that if*the 

sampling period is not chosen sufficiently small, the 

results will be different, therefore this restricts 

the method used by Challis. ) 
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No attempt ha; been made to analyse the errors 

associated with the Boxer and Thaler method. This 

is covered by WASOW (6ýF). 

Several possible sources of error which miýy arise 

in applying the method have been identified, and are 

described in Appendix A. 

Finally, this method allows the IIR z-transform 

to be applied to transfer functions which cannot or 

have not been expanded into partial fractions. It 

avoids the majority of the algebraic manipulation 

usually associated with substitution transforms, 

and is ideally suited to computerisation. 

The Q-matrices formed by this method are 

independent of the sampling period Ts, hence one 

Q-matrix may be used with several different 

sampling periods, without reforming the matrix. 

Thus this method is also highly flexible. 
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CHAPTER 5 

A GENERAL Z-DOMAIN MODEL 
OF THE THICKNESS-MODE PIEZOELECTRIC 

TRANSDUCER 



5.1 INTRODUCTION 

Chapters 2 and 3 presented the derivation of the 

general Laplace transform solution for the vibrations 

of a thickness-mode piezoelectric transducer. The 

resultant describing equations are of the mixed differ- 

ential/delay type. These equations may be readily used 

to obtain the spectrum of the transducer system. How- 

ever, they present certain difficulties when applied to 

the solution of transient, or broadband excitation 

problems. Chapter 4 outlined these problems and presen- 

ted an alternative method for inverting the Laplhce 

transforms - the z-form method of Boxer and Thaler. 

Before this method may be applied however, some 

further manipulation of the system equations of Chapters 

2 and 3 is required. 

This chapter will show how the system equations may 

be manipulated into a single general form which may then 

be transformed into the z-domain using the procedure of 

Chapter 4. The general z-transform system will then be 

used to model a variety of practical cases. A series of 
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experimental results is included and these serve to 

validate the analytical approach. 
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5.2 MANIPULATION OF THE SYSTEMS EQUATIONS INTO A 
GENERAL DIFFERENTIAL/DELAY FORMAT 

Consider the transducer system equations of Chapter 

2, equations 2.42 and 2.43 . Each of these equations 

is in a mixed differential/delay form. It may be 

observed from the equations that the order of the delay 

terms is constant, (that is, l, e- sT t and e -2sTt), while 

for the differential terms, the order depends on the 

particular electrical load selected. 

For the more general system equations of Chapter 3, 

(equations 3.65,3.66 and 3.69), the order of the delay 

terms now depends on the particular layer configuration 

selected. 

To generalise the z-transform procedure, it was 

necessary to develop a general format for the equations. 

This is best illustrated by considering the simple no- 

layer equations first and extending the method to the 

multilayer case, once the basic procedure has been 

established. The required general differential/delay 

format is given in Chapter 4 by equation 4.4 . 
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Firstly, it is assumed that the electrical load term, 

zE is composed of differential elements only, and may 

be expressed in the form, 

N1i 

Ecis 
ZE = i=O 

N2 

Ed sj 
j=o J 

where, usually N14N 2* 

This may be further simplified by selecting, 

max 

N 
max 

5.1 

and inserting the appropriate zero-coefficients for the 

extra ci or dj coefficients as required. Thus, the 

electrical load becomes, 
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N 
max 

i=O zE-N 

E max 
d. s 

i=O 1 5.2 

It is convenient to make the following definitions: - 

N 
max i 

cIs 
1=0 5.3 

YD max i 
EdIs i=O 5.4 

so that, 

YN 
E zE- 

YD 
E 5.5 

185 



where yN and -fD are the numerator and denominator EE 

polynomials of the electrical load, ZE 

Using this notation, each of the equations 2.42 

and 2.43 may be manipulated into the form of 4.4. This 

may be demonstrated by considering transfer function 

P33* That is, from equations 2.42 and 2.43, 

(see next page) 5.6 

Substituting forT from equation 2.40, and rearrang- 

ýng givesq 

(see next page) 5.7 

where, 

2' hC 
2Z 

t 

This procedure may be applied to each of the pij 

transfer functions in equations 2.42 and 2.43. 

5.8 
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5; 

a(((I-Iiluz+l-zl+l 
XI-11 21 HI I- I 13 

ISZ- 11) X+ a us)ý. K + NZ ozs H 'a) - 

zz)+ (I- 

co 
-i 

-s)HZ G N-Z Z = 
CCd 

-I 
; a(( I- HI 'dZ+ I-H+lu)Xxoaz+l-uluo azs)- 

JISZ- 

-I 9((T -H+T )(T X+T) x X*3 z)+ 
. Ls- 

21 
(I. K x- (I zI 

919 

1 H-M I H+T)+(-4jLS_O T- S-1 )(111+1 

az1 
013-1.1 

'4. t r. z -; 
a 

I- 
HI U-1 



However, for the practical experiments of this 

chapter, only the terms P31' P13 and P33 are required. 

So, adopting a similar procedure, these may be re- 

written as, 

hCt) ((SZD (R )sfD 
P13 2E 

1- 1))+((l+R_, )(1-R, 
E )e- sTt+ 

+(SZD R_ (R - 1))e- 2sTt). 
E11 PD 5.9 

A ((sZ N (AR ))-((l+R M+R s )e- sTt+ 
P31 zt 

+(R_1(1+Rl)sZ 
N 

e- 
2sTt) 

E, 1 PD 5.10 

((SyD ZD. X (2+R +R_ ))+(2Z D. X (1+R )(l+R P33 EEk11Ek1 

*e-sTt 2sTt) 
_(s; rD, RR +Z 

D. x R_1+2R, R_1»e- / PD Z E* 1_1E k* (R, + 

1 
5.11 

where, 
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-= (S 2cZN 
+Z 

D (2+R R 1»)+(2-D x l+RJXIýR PD tE E(S - Xk 1- ZE k( -1 

2N -TI 
*e- sTt - (R R_ sCZ +Zi(sR R_ +X (R, +R_1+2R, R_, )) )* 11tEE11k 

*e -2sTt 5.12 

is the common denominator term. 

These equations have been arranged into the differ- 

ential/delay format of equation 4.4. The differential 

polynomials are composed of combinations of the electri- 

cal load polynomials, yN and ZD together with the EE 

parameters of the transducer. It may be observed from 

equations 5.9 - 5.12 that each pij transfer function 

comprises six differential polynomials; three for the 

numerator and three for the denominator. From this, 

it may be-deduced that with the addition of layers, the 

total number of differential vectors will increase 

substantially This is both inefficient and unnecess- 

ary since further study of equations 5.9 - 5.12 shows 

that several of the differential vectors are simple 

scalar multiples of each other. Thus, equations P13 

p 
31 

and 7 
33 

may be rewritten in terms of the products 
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of differential-only and delay-only vectors, giving, 

hC (R - 1). SZ 
D -sTt +R e- 

2sTt) 
t1 E)(1 - (1+R_l)e 

1 PD 
P13 (-2 ) 

5.13 

-hC t(l+R -; zN (1 - (1+R_l)e- sT t+R_le -2sTt) ,- 
P31, =( Zt 

dsZE) PD 

5.14 

(1 -R R_le- 2sTt)_(X zD )((2+R R_ 
P33- ((sZE) 1 k* E 

-2(1+R, )(l+R_l)e-s Tt+(R 
1 +R- 1 +2R 1 R_l)e- 2sT t)) 1 PD 

5.15 

and, 

p =(S(Z 
D 

+sc zN ))(1 -R R_ e -2sTt)_(X 2ýD) 
DEtE11 k' E 

* ((2+R 1 R_, )-2(1+R, )(l+R_l)e- sTt+ (R, +R_1+2R, R_l) 

* 2sTt) 
5.16 
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Thus, defining di vectors as differential-only vectors, 

and DI vectors as delay-only vectors, then for P33" 

Let, 

s7D E 

(X k* Z E) 

S(-ZD+SC -ZN 
EtE 

and, 

(1-R 1R, -l 
e- 

2sTt) 

5.17 

D2= ((2+R 1 +R- 1 )-2(1+R, )(l+R_l)e- sTt+ (R, +R_1+2R, R_, )* 

* e- 
2sTt) 

then, 

5.18 
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d l* D1-d 2' D2 
P33 - -j 

3* 
U1- -i 

V 
«5 

2 5.19 

This form is not as general as that of equation 

4.4, but requires substantially less storage, and is 

clearly simpler. 

In a similar manner, P13 and P3 1 become: - 

d4*D3 
P13 

3' 
'9 

1- 
-d 

2 
-D 

2.5.20 

d5. D3 
P31 

d 3' D1-d 2* D25.21 

I 

where, 

hC t(R )SID 
42 1- E (i) 
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1+R )SýýN 
d521E (ii) 

5.22 

D3= (1 - (1+R_l)e- sTt +R_le- 
2sTt) 

5.23 

Thus, the three transfer functions, '713' 731 and 733 

are completely described by five differential-only 

polynomials and three delay-only polynomials. (In fact, 

the differential-only polynomial d4 is simply d1 multi- 

plied by a scalar, and only four distinct differential 

polynomials are required. ) 

This method may be readily applied to the correspond- 

ing multilayer transfer functions, W 13' w 31 and W 33 

given in equations 3.65,3.66 and 3.69. 

Firstly, clearing the electrical load polynomials 

and rearranging the differential terms gives, 
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1)SZD)(1 sTt Z /Z 

. 
(hCt (R 2f e- , n+ w 13 21 11 

TF +R i)/D 
29 1 21 

5.24 

-hCt syN)(1 -r e- sTt) j +T w 31 -ZtE 12 
. 
22) 1 ýýD 

5.25 

w =«sz 
D)- (X --. -D e- sTt)(y y 33 E k* Z E)(1 - 11 21» 

/ WD 

5.26 

and, 

w=s (-fD +sC yN zD )(1-e -sT Y+ -y ) 5.27 DEt E)-(Xk*7E 
t)( 

11 21 

Clearly the differential components of these transfer 

functions are, with one exception, identical to those 

for the no-layer case. The exception, equation 5.25 

does not contain the factor (1+R, ), in equation 5.22. 
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This results from the inclusion of this factor in the 

formation of the delay term, Y ij. 

The delay transfer functions Yij, have a common denom. - 

inator, YD as was shown in Chapter 3. It is thus 

possible to split each Y 
ij 

transfer function into a 

numerator and denominator polynomial, where the poly- 

nomials are delay only. Thus, using the superscript 

N to indicate the numerator polynomial, ( in a similar 

fashion to the electrical load), and defining: - 

yD5.28 

(YN +YN 1-e- sTt) 5.29 
2 11 21 

D (1-e- sT t)(Y N 
+y 

N 
3 12 22) 

(1+Rl) 5.30 

and , 
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z N+l 
y 

D- 2Y Ne -sTt. 
11 D4z1 

-fF +R -; FF 
22 1 91 5.31 

-F -F (The denominator term, T 22 +R IT 21 will always cancel 

with the numerator in equation 5.31, thus D4 is always 

a discrete polynomial. The general proof of this is 

tedious, and has been omitted here. However, the one- 

layer example of Chapter 3, section 5 gives the procedure- 

for a specific case, This may be readily extended to 

the general case. ) 

The general multilayer transfer functions may now be 

rewritten as, 

d4*D4 

13 j3* "5 
1- 

-i 
2'U25.32 

d5. D 
w 31 

3* 
'5 

1- 
-d 

2* 
-D 

2 5.33 
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d,. D, - d,. D, 
w 

33 d 3' D1-d 2* D2 5.34 

Comparing equations 5.17,5.19.5.20 and 5.21 with 

equations 5.32,5.33 and 5.34, it is apparent that the 

general form of the no-layer and multilayer transfer 

functions is the same. In fact, the differential poly- 

nomials are the same in both cases, and the delay-poly- 

nomials of the multilayer cases, as defined by equations 

5.28 to 5,31, reduce to those for the no-layer case, 

when no layers are present. This is to be expected. 

The remaining pij and Wk transfer functions can be 

broken down and formed into mixed differential/delay 

polynomial form in a similar manner. This has been 

omitted here, since these will not be used for experi- 

mental verification. 

Equation 4.4 gives the most general form for a mixed 

differential/delay transfer function. For reasons of 

efficiency and storage, equations 5.32,5.33 and 5.34 

have been written in a sl'ightly modified form. As will 
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be shown in the next section, the manipulation and 

storage of differential/delay systems is simpler when 

they reduce to the form of equations 5.32 to 5.34. 
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5.3 Z-TRANSFORMATION OF DIFFERENTIAWDELAY 
TRANSFER FUNCTIONS 

Equations 5.32,5.33 and 5.34 are now in a suitable 

form to be transformed into the z-domain, using the 

Q-matrix technique of Chapter 4. This method is applied 

in two stages. Firstly, the differential polynomials 

are transformed into z-domain polynomials using the 

Q-matrix, as described in Chapter 4. Secondly, thb 

delay polynomials are transformed by a direct application 

of the Impulse-Invariance method. The resultant z- 

domain polynomials may then be combined into the form 

of a digital filter. 

However, before transformation can be carried out, 

the sampling period, TS must be chosen. There are two 

conditions which the sampling period must meet. Firstl% 

T must be sufficiently small to avoid possible aliasing 
s 

effects, and secondly, Ts must be an integer sub-multip. 16 

of each delay in the delay-only polynomials. Since 

these transfer functions are of the mixed differential/ 

delay type, it is difficult to define an exact method - 

for choosing Ts to avoid aliasing. However, the follow- 
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ing procedure worked well for all. the applications 

considered: - 

Choose an initial value of Ts which avoids 

aliasing with the electrical load, Z E' alone 

Ts must also be an integer sub-multiple of 

all the delays in the Di polynomials. That is, 

Ts must correspond to an integer sub-multiple. 

of the transit-times of all the layers in the 

system, (including the transducer. ) This may 

be very difficult to achieve in practice, (for 

example, if the transit-times correspond to 

different prime numbers), and it is possible 

that some layers will have to be assumed 

slightly thicker or thinner than they actually 

are. So, the second step is as follows: - 

2. Choose a second value of T which meets the 
s 

sub-multiple criteriong approximating the layer 

thickness as required. 

Both criteria 1 and 2 must be met, so: - 

3. Choose between the two values of Ts, such'that; 

if the second value of Ts is less than the first 

value, use the second value. If the first 
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value is less then the second, divide the 

second value by an integer constant to render 

the second value less than the first and then 

use this value. 

If aliasing occurs, then the simplest method of 

re-evaluating Ts is to repeatedly halve the 

value of Ts, trying the new value at each stage 

until aliasing is no longer apparent. 

In some broadband cases, it was sometimes useful to 

evaluate the spectrum of the system and from this 

obtain an estimate of the highest frequency component 

in the system. Ts may then be chosen in accordance 

with the sampling theorem, but it is still necessary 

that Ts is a sub-multiple of the transit-times, 

Once a suitable form of Ts has been selected, the 

differential polynomials may be transformed. 

However, as may be seen from equations 5.17 and 

5.22, the differential polynomials are not all of the 

same order. If the electrical load polynomials, yN 
E 
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and yD are assumed, to be of order N, then the order E max 

of the differential polynomials in equations 5.17 and 

5.22 is, 

has order N 
max +1 

d2 has order N 
max 

d3 has order N 
max+ 

2 

d4 has order N 
max +1 

d5 has order N 
max +1 

From Chapter 4, however, it may be seen that the 

z-form method, whe n applied in its simplest form, 

(direct substitution), requires the differential poly- 

nomials to be expressed as negative powers of s. The 

-if, polynomials may be rewritten in this form by 

dividing throughout by the highest index of s in each 

transfer function. It may be observed from equations 

5.32,5.33 and 5.34 that the highest index of s is 
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given by polynomial'ýf 31 and is N 
max+ 

Thus each of 

the di polynomials must be of, order N 
max + 2. The 

Q-matrix method does not require the -di polynomials to 

be written in negative powers of s, as was explained in 

Chapter 4, but for the correct application of the 

method, the polynomials must all have the same 

order, N 
max 

+ 2. This is easily achieved by inserting 

coefficients of zero value into each polynomial as 

required. 

Once the 'ý 
i polynomials are in the correct form, 

the required Q-matrix may be formed. Defining 

as the polynomial of the z-transformed coefficients., 

the di polynomials are transformed into the z-domain 

. according to, 

-Tiz =( (Q )t)r. ýT 
. 
-ýi 

5.35 

where Q and T are the Q and T-matrices, as defined 

in the previous chapter. 
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The delay polynomials are transformed directly into 

the z-domain, so defining as the z-transform oUthe 

Di polynomial, equations 5.32', 5.33 and 5.34 become: - 

TZ -ff z 

z44 
13 -ýz. -5z 

31 

Z. 5z 

-qz 53 
31 

, iz 
. 
-5z 

31 

ifz. -fz 11 'ýZ. "gz 22 z - 33 -zrz 
. 
-5z 

31 
-ýz 

. 
-gz 

22 

5.36 

5.37 

5.38 

where Uz. is the z-domain transfer function W... These 
ij ij 

equations may then be resolved into the digital-filter 

format, described by: - 

MAX 
E e. z 

uz i=O 1 

ij MAX 
ZfZ 
j=() J 5.39 
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The order of the transfer function (MAX), depends 

on both the differential and delay polynomials. For 

large values of Tsp this value may be in the range, 

40 <MAX, < 100. 

However, for small values of Ts, when several layers 

are present, the value of MAX may become unacceptably 

large. For example, MAX may exceed 1000. This can 

lead to excessive and unnecessary calculation. 

It is important to note that, regardless of the 

value of Tst the number of non-zero coefficients in the 

V. transfer function is constant. As T is reduced, ij s 

although the order of the transfer function is increased 

no new coefficients are introduced (the values and 

locations of the existing coefficients are merely 

altered). This highlights the need to choose Ts with 

care, and not to specify an arbitrarily small value. 
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5.4 SIMULATION AND EXPERIMENTAL RESULTS FOR A 

TRANSDUCER WITH NO LAYERS 

This section presents the corresponding simulation 

and experimental results for a transducer operating 

into semi-infinite real media at each face. A variety 

of electrical load conditions are considered for three 

different cases, viz: the voltage, measured across a 

transmitter; the force output from a transmitter; and 

the-voltage measured across a receiver. 

Experimental details and data on the transducers 

employed. are provided in Appendix B, along with a 

description of the excitation circuitry. 

5.4. (i) Transmitter Voltage 

This is described by the transfer function W 33' The 

transducer used (designaýed 'A' in Appendix' B), 'com- 
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prised a free 20 mm diameter lMHz PZT-5A ceramic 

disc. The electrical firing circuit comprised a 

VMOS switching FET, as described in Appendix B, 

Experimental Setup 1. The firing circuit may be 

modelled according to the methods described by 

Hayward (1q), and this data is presented alongside the 

simulation and experimental results. To unify the 

results, a sampling period equivalent to one hundredth 

of the transducer transit-time was selected for all 

the simulations. Thus, from Appendix B, Ts has value 

4.35 n. s. This value is smaller than that required for 

some of the cases, however, it avoids aliasing, and 

allows the simulation results to be compared on an 

equal basis. 

CASE 1 

The electrical configuration is shown in Fig 5.1A. 

In this example, the electrical load is a blocking 

capacitor of 2nF. The input voltage was observed to 

be a 50V ramp of duration 30 n$, so, HT - 50 V and 

t 30 nn. 
on 

To demonstrate the differential and delay poly- 

nomials of the previous section, this case may be 
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expanded as follows: - 

From Fig 5.1A 

zE 
sc B 

Hence, 

YN 
E 

-Z ,=0+S. c EB 

where CB is the value of the bl6cking capacitor, in 

this case, 2 nF. 

Hence, the d polynomials become, 

0. s +CBs 

5.40 

5.41 

(i) 
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d2=xk (0 + S. c B) 

2 d3=0+0+s (C 
t+C B) 

5.42 

(d 4 and d5 are not required for this case). 

It may be observed from equations 5.42, that the 

first term of each di polynomial is zero. This indi- 

cates that the polynomials have a common factor and, 

removing this, 

d0+S. c B 

d2=x k* cB+O. s 

d3=0+ S(c B+Cd5.43 

The value of Xk may be obtained from the data in 

Appendix B, and the equations 5.43 may be transformed 
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using the Q-matrix technique of Chapter 

The differential vectors, and D2 become, for 

this case: - 

2sT 
e 

-sT -2sT D2= (4 - 8e + 4e 5.44 

since it is valid to approximate R1 and R- 1 by unity for 

an air-backed, air-loaded transducer. 

Also, 

T/T 
s= 

100 5.55 

where T is the transit-period of the transducer. So 

and D2 may be z-transformed directly, to give: - 
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'ff i Z- 200 

Uz - 4(1 -2Z- 
100- 

+ Z- 200) 

Thus the overall z-transform of the transducer 

system may be formed. 

5.56 

The simulation and experimental responses for this 

case, are shown in Figs 5.1B and 5*1C respectively. 

CASE 2 

This case-is identical to CASE 1 but the value of 

the blocking capacitor has been reduced to 100 'pF. The 

electrical load-configuration is shown in Fig 5.2A and' 

the simulation and experimental results in Figs 5.2B 

and 5.2C respectively. 

CASE 3 

In this case, the electrical load comprises a 

2 nF blocking capaci-tor in parallel with a1 

resistor. The electrical driving voltage and trans- 
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ducer are identical to those of CASE 1. The electrical 

load, simulation and experimental results are shown in 

Figs 5.3A, B and C respect-ively. 

CASE 4 

The final transducer voltage case is shown in 

Figs 5.4. Now the electrical load comprises a1 nF 

blocking capacitor with a 10011resistor and 1 AlH 

inductor in parallel. -The electrical excitation and 

transducer are identical to CASE 1. As befor. e, the 

electrical load, configuration, simulation and experi- 

mental results are shown in Figs 5.4A, B and C respect- 

ively. 

Comparing results in Figs 5.1,5.2,5.3 and 5.4, 

it may be seen that there is generally excellent 

agreement between the simulation and experimental results. 

There are however, several possible sources of error 

which may account for minor differences between the 

plots. 

In Figs 5.1C and 5.2C, it may be observed that there 

is an upward trend to the experimental voltages which 

does not appear in the simulation results. This is 

caused by radial vibrations within the transducer which 
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are not covered by the model. This may also be observed 

in Fig 5.3C, where the slope of the experimental result 

decreases as the voltage returns to zero. The simu- 

lation plot does not predict this. However, in all three 

cases, the portion of the experimental voltages which 

is caused by the thickness vibrations of the transducer 

agrees very well with that predicted by the simulation 

results. 

In Fig 5.4C, there is a minor difference in the 

precise nature of the. first phase change. This is most 

likely caused by minor differences in the values of the 

electrical components which were used for the experi- 

mental results and the assumed values which were used 

for the simulation plots. 

Finally, it may be concluded that there is generally 

excellent-agreement between the simulation and experi- 

mental results and that both the model and Q-matrix 

technique are valid for the transfer function -9 
33* 
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5.4 (ii) Transmitter Output Force 

This is described by transfer function W 13, The 

transducer used, (designated 'B' in Appendix B) com- 

prised a 20mm diameter, 1 MHz, PZT-5A disc, backed with 

an epoxy compound of, known acousticýimpedance. The 

electrical firing circuit used was similar to that of 

the prece-ding section. 

The transducer was positioned in a water tank, and 

aligned co-axially with a PVDF membrane hydrophone. 

Hayward (19) has-shown that the bandwidth of the 

hydrophone is large enough to have no effect on the 

force output from the transducer, other than a scaling 

factor. 

A complete description of the firing circuit and 

experimental configuration are given in Appendix B, 

Experimental Setup 2. 

CASE 5 

In this case, the electrical load configuration is 

identical to CASE 1. However, the firing voltage has 

now been increased from 50 V to 300 V. The electrical 
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load, simulation and experimental results are shown in 

Fig 5.5A, B and C respecticely. 

CASE 6 

This case is identical to CASE 5, with the addition 

of a parallel 100 0 resistor. The electrical config- 

urationt simulation and experimental plots are given in 

Figs 5.6A, B and C respectively. 

CASE 7 

This case uses an electrical load which consists of a 

2 nF blocking capacitor, in series with a 100 11 resistor 

and 2.4, uH conductor in parallel, as shown in Fig 5.7A 

The electrical driving voltage-is 300 V, but the ramp- 

on-time has been increased to 500 ns. As before, the 

simulation and experimental results are shown in Figs 

5.7B and C respectively. 

When comparing the simulation and experimental results 

in Figs 5.5,5.6 and 5.7, it may be seen that,. whil. e thLare 

is still generally good agreement between the results, 

this is not as good as that obtained with the trans- 

ducer voltage measurements. There are several reasons 

for this. 
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Firstly, the hydrophone, although aligned co-axially 

with the transducer, is subject to the diffracted field 

of the transducer. Great care was taken in positioning 

the hydrophone to minimise diffraction effects, however 

this cannot be neglected. Since the simulation plots 

do not account for diffraction, this effect is the most 

likely cause of discrepancies between the simulation 

anoseiperimental results. Secondly, all three experi- 

mental results show marked rounding when compared with 

the simulation results. This is partially due to 

diffraction, but also to attenuation in the water 

channel. This has not been included in the model. 

Thus it may be concluded that there is good general 

agreement between the simulation and experimental 

results for cases 5,6 and 7. When physical effects 

which are not included in the model are accounted for, 

it may be observed that the model predicts accurately 

the portion of response due to thickness-mode piezo- 

electric action. Hence transfer function W 13 is valid. 
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5.4(iii) Receiver Voltage 

This section deAls with transfer function -W 
31. For 

this set of experiments, the transducer usedq* (designated 

'C' in Appendix B) was a 20 mm diameter, 1 MHz, PZT-5A 

disc, mounted in a Perspex holder. This probe was air- 

backed. 

The experimental equipment and configuration are 

described in Appendix B, Experimental Setup 3. 

To model the receiving transducer experimentally, 

it was necessary to excite the transducer with a known 

force input. Since it was not possible to generate 

specific forces in the water tank, the force outputs 

of cases 6 and 7 were used instead. 

CASE 8 

In this case, the receiver had an electrical load of 

100 0 connected across the transducer. The force i/p, 

incident upon the receiver, was the force generated by 

Case 6. Figs 5.8A, B and C show the electrical load, 

the simulation and experimental measurements respectively. 

217 



CASE 9 

This case is identical to Case 8 except that an 

inductor of 4.7AM has now been added in parallel with 

the 100 Q resistor. As before, Figs 5.9A, B and Gshow 

the electrical load, the simulation voltage and the 
. 

experimental voltage respectively. 

CASE 10 

This case is identical to the preceding case. How- 

ever the 4.7, ýiH inductor is replaced by a 2.4 xH inductar- 

Figs 5.10A, B and C show the electrical load, the simu- 

ation result and., the experimental measurements respect- 

ively. 

CASE 11 

In this case, the force generating transducer is that 

of Case 7. The receiving transducer had a 100f2parallel 

electrical load. Figs 5.11A, B and C show the electrical 

configuration, simulation result and, experimental result 

respectively. 

v 

CASE 12 

This case is identical to -the prece di*ng case except 

that an inductor of 2.4, UH has now been added, in 

parallel with the 100 Q resistor. Figs 5.12A, B and C 
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give the electrical load, the simulation voltage and the 

experimental result respectively. 

Comparing the simulation and experimental results of 

Figs 5.8,5.9,5.10,5.11 and 5.12, it may be observed 

that there is generally very good agreement between the 

results. However, there are several small discrepancies 

which may be explained as follows. , 

Firstly, the receiving transducers have a much larger 

active area than the PVDF hydrophone. Consequently, 

these devices are exposed to a substantial part of the 

diffracted field of the transmitter. However, the 

diffracted field varies across the face of the receiving 

transducer, and the transducer has the effect of averag- 

ing out the diffracted field. This has two main effects 

on the receiver voltage. 

(i) The experimental voltage will be smoother than the 

simulation result; so any sharp spikes in the 

simulation plots will become rounded in the experi- 

mental result. 

(ii) Phase differences in the diffracted field will 

essentially cancel out in the averaging process, 

so, the envelope of the experimental result will 
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decay faster than that of the simulated result. 

Secondly, attenuation of the force wave will occur 

in the water channel, (as was. noted with Cases 555,6 and 

7), so that the experimental voltage will be smoother 

than the simulation. 

Finally, it was assumed for the simulation results 

that the receiving transducer, transducer C, was air- 

backed. However, as is explained in Appendix B, this 

transducer is mounted in a Perspex holder which clamps 

the transducer laterally. This will have, the effect of 

apparently increasing the acoustic impedance of the 

backing material. As the acoustic impedance of the 

backing increases, so the envelope of the received 

voltage decays faster. 

Thus when these effects are considered, it may be 

concluded that there is excellent agreement between 

the simulation and experimental results of Figs 5.8 to 

5.12 Hence transfer, fuhction"W 31 is proved to be 

valid. 

Conclusion 

This section has presented twelve results covering 

three different transducer configurations. In general, 
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it may be concluded that, when the physical effects not 

included by the simulation model are considered, there 

is excellent agreement between the simulation and 

experimental results. Thus transfer functions W 339 

w 13 and W 31 may be assumed' to be generally valid for 

the no-lpyer case. 

The cases covered here have considered only simple 

mechanical loads with reasonably complex electrical 

loads. The'next section will deal with some layered 

cases. 
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5.5 SIMULATION AND EXPERIMENTAL RESULTS FOR A 

TRANSDUCER WITH FRONT AND REAR FACE LAYERS. 

This section presents the corresponding simulation 

and experimental results for a piezoelectric trans- 

ducer with front and rear face, mechanical layers. The 

preceding section dealt with_, the effects of various 

electrical loads on the response of a thickness mode 

transducer. To highlight the effects of the mechanical 
4 layers, only simple electrical loads will be used in 

this section. 

As before, three cases are dealt with; the force 

output and voltage across a transmitter, and the voltage- 

across a receiver. The experimental setups are similar 

to those of the preceding section and the results are 

presented in the same manner. A brief description of 

the experiment, and of the transducer used, is followed 

by a detailed analysis and comparison of the simulation 

and experilnental results. Ftill details of the 

equipment used, the experimental setup and the trans- 

ducer construction are given in APPENDIX B. 
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5.5(i) 
. 

Force Output from a Transmitter 

This case corresponds to transfer function W 13* 

Transducers D and E were used for these experiments. 

Each transducer was manufactured using a two-stage 

process, and experimental and simulation results were 

taken at each stage for both transducers. The trans- 

ducers are broadly similar, and are made up as follows; 

Transducer D consists of a lead plug glued to the 

rear of a1 MHz, 20 mm PZT-5A ceramic, with an aluminium 

layer cemented to the front face. The rear bondline 

glue was Silver-loaded Araldite, while the front bond- 

line was commercial Araldite. 

Transducer E consists of a lead plug glued to the 

rear of a1 MHz, 30 mm PTZ-5A ceramic, with a steel 

layer glued to the front face. 

In both cases, the lead plug is assumed to be 

sufficiently thick to act as a semi-infinite medium. 

The major difference between the transducers is the 

thickness of the front layers. The aluminium layer was 

chosen to be 2.5 mm thick; this gives it a transit 

period of approximately 0.4. ', us which is close to the 
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transit period of the ceramic (0,434 )us). , 
The steel 

layer was chosen to be 0.035 mm thick. This results 

in a transit period of approximately 0.06 )is which 

is about an order of magnitude smaller than that of 

the ceramic. 

Full details of the construction and the materials 

used in manufacturing the transducers are given in 

APPENDIX B. 

Experimental and simulation results were carried 

out for each transducer, before and after the addition 

of the front face layers. This allowed some quantitative 

measurements of the rear bondline thickness to be made. 

The oscilloscope settings for all the experimental 

results in this section, were: - 0.5,41s/large-div--(x-axis) 

5 mv/large div (y-axis) 

CASE 13 

This measurement was made for transducer D, before 

the addition of the front layer. The electrical firing 

circuit (shown in Fig 5,13A) comprised a series 2 nF 
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blocking capacitor. The electrical source voltage was 

a 300 V, 60 ns ramp. As with the previous results, 

the PVDF hydrophone was aligned co-axially with the 

transducer. This is detailed in-experimental setup 2. 

Fig 5.13B shows the simulation result for this 

case, when the rear bondline thickness, was. taken as 

10 )UM. Fig 5.13C shows the corresponding experimental 

result. Figs 5.13D and E show simulation results for 

bondline thicknesses of 5 /um and 20.,, uml respectively. 

CASE 14 

This is identical to Case 13, with the addition of 

a 100 0 parallel resistor in the firing circuit. 

Fig 5.14A shows theelectrical configuration; Fig 5.14C 

shows the experimental result, and Figs 5.14B, D and 

E give the simulated response for rear bondlines of 

10., Vjý, 5,; ýIm and 20ýum respectively. 

Comparing the results of Cases 13 

observed that there is generally goo 

tween the simulated and experimental 

comparing the relative amplitudes of 

the main pulse for each case, it may 

the best agreement is achieved for a 

and 14, it may be 

d agreement be- 

results. By 

the spikes and 

be concluded that 

rear bondline 
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thickness of 10.,,, Um. However, it is. apparent from the 

5 jm simulation plots (D in each case) that the true ., 
d 

bondline thickness lies somewhere between 5 and 10,. Um*. 

There is some corruption of the main pulse shape in 

both cases. This is most likely due to cabling 

effects. The sharpness of the spikes in both cases 

is much less in the experimental result than in the 

simulated results. Thislis caused by attenuation in 

the-wat6r column between the transducer and the hydro- 

phone which is not modelled. Also, there is an edge- 

wave visible at the extreme right-hand edge of each 

experimental result. 

Finally, it may be concluded that the rear bond- 

line thickness for transducer D lies between 5 and 

1OA-m' and it will be assumed, for later plots to be 

10 'U! h* I 

CASE 15 

This case is identical to Case 14 but transducer D 

now has a front faci aluminium layer. The co-axial 

cable attached to the transducer was shortened in an 

attempt to avoid the effects noted for Cases 13 and 14. 

Fig 5.15A shows the electrical circuit; Fig 5.14C 

shows the experimental results and Figs 5.14B, D and 
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E show simulation plots for an aluminium layer of 

thickness 2.5 mm, 2.48 mm and 2.52 mm respectively. 

(These correspond to the measured thickness and the 

minimum and maximum likely thicknesses respectively. ) 

(It was assumed that the front bondline was also 

10, AlM thick. To check this, several simulations were 

plotted for a variety of front bondline thicknesses 

and compared with Fig 5.15C. The best results were 

for 10,, jim,, so the assumption was valid. These plots 

have not been included here. ) 

Comparison of Figs 5.15B, D and E with the experi- 

mental result of Fig 5.15C shows that the simulation 

results are generally in very good agreement with the 

experimental ones. There is very little difference 

between the simulated plots which is to be expected, 

since the tolerance in the measured thickness is small. 

Thus it may be concluded that the multilayered model 

accurately models the force output from a transmitter 

and hence, transfer function W 13 is valid for multi- 

layered cases. 

It is interesting to note that there is no disrup- 

tion of the main pulse in this case, which seems to 

confirm that these effects were caused by the co-axial 
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cable in Cases 13 and 14. 

Finally, the aluminium layer is sufficiently 

thick to cause some attenuation of the force waves as 

they pass through it. This adds an extra source of 

error which may also account for some of the small 

discrepancies between the experimental and simulation 

results. 

CASE 16 

This case deals with transducer E, before the 

addition of the steel layer. The electrical firing 

circuit comprised a2 nF blocking capacitor and is 

sketched in Fig 5.16A . Electrical excitation was a 

300 V, 60 ns ramp. The experimental'setup was 

identical to Cases 13,14 and 15. 

Fig 5.16B shows the simulati-on'plot for 10, um 

rear bondline and Fig 5.16C shows the corresponding 

experimental result. Several other simulations were 

carried out for 5 and 20Ajm bon'dlines but the best 

agreement was for 10, ýum. These results are not 

included here. 
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CASE 17 

This case is identical to Case 16, with the add- 

ition of a parallel 100 SI resistor in the electrical 

firing circuit (as shown in Fig 5.17A ). - 

Figs 5.17B and C show the simulation, res-ult-for a 

10,. Um rear bondline, and the corresponding experimental 

result. 

Comparing the simulation and experimental results 

for Cases 16 and 17, it is apparent that there is 

good agreement between them in both cases, However, 

both the experimental results show-some distortionýat 

the right-hand side. This is due to edge waves which 

are not included in the model. There, are also some 

minor differences between the, simulation and experi, 

mental plots, most noticeably slight distortion of 

the main pulse. These are most, probably due to cabling 

effects, and may be ignored. 

Thus cases 16 and 17 indicate that, the rear bond- 

line thickness of transducer E is of the order of 

1 OAIP. ' o 
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CASE 18 

This case deals with transducer E, after the addition 

of the front steel layer. The experimental setup is 

identical to Case 16. Figs 5.18A and C show the 

electrical configuration and experimental results 

respectively. Figs 5.18B, D and E show the simulation 

results for front layer thicknesses of 0.345,0.0370 and 

0.40 mm. (The measured layer thickness was 0.355 mm. ) 

The front bondline was assumed to be 10,, um. 

CASE 19 

This case deals with transducer E, after the addition 

of the front steel layer. The experimental setup is 

identical to Case 17. Figs 5.19A and C show the 

electrical configuration and experimental result 

respectively. Figs 5.19B, D and E show the simulation 

results for the front layer thicknesses given in Case 

18. Again, the front bondline was assumed to be 10,, um. 

When comparing the experimental and simulation 

results for Cases 18 and 19, it may be observed that the 

best agreement is with simulation plot E in each case. 

This is unexpected, since this case corresponds to a 

layer with thickness 0.40 mm, approximately 50/um thicker 
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than the measured thi. ckness of the layer, 'and well 

outside the error tolerance of the measurement. 

This may be explained as follows; 

In the simulation, the defining criteria for each 

layer are its acoustic impedance and its transit time 

(the time taken for mechanical waves to cross the 

layer). The acoustic impedance determines the 'relative 

reflectivity of the layer boundaries and minor vari- 

ations in this af f ect only the relative amplitudes of 

the sp*ikes in the simulation responses. Thus, the 

simulation is comparatively insensitive to minor 

variations in acoustic impedance. 

However, variations in the transit: t'ime"-affect the 

location of the spikes and hence, the shape of the 

simulation response. 

Each of the layers in plots B, D and E of Cases 18 

and 19 was specified by layer thickness in mm. It is 

more accurate to specify these layers in terms of 

their transit times, which are 0.0565As, 0.0608 and 

0.0652,, us for plots B, D and E respectively. Now, the 

transit time of each layer is given by the quotient of 

its thickness and velocity. The velocity assumed for 
I 

231 



the steel layer is given in Table B3 and was 6.1 mm 

As. From the results of Cases 18 and 19, and 

assuming the measured layer thickness of 0.355 mm 

to be correct, then if the layer transit time is 

taken to be 0.0652Aa, the velocity of mechanical 

waves in the layer must be 5.4 mmlus. This value is 

substantially lower than the initially assumed value. 

The assumed value of 6.1 mm/, u, s was for the longitud- 

inal. velocity-in a steel bar. Similarly, the velo- 

city for the aluminium layer (6.3 mm/Als) was for 

an aluminium bar. In fact, the aluminium layer was 

made from a 20 mm rod of aluminium and the results 

of Case 15 agree well with this assumed velocity. 

However, the steel layer was made from a thin steel 

plate and it is possible that the manufacture of the 

steel plate could have affected the longitudinal 

velocity in this manner. 

Another possible reason for this discrepancy may 

be attenuation in either the steel layer or the 

water tank. This would smooth out the experimental 

result in which case, either simulation plots B or 

D of Cases 18 and 19 could be correct. These give 

calculated longitudinal velocities of 6.3 mm/Ais and 

5.8 mm/,, uL respectively. The value 6.3 mmlous is 
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slightly high for steel, whereas that of 5.8 mm//us: 

falls within the range of values given by the source 

of Table Bl (Ref 15). Thus, it may be concluded 

that the best agreement in Cases 18 and 19 is between 

plot D in both cases, if attenuation is considered, 

and between plot E in both cases, if attenuation is 

ignored. (In both cases, several simulations were 

carried out for a variety of front bondline thick- 

nesses. As with the previous cases, best agreement 

was around 10,,, um, and the other plots are not pre- 

sented here. ) 

Finally, the presence of edge waves may be observed 

in several of thýe results of Cases 13 to 19. HAYWARD 

has proposed a simple model to predict these effects, 

on the transducer axis. This is derived in 

APPENDIX C. 

CASE 20 

Identical to Case 19, but with the hydrophone Posit- 

ioned'200 mm from the transducer, on axis. Fig 5.20A 

shows'the simulation plot and Fig 5.20B the corres- 

ponding experimental result. There is reasonable 

agreement between the results, although at this 

distance, attenuation in the water column has a 
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significant effect. The simulation was carried out 

for a steel layer thickness of 0.37 mm 
. 
(Fig 5.19D). 

However, at this distance, small variations in the 

layer thickness have little effect on the simulation. 

This experiment was repeated for distances of 100 mm 

and 150 mm but agreement in these cases was -poor.. -This is 

probably because these points lie within the near- 

field of the transducer (calculated as 150 mm). The 

physical size, of the water tank restricted the maxi- 

mum distance to 200 mm so more distant far-field 

measurements could not be made. 

Thus, the experimental and simulation results of 

Cases 13 to 20 have generally shown good agreement 

between'the predicted responses of the transducers 

and the experimentally measured responses. When the 

factors not included in the model, namely diffraction 

and attenuation are considered, the small discrepancies 

between the results may be explained. It is thus 

possible, using this method, to both model and estimate 

the effects and dimensions of front and rear mechanical 

layers on the transducer. It may therefore be 

concluded that the model and z-form methods are correct 

for transfer function W 33. 
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5.5 Receiver Voltage 

This case corresponds to transfer function 19 
31' 

Transducers B and E were used for these results. 

In the case of transducer E, no results were taken 

during the intermediate construction stages, 

and the transducer was assumed to have the dimensions 

given in Case 19. 

Experimental setup 3 (detailed in Appendix B), 

0 
was used for the experimental measurements* Oscill- 

oscope settings for the experimental results were 

0.5. /us/large division (x-axis) and 0.5 V/ large 

division (y-axis), unless otherwise stated. 

CASE 21 

In this case, transducer B was the transmitter, 

and transducer E the receiver with a 100 Q electri- 

I 
cal load. (This is sketched in Fig 5.21A). Both 

transducers were aligned co-axially, as detailed in 

Appendix B. 

The force output from transducer B is that of 

Case 5, shown in Figs 5.5A, B and C. Fig 5.21C shows 

the experimentally measured receiver voltage. Figs 

5.21B, D and E show the corresponding simulation 

plots for steel layer transit periods of 0.0565,, us, 

0.060-8 /us. "and 0.0652 Al: s respectively. Clearly, 
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there is generally very good agreement between the 

experimental and simulation plots, although there 

is a slight difference in the envelope shapes. 

CASE 22 

This case is identical to that of Case 21, but now 

the force output from transducer B is that of Case 6, 

detailed inFigs 5.6A, B and C. (The y-axis oscillo- 

scope setting is 0.2 V/large division, here. ) 

Again there is very good agreement between the 

simulation and experimental results. 

Comparing the simulation and experimental results 

of Case 21 and 22, it may be observed that there is 

generally very good agreement between the simulated 

and experimental results, in both cases. 

This contradicts the results of Cases 18 and 19, 

where the best agreement was fox simulation! plbts 

D or E, depending upon whether attenuation was 

included or not. It is most likely that there is 

some attenuation in both the steel layer and the 
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water column. Then'the transmitter force experi- 

ments of Cases 13 to 20 will highlight this effect,, 

since the hydrophone measures a specific portion of 

the plane-wave component generated by the transducer. 

The reception experiments of Cases 21-and-22 measure 

the entire-plane wave component of the transmitter, 

and the receiver voltage is a function of this., 

Thus, since the receiver has a substantial inte- 

grating effect, any small discontinuities will be 

averaged out, and the resultant voltage will not 

highlight attenuation effects. 

Thus, the best conclusion which may be drawn from 

these experiments is that the transit period of the 

steel layer lies between-0.0565, u-s and 0.0608/uý, 

and has, a velocity range of - 5.8 mm/,, u*s to 6; 3mm/,, us 

Several different bondline thicknesses were-simulated 

for Cases 21 and 22 but their effects were not appar- 

ent. The simulation results of Figs 5.21B and 5.22B 

assumed 10!, Alm. bondlines. ', These could have been zero 

or as much as 25,; ým, with little or no discernible 

difference. 

CASE 23 

This, is identical to Case 21, with the transmitter 
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and the receiver reversed. The transmitter (now 

transducer E), is shown in Case 18, Fig 5.18. 

Again, the receiver had a 100 Q electrical load, as 

sketched in Fig 5.23A. Fig 5.23C shows the experi- 

mental result, and Figs 5,. 23B, D and E, the simu- 

lation plots for a transmitter steel layer with 

transit times of 0.0565,, u': ý, 0.0608,, us and 0.0652. Ais 

respectively. 

There is generallygood agreement between the 

simulation and experimental results, however, there 

is some smoothing of the experimental response. 

CASE 24 

This is identical to Case 22, with the transmission 

and reception transducers reversed. The transmitter 

output force corresponds to, Case, 19, and, as with 

Case 22, the receiver 
1ý 

has a 100 SI electrical load. 

This is sketched in Fig 5.24A. The experimental 

result is shown in Fig 5.2ýC . Figs 5.24B, D and E 

show the received voltage. corresponding to a trans- 

mitter front steel layer of transit times 0.0565, u5, 
I 

0.0608,, u'. § and 0.0652, u'ý respectively. 

There is, generally good agreement between the 
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simulated and experimental responses, although, as 

with Case 23, there is some smoothing of the exper- 

imental result. 

Comparing the simulation and experimental results 

of Cases 23 and 24, it is apparent that the best 

agreement is with plot B. This rein- 

forces the result of Cases 21 and 22. However, in 

Cases 23 and 24, b6th the experimental results' 

exhibit substantial smoothing. There is also a scale 

factor difference in the relative amplitudes of the 

simulation and experimental results. This may be 

explained as follows; 

In Cases 21 and 22, the receiving transducer E has 

a diameter of 30 mm, while the transcatter B has a 

diameter of 20 mm, thus the receiver is subject to 

the entire plane wave component of the transmitter. 

When the transmitter and receiver are reversed, the 

receiver is subjected to'only 4/9 ths of the trans- 

mitter plane wave component, hence, the receiver 

voltage will be approximately half the value pre- 

dicted by the simulation. 

This effect may have contributed to the smoothing 

of the received voltages in Cases 23 and 24 since, 
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although there-is some smoothing in Cases 21 and 

22, it -is a lot less then that - of Cases 23 and 24. 

From this, it may be concluded that the method of 

Cases 21 and 22, (that is, using the layered probe 

as a receiver), gives better results than that of 

Cases 23 and 24. Thus, if the parameters of a lay- 

ered probe are to be determined using two transducers 

of similar dimensions, it is best to use the layered 

probe as a receiver, 

Finally, it may be concluded that the results of 

this section verify the accuracy of transfer 

function W 311, for a transducer with mechanical layers. 

5.5(iii) Transmitter Voltage 

This case corresponds to transfer function -W 
33' 

Only transducer E was used for these results, since 

it is the aim of this section to demonstrate the 

accuracy and applicability of the model, and not to 

analyse all the transducers in depth. Experimental 

setup 1 (detailed in Appendix B), was used for the 
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experimental results. The oscilloscope settings 

for the experimental results were 0.5/us/large 

division (x-axis) and 20 V/large division (y-axis). 

CASE 25 

In this case, transducer E was setup as shown in 

Fig 5.25A. The electrical load was a2 nF blocking 

capacitor, and the electrical, excitation a 300 V, 

60 ns ramp. Fig 5.25B shows the experimental result 

and Fig 5.25C shows the simulation result. The 

transducer parameters were assumed to be: - 

Front Bondline, 1OAjiý 
Rear Bondline, 10, um 
Front Layer, 0.0608,, uý;. 

Clearly, there is poor agreement between the experi- 

mental and simulated results. 

Fig 5.25D shows another simulation result, this 

time for a rear bondline thickness of 50 Am. There 

is much better agreement between the experimental 

result and Fig 5.25D. 

CASE 26 

This is identical to Case 25, with the inclusion 

of a 100 0 parallel resistor in the firing circuit, 
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as shown in Fig 5.26A., Fig 5.26B shows the experi- 

mental result and Figs 5.26C and D, the corresponding 

simulation results for a rear bondline thickness of 

10/um and 50.,, um respectively. There is poor agree- 

ment between Figs 5.26B and C, but reas6nably good 

agreement between Figs 5.26B'and D. 

Comparing the experimental and simulation results 

for Cases 25 and 26, it is apparent that the best 

agreement is with plot, D in'both cases. This plot 

corresponds to a rear bondline of 50, um'- a result 

which disagrees with the results of the two preceding 

sections. To check'this., several simulations were 

carried out for each of Cases 25 and 26, with a 

variety of front and rear bondline thicknesses, as 

well as several steel-layer thicknesses. These are 

not included here, but it was apparent from them, 

that the major factor in producing the experimental 

results, of Cases 25 and 26 was the rear bondline 

thickness, and that the best agreement was reached 

when this was assumed to be 50,, um. 

This result may be explained as follows:. 

the modelling programs, assume the layers to have 

infinite lateral dimensions, and to be smooth and 
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parallel. For transducer, E, (dia. 30 mm), it is 

valid to assume the lateral dimensions to be 

infinite, since the diameter/thickness ratio of 

the crystal is 16: 1 For the bondline, if it 

has an assumed thickness of 1OAjm, the diameter/ 

thickness ratio is 3000: 1 which fallsto 600: 1 for 

a 50,,, um thickness. This is sufficiently-large 

to assume the lateral dimensions are infinite. 

, 
However, the other requirements for the layers 

are more difficult to measure, Although both the 

backing and crystal were cleaned and polished before 

joining, it is possible that there were_air bubbles 

near the surface of the lead backing. It is also 

possibl. e that the bondline thickness wasl, non- 

uniform, especially near the edges where the backing 

plug was roughest. 

Comparing the method used in Cases 25 and 26 with 

those used to measure the transmitted force and the 

received voltage, there are fundamental differences 

in these techniques which could mask the effects of 

a non-uniform bondline. For the measurement of the 

transmitted force, the hydrophone was aligned co- 

axially with the transducer. Thus the plane wave 
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component incident upon the hydrophone was generated 

at or near the centre of the transducer and, if the 

bondlines are of 1OAim thickness in this vicinity, 

this will be reflected in the hydrophone measurement. 

For the received voltage measurement, the transducer 

is subject to the entire plane wave component, and the 

edge components: of'the-tranamitter. From the experi- 

mental results, it is apparent that the. edge waves. 

have little or no effect on the receiving transducer, 

so it seems likely that minor fluctuations in the shape 

of the plane wave component due to localised backing 

irregularities, will also have little effect. 

However, for the voltage measurement across the 

transmitter, it may be observed, from Figs 5.25C and 

5.26C, that a uniform bondline produces a smooth plot. 

Any irregularity in the bondline will disrupt the plot. 

Thus, this method is useful for analysing the overall 

quality and integrity of the bondlines. 

Finally, bearing in mind the above factors, it may 

be concluded that Cases-25 and 26 prove the validity 

and accuracy of the model for the transfer function W 33* 
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5.5(iv) Conclusion 

This section has presented 14 experimental cases 

covering three different transducer configurations. - 

It was the aim of this section to show that the 
13 

transfer functions of Chapter 3, and the z-forM 

techniques of Chapter 4, could be applied to the 

modelling of piezoelectric transducers with mechanical 

matching layers. When the factors not included in the 

model are acoounted for, it is reasonable to conclude 

that the transfer functions W 13' w 31 and W 33 aKe 

valid for the layered transducer case. 
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5.6 SUMMARY 

This chapter has shown how the general multilayered 

transducer model of Chapters 2 and 3 may be combined 

with the z-transform techniques of Chapter 4 to 

produce a general z-domain model of the thickness- 

mode piezoelectric transducer. The validity and 

accuracy of this model were then tested by comparing 

simulation results, produced by the model, with the 

corresponding experimental results. 

Section 5.4 presented a series of results for a 

transducer with no mechanical layers but with a variety 

6f electrical loads. Three different experimental 

configurations were tested: - 

(i) the voltage across a transmitter, corresponding 

to transfer function W 331 
(ii) the force output from a transmitter; V 

13' 

the voltage across a receiver; W 31* 

In the first experimental configuration, agreement 

between the simulated and experimental results was 

generally very good. The only major factor which 

influenced the results and was not included in the 

model, was lateral vibration of the transducer. 

246 



In the second experimental case, it became apparent 

that both diffraction and attenuation had a signifi- 

cant effect on the response of the transducer. However, 

these effects could be explained, and were generally 

not serious, 

Finally, in the third case, agreement between the 

experimental and simulation results was very good, and 

it became apparent that the receiving transducer 

averaged out the received signal, thereby significantly 

reducing the effects of the diffracted edge waves 

from the transmitter. 

Thus, it was concluded from these results that 

transfer functions W 13' W 31 and 7 
33 we're all valid, 

and that the z-form techniques of Chapter 4 could be 

used to accurately model the transient response of a 

thickness-mode piezoelectric transducer. 

Section 5.5 presented a corresponding set of 

experimental results for two layered transducers. 

This section concentrated on one particular trans- 

ducer, (transducer E), since it became apparent that 

at least one of the parameters of the transducer was 
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subject to some doubt. 

In experimental cases 5.5(i), it was shown that the 

force ouput from the transducer could be used to 

accurately estimate the thickness of the, layers over 

a localised area of the transducer surface, in this 

case, the area near the axis. 

Experimental cases 5.5(ii) broadened this method to 

show that,, by using the layered transducer as a 

receiver, it was possible to obtain a good estimate of 

the overall effective thickness. 

Finally, experimental cases(iii) showed that the 

transmitter voltage gives an indication of the severity 

of any irregularities in the layers, in this case, 

particularly the-rear bondline. Diffracted edge waves 

and the effects of attenuation were also observed, in 

several of these results, and their effect, on each 

individual result noted. Another possible source of 

error which may have affected the results is the 

propagation of shear waves, in the backing material 

or the layers. However, no effects which were directly 

attributable to this were observed, so the possibility 
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was ignored. 

Thus, it was concluded from the results of Section 

5.5, that transfer functions W 131 W 31 and W 33 were 

valid for the case of a transducer with multiple 

mechanical layers. 

It was not possible to test all the W ij transfer 

functions for practical reasons. However, from the 

symmetry of the equations, the validity of W 13 implies 

the validity of W 23 ' and the validity of W 31 implies 

the validity of W 32* 

Finally, this chapter has shown the models of 

Chapters 2 and 3 to be valid, and the z-transform 

methods of Chapter 4 to be accurate. It has also 

investigated the use of these models in determining 

the properties of multilayered transducers. 

The next chapter will investigate methods of 

improving and controlling the responses of these 

transducers. 
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CHAPTER 6 

METHODS FOR CONTROLLING AND 
OPTIMISING THE PERFORMANCE 

OF TRANSDUCERS 



6.1 INTRODUCTION 

This chapter investigates methods for improving, 

controlling and optimising the performance of thickness 

mode piezoelectric transducers. 

A great deal of work has been carried out in this 

field, by a number of authors, However, the techniques 

and solutions which have been presented to date. may be 

conveniently divided into two broad categories: passive 

techniques and active techniques. 

Passive techniques, as their name suggests, are 

concerned with the addition of passive electrical 

and mechanical elements to the transducer. There are 

two principal aims of such methods. 

Firstly, to improve the power transmission from the 

transducer to the load. This is often'a major problem 

in areas such as non-destructive testing and biomedicine, 

where the acoustic impedance of the transducer material 

can be up to 25 times greater than that of the load 

medium. 
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- Secondly, passive techniques are employed to improve 

the spectral characteristics of the transducer system. 

The transducer usually exhibits a narrowband spectrum, 

and consequently generates transient outputs which are 

subject to severe ringing. By adding electrical and 

mechanical elements to the transducer, it is possible 

to broaden the spectral response, thereby producing 

sharper transient outputs with a corresponding 

improvement in system resolution. 

The addition of mechanical layers to the transducer 

may improve both the power transmission, and the 

spectrum. To increase the efficiency of the power 

transmiýsion, mechanical layers of_decreasing acoustic 

impedance are inserted between the transducer and the 

load material. This effectively presents a smoother 

transition in acoustic impedance profile between the 

transducer and the load. 

The transducer spectrum may be improved by careful 

choice of layer thickness. This, is usually based on 

stub-matching techniques used, for transmission lines or 

microwaves. However, there are several different 

strategies which may be adopted. 
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Mechanical matching techniques have been investigated 

by many authors, for example, -_ SITTIG. (61), KOSSOFF (24), 

LEWIS (38), DeSILETS et. al. (14) and SELFRIDGE et. al. 

(55). 

Electrical tuning, using R-L-C networks may also 

enhance both the efficiency and spectral characteristics 

of the transducer. By matching the impedance of the 

transducer to that of the driving source, considerable 

improvements in power transmission efficiency may be 

obtained. The resonant nature of some R-L-C networks 

may also be used to effectively broadband the transducer 

spectrum. Examples of such techniques are discussed by 

Lewis (38) and Selfridge et. al. (55). 

A combination of mechanical and electrical tuning 

techniques may lead to substantial improvements in 

transducer efficiency and response. However, these 

methods are, by their very nature, restricted to a 

narrow bandwidth centred around the design frequency. 

The selected design frequency is invariably the 

mechanical resonance of the ansducer. This'restricts 

the duration of the generated transient response, such 

that it must be greater than the transit period of the 

transducer. Some applications, particularly in non- 

destructive testing, require 'narrow pulses of shorter 
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duration than the transit period. This has led to the 

development of active transducer control. 

There are two main aims of active transducer control. 

Either to generate pulses of shorter duration than the 

transit period, or to generate a precisely defined 

ouput transient. The techniques which have been 

developed in connection with active control, usually 

require detailed knowledge of either the impulse 

response of the transducer system, or the transfer 

function of the system. 

Two fundamentally different methods which illustrate 

the generation of short pulses have been developed by 

it V BORJESSEN etal. (. 3 ), and KAZYS and LUK09EVI6IUS (33). 

The method of (3 ) uses a weighted least squares filter 

procedure, in conjunction with a knowledge of the 

transducer impulse response to evaluate an optimal 

excitation voltage. When the voltage is applied to 

the transducer system, a very short spiked waveform 

is generated. 

The method used by KAZYS and LUKO§EVI6IUS employs 

active electrical correction circuits to cancel 

secondary piezoelectric action. The transfer function 
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of the resultant system may then be inverted (or 

deconvolved), in a relatively straightforward manner, 

to allow the generation of a single short spike. 

The second aim of active control, to generate a 

desired waveform, has been attempted in several ways. 

LIU (39) usesthe spectral impulse response, with the 

spectrum of the desired output, to obtain-the spectrum 

of the required input. This method has a disadvantage, 

in that the use of window functions may be required 

to render the input spectrum causal. These functions 

may alter, the required input to such a degree that 

ma. rked distortion occurs in the desired output. Thus 

this method is of limited use. 

COURSANT (13) adopts a similýr approach to that of I 

Kaz"ys and Lukos"evicius. However, the method differs 

in two importantýaspects. -Firstly, he generates. a 

triangular pulse of known shape and width, not a single 

spike. Secondly, he assumes that secondary action is 

sufficiently small to be ignored. This assumption of 

zero secondary action cannot be extended to the high- 

efficiency ceramic transducers. The method is thus 

limited in application to less efficient transducer 

systems. 
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Finally, Mel'kanovich (45) uses the Laplace transfer 

function of the transducer system, in conjunction with 

the Laplace transform of, the output, to calculate the 

Laplace transform of the required input. His method 

is-rather complicated and deal-s only with cases where 

theelectrical load is zero, (that is, the generating 

source is assumed to have zero impedance). Nevertheles. ý, 

it does include the effects of secondary action. 

When comparing passive and active control of 

transducers, it is apparent that, while passive control 

is much simpler to achieve in practice, the resultswhi'Ch 

may be obtained with this method are limited, in terms 

of bandwidth and duration. Conversely, active control 

offers the ability to generate specific outputs. 

However, generation of the required excitation voltage 

may involve sophisticated apparatus (13) due to the 

complexity of the waveform. It is also important to 

note that active control offers no improvements in 

power transmission efficiency. 

This chapter extends the inversion method developed 

by Mel'Kanovich and it will be shown that the 

complexity of his method may be substantially reduced 

by using the modelling techniques of the preceding 
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chapters. This allows the inclusion of non-zero 

electrical elements and their effects will be invest- 

igated. The effects of multiple layers will also be 

investigated, both in terms of power efficiency 

transmission, and on the nature of the inversion 

techniques. 
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6.2 MECHANICAL MATCHING LAYERS 

Mechanical matching layers are often-used in 

transducer'construction to increase the efficiency of 

acoustic energy transfer from the transducer to the load 

medium. Consider Fig 6.1, which shows the in6erface 

between two media, of acoustic impedances ZT and ZL 

respectively. If a wave of force, Ft, encounters this 

boundary, then a portion is transmitted, according to 

the expression, 

2Z L FLFt6.1 

If'Z L is substantially smaller then Zt, then, from 

equation 6.1, there will be little energy transfer 

across the boundary, and most of the energy in Ft will 

be reflected. This situation occurs frequently in 

ultrasonic transducer systems where the acoustic 

impedance of the transducer may be substantially higher 

than that of the load. This problem may be partially 

solved by placing intermediate layers, of varying 

acoustic impedance between the transducer and the load 
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medium, as shown in Fig 6.2. 

However, the acoustic impedances of the various 

matching layers are not defined. Several authors 

have proposed methods for calculating the optimum values 

of the matching layers. DeSilets et al. (14), and 

Selfridge et al. (55) use values derived from trans- 

mission line matching techniques. Lewis (38) however, 

proposes a method whereby each layer has an impedance 

which is a fixed percentage lower than the preceding 

one. These methods are different. 

Consider the single layer system of Fig 6.3. If the 

finite width of the layer and reflections at both the 

interfaces are ignored, then the relationships between 

the transmitted and incident forces are, from equation 

6.1. ) 

F, 2Z 1 

FtZ1 +Z T 6.2 

FL 2Z L 

FzL +Z 1 6.3 
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and hence, 

FLc 

Ft6.4 

where, 

2Z 1 2Z L C=-- 
Z1 +Z TZL +Z 1 6.5 

is defined as the transmission factor. 

Now, both Zt and ZL are assumed to be known, so Z1 

is the-only unknown in equation 6.5 . Thus different- 

iating 6.5, with respect to Z, gives, 

2 
dC 4ZL( ZTZL- ZI) 

dZ 1 
«Zi +Z T)(ZL +Z 1» 6.6 

Equating 6.6 to zero gives: - 

L 6.7 
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This is the optimum value of Z1 which maximises the 

transmission coefficient. 

Now, consider the multiple layer system of Fig 6.2 . 
The result of equation 6.7 is true for any single layer 

system, and if each layer is assumed to have the 

optimum impedance value, with respect-to the adjacent 

layers, then, 

ZiOPT = (Z T* Z 20PT) 
1/2 

Z 20PT = (Z lOPT* Z 30PT) 
1/2 

Z* (Z Z) 1/2 
nOPT «2 (n-1)OPT* L, 6.8 

and for the i th layer, 

Z iOPT = (Z (i-1)OPT* Z (i+1)OPT) 
1/2 

6.9 

The layers i-l and i+l are also optimal, and hence, 

equation 6.9 may be rewritten as, 
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1/2 1/2 1/2 ZiOPT ý «Z(i-2)OPT* Z iOPT) . (Z iOPT* Z (i+1)OPT) 

6.10 

which becomes, 

z "ý (Z(i-2)OPT' z (i+2)OPT) 
1/2 

iOPT" 6.11 

Also, 

Z(i+l)OPT ý (ZiOPT*Z(i+2)OPT) 1/2 
6.12 

and by substitution, sin*ce Z (i+2)OPT is also optimal, 

z'(Iz2z 1/3 
(i+l)OPT "z iOPT* (i+3)OPT) 6.13 

Repeating this process several times, it is readily 

shown that the following general expression applies, 
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z -ý (ZýX-, ). z 1/t 
(i+l)OPT ' 1OPT (i+X)OPT) 6.14 

Similarly, 

z (Z(j-l) zj (i-l)OPT iOPT * (i-j) 6.15 

In Fig 6.2, the known layers correspond, to layers 
I 

z0 (Z T and Zn+l(ZL)* Extendi. ng equations 6.14 and 6.15 

to the known layers gives, 

z" (Zýn-l). Z ) 1/(n+l-i) 
(i+l)OPT 'ý 1OPT (n+l) 6.16 

Z' (Z(i-1) Z) 1/i 
(i-1)OPT iOPT *06.17 

where k= 

Now, substituting equations 6.16 and 6.17 into 

equation 6.9 gives: - 

z ((Zýn-i). Z 1/(n+l-i). (Zýi-1). Zo)l/j ) 1/2 
APT '-- 1OPT n+l) 1OPT 6.18 
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This reduces to, 

(n+l-i) i 1/(n+l) ZiOPT = (ZO . Zn+l) 

which becomes, 

z= (Z (n+l-i). zi) 1/(n+l) 
iOPT TL 

6.19 

6.20 

This expression gives the optimal acoustic impedance 

of the i th layer of an n-layer matching set, in terms of 

the known acoustic impedances, ZT and Z L* 

The ratio of any two optimal impedances is given by, 

zz 
(n-i). Z(i+l) (i+l)OPT TL 

zz 
(n+l-i). Zi iOPT TL 

which becomes, 

Z(i+l)OPT zL 

z iOPT zT 

6.21 

6.22 
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This is the same solution as that obtained by Lewis. 

D. efining C TOT as the total energy transmission factor in 

the multilayered, system of Fig 6.2, Lewis has shown that 

when the acoustic impedances of the matching layers are 

chosen to be optimal, 

ZL2 n+l 

TOT 'ý Z' (l+F. Z j±I 1/(n+1) )n+l T 1 [Z 
T 

He also presents the result, 

lim 
zL2 

n4- z (1+ zL 1/(n+l)) 
zT 

L n+l 
lz -T 

L L 

6.23 

6.24 

The usefulness of this result depends on the impedance 

ratio, ZL /Z 
T* For example, consider the case of a 

transducer operating into a water load. If the transducer 

active element is a ceramic (of the type'discussed in 

Appendix B) then, typically it will have an acoustic 

impedance of 
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n c TOT c TOT(n) c TOT c TOI(n) 
zL % c TOT(co) ZL % c TOT(-) 

=O . 0455) z 0.375) z " 
T T 

0 0.0869 40% 0.545 89% 

1 0.1235 58% 0.5770 94% 

2 0.1456 68% 0.5884 96% 

3 0.1593 75% 0.5943 97% 

4 0.1685 79% 0.5978 97.6% 

5 0.1751 82% 0.6002 98% 

6 0.1800 84% 0.6019 98.3% 

7 0.1838 86% 0.6032 98.5% 

8 0.1868 87.5% 0.6042 98.7% 

9 0.1893 08.7% 0.6051 98.8% 

0.2133 0.6124 

TABLE 6.1 
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ZT= 33 * j& kg /M2_S 
6.25 

The acoustic impedance of water is, 

ZL=1.5* 106 kg /M2_S 6.26 

Thus, 

L 0.0455 6.27 
zT 

Substituting this value into equation 6.23, and 

evaluating the expression for n ranging from 0 to 9, 

gives the values of C TOT shown in Column 2 of Table 

6.1 . Column 3 shows the percentage ratio of C TOT to 

the maximum possible value of C TOT' for each value of n. 

Clearly, even the addition-of only one optimal 

matching layer significantly improves the efficiency of 

acoustic energy transmission to the load. However, the 

addition of more matching layers does not have such a 

significant effect, with the percentage increase 

gradually reducing per layer, for each 
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additional layer added. For example, four layers 

increase the transmission factor by a factor of two. 

Nine layers however, only increase the transmission 

factor by a factor of 2.25 . 

If the transducer material was made of PVDF (a plastic 

compound, from which the hydrophone of Appendix B was 

manufactured), then, typically, it would have an 

acoustic impedance of, 

ZT= 4* 106 kg/m2-5 

and thus, 

ZL 
= 0.375 

zT 

6.28 

6.29 

The corresponding values of C TOT and its ration to 

C are given in columns four and five of, Table 
TOT(MAX) 

6.1 - 

Comparing these results, it is apparent that PVDF 

is well matched to water without matching layers. 

Consequently, the addition of a single layer increases 
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the energy transmission factor by only 5%, and subsequent 

layers have a lesser effect. 

Thus, comparing the results for the PZT transducer and 

the PVDF transducer, it is apparent that'the addition of 

optimal layers in the PZT case may offer a significant 

improvement in energy transmission. However, in the PVDF 

case, the benefit of adding layers is doubtful, since any 

increase in energy transmissi'on will be small. So, 

Table 6.1 demonstrates the usefulness of equations 6.23 

and 6.24 in comparing the effects of optimal, matching 

layers, when the optimum impedances are specified by 

equation 6.22 - 

This section has presented the derivation of the 

optimal acoustic impedances of a set of matching layers. 

It was hoped that some practical results could have been 

presented at this stage, to demonstrate-the effects high- 

lighted in Table 6.1 . However, due to a lack of 

equipment and materials, it was not possible to manufac- 

ture layers with accurate acoustic impedances, and no 

experiments of any significance were carried out. 
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6.3 ELECTRONIC CONTROL OF A PIEZOELECTRIC 

TRANSMITTER. 

This section presents the derivation of a technique 

which allows the generation of precisely defined transient 

force pulses from a piezoelectric transmitter. The basis 

of this technique is the inversion of the forward trans- 

mitter transfer function (W 13 in the preceding chapters) 

to calculate the required excitation voltage,. MELKANOVICH* 

(45) performs a similar analysis, but the case dealt with 

is limited to a transducer System with zero driving 

impedance, and no matching layers. The technique he 

derives is also rather complicated mathematically. 

This section will show how the transducer model of the 

preceding chapters lends itself to inversion and how the 

complexity of Mel'Kanovich's technique may be substant- 

ially reduced. 

Consider firstly, the no-layer transducer transfer 

function ' P13' specified by equation 5.13, 

hC 
6.30 

t (Rl-l =D '1+R )e- sT t+R- 
1 e- 

2sTt) /pD P13 2 )SZE)*('-ý 
-1 
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where, 

(S(z D 
+sc Z ?i )). (l-R R_le -2sTt)_(X ZD ((2+R, +R_l) PD EtE1 k* E) 

-2(1+R, )(l+R_., )e- sTt+ (R, +R_1+2R, R_l)e -2sTt) 6.31 

The basis of the inversion technique may be described 

as follows. 

Given that P13 is the forward Laplace transfer function- 

of the transducer system, then, for an input, I, the 

output is defined as: - 

0 'ý I'P13 
-6.32 

where is the Laplace transform of the output. 

Now, for a specific output, equation 6.33 defines the , 

required input as, 

0 

P13 6.33 

which becomes, 
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I=0. 
- P13 

Substituting from equation 6.30 gives, 

6.34 

(S(-ZD+SC zN ))(1-R R_ e- 
2sTt)_(X ). -ZD( (2+R +R_, )- 

EtE11kE11 

-2(1+R I )(l+R_ 1 )e- sT t+(R, +R- 1 +2R 1 R_ 1 )e- 2sTt) / 

hE 
-sT -2sT 

2t(Rl-l)s-ZDE)(l-(l+R_ 1 )e t+R_ 
1e 

t)) 6.35 

Using the notation of the preceding chapter, and 

making the following definitions, 

hC 
t 

k -2 

i1= Sz E 

=D d2=xk*zE 

dSE+ sCjN) 3E 
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'5 
1= (1-R 1 R_ 1 e- 

2sTt) 

-9 
2= ((2+R 1 +R- 1 )-2(1+R, )(l+R_l)e- sTt+ (R 1 +R- 1 +2R 1 R*_ 1 )* 

2sTt) 

IT 
3= (1-(l+R_l)e- sTt +R_le -2sTt ) 6.36 

where, as before the terms represent differential 

polynomials, and the 
3 

terms delay -polynomials, 

then, equation 6.35 may be rewritten as, 

d 30 Dd2'D2 

yk dle D3d1oD36.37 

This may be rearranged to give, 

(d3)(Dl) 
d2)(D 

2) 

Yk 131 
"5 

. 3- 6.38 

In this form, the first differential/delay productterm 
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in 6.38 represents primary piezoelectric action and the 

second block represents secondary piezoelectric action. 

Coursant (13) proceeded in a similar manner to this, but 

at this stage, the terms arising due to secondary action 

were ignored. 

In the analysis of Mel'Kanovich (45), equation 6.38 

is essentially expressed as, 

(d 3 L2). 

ykd1136.39 

The term (1/-5 3) is then expanded into an infinite 

power series, such that, 

1 co n -sTt(n-1) 
1-(l+R )e- sT - 2sT E (1-R_, ). e 

-1 
t+R_le t n=l 

6.40 

Now, for the input to be of any practical importance, 

T must be stable, and for a real output, so must 

Using the method of Mel'kanovich for the present, 

equation 6.39 reduces to, 
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(L3). -g 
4 (d 2). 5 

5 ykT1 -if 
1 6.41 

L- I 

where 

D4 
D3 

D5 
D 

are infinite discrete polynomials. 

6.42 

The delay polynomials may be ignored for the present 

as may Y k' since these have no effect on the stability 

of the system. 

A simple condition which is necessary for the 

inversion of the system may be established as follows. 

Def ining, 

U=. D0 

d 
0 6.43 
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where -ýN and -ýD are numerator and denominator differ- 
00 

ential polynomials, and D0a delay polynomial. 

Again, ignoring the delay polynomial for the moment, 

the differential component of is now made up of two 

differential only Laplace Transfer functions, 

-jN d 3) dN 
-a)(- ( o)( 
-ýD -ýD 

00 6.44 

Now, for to be realised, each of these differential 

only transfer functions must be such that the order of 

their denominators is at least the same as the order 

of their numerators. That is, 

aD - -N - order 0 
dl)>,, order(do. d 3) 

order >V, order(if 
N. if 6.45 

010 2) 

In its simplest form, the differential component 

of the desired output is of the form, 

-ýN 

s 6.46 
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Now, to meet the condition stated above, the order 

of k must be least the maximum of the differences in 

order between d3 and dl, and, d2 and d1l assuming that 

one of d 21 d3 is of greater order than dl, This 

assumption is not always true, as may be observed 

from equatons 6.36, where three conditions may be 

imposed on the electrical load: - 

M order yN >order yD 
E E' 

For example, if ZE is an inductor, then the 

order of d3 is-greater than d 

order ZN= order YD 
E E' 

For example, if ZE is a pure resistance, then 

the order of i3s greater than dl, 

order -fN <order yD., 
EE 

Then the order of d3 is at least equal to 

the order of 

In the final case, it is well known from electrical 

circuit theory, that the difference in order between 

the numerator and the denominator of any real 

impedance function cannot be greater than one, thus, 

for example, if ZE is a blocking capacitor then, 
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-fN 
E 

zD= sc E 

and hence, 

sc 

d2=xk*S. c B 

d3s 2c 
B+s 

2c 

6.47 

6.48 

1 

Here, both d1 and d3 have the same order, and -d 
I is 

of greater order than d 2' so the assumption is not 

always valid. 

Another exception to this rule is the case dealt 

with by Mel'kanovich, where the electrical load has 

zero impedance. In this situation, 

zN E 

zD E 6.49 
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and hence, 

=S 

d2=xk 

d36.50 

These two examples show that, for at least two cases, 

k may take the value zero. That is, the differential 

component of the output may be a Dirac delta function. 

However, consider the d3 /d 
1 and d21 transfer functions 

for each case. These are, respectively, 

d2xkd3ct 
+ 

dB6.51 

and, 

d2 xk d3 
- . - ; - m 1 

s d1 1 6.52 
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In both examples, the transfer function 31 has 

a constant value. This implies that if the output 

differential component is a delta function, then the 

input voltage must also contain delta functions. 

Clearly, this is actually impossible to achieve in 

practice, since the bandwidth of a Dirac function is 

infinite, and al. 1 electronit apparatus has a finite 

bandwidth, even if it is very large. To avoid this 

problim, the order of k may be re-stated, such that 

the following constrairm applies. 

The order of k must be at least one more than the 

maximum of the differences in order between d 3' d1 

and d 2' d, , where the order of at least one of d 2' d3 

must be at least equal to the order of 

This condition defines the differential component 

of the desired output, such that the differential 

component of the required input is realisable, and 

may therefore be generated in practice. 

Next, consider the delay polynomials, Dl. D2 and 

D 3* The numerator polynomials D1 and D2 pose no 

279 



problems, and do not affect the stability of the 

system. However, the denominator term, D3 

sT 6.53 

may give rise to instability in certain cases, and - 

steps must be taken to exclude such a possibility 

occurring in the inverted system. 

Several solutions to this problem have been proposed. 

For example, Mel'kanovich (45) incorporates the delay 

term of equation 6.53 in the infinite expansion of 

equation 6.40. This series may be truncated after N' 

terms. However, truncation of the series does not 

present a solution itself - it merely limits the problem 

to those terms of the series greater than N- that is, 

those not included in the expansion. 

Coursant (13) eliminates this factor by considering 

an output function of the form, 

-N d0T 

6.54 
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so that the delay term in the output function cancels 

the unstable part of the delay term in the denominator. 

This technique is well-known in digital filtering. 

Kalys and Luko'gevic'ius (3 3) analyse the zeroes of 

the denominator delay polynomial. They then'move any 

unstable zeroes from the right half s-plane so that 

they are just inside the left half of the s-plane. 

The modified delay polynomial iý thus stable. 

In the present case, it is advantageous to first 

rewrite the polynomial D2 in the form, 

D2= (1-e- sTt)( (1+R 1 )(1-R_ 1 e- sTt)+( 1+R_ 1 )(1-e-s T t)) 

6.55 

From this, it is apparent that the term (1-e-s Tt) 

is a factor of D2 and consequently, cancels with the 

identical factor in D3 of the denominator. Thus, the 

component of ("P13) associated with secondary piezo- 

electric action does not pose a stability problem, 

since the remaining denominator factor 
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-sT ) 

is always stable. 

6.56 

This may be demonstrated using a similar method to 

Kaz"ys and Lukos'evic5ius. However, instead of evaluating 

the zeroes of 53 directly, consider the z-transform of 

DV 

Dz 1= 1-(l+R_, )Z-M + R- Z- 2M 
316.57 

where, 

Tt /T 
6.58 

and Ts is the sampling period, as detailed in Chapter 

4. The zeroes of this function are, 

Z-m .1 

Z-m R1 
-1 6.59 
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Thus, there are M zeroes on the unit circle in the 

Z-plane and M zeroes on a circle of radius: - 

VR_ 
6.60 

The range of values which R_ 1 may take is defined 

by :- 

Z 
t- 

Z- 1 
_i mZt +Z- 1 6.61 

Where Zt is the acoustic impedance of the transducer 

material, and Z_l the acoustic impedance of the backing 

material. If it is assumed that Zt is a known constant 

then Z_j may take the range of values: - 

o z_1: 6.62 

Consequently, R_ 1 may take the range of values 

given by 

-1 < R_j <1 6.63 
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where the value -1 occurs when R_l is co . and +1 

when R- is zero. 

Thus, since no practical material may possess an 

infinite acoustic impedance, the following condition 

must hold: - 

-1 6.64 

Furthermore, R_ 1 cannot be zero, since the trans- 

ducer electrodes, although very thin in most applicat- 

ions, present a non-zero acoustic impedance to the 

transducer. Consequently, 

R_j <16.65 

Hence, 

IR_l I<16.66 

This yields the condition, 

Im 
v/R_j 

I<16.67 
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Thus, the roots of the discrete polynomial 15Z, due 3 

to the factor, 

(1-R_ 1 Z-m ) 6.68 

lie inside the unit-circle in the z-plane, and are 

stable. Thus the portion of the inverse transfer 

function due to secondary action does not pose any 

stability problems. 

Returning to the unstable factor problem with the 

first portion of the inverse transfer function (that 

is, that corresponding to primary piezoelectric action), 

Coursant's (13) solution is clearly the simplest, since 

it does not require any modification of the transfer 

function. However, it is limited to certain output 

shapes, since each desired output must contain the 

factor: - 

( 1-e- sTt) 6.69 

Kaz-'ys and Lukoseviftus (a3) present a more flexible 

solution to the unstable factor problem. However, 
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they move the unstable zeroes in an arbitrary fashion. 

An alternative to this, is to consider the transducer 

as'slightly lossy (a valid physical assumption), such 

that the transducer delay term, 

e- sTt 6.70 

then becomes, 

( 1- Oe- sTt 6.71 

where c is a small number. 

-Z Thus, polynomial DE may be expressed as: - 

1-(l+R_, )(1-c)e-s T t+R_ (J_C)2 e- 
2sTt 6.72 

This'possesses the following roots: - 

z= fr(1-c) 

Z= 6.73 
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These now lie inside the unit circle in the z-domain 

and are consequently stable. This method is more 

flexible than Coursant's and is more physically valid 

than that of Kaz"ys and Lukogevi6ius. 

The methods which have been developed for the no- 

layer transfer function P13 may be extended to the 

general multilayered transfer function 13 , with the 

following modifications. 

Firstly, the inverse system for W 13 may be written 

in exactly the same manner as equation 6.38 . However, 

now the discrete polynomials Dl. D2 and D3 are 

functions of the front and rear layer structures, as 

well as of the transducer. In particular, it may be 

shown that the term: - 

sTt 6.74 

is a factor of polynomials D2 and D 3' such that, 

-sT - D2= (1-e )D6 6.75 
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D3 (1-e- sTt)-g 
7 6.76 

where polynomials D6 and D7 are residual delay poly- 

nomials. From this, it maY be observed that the 

unstable factor cancels, as before, in the portion 

of the inverse transfer function which is due to 

secondary action. The stability of the residual poly- 

nomial 7 may be analysed by 6valuatifig. the roots 'of 

-Z D This produces an interesting re'sult. -5Z is of 77 

the form: - 

-gZ .y Z-N. -gZ 
7 jo 8 6.77 

where Y is a scalar constant, and Z- Na delay. '5Z is 18 

a further delay polynomial. 

In fact, Yi is the product of the transmission 

factors of the front layers and Z- N, 
the total delay 

associated with a wave of force leaving the transducer 

and propagating through the front layers. 

The term Yi is unimportant as regards the inversion 

of the transfer function, and may be grouped with the 
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scale factor, Y k* The term Z- N, however, presents a 

serious problem. In this form, it renders any calcu- 

lated input function non-causal, implying that the 

input must exist before t-0. This problem occurs 

because of the finite time delay between the generated 

wave of force leaving the transducer and the same 

wave of force leaving the last layer and propagating 

into the load. This situation is obviously due to 

the physical construction of the device and cannot be 

overcome, Therefore, the delay term, Z- N 
must be 

-Z removed from the polynomial D 7* This has the effect 

that there is a delay of Z_ N between the application 

of the electrical excitation and the generated wave 

of force leaving the transducer. It has-no other 

effect on the stability of the system. 

-7z The stability of the residual polynomial, D 8' may 

be analysed by calculating 

manner as before. Several 

formulate a closed-form ex 

_xz D 8' but a general solution 

proved to be intractable as 

its zeroes in the same 

attempts were made to 

pression for the zeroes of 

for the multilayered case 

a result of mathematical 

complexity. However, the values of the zeroes were 

calculated for a wide range of multilayer structures 

and, in each case, the zeroes were found to lie 

inside the unit circle of the z-domain. 
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Thus it would appear that the polynomial '5Z does not 8 

have unstable zeroes, at least for most practical layer 

configurations. (This can, of course, be checked 

numerically for any particular example. ) Hence, the 

general inverse equation may be expressed in the follow- 

ing format: - 

D, 
_ 

d2 D2 3 
iy )( ) X 

ii -5 -i 

1 

- sTt '1 j 191 8 -e 6.76 

It should be noted that the multilayer case imposes no 

further restrictions on the stability of the differentiaL 

polynomials, over those which were developed for the no- 

layer case. Thus the restrictions which were placed on 

the differential components of the desired output for the 

no-layer case also apply to equation 6.78. 

It appears from the numerical analysis of several 

cases, that 'UZ is always stable, thus the limiting factor 8 

in the stability of the delay polynomials is the denomin- 

ator factor of equation 6.74 . This may be removed by 

either of the methods described for the no-layer trans- 

-Z ducer. (In fact, should a case arise where D8 has 

unstable zeroes, these could be removed by either of the 
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methods described. ) 

Thus, in conclusion, this section has presented an 

analysis of the inversion of the forward transfer 

function, W 13* This anlysis has highlighted the 

factors which restrict the invertibility, stability 

and causality of the system and placed suitable 

constraints upon them. It should thus be possible 

to generate a range of precisely defined output 

transients from a practical transducer system. 

The next section investigates some of the pract- 

ical and physical limitations which must also be 

considered. 

291 



6.4 PRACTICAL INVERSION CONSIDERATIONS 

This section investigates some of the practical 

limitations of generating the desired outputs which were 

discussed theoretically in the preceding . section. There 

are three areas of, major practical importance associated 

with the inversion of piezoelectric systems. 

M The calculation and generation of the required 

input -voltage. 

(ii) The hardware required to generate the 

ex6itation voltage. 

and (iii) The period and shape of the excitation voltage. 

These three areas are now discussed in detail. 

Calculation and Generation of the Excitation 
Voltage. 

The desired excitation voltages discussed in section 

6.3 have been specified in such a manner that they are 

causal and realiseable. However, it is apparent from 

the work of MEL'KANOVICH (45), and equation 6.78 that 

the delay terms in the two transfer function elements 

give the required voltage a very complex transient 

shape. In fact, such a voltage cannot be generated by 
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a simple passive electrical network. KAZYS and 

LUKOSEVICIUS reduce the complexity of the input 

voltage by using a second transducer which effect- 

ively eliminates the effects of the second transfer 

function in 6.78 This reduces the complexity of 

the input voltage but does not eliminate the first 

transfer function. In their application, the first 

block was filtered out by using a digital filter to 

pre-shape the excitation voltage. 

Such a solution is not practicable in this context 

for two reasons. 

Firstly, the effects of the second block transfer 

function are to be included and secondly the more 

complex differential/delay equations specified here 

would require a filter of such complexity that it 

would not function at the required speed in real time. 

The alternative solution is to calculate the 

required input voltage as a temporal transient 

response. This may then be digitized and stored in a 

suitable digital memory. When the digitized signal 

is clocked out of the memory at a suitable speed, it 

may be converted back to an analogue signal using a 

digital to analogue converter (DAC), and then 

amplified accordingly. This is shown 
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schematically in Fig 6.4 . 

This method requires the calculated voltage to be 

specified in a sampled form, a method particularly 

suited to the z-domain. 

If it is assumed that the desired output is written 

in the form of equation 6.43, where the numerator and 

denominator polynomials, -ýN and -ýD meet the require- 00 

ment of the preceding section. Then, if the output 

delay polynomial., D0 is of the form: - 

D0= (1-e- sTt )D 
oR 6.79 

the required input voltage is specified as: - 

-N DD -ýN DD 
(ýo. 

ý3 
X oR oR. 2 6.80 

yydD -ýFD 

-k-018018 

The differential/delay transfer functions in this case, 

correspond to those of equation 4.3 That is, they are 

separate functions,, and may be inverse-transformed in 

several different ways. 
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For example, each bf the differential only blocks, 

-jN d 
03o. 2 

-ITD -ýD -1 
00 

may be. -inverse-transformed using the conventional 

6.81 

partial fraction expansion method. 'TI-fe temporal ýrespo-nses 

so obtained could then be sampled and passed through a 

synthetic digital filter (that is not"a real time 

filter but one programmed on the computer), corresponding 

to their respective delay transfer functions. 

D 
oR. 

D1; D 
OR. 

D2 

D8D8 6.82 

After scaling, the required excitation voltage may be 

generated in sampled form. 

Alternatively, each of the differential/delay transfer 

functions in equation 6.80 ipay be transformed into the 

z-domain using either the normal z-transform, or Boxer 

and Thaler's method. The resultant transfer functionjý 

may then be combined to form a single synthetic filter. 

The impulse response of this filter is then the 

req, pired input voltage. 
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However, both of these methods require the input to 

be'expressed'as a Laplace transform in the form of 

equation 6.43. 

Another method is to specify the desired output as a 

sampled temporal response. If the inverse transfer 

function of W 13 is then implemented as a synthetic 

digital filter, then the response of the filter to the 

desired output will, be the required input. To eliminate 

instability problems, the desired output must include 

the delay factor of equation 6.74 This method has the 

advantage that complex outputs may be considered without 

having to obtain their Laplace transforms beforehand. 

Each of these methods was implemented and tested as 

a computer algorithm. T, he_object of the tests was to 

determine whether any particular me'thod was noticeably 

better or worse than the others. (The results are not 

presented here, although some are included in Appendix 

A, to highlight the problems of the Boxer and Thaler 

method. ) 

From these tests, the following points were noted. 

The first method, inversion by partial fraction 

expansion, provides a mathematically correct solution 
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with no approximation errors. However, except for the 

simplest cases, the algorithms which were developed 

to calculate the partial fractions became increasingly 

complex as the order of the differential transfer 

functions increased. This was most noticeable for 

cases involving multiple poles. The major drawbacks of 

this method are twofold. 

Firstly, the complexity of the algorithms takes an 

appreciable amount of the computer resources, and 

consequently, a fairly long time to evaluate, to the 

extent that this section became the slowest part of the 

program. 

Secondly, for cases with several-or multiple poles, 

the accuracy of the calculated partialfractions is 

reduced, since computer round-off errors increase with 

increasing complexity, of the transfer functions. 

As a result, this technique is unsuitable for computer 

implementation, and may only be,, used for simple transfer 

functions (those with not more, than three single- 

order poles. ) 
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The second method, inversion of the complete 

transfer function,, ' by Boxer and'Thaler. -s- z-f orm method, 

contains inherent errors due to coefficient rounding. 

For most applications however, these errors may be 

safely ignored and the method is both quick and 

efficient in terms of computer resources. However, it 

was observed that, when the difference in order between 

the numerator and the denominator exceeded 3, that is: - 

order 1) > order 'ý3 +3 
0o 

or 
aD -N - order oedl) > order (do. d 2) +36.83 

round-off errors in the algorithm increased exponent- 

ially, and quickly led to an unstable result. This was 

initially rectified by performing the arithmetic 

calculation using double-precision coefficients. This 

solved the instability problem for some cases but in 

others only had the effect of delaying the onset of 

instability. Since a finite number of input samples 
II 

are being calculated for any one case, this problem 

may be overcome by repeatedly increasing the accuracy 

of the arithmetic calculations, until a stable solution 

is obtained. However, this is very costly in terms of 
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resources, and takes a great deýal of user interaction 

to determine the best solution. Thus, this technique is 

only suited to cases where the difference in order 

between the numerator and denominator polynomials is 

three or less. 

The third technique, implementation of the inverse 

transfer function W 13 (using Boxer and Thaler's method), 

as a synthetic digital filter, possesses an inherent 

drawback. Considering only the differential transfer 

functions for those cases where, 

order d3> order d 

or 

order d2> order d 
6.84 

such cases represent differential transfer functions 

of the form: - 

order -ýN > order dD 
-ýFD 6.85 

This may be rewritten as: - 
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-NR dN iff + -ýFN R 
or 'der 

D 
>. order 'd 

-ýD 

ctio 

/differential 

reduced order 

1)0. tra tr 1\ ctio Pol polynomial transfer functio 6.86 

where d NO is a differential polynomial and -ýNR and dD 
I 

form a differential transfer function where the order of 

the denominator is greater than the order of the numer- 

ator. If Boxer and Thaler's z-form method is applied to 

a transfer function of the form of equation 6.85, then 

the resultant z-transform will, when implemented as a 

filter, be at best oscillatory and a-i. worst unstable. 

This problem is discussed by Boxer (5 ) but occurs 

because the method o'f Boxer and Thaler develops the 

z-forms as integrating operators. In this form, when 

applied to a differential polynomial of the form of 

equation 6.86, the resultant z-transforým is unstable. 

One solution to the problem is to use a differential 

operator to take the z-transform of the differential 

polynomial. Forexample, 'the first order backward 

difference operator discussed in Chapter 4. (Note the 

bilinear operator is not suitable as a differential 

operator since it is the first z-form derived by Boxer 

and Thaler. ) The reduced order transfer function may be 
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transformed using the Boxer and Thaler method, as 

before. This solution has the disadvantage that it 

produces two synthetic filter structures when applied 

to transfer functions of this type. It also mixes 

two z-transform techniques which is not strictly valid. 

However, the test results of this method were 

excellent. There were no appreciable discrepancies 

due to arithmetic round-off errors or to the mixed 

z-transform solution. 

The increased complexity of the algorithm caused 

by the need for two synthetic- digital filter structures, 

added little or no extra cost in terms of either 

resources or calculation spe6d. -, 

Thus, comparing the results of the three methods - 

considered, it may be concluded that the'third method 

was best suited to computer implementation. This 

method also has the advantage that it requires only 

the sampled output transient, not the Laplace trans- 

form of the output. Consequently, it is more flexible 

than the precediftg_ methods and was adopted as the 

practical inversion technique. I 
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Hardware Considerations 

Consider the schematic diagram of Fig 6.4 From 

this, it may be observed that there are three key elements 

in the practical inversion hardware; the digital memory, 

the DAC and the amplifier. The limiting factors of 

these components are bandwidth and gain. 

In the simulations of Chapter 5, it was noted that the 

sampling period, TS, was required to be an integer sub- 

multiple of the transit periods of the transducer and all 

the matching layers. This requirement also applies to 

electronie. control. Thus, the sampling period of the 

sampled excitation voltage must also be an integer sub- 

multiple of the transducerand layer transit periods. 

To obtain the maximum benefit from electrondr- control, 

it is also desirable that the sampling rate should be 

as large as possible, so that maximum definition of the 

excitation voltage is achieved. 

From Appendix B, the transit period of the 1 MHz 

transducers is 0.435 Ais. Thus, the sampling period for 

calculation of the excitation voltage must be consider- 

ably less than this value. 
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The fastest digital memory which was available for 

storing the excitation voltages, was an Emitter Coupled 

Logic (ECL), array. This was originally part of an 

array control system and is detailed in Appendix B. 

Initially, this memory operated at a clock rate of 33. MHz, 

corresponding to a sampling period of 30 ns. This was 

later updated to operate at 50 MHz, (20 ns sampling 

period. ) At this frequency, it is apparent that the 

thinnest layer which the system can cater for must have 

a transit period of 20 ns. In the layered transducersof 

Chapter 5, the bondline thicknesses were estimated to be 

of the order of 10 Am. From the data in Appendix B, it 

is apparent that the transit period of the bondlines is 

thus of the order of 5 ns. That is, a factor of four 

less than the minimum required. The only solution in 

such cases was to ignore the bondlines and the corres- 

ponding simulation and exprimental results are presented 

in the next section. 

The DAC which was used for the experimental trials had 

a maximum operating frequency of 100 MHz and did not 

restrict the operation of the system. 

Finally, the driving amplifier presented limitations 

of both bandwidth and gain. From the apparatus data 
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given in Appendix B, the chosen amplifier had a gain- 

bandwidth product of 6GUMHz. The output signal of the 

DAC had a peak to peak swing of ± 0.5 V, while the 

amplifier peak to peak swing was ± 10 V (maximum). 

Clearly, to achieve the maximum amplifier output swing 

requires a gain of 20 With this gain, however, the 

amplifier bandwidth reduces to 30 MHz - considerably 

lower than that of the ECL memory. This problem was 

partially overcome by reducing the amplifier gain, and 

using a second stage, although the second stageincreased 

the noise level of the system. 

Comparing the driving voltages used in the experi- 

ments of Chapter 5, (approximately 300 V peak), it may 

be observed that there is a thirty to one scale differ- 

ence between the driving voltages. Thus, the force 

outputs generated by the transducer are, very small, and 

in fact, could not be detected by the hydrophone alone. 

This problem was partially overcome by using a hydro- 

phone charge amplifier, but this of course againincreased 

the noise level of the system. 

There are two solutions to this problem, either use a 

driving amplifier with a larger output swing, or reduce 

the amplitude of the required excitation voltage (for 
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example, by the addition of mechanical matching 

layers. ) The first solution was not viable at the 

time the experimental measurements were made so the 

second solution was investigated in more detail. 

Consider the no-layer inverse transfer function of 

equation 6.35 . If the desired output is assumed to 

be of unity magnitude, and the differential terms are 

ignored for the presen t, then the limiting factor 

which determines the magnitude of the required excit- 

ation voltage is the constant term, 

2 
hCt(Rl-l) 6.87 

This has a minimum value when R1 is zero. That is, 

when the acoustic impedances of the load, and the' 

transducer are the same. In many applications, -for 

example, those. considered in section 6.2 , this is 

not the case. 

Consider the multi-layered inverse transfer 

function of equation 6.78 The limiting constant 

term in this case, is given by, 
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yky6.88 

which becomes, 

-2 1 
hC t 

(1-R d*yi6.89 

The term (1-R 1) is the transmission coefficient from 

the transducer to the first layer. The term Yj is the 

product of the remaining layer transmission coefficients. 

Thus the term, 

(-Rl)y 6.90 

is the overall transmission coefficient. of the layered 

system, C TOT of equation 6.23 . From'ejuation 6.24,, 'thls 

has a maximum value of, 

zn 
-* co 6.91 

The minimum magnitude of the excitation voltage is 

thus given by: - 
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/-ýj 2T III. 
in - hC 6.92 t 

In practice of course, this value cannot be 

achieved, but a measure of the decrease in the magni- 

tude of the excitation voltage with the addition of 

matching layers may be obtained from Table 6.1 . 

Taking the reciprocal of the percentage transmission 

gives the scale factoiý increase required in the magni- 

tude of the excitation voltage to generate a given 

output, as compared with the theoretical minimum of 

equation 6.92 . For example, with a PZT-5A trans- 

ducer and a water load, the percentage transmission 

factor is 40%. This corresponds to an excitation of 

2.5 times the theoretical minimum. Unfortunately, as 

was stated at the end of section 6.2 , it proved 

difficult to manufacture layers with a sufficiently 

accurate acoustic impedance to test these results 

experimentally. If, however, multiple matching layers 

were used with electrical control, then it is clear 

that the thickness of the layers must be such that the 

layer transit time is an integer multiple of the 

sampling period. This greatly increases the flexib- 

ility of the matching layer system, since any layers 

which were manufactured from a lossy material could 

be made only a few samples thick - thereby minimising 
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attenuation. 

Excitation Voltage Considerations 

The absolute magnitude of the excitation voltage, 

and its influence on the generating hardware were 

considered in the previous section. From this section, 

the desired output was defined in a manner which 

ensured that the required generating voltage is both 

causal and stable. However, there is no guarentee 

that the input voltage will always converge to zero. 

The digital memory has a finite size and if the stored 

waveform converges to a non-zero value, then, when the 

last sample is clocked out of the memory, there will 

be a discontinuity after the last sample, when the 

output from the DAC jumps back to zero, This will act 

like a step function and the transducer will be 

excited accordingly. If the last value in the digital 

memory is small, this will have little effect. but if - 

it is large, the force output generated by the trans- 

ducer may be of comparable magnitude to that generated 

electronically. Clearly, this is not desirable. Two 

solutions are proposed. 

Firstly, the digital memory was modified slightly, 

so that the last sample could be, clocked out continu- 

ously. Thus when the last sample was reached, further 
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increments of the clock continued to generate the 

last sample. This method was successful for single 

waveforms of the type shown in Fig 6.5 . However, 

for certain cases, particularly sinusoidal generation, 

the voltage trace does not converge - the envelope of 

the trace converges. This is sketched in Fig 6.6 . 

In these cases, holding the last sample is pointless, 

it now requires a complete cycle of the waveform to 

be repeated. The complexity of designing a system to 

detect and repeat a cycle of the stored waveform was 

prohibitive, so an alternative solution was developed, 

thatof forced convergence, 

The second method essentially forces a waveform to 

converge using an exponential multiplier of the form, 

at 6.93 

This was applied in the following manner. 

The digital memory has a finite number of samples, 

N, as an example. At the last sample, the value of 

the multiplier should be very small, for example K. 

Given the total number of samples, and assuming that 

the value of the multiplier is unity at the first 

sample, yields the following conditions: - 
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-at 1- first sample 

e -at -k last sample 6.94 

If Ts is the sampling period, then at the last sample, 

e- a(N-1)TS 
=K 

where the first sample is assumed to be t=O. 

quently, 

kn 
I 

ild 
T (N-1) 

i 

6.95 

Conse- 

6.96 

In fact, this was modified in practice so that the expon- 

ential operator could be delayed until the M th 
sample, 

that is, 

e -at =1 for all samples up to the Mth 6.97 

hence, 

Ln 6.98 Ts (N-M-1) 

The effect of this operator is shown in the sketch of 

Fig 6.7 . 
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This method was used in practice and a comparison 

between the simulated and experimental results, with and 

without forced exponential convergence is included inthe 

next section. 

This section has analysed the basic practical limit- 

ations of electronically controlling a piezoelectric 

transducer. Full details of the circuits and hardware 

used in- the experimental tests are contained in Appendix B-. 

The results of some of the-inversion methods which, were 

tested are given in Appendix A. Finally, the nextsection 

contains a comparison of simulated and experimental 

transducer control which highlights some of the limit- 

ations discussed in this section. 
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6.5 COMPARISON OF SIMULATED AND EXPERIMENTAL 
INVERSION RESULTS 

This section presents the corresponding simulation 

and experimental results for the electroiic cottrol of 

a piezoelectric transmitter. The techniques describedin 

the two preceding sections were used to generate the 

required excitation voltages for several desired outputs. 

The sampled voltages were then stored in an ECL digital 

memory and used to drive the selected transducer, as 

described in Appendix B. Two transducers were used for 

these results; the 1 MHz devices, B and E, described in 

Appendix B. 

Two electrical load configurations were used to form 

the differential polynomials of transfer function W 13* 

These were :- 

(i) A series 500 resistor. 

This resulted in the following differential polynomi- 

als: - 

d2xk 
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d3- s+50. C 
t *S2 

6.99 

From this, it'is apparent that the maximum difference 
- 

in the order of the numerator and denominator polynomials 

is 1. Consequently, the differential component of the 

desired output must be such that the order of the denom- 

inator is at least 2 greater than the order of the numer- 

ator to satisfy the conditions of section 6.3 . 

(ii) A series 2nF blocking capacitor (C B ), and a 

parallel 100SI resistor (R E), similar to that used for 

the firing circuits of Chapter 5. This resulted in the 

following differential polynomials. 

s2C BRE 

d2=x k( 1+sR ECB) 

d3=s+ S2RE(CB+Ct) 
6.100 

In this case, it is apparent that the maximum differ- 

ence between the numerator and denominator polynomials 

is the zero, that is, one pair of polynomials are of equal * 
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order (dj9d 3)1 and the other pair are such that the 

numerator is of lower order than the denominator (dl, d 2)' 

Thus, the differential component of the desired output 

must be such that the order of the denominator is at 

least one more than the order of the numerator. 

A similar case to this one was consider" in section 

6.3, that of a blocking capacitor, without the parallel 

resist4nce. However, when this was attempted in practice, 

some distortion of the generated voltage occurred. The 

precise reason for this is not known but may be due to 

the fact that the amplifier was not designedto drive 

large capacitative loads. The case described above 

presented a better result, and was used for the experi- 

mental results instead. Both the electrical load config- 

urations were used with transducer B, while only the 

first was used with transducer E. The behaviour of 

these load/transducer configurations As shown in 

Figs 6.8,6.9 and 6.10 . 

Fig 6.8 shows the impulse response of transducer B, 

with a series 50SI electrical load, 

Fig 6.9 shows the impulse response of transducer B, 
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with a parallel 100Q resistor and a 2nF blocking 

capacitor. 

Fig 6.10 shows the impulse response of transducer 

E with a series 50SI electrical load. 

Clearly there are significant difference between the 

three responses. However, these configurations have 

defined the conditions which determine the order of 

the differential polynomials of the desired outputs. 

For the case (i) electrical load, two differential 

outputs were considered, 

-jN 

jD s26.101 0 

This corresponds to a unit ramplunction. 

.N do a 6.102 

-ýD s2 +a 
2 

0 

That is, a unit sine-wave function. 
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For the case (ii) electrical load, one diff- 

erential-output was considered: - 

0=1 
S 

0 

This corresponds to a unit step function. 

6.103 

In section 6.3, it was stated that the desired 

output must contain the delay factor, 

( 1-e -sT ) 6.104 

Applying this to the unit step and unit ramp functions 

of equations 6.103 and 6.101 produces a unit square 

pulse of width Tt and the function sketched in Fig6.11-' 

Clearly, this function is a rather stranje output, so 

a unipolar triangular function was considered instead, 

as shown in Fig 6.12 .. This-function has the follow.;. 

irlg. delay term, 

(r -sb -2sb 1-2e +e 6.105 

This factorises to give: - 
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( 1-e-S b)2 6.106 

Thus, if b=Tt, the required condition is satisfied. 

Applying the condition of equation 6.105 to the 

sine-wave function is more difficult. If the half- 

period of the sine-wave is not equal to Tt. then 

application of the delay factor of equation 6.104 

produces an output function with a discontinuity. 

This is not desirable, since it may upset the stab- 

ility of the inverse filter. Consequently, for this 

case, only sine-waves of a specific frequency were 

chosen. This frequency was selected such that. an 

integer multiple of the half-period'of the sine-wave 

equalled Tt Thus the delay multiplier of equation 

6.104 produced an output with an integer number of 

half-cycles. 

To test these selected outputs, three simulations 

were carried out with transducer B. 

Using the blocking capacitor and parallel 

resistor, the required excitation voltage for the 

unit square pulse was calculated. 

(ii) With the series 500 load the excitation 
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voltage for the unipolar triangular pulse was 

calculated. 

(iii) The excitation voltage for a half-sine 

cycle (half period equal to Tt), was calculated. 

In each case, the calculated voltage proved to be 

divergent. This was unexpected, particularly since 

the rate of divergence appeared to be exponential. 

Case (ii) above is similar to that presented by 

Coursant (13); however, it differs in two respects. 

Firstly, the voltage derived by Coursant converges, 

and secondly, his calculation ignores secondary action. 

Case (i) is dealt with by Mel'Kanovich (45), for a 

transmitter with zero source impedance. Again, the 

derived voltage converges, this time to a non-zero 

constant value. 

Thus, considering these results, it would appear 

that either the electrical load, or the, inclusion of 

secondary action, or a combination of both, is 

responsible for the divergent results. On closer 

analysis of the case dealt with by Coursant, it is 

apparent that no information is given about the 

electrical load. Combining this with the fact that 
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Mel'Kanovich includes the effect of secondary action 

in his inverse calculations, suggests that secondary 

action alone is not the cause of the divergence. 

Now, since practical transducer applications will 

contain some degree of electrical impedance, it was 

decided to investigate further the shape and nature 

of possible outputs. To this end, each of the three 

previous unipolar outputs was now considered to be 

bipolar,, (the sine-wave output was now defined to be 

a finite number of whole sine-cycles, such that an 

integer multiple of the period equalled T d. 

The delay multipliers are now, 

1-2e- bs 
+e- 

2bs 

1-2e -bs +2e -3bs -e -4bs 

1-e -2bs 6.107 

for the bipolar square, ramp and sine-wave respect- 

ively. These factorise to give: - 

( bs )2 (1) 
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(1-e -bs )2 1-e -2bs 

(1-e- bs)( 1+e -bs) 

(ii) 

(iii) 

6.108 

Again, substituting Tt for b gives delay polynomials 

which meet the initial delay condition. 

These were then applied to the defined differential 

outputs, and used to calculate the required excitation 

voltages. In each case, the calculated voltage conver- 

ged to zero. 

Thus, six defined outputs were chosen to test the 

feasibility of using electronic methods to control a 

piezoelectric transmitter. 

Figs 13A, B and C show three bipolar ramp functions 

of varying width. The respective output delay 

polynomials are, for each case; Fig 13A 

(1-e -2sT t)(1-e -4sT t)( - 1+e -sT t)(1-e- sTt) 

Fig 13B 

(1-e-sTt)( 1-e-sTt )(1-e- 2sTt) b=Tt 

b=2T 
t 

6.109 

6.110 
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Fig 13C 

(1-e- sTt/2 )2 (1-e- sTt) b-Tt/2 6.111 

where the required factor is underlined for each case. 

Fig 14 shows a single sine-cycle, where the period 

of the cycle is twice the transit period of the trans- 

ducer, (thus the frequency of the sine-wave is the same 

as the mechanical'resonance of the transducer). This 

has the following output delay polynomial: - 

(1+e-sT t)(1-e- sT t) b=T 6.112 

Fig 15 shows a second sine-cycle, this time of 

period equal to the transit period of the t ransducer 

(thus it is of frequency twice the mechanical reson- 

ance. ) This has the delay multiplier, 

(1-e- sTt) b=T t 
/2 6.113 

Apparently, this is identical to the first test 

sine-wave but in this case, the output is a whole 

sine-cycle, whereas in the initial test, it was a 

half-cycle. 

Finally, Fig 16 shows a bipolar square pulse 
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with delay factor, 

Tt -sT (1-e-s-EM+e t) 6.114 

These six defined outputs were used with transducers 

B and E, to derive the required excitation voltages. 

These voltages were then used to fire transducers B 

and E and the generated force-waves compared with the 

original defined outputs. 

CASE I 

Transducer B -was- set -up 
in experimental configuration 

4, (specified in Appendix B)., The bipolar triangular 

output of Fig 6.13A was then used to calculate the 

required excitation voltage for the case where the 

electrical load was a series 500 resistor. Figs 6.17A 

and B show the calculated voltage, and the generated 

voltage respectively. There is good agreement between 

the two, (apart from a vertical scale difference). 

Figs 6.17C and D show the desired force output shape, ' 

and the achieved output shape, measured in a water tank. 

Again, there is very good agreement between the results, 

although there is a degree of noi-se in the measured 

result. This result was carried out for a hardware 

clock frequency of 33 MHz. 
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CASE 2 

This is identical to Case 1 but now the desired output 

is that of Fig 6.13B and the hardware clock frequency has 

been increased to 50 MHz. 

Figs'6.18A and B show the calculated and generated 

voltage respectively, (oscilloscope settings: x-1., us; 

y-2V, both per large division). Figs 6-18C. and D show 

the desired and obtained force outputs respectively, 

(oscilloscope settings: x-1, us; y-5 mV, both per 

large division). Again, there is very good agreement 

between the simulated and experimental results. (The 

electrical noise on the force measurement was reduced by 

using a different amplifier with the receiving hydro- 

phone). 

CASE 3 

This is identical to Case 2 but the-desired force 

output is now that of Fig 6.13C. Figs 6.19A and B show 

the calculated and generated voltages respectively, 

(oscilloscope settings: x -0.5, us; y-2V, both per 

large divisions). Figs 6.19C and D show the desired 

aud- the measured force outputs, (oscilloscope settings: 

x-0.5.., us; y-5 mV, both per large division). 
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There is good agreement between both the simulated 

and the experimental results. However, there is some 

distortion of the generated voltage, most probably due 

to a bandwidth limitaton in one of the amplifier stages. 

This has the effect of roundingthe generated force out- 

puts. 

CASE 4 

This is also identical to Case 2 with the desired 

output now that of Fig 6.14, a single sine cycle, with 

the same frequency as the mechanical resonance of the 

transducer. Figs 20A and B show the calculated and the 

generated voltages respectively, (oscilloscope: x- 

0.5, us; y-2V; both per large division. ) Figs 20C 

and D show the desired and the. measured force output, 

(oscilloscope: x-0.2 us; y-5 mV. ) 

There is reasonable agreement between the voltage 

simulation and the generated voltage, and excellent 

agreement between the desired and measured forces. The 

minor differences in the voltage responses are again 

probably due to bandwidth limitations. However, it is 

apparent that this has had little effect on the generated 

force output. 
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CASE 5 

Again, this is identical to Case 2 with the desired 

output now the plot of Fig 6.15, a single sine cycle of 

twice the mechanical resonance of the transducer. As 

before, Fig 6.2LA and B show the calculated and measured 

voltages respectively, (oscilloscope: x-0.5/us; y- 

5 V, both per large division) - Figs 6.21C and D show the 

desired and measured force outputs respectively, 

(oscilloscope: x-0.2 us; y-5 mV). 

There is reasonable agreement between the voltage 

simulation and the generated voltage, and excellent 

agreement between the desired and measured force outputs. 

It is apparent from Fig6. ZB that the sharp spikes of the 

calculated voltage have again been smoothed out due to 

the finite bandwidth of the system. However, as before, 

this appears to have had little effect on the measured 

force output. This case is an example of the failure 

of convergence which was discussed in section 6.4 . 

The calculated voltage has an envelope which converges 

to a constant value, but the voltage itself does not 

converge to zero. 
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CASE 6 

This is identical to Case 5 but now the excitation 

voltage has been forced to converge to zero by using the 

exponential multiplier discussed in section 6.4 . From 

equation 6.98 the value of the exponential constant, a, 

is given as: - 

1An 
T (N-M-1 -L s k] 

R 
6.115 

In this case, the following values were selected for K, 

N and M, 

N= 512 

M= 100 
K=0.1 6.116 

Thus a had the value (for Ts- 20-ns) given by, 

280* 103 6.117 

Figs 6.22A and B show the calculated and measured 'voltages 

respectively (oscilloscope: x-0.5, us; Y-5V; both 

per large division). Figs 6.22C and-D show the predicted 

and the generated force outputs, (oscilloscope: x- 

0.2 As; y-5 mV; both per large division. ) 
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Clearly there is excellent agreement between the 

simulated and*experimental results. Once again, the ' 

amplifier bandwidth has truncated the sharp spikes which 

occurred in the calculated excitation voltage. However, 

this appears to have had little effect on the generated 

force output. The slight after-ringing which was pre- 

dicted on the desired output force simulation has also 

largely disappeared from the measured force output. 

This is probably due to attenuation in the water column. 

Finally, comparing the measured force output with that of 

Case 5, (Figs 21D and 22D), there is excellent agreement 

between the two results which shows that the exponential 

convergence factor has little effect on the generated 

force output. 

CASE 7 

This is identical to Case B with the desired output 

the bipolar step function of Fig 6.16 Figp-6.23Aand B 

show the calculated and generated excitation voltages 

respectively, (oscilloscope: x-0.5/us; y-0.5 V, 

both per large division). There is excellent agreement 

between these results. However, the generated voltage 

is approximately a factor of ten less than the calculated 

voltage. This was necessary since the amplifier stages 

of the generating equipment would not reproduce the volt- 
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age accurately with a large gain, due to the reduced 

bandwidth. Consequently, the amplifier gain was 

reduced until the generated and calculated voltages 

were in good agreement. However, this had a marked 

effect upon the amplitude of the generated force out- 

put. Figs 6.23C and D show the desired and the measu- 

red force outputs, (oscilloscopes: x-0.5eus: y- 5 mV; 

both per large division). There is reasonable agree- 

ment between these results but it is apparent that the 

generated force output is close to the limit of detec- 

tability of the receiving hydrophone apparatus. The 

generated voltage in this case is a second example of 

a waveform which does not converge to zero. However, 

since the voltage converges to a constant value, the 

last sample latch technique of section 6.4(ii) was 

used to hold the last sample value and maintain the 

constant offset. 

CASES 8 and 9 

These examples both used the layered device, trans- 

ducer E to generate the force outputs. The hardware 

clock frequency used for these results was 50 MHz but 

as was discussed in section 6.4(11), this is not high 

enough to include the effects of the bondline layers 

in the calculated voltage. Consequently, the required 

excitation voltages were calculated for a transducer 
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with no bondlines. The effects of this assumption 

are discussed below. 

CASE 8 

The desired output for this example was the bipolar 

triangular pulse of Fig 6.13C. Figs -6.24A and B show 

the calculated and generated excitation voltages 

respectively, (oscilloscopes: x-0.2. /us; y-l V; both 

per large division). There is good agreement, between 

these results. Ffgs 6.24C and D 'show the calculated and 

the measured force outputs respectively, (oscilloscope 

x-0.5/us; y- 5 mV; both per large division). Again, 

there is good agreement between the results. However, 

it is again apparent that the generated output is 

close to the detectability limit of the receiving 

apparatus. Thus it is difficult to establish whether 

ignoring the bondlines has had any effect on the 

response. Fig 6.24E shows the simulated force output 

for the case where the voltage was calculated without 

the bondlines but the transmitter model included them. 

It is apparent that there is a slight overshoot after 

the generated force output and this is just visible 

in Fig 6.25D. So the agreement between the simulated 

and calculated results is reasonably good. 
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CASE 9 

This is identical to'the previous case but the 

desirýd force output is now that of Fig 6.14, a single 

cycle sine wave. Again, the excitation voltage was 

calculated with the bondlines omitted. Figs_6.25A and B 

show the calculated and the generated excitation voltages 

respectively, (oscilloscope: x-0.2 Ais; y-1V; both 

per large division. ) There is good agreement between 

these results. Figs 6.25C and D show the desired and the 

generated force outputs respectively, (oscilloscope: 

x-0.5, jis; y-5 mV; both per large division. ) As with 

Case 8, it is difficult to compare these results because 

of the low amplitude'. of the measured output. Fig 6.25E 

shows the simulated force output with the bondlines 

included. Comparing this simulation to the measured 

output, it is apparent that the slight after-ringing 

is present in both cases. Thus it may be concluded that 

there is reasonable agreement between the simulated and 

the desired force outputs. 

This section has presented simulated and experi- 

mental results which show that electronic control of the 

piezoelectric transducer may be used to generate precisely 

defined force transients in a water tank. The experi- 

mental results were generally in very good agreement 
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with the desired outputs, although some minor differ- 

ences did-occur. These were mainly attributable to 

the limited bandwidth of the driving amplifiers., How- 

ever, a second possible error source is the chosen 

sampling period. Theoretically, the sampling period 

of the, digital electronics should be an integer sub- 

multiple of the transducer and layer transit periods. 

However, this is virtually impossible to achieve in 

practice and consequently, there will be some minor 

differences in the calculated and generated driving 

voltages. For example, the transit period of trans- 

ducers B and E is 0,435.,. us, from Appendix B. With a 

50 MHz driving frequency, the sampling period is 20 ns. 

Thus the nearest integer multiples of the sampling 

period to the transducer transit time are 21 (0.42 

., us) and 22 (0.44 As). In this case, the required vol- 

tage was calculated for 22 samples per transit. This 

will produce a slight cumulative error in the gener- 

ated output force, and this may account for the slight 

discrepancies in some of the results. Obviously, 

this effect is compounded in transducer E which has a 

front layer as well. 

Another problem with the experimental results was 

the magnitude of the generated voltages. This problem 

arose because of the inverse relationship between the 

gain 
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and the bandwidth of the amplifier. For some cases, 

particularly Case 7, it was necessary to reduce the gain 

substantially, to obtain sufficient bandwidth for the 

amplifier to reproduce the driving voltage accurately. 

This led to a generated force output with such a small 

magnitude that it was just detectable by the receiving 

apparatus. 

A similar problem arose in Cases 8 and 9, however the 

low amplitude of the generated force outputs was now due 

to the poor match between the steel layer and the water 

load. 

, 
Thus a detailed comparison of some of these results 

really requires a better driving amplifier, so that the 

strength of the received signals can be boosted well 

above the noise level. 

The-results of Cases 6 and 7 demonstrated that the 

techniques of exponentially forcing the voltage envelope 

to converge, and of holding the last sample, both worked 

well. This offers a great deal of scope for generating 

more complex output shapes. 

Cases 8 and 9 produced results which showed that, 
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although the bondlines are comparatively thin, they do 

influence the response . With better driving electronics, - 

it may be possible to analyse the precise effects of the 

bondlines and develop techniques for compensating or 

reducing-the after-ringing of the generated output. 

The apparent theoretical anomaly over the generation 

of uni-polar pulses has not been resolved. As stated 

earlier, this appears to be caused by a combination of 

the non-zero electrical load and secondary action, but no 

quantitative solution has been found. It was initially 

suspected'th&t this may have been caused by round-off 

errors in the inverse filter structures, similar to those 

reported in"section 6.4 This was investigated fully, 

and does not appear'to be the cause of the voltage 

divergence. A qualitative explanation of this effect may 

be-derived as follows. 

Assuming that the inverse direct piezoelectric function 

produces a stable, convergent voltage which it appears to 

do, then, in some cases, the secondary piezoelectric 

function may produce a divergent voltage. With the 

initial theory, the required output delay multiplier 

should ensure that the voltage does not diverge. Appar- 

ently, this is not the case with a unipolar pulse. How- 
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ever, with the bipolar pulses, the secondary function 

will generate a second divergent voltage of opposite 

sign to the first, delayed by the half period of the 

pulse. This may. partially cancel out the first 

divergent voltage to produce a net voltage which 

converges to some constant value. However, this 

explanation has not been verified and there is scope 

for a great deal more work in this area. 

Finally, this section has-shown that electronic 

control of piezoelectric trans, ducers is feasible in 

a real situation. It has also shown that this method 

has several advantages over alternative methods. 

This is demonstrated in Case 6, where the generated 

wavesh4pe has a frequency twicethatof the-mechanical 

resonance of the transducer. Clearly, while elect- 

ronic control still requires a great deal of investi- 

gation, it offers results and improvements in the 

transducer response which are not available with 

passive methods alone. 
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6.6 CONCLUSIONS 

This chapter has investigated both mechanical and 

electronic methods for controlling and optimising the 

performance of the thickness mode piezoelectiic trans- 

ducer. 

In section 6.2, an expression was derived which 

gives the optimum acoustic impedances for an arbitrary 

set of matching layers. This was then used to compare 

the increase in energy transmission into the load as 

additional layers are added to a transducer. From this, 

it was concluded that, while matching layers provide a 

significant improvement in the efficiency of energy 

transmission, this increase decreases per layer as more 

layers are added. Consequently, the optimum number of 

layers for a particular case depends upon the acoustic 

impedance mismatch between'the transducer and the load. 

The next section investigated the theoretical 

basis of electronically controlling the transducer 

response. From this, it was concluded that precisely 

defined output force transients may be generated by 

inverting the forward piezoelectric transfer function, 
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w 13* The analysis of this section produced conditions 

defining the order and nature of the differential and ' 

delay portions of both the inverse transfer function and 

the desired output. When these conditions are met, the 

system may be theoretically inverted and the required 

input should be stable, causal and realiseable. 

Section 6.4 investigated the practical limitations 

of performing the inversion and generating the required 

voltage., It was concluded that the only realistic 

method of generating the excitation voltage was with 

digital hardware. Consequently, the voltage must be 

expressed in sampled form. 

Several methods of inverting the transfer function 

were considered and tested. It was concluded that the 

optimum method was to implement the inverse transfer 

function as a synthetic digital filter. This allowed 

the desired output to be specified in sampled form, 

which offers distinct advantages in terms of the number 

and type of outputs which may be considered. 

It was shown that even the best digital memories 

were not fast enough to cope with the bondlines of a 

real transducer. There is, as yet, no complete solution 
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to this problem, and it was decided to ignore the bond- 

lines when calculating the inverse driving voltage. 

The magpitudes of several calculated voltages were then 

compared and were found to be greater than the system 

could produce. Reducing the magnitude of the voltage 

also reduced the magnitude of the generated force output 

leading to detectability problems. This problem was 

investigated and it was shown that the addition of 

matching layers could substantially reduce the magnitude 

of the required voltage. This is analogous toincreasing 

the transmission efficiency of the system discussed in 

section 6.2 . 

Finally, several methods of forcing the required 

input voltage to converge to zero were considered. This 

is necessary in some applications. 

Section 6.5 presented a comparison of simulated 

and experimental inversion results. Initially, attempts 

were made to generate unipolar force transients. How- 

ever, these cases all produced diverging excitation 

voltages. A qualitative explanation for this effect was 

presented but this has not been verified and further 

work requires to be done in this area. This led to an 

investigation of the desired output waveshapes and it 
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was discovered that bipolar pulses produced converging 

excitation voltages. These were used for the experi- 

mental cases. 

It had been hoped to use transducers with multiple, 

optimal matching layers for the experiments, but it 

proved impossible .. using the facilities available, to 

manufacture layers of sufficient accuracy. Thus two of the 

transducers which were used for the experimental results 

of Chapter 5 were used instead. 

Nine experiments were performed and six different 

output transients were generated. By comparing the 

simulated and experimental results, it was concluded 

that they were generally in very good agreement. Several 

interesting points were also noted. Firstly, for some 

applications, it was necessary to reduce the amplifier 

gain substantially to achieve good reproduction of the 

excitation waveform, This led, as predicted, to 

detectability problems with the generated force transient.. 

Secondly, the technique for forcing the volta_ge 

envelope to converge to zero worked very well and thus 

offers scope for the generation of further, more compli- 

cated outputs. 
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Finally, ignoring the bondlines in the layered transducer 

resulted in output force transients with some. after- 

ringing. This was predicted, and agreement between the 

simulated and experimental results was very good. 

Thus, it may be concluded that, while a great deal 

of work remains to be done in this field, electr6nic 

control of transducers offers substantial advantages over 

alternative methods of improving the transducer response.. 

In particular, it allows the generation of precisely 

defined output force transients which, in some cases, 

have a period equal to that of the transducer. It should 

be possible to extend this method to generate pulses 

which are shorter than this. However, this has not been 

considered in the present context. 
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CHAPTER 7 

CONCLUSIONS AND SUGGESTIONS 
FOR FURTHER WORK 



7.1 CONCLUDING SUMMARY 

A general three-port systems model of the thickness- 

mode piezoelectric transducer has been developed. This 

model may be used to examine both the CW and transient 

modes of transducer operation. However, since trans- 

ducer transient analysis has proved difficult for many 

applications, this area has been considered in detail. 

By developing the describing equations into a single 

lattice-type system, the resultant model is considered 

to be a significant improvement on prior work. The 

main advantages of both the model and the modelling 

techniques used, may be summarised as follows. 

1. The model clearly reflects the underlying physical 

operation of the transducer. Both primary and 

secondary piezoelectric effects have been identified. 

for both transmission and reception. This allows a 

direct comparison of transducer behaviour for 

different operating modes., 

2. Arbitrary electrical load and source elements are 

readily incorporated. 

3. Both front and rear mechanical layers may be modelled 
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The techniques described in Chapter 3, whereby the 

lattice model is extended using lattice techniques, 

to include layers, have been compared with the 

coventional 2-port; 3-port; 2-port method. From 

this, it is apparent that the lattice technique is 

superior. 

4. The use of z-transforms in evaluating the transducer 

transient response has been investigated. This 

resulted in a suitable Q-matrix technique, whereby 

the transient response may be calculated quickly and 

accurately without resorting to a great deal of 

algebraic manipulation and calculation. 

The model has been used successfully for electronic 

transducer control. This required inversion of the 

system transfer function, and both techniques for, 

and the effects of thisswere investigated. 

The model is readily implemented on a computer. 

Thus the model and its associated techniques are 

considered to satisfy the five requirements of a 

transducer model which were identified in Chapter 

In the course of this work, the model and the technique's 

used, have been extensively verified by simulation and 

experimentation. This has resulted in several additional 
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contributionst notably, 

a) The development of a transient technique for 

accurately estimating layer thickness without 

the use of physical measuring apparatus. 

b) The effects of the transducer configuration on 

layer analysis has been investigated. This was 

shown to have a significant effect upon the 

measurement of layer parameters. Particularly, 

overall layer integrity and specific layer thickness. 

C) The Q-matrix technique which was developed for 

z-transformation of differential/delay functions 

may be applied to a wide range of other functions. 

d) A strategy has been developed, whereby the optimal 

acoustic impedance of a set of mechanical matching 

layers may be calculated. I 

e) The ef f ects of electrical lbad el'emenf s and-irechanical 

matching layers upon transfer function inversion has 

been investigated. These were shown to have a 

significant effect upon the order and stability of 

the desired output. 

f) A simple technique for calculating the on-axis 

diffracted field was derived and verified by 

experimentation. in the far field. 
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Thus, it is considered that the work presented in this 

thesis, represents a significant contribution to the 

fields of piezoelectric transducer modelling and trans- 

ducer design. However, it is also apparent that several 

of the areas investigated- leave scope for further work. 

These are indicated in the following section. 
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7.2 SUGGESTIONS FOR FURTHER WORK 

The suggestions for further work may be conveniently 

divided into two categories, improvements to the'model, 

and -applications of the modelling techniques. 

7.2. --P(i) Improvements to the Model. 

In the development of the lattice model, it was 

assumed that the transducer, and the associated methanical 

layers, were lossless and had lateral, dimensions much 

greater than their thicknesses. However, in many pract--^ 

ical transducers this is not the case. - 

Munk (46) has investigated the radial vibrations of 

disc transducers. It is apparent from his work, 'that for 

devices where the lateral and thickness dimensions are'of 

the same order of magnitude, lateral vibrations have a 

slýnifiCaht effect on the transducer response. - This is 

of great importance in ultrasonic array design, where the 

array elements are often rectangular or square in cross- 

section. Consequently, the element response may be 

dominated by lateral vibrations. 
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The s. olutions bbtained by Munk for radial vibrations 

were developed into Bessel functions. As such, these 

are not well stiited for systems modelling. It is not 

known whether this problem can be solved in a similar 

form to that developed here, but if so, the resultant 

model would certainly increase the knowledge and under- 

standing of transducer behaviour. 

In the array case, the problem is compounded by 

mechanical coupling between the array elements. Clearly, 

the first step in developing a general array model isto 

analyse the behaviour of small elements. Some work has 

been done in this area, using finite element techniques, 

but, as was indicated in Chapter 1, these methods do not 

give much insight into the physical operation of the 

devices. Thus the development of a small elementsystems 

model would greatly increase the understanding of small 

element behaviour and may lead to improved array design. 

From some of the experimental results of Chapters 5 

and 6, it is apparent that attenuation in the mechanical 

layers does occur. Attenuation may also occur incertain 

transducer materials, (for example quartz). However, it 

is not a serious problem with the ceramic (PZT-5A) used 

here. Some work has been done on modelling losses 
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(for example, SILK (57)), but most of this seems to be 

based on rather arbitrary adjustment factors. A 

rigorous solution for attenuation in a lossy material 

requires a solution of the modified wave equation, 

where the loss mechanism is included in the initial 

derivation. Since it I is often'difficult to identify the 

precise mechanism which causes the attenuation, this may 

prove difficult. It is also possible that the solution 

of the modified wave equation may not be well suited to 

systems modelling. 

However, one simple approach may be to extend the 

existing model as follows. The transducer and mechanical 

layers-were modelled as simple delays, 

-sT e 

where T is the layer transit period. It may be possible 

for some lossy cases to model the layers with functions 

of the form 

L(s)e-s T 
or L(s, e- sT ) 

This does however require substantial investigation. 
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The model which has been-developed in this thesis 

predicts the plane-wave component at the transducer 

surface. It does not include the effects of diffrac- 

tion in the ultrasonic sound field. 

Several of the experimental results of Chapter 5 

exhibit marked distortion which may be partially due'to 

diffraction effects. Consequently, to obtain an accur- 

ate estimate of the system performance, the overall 

diffracted transducer field must be accounted for. 

Appendix C contains a simple method for calculating 

the on-axis diffracted field of the transducer. However, 

when this was verified experimentally, it was found to 

work well only in the far field. It is also apparent 

from the derivation of Appendix C, that there is no 

simple closed-form solution to the equation describing 

the sound field. Nevertheless, a great deal of work 

has been done in the area of calculating the transient 

diffracted field. Notably, by Kazina and Makarov (32), 

and more recently by Stepanishen (64) and Weight (68). 

It may be possible to extend the transducer model to 

include some of the techniques developed by these 

authors and hence obtain a good estimate of the trans- 

ducer diffracted field. 
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Such an extended model would have several advant- 

ages, but, principally, it would allow the design of 

transducers with either desired, or at least well- 

known beam characteristics. It may eventually be poss- 

ible to use electronic control to generate a series of 

desired beam profiles. 

Thus there are three main improvements which could 

greatly enhance the usefulness of the lattice model: 

a) The extension of the model to include radial 

and lateral vibrations. 

b) The, inclusion of loss and attenuation mechanisms 

in the model. 

C) The development of techniques for predicting 

the ultrasonic sound field. 

7.2. (ii) Applications of the Modelling Techniques 

The practical experiments which were carried out in 

the course of this thesis were designed to verify 

s pecific portions of the lattice model, and the model- 

ling techniques. From these results, it- is apparent 

that one'area to which the techniques may be applied is 

the analysis of multilayered structures. This encom- 

passes both the design of 

348 



optimal matching layers and the estimation of unknown 

layer parameters. Thus, the model may be used to test 

the efficiency and construction of practical optimally 

layered probes. It may also be extended to the analysis 

of layered materials, although, since in most cases 

these layers will not be physically attached to the 

probe, this may require some experimental investigation. 

Examples include non-destructive testing of composite 

structures and general thickness measurement in NDT 

and biomedicine. 

The Q-matr. a: x. technique of Chapter 4 has been widely 

used for bilinear transformation. Recently, several 

authors, (for example, O'Connor and Huang (47) have 

used this method to transform multivariable polynomials. 

So far, this has been restricted to bilinear transfor- 

mation but the z-form Q-matrix of Chapter 4 extends 

this to IIR transformation. It is apparent from (47), 

that even with the simpler bilinear Q-matrix, so'm'e work 

is required to extend the technique tIo the multidimens- 

ional case. It is likely that some investigation of 

the IIR case will be required. However, the development 

of a suitable technique would offer substantial reduct- 

ions in algebraic manipulation and coefficient calcu- 

lation. 
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Chapter 6 investigated techniques for inverting the 

transmitter transfer function and controlling the 

transmitter electronically. These techniques were 

verified experimentally. However, it is apparent from 

the practical results that further investigation is 

required if these techniques are to be, fully developed. 

The following areas in particular, require further 

investigation. 

It was shown in Chapter 6 that theoretically, 

unipolar pulses could be generated. In practice, this 

proved impossible because the required excitation 

voltage diverged rapidly. A qualitative explanation 

for this suggested that the reason for the divergence 

was a function of the combined effects of the electrical 

load and secondary piezoelectr. ic action. There are two 

possible solutions to this problem. Firstly, if the 

precise effects of the electrical load can be estab- 

lished, it may be possible to identify cases where 

instability does not occur. Secondly, for some appli- 

cations, it may be possible to simply ignore secondary 

effects entirely. Although this would produce some 

distortion of the desired output, it may still be 

acceptable. This area is certainly worth further 

investigation. 
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Although a variety of desired outputs were generated 

in Chapter 6, the choice was arbitrary. It is therefore 

suggested that- an experimental investigation into the 

usefulness of each pulse shape should be carried out. 

Once the most useful cases have been identified, a more 

concentrated effort could be made on the problems associ- 

ated with generating these shapes. This zDa-y be particu- 

larly important in the design of the electroni6 driving 

apparatus, where the system gain and bandwidth-were the 

limiting factors. For example, the bandwidth required 

to generate the bipolar triangul'ar pulses was less than 

that required for the corresponding single sine cycles. 

Finally, the practical considerations of electronic 

control warrant further investigation, particularly the 

design and manufacture of the memory and driving ampl- 

ifier stages. The equipment used here was based on an 

ECL array controller (as detailed in Appendix B ). It 

is likely that a customised memory system would reduce 

costs and operate more reliably. The major limiting 

fqctor in generating the driving voltages however, was 

the amplifier. The devices used here were the best 

available at the time but it should be possible to design 

a system with a larger voltage output swing. This should 

improve the pulse shape definition and the detectability 
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of the signals, 

Thus there is substantial scope for further work in 

the area of electronic transmitter control. 

In a similat manner to the inversion of the transmitter 

transfer function, it is possible to invert the receiver 

transfer function. However, the problem under consider- 

ation is somewhat different. 

For the transmitter, the object of system inversion 

was to calculate a stablecausal and realisablý! -excit- 

ation voltage which would produce a desired force output. 

Assuming that the calculated voltage for any particular 

case meets these requirements, it should, on-application 

to thetransducer, generate the desired output. Any 

discrepancy in this output is due to a combination of the 

following factors: 

a) Poor voltage generation. 

Incorrect system model. 

C) System noise. 

The first two factors may be corrected by either, 

improving the generation equipment, or correcting the 

352 



system model. There is no solution to the third factor 

and this forms the basic difference between the trans- 

mitter and the receiver. For the receiver, the object 

of system inversion may be defined as the calculation of 

the exciting force wave, from the measured receiver 

voltage. In the transmitter, the deconvolved signal is 

applied to the system to produce the desired output. In 

the receiver, the received signal is deconvolved to obtain 

the exciting force wave. Consequently, system noise is 

not involved in the transmitter calculation. However, 

the measured voltage in the receiver will almost cer- 

tainly contain noise. The techniques developed in 

Chapter 6 are generally not suitable for the inversion 

of systems containing noise. Thus the receiver case 

must be invertpd', using different techniques, for example, 

stochastic methods, or least mean square techniques. 

These methods were considered to be beyond the scope of 

this thesis and were not investigated here. However, 

this area is certainly worth further investigation. 

Thus four main areas for the further development and 

application of the modelling techniques have been 

identified. 

a) The characterisation and analysis of mechanical 
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layer structures. 

b) The extension of the Q-matrix technique to 

multivariable polynomials. 

C) The theoretical and experimental extension of 

system inversion for practical electronic transmitter 

control. 

d) The investigation of receiver inversion 

techniques. 
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APPENDIX A 
Some Practical Considerations of 

the Boxer and Thaler Method 



APPENDIX A 

This appendix discusses in detail, some of the 

problems which were described in Chapters 4,5 and 6 

regarding the z-form method of Boxer and Thaler. Three 

areas are investigated, namely, the common factor problen4 

the numerical error round-off problem and the use of the 

z-forms as differential operators. These cases arise 

from the application of the z-form technique rather than 

the underlying method. A comprehensive analysis of the 

error associated with the z-form method is given by 

WASOW (67). 

(i) The Common-Factor Problem 

The electrical configuration of the transducer system 

has so far been assumed to be of the form shown in Fig AL 

In this form, any common factors which occur in the 

differential polynomials of the transducer transfer 

function will also exist in the load term Z E* These may 

be removed by expressing ZE in the form., 

I 

TT (s+a 
16l zE 'ý JJ 'I 

TT (S+ý Al 
3=1 

Al 



and eliminating the common terms from the numerator and 

denominator. The reduced form of ZE may then be used 

with the required system transfer function, with the 

assurance that no common factors'exist. 

However, consider the electrical configuration of 

Fig A2. If this is rewritten in its Thevenin equivalent 

form and related to Fig Al, then, 

Z 

+Z 

vE= (-z 

1 +Z 0) 

vs = zs. «vs 
A2 

Assuming Z0 and Z1 are of the form, 

-iN -zN 
01=1 

021 

iD 
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then, 
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These may be rewritten as, 
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(ii) 
A4 

A5 

where, 

yN z N. -zN 
E10 

-zN = -zN zD 
s10 

zD = YD = yN 
. 
-zD ; 2ýN ZD 

Es1001 A6 

If the general z-transform model is to be used, then 

the excitation voltage, VS must be specified in sampled 

orm. 

Consequently, the additional Laplace term, YZ 
s, must 

be included in the differential polynomials of the 

transducer transfer function. 
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From chapters 5 and 6, these are, for the system of 

Fig Al, 

SfD E 

-zD 
k* E 

DN d3= S(z E +sc tz E) A7 

For a system of the type shown in Fig A2, these become, 

SZD. -ZN 
Es 

zD 
. 
-zD 

k* Es 

S(-ZD+SC yN). -ZD 
3EtEs A8 

Comparing these equations with equation A6, it'may be 

obseved that the differential polynomials now all have 

a common factor, 

-zNiD, 7N-iD 
1001 A9 

R6. moving the common factor reduces the differential 
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terms thus, 

d SZN is 

-zD 
k' E 

s(ZD+s c -zN 
EtE 

which may be rewritten as, 

s. 2ýN. -ZD 
10 

dX (iN. -ZD+ZN ZD 2k*10 0» 1 

A10 

s (ZN-ZD+-ZN zD +sc z N. zN All 1001t10 

Assuming that Z0 and Z1 have had any common factors 

removed, then equations All will-also'have no common 

factors. 

An example of this case is the widely used firing 

circuit shown in Fig A3. For this example, Z0 and Z1 

take the values, 
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zo -S cB 

RE 

A12 

and the differential polynomials become, 

BE 

d2=Xk (1+sC., R E) 

d3= s(l+sR E (C 
t +C B)) A13 

Clearly, these do not have a common factor. This 

method may appear rather cumbersome at first, but in fact 

this technique is readily computerised and has been 

successfully extended to include both T and TT-networks. 

Thus this procedure guarentees that there will be no 

common factor in the differential polynomials of the 

transducer transfer functions. 

The effect of common factors on the response of the 

transducer system was investigated by deliberately 

including common terms in several cases. This results 
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in differential polynomials of a higher order than the 

minimum required. Consequently, the digital filters 

produced by the Q-matrix technique are also of a 

higher order than the minimum required. 

In some cases, this led to an unstable response 

with an oscilliatory output. However, for most appli- 

cations, the differences between the correct and the 

higher order responses were slight. Several attempts 

were made to quantify the cases where an unstable output 

occurred but no general link between them could be 

found. There are two possible explanations for this. 

(i) The inclusion of certain common factors appar- 

ently renders the system z-transform unstable. The 

nature of these common factors may depend upon both the 

order factors of the differential polynomials, and the 

factors of the discrete polynomials. 

(ii) The inclusion of certain common factors may 

render the system z-transform more susceptible to 

computer round-off errors. If the first explanation. is 

correct, then it should be possible to quantify the 

instances when instability occurs and identify the 

undesirable common factors. If the second explan- 

ation is corect, it may be solved by adopting alter- 

native programming techniques to minimise the effects 
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of round-off errors. 

Since neither of these explanations could be conclus- 

ively linked to the common factor problem, the programs 

used for the simulations of this thesis were designed 

to eliminate common factors, and thereby avoid the 

problem. 

(ii) Numerical Round-Off Errors 

In chapter 6, it was noted that, for certain cases, 

when the order of the denominator of a differential 

transfer function is larger than the order of the 

numerator, the z-form technique becomessusceptible to 

computer round-off errors. One solution to this problem 

was to increase the accuracy with which'the calculations 

were made. However, for large differences in order, the 

accuracy required becomes very large, and is soon 

unacceptable. This problem was investigated further, 

and two interesting points were noted. 

Firstly, the problem also depends upon the coefficients 

of the numerator and denominator terms. For some cases, 

slight alterations of one ortwo coefficients in either 
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the numerator or denominator produced instability. 

Secondly, increasing the calculated accuracy of the 

Q-matrix appeared to have little or no effect on the 

results. 

This is interesting because the problem now appears 

to be similar to that of the cases with common factors. 

Again, no link could be found between the cases where 

instability occurred, but this does increase the likeli- 

hood that the common factor problem is caused by computer 

round-off errors. No solution to this problem was found. 

In conclusion, there exist. cases where the coefficients 

of the differential transfer function are ill-conditioned 

such that, when the z-form technique is applied, the 

resultant digital filter is susceptible to computer 

round-off errors. In this event, the only solution at 

present, is to increase the accuracy of the calculations 

until the response becomes stable. 

(iii) The Use of z-forms as Differential Operators 

Boxer (5 ) has considered the use of the z-forms as 

differential operators. This was discussed in Chapter 6, 
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where it was stated that the z-forms resulted in unstable 

differentiators, and consequently, could not be used. 

For cases where it was required to use the z-forms as 

differentiators, the technique described in Chapter 6, 

was used to re-form the transfer function, such that, 

another differential operator could be used. This-sectibn 

presents a simple example which shows the effects of 

using both the z-form and the alternative operator 

techniques. 

Consider the differential system of Fig A4, whose 

input is a unit-ramp. The output of thissystem is given 

by, 

O(S) '*ý 
1 
2(1+s) A14 

s 

which is, in the time domain, 

o(t) = 1+t A15 

This is sketched in Fig. A5. 

Now, if the exciting ramp had been a sampled 

function, the response of this system may have been 

evaluated as follows. 
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Take the z-transform of the system using the z-form 

method; implement the resultant z-transform. as a digital 

filter; and excite the filter with the sampled ramp. 

This was carried out, and Fig A6 shows the calcu- 

lated output. Clearly, this technique has produced an 

output which exhibits bounded oscillations about the 

correct solution. 

An alternative method of calculating the system 

response is that outlined in Chapter 6. In this case, 

the alternative method produces an output which it 

considers to be the sum of the sampled ramp and its 

differential. (The differential was obtained numerically, 

using the first order backward difference method. ) This 

is shown in Fig A7. Thus the alternative method produces 

the correct result. 

When comparing Figs A6 and A7, it is apparent that 

the z-from method cannot be used for cases which require 

differential operators. 

This appendix has outlined three problems which may 

occur with the z-form method of Boxer and Thaler and 

presented the solutions which were used to overcome them. 

All 



For the common factor problem, no satisfactory 

method was found for identifying the common terms which 

caused instability. Consequently, a technique for 

removing the common factors was adopted. 

In the second case, no solution to the round-off 

error exists, other than increasing the accuracy of the 

calculations until they become stable. It was also noted 

that this may be linked to the common factor problem. 

Finally, it was shown that the use of the z-form as 

differential operators produces unstable results. A 

method which allows alternative differential operators 

to be used was described in Chapter 6. This was compared 

with the z-form method and was shown to give the correct 

solution for a particular case. 
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APPENDIX B 

This appendix gives a detailed account of the experi- 

mental apparatus and the transducers which were used in 

Chapters 5 and 6. It has been subdivided into 3 sections. 

The first section covers the transducer and probe 

assemblies. Section 2 describes the general experi- 

mental la'youts and section 3, the specific pieces of 

equipment which were used. 

(i) Transducer and Probe Assemblies 

To maintain compatibility among the transducers 

and probes which were used, it was decided to use a 

single crystal type for each transducer. The crystal 

selected was a1 MHz Lead Zirconate Titanate ceramic, 

(PZT5-A) supplied by VERNITRON (66). The data supplied 

by the manufacturer dre given in Table B1. 

It may be noted from the relevant chapters, that some 

of the parameters used by the models are not supplied 

by the manufacturer, riamely, the static capacitance, 

Ct, and the transducer transit time Tt., Both of these 
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quantities may be established by experimental measure- 

ment, or in the case of Ct, calculated from the physical 

size of the ceramic, and the relevant constants from 

Table B1. 

HAYWARD (19) has measured the static capacitance and 

mechanical frequency of the crystal used in Transducer B. 

The methods used by him were also used to measure the 

parameters of the crystals used in Transducer D. and 

Transducer E. 

The ceramics of Transducers A and C were not measured. 

However, since the measurements forB and D agreed closely, 

and all four ceramics had approximately the same physical 

dimensions, these values were assumed for A and C. 

(Transducer E is larger than the other 4 transducers and 

has correspondingly different physical properties. ) 

Table B2 compares the c4lculated and the measured 

values for the ceramics of the transducers B, D and E. 

The bottom row of the Table gives the values which were 

used in the simulation programs. 

The probe assemblies in which the ceramics were 

mounted may be briefly described as follows. 
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TRANSDUCER A 

This was a free crystal, mounted at the centre of 

its faces by the clamping apparatus, shown in Fig Bl. 

TRANSDUCER B 

This transducer was manufactured by HAYWARD (19). 

It consists of a ceramic crystal backed with a plastic- 

lead compound, DEVCON-L. The backing material has a 

measured acoustic impedance of: - 

9.11 x 106 kg/m2_ s 

The crystal and backing are not housed, and the nature 

of the backing material,. (self-adhesive), avoids an 

intermediate glue layer between the ceramic and the 

backing material. Connections to the front and rear 

electrodes were made at the edge of the front electrode 

and at the centre of the rear electrode. It is assumed 

that the backing material is of sufficient thickness to 

behave as a semi-infinite medium, not a finite-thickness 

layer. This transducer is sketched in Fig B2. 

After prolonged use, it was observed that the front 

silver electrode began to deterior8te. The deterior- 

ation continued, with the silver apparently dissolving 

(perhaps due to electrolytic action), until the probe 

could not be used. It is possible that this effect 
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could have degraded some of the experimental results 

in Chapter 6. However, the probe was carefully monit- 

ored and the worst deterioration occurred during some 

experiments after the results presented here had been 

completed. 

TRANSDUCER C 

This transducer was also manufactured by Hayward (19). 

It consists of a ceramic crystal mounted in a-Perspex 

holder, as shown in Fig B3. The crystal protrudes from 

the holder, as shown, and is sealed at its edges by a 

small quantity of Araldite. As with Transducer B, the 

front and rear electrodes are connected at the edge and 

centre of the front and rear faces respectively. The 

Perspex holder is sealed, so that the transducer is 

effectively air-backed, and may be used in a water- 

tank. 

TRANSDUCER D 

This transducer was manufactured by the author. It 

consists of a ceramic crystal, backed by a cast lead 

plug, with a front layer of aluminium. The lead plug 

was attached to the ceramic with silver- loaded Araldite 

(available from RS Components Ltd). As with Transducer 

BO it was assumed that the plug was of sufficient thick- 
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ness to behave as a semi-infinite medium. The aluminium 

layer was attached to the frontlof the ceramic using 

ordinary raldite. Fig B4 shows a sketch of the trans- 

ducer, and Table B3 gives the properties of all the 

materials used in the probe construction. 

The transducer was made in two stages. Firstly, the 

lead plug was glued to the ceramic. After the glue had 

been applied, the assembly was placed in a vice, to 

compress the glue layer. Once the glue had set, the 

lead plug was varnished, to provide insulation, and 

the backed probe was tested in a water tank, as is 

detailed in Chapter 5, cases 13 and 14. From these 

experimentsq it was determined that the bondline was 

approximately 10, ýum thick. Secondly, the aluminium 

layer was glued in place, using a similar procedure, 

and the transducer re-varnished. From case 15, Chapter 

5. the measured thickness of the front bondline was 

also approximately 10, oum. 

Since the lead plug was glued to the crystal using 

a conductive adhesive, the rear electrode was connected 

to the lead plug. The front electrode was soldered to 

the edge of the ceramic, before the aluminium layer was 

attached. It was originally intended to remove this 
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electrode, and re-attach it to the aluminium, once the 

layer was in place. However, it was not possible to 

remove the solder completely from the electrode, and 

since it was necessary that the front electrode'should 

have a smooth, flat surface, the connection was left 

in place. A small notch was cut in the edge of the 

aluminium to compensate for the soldered connection. 

TRANSDUCER E 

This transducer was also manufactured by the author. 

It consists of a 30 mm diameter crystal, backed by a 

cast lead plug, with a front layer of steel. The probe 

was manufactured in an identical manner to Transducer D, 

with measurements being made before and after the add- 

ition of the front layer. (These are detailed in 

Chapter 5, cases 16,17,18 and 19. ) The transducer 

is sketched in Fig B5. Both the front and rear bond- 

lines were measured to be approximately 10, um thick. 

The electrodes were connected in an identical manner, 

(rear connection to the lead plug, front connection to 

the crystal), and a small notch was cut at the side of 

the steel layer to accommodate the front electrode 

connection. 

During the attachment of the front layer, some 
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skewing of the layer occurred. Thus the layer did not 

cover the entire surface of the crystal. As is explained 

in Chapter 5, this effect may account for the discrepan- 

cies which arose between the force and voltage measure- 

ments. However, this effect did not otherwise seem to 

affect the performance of this transducer. 

Finally, it is also possible, (again from the discrep- 

ancies between the force and voltage measurements), 

that areas of the rear bondline were thicker than 10,, um. 

Great care was taken to minimise the bondline thick- 

nesses, but it is possible that small air bubbles or 

irregularities in the lead Plug could produce areas 

where the bondline was much thicker than the measured 

values. The reasons as to why this would affect the 

measurements, are given in Chapter 5, section 5.5 . 
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(ii) Experimental Procedures 

Four basic experimental procedures were used, as 

follows. 

Experimental Setup 1 

This was the method used to measure the voltage across 

the free, undamped transducer A. This device'was 

clamped, as shown in Fig Bl. The general firing circuit 

(detailed on a later page), and a suitable oscilloscope 

were then connected as shown in Fig B6. To minimise 

cabling effects, the clamping device was built on the 

same board as the firing circuit. 

Experimental Setup 2 

This describes the method used to measure the force 

output from the front face of a transducer. The selected 

transducer was co-axially'aligned with the receiving 

hydrophone in a water tank, as shown in Fig B7. The 

length of cable connecting the firing circuit to the 

transmitting transducer was kept as short as possible, 

(10-15 cms, approximately), by mounting the firing- 

circuit on an insulating tile directly above the trans- 

ducer. The position of the hydrophone, in relation to 

the transducer, was carefully adjusted before each result 

B8 



and the distance, d, was in the range 15 - 25 mm. 

Experimental. Setup. 3 

This setup is very similar to the previous case. 

However, now the hydrophone is replaced by a receiving 

transducer, as shown in Fig B8.. Again, the distance d, 

was approximately 15-25 mm and both transducers were . 

carefully aligned before each measurement. The receiv- 

ing transducer was connected to the electrical load 

board by a short length of cable and thence to the 

oscilloscope, as shown. 

Experimental Setup 4, 

This was identical to Setup 2, with the exception 

that the firing circuit was, replaced with the amplifiers 

which are described at a later stage. For practical 

reasons, it was not possible to mount the amplifiers in 

near proximity to the firing transducer. Thus, the 

cabling which connected the amplifier to the transducer 

was sufficiently long to produce some distortion of the 

generated firing pulse. This was minimised by connect- 

ing the electrical load elements in line, approximately 

halfway between the amplifier and the transducer. 
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(iii) Hardware and Apparatus. 

General Firing Circuit 

The general firing circuit which was used for the results 

of Chapter 5, is shown schematically in Fig B9. This 

circuit was built by Hayward (19) and centred' around an 

IRF 830 VMOS switching power FET. The technical data 

for this device is given in reference (56). 

The firing circuit consists of the IRF 830, connected 

as shown via a 330 KQ limiting resistor to an HT supply. 

For the results of Chapter 5, the HT supply was-taken 

from a BRANDENBURG TYPE 475 R-- power supply. The elect- 

rical load elements were connected to the drain of the 

MOSFET as shown, and consisted of a series blocking 

capacitor, C B' and a parallel resistor and inductor, RE 

and LE' (shown dotted. ) The blocking capacitor was 

used for all of the experimental results but the resistor 

and inductor were included only in the cases where their 

presence is indicated. 

This circuit was driven by a 10., us pulse, via a MOSFET 

driver. The application of this pulse caused the IRF 830 

to conduct, effectively shorting the drain and source to 
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ground. In some applications, the source resistor, R 
st 

was connected. This had a value of approximately 10 

and was used to'either enhance or degrade the s; ýitching 

speed of the device, depending upon the electrical load. 

For the fastest applications, the device switched from 

300 V to zero in approximately 30 ns. However, this was 

degraded in some cases to as much as 500 ns. The precise 

details of the switching speed used, are given in the 

experiments of Chapter 5. 

The circuit was connected to the transmitting trans- 

ducer via a short length of co-axial cable. For the 

measur ements of Experimental Setup 1, the firing circuit 

was connected to the transducer clamp. This was mounted 

on the board, in close proximity to the circuit. 

- Several IRF 830 devices were used with this circuit, 

and it was observed that there was a noticeable spread 

in their characteristics. Consequently, the turn-on 

time of the circuit was measured for each experiment, 

and checked against the desired value. 

On the whole, this circuit performed well, although 

when it was operated at its fastest speed, considerable 

care had to be taken to ensure that distortion, due to 
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the co-axial cable, was minimised. It may be possible 

to include these effects into the modelling program 

at a later. stage., This was not attempted here. 

B12 



Receiving Hydrophone. 

The receiving hydrophone used for the experimental 

results of Chapters 5 and 6 was a Polyvinylidene fluoride 

(PVDF) device, supplied by MARCONI Instruments Ltd, 

(serial number Y-33-7611-B701). This device has been 

analysed . 
in detail by BACON (1 ) and Hayward. (19). It 

has a sufficiently large bandwidth to have a negligible 

effect on the shape of the detected signals, (other than 

a scaling factor. ) However, it was noticed that some 

slight distortion of the received waveforms did occasion- 

ally occur. This is probably due to the'directionality 

of the device, rather than its physical response. These 

effects were noted but were small enough t6 be ignored. 

For the results of Chapter 6, the hydrophone was 

connected to a membrane hydrophone amplifier, also 

supplied by Marconi Instruments Ltd. This device is 

detailed in reference (49). It is essentially a low 

noise, high gain, small signal amplifier, designed 

specifically for use with PVDF hydrophones. This device 

had a bandwidth of approximately 10 MHz which was rather 

low for these experiments. Thus it may have contributed 

to the minor distortions of some of the results of 

Chapter 6. 
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Electronic Control Equipment 

The equipment used for the electronic 

control of the transducers was shown schematically in 

Fig 6.4 . It consists of three parts. 

(i) ECL digital memory 

(ii) Digital to Analogue Converter 

(iii) Amplifier stage 

The ECL memory originally comprised part of a digital 

array controller and was the most expensive part of the 

apparatus. To save costs, it was decided to modify the 

array controller, rather than re-build a new memory. The 

array controller was controlled by a TEXAS 9900 micro- 

processor. By re-writing the control software, it was 

possible to adapt the array controller without making 

any major modifications to the hardware. 

The operation and data transfer procedure for the ECL 

memory is shown in Fig B10. The required excitation 

voltage was initially calculated, in sampled form, on a 

Honeywell H6640 mainframe computer. This data was next 

transferred via a serial RS 232 link'to a TEKTRONIX 4051 

intelligent graphics terminal, where it was stored on 

tape. The data was then modified into 8-bit binary form, 

and scaled to allow maximum use of the range of the DAC. 
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Next, the modified data was transferred 

memory via a General-Purpose Interface 

Once loaded into the memory, the stored 

back to the 4051 and checked. Assuming 

occurred, the ECL control program would 

last sample word to be transferred into 

to the ECL 

Bus, (GPIB). 

data was read 

that no errors 

next copy the 

the memory latch 

Finally the stored data was clocked out of the ECL 

memory onto an 8-bit data bus and sent to the DAC. 

When the clock/counter reached the last sample, the 

memory latch was triggered, such that, after the last 

sample was written to the data bus, the latch retained 

this sample on the bus. This technique was discussed in 

Chapter 6. 

It was impracticable': to- hold the last sample of the bus 

for extended periods, so the entire process of generating 

the sampled waveform from the ECL memory was repeated at 

a rate of 50 Hz.. This rate was chosen for two reasons. 

Firstly re-freshing the generated voltage allowed time 

to build up a good image of the waveform on the oscillo- 

scope. For the applications used here, the ECL memory 

size was 1024,8-bit words. At the 50 MHz sampling rate, 

this corresponded to a time length of 
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1024 
6 20.,., us 

50*10 
Bl 

In fact, for the results of Chapters 6, only 512 

words were required and the time length of the waveform 

was 10 Ais. Thus, the maximum refresh rate of the gener- 

ated voltage was 10 xHz. This is too fast for the stor- 

age oscilloscopes, so a lower- value of refresh rate 

was required. 

Now, the memory latch was designed to hold the last 

value of the sampled data string forever, to avoid 

corruption of the generated waveshape. At a refresh 

rate of 50 Hz, the time length of the window was 20 ms, 

clearly this is much larger than the digitized time 

length, and is sufficiently long to avoid corruption of 

the generated waveform. So, 50, Hz was chosen as the 

refresh rate. 

However, now the end of the generated waveform may 

interfere with that of the next cycle. Clearly, this is 

not desirable. The solution to this problem is shown 

schematically in Fig Bll. 
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After the 10 Ais of generated wavef orm, the latch is - 

enabled. The latch remained enabled-for half the , 

refresh periodgand was then switched off. The output 

from the ECL memory-remained at zero until-the next 

refresh cycle began. 

This satisfied all of the required generation I 

conditions - the latch held any non-convergent wave- 

forms for an apparently infinite time, and, when - 

switched off, the dead-period, before each refresh cycle 

ensured that the system was at rest before each new 

refresh cycle. In fact, most of the waveforms generated 

converged to zero within the period of the generating 

voltage and the memory latch was required only in one 

case. 

However, the digital memory did produce one unexpected 

result. Due to the software modifications, it transpired 

that the first word of the ECL memory could not be loaded 

with the proper sample value. In fact, this word held 

a constant value - all but the least significant bit of 

the word remained at zero. Thus, when this word was 

clocked out of memory, it generated an unwanted glitch. 

This initially caused problems, since it distorted the 

generated waveform. However, a simple solution provided 

an unexpected benefit. 
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Ignoring the first sample, the next 100 samples were 

set to zero and then the digitized generating voltage .' 

was loaded into the next 411 memory locations. That is, 

the generating voltage was effectively delayed- by 100 

samples. This is shown in Fig B12. The 100 sample 

buffer after the glitch gave the system enough time to 

rest before the excitation voltage was applied. This 

allowed the glitch to be used as a convenient trigger 

pulse for each cycle of the refreshed voltage. While 

this did reduce the amount of storage available for 

the digitized waveform, it did not have a significant 

effect, and this was used successfully with all of the 

experimental measurements. 

The DAC circuit is shown in Fig B13. This circuit 

is built in accordance with the manufacturees specifi- 

cations (65). The device itself, is a 100 MHz ECL 

convertor, designed to work with composite video 

signals. It worked to its specifications and did not 

cause any problems. Finally, the output of-the DAC was 

connected to an amplifier stage. 

Initially, the Harris amplifier, HA 2539 was used 

and is shown in Fig B14. This circuit was again 

designed to meet the manufacturer's specified layout 

conditions (18). 
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All of the component values were as specified in, the 

diagram, except for the gain resistance, RG* The 1 kf2 

potentiometer was required to level-shift the output of 

the DAC which was offset since the DAC is an ECL device. 

This offset was measured and the potentiometer set, such 

that, when the output of the DAC was zero, - the output of 

the amplifier was zero. After setting, this did not 

require to be altered. 

The gain resistor., R G' was initially. chosen to be 

27 KQ - giving the amplifier a gain of 15. From (18), 

it is apparent that the full swing of 'the amplifier is 

+ 10 V, and from (65), the output swing of the-DAC is 

±0.5 V, therefore this value of gain wi'll, with maximum 

DAC output, generate a swing of ±7.5 V. This avoids 

saturating the amplifier. However, it may also be 

observed from (18) that the gain bandwidth'product of the 

amplifier is 600 MHz. So, with this gain, the device has 

a bandwidth of 40 MHz - less than the DAC output. In 

some of the examples of Chapter 6, it was necessary to 

increase the bandwidth to that of the memory, 50ýMHz. 

This requires a gain of 12 and RG was correspondingly 

reduced to 22 KQ Under these conditions, the full 

gain swing of the amplifier reduced to ±6 V. This was 
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rather low for some applications, (particularly the 

bipolar step pulse. ) Thus a second amplifier stage was 

added for some cases. 

The second amplifier is shown schematically in 

Fig B15. It consisted of a Burr-Brown-3554 op-amp, and 

again, the circuit was laid out and built to the manu- 

facturer'S specifications (8 ). This device is designed 

to be a high-gain, low noise, small signal amplifier. 

In this case, it was used as a power amplifier with a, 

gain of 1.5 - 2. Under these conditions, the except- 

ional bandwidth of this device is dramatically reduced 

and the noise level of the generated signal rose apprec- 

iably. However, the increase in signal strength just- 

ified the application and the results taken with this 

second stage were reasonably good. This amplifier is 

not designed for the application considered here, but it 

was the only solution available at the time. , 

In general, the first amplifier stage performed as it 

was designed to. It had not been anticipated that a 

second stage would be required, since the initial calcu- 

lations suggested that the maximum voltage swing of the 

first stage would generate acoustic pulses of sufficient 

amplitude to be readily detected by the, receiving 
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apparatus. In practice, the noise level of the system 

made the smaller signals almost indistinguishable from 

the noise, and so the s-ec-onA stage was required. 

Although this also increased the noise level, the 

increase in the signal strength was sufficient and the 

generated acoustic transients were detected. The last 

three cases of Chapter 6 are examples of voltage gener- 

ation using the two-amplifier system. 

If more time had been available, it should have been 

possible to build a second stage with a larger voltage 

swing of, for example 20 - 30 V. Assuming that no 

significant increase in the noise level occurs, this 

would produce acoustic outputs of reasonably good 

intensity - certainly enough to avoid any detectability 

problems. It may also be possible to increase the gain 

of the receiving hydrophone amplifier, although. this in 

itself would not solve the problem, since most of the 

signal noise appears to be generated on the transmission 

side. Thus, the development of better amplifiers is 

certainly worth further investigation. 

Ancillary Apparatus 

Finally, all of the experimental measurements were 

made using TEKTRONIX storage oscilloscopes, 
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TEKTRONIX 466 

and TEKTRONIX 7633. 

The latter had the screen-writing facility which is 

apparent in some results. However, the first was more 

sensitive and had a better storage facility. 
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APPENDIX C 

This appendix presents the derivation of a simple 

expression for the ofi-axis field of a circular trans- 

ducer. 

Consider the arbitrary surface, s, shown in Fig Cl. 

The velocity potential at the field point, P, is 

obtained by integrating a number of Huygens' radiators 

over the surface, s. For harmonic radiators, this is 

expressed as Rayleigh's equation, 

1v -ikr d 211 m- r s 
cl 

where Vm is the normal velocity, with respect to the 

surface, s. 

When the piston motion is not simple harmonic, 

1 V(t-r/c) ds 
211 

1r 

s 
C2 

cl 



where c is the velocity of sound in the medium. The 

term V(t-r/c) is the normal velocity for the element- 

ary radiator ds, and time (t-r/c). 

The pressure, P, at the desired field point is 

given by, 

P =p 
0 
dt C3 

where p is the density of the medium. 

Applying equation C2 to a circular transducer, 

results in Fig C2. The device is circular, with rad- 

ius R, and lies in the y-z plane, such that the x-axis 

is normal to the transducer and passes through its 

centre. 

Two points in the field are shown -P (off-axis) 

and P' (on-axis). For the geometry shown, 

ds - Odadý) C4 

The impulse velocity potential at the general point 

P is, from equation C2, 
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ýip 
6(t-rl /c)adadq) 

C5 211rl 
s 

where . 

rl = (r 2 
+ß 

2) 1/2(1_2rßsinOcosý) ) 
(r2 +ß 

2) C6 

There is no simple closed-form solution for this 

integral. However, consider the impulse velocity 

potential as Pl. This is given by, 

R 211 (r 2 
+0 

2) 1/2 - 

ýipl 
6(t- 

2c2 

)Odad, ý 

211(r +0 )1/2 
C7 00 

This simplifies to give, 

Rr2+2 1/2 
) 211 

c Oda diP 
elpi 211(r 2 

+0 
2) 1/2 

0 C8 0 

which becomes, 

R2 1/2 
6(t- c )Oda 

ipl 

I 

(, ý +02 ) 
1/2 

C9 
0 
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This integral may be solved by substitution as 

follows: - 

Let, 

wc2) 1/2 
clo 

and, 

w2 Cil 

Then, from C10 the limits of integration are, 

r2 +R 
2 1/2 

c2 C12 

and, 

dw dy dw 
do - do * dy C13 

thus, 

dß = (WC 2 /ß) dw C14 
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Substituting these terms into equation C9 gives, 

(r2 +R 
2 

)1/2 

ýipl =cc 6(t-w)dw 

ý/c 

C15 

This is the straightforward integration of a delta 

function, and, by the sifting property gives, 

e "C U-1 (t-r/C)-u_, (t- (2) 
j) 

C16 ip 

1 

where u 
-1 

is the unit-step function. This is sketched 

in Fig C3. 

Thus, the pressure impulse response , given by 

equation C3 becomes, for this case, 

22 
h pC 

[6(t-r/C)- 
6( t_(r +R )1/2) C17 

P1 c2 

This is sketched in Fig C4. 
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Thus the pressure profile at any point on the axis 

may be obtained by convolution, 

hp *f 
p C18 

where fp is the plane-wave output from the discrete- 

time (z-domain) model. 

This result may be explained simply as follows. 

The first impulse in equation P, 17 is delayed by an 

amount r/c. From Fig C2, this is just the time delay 

for the plane-wave comppnent to travel from the trans- 

ducer surface to the measuring point, P 10 The second 

impulse is delayed by the term (r 2 
+R 

2)1/2 /C. This is 

the time for wave-components to travel to P1 from the 

edge of the transducer. These wave-components are, in 

fact, of exactly the same shape as the plane-wave 

components, in this case. These correspond to the edge 

waves which were noted in Chapter 5. 

The second impulse has a negative sign, so the edge- 

wave component is subtracted from the plane-wave 

component, as specified by equation C17. 
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This technique was used to model the response of 

case 20 in Chapter 5. For cases where r>>R, that is, 

in the far field, the results were reasonably good. 

However, this method did not work as well in the near 

field area. There are two possible reasons for this. 

Firstly, the edge-components may be partially 

generated by radial vibrations. Thus, the assumption 

that the shape of the edge and plane components is the 

same is not valid. Secondly, the position of the 

hydrophone is more critical in the near field then the 

far field. So, small Variations in position would 

have little effect when r>>R but could be critical in 

the near field region. 

This method was originally proposed by Hayward, and 

is included here to show hbw-the basic z-domain trans- 

ducer model may be extended to include field effects. 
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APPENDIX D 

The transducer modelling techniques developed in this 

thesis were implemented as an interactive computer 

modelling package. The programmes were written in 

FORTRAN IV plus and ran on a Honeywell H6060 mainframe. 

Unfortunately, the programmes were too large to include 

listings in this Appendix, so only a brief description 

of the programme structures follows. Listings may be 

obtained either from the author or from DR G HAYWARD at 

Strathclyde University. 

Three main programmes and a shared library form the 

basis of the interactive modelling package. These were 

designed in a structured manner to avoid duplicating 

routines and algorithms, but it should be appreciated 

that, since most of the software was undergoing continual 

development, there exists scope for improvement. 

The first programme FMOD, uses the IFFT technique 

discussed in the introduction, to calculate the transient 

response of transducer systems from their complex fre- 

quency spectra. The three-port system matrices, [P] and 

[w] 
, of Chapters Two and Three form the basis of the 

programme. These were implemented using normal program- 
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ming methods with a simple interactive menu. This allows 

the user to select the appropriate trzm-s-fer function. 

Once the spectrum has been calculated, the user has the 

option to view both the amplitude and phase'plots. 

Alternatively, he'may use the IFFT to calculate the tran- 

sient response which may then be displayed. Several IFFT 

routines were tested, including the three available NAG, 

(Numerical Analysis Group), packages. Unfortunately, 

these require all 1/0 to be specified in double-precision 

format. This is costly, in terms of storage, so a 

single-precision IFFT was used instead, based on the 

Sand-Tukey Algorithm. This programme was supplied as a 

BASIC option for the 4051 intelligent graphics terminal 

and was rewritten in FORTRAN by the author. It worked 

as expected and was used for all subsequent calculations. 

This programme was not used for any of the plots pre- 

sented in this thesis, but as a benchmark technique. 

That is, the results produced by FMOD were known to be 

correct, (by comparison with, for example, the KLM model). 

Thus, when the z-form techniques were being developed, 

FMOD provided a standard solution with which each new 

algorithm could be compared. 
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The development time of FMOD was comparatively short- 

approximately four weeks-although later modifications 

probably account for this much time again. Hence*FMOD 

contains approximately eight man weeks work. This pro- 

gramme has now been largely superceded by the z-form 

algorithm. 

The second programme MOD, uses the z-form technique 

of Chapter Four. This programme is considerably more, 

complex than FMOD, since it is necessary to manipulate 

the differential and delay terms as separate vectors, 

(as discussed in the first section of Chapter Five). The 

programme is similar to FMOD in one respect - it is, also 

menu-driven. Several versions of MOD have been devel- 

oped, generally with each successive version operating 

faster than its predecessor. At present, MOD is 

approximately an order of magnitude faster than FMOD, 

(when both programmes calculate a comparable. case). 

The development of MOD may be conveniently divided 

into two section - the main programme manipulation and 

the z-form Q-matrix. Development of the polynomial man- 

ipulation-routines took approximately three man months 

to perfect. However, it was thisýsection which was sub- 

ject to repeated improvement, since there is not necess- 
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arily a 'best' solution to-the problem of storing and 

handling several variable multi-dimensional polynomials. 

At present, a compromise method is used, such that the 

total number -of storage vectors required is not excess- 

ive. The manipulation algorithms have taken several 

generations to perfect but those in use at present are 

the fastest implemented so far. 

Development of the Q-matrix algorithms followed the 

path described in Chapter Four, where several algorithms 

were implemented and tested, their various merits and 

drawbacks then being compared. These algorithms were 

used to form a sub-section of the shared library, such 

that the implemented software does not form a part of 

any specific programme. It is used and accessed via a 

multiple subroutine system. This method was adopted for 

several reasons but principally because, once implemen- 

ted, the z-form package was complete, that is, no further 

development or improvement was likely. Thus, by creating 

a sppatate Q-matrix sub-library, the technique became, a 

standard package which may be independently accessed from 

multiple programmes without any danger of corruption. 

It also avoids duplication of software and the possible 

danger of several different versions of the same algo- 

rithm existing at the same-time. - 
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Thus the MOD is a two-level programme which makes 

extensiveýuse of the shared library. 

At present, further development of MOD itself seems 

inlikely, since the current version-more than out-per- 

forms FMOD. MOD was used to'generate all of the 

synthetic plot results of Chapter Five. 

The third programme is ZINV, the inversion programme 

used in Chapter Six. ZINV is a further development of 

MOD and was originally intended to supercede ZMOD. How- 

ever, there was insufficient time to develop ZINV into 

a comprehensive interactive package. 

At present, it consists-of the core of MOD with'a 

variety of extra routines added at appropriate places 

to allow the inversion calculations to be made. Unlike 

FMOD and MOD, ZINV has not been developed into a com- 

plete menu-driven package. Thus, at places the user is 

required to have an extensive knowledge of exactly what 

is happening to allow the programme to proceed properly. 

This is unfortunate but leaves scope for substantial 

future development. 

ZINV (in several different versions) was used to 
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produce the synthetic inversion plots of Chapter Six. 

So, far, this programme has involved approximately six to 

eight man weeks of development time. 

Finally, the shared library contains areas of software 

which areýcommon either to all, or to one particular 

programme. The library has been sub-divided into several 

sections which may be briefly'summmarised as follows. 

The Q-matrix section occupies approximately one-fifth 

of the library, together, with its associated subroutines. 

The common input/output subroutines occupy approximately 

a quarter of the library. These routines'were designed 

such that a user familiar with one of the three main 

programmes would quickly be able to use either of the 

other two. As mentioned earlier, this has yet to be 

extended to ZINV but has proved successful with FMOD-and 

ZMOD. It is also an efficient programming method, since 

it avoids unnecessary duplication. At present, three , 

levels'of interaction exist, although this is subject to 

modification. 

The polynomial manipulation routines occupy'about 

half of the total library space. These routines are 

largely unrelated, although they all perform the broadly 
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similar function of manipulating a set of data into a 

desired form. Approximately half of these routines 

are final versions, while the remainder are subject to 

occasional modification. 

The remainder of the library space is taken up by a 

set of useful routines which are only used within the 

library. For example, polynomial multiplication. 

The routines within the library were, without excep- 

tion, originally developed as part of a master programme 

(usually ZMOD). Thus, -it is-inappropriate to estimate 

the development time of the library itself, although 

construction and modification themselves probably took 

about three man months. 

Further description of any of the main software is 

rather pointless without a detailed examination of the 

programme listings. However, some general points regar- 

ding the software development should be considered. 

Most of the implemented algorithms'are devel- 

opments of equations given in the main part 

of this thesis. Particular details are not 

of great importance, since there are usually 
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several methods of impleýenting the same 

algorithm. The author has attempted, as far 

as possible, to develop each algorithm into 

a form that is appropriate for the language 

and computer used. 

Approximately 40% of the software and 20% of 

of*the algorithms, '(particularly those con- 

cerned with input/output), are machine or 

machine-interface related. Thus, if the soft- 

ware were to be trasferred to another comput- 

er, these would require modification. 

While a structured development was carried 

out as far as possible, it should be remem- 

bered that these programmes were largely 

original. Consequently, some of the sub- 

routines and algorithms are not quite as 

efficient as they could be. 

This concludes the description of the software. As 

mentioned earlier, programme listings are available from 

the author or DR G HAYWARD at Strathclyde University. 
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