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Abstract

Metabonomics is one of the main technologies used in biomedical sciences to
improve understanding of how various biological processes of living organisms
work. It is considered a more advanced technology than e.g. genomics and
proteomics, as it can provide important evidence of molecular biomarkers for
the diagnosis of diseases and the evaluation of beneficial adverse drug effects,
by studying the metabolic profiles of living organisms. This is achievable by
studying samples of various types such as tissues and biofluids. The findings
of a metabonomics study for a specific disease, disorder or drug effect, could be
applied to other diseases, disorders or drugs, making metabonomics an important
tool for biomedical research.

This thesis aims to review and study various multivariate statistical techniques
which can be used in the exploratory analysis of metabonomics data. To mo-
tivate this research, a metabonomics data set containing the metabolic profiles
of a group of patients with epilepsy was used. More specifically, the metabolic
fingerprints (proton NMR spectra) of 125 patients with epilepsy, of blood serum
type, have been obtained from the Western Infirmary, Glasgow, for the purposes
of this project. These data were originally collected as baseline data in a study to
investigate if the treatment with Anti-Epileptic Drugs (AEDs), of patients with
pharmacoresistant epilepsy affects the seizure levels of the patients. The response
to the drug treatment in terms of the reduction in seizure levels of these patients
enabled two main categories of response to be identified, i.e. responders and the
non-responders to AEDs. We explore the use of statistical methods used in meta-
bonomics to analyse these data. Novel aspects of the thesis are the use of Self
Organising Maps (SOM) and of Fuzzy Clustering Methods to pattern recognition
in metabonomics data.

Part I of the thesis defines metabonomics and the other main "omics" technolo-
gies, and gives a detailed description of the metabonomics data to be analysed, as
well as a description of the two main analytical chemical techniques, Mass Spec-
trometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR), that can
be used to generate metabonomics data. Pre-processing and pre-treatment meth-
ods that are commonly used in NMR-generated metabonomics data to enhance
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the quality and accuracy of the data, are also discussed.

In Part II, several unsupervised statistical techniques are reviewed and applied
to the epilepsy data to investigate the capability of these techniques to discrim-
inate the patients according to their type of response. The techniques reviewed
include Principal Components Analysis (PCA), Multi-dimensional scaling (both
Classical scaling and Sammon’s non-linear mapping) and Clustering techniques.
The latter include Hierarchical clustering (with emphasis on Agglomerative Nest-
ing algorithms), Partitioning methods (Fuzzy and Hard clustering algorithms)
and Competitive Learning algorithms (Self Organizing maps). The advantages
and disadvantages of the different methods are examined, for this kind of data.
Results of the exploratory multivariate analyses showed that no natural clusters
of patients existed with regards to their response to AEDs, therefore none of these
techniques was capable of discriminating these patients according to their clinical
characteristics.

To examine the capability of an unsupervised technique such as PCA, to
identify groups in such data as the data based on metabolic fingerprints of pa-
tients with epilepsy, a simulation algorithm was developed to run a series of ex-
periments, covered in Part III of the thesis. The aim of the simulation study is to
investigate the extent of the difference in the clusters of the data, and under what
conditions this difference is detectable by unsupervised techniques. Furthermore,
the study examines whether the existence or lack of variation in the mean-shifted
variables affects the discriminating ability of the unsupervised techniques (in this
case PCA) or not.

In each simulation experiment, a reference and a test data set were generated
based on the original epilepsy data, and the discriminating capability of PCA
was assessed. A test set was generated by mean-shifting a pre-selected number
of variables in a reference set. Three methods of selecting the variables to mean-
shift (maximum and minimum standard deviations and maximum means), five
subsets of variables of sizes 1, 3, 20, 120 and 244 (total number of variables in the
data sets) and three sample sizes (100, 500 and 1000) were used. Average values
in 100 runs of an experiment for two statistics, i.e. the misclassification rate and
the average separation (Webb, 2002) were recorded. Results showed that the
number of mean-shifted variables (in general) and the methods used to select the
variables (in some cases) are important factors for the discriminating ability of
PCA, whereas the sample size of the two data sets does not play any role in the
experiments (although experiments in large sample sizes showed greater stability
in the results for the two statistics in 100 runs of any experiment). The results
have implications for the use of PCA with metabonomics data generally.
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Project and Data Description



Introduction

Part I contains the necessary background information for the project. Such in-
formation includes the definition of metabonomics (as the data to be analysed
is of this type), the definition of epilepsy and related syndromes (since the data
comes from the blood serum of people with epilepsy), the analytical techniques
which can be used to generate the metabonomics data from the blood serum of
the patients, and the pre-processing and pre-treatment methods which can be
applied to the generated by NMR Spectroscopy data, to prepare this data for
further statistical analysis.

The generation of information about the genome, the scope of this thesis, de-
scriptions of the -omics, as well as of metabolic profiling, fingerprinting and target
analysis, is the subject of Chapter 1. More specifically, the relationship between
the various fields of bionomics is depicted graphically and a brief description of
genomics, proteomics and metabonomics are given in Section 1.3 and of toxicoge-
nomics in Section 1.4 . The advantages of using the metabonomics technology, as
well as brief descriptions of the main approaches used for the analysis of metabolic
networks and pathways are also stated in the same section. Finally, in Section
1.5 a short description of chemometrics is given.

The definition of epilepsy and of epileptic syndromes, as well as the types of
epileptic seizures and some important facts about epilepsy are given in Chapter
2, Section 2.2. The problem is described in Section 2.3 whereas the data to be
analysed (clinical and spectral information and important characteristics of the
patients in the data set) are mentioned in Section 2.4.

In Chapter 3, the two most important (and commonly used) analytical chemical
techniques for the generation of metabonomics are discussed. More specifically,
Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) Spectroscopy
are described in detail and a comparison between these two techniques is attemp-
ted. MS is covered in Section 3.2, which includes the theoretical background,
history and a description of the main components of an MS instrument and of a
mass spectrum it produces, as well as a list of applications of MS to metabonom-
ics studies. NMR spectroscopy is covered in Section 3.3, which likewise in MS, it

2



includes the theoretical background of NMR, a description of the main compon-
ents of an NMR spectrometer and of an NMR spectrum. A list of applications
of NMR to metabonomics studies is also given in this Section. Finally, the main
advantages and disadvantages of the two metabonomics analytical techniques are
given in Section 3.4.

Chapter 4, which completes this part of the thesis, deals with pre-processing
and pre-treatment methods that can be used in NMR spectra to enhance the
quality and accuracy of the generated metabonomics data removing any irrelevant
information such as signal noise (pre-processing) and also to prepare the data so
that it is suitable for statistical analysis (pre-treatment). Pre-processing methods
such as binning, baseline correction, deconvolution and smoothing are discussed
in Section 4.3. Pre-treatment methods such as scaling (row and column) and
transformations are discussed in Section 4.4.

3



Chapter 1

Generating Information About

the Genome

1.1 Introduction

One of the most important achievements of researchers in biomedical sciences
is the decoding of the gene sequences of various organisms, one of which is the
human. In addition, there are now large databases of single gene variations.
Although the evaluation of gene expression (transcriptomics) and protein level
(proteomics) changes has been extended significantly in the last few years, there
is still a lot of research to be done in these areas (Fiehn, 2001). As will be seen
in this thesis, another technology can be used to improve the understanding of
how the various biological processes work. This is termed metabonomics, and in
general, is regarded as a better technology than those mentioned previously, as
it provides important evidence of molecular markers for the diagnosis of diseases
and the evaluation of beneficial or adverse drug effects (Lindon, 2004). Metabo-
nomics relates to the gene and protein expressions as well as to the metabolism,
and considers also any environmental and physiological variation factors which
can influence any part of the molecule (Bollard et al., 2005b). This chapter covers
the scope of this research, as well as descriptions of the main functional genomic
levels (transcriptome, proteome, metabolome) and the technologies used to study
the functional networks and pathways of these genomic levels (transcriptomics,
proteomics, metabonomics/metabolomics), as well as the effects of environmental
and physiological variation factors to functional genomics (toxicogenomics). The
three main ways of analysing metabolic networks and pathways, metabolite profil-
ing, fingerprinting and target analysis, as well as the use of multivariate statistical
techniques to chemical and/or biological data such as metabonomics data (called
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chemometrics), are also briefly discussed in this chapter.

1.2 Scope of the Thesis

The purpose of this research is to investigate statistical techniques which can
be used in the analysis of metabonomics data. The metabolic profiling of blood
serum with newly diagnosed epilepsy will be used as an example. More specific-
ally, the aim is to assess the ability of various clustering techniques to discriminate
between two groups of patients, responders and non-responders to AEDs, by ex-
ploring the metabolic profiles of blood serum of patients with epilepsy. This
investigation, hopefully, will confirm whether these clustering techniques can be
used to identify any natural groupings in data such as those consisting of meta-
bolic profiles.

1.3 Bionomics

The main four "omics" technologies, also called as bionomics, are genomics, tran-
scriptomics, proteomics and metabonomics (Lindon et al., 2001). The relationship
between these technologies can be seen in Figure1 1.1.

1.3.1 Genomics/Transcriptomics

Genomics involve the study of an organism’s entire genome. This field includes
the observation and investigation of gene sequences and differences in those se-
quences between species and individuals, as well as of the variation of gene se-
quences in health and disease. More specifically, genomics study the differences
in gene expression due to genetic modifications, diseases or toxicity, caused by
compounds foreign to the organism, such as drugs (Lindon et al., 2001). This
is a complex, lengthy and expensive approach and relative few organisms have
been sequenced until now. However, the field of genomics cannot explain the
biological consequences from changes to genes expression. For this reason, the
field of proteomics has been developed.

1Source: Based partially in (Nielsen and Oliver, 2005), Figure 1 and (Oberemm et al., 2005),
Figure 2.

1.2. SCOPE OF THE THESIS
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Figure 1.1: Simplified Relationship between the main -omics technologies. There are also multiple
feedback loops from metabolites to proteins and /or transcripts among others.

1.3.2 Proteomics

The study of the full set of proteins (the proteome) encoded by a genome. It in-
volves the quantitative and qualitative measurement of the production of cellular
proteins as a consequence of drug exposure and other pathophysiological pro-
cesses (Lindon et al., 2001). There are many different approaches to address the
very extensive range of proteins and most of them are based to some form of Mass
Spectrometry. All proteomic measurements require a protein separation method
such as 2D gel-electrophoresis. Proteomics are less expensive than genomics, but
can be slow and labour-intensive. It is also very difficult to relate genomic and
proteomic findings to known information about toxicity or toxicological endpoints
(Lindon et al., 2000).

1.3.3 Metabonomics

While mRNA gene expression data and proteomic analyses cannot fully explain
what actually happens in a cell, metabolic profiling can give an instantaneous
picture of the physiology of the cell. Thus, the study of metabolic networks and
pathways is required to complement the understanding of biological processes in

1.3. BIONOMICS



CHAPTER 1. Generating Information About the Genome 7

living organisms. Metabonomics is a technology which aims to achieve that goal.
Lindon (2004) comprehensively defines metabonomics as:

The quantitative measurement of the time-related multiparametric meta-
bolic response of living systems to pathophysiological stimuli or genetic
modification.

More precisely, metabonomics can be defined as (Nicholson et al., 2007):

The comprehensive and simultaneous systematic profiling of multiple
meta-bolic levels and of their systematic and temporal changes caused
by factors such as diet, lifestyle, environment, genetic effects and
pharmaceutical effects, both beneficial and adverse, in whole organ-
isms.

This can be achieved by studying samples of various types such as biofluids (e.g.
cerebrospinal fluid (CSF), blood plasma, blood serum, urine, seminal fluid, bile),
tissue extracts (e.g. cardiac, liver, renal) and cell culture supernatants. An-
other technology, apparently similar to metabonomics, is termed metabolomics.
Initially, involved mainly the study of in vitro systems in the plant science, but re-
cently metabolomics have been used for the study of mammalian systems as well.
Metabolomics involves the global analysis of all metabolites in a sample (Goo-
dacre et al., 2004; Weckwerth and Morgenthal, 2005; Nielsen and Oliver, 2005;
Griffin, 2004), whereas metabonomics is the analysis of metabolic responses to
drugs or diseases (Lindon et al., 2004, 2006; Goodacre et al., 2004; Griffin, 2004;
Lindon, 2004). Although metabolomics aims to identify and measure the dynamic
set of all molecules present in an organism or biological sample, and metabonom-
ics aims to identify target compounds and their biochemical transformations,
both technologies now converge in methods and approaches used in the analysis
of their data (Lindon et al., 2006; Weckwerth and Fiehn, 2002; Want et al., 2007;
Ekins et al., 2005; Ryan and Robards, 2006).

1.3.4 Advantages of Metabonomics

According to Nicholson et al. (2007), the advantages of using metabonomics to
biomedical applications can be summarised as:

• Using metabonomics it is easier to relate observed gene expression fold
changes to conventional end-points (e.g in disease diagnosis and pharma-
ceutical evaluation) than transcriptomics.

• Gene expression and protein translation analyses are based almost exclus-
ively in one analytical technique, mass spectrometry (MS), whereas meta-
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bonomics is not restricted to MS.

• Metabonomics is faster, less labour-intensive and more technological ad-
vanced than proteomics.

• It involves the observation of the biochemical effects in an organism, thus
representing a closer approach to real-world end-points than the other "om-
ics" approaches.

1.3.5 Metabolic Profiling, Fingerprinting and Target

Analysis

There are three main approaches which are consistently being used for the ana-
lysis of metabolic networks and pathways. These are metabolite profiling, meta-
bolite fingerprinting and metabolite target analysis (Ryan and Robards, 2006;
Nielsen and Oliver, 2005; Fiehn, 2002). Metabolite profiling is concerned with
the identification and quantitation (by using a specific analytical technique), of
a predefined group of known or unknown metabolites (e.g. a class of metabolites
such as carbohydrates and amino acids), which belong to a selected metabolic
pathway. This is the oldest and most established metabolite analysis approach
and is considered as the precursor for metabonomics and metabolomics. Metabol-
ite fingerprinting can be considered as spectra generated by analytical techniques
such as NMR and MS, which provide a fingerprint of the metabolites produced by
a cell. It aims to rapidly classify a large number of samples with the aid of mul-
tivariate statistics, without differentiation of individual metabolites or providing
any information about specific metabolites. Metabolite target analysis, contrary
to metabolite fingerprinting, aims to the qualitative and quantitative analysis of
a specific metabolite or metabolites which participate in a specific part of the
living system’s metabolism. Thus, only signals from the required metabolites are
retained for analysis, whereas the rest of the signals are being ignored.

1.3.6 Metabonomics Applications

Metabonomics can be applied to a wide range of applications. Especially, to mam-
malian systems, applications of metabonomics include the study of phenotypic
and physiological effects (Bollard et al., 2005b), the pre-clinical drug candid-
ate safety assessment (Lindon et al., 2003) and the disease diagnosis and thera-
peutic efficacy (Lindon et al., 2004). Among the various areas of application of
metabonomics, an important area involves the investigation of multi-parametric

1.3. BIONOMICS
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metabolic responses of mammalian systems to various diseases. More specific-
ally, recently it has been possible to analyse biofluids, such as blood serum or
urine, for the purpose of investigating the effects of drug administration to living
organisms. In the case of human biofluid samples, metabonomics can be used
to facilitate the diagnosis of diseases such as heart disease, cancer and epilepsy
(Lindon et al., 1999). The investigation of the diagnosis of drug-resistant epilepsy
and of possible insights in anti-epileptic drug-administration are examined in this
thesis.

1.4 Toxicogenomics

Toxicogenomics is the study of how genomes respond to environmental stressors
or toxicants. It combines genome-wide mRNA expression profiling (transcrip-
tomics), cell and tissue-wide protein expression (proteomics), metabolite profil-
ing (metabolites) and bioinformatics with conventional toxicology to understand
the role of gene-environment interactions in disease and dysfunction (Oberemm
et al., 2005; Schmidt, 2002). Toxicogenomics can also be used as a preventative
measure for the prediction of adverse effects of drug treatment to living organ-
isms. Diagnostic markers can be developed by correlating toxicogenomics studies
to adverse toxicological effects in clinical trials. It is then theoretically possible to
assess an individual’s susceptibility to these adverse effects before administering
a drug, so that the treatment of that individual can be done with a different drug,
in case a marker of adverse effects is confirmed for this patient.

1.5 Chemometrics

Chemometrics, in general, involve the application of multivariate statistical tech-
niques, pattern recognition methods and informatics to chemically-based data.
The initial objective in metabonomics is to classify a spectrum (generated by
a metabonomics analytical technique and containing e.g. the metabolic profile
information of a patient) based on identification of its inherent patterns of peaks
and secondly to identify those spectral features responsible for the classification.
This approach can also be used for reducing the dimensionality of complex data
sets, for example by two or three-dimensional mapping procedures to enable easy
visualisation of any clustering or similarity of the various samples. In addition,
supervised chemometric methods can be used to model multi-parametric data
sets, so that the class of separate samples (a validation set) can be predicted

1.4. TOXICOGENOMICS
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based on a series of mathematical models derived from the original data (the
training set).

In the next chapter, the problem that this thesis is concerned with, will be
discussed, as well as the data set that will be used for the statistical analyses.
In addition, as the data concerns patients with epilepsy, some information about
what epilepsy is and a few important facts about this disease (or disorder in some
cases), are given.

1.5. CHEMOMETRICS



Chapter 2

Project Description

2.1 Introduction

Despite the seminal advances in epilepsy research during the last century, it is still
a considerable challenge for epilepsy researchers to fully understand the neuro-
biology of epilepsy. The complexity of this disorder is not only due to the fact
that it involves among other living organisms the human, which is the most com-
plex entity in the known world, but also due to the fact that many seemingly
unrelated factors can affect significantly the levels of seizure activity in humans.
Such factors include among others fever, sleep deprivation, hormonal disturb-
ances, stress and drug treatment. This study aims to improve the understanding
of the underlying mechanism of the response to AEDs treatment of patients with
pharmacoresistant epilepsy. That is, to study the effect of drug treatment in the
reduction of seizure levels of epileptics. Therefore, the definitions of terms re-
lated to epilepsy such as epileptic disorder, epileptic seizure, epileptic syndrome
and epileptic disease, as well as the main types of epileptic seizures and syn-
dromes/diseases are stated in Section 2.2. A description of the problem under
investigation is given in Section 2.3, whereas specific general clinical information
about the patients participating in this research, the format of the data sets and
the specific characteristics of the subjects in the original data set can be found
in Section 2.4.

2.2 Definition of Epilepsy

To define the term epilepsy, one should be careful as there is no common agree-
ment. The International League Against Epilepsy (ILAE) and the International
Bureau for Epilepsy (IBE), define the term Epileptic Disorder as a chronic
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neurologic condition characterized by recurrent epileptic seizures (Blume et al.,
2001). They also give the definition of the term Epilepsies as those conditions
which involve chronic recurrent epileptic seizures that can be considered epileptic
disorders. Although many different opinions on these terms and definitions exist
among the community involved in this matter (physicians, educators, researchers
and others), a more complete way of defining the terms epileptic seizure and
epilepsy are given below:

An epileptic seizure is a transient occurrence of signs and or symp-
toms due to abnormal excessive or synchronous neuronal activity in
the brain (Fisher et al., 2005).

A description of epilepsy which involves this kind of seizure can be given as

Epilepsy is a disorder of the brain characterized by an enduring pre-
disposition to generate epileptic seizures and by the neurobiologic, cog-
nitive, psychological and social consequences of this condition. The
definition of epilepsy requires the occurrence of at least one epileptic
seizure (Fisher et al., 2005).

Furthermore, according to the latest ILAE classification of epilepsies, two differ-
ent concepts have been proposed, namely Epilepsy syndrome and Epilepsy
disease (Engel, 2006a). The former is defined as

A complex of signs and symptoms that define a unique epilepsy condi-
tion with different etiologies, which must involve more than the seizure
type

whereas the latter is defined as

A pathological condition with a single specific, well-defined etiology.

It is important to note, that according to Fisher et al. (2005) there are three main
elements which characterise epilepsy. First of all, at least one seizure is required
to establish the presence of epilepsy. Secondly, under the above definition the
diagnosis of epilepsy would also require an enduring disturbance of the brain,
efficient to give rise to other seizures. Lastly but not less importantly, any neuro-
biologic, cognitive, psychological and social disturbances that some people with
epilepsy appear to have should be assessed as part of their epileptic condition.

2.2.1 Types of Epileptic Seizures

A classification according to ILAE of the various epileptic seizures with respect
to their clinical type is given below (Engel, 2006a,b; Devinsky, 1999):

2.2. DEFINITION OF EPILEPSY
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Self-limited Epileptic Seizures

• Generalized seizures (convulsive or non-convulsive). The main gen-
eralized seizures include types such as tonic and/or clonic seizures, absences,
myoclonic seizure types, epileptic spasms and atonic seizures.

• Focal seizures. These involve in general focal sensory or motor seizures.
The main categories of focal types include:

– Local or sensory. Neocortical (with or without local spread) or Hip-
pocampal/Parahippocampal seizures.

– Motor seizures. These include hyperkinetic seizures and dyscognitive
seizures with or without automatisms. The former affect neocortical
areas whereas the latter limbic areas.

– Focal with contralateral spread to specific areas. Such seizure
types are among others, the hemiclonic seizures affecting the neocor-
tical areas and the gelastic seizures affecting the limbic areas.

• Neonatal seizures. These are separated from the other self-limited epi-
leptic seizures as they often display unique organizational features (Engel,
2006b).

Continuous Seizures - Status Epilepticus

These seizure types include the various generalized status epilepticus types such
as the clonic, absence, tonic and myoclonic epilepticus types and the focal status
epilepticus types such as the epilepsia partialis continua of Kojevnikov (EPC),
the aura continua, the limbic status epilepticus and the hemiconvulsive status.

2.2.2 Epilepsies and Epileptic Syndromes

Similarly, epilepsies and epileptic syndromes can be classified according to ILAE
with respect to the age of onset and related conditions, in the following way
(Engel, 2006a,b):

1. Neonatal period. The neonatal epilepsies include the Benign familial
neonatal seizures (BFNS), the Early myoclonic encephalopathy (EME) and
the Ohtahara syndrome.

2. Infancy. These include among others the West syndrome, the Myoclonic
epilepsy in infancy (MEI) and the Dranvt syndrome.

3. Childhood. Syndromes which belong to this category of epilepsies in-
clude among others the Benign childhood epilepsy with centrotemporal spikes

2.2. DEFINITION OF EPILEPSY
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(BCECTS), the Lennox-Gastaut syndrome (LGS), the Landau-Kleffner syn-
drome (LKS) and the Childhood absence epilepsy (CAE).

4. Adolescence. The Juvenile absence epilepsy (JAE), the Juvenile myoclonic
epilepsy (JME) and the Progressive myoclonus epilepsies (PME) are types
of adolescence epileptic syndromes.

5. Non-specific age relationship. These syndromes include the Autosomal
- dominant nocturnal frontal lobe epilepsy (ADNFLE), the Rasmussen syn-
drome, the Familial temporal lobe epilepsies and the Gelastic seizures with
hypothalamic hamartoma.

6. Special epilepsy conditions. In this category of epilepsies, belong syn-
dromes such as the Reflex epilepsies, the Febrile seizures plus (FS+) and
the Familial focal epilepsy with variable foci.

2.2.3 Epidemiology of Epilepsy

Recent studies (Kwan and Brodie, 2000a; Loscher, 2002) show that epilepsy af-
fects just under 1% of the population worldwide and about 4% of individuals
over their lifetime (Loscher and Schmidt, 2002). More specifically, in Europe1,
the estimated prevalence of epilepsy in 2004, was approximately 4.3-7.8 per thou-
sand of individuals. The estimated total cost of epilepsy in Europe in 2004 was
nearly 11 billion pounds (Pugliatti et al., 2007). In the USA, the disorder affects
approximately 0.6% of the population and has a lifetime prevalence of nearly 3%
(Devinsky, 1999).

Although in the last hundred years there have been many advances in achieving
the goal of freeing epileptic patients from seizures and their side effects (Lowen-
stein, 2008), there are still many aspects of the disorder which have not been
understood. There are no tools fully capable of the analysis of complex biolo-
gical networks such as those related to seizures. In addition, seizures result from
stochastic processes and the understanding of the underlying mechanisms that
contribute to the reduction of the seizure levels in humans is still fairly basic.

2.3 Description of the Problem

Various studies have shown that more than 30 percent of patients with epilepsy
cannot control adequately their seizures with drug therapy (Kwan and Brodie,

1In this case the 25 European Union member countries as well as Iceland, Norway and Switzer-
land
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2000a,b; Devinsky, 1999). The latest evidence (Kwan and Brodie, 2000a,b; Hitiris
et al., 2007) shows that there exist two different patient groups:

• The responder group, which includes those patients who show significant
improvement by the use of a modest dose of one of the two available anti-
epileptic drugs (AED).

• The non-responder group, which includes those patients who do not show
any improvement (or any relief) from seizures, despite receiving an appro-
priate drug treatment.

Recent studies support the fact that the non-responder group represents more
than 30 percent of all epilepsy cases (Kwan and Brodie, 2000a,b; Hitiris et al.,
2007). Furthermore, other studies (Devinsky, 1999) indicate that drug resistant
epilepsy is related to significant physical and social disability, and poor quality
of life, as well as an increased risk of sudden, unexpected death. Therefore, the
identification of good and/or poor prognosis markers is necessary if we want to
find new ways to treat epilepsy, and to improve the timely administration of
alternative treatment options, helping in this way to eliminate the dangerous
consequences of uncontrolled seizures.

2.4 Data Description

Participants of this study are newly diagnosed epilepsy patients at the Epilepsy
Unit, Western Infirmary, in Glasgow. Initially, serum samples were collected from
125 subjects during a period between February 2004 and March 2006. All patients
have been treated with AEDs (Zweiri et al., 2010). The data gathered from these
samples includes six months of clinical follow-up of the subjects.

2.4.1 Clinical Information of the Patients

The clinical information that was collected during these six months includes the
following details:

• Personal information for each subject, such as gender, date of birth, weight,
height and BMI

• Date of collection of the sample

• Date of subject’s most recent seizures

• Date of acquisition of the NMR data for each sample

• Date of clinical review for each subject

2.4. DATA DESCRIPTION
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• Type of seizures each subject had. The seizures were categorised in three
categories:

LRE Localisation-related epilepsy

IGE Idiopathic generalised epilepsy

UNC Unclassifiable epilepsy

• Type of response to drug treatment (type of epileptic seizures after six
months). There were 8 different types of response observed, numbered
from 1 to 8, which afterwards were simplified into only three:

1 Improvement

2 No improvement

3 Unclassified.

An example of the information given for a subject can be seen in Figure 2.1.

Figure 2.1: Clinical data for five of the subjects - cases 5,36,59,66 and 114. The Out...s fields
are the simplified values for the corresponding fields, e.g. Out.6.m.s is the simplified
response information after six months of follow-up of the patients (simplified from
8 categories of response to 3 categories, responders, non-responders and unclassified
patients).

2.4.2 The Data Set

Information about the concentration of various metabolites (possible biomarkers)
in the blood serum of each patient, is extracted after the application of the NMR
process to the collected samples. Due to the very large number of metabolites that
were observed (a few thousand different metabolites), a reduction in their number

2.4. DATA DESCRIPTION
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was deemed necessary. Therefore during the preprocessing stage of the analysis,
binning (bucketing) was applied. Bins of size 0.04 ppm (parts per million) were
used in this project, reducing effectively the number of metabolites to 332 without
losing important information. Part of such a data set can be seen in Figure 2.2, in
which the first column contains the codenames for each of the 125 subjects, while
the other columns are the bins of specific amounts in ppm. Each row contains the

Figure 2.2: An example of a dataset for bins from 10.98 - 10.70

concentrations of the 332 metabolites for each patient. For illustrative purposes,
in Figure 2.2 only bins of metabolites with chemical shifts in the range 10.98 -
10.70 are included for the first 22 patients, as the full data set is a matrix of
dimensions 125 x 332. Three of the samples have to be removed, as these are
known (for medical reasons) to be potential outliers, due to specific indications
in their clinical data2. Therefore, after removing patients 23, 85 and 86 from the
data set, there are 122 patients remaining. In addition, to identify any differences
in the metabolites’ levels between patients with and without response to AEDs
treatment after six months follow-up, a number of patients whose response to the
AEDs could not be classified, were removed temporarily from the data. In Table
2.1 can be seen the seizure types of the patients as they were diagnosed before
and after simplification of the types. The remaining 25 patients will be used as

Table 2.1: Seizure type of patients in the current data set before and after simplification

Simplification

Seizure Type Before After

LRE 63 75
IGE 14 22
UNC 20

testing data for the validation of the classification quality whenever and in case

2After personal communication with Dr. John Parkinson, Department of Pure and Applied
Chemistry, University of Strathclyde, who generated the metabonomics data by NMR Spec-
troscopy of the blood serum samples of the patients.
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such data will be required by the various statistical analyses applied. Table 2.2
details the number of samples with respect to gender, seizure type and response
to AEDs outcome.

Table 2.2: Clinical characteristics of the patients in the reduced data set

Seizure type AEDs Response

LRE IGE Responder Non-Responder

Females 27 5 16 16
Males 48 17 36 29

Totals 75 22 52 45

2.4.3 Characteristics of Subjects in the Current Data Set

The most important features of the patients in the current data set can be seen
in Figure 2.3. There are 65 men and 32 women in the reduced data set. The age
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Figure 2.3: Graphical representation of the most important characteristics of patients in the current
data set. The y-axis values in all plots are the number of patients in the current data
set with regards to a clinical characteristic.

range of the patients is 17-99 years. Their Body-Mass-Index values were in the
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range 16-45.1 (men: 16-45.1, women: 16.6-36). The patients were categorized
according to their age into three groups of approximately the same size. These
groups are [16,26], (26,47] and (47,99] with sizes 31, 33 and 33 respectively and
recoding labels Young, Middle and Old respectively. In addition, the BMI values
were recoded into four groups, namely Small, Medium, Large and Huge repres-
enting the intervals [16,22], (22,25], (25,28] and (28,45.1] respectively. The BMI
group sizes are 25, 27, 22 and 23 respectively. With regards to the patients’
seizure type, Table 2.1 gives the corresponding information for the current data
set. From the post-treatment serum samples, and after six months of follow-up of
the progress of patients, positive response to the drug treatment was observed in
52 patients (improvement of seizures or reduction of their occurrence), whereas
45 patients showed negative or no response to the drug treatment. Apart from
these, there were another 25 patients whose response could not be considered or
confirmed as either improvement or no improvement to the drug treatment, as
mentioned previously.

In the next chapter, the most important aspects of the two most commonly
used analytical chemical techniques, MS and NMR, for the generation of metabo-
nomics data, are covered, including mentioning applications of these techniques
to metabonomics studies.

2.4. DATA DESCRIPTION



Chapter 3

Metabonomics - Analytical

Techniques

3.1 Introduction

A variety of analytical techniques for the generation of metabonomics data sets
exist, each with its own advantages and disadvantages. The selection of the appro-
priate technique usually depends on the context of the investigation to be done e.g.
plants, microbiological, mammalians (Griffin, 2004; Weckwerth and Morgenthal,
2005), as well as the type of samples that are to be used for the analysis e.g. blood
serum, urine, tissues, cerebrospinal fluid (Lindon et al., 2004, 2006, 2000, 1999;
Goodacre et al., 2004). Common analytical techniques include Mass spectrometry
(MS), Nuclear Magnetic Resonance (NMR) spectroscopy, Fourier Transform In-
frared (FT-IR) spectroscopy and Ultra-Violet (UV and UV-vis) spectroscopy.

Usually the type of samples used in the analysis, dictates the appropriate ana-
lytical technique to be used for the generation of the metabonomics data. In this
context, MS is more suitable for tissues samples, whereas NMR is common prac-
tice to be used when biofluids are involved in the analysis. FT-IR spectroscopy is
not used very often in metabonomics, as the main disadvantage of this analytical
method is that it provides very poor distinction between the various classes of
metabolites (Griffin, 2004; Lindon et al., 2006). Also, UV spectroscopy is used
mainly to study the metabolic profiles of plants and plant materials (Bouchereau
et al., 2000). Mass spectrometry requires a separation of the metabolic compon-
ents before the actual MS analysis takes place using one of the many available
separation techniques such as gas chromatography (GC), liquid chromatography
(LC), high performance liquid chromatography (HPLC), ultra performance liquid
chromatography (UPLC) and capillary electrophoresis (CE).

20



CHAPTER 3. Metabonomics - Analytical Techniques 21

As every analytical technique has advantages and disadvantages when applied
to metabonomics studies, new techniques have been developed which either con-
nect MS and NMR in on-line hyphenated systems such as the HPLC-diode-array
detector (DAD) mass spectrometry (MS) solid phase extraction (SPE)-NMR
spectroscopy (HPLC-DAD-MS-SPE-NMR) hyphenated technique (Tang et al.,
2009) or combine MS and NMR by applying both analytical platforms in bio-
logical samples to detect all possible metabolites, such as the combination of
high-resolution magic angle spinning NMR (HR-MAS NMR) and GC-MS in the
case of the identification of biomarkers in patients with colorectal cancer (Chan
et al., 2009). These new techniques have been proved to be far more effective in
identifying unknown compounds in complex biological samples than applying a
single analytical technique. All these techniques generate complex multivariate
data sets which need further analysis and interpretation with the appropriate
chemometric tools.

In this chapter, a description of the main aspects of the two most important
in metabonomics analytical techniques, MS and NMR, are given in Sections 3.2
and 3.3 respectively, as well as a comparison of these techniques in Section 3.4.

3.2 Mass Spectrometry (MS)

3.2.1 Definition

Mass spectrometry can be defined according to John B. Fenn, the 2002 Nobel
Laureate in Chemistry and one of the most important contributors in MS, as
(Siuzdak and Trauger, 2007):

Mass spectrometry is the art of measuring atoms and molecules to
determine their molecular weight. Such mass or weight information
is sometimes sufficient, frequently necessary, and always useful in de-
termining the identity of species. To practice this art one puts charge
on the molecules of interest, i.e. the analyte, then measures how the
trajectories of the resulting ions respond in vacuum to various combin-
ations of electric and magnetic fields. Clearly the sine qua non of such
a method is the conversion of neutral analyte molecules into ions. For
small and simple species the ionisation is readily carried by gas-phase
encounters between the neutral molecules and electrons, photons, or
other ions. In recent years, the efforts of many investigators have led
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to new techniques for producing ions of species too large and complex
to be vaporised without substantial, even catastrophic, decomposition.

Mass spectrometry is used as a tool for measuring the molecular mass of a
sample. Information concerning the chemical structure of the mass can be gen-
erated using instruments called mass spectrometers. These instruments are often
used for industrial and academic research purposes. A mass spectrometer cre-
ates charged particles from molecules. These particles are then analysed in order
to provide information about the molecular weight of the mass and its chemical
structure. Mass spectrometry can be applied in many areas, such as biotechno-
logy, pharmaceutical, clinical, environmental and geological applications. It can
also assist in metabolome analysis, creating spectra that provide a fingerprint
of the metabolites that are produced by a cell (metabolite fingerprinting) and
allowing the analysis of a group of specific metabolites e.g. a class of metabolites
such as sulfides, hormones and vitamins.

3.2.2 Theoretical Background of MS

Mass Spectrometry is a technique which requires the use of charged molecules in
order to generate data for a compound of interest. More specifically, after the
sample has been introduced, it is necessary to convert the neutral molecules into
ions. Ionisation of neutral molecules means to charge positively or negatively
the molecules using one of the many available methods, thus obtaining molecular
ions and other fragments. Methods to ionise molecules include, among others, the
addition or subtraction of protons (called protonation and deprotonation respectively),
and the ejection or absorption of an electron in the molecule of interest, known as
electron ejection (Siuzdak and Trauger, 2007; Van Bramer, 1998). The physical state of
the molecule and the amount of ionisation energy, are two important things that often
determine the ionisation method to be used. The usual ionisation method used in MS is
to excite (often with electron beams) the neutral molecule, forcing it to eject an electron,
producing a positive molecular ion (radical cation M+) and possibly other ion fragments.
The whole ionisation process occurs inside mechanical devices called ionisation sources
(ionisers). Before exiting the source, the ions are exposed to an electric field of fixed
voltage (potential) V , causing them to accelerate their exit towards another sector
(magnetic sector-analyser) with potential energy zV . During the acceleration process,
that potential energy is completely converted into kinetic energy (Duckett and Gilbert,
2002). The relation between potential and kinetic energy of such an accelerated ion of
mass m, charge z and acquired velocity v, is given by the relation (3.2.1) below:

zV =
1

2
mv2. (3.2.1)
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Upon reaching the magnetic sector, the ions are subjected to a magnetic field of
magnetic flux density B. This forces them to follow a curved trajectory of radius r and
the magnitude of this force is given by Bzv. The relation between this force and the
movement of the ions is given by equation (3.2.2):

Bzv =
mv2

r
. (3.2.2)

From equations (3.2.1) and (3.2.2) an expression (3.2.3) relating the mass to charge
ratio of the ions to the applied magnetic field can be found:

m

z
=
B2r2

2V
. (3.2.3)

From equation (3.2.3), it can be seen that it is possible to select those ions which reach
the detection stage of the procedure, by just varying density B of the magnetic field
(Brisdon, 2003). As the ions approach a device called a detector, their signal is recorded
and since they have different mass to charge ratios, a spectrum of the various ion signals
is produced. This is in fact, a plot of the number of ions detected versus their mass to
charge ratio, mz , and is called a mass spectrum.

3.2.3 History of MS

The first step in the development of Mass spectrometry took place in 1897, when Sir
J. J. Thompson studied the phenomenon of electrical discharges in gases, at the Uni-
versity of Cambridge. These studies resulted in the discovery of the electron. He also
constructed, during the first decade of the 20th century, the first mass spectrometer for
the purposes of determining the mass-to-charge ratios of ions. An improved version of a
mass spectrometer to allow the study of isotopes was designed by F. W. Aston shortly
after the First World War. At about the same time, A. J. Dempster developed the first
electron impact source, which was used for the ionisation of volatilised molecules.

Four different contributions took place during the period between 1946 and 1953
(Borman et al., 2003). W. E. Stephens, at the University of Pennsylvania, introduced
the concept of Time of Flight (TOF) MS in 1946. A TOF analyser is used for the
determination of large biomolecules’ mass as it has almost limitless mass range. In
1949, Hipple, Sommer and Thomas formulated the idea of Ion Cyclotron Resonance
(ICR) which allows the detection of ions sequentially. M. B. Comisarow and A. G.
Marshall combined ICR with Fourier Transformations (FT) to develop FT-ICR MS.
This technique made possible the measurement of many different ions at once. In
1953, Nier and Johnson developed the double-focusing instrument to make possible the
analysis of isotopes. In the same year, Paul and Steinwedel introduced the quadropole
mass analyser, which had a great dynamic range and good stability, making it especially
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suitable for quantitative analysis and drug discovery applications.

In the field of molecular analysis, there were two important developments. One of
them was the Electrospray ionisation (ESI) technique, which was described by M. Dole
in 1968. Despite this fact, it was J. B. Fenn who applied this technique for the first time,
in 1984, in biomolecular analysis. The other development was the Matrix-assisted laser
desorption/ionisation technique (MALDI). It was introduced in 1983 by two different
research groups, i.e. K. Tanaka at Shimadzu Corp. and F. Hillenkamp and M. Karas
at the University of Frankfurt. Figure1 3.1 illustrates the most important achievements
in the development of Mass Spectrometry during the last hundred years.

Figure 3.1: Important timelines and contributions to Mass Spectrometry

The further development of the techniques used in MS during the last years of the 20th

century directed the research towards pharmacokinetics, which involves small molecule
drug analysis and protein identification with the use of peptide mass mapping. More
recently, MS has been applied to clinical studies, as a rapid and cheap neonatal screen
for more than 30 different diseases. The latest achievements include the use of MS
instrumentation for the generation of intact viral ions of millions of Daltons (Da) size
and for confirming the preservation of virus’s structure and virulence (Borman et al.,
2003).

3.2.4 Description of Mass Spectrometers

Mass spectrometers consist of three main components, namely the ioniser (or ionisation
source), the ion analyser and the detector (Glish and Vachet, 2003). Initially, the
sample must be inserted into the ioniser of the instrument. Having done that, the
molecules of the sample are ionised, since it is easier to work with ions than neutral
molecules. These ions are extracted into the ion analyser of the mass spectrometer, in

1Source: Scripps Centre for Metabolomics and Mass Spectrometry
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order to achieve their separation according to their mass (m) - to - charge (z ) ratios
(mz ). Finally, the separated ions are recorded in the detector part of the instrument,
and the produced signal is sent to a data system with the m

z ratios stored together with
their relative abundance, to be presented in the format of a m

z spectrum. To increase
the chances of the ions travelling through the instrument without any obstruction by
air molecules, the components of the mass spectrometer are usually maintained under
high vacuum. Figure 3.2 depicts the main parts of a mass spectrometer. It should be

Figure 3.2: Schematic of the main components of a mass spectrometer

noted that the ionisation method in use and the type and complexity of the sample
might affect the way in which the sample is introduced to the instrument. Therefore,
the sample can be introduced to the ioniser directly, or it might be necessary to apply
a type of chromatography during the travel of the sample through the ioniser. In the
latter case, the instrument is coupled to a chromatography separation column, which
causes the sample’s separation into a number of components. These components enter
the instrument sequentially for individual analysis. The three most common types of
chromatography are:

• Liquid Chromatography2(LC-MS), which can be applied on any kind of sta-
tionary phase e.g. reversed phase, normal phase or ion exchange, coupled with
mass spectrometry (Williams and Fleming, 1995; Kealey and Haines, 2002). In
this case, analytes are separated by their chemical properties such as hydrophobi-
city, hydrophilicity or charge. LC is usually used as a preparation for the puri-
fication and isolation of some components in a mixture. In the case of more

2Often is needed high performance liquid chromatography (HPLC-MS) or ultra high pressure
liquid chromatography (UPLC-MS).
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analytical separations of solutions for the purpose of detection or quantification,
more sophisticated instruments are needed, such as HPLC or UPLC instruments.
These provide higher resolutions and shorter amounts of time for the analyses. A
diagram of a typical LC separation procedure can be seen in Figure3 3.3.

Figure 3.3: Liquid chromatography (LC) separation procedure

• Gas Chromatography (GC-MS), which is usually applied to coated capillary
columns, coupled with mass spectrometry (Williams and Fleming, 1995; Kealey
and Haines, 2002). Here, analytes are separated by their boiling point and their
interaction with the liquid layer covering the capillary in the gas phase. It is
used mainly when the organic compounds to be separated are volatile. The main
components of a gas chromatograph are a flowing mobile phase (usually an inert
gas such as helium, argon or nitrogen), an injection port, a separation column
with the stationary phase, a detector and a data recorder (Figure4 3.4).

Figure 3.4: Diagram of a gas chromatography mass spectrometer (GC-MS)

• Capillary Electrophoresis (CE-MS) coupled with mass spectrometry (Kealey
and Haines, 2002). In this type of chromatography, electrically charged analytes
are separated by their mobility in a capillary filled with an electrolyte under the
influence of an electric field (Figure5 3.5). The higher the electric field is, the more
efficient the separation will be and the less time will be needed for the separation.

3Source: http://www.chemistry.nmsu.edu/Instrumentation/lc-schem.gif.
4Source: http://upload.wikimedia.org/wikipedia/commons/8/87/Gas_chromatograph.png.
5Source:http://upload.wikimedia.org/wikipedia/commons/9/99/Capillaryelectrophoresis.gif.
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Figure 3.5: Diagram of a capillary electrophoresis mass spectrometer (CE-MS)

Other chromatographic methods that can be used for separation purposes are the size-
exclusion chromatography (SEC) and the thin-layer chromatography (TLC) (Kealey and
Haines, 2002).

3.2.4.1 Ionisation Process

Once the sample has entered the ioniser, there are a number of different methods that
can be used for its ionisation (Siuzdak and Trauger, 2007). The type of sample and the
mass spectrometer available are the main factors for choosing which ionisation method
to use. The majority of biochemical analyses are done using the following three methods:

• Electron Ionisation (EI). This is the standard ionisation method in mass spec-
trometry (Figure6 3.6). The sample is introduced into the Electron source (in-

Figure 3.6: Basic diagram of an electron ionisation (EI) source

side a high vacuum) as a vapour, usually from a reservoir (in the case of gases
and volatile liquids) or from a heated probe (for non-volatile liquids and solids).
Sample molecules collide with high energy electrons (which a glowing filament
produces). Ions are formed when the energy transferred exceeds the molecules’

6Source: http://www.analyticalspectroscopy.net/ap8_html_m28d4b6e1.jpg.
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ionisation energy. To send ions out of the source and to the mass analyser, an
extraction voltage (500 - 10,000 V, depending on the type of instrument) needs to
be applied. The efficiency of the ionisation is increased by placing the inner source
between the poles of a small magnet, causing the electrons to travel with a hel-
ical trajectory. The Electron Ionisation method is especially useful for producing
diagnostically useful fragment ions for structure elucidation, highly reproducible
spectra and linear signal-response curves for use in quantitative analysis.

• Electrospray Ionisation (ESI). This is an ionisation method which belongs to
the techniques called Atmospheric Pressure Ionisation (API) techniques. ESI is
most suitable when the analysis involves polar molecules of molecular mass size
from less than 100 Da up to more than 1,000,000 Da. In ESI, a fine spray of
charged droplets is created by applying a high voltage (usually about 1-4 kV) to
a capillary containing a flowing liquid. The use of a co-axial nebuliser gas, such
as nitrogen, is often useful for improving the process (Figure7 3.7). ESI is suit-

Figure 3.7: Basic diagram of an electrospray ionisation (ESI) source

able for the analysis of organic compounds with medium - high polarity. Since
positive ionisation is dependent on protonation, molecules containing basic func-
tional groups work well in this mode. Negative ionisation, in contrast, functions
by deprotonation, thus the presence of acidic functional groups is a prerequisite
for reasonable limits of detection. Amino, amide, ester and aldehyde are some of
the functional groups suitable for positive ESI, whereas functional groups such as
carboxylate, phenol and imide are suitable for negative ESI.

• Matrix Assisted Laser Desorption Ionisation (MALDI). This is a method
for laser desorption ionisation. The sample is mixed with a saturated solution of
matrix8 and a drop deposited on the MALDI target. After the solvent has been
evaporated and the matrix been crystallised, the target is placed in the mass spec-
trometer source and is irradiated with pulses of laser light. A transfer of energy

7Source: http://www.astbury.leeds.ac.uk/facil/MStut/mstutorial_files/image004.gif.
8An organic compound with a strong absorption at the laser wavelength
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between excited matrix molecules and sample molecules takes place, having as a
result to desorb both from the condensed state. Once the molecules are in the
vapour phase, there are proton transfers between matrix and sample which result
in ion formation. Ions are then accelerated out of the source by applying a high
potential (usually 20 kV) to a series of extraction electrodes and lenses (Figure9

3.8). This method is more suitable when the analysis involves thermolabile, non-

Figure 3.8: Basic diagram of a matrix assisted laser desorption ionisation (MALDI) source

volatile organic compounds and more specifically the high molecular mass ones.
MALDI can be used in biochemical areas for the analysis of proteins, peptides, oli-
gonucleotides and other compounds. MALDI is also very useful for characterising
synthetic polymers, large organic molecules and organometallic complexes.

Other ionisation sources include among others, the Atmospheric Pressure Chemical
Ionisation (APCI), the Chemical Ionisation (CI), the Secondary Ion Mass Spectrometry
Ionisation (SIMS) and the Field Ionisation (FI) (Siuzdak and Trauger, 2007; Barwick
et al., 2006). A comparison of the specifications of the most commonly used ionisa-
tion sources can be seen in Table E.1 (Source: http://masspec.scripps.edu/mshistory/
whatisms_details.php#Basics).

3.2.4.2 Mass Analysis

After the extraction of the ions from the ioniser, they enter the ion analyser in order
to be separated to their mass-to-charge (mz ) ratios. The most commonly used mass
analysers are (Siuzdak and Trauger, 2007; Van Bramer, 1998):

• Single Quadrupole. This is a mass-selective ion filter that consists of four
parallel electronically operated metal rods. A varying voltage is applied, resulting

9Source: http://www.chem.pitt.edu/sites/default/files/users/Bhg5/figure%205.jpg.
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in a fluctuating electric field. The potential applied to the rods consists of a
DC (U ) and RF (Vcosωt) component (Figure10 3.9). The main advantages of

Figure 3.9: Single quadrupole mass analyser

quadrupole analysers are their robust and compact design.

• Triple Quadrupole. This analyser consists of three quadrupole devices coupled
in a linear array. In the single reaction monitoring mode (SRM), the initial ions
travel through the first quadrupole and then enter the second quadrupole device
used as a collision cell in order to generate product ions. At the end, the last
quadrupole filters the product ions according to their mass, obtaining the required
ions. An example of a triple quadropole mass analyser can be seen in Figure11

3.10.

Figure 3.10: Triple quadrupole mass analyser

• Iontraps. This type of analyser initially forces ions into stable orbits and sub-
sequently releases them, collecting and storing them according to their mass.

10Source: http://www.chm.bris.ac.uk/ms/images/quad-schematic2.gif.
11Source: http://www.chromacademy.com/essential-guide/dec2011/figure-12.jpg.
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These ions too can be broken into other ions which can also be analysed. An
example of an iontrap mass analyser can be seen in Figure12 3.11.

Figure 3.11: Iontrap mass analyser

• Time-of-Flight (TOF). These analysers accelerate ions simultaneously, thus
each ion obtains the same kinetic energy as any of the others. Consequently,
the ions travelling through an evacuating flight tube with a fixed distance are
subjected to separation according to their mass-to-charge ratio and velocity. The
basic layout of a simple linear TOF analyser can be seen in Figure13 3.12. Their

Figure 3.12: Time-of-Flight mass analyser

capability of high resolutions between 5000 and 20000 (FWHM), as well as their
relatively small size and low cost are the main advantages of the TOF analysers.

Other types of analysers are the TOF Reflectron, the Fourier Transform MS and the
Magnetic Sector (Siuzdak and Trauger, 2007; Van Bramer, 1998). The above-mentioned
types of mass analysers differ in the m

z ranges that they can cover, mass accuracy
and achievable resolution. Also, they are not always compatible with every ionisation
method. Most of these types of analyser with their specific details (capabilities) can
be seen in Table E.2 (Source: http://masspec.scripps.edu/mshistory/whatisms_details.
php#Basics).

12Source: http://www.chm.bris.ac.uk/ms/images/iontrap-schematic.gif.
13Source: http://www.kore.co.uk/graphics/MS-200_tof.gif.
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3.2.4.3 Detection of the Ions

The last component of the mass spectrometer, the detector, monitors the ion current,
amplifies it and the signal is afterwards transmitted to the data system, to be recorded
as mass spectra. Detection of ions can be done in many different ways, depending
on the type of mass spectrometer in use. The most commonly used detectors are the
Electron Multiplier, the Faraday Cup, the Photomultiplier Conversion Dynode and the
Charge (or Inductive) Detector (Siuzdak and Trauger, 2007). A comparison of the most
commonly used detectors can be seen in Table E.3 (Source: http://masspec.scripps.edu/
mshistory/whatisms_details.php#Basics).

3.2.5 Mass Spectrum

In an MS plot, the m
z values of the ions can be seen against their intensities, thus provid-

ing information such as the number of components in the sample, the molecular mass of
each of these components and also the relative abundance of the various components in
the sample. An example of a m

z plot for a typical sample of an isolated compound (∼1
nanogram) can be seen in Figure 3.13. This is a plot of relative intensity (abundance)

(a) Structural formula of a
compound

(b) M/Z plot for the isolated compound (mass spectrum)

Figure 3.13: Example of a Mass Spectrum for a compound

versus the mass-to-charge ratio (mz ). A number of peaks can be seen, of which the most
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intense (most abundant) is characterised as the base peak. The rest of the peaks are
noted with respect to the intensity of the base peak.

The peak having the highest molecular mass, of those observed in the spectrum, will
usually be the parent molecule, termed as the molecular ion (M+). From the plot in
Figure 3.13, it can be seen that the most abundant peak is at Mass 194 u. This peak
represents the base peak, and due to the fact that it has the highest molecular mass
(194) as well, it is also the molecular ion. More often than not, this is not the norm,
as it usually is the case that the molecular peak or peaks in an MS plot differ from the
most abundant one. The rest of the peaks in this plot are ion fragments of the initial
neutral molecule, with various molecular ion masses.

The mass analyser of the spectrometer plays a very important role to the way that
the spectra are represented. A mass spectrum depends on the accuracy, the resolving
power, mass range and the scan speed of the analyser (Barwick et al., 2006; Webb et al.,
2004).

The accuracy is the detail with which a mass analyser can provide m
z information

and depends on the instrument’s stability and resolution, e.g. a 1000 Da peptide to
±0.1 Da (0.01%).

The resolving power is the ability of a mass spectrometer to distinguish between ions
of different m

z ratios. The greater the resolution is, the better the ability to differentiate
ions is. It is defined (Equation 3.2.4) as

Resolution =
M

∆M
(3.2.4)

where M is the mass-to-charge ratio m
z and ∆M is the full width at half maximum

(FWHM). If the resolution is high enough, it could allow for the separation of an ion’s
individual isotopes (the narrowing of peaks allows the determination of an ion’s position
more accurately).

The mass range of an analyser is effectively its m
z range. Depending on the type

of analyser (quadrupole, ion traps, TOF etc.), the m
z range will differ. For example, a

typical scan range for a quadrupole analyser is up to m
z = 3000, whereas a TOF analyser

has virtually unlimited m
z range.

The scan speed is the rate at which an analyser scans over a specific mass range. This
usually takes a few seconds, but it depends on the type of analyser used. For example,
a TOF analyser needs a few milliseconds or less to perform a complete analysis.

3.2.6 Applications of MS to Metabonomics Studies

Mass Spectrometry is an analytical technique which has been used extensively in meta-
bolic fingerprinting and metabolite identification. Despite the fact that there is a large

3.2. MASS SPECTROMETRY (MS)



CHAPTER 3. Metabonomics - Analytical Techniques 34

number of MS studies on plants and plant extracts, as well as on model cell system ex-
tracts, during the last few years the number of applications of MS to mammalian studies
has increased significantly (Lindon et al., 2006). Areas of applications include clinical
applications such as the metabolic profiling of patients with colorectal cancer (Chan
et al., 2009), xenobiotic toxicity assessments with respect to drug treatment (Idborg
et al., 2005), to hepatotoxicity induced by CCl4 and dimethylnitrosamine (Lin et al.,
2009; Sun et al., 2010) and to nephrotoxicity (Gamache et al., 2004). Other applications
include physiological variation due to various factors such as gender differences (Dixon
et al., 2007; Plumb et al., 2005), age differences (Plumb et al., 2005), strain differences
(Wilson et al., 2005) and diurnal effects (Plumb et al., 2005).

3.3 Nuclear Magnetic Resonance Spectroscopy

(NMR Spectroscopy)

3.3.1 Introduction

Nuclear magnetic resonance spectroscopy is one of the most important analytical tech-
niques. It is used extensively in chemical applications, providing detailed information on
molecular structure, both for pure compounds and in complex mixtures. NMR methods
can also be used to study metabolite molecular dynamics and mobility, as well as sub-
stance concentrations (Lindon et al., 2006). NMR spectroscopy can be applied in a vast
array of different types of samples either biofluids, cells or tissues. Especially as far as
biofluid samples are concerned, NMR studies can be divided into two main categories:
analytical and dynamic. The former involve the collection and quantitation of NMR
spectra and their interpretation, whereas the latter involve the detailed understanding
of the interactions of the components in the whole biological matrix of the organism.
Dynamic NMR analyses include enzymatic biotransformations, metal complexation re-
actions, binding of small molecules to macromolecules, and cellular compartmentation.
These can occur to varying degrees in many different biofluids (Lindon et al., 1999).
Although NMR was initially used as a tool for molecular structural elucidation, it has
proved to be very successful in characterising the functional effects of diseases, tox-
icity, physiological variation and genetic modification, in living organisms’ biochemical
profiles.

3.3.2 Theoretical Background of NMR

NMR is the phenomenon which occurs when the nuclei of specific atoms, while held
in a static magnetic field, are exposed to a second oscillating magnetic field. This
phenomenon depends on whether the nuclei possess a property called spin. As NMR
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is concerned with matter, spectroscopy is the study of the interaction of matter with
electromagnetic radiation. Therefore, NMR spectroscopy is the use of the NMR phe-
nomenon in order to examine the various physical, chemical and biological properties
of matter.

More specifically, NMR spectroscopy is a non-destructive technique that provides
detailed information about the molecular structure of pure compounds and complex
mixtures. NMR methods are also useful in the investigation of metabolite molecular
dynamics and mobility, as well as substance concentrations. This can be done by
interpreting the spin relaxation times of NMR and determining the molecular diffusion
coefficients.

Spin is a fundamental property of nature. It is a characteristic of protons, electrons
and neutrons. Spin values are multiples of 1

2 , either positive (+) or negative (-). Particles
whose spins have opposite signs pair up, eliminating the effects of spin. Each unpaired
electron, proton and neutron possesses a spin of 1

2 . In NMR, these are the important
nuclear spins. Similarly to electrons, nucleons form orbitals. As they also possess spin,
their spin can also pair up when their orbitals are being filled and hence cancel out.
Most elements in the periodic table have an isotope which possesses a non-zero nuclear
spin. NMR is possible only when these isotopes exist in high enough natural abundance
to allow them to be detected. A number of well-known nuclei used in NMR and their
spin can be seen in Table 3.1 below:

Table 3.1: Examples of nuclei and their spin

Nuclei Unpaired protons Unpaired neutrons Net Spin

1H, 19F , 31P 1 0 1
2

13C 0 1 1
2

127I 2 1 3
2

11B, 23Na, 35Cl, 79Br 1 2 3
2

17O 2 3 5
2

2H, 14N 1 1 1

Examples of nuclei with zero spin are 12C, 16O, 32S. The nuclear magnetic moment
of a nucleus can have only specific values related to the nucleus spin. The value of the
magnetic moment, µ, of the nucleus is given by

µ =
γhI

2π
(3.3.1)

where h is Planck’s constant equal to h = 6.625×10−34Joule·sec, I is the net spin of the
nucleus and γ is the gyromagnetic ratio, which depends on the nature of each nucleus.
The energy of a spin in a magnetic field will depend on the magnetic field, denoted
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Bo here. Applying this external magnetic field to the nucleus will cause its magnetic
moment to align with the applied field in only 2I + 1 ways, either with or against the
applied field. The energy of the spins is the dot product of the corresponding vectors:

E = −µBo. (3.3.2)

Thus, the energy difference of the two levels (Figure 3.14), α and β is

δε = Eβ − Eα

=
γhBo

4π
−
(
−γhBo

4π

)
=

γhBo
2π

. (3.3.3)

From equation 3.3.3, it is obvious that the larger the magnetic field Bo is, the larger the

Figure 3.14: Spin energy levels

energy difference it will be e.g. pp 250, Table 1 in (Kealey and Haines, 2002). Nuclei
are placed in one of the spin states. The number of nuclei in each spin state, that is,
the population ratio between the two energy levels, depends on the energy difference of
the two levels, δε, and it can be calculated by the Boltzmann distribution as

Nα

Nβ
= e

−γBo
κT , (3.3.4)

where the N values are the number of nuclei in each one of the spin states, γ is the
magnetogyric ratio, Bo is the external magnetic field strength, κ is the Boltzmann
constant, and T is the temperature (K).

3.3.3 History of NMR

NMR spectroscopy is a technique based on the fact that the nuclei of atoms have a
physical property called the magnetic moment. In 1924, Pauli postulated that there are
specific nuclei which possess a spin angular momentum. As a consequence, Gerlach and
Stem confirmed through experimentation that nuclei have magnetic moments (Emsley
and Feeney, 2007). Gorter was the first to perform an NMR experiment in solid state in
1936, though it was not successful. The first demonstration of how molecules in a con-
stant magnetic field affect an oscillating electromagnetic field by absorbing resonance
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was achieved by Rabi in 1939. NMR spectroscopy was first developed and used in exper-
iments successfully independently by two groups, at Stanford University by Bloch, and
Harvard University by Purcell, in 1946. Four years later, Hahn replaced the standard,
until then, continuous wave excitation of polarised nuclei by pulse excitation. Chemical
shifts14 were discovered in 1951 by Arnold, who obtained the first high-resolution spec-
tra. Technology limitations did not allow Arnold’s idea of pulse spectroscopy to mature
until 1960, when Anderson and Ernst were able to apply Fourier Transformations using
computers. It was then possible to change time domain to frequency domain in one
keystroke (Emsley and Feeney, 2007).

In the 1970s, NMR was used for the first time in medical applications. During the
years 1970-73, Lautertbur showed that it was feasible to use NMR for imaging. He
applied gradients to encode the spatial information into an NMR spectrum. In addi-
tion, Damadian discovered in 1971 that tissue contrast was available through variation
of nuclear relaxation times (Emsley and Feeney, 2007). Both these advances proved
fundamental in the use of NMR in medical applications. NMR spectroscopy is also
used extensively, in many different fields such as in physics, chemistry, biochemistry,
geology, agriculture and archaeology.

3.3.4 Description of a NMR Spectrometer

The main components of an NMR spectrometer are the magnet, the frequency generator
(which creates the alternating current at Larmor frequency ωo), the detector, responsible
for subtracting the base to the output frequency, and the recorder, which includes the
computer and the console parts (Figure15 3.15).

Figure 3.15: The main components of a NMR spectrometer

14More specifically 1H chemical shifts
15Source:http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/nmr/Images/

spctrmtr.gif
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3.3.4.1 The Magnet

This is usually a superconducting magnet and one of the most expensive components of
the NMR system. Its main use is the production of the Bo field which is necessary for
NMR experiments. The magnet includes the shim coils, the probe, the sample and the
RF coils. A superconducting magnet has an electromagnet made of superconducting
wire. By inserting the wire into liquid helium, its temperature drops to near absolute
zero (0K), which reduces its resistance to almost zero. Current will continue to flow
in the coil for as long as the coil is kept at liquid helium temperatures. This wire
is wrapped in a multi-turn solenoid or coil. The coil and liquid helium are kept in a
dewar. This is surrounded by a liquid nitrogen dewar, acting as a thermal buffer between
the room temperature air (293K) and the liquid helium. A graphical description of a
superconducting magnet with the concentric dewars can be seen in Figure 3.16.

(a) A NMR magnet (b) Concentric dewars of a
NMR magnet

(c) A typical probe

Figure 3.16: Example of a NMR magnet

The shim coils are exactly within the bore of the magnet, and their purpose is to
adjust any minor spatial inhomogeneities that might exist in the Bo magnetic field.
Reasons for these inhomogeneities could be the magnet design, materials in the probe,
any variations in the thickness of the sample tube and the sample’s permeability. Shim
coils are designed to create small magnetic fields to oppose and eliminate any inhomo-
geneity in the Bo magnetic field. As there are inhomogeneities in a great variety of
functional forms (linear, parabolic, cubic, etc.), shim coils must be able to create a
variety of opposing magnetic fields. Usually the computer is responsible for controlling
the shim coils.

The probe is one of the most important parts of the magnet (and of the NMR spec-
trometer). It is responsible for delivering RF radiation to the sample and receiving the
signals coming from the sample. In Figure 3.16, a typical sample probe head and part
of the probe tube can be seen. The probe is inside the shim coils and contains the RF
coils, the sample, the sample spinner and the temperature controlling circuitry. The
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sample spinner is used for the rotation of the NMR sample tube around its axis. In
this way, each spin at a given position along the Z axis and radius from the Z axis
experiences the average magnetic field in the circle defined by this Z and radius. As a
consequence, there will be a narrower spectral line width. The RF coils are responsible
for the creation of the B1 magnetic field which rotates the net magnetisation in a pulse
sequence. In addition, they detect the transverse magnetisation as it unfolds in the XY
plane. They usually act as the transmitter of the B1 field and receiver of RF energy
from the sample. There can be one or more RF coils in a probe.

3.3.4.2 The Detector

This is a device used for the separation of the Mx′ and My′ signals from the signal
received from the RF coils. The main component of the detector is a device called
a doubly balanced mixer. This mixer has two inputs and one output. For example,
assuming two input signals, Cos(A) and Cos(B), the output will be the product of
these two signals, that is 1

2Cos(A+B) and 1
2Cos(A−B). The detector usually contains

two doubly balanced mixers, two filters, two amplifiers and a 90o phase shifter. The
detector has two inputs and two outputs. These inputs are the frequencies and the
components of the transverse magnetisation are the outputs of the device.

3.3.5 Description of an NMR Spectrum

An NMR spectrum is a graphical depiction of a living organism’s biochemical (bio-
molecular) profile. It consists of an absoption line of the resonances signals of the
chemical structures in the organism’s profile. The chemical structures are positioned in
this line, according to their nuclei chemical shifts. That is, according to the exact pos-
ition of their resonance frequency (Kealey and Haines, 2002). To measure the chemical
shift of a compound, a dimensionless parameter δ is used. The compound’s chemical
shift is measured with respect to a reference compound which is usually tetramethyl-
silane (TMS) because it is inert, volatile, non-toxic and cheap, having only one low
frequency resonance signal being at lower frequency than those of most organic com-
pounds (Williams and Fleming, 1995). The chemical shift scale δ is then defined by the
following formula (Kealey and Haines, 2002):

δ =
νcompound − νTMS

νspectrometer
× 106

where νcompound is the resonance frequency of the required compound, νTMS is the reson-
ance frequency of the reference compound and νspectrometer is the operating frequency of
the spectrometer in use. The ratio above is multiplied by 106 to obtain easier to handle
numerical values. Therefore, δ is expressed in terms of fractions of the applied magnetic
field in parts per million (p.p.m.) (Williams and Fleming, 1995). The chemical shift of
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the reference compound is assigned a value of zero, thus δ values for all the compounds
in the spectrum are presented as a scale which increases from right to left. The greater
the shielding of the nucleus of the compound, the smaller the value of δ is and the
further to the right the resonance signal appears and conversely (Kealey and Haines,
2002). It should be noted that δ is independent of the operating frequency of the spec-
trometer, therefore chemical shifts in ppm from spectra recorded in spectrometer with
different operating frequencies can be compared. In a proton NMR spectrum, usual δ
values are in the range 0− 11. An example of a proton NMR spectrum of blood serum
from the epileptic data can be seen in Figure 3.17. In a proton NMR spectrum, specific
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Figure 3.17: Proton NMR spectrum of patient 43 from the epilepsy data set. All metabolites’
chemical shifts in the spectrum have been measured with respect to the reference
compound tetramethylsilane (TMS), whose chemical shift has been assigned a value
of zero.

molecular groups can be identified at specific chemical shift values. More specifically,
the aliphatic group is between 0−2 ppm, the Acetylenic between 2−4 ppm, the Olefinic
in the range 4− 6 ppm, the Aromatic group in the range 6− 8 ppm and the Aldehydic
between 8− 10 ppm.

3.3.6 Applications of NMR to Metabonomics Studies

NMR metabonomics analyses are concerned with the detailed investigation of bio-
molecular reactions to the metabolic profiles of living organisms. This is achieved by
analyzing biofluids and tissues such as blood plasma and serum, urine, cerebrospinal
fluid (CSF), seminal fluids, bile, cardiac/brain/liver tissue and many others. NMR
spesctroscopy of metabonomics applications can be classified in general, with respect to
their type of research, into the following areas: clinical applications (disease/disorder
identification and classification), xenobiotic toxicity (application of various toxins to
living organisms) and physiological variation (influence of physiological factors to the
biochemical composition of living organisms) (Lindon et al., 2001; Antti et al., 2002).

There are a large number of independent clinical studies in an extensive array of
diseases/disorders. Such studies include among many others the identification of dia-
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gnostic biomarkers in the metabolic profiles of patients with type I diabetes (Makinen
et al., 2008), the identification of biomarkers for the severity of the disease in patients
with rheumatoid arthritis (RA) (Lauridsen et al., 2010), the investigation of the role
of dystrophin to the metabolic profiles of brain, cardiac and muscle tissue of mice with
Duchenne muscular dystrophy (DMD) and the characterization, detection and classific-
ation of cancer e.g. detection and separation of patients with epithelial ovarian cancer
and benign ovarian cysts (Odunsi et al., 2005).

Xenobiotic toxicity is an important area of NMR application. This area involves the
study of the effects of various chemical substances in the metabolic profiles of living or-
ganisms. Such studies are the hepatotoxicity and nephrotocixity induced to rats treated
with copper nanoparticles in different doses (Lei et al., 2008), the hepatotoxicity induced
to rats with allyl formate (Yap et al., 2006) and the mercury toxicity from nephrotoxic
lesions induced in Fischer 344 rats with HgCl2 and 2-bromoethanamine (BEA) (Holmes
et al., 1992).

Drug toxicity can also be assessed succesfully using NMR metabonomics. Sussulini
et al. (2009) studied the effects of different drug treatments to the metabolic profiles of
patients with bipolar disorder and were able to distinguish patients treated with lithium
from those treated with other medications.

Another area of NMR metabonomics applications involves the evaluation of the in-
fuence of various physiological factors to the metabolic profiles of living organisms. Such
factors can be intrinsic and extrinsic. Intrinsic factors include hormonal effects (Bollard
et al., 2005b), species differences (Bollard et al., 2005a), age-related differences (Bol-
lard et al., 2005b), strain differences (Holmes et al., 2000), genetically modified models
(Griffin et al., 2001), gender differences (Bollard et al., 2005b) and general inter-animal
variation (Bollard et al., 2001; Zuppi et al., 1997). Extrinsic factors include diurnal
effects (Bollard et al., 2001; Gavaghan et al., 2002), diet and fasting (Gavaghan et al.,
2001; Solanky et al., 2005; Yde et al., 2010), water deprivation (Bollard et al., 2005b),
temperature effects (Bollard et al., 2005b) and sleep deprivation/stress/acclimatization
(Bollard et al., 2005b; Zuppi et al., 1997).

3.4 Comparison of Metabonomics Techniques

The main advantages and disadvantages of MS and NMR are given below.

MS - Advantages/Disadvantages

The main advantages of MS are (Zhu et al., 2010; Kealey and Haines, 2002):

• High sensitivity. That is, it provides higher resolutions than NMR.

• Offers rapid detection of metabolites.

• Provides selective qualification and quantification of metabolites.
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• It can simultaneously identify and measure a variety of metabolites.

However, in using MS techniques in "omics" studies, the researcher can meet the fol-
lowing problems (Zhu et al., 2010; Kealey and Haines, 2002):

• MS is a destructive analytical technique. That means, after an MS analysis the
samples cannot be reused for other analyses.

• Before applying MS it is necessary to apply a number of different separation
techniques depending on the classes of the substances to be analysed.

• The detection limits are lower if the substance to be analysed, can be ionised.

• MS methods require conformation from standard compounds, which is often not
available especially for unknown compounds.

NMR - Advantages/Disadvantages

The main NMR advantages are (Zhu et al., 2010; Lindon et al., 1999; Williams and
Fleming, 1995):

• It is a non-destructive technique. After an NMR analysis, the samples can be
reused for other analyses.

• In "omics" studies involving complex biomixtures, measurements can often be
made with minimal sample preparation.

• The objective compounds can be qualified.

• NMR can provide detailed information on molecular structure for pure compounds
and complex mixtures.

• It can provide information on absolute or relative concentrations.

• It can be conducted in vivo on whole live organisms, which is useful when metabo-
lic profiling for studies of diseases is required.

• It is particularly useful for distinguishing isomers, for obtaining molecular inform-
ation and for studies of molecular dynamics and compartmentation.

There are some disadvantages when applying NMR to "omics" studies (Zhu et al., 2010;
Lindon et al., 1999):

• NMR suffers from an intrinsic low sensitivity for low concentrations of metabol-
ites.

• Chemical noise, as a result of the overlapping of signals from compounds low in
abundance, can significantly reduce the amount of recoverable spectral informa-
tion especially in NMR analysis of biofluids.

The last chapter of Part I of the thesis, covers the most popular pre-processing
and pre-treatment methods for the enhancement of the quality and accuracy of the
metabonomics data, and the preparation of the data in a suitable form for further
statistical analyses, in NMR spectra.

3.4. COMPARISON OF METABONOMICS TECHNIQUES
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Pre-processing and

Pre-treatment of the Data

4.1 Introduction

A very important part of any chemometrics data analysis, called pre-processing and pre-
treatment, is the application of certain operations to the data in order to either remove
or at least reduce to an acceptable point, the amount of random or systematic variation
for which the main modelling tool is not responsible. Pre-processing of a data set is
the general term for those methods used to convert the raw instrumental data to clean
data for pre-treatment and further processing (Goodacre et al., 2007). These methods
include Binning, Deconvolution, Peak Detection, Alignment and Baseline Corrections
among others. Pre-treatment involves the transformation of the clean (pre-processed)
data to prepare it for data processing. Metabonomics data are mostly presented in
tabular form, with each row of such a table relating to a specific sample and each
column to a single measurement (or variable). Pre-treatment methods include scaling
operations to the rows (row-scaling), the columns (column-scaling) and to individual
elements of a data set (transformations) and the most common such operations are
the mean-centring, vector normalisation, autoscaling and logarithmic transformation.
Pre-processing and pre-treatment of the data most of the time has either positive or
negative effects on the results of the analysis. This chapter describes the most important
and commonly used pre-processing and pre-treatment methods in metabonomics data.
The definition of the sensitivity of a measurement in NMR is given in Section 4.2.
Pre-processing methods are described in Section 4.3 and pre-treatment methods can be
found in Section 4.4.
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4.2 Sensitivity of a Measurement in NMR

According to Ross et al. (2007), the sensitivity of a measurement of an NMR experiment,
defined as the signal-to-noise ratio ( SN ) of a single repetition of the experiment, is given
by:

Sensitivityscan ∼ γ3
X .N.B

2
o .SD

where γX is the gyromagnetic ratio, N the number of spins in the sample, Bo the
magnetic field strength and SD the sum of the sensitivity of the detector and the noise
created by the sample. The higher the sensitivity of the measurement is, the better
the resolution of the spectra generated and the more detailed the information about
metabolites will be. To increase the sensitivity of measurements, either the sensitivity
SD needs to be increased or a higher static magnetic field (higher Bo) is required. The
former can be increased either by using cryogenic probes or by reducing the size of
the detection coil, as the shorter the wires are the less noise they produce. The latter
is a matter of the NMR magnet specification in use, thus it is not adjustable by the
researcher.

4.3 Pre-processing Methods

After generating the signals, it is often necessary to apply specific techniques to clean
the data. More specifically, problems that can appear to the generated signals include
among others overlapping peaks, misalignments of metabolites in the spectra, signal
phasing, baseline drifts, as well as very large numbers of metabolites in the data. These
methods, also called signal processing methods, include various operations which can be
applied to the spectra. The most commonly used are described in the following sections.

4.3.1 Binning (Bucketing)

Binning is a pre-processing method which in general, is used to integrate the variable
signals into specified segments of a MS or NMR spectrum. Its use is important for
spectral resolution tuning and offers a proper representation of the data for further
processing (Craig et al., 2006; Boccard et al., 2010). In MS, the ion intensities are
integrated with respect to m

z and retention time intervals. Thus, the data comprises a
2−D array such that one of the axes represents the retention time values and the other
the m

z values. Each value in this array is a measured intensity for a given m
z at a given

retention time. Although there is an unavoidable loss in resolution, the binned data
is represented in a way that means it is easier to handle and process further (Boccard
et al., 2010). In NMR-based data, binning of spectra involves the integration of peak
values within specified spectral ranges (Craig et al., 2006). Two binning procedures can
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be used in NMR spectra. These are the equidistant and the non-equidistant binning
(Ross et al., 2007). In the former, after creating a peak frequency and intensity listing,
the spectrum is divided into regions (called "bins or "buckets") of defined width e.g.
0.01, 0.04, 0.05 ppm, and the peak heights are summed up in each region to obtain a
series of numerical descriptors equally spaced along the NMR frequency (chemical shift)
axis (Spraul et al., 1994). For example, in the case of the bin width being 0.04 ppm,
a bin at the chemical shift of 1.3 ppm would include the sum of the intensity values of
all peaks with chemical shifts in the range 1.3 − 1.33 ppm, and these peaks would be
represented in the spectrum with one peak (one point) at 1.3 ppm. The latter type of
binning aims to prevent peaks being cut by the boundaries of bins. In this case, the
borders of the bins are adjusted such that the bins cover only complete peaks including
all possible locations of the peaks. Hence, the bin width depends on the width of the
peak shape and on the shift width of the peak. An example of equidistant binning of the
epilepsy data can be seen in Figure 4.1. The original raw epilepsy spectra contain many
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Figure 4.1: Example of binning the epilepsy data. The spectra in both plots are the mean spectra
of the 97 patients in the epilepsy data. The top plot contains 144 bins of width 0.04
ppm, whereas the bottom 1500 bins of width 0.01 ppm.

thousand metabolites. After the binning procedure is applied, the resulted spectra
for bin width 0.04 ppm contain 144 variables (bins), while those for bin width 0.01
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ppm contain 1500 variables (bins). However, only the full resolution spectra should
be used for biomarker identification, whereas the binned data should be used for the
development of classification models (Craig et al., 2006).

4.3.2 Baseline Correction

Often in NMR and MS experiments, the generated spectra may appear to show baseline
inconsistencies. Baseline offsets from spectrum to spectrum can affect the results of
the data analysis in many ways. They affect negatively the abundance (MS) and the
intensity (NMR) values, hence causing problems in the accurate peak assignment and
quantification (Xi and Rocke, 2008). For example, in a PCA model, baseline effects may
cause the introduction of extra components in the model and as a consequence the results
and interpretation of the analysis could be significantly altered from those taken from
the actual (corrected) model (Gemperline, 2006). Especially when metabonomics data
are concerned in a study, it is even more important to correct any baseline problems, as
they usually contain many small but potentially statistically significant peaks which are
sensitive to baseline offsets. This can cause a failure in detecting important metabolites
or even in identifying potential biomarkers (Xi and Rocke, 2008). There are many
different types of baseline effects varying from a simple offset to extremely complex
shapes such as an upward or downward slopping line or even a broad curved shape. The
ways to remedy these problems, depend on the type of baseline error in the spectra. In
simple offset cases, knowing that a specific region in the spectra has signal values equal
to zero, it is usually sufficient to subtract the average value of the signal in this region
(chemical shift or m

z ) for each spectrum, from each metabolite in the respective regions.
In more complex cases, it may be necessary to fit a polynomial function through all the
valleys in the spectra. This polynomial line is then subtracted from the corresponding
spectrum to correct the baseline differences (Gemperline, 2006). These methods are
also called as frequency domain correction methods (Xi and Rocke, 2008). An example
of the application of a baseline correction method (asymmetric least squares, (Eilers,
2004)) can be seen in Figure 4.2.

4.3.3 Deconvolution

A common problem in NMR and MS metabonomics studies is the appearance of over-
lapping peaks in the spectra. Deconvolution is a pre-processing technique which is used
to overcome this difficulty (Goodacre et al., 2007). Due to the fact that fragments,
adducts and molecule isotopes increase the difficulty in detecting peaks in the signals,
it is necessary to improve the detection procedure. The process of applying deconvolu-
tion algorithms is similar to both analytical techniques. In MS, it is necessary to use
the profile resolutions of both spectral and chromatography steps. By correlating the
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Figure 4.2: Illustration of baseline correction of the epilepsy metabolite spectra. The top fig-
ure illustrates the original spectra without baseline-corrections, while the bottom fig-
ure illustrates the original spectra after baseline-corrections. In the middle figure, the
baseline-corrected spectra are superimposed to the original spectra. The outlying low
green line in the top figure is the spectrum with the lowest concentration in metabolites,
whereas the outlying high red line in the middle and bottom figures, the spectrum with
the highest concentration in metabolites.

sample profiles with the retention time, the aim is to regroup ions coming from the
same metabolite. This procedure may not be so efficient when metabonomics analyses
take place due to the increased complexity of the data. Metabonomics data can con-
tain a large number of highly correlated signals at similar retention times which leads
to overlapping peaks with close biological variations (Boccard et al., 2010). There are
many algorithms which can be used to improve the spectra resolution such as the Gold,
the Richardson-Luey, the Fourier and the Van Cittert algorithms.

4.3. PRE-PROCESSING METHODS



CHAPTER 4. Pre-processing and Pre-treatment of the Data 48

4.3.4 Smoothing

In a given spectrum, apart from the true signal, there is always an amount of unwanted
random noise. The type and amount of this noise depends on the experiment. Smooth-
ing operations are necessary to increase the signal-to-noise ratio, that is to reduce the
amount of that noise in the spectrum. The most common smoothing methods use the
mean, the running mean, the running median, the running polynomial and the Four-
ier filter smoother. The mean smoother is suitable for the reduction of the number of
variables, but it can cause problems, as it reduces the resolution, and so may eliminate
important information. The running polynomial smoother is the most suitable of the
three running smoothers, for noise reduction, although the running median smoother
is better used when there are high-frequency spikes for removal. The Fourier filter
smoother is suitable for general smoothing but there are specific requirements to be
met for its use (Beebe et al., 1998).

4.4 Pre-treatment Methods

4.4.1 Introduction

Once pre-processing of the data has been completed, it is quite often necessary to
apply also pre-treatment methods, to prepare the data for processing. As it is common
in metabonomics data analyses, part of the observed variation is uninduced due to
biological and technical (sampling, sample work-up and analytical measurement errors)
variation. In addition, the data is more often than not heteroscedastic. Data pre-
treatment methods are used to reduce as much as possible the effects of these problems.
These methods depend both on the required biological information and on the processing
method to be used for the statistical analysis of the data. Pre-treatment methods can
be applied to the rows (row-scaling), to the columns (column-scaling) and to individual
elements of a data set, called transformations (Brereton, 2009; Berg et al., 2006).

4.4.2 Scaling

Scaling methods are pre-treatment operations used to adjust the importance of the
various elements in the data to the model-fitting procedure. The adjustment usually
involves the weighting of the metabolites with a factor which can be estimated by using
either a dispersion criterion or a size measure (Boccard et al., 2010).

Centring

In general, centring pre-treatment methods allow the researcher to focus on the dif-
ferences and not the similarities in the data. They are concentrated in isolating and
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removing the systematic variation in the data. Care is needed when data are heteros-
cedastic, as the effects from centring methods might not be sufficient. Usually centring
methods are applied in combination to the other pre-treatment methods. They belong
to the column-scaling methods (Goodacre et al., 2007). The following are the most
commonly used column-scaling methods in metabonomics.

• Weighted (General) Centring. It aims to convert all metabolite concentra-
tions to fluctuations around zero instead of around their mean. Therefore, it
retains only the relevant variation (the variation between the samples) for the
analysis. It is also called reference subtraction. This method is particularly useful
in PLS-DA classification where it can take care of several classes with different
numbers of samples in each class. The weighted mean for a data set with Nc

classes can be estimated as

x̄ =
x̄g +

∑
h6=g

x̄h

Nc − 1
2

where x̄g and x̄h are the mean vectors for groups g and h respectively (Brereton,
2009). For two classes, Nc = 2, the above formula becomes

x̄ =
x̄1 + x̄2

2

where x̄1 and x̄2 are the mean vectors for groups 1 and 2 respectively, and x̄ a
global mean (but not the overall mean, which may be biased in favour of one
of the two classes, especially when the two classes have different sample sizes).
Weighted centring can then be achieved by subtracting the weighted mean from
each column of the data set as long as there are Nc classes in the column.

• Mean Centring. This is a centring method, in which each column of the data,
is expressed in deviations from its mean. In this way, the mean of the columns
is subtracted, translating the centre of gravity of the dataset to the origin. The
formulae for mean centring is

x̃ij = xij − x̄j

where x̃ij represents the data after mean centring and x̄j , the overall mean of
variable j, is estimated as

x̄j =
1

Nsamples

Nsamples∑
i=1

xij

with Nsamples the number of samples in the data set.
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Vector Normalisation

Quite often the data of the various samples cannot be directly compared to each other,
being recorded on different scales (e.g. different injection volumes in chromatography).
To remove or minimize the variability from sample to sample, normalization of the
samples can be applied. This operation puts all the samples on the same scale, thus
allowing for comparisons among the various samples. Normalization involves dividing
each variable of a sample vector by a constant. There are many different constants that
can be used, such as the 1-norm and the 2-norm of the vector (Beebe et al., 1998; Craig
et al., 2006; Brereton, 2009). For example, the 1-norm vector normalisation is given by

x̃ij =
xij√(Nmetabolites∑
j=1

x2
ij

)
so that the sum of squares of the elements of vector xi after the normalization is equal
to one. The selection of the appropriate normalization constant depends on the type of
systematic variation in the samples. Normalisation belongs to the row-scaling methods
(Brereton, 2009). It is an important step, as its purpose is to remove any systematic
variation retaining all the biological information in the data.

Scaling Based on Data Dispersion

These scaling methods use a dispersion measure for scaling the data and more specific-
ally the columns of a data set (Berg et al., 2006; Goodacre et al., 2007; Boccard et al.,
2010). In all these methods, the mean is defined as

x̄i =
1

Nvars

Nvars∑
j=1

xij

and the standard deviation as

si =

√√√√√Nvars∑
j=1

(xij − x̄i)2

Nvars − 1
.

• Autoscaling. This is a form of scaling performed by mean-centring each meta-
bolite value and using afterwards the standard deviation as the scaling factor.
The formula is given by

x̃ij =
xij − x̄i
si

.

Autoscaling is also called unit variance scaling or standardization, as after the
autoscaling procedure, all metabolites have standard deviation equal to one, al-
lowing the metabolites to be compared using correlations instead of covariances.
Its main advantage is that all metabolites become equally important, but it can
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allow for increase in measurement errors. After the application of autoscaling, the
data becomes dimensionless.

• Range Scaling. The scaling factor in the range scaling method is the range
within each metabolite. In this case, the formula is

x̃ij =
xij − x̄i

ximax − ximin
.

Range scaling allows the comparison of metabolites with respect to their biolo-
gical response range. In this way, all metabolites are equally important and their
scaling is related to the biology of the data. However, increase in measurement er-
rors and sensitivity to outliers may be noticed when applying this scaling method.
As in the case of autoscaling, the data becomes dimensionless.

• Pareto Scaling. Here the square root of the standard deviation is used as the
scaling factor. It aims to reduce the influence of large values without loosing
significant information concerning the structure of the data. It is estimated by

x̃ij =
xij − x̄i√

si
.

Pareto scaled data is closer to the original than autoscaled data, but it depends
very much on the large values in the data set.

• Variable Stability (Vast) Scaling. This is an extension of autoscaling. It
aims to give more importance to those metabolites which appear to have small
variance. To achieve that, the method uses the coefficient of variation (CV)
statistic as scaling factor. The formula is given by

x̃ij =
(xij − x̄i)

si
.
x̄i
si

where
x̄i
si

is the inverse of the coefficient of variation. This method is not useful
when large induced variation exists and there is no group structure in the data.

All these scaling methods belong to the column-scaling methods, as the scaling is applied
to the columns of the data set.

Scaling Based on Average Value

These methods use a size measure instead of a spread measure. Level scaling is one such
method. It converts the changes in metabolites concentrations into changes relative to
the average concentration of the metabolite by using the mean concentration as the
scaling factor. The resulting values are changes in percentages compared to the mean
concentration. The formula for level scaling is given by

x̃ij =
xij − x̄i
x̄i

.
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This method is suitable for the identification of biomarkers. It is though prone to
increase in the measurement errors. Level scaling, likewise the scaling methods based
on data dispersion, belongs to the column-scaling methods.

An illustration of the effect of applying row and column-scaling on the PCA scores
and loadings of the epilepsy data, can be seen in Figures 4.3 and 4.4 respectively. The
scores plots in Figure 4.3 indicate that there are no differences among the scores of the
six epilepsy data sets. With regards to the loadings plots in Figure 4.4, the loadings on
PC1 are pretty well constant for the autoscaled, range, Vast and level scaled data. The
loadings on PC2 for these four data sets have similar shape, although in the Vast scaling
case, the loadings are mainly negative. In the other two data sets, the true and Pareto,
the loadings on both PCs have similar shapes. In general, there is more variation in
the loadings of PC2, and the shapes of the scores and loadings for the true and Pareto
have the highest similarity among all plotted data sets.

4.4.3 Transformations

Metabonomics data can often be skewed and in general suffer from heteroscedasticity.
In addition, the interactions between the various metabolites are not necessarily ad-
ditive but can also be multiplicative (Boccard et al., 2010). As most of the statistical
multivariate methods used for the analysis of metabonomics data often are more effect-
ive when the data is symmetric and many statistical significance tests more often than
not assume that the distribution of the data is approximately normal, it is necessary to
convert the data such that it approximates as closely as possible normality (Brereton,
2009). Transformations of the elements of metabonomics data sets can help towards
this aim. Three common transformation approaches are the logarithmic, the power and
the Box-Cox transformation.

Logarithmic Transformation

It is achieved by replacing xij by log (xij). The main advantages of applying this trans-
formation are that it often minimises the problem with heteroscedastic data, converts
multiplicative models to additive and reduces the influence of large data values such
as outliers and occasional high peaks. However, its main weakness is its difficulty in
handling zero or very close to zero values (especially when these values are very close
to the limit of detection). If the values are below the limit of detection then they are
considered as zero and therefore their logarithms are not defined (Brereton, 2009; Berg
et al., 2006).

Power Transformation

This is performed by replacing xij with x
( 1
n

)

ij where for n = 2 this is the square-
transformation (square root) and so on (Brereton, 2009). Advantages of using power
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Figure 4.3: PC1 vs PC2 scores plots for the scaled epilepsy data sets.
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Figure 4.4: PC1 vs PC2 loadings plots for the scaled epilepsy data sets.
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transformations are:

• It reduces the influence of large values such as outliers and occasional high peaks.

• Unlike the logarithmic transformation, it can cope with zero values, eliminating
the need to replace values below the limit of detection.

• Any uncertainties in small values do not affect the data analyses as much as in
the case of the logarithmic transformation. The smaller a value relative to other
values is, the smaller its influence on the nth root transformed data will be.

The drawbacks of this transformation can be summarised as:

• All values must be positive.

• If the distribution of the data is approximately log-normal, then power transform-
ation cannot convert the distribution of values to a symmetric one.

• There are many options for the value of n. Trial and error is needed to identify
the most appropriate choice for the root. Especially in multivariate data such as
in metabonomics, where each metabolite may have a different distribution, it can
be quite difficult to decide on the n.

Box-Cox Transformation

In this case, the transformation is given by

xij transformed as


(xλij − 1)

λ
if λ 6= 0

log(xij) if λ = 0

where λ is a real number (usually a non-integer, e.g. 0.3). The aim of this transform-
ation is to convert the data into a normal distribution. This transformation is not as
popular as the previously mentioned methods, since it may become very difficult to
interpret the results of analyses of Box-Cox transformed data when the metabolites
in the data set have each different distribution. This is especially true when further
pre-treatment methods are applied to the data as the results can be very complicated
and unpredictable. However, if the metabolites have similar distributions and there is
no need for further pre-treatment of the data, then the Box-Cox transformation can be
very efficient (Brereton, 2009).

An illustration of the effect of the various transformation methods on the PCA scores
and loadings of the epilepsy data, can be seen in Figures 4.5 and 4.6 respectively. The
scores plots in Figure 4.5 indicate that the scores of the six epilepsy data sets are quite
similar in shape, with the scores of the true, power (for both n values) and Box-Cox (for
λ = 0.8) transformed data sets having the highest similarity. Concerning the loadings
plots in Figure 4.6, there is a similar pattern to that of the scores, as the loadings on
both PCs in the true, both power and the Box-Cox (for λ = 0.8) transformed data
sets are similar in shape. The loadings on PC1 are pretty well constant for the log
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Figure 4.5: PC1 vs PC2 scores plots for the transformed epilepsy data sets.
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Figure 4.6: PC1 vs PC2 loadings plots for the transformed epilepsy data sets.
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transformed data, whereas the loadings on PC2 for the Box-Cox (for λ = 0.2) data are
negative. In general, there is more variation in the loadings of PC2, and the shapes of
the scores and loadings for the true, both power and the Box-Cox (for λ = 0.8) have
the highest similarity among all plotted data sets.

The normal order of performing the above mentioned pre-treatment methods in a
data set is usually, first to transform the individual elements of the data set, then apply
row-scaling and finally to scale the columns (Brereton, 2009).

4.4. PRE-TREATMENT METHODS



Summary

In the introductory part of this project, the main aspects of generating and processing
information about the metabolome have been discussed. The importance of the applic-
ation of the metabonomics technology to facilitate the diagnosis of diseases as well as
to evaluate the effects of drug treatment, was stated. Moreover, the main functional
genomic levels (transcriptome, proteome and metabolome) and the technologies to study
the functional networks and pathways of these levels were discussed briefly, with meta-
bonomics and the analysis of metabolic networks and pathways being described in more
detail. Toxicogenomics, which among others, is involved to the study of the way the
genomes respond to drug treatment was also mentioned. The analysis of metabonom-
ics data is achieved with multivariate statistical techniques, therefore the application
of such techniques to metabonomics data, known as chemometrics, was also briefly
mentioned in this part.

As the metabonomics data that will be used in this project for the purposes of the
research scope are patients with epilepsy, a few sections were dedicated to describing
this disorder. The definitions of epileptic seizure and epilepsy, as well as of epilepsy
syndrome and epilepsy disease were given. Lists of the most common types of epileptic
seizures, epilepsies and epileptic syndromes, as well as some important facts about the
prevalence and cost of epilepsy worldwide and elsewhere, were stated. Afterwards, the
problem to be researched was described in detail and the data set together with the
main characteristics of the subjects, to be used in the statistical analyses of the problem
were given.

To generate a metabonomics data set from the samples taken from the patients, an
analytical technique must be used. Two such techniques, which are almost exclusively
used to generate metabolic profiles, were described in detail, Mass Spectrometry (MS)
and Nuclear Magnetic Resonance Spectroscopy (NMR). Information included the the-
oretical background of these techniques, historical milestones, a description of the main
components of the appliances used to perform these techniques, the main steps occur-
ring during the generation of the data, as well as a description of the output (spectra)
generated by these two techniques after applying these procedures to the samples. For
comparative purposes, the main advantages and disadvantages of using these analytical
techniques are given.

Before any chemometrics analysis takes part, it is most of the times necessary to
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process the generated metabonomics data to remove or reduce to acceptable levels the
amount of systematic variation in the data. That is, to make the data more suitable for
the statistical analyses to follow. There are two stages in the preparation of the data,
the pre-processing and the pre-treatment.

Pre-processing is concerned with the cleaning of the generated signals, from problems
such as overlapping peaks, baseline drifts, signal phasing and existence of an extremely
large number of metabolites in the data. A range of methods to overcome such problems
were briefly described with emphasis to those methods more suitable for NMR signals, as
the spectra used in this project were generated by proton NMR spectroscopy. Examples
of how these methods affect the appearance of the spectra were given for binning and
baseline correction. However, the available spectra had been signal-processed by Dr.
John Parkinson, therefore there was no need to apply any of the previously mentioned
techniques.

Pre-treatment occurs in the second stage of data processing. Pre-treatment methods
are always applied after pre-processing. Their purpose is to remove or reduce as much
as possible any uninduced variation (due to sampling, sample work-up and analytical
measurement errors) and if any, the heteroscedasticity of the data. Description of the
most popular such methods were given with respect to the three ways that the methods
can be applied to the data. Row-scaling scales the rows, column-scaling the columns,
and transformations the elements of the data matrix. Scaling methods (both row and
column) were classified to centring, scaling based on data dispersion and scaling based
on average values. Three different types of transforming the elements of a data matrix
were given, namely the log, the power and the Box-Cox transformation. Advantages
and disadvantages of applying the above mentioned pre-treatment methods are given,
as well as graphical representations (PC scores and loadings) of the effect of applying
these to the first two PCs of the metabonomics epilepsy data. Using these results, and
considering the type of data to be analysed in the project, the pre-treatment methods
that were applied to the epilepsy data (resulting in the data set that was used for the
exploratory analyses and clustering in Chapters 5-7), were mean centring for scaling the
columns and scaling to a constant total the rows of the data matrix. More specifically,
the elements of each column in the data matrix were transformed by subtracting the
column mean from each element. Row scaling was achieved by dividing each column
by the sum of all variables in each sample, resulting in all columns having sum equal
to one, effectively making the columns more comparable to each other in the various
analyses in Chapters 5-7. No element transformation was chosen to be used, since the
results indicated that there was no significant (if any) improvement to the data by using
any of the three previously mentioned transformation techniques.

In the next few Chapters (5-7), the research will be focussed to the application of the
most commonly used and important unsupervised techniques in the metabonomics data
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described in Chapter 2, with the processing (scaling and centring methods) mentioned
above. These include both linear and nonlinear dimension reduction and visualisation
methods such as PCA, MDS/NLM and SOM. In addition, unsupervised clustering
techniques such as HCA, Fuzzy and k-means will be reviewed and applied to the selected
metabonomics data. The data set was generated by the NMR spectroscopy analytical
technique and it was pre-processed by Dr. Parkinson, as mentioned previously.
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Part II

Pattern Recognition -

Unsupervised Techniques



Introduction

Due to the nature of the information contained in biological data sets (such as meta-
bonomics data), high resolution NMR spectra can generate very large amounts of data.
In the case of metabonomics, a raw NMR spectrum contains as many as 25,000 meta-
bolites (treated as variables here). As in this research it is required to establish possible
relationships (or correlations) among the various subjects or variables, the greater the
amount of information there is to analyse, the higher the difficulty and complexity of
obtaining the required results will be. The original epilepsy data set, as described in
Chapters 2 and 4, contains 338 variables for 122 patients, as the bin width size has been
set to the quite large value of 0.04 p.p.m., therefore it can be seen that at higher resolu-
tions (with many more metabolites being introduced into the problem, corresponding to
decreasing bin sizes), it would be almost impossible to properly examine and analyse the
data. Hence, it is necessary to apply suitable statistical methods to increase the chance
of identifying any potential similarities or differences among the various samples in the
data, by reducing the dimensionality of the input space of the data to a small number
of dimensions (usually 2 or 3, as only then can the results of the pattern recognition
analyses of the data be graphically depicted).

To classify the samples into groups of similar characteristics, which can give an insight
in the situation under investigation, statistical methods such as Principal Components
Analysis (PCA) and Cluster Analysis can be used. Samples classified in a group will
have similar characteristics, but different from those in other groups. No information
about the groups is known beforehand and no assumptions are necessary concerning
the group to which a sample may be classified. These unsupervised pattern recognition
techniques aim to facilitate the use of various algorithms in order to reduce the amount
of data complexity and afterwards present in a graphical form the patterns or clusters
identified in the data.

PCA, the unsupervised technique most commonly applied to metabonomics data (and
in general in chemometrics studies) for the reduction of the dimensionality of the data,
is reviewed in Chapter 5. The theoretical background of this unsupervised technique is
given in Section 5.2, and the application of PCA to the epilepsy data is described in
Section 5.3.

Chapter 6 coversmultidimensional scaling (MDS) techniques (also known as principal
coordinates analysis). More specifically, two metric scaling algorithms are reviewed, i.e.
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classical scaling and Sammon’s nonlinear mapping (NLM). Classical scaling is described
in Section 6.2. Metric MDS including Sammon’s nonlinear mapping technique, are
covered in Section 6.3. The application of classical scaling and Sammon’s nonlinear
mapping to the epilepsy data and their results can be found in Section 6.4.

Several clustering techniques are reviewed in Chapter 7. Proximity measures are
the subject of Section 7.3. Hierarchical clustering methods are covered in Section 7.5
with the main emphasis on agglomerative nesting algorithms. Two categories of optimal
partitioning methods, fuzzy and hard clustering algorithms, are reviewed in Section
7.6, with the fanny and k -means algorithms respectively applied to the epilepsy data.
Competitive learning algorithms are given in Section 7.7 with emphasis on the self-
organizing maps (SOM) statistical approach and its application to the epilepsy data.

All the above mentioned techniques have been applied to the metabonomics data to
assess their capability of reducing the dimensionality of the input space or clustering
the data effectively and efficiently and identifying differences between responders and
non-responders to AEDs.
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Chapter 5

Principal Components Analysis

5.1 Introduction

Principal components analysis (PCA) is the main tool used by analysts for data reduc-
tion. This technique involves the construction of a new set of variables as linear com-
binations of the original variables in the data set. More specifically, PCA is a statistical
technique which aims to reduce the dimensionality, n, of a data space (Diamantaras
and Kung, 1996). It might be possible to describe the data and examine the underlying
structure of its variance, by using a smaller number, m, of independent variables. This
intrinsic dimensionality, m, of the data, depends directly on the correlation between the
original (observed) variables. The higher the correlation is, the smaller the number of
independent variables that will be needed. The n observed variables can then be rep-
resented as functions of the m independent variables, called components, with m < n,
without losing an important amount of the total variation of the data. Very important
also is the possibility of using the extracted components in multivariate calibration of the
data. Calibration can be considered as the study of potential quantitative relationships
between two or more variables in the spectral data. This is usually achieved by studying
how a number of independent or response variables vary as a function of a dependent
variable. The techniques used in such studies belong to an area of statistics known as
regression analysis. In PCA, a common regression technique for calibration is called
principal components regression (PCR). In this regression method, instead of using the
observed variables in multivariate regression (hard modelling), the components can be
used as the independent variables, thus relating them to the various concentrations of
the metabolites in the data (soft modelling).

PCA is a very popular unsupervised technique in metabonomics, and has been used
extensively for extracting the most relevant descriptors of the data, or to reduce the
dimensionality of the input space. There are many studies of "omics" profiles of organic
samples. Lindon et al. (2001) give a comprehensive description of the use of PCA in
bionomics studies, with emphasis to metabonomics and metabolic profiles of organic
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samples. An important area of metabolic profiling is toxicology and drug development.
Keun (2006) illustrates how PCA of metabolic profiles can help in the detection of drug
toxicity-specific biomarkers, as well as how PCA can be used as a projection method
in metabonomics toxicology. Another area of interest is the use of PCA to study the
effects of various physiological conditions to the metabolic composition of biofluids of
organic samples, such as the effects of inter-animal and diurnal variation, gender, age,
diet, species, strain, hormonal status and stress on the metabolic profiles of urine of
laboratory animals over a given time-course (Bollard et al., 2005b), and the biochemical
effects of a diet with isoflavones of premenopausal women on their urine metabonomic
profiles (Solanky et al., 2005).

5.2 Theoretical Background

The simpler functional form of representation is a linear transformation (combination).
The general transformation needed for an n dimensional space can be written as

f1 = a11x1 + a12x2 + · · ·+ a1nxn

f2 = a21x1 + a22x2 + · · · + a2nxn
...

...
...

fn = an1x1 + an2x2 + · · · + annxn

or in a matrix form as F = AX, where F is the n-dimensional component column
vector (f1 f2 . . . fn)T , X is the n-dimensional column vector (x1 x2 . . . xn)T and A
the (n× n) matrix of coefficients aij ,

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
...

an1 an2 . . . ann

 .

Geometrically, the reduction of the dimensionality of the data space can be seen as the
projection of the vector X onto an m dimensional space. Usually this space is a line,
a plane or a 3-dimensional space to make it possible to represent the data graphically
and describe the correlation between the variables.

From the transformation equations, it can be seen that for the estimation of the
components, the elements of matrix A must be calculated. There are two factors of
variation in the transformation procedure, namely the variation due to the reduction of
the dimensionality of the data space (projection error) and the variation of each com-
ponent. As each component is represented graphically by a line in a specific direction,
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the projection error is the variation around the line, whereas the component’s variation
is the spread of the data along its line. We want to maximize the component variation,
while at the same time minimize the projection error. Using the covariance matrix or
the correlation matrix of the variables, we can estimate the eigenvectors and eigenvalues
of these matrices (Diamantaras and Kung, 1996; Massart et al., 1990). The estimated
eigenvectors are the columns of matrix A and hence their eigenvalues are the loadings
of the components on the observed variables. If we write matrix A as

A = (a1,a2, . . .an)

where ai is the column vector with elements (ai1, ai2, . . . ain)T , i = 1, . . . , n, we can
then estimate each component fi by the column vector ai. The components’ covariance
matrix, Cf , can be written in terms of the observed variables’ covariance matrix, Cx,
as

Cf = ACxA
T . (5.2.1)

As the components are independent, their covariance matrix is diagonal with elements
given by the computed eigenvalues, λi. From equation (5.2.1), we can derive for each
vector ai of matrix A the following equivalent expression

Cxai = λiai, (5.2.2)

where λi is the eigenvalue for component fi (Diamantaras and Kung, 1996). As it is
necessary to compute the components in decreasing order of variation, the first compon-
ent will have the maximum variance, V ar(f1). This is calculated from equation (5.2.2)
as the maximum eigenvalue, λ1. The eigenvector corresponding to this eigenvalue, a1,
provides the direction of the first component axis, on which the data is projected. The
spread of the projected data on this axis is given by λ1. Solving equation (5.2.2) for the
second largest component variation, V ar(f2), we obtain a2 and λ2. The eigenvectors
are taken to be orthogonal to each other, i.e. aT

i aj = 0 for every i and j. We continue
the procedure until the last component fn is found. It is important to note that the
total component variation is equal to the variation of the observed variables, that is

tr(Cx) =

n∑
i=1

λi. (5.2.3)

In addition, the proportion of the total variation that a component fi explains is given
by

λi
n∑
i=1

λi

. (5.2.4)
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5.2.1 Testing Data Suitability for PCA

An important consideration before accepting any results obtained by PCA, is to assess
the amount of information that the data contains. If the amount of information is very
large, that is, the descriptors in the data set are not correlated, then there is no point
in applying PCA, as there will be no significant data reduction. Two statistics which
can confirm the suitability or not of the data for PCA, are the normalized entropy, H̃,
of a data set (Cangelosi and Goriely, 2007) and the Gleason - Staelin statistic (Jackson,
2003). The former is given by equation (5.2.5):

H̃ = − 1

log2N

N∑
i=1

pi log2 pi (5.2.5)

where pi is the proportion of total variation explained by component i, and N is the
number of components that PCA calculated (the rank of the X data matrix). H̃ takes
values in the range [0, 1]. The higher its value is, the more information is contained
and the less useful PCA is. For value 1, all variables in the data set are completely
uncorrelated, hence the data space dimensionality is equal to the number of the variables
in the data set, whereas if its value is 0, then all variables are completely correlated, and
the dimensionality is 1, as only one component is needed to describe all the information.
The information dimension, related to the normalized entropy, and defined as

n0 =
N∏
i=1

p−pii (5.2.6)

where pi is the proportion of total variation explained by component i, and N is the
number of components that PCA calculated, can be used to measure the number of
components to retain.

The Gleason - Staelin statistic is given by equation (5.2.7):

φ =

√
||R||2 − n
n(n− 1)

(5.2.7)

for the correlation matrix R, where n is the dimensionality of the data set - the number
of original variables in the data - and

||R||2 =
n∑
i=1

n∑
j=1

r2
ij
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with rij being the correlation between variables i and j. The statistic becomes

φ =

√√√√√√√√√
||S||2 −

n∑
i=1

(s2
i )

2

n∑
i=1

n∑
j 6=i

(sisj)
2

when the covariance matrix S is used. Similarly to the normalised entropy, φ takes values
in the range [0, 1]. In this case, though, the higher its value is, the more correlated the
variables in the dataset are. For value 0, the variables are totally uncorrelated, and
there is no point in applying PCA to the data, whereas if its value is 1, then there is
perfect correlation among the variables and the dimensionality of the data space is 1.

5.2.2 Determining the Number of Components to Extract

A very important part of the PCA procedure is the identification of the maximum
number of required PCs. There is a long dispute in the literature on which method
of estimation of PCs is the most appropriate, however none of the suggested ways of
tackling this problem is suitable for every possible situation. There is a large number
of stopping rules. They can be divided into categories, such as those rules which are
based on confidence intervals, e.g. parallel analysis and re-sampling methods (Horn,
1965; Besse and Falguerolles, 1993) and those based on average test statistic values e.g.
broken stick and Velicer’s MAP (Neto et al., 2005; Ferre, 1995; Velicer, 1976). Two
commonly used stopping rules, one based on average test statistic value and one based
on confidence intervals, are described below.

• Broken-stick. This is based on the concept that by dividing randomly the total
variance of a multivariate data set, the distribution of the eigenvalues follows a
broken-stick distribution. The idea is that if a line segment is randomly divided
into n pieces, then the expected value of the length of the kth piece is given by

Ek =
1

n

n∑
x=k

1

x
. (5.2.8)

If the eigenvalue of the component k is larger than the respective expected value,
Ek, of the broken-stick distribution, then this component is retained (Cangelosi
and Goriely, 2007; Neto et al., 2005; Legendre and Legendre, 1998). However,
use of this stopping rule requires a bit of caution, as according to Cangelosi and
Goriely (2007) it sometimes underestimates the appropriate number of principal
components. Comparison of the result of this criterion with those of other stop-
ping rules is a wise precaution to avoid retaining fewer than the appropriate
number of principal components.
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• Parallel Analysis. This stopping rule was introduced by J.L. Horn (Horn,
1965). It is based on the generation of random data sets of uncorrelated nor-
mally distributed variables of the same size as the original data. The method
proceeds by applying PCA to these data sets and retaining the eigenvalues for
each principal component. This is repeated for a large number of times, e.g.
1000. The percentile intervals of eigenvalues for each component are calculated,
for instance, at significance level 95%. If the observed values exceed those of the
calculated intervals, then the null hypothesis at the chosen level of significance
is not accepted, therefore the component is retained. It should be noted that as
this analysis depends on the normality of the generated data, it may not be the
most suitable when the generated data is not normally distributed. In such cases,
non-parametric re-sampling techniques such as the bootstrap methods may give
more robust results (Daniel, 1992; Besse, 1992).

These two methods will be used in the analyses, and their results in the epilepsy data
will be compared to some other popular rules, such as Kattel’s Scree Test and the
number of components explaining 90%, 95% and 99% of the total variance in the data.

5.3 Application of PCA in the Epilepsy Data

5.3.1 Introduction

The generation and pre-processing of the NMR signals (spectra) were carried out by a
NMR scientist, Dr. Parkinson, from the Department of Pure and Applied Chemistry at
the University of Strathclyde. More specifically, 1H NMR spectroscopy was performed
in a dedicated facility at the Department of Chemistry, University of Edinburgh, UK. A
50 µl aliquot of deuterium oxide (D2O; 99.9 % 2H atom; Sigma, UK) was added to 500 µl
of serum. Particulates were removed by microcentrifugation for 1 minute at 10,000 rpm
and the supernatant transferred to a 5 mm precision NMR sample tube (Wilmad 528-
PP-7; Aldrich, UK). One dimensional proton NMR spectra were acquired using a Bruker
Avance 600 NMR spectrometer equipped with a triple resonance TXI [1H, 13C, 15N]-xyz
triple axis gradient probe-head operating at a proton resonance frequency of 599.813
MHz. Data were acquired on non-spinning samples at a temperature of 25o C using a
noesypresat pulse sequence (d1-p1-d2-p1-tm-p1-acq, where d1 = 2.0 s, p1 = 12.75 µs

[90o r.f. pulse at a relative power level of -2.5 dB], tm = 50 ms and acq = 1.639 s). Data
were acquired with 64 transients over a frequency bandwidth of 10 kHz, digitised into
32,768 data points, Fourier-transformed without any applied weighting function, phase
and baseline corrected, and referenced internally to the methyl doublet resonance of
lactate at 1.33 ppm (parts per million). All 1H NMR data were processed remotely using
Xwin-NMR (version 3.5) and subsequently read directly into the bucketing and statistics
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module of AMIX (version 3.6.6; Bruker Biospin, Germany) which allows for data scaling
and integration, alternative bucketing, inclusion/exclusion of individual datasets, and
presentation of analyses according to different combinations of principal components.
Data were divided into 0.04 ppm buckets over a spectral range of 0.0− 6.0 ppm (Zweiri
et al., 2010).

As described previously in Sections 2.4.2, 2.4.3 and 5.2.2, the original epilepsy data
consist of 97 patients who are either responders or non-responders to AEDs treatment.
As is usual in proton NMR metabonomics data, the recorded NMR spectra include
resonances which do not correspond to any endogenous metabolites (Ross et al., 2007).
Spectral regions which do not contain any endogenous metabolites are not useful in data
analysis and therefore need to be removed before any data analysis is performed. Such
regions are the spectral ranges below 0 ppm and above 10 ppm (Williams and Fleming,
1995). In addition, the spectrum resonances in the spectral range 4.7− 4.9 ppm, which
are the remaining water resonances after the application of water suppression techniques
in the spectra, need to be excluded as well. The reason for this fact is that the analysis
of signals of metabolites below the water resonances is not possible as the water peak
dominates the proton NMR spectrum, thus, affecting the multivariate data analysis of
the spectral peaks of interest (Ross et al., 2007). After the exclusion of these regions
from the spectral data, the remaining spectral data consist of 97 subjects and 244
variables in the spectral range 0.02 − 9.98 ppm. As the variables in the spectral range
6.02−9.98 ppm were very low in intensity (Zweiri et al., 2010), these were also excluded,
with the remaining spectral data containing 97 patients and the 144 variables in the
spectral range 0.02 − 5.98 ppm. Finally, each and every sample in the data set was
subjected to row-scaling to a constant total, to make the spectra more comparable. This
was done by dividing each variable by the sum of all variables in a sample, effectively
converting the absolute intensities of the data to proportions.

The possibility of reducing the number of variables to a far smaller number of compon-
ents, without losing any important information from the original data, will be examined.
Applying PCA to the data may also indicate any relationships among the samples and
the variables. Any potential clusters may be identified on the resulting plots. After
identifying the required PCs for the variables in the data set, it will be established
using appropriate criteria (statistics) whether more than 2 or 3 components are needed,
to describe enough of the variation in the data. These PCs will describe with high
accuracy most of the important information in the original data, possibly facilitating
the identification of existing clusters of patients and/or metabolites. In addition, the
patients’ clinical characteristics will be investigated in order to clarify if there is any
relationship between them and the patients’ metabolic profiles. That is, it will be as-
sessed whether PCA can identify any natural clusters of patients with respect to their
clinical characteristics and more importantly to their response to AEDs.
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5.3.2 Data Suitability

Before doing any PCA analysis, it is necessary to test the suitability of the data for
PCA. The normalised entropy and the Gleason - Staelin statistic will be calculated using
equations (5.2.5) and (5.2.7) respectively. The normalised entropy for the epilepsy
data set is 0.121, which means that the metabolites are highly correlated, with the
dimensionality of the data being close to 2 (the value of the information dimension is
1.74 ≈ 2). In addition, the value of the Gleason - Staelin statistic using the correlation
matrix is 0.555, indicating that the metabolites are sufficiently correlated to justify data
reduction using techniques such as PCA. Both statistics confirm beyond any doubt that
the data is suitable for PCA analysis.

5.3.3 Identification of the Number of Components to

Retain

After confirming the suitability of the data, the next step in PCA is to identify the
number of principal components to retain for the analyses. The percentages of the
total variation in the data explained by the first ten principal components can be seen
in Figure 5.1. The plot shows that about 90%, 95% and 99% of the total variation is
explained by 2, 3 and 8 PCs respectively. Table 5.1 contains the standard deviation, the
percentages of the total variance explained and the cumulative percentages of variance
for the first ten PCs. The detailed results for the variance of the PCs indicate that no
more than 2 components need to be retained for further analyses, as they explain most
of the variation in the data, ≈ 95%, while the variation of the remaining components is
likely to be due to measurement and instrumentation errors. To confirm these findings,
as described in Section 5.2.2, the broken stick and parallel analysis stopping rules will
be used to identify the appropriate number of principal components.

An illustration of the broken-stick model can be seen in Figure 5.2 (top), showing
that only 2 components should be retained, as only two eigenvalues are larger than the
expected values of the broken-stick distribution (red line). Cattell’s scree test (Cattell,
1966) is also depicted in Figure 5.2 (black line in the top figure), confirming that at
most 3 components should be retained (using one more component after the break in
the line (Jackson, 2003)).

Table 5.1: Standard deviation, percentage of total variance explained by, and cummulative per-
centages of variance for the first ten PCs.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Standard Deviation 0.0150 0.0041 0.0018 0.0016 0.0013 0.0011 0.0009 0.0008 0.0007 0.0006
Proportion of Variance (%) 88.30 6.65 1.28 1.10 0.73 0.53 0.32 0.25 0.18 0.13
Cumulative Proportion (%) 88.30 94.95 96.23 97.33 98.06 98.59 98.91 99.16 99.34 99.47
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Figure 5.1: Percentages of the total variation in the data explained by the first ten components.

Parallel analysis was performed using the mean and the 99th centile estimates for
the calculation of the confidence intervals, and different numbers of random sets of up
to 200 per variable. All runs retained 1 component, independently of the confidence
intervals and number of iterations used. The parallel analysis plot in Figure 5.2 (bottom)
illustrates the adjusted and unadjusted eigenvalues and suggests that 1 component
should be retained. The unadjusted eigenvalues are the eigenvalues of the observed
data from an unrotated PCA. The random eigenvalues are the estimated, either mean
or centile, eigenvalues from 4320 iterations, which is the default number of iterations,
given by 30 * number of variables, as used by the R function paran() to perform parallel
analysis. The adjusted eigenvalues are given by the adjustment

AdjustedEig = UnadjustedEig − (SimulatedEig − 1)

and retained if their values are greater than 1.

In Table 5.2, a comparison of the results for a number of stopping rules can be seen.
The results stated in Table 5.2 show that 2 or 3 PCs should be retained. The result
of retaining 1 PC, from parallel analysis, although being the smallest, if chosen will
not be particularly interesting, and probably important information contained in the
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Figure 5.2: Stopping rules for the number of components.
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Table 5.2: Comparison of various stopping rules for the selected epilepsy data of 97 patients and
144 variables.

Stopping rule Number of
Components retained

Parallel Analysis 1
Brocken Stick 2
Kattel’s Scree Test 3
90% of Variance 2
95% of Variance 3
99% of Variance 8
Information Dimension 2

second PC will not be considered. Therefore, despite the first component explaining
approximately 88.3% of the total variation, one PC is most probably not the appropriate
number of PCs to retain. Retaining the first two or three principal components allows
for proper graphical representation of the data and easier identification of any natural
patterns in the structure of the input space defined by the selected data.

5.3.4 Results of PCA

Having identified that the first two or three PCs should be retained for further analyses,
graphical representation of the data structure is the next step in the PCA analysis. The
PC scores (concerning the samples) and loadings (concerning the variables) can be
plotted in many ways to give a visual summary of the epilepsy data. These can be in
1, 2 or 3 dimensions.

Plotting the PC scores is usually the first step in describing the data graphically.
The 1-dimensional scores plot is essentially a bar chart, where, for a selected PC, each
score is plotted against sample number. It is often useful to re-order the sample in ways
that can facilitate better the interpretation of the scores. Selecting a suitable order
of the samples should indicate clearly in the bar chart if a specific PC is influenced
by a specific grouping of the samples. One way of indicating a particular grouping
of the patients is by using colour. In the case of the epilepsy data, the groupings of
the patients will be defined by their clinical characteristics of interest (Gender, Seizure
Type, Response to AEDs, Age and BMI ). In a 2-dimensional scores plot, the scores of
a PC are plotted against those of another. This is usually done for the first 3-4 PCs,
which more often than not are sufficient to explain most of the variation in the data.
In this case, the samples are plotted using the values of the scores as coordinates. This
type of plot may indicate which of the PCs appears to be the best discriminator for a
specific grouping of the patients. The groupings are usually represented by a different
symbol and/or colour. In the case of the epilepsy data, whenever 2-dimensional score
plots are used, different colours will represent the groupings of patients according to
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their clinical characteristics. Finally, if the results of the 1 and 2-dimensional plots are
not conclusive, 3-dimensional scores plots can be used, such that each axis of the plot
represents one PC. Colouring of the samples can be applied in an analogous way to that
of the 1 and 2-dimensional plots. In the epilepsy data, 3-dimensional plots will be used
only if the results of the lower dimensional plots justify it.

A general visual summary of the epilepsy data can be seen in Figure 5.3. The most
interesting plots of the six are the scores plot for the first two components and that
of the pair PC3 and PC4. The former scores plot describes most of the information
in the epilepsy data (approximately 95% of the total variation is explained by the first
two PCs as shown in Table 5.1), therefore is necessary to investigate these two PCs.
The latter score plot indicates that there is one patient with ID number 44 having a
high positive score in PC4, which seems to be an outlier, influencing mainly PC4. The
patient with ID number 20 has a very high negative score in PC1 and a high positive
score in PC3, and could influence PC1 and PC3. As PCA is affected by outliers, it is
important to confirm whether these samples are outliers or not.

There are two types of outliers that could affect PCA, orthogonal outliers and leverage
points. The former are related to their orthogonal distance to the space defined by the
PCs, and the latter to their score distance, their projection’s distance from the centre
of the PCA space. The score distance, SD, of a sample i is given by

SDi =

Npc∑
k=1

t2ik
vk

 1
2

where Npc is the number of PCs forming the PCA space, tik the elements of the score
matrix and vk the variance of the kth PC (Varmuza and Filzmoser, 2009). Assuming
that the data is multivariate normally distributed, the squared score distances can be
approximated by a chi-square distribution, χ2

Npc
, with Npc degrees of freedom. A cutoff

value for the score distance can be the 97.5% quantile,
√
χ2
Npc,0.975

. If the score distance
of a sample is larger than this cutoff point, then the sample is a leverage point. The
orthogonal distance, OD of a sample i is defined as

ODi = ||xi − PtTi ||

where xi is the ith sample of the centred data matrix, P the loadings matrix using
Npc PCs and tTi the transposed score vector of sample i for Npc PCs (Varmuza and
Filzmoser, 2009). A cutoff value for the orthogonal distance is computed by Hubert
et al. (2005), using the Wilson-Hilferty approximation for a chi-square distribution.
That is, the distribution of OD

2
3 is approximately normal, with the centre (mean) and

spread (variance) of the values being robustly estimated, e.g. using the median and the
median absolute deviation (MAD) respectively. The cutoff value is then computed as
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Figure 5.3: Scores plots for the epilepsy data for the fist four PCs, superimposed with the patient
ID numbers. The sample numbers in the plots are the original ID numbers of the
selected 97 patients. The data are row-scaled to a constant total.
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(median(OD
2
3 )+MAD(OD

2
3 )z0.975)

3
2 where z0.975 is the 97.5% quantile of the standard

normal distribution. If the orthogonal distance of a sample is higher than the cutoff
value, then the sample is an orthogonal outlier. If an orthogonal outlier sample with
large orthogonal distance also has a large score distance (so it is a leverage point), then
the sample is a bad-leverage point, as it can affect negatively the correct estimation of
the PCA space. A leverage point that also has a small orthogonal distance but still
is an orthogonal outlier, with a large score distance is a good leverage point, as it can
stabilise the estimation of the PCA space.

Diagnostic plots using the score and the orthogonal distance of the samples in the
data can be seen in Figure 5.4. The cutoff values for the score and the orthogonal
distance are equal to 11.23127 and 2.156164e-17 respectively. It can be seen that there
are no points with score distance higher than the cutoff value, although patients 35,
55 and 81 have the highest score distances, being close to the cutoff value. In the
case of the orthogonal distances, there are 8 points with orthogonal distances higher
than the cutoff value, namely the patients 6, 10, 30, 46, 59, 76, 111 and 125, and 1
patient with orthogonal distance approximately equal to the cutoff value (patient 19).
However, removing these samples from the data set and re-running the analyses showed
that there was no effect from the inclusion of these patients in the PCA, as the results
were approximately similar with only an expected reduction of the variance explained
by the first PC being slightly smaller (by approximately 5% than that in the total set
(Figure 5.5)). Therefore, the original data set of the selected 97 patients can be used
for further analyses.

The patients’ coordinates with respect to the first four components, which explain
approximately 96.23% of the total variation in the data, can be seen in Figure 5.6, super-
imposed with the Gender information of the patients. Males and females are depicted
in red and black colour respectively. From the information about Gender in the scores
plots for the first four components, it is clear that components PC1 and PC4 cannot
distinguish the patients with regards to their Gender, whereas PC2 seems capable of
discriminating between females and males with reasonable accuracy. The female and
male patients have mainly low and high scores respectively in PC2. Component PC3
also appears to separate out the female patients, with the majority of females having
high scores. In general, components PC2 and PC3 are related to Gender, and especially
PC2, as it can discriminate both categories quite satisfactorily. However, the scores on
PC3 and PC4 are fairly small compared to those of PC1 and PC2, as these compon-
ents explain only approximately 2.5% of the total variation of the data. Two PCs are
required to separate out the patients with respect to their gender.

Considering the Seizure Type of the patients, the scores plots (Figure 5.7) indicate
that only IGE patients are clearly related to any of the first four PCs. More specifically,
it can be seen that in the first three PCs, the IGE patients have mainly high scores.
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Figure 5.4: Outlier diagnostic plots using the score (SD) and the orthogonal distance (OD). The
sample numbers in the plots are the original ID numbers of the selected 97 patients.
The horizontal lines in the two plots represent the cutoff values, such that any point
above these lines is a leverage point (top plot) or an orthogonal outlier (bottom plot).
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Figure 5.5: Percentages of the total variation in the data explained by the first ten components
(after removing the outliers).

LRE patients 10, 35, 82, 97, 114 and 123 on PC1, and LRE patients 53 and 104 on
PC2, are all very highly negatively scored. PC4 cannot distinguish the patients with
respect to their seizure type. Probably more than four PCs are required to separate
out the Seizure Type categories. A number of LRE patients have very low scores on
PC1 and PC2, and IGE patients have high scores, but none of the first four PCs can
separate out the patients with respect to their Seizure Type. It has been demonstrated
though, that PC1 is the best PC to separate the IGE patients from the others with
regards to high values. The scores plot of the first two PCs also indicates clearly that
the IGE patients tend to lie towards the top-right corner of the plot. To confirm this
result, that is, if indeed the first component contributes considerably to the prediction
of the Seizure Type of the patients, as well as whether the other PCs contribute to
the Seizure Type at all or not, a principal components regression (PCR) analysis can
be done. The response variable is the Seizure Type information (recoded as binomial
with IGE patients set to value 0 and LRE patients to 1), and the explanatory variables
are the first four PCs. The general linear model (glm) with link function g, the logit
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Figure 5.6: Scores plots for the epilepsy data superimposed with the Gender information. In all
plots, males and females are depicted in red and black respectively. The sample num-
bers in all scores plots are the original ID numbers of the selected 97 patients. The
data are row-scaled to a constant total.
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Figure 5.7: Scores plots for the epilepsy data superimposed with the Seizure type information. In
all plots, IGE and LRE patients are depicted in black and red respectively. The sample
numbers in all scores plots are the original ID numbers of the selected 97 patients. The
data are row-scaled to a constant total.
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function, is given by

logit(π) = log

(
π

1− π

)
= β0 + β1PC1 + β2PC2 + β3PC3 + β4PC4

with π = Pr(Seizure Type = LRE), where the parameter βj is associated with ex-
planatory variable PCj , such that eβj is the odds that the response variable takes the
value 1 (LRE) when PCj increases by one, and (Everitt and Hothorn, 2006)

g(π) = β0 + β1PC1 + β2PC2 + β3PC3 + β4PC4. (5.3.1)

The coefficients of this regression model can be seen in Table 5.3. The PCR results

Table 5.3: Coefficients for the PCR model of Seizure Type defined by equation 5.3.1 and with a
binomial error distribution. The PC scores for the first four PCs have been used as
explanatory variables. Results obtained using glm() in R with binomial error.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.464 0.292 5.003 5.63e-07
PC1 -43.541 21.127 -2.060 3.93e-02
PC2 -151.275 72.111 -2.097 3.59e-02
PC3 -39.850 144.780 -0.275 7.83e-01
PC4 240.184 176.104 1.363 1.72e-01

show that the first two PCs are significant at 95%, as the p-values for both these PCs
are < 0.05. The first two components, which explain almost 95% of the total variation
in the data, are very important in the analyses. It is clear from the glm results that
both these PCs make an evident contribution to the prediction of the Seizure Type of
the patients. This result confirms the findings of the scores plots for these PCs, as seen
previously.

In the case of the Response to AEDs information, Figure 5.8 shows that the pa-
tients cannot be separated with respect to this characteristic, as none of the first four
PCs is capable of distinguishing the patients with regards to their Response to AEDs
information. The distribution of the scores over the Response to AEDs groups is bal-
anced between high and low values. The lowest scored patients on PC1 are 20 and 101
(responders) and 36 and 116 (non-responders). In PC2, patients 53 and 104 are the
lowest scored responder and non-responder respectively. The first four components do
not seem to be sufficient to separate out the patients with respect to their Response to
AEDs information. To confirm this result, a PCR analysis can be done, with response
variable being the Response to AEDs information (binomial with values 1 and 0 for
a responder and non-responder respectively), and explanatory variables the first four
PCs. A similar glm, to that of the Seizure Type, can be described as in equation 5.3.1
where in this case, π = Pr(Response to AEDs = 1). The coefficients of the regression
model can be seen in Table 5.4. The glm results show that there are no PCs that make
any significant contribution to the prediction of Response to AEDs, as the p-values for
all PCs are larger than 0.05.
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Figure 5.8: Scores plots for the epilepsy data superimposed with the Response to AEDs information.
In all plots, responders and non-responders patients are depicted in black and red
respectively. The sample numbers in all scores plots are the original ID numbers of the
selected 97 patients. The data are row-scaled to a constant total.
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Table 5.4: Coefficients for the PCR model of Response to AEDs defined by Equation 5.3.1 and
with binomial error distribution. The PC scores for the first four PCs have been used as
explanatory variables. Results obtained using glm() in R with binomial error.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.145 0.204 0.710 0.477
PC1 4.172 13.612 0.306 0.759
PC2 -12.795 49.795 -0.256 0.797
PC3 54.785 113.285 0.483 0.628
PC4 11.391 122.051 0.093 0.925

Figure 5.9 indicates that there is a relationship between the first three components
and the age of the patients. More specifically, PC1 and PC3 can separate out the young
patients in the Age category [16-26), as most patients in this category are highly scored
in these components. The remaining two Age categories, [26-47) and [47-99), are clearly
distinguishable along PC2 according to the size of their scores, with the patients in the
former category having high scores and patients in the latter Age category having low
scores. In general, patients on the last two Age categories have much lower scores on
PC1. Two or three PCs are sufficient to separate out the patients with respect to Age.

The patients have been divided into four categories with respect to their BMI values,
namely [16-22], (22-25], (25-28] and (28-45.1]. The scores plots superimposed with the
BMI information in Figure 5.10 demonstrate that there is a relationship between the
first three components and the BMI categories of the patients. Patients with BMI
values in the first two categories (depicted in black and red respectively), are generally
separated from the last two categories (depicted in green and blue respectively) on the
first component, as the former have high scores and the latter low PC1 scores. The
first two categories have similar scores in size in all four PCs, therefore, they cannot be
distinguished from each other in these four PCs. The third BMI category is related to
the third component, with only a few patients in this category having low PC3 scores.
The last BMI category, (28-45.1], although more difficult to see, seems to be related
to PC1 and PC2. In this case, the scores of the patients in PC1 are mainly very low,
whereas in PC2 they are mainly high. However, four PCs do not seem to be sufficient
to separate out all four BMI categories.

Male (20, 36, 101 and 122) and female (66 and 116) patients have the lowest PC1
scores, while female patients 53 and 104 have the lowest PC2 scores. For PC3 male
patients 15, 112 and 120 have the lowest scores and for PC4 one male patient can be
easily distinguished among all patients as having the highest score. In general, PC1 is
concerned mainly with IGE patients, of either gender and response to AEDs, in the Age
category [16-26) with BMI values mainly in the range [16-25]. PC2 is related mainly
to IGE patients, having either response to AEDs, being of any gender, of age in the
range [26-99) and of BMI values rather in the range (28-45.1]. The third component is,
likewise PC1 and PC2, concerned mainly with IGE patients.
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Figure 5.9: Scores plots for the epilepsy data superimposed with the Age information. In all plots,
patients in the three Age categories, [16-26), [26-47) and [47-99) are depicted in black,
red and green respectively. The sample numbers in all scores plots are the original ID
numbers of the selected 97 patients. The data are row-scaled to a constant total.
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Figure 5.10: Scores plots for the epilepsy data superimposed with the BMI information. In all
plots, patients in the four BMI categories, [16-22], (22-25], (25-28] and (28-45.1]
patients are depicted in black, red, green and blue respectively. The sample numbers
in all scores plots are the original ID numbers of the selected 97 patients. The data
are row-scaled to a constant total.
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Loadings plots can help to provide a general idea of relationships between variables,
as well as between samples and variables. In general, variables that cluster most closely
together are usually well correlated, so that well-correlated variables probably exhibit
similar trends in the data samples. If the scores and loadings are similar in sign, then
they group in samples and spectral features are correlated. A variable having very
positive values in a PC in the loadings plot, is most likely to be a biomarker for a
category (or group) of patients who have very high values of the scores of this PC,
unlike those categories (or groups) with very low values. In other words, the extreme
variables in the 1-dimensional loadings plots are likely to be biomarkers for categories
of clinical characteristics with extreme values of similar sign in the scores plots for a
PC.

The loadings plots for the first four PCs can be seen in Figure 5.11. In the case of the
epilepsy data, there is sequential meaning to the horizontal scale of the 1-dimensional
loadings plots, which relates to chemical shift in ppm. Low (high) scores and negative
(positive) loadings, depicted as peaks in the loadings plots may mean correlation of the
categories with the variables in the peaks. Variables with chemical shift in the range of
1.38−1.26 ppm contribute more to the variation in the first three components. Variables
with chemical shifts in the range of 3.98− 3.38 ppm contribute more to the variation of
the fourth component.

Concerning Gender, very high negative loadings are observed for variables 1.26, 1.22,
0.86 and 3.22 on PC2. As the Gender categories are separated by PC2, female patients
will tend to have larger values thanmales on these variables. On the other hand, variable
1.3 is observed to have the highest positive loading on PC2, therefore male patients are
expected to have larger values than females on this variable. From Table 2 in Lindon
et al. (1999), variable 0.86 is not associated with any metabolite in human blood serum,
1.22 is associated with β−Hydroxybutyrate, 1.26 is associated with Isoleucine (which
appears also in 0.94 ppm), and variable 1.3 with Fucose. Thus, females may have larger
intensity values in Isoleucine and β−Hydroxybutyrate than males, and the opposite
may occur in the case of Fucose.

Regarding the Seizure Type of the patients, there are practically no positive loadings
on PC1 (shown to be one of the PCs capable of separating the IGE patients), thus, it is
highly improbable that any variables in PC1 could be related to IGE patients. However,
variable 1.3 in PC2 and PC3, as well as 0.9 in PC3, are observed to have the highest
positive loadings in these two PCs, thus, IGE patients will tend to have larger values
than LRE patients on these variables. From Table 2 in Lindon et al. (1999), variable 0.9
is associated with α−Hydroxy−n−butyrate, n−Butyrate and α−Hydroxy−n−valerate,
and variable 1.3 with Fucose, therefore IGE patients will tend to have larger intensity
values in these metabolites than LRE patients.

5.3. APPLICATION OF PCA IN THE EPILEPSY DATA
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Figure 5.11: Loadings plots of the first four PCs for the epilepsy data. The variable labels in the
2-dimensional loadings plots are the chemical shifts of the variables in the proton NMR
spectrum. The data are row-scaled to a constant total.
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As there is no separation of the patients with respect to their Response to AEDs, no
categories of response are associated with high or low scores, therefore, no comparison
between variables and samples can be attempted from the results of the scores and
loadings for this clinical characteristic.

Concerning Age, there are two variables, 1.3 and 1.34, having the highest positive
loadings on PC2, and the scores for the Age category [26-47) are high, meaning that
patients in this Age category will tend to have larger values of these two variables than
the rest of the patients. As variable 1.3 is associated with Fucose and variable 1.34 with
the former, and Lactate, Threonine and α−Hydroxyisobutyrate (Lindon et al., 1999),
the patients in this category will tend to have larger values in these metabolites than the
remaining patients in the other two Age categories. In addition, patients in Age category
[47-99) will tend to have large values on variables 1.26, 1.22, 0.86 and 3.22, as both the
loadings of these variables and the scores of the patients in this specific category are
very low. Therefore, these patients will have larger values of the metabolites associated
with these variables (seen in the previous paragraph for Gender). Also, patient 44, has
the highest PC4 score, and considering that there is a peak of high positive loadings in
the range 3.46 − 4.1 ppm of PC4, a relation between these variables and that specific
patient is indicated. That is, on these variables, this patient will tend to have the highest
intensity values (the variables in these chemical shifts correspond to metabolites such as
Tryptophan, Choline, Glycerol,Myo−inositol, Glysine, Ethanol, V aline, Isoleucine,
Leucine, α−Glucose, β−Glucose, Lysine, Glutamine, Glutamate, Alanine, Ornithine,
Methionine, Betaine, Creatine, Tyrosine,Hippurate,Histidine, Phenylalanine and
Creatinine).

Things are not as clear in the case of BMI as for Age, but it can be seen in Figure
5.11 that the first two BMI categories, [16-22] and (22-25], despite having high PC1
scores, do not seem to be related to any variables, as practically no positive peaks exist
in the loadings of PC1. Nevertheless, the variables in the range 1.26 − 1.34 ppm, as
well as 0.9, may be related to the largest two BMI categories, with patients in these
categories having larger values on these variables, and consequently on the associated
metabolites mentioned previously, than the patients in the other two BMI categories,
since both loadings and scores in PC1 have very low values.

5.4 Conclusions

The first part of the exploratory analysis has covered the application of PCA to the
epilepsy data. The data set that was used for this purpose contained those spectral
regions with chemical shifts in the range 0 − 6 ppm, and the data was row-scaled to a
constant total to make the spectra more comparable. Results of the analyses indicated
that the first two principal components account for approximately 95% of the total
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variation in the data, therefore should be sufficient to separate the patients with respect
to their clinical characteristics, Gender, Seizure Type, Response to AEDs, Age and BMI.
Various stopping rules, including the broken stick and parallel analysis, were used to
confirm that only the first two PCs should be retained. The data were examined for
the possibility of existence of potential outliers and 9 patients were removed from the
data, as diagnostic plots showed them to be orthogonal outliers. The analyses were
re-run with the reduced data, confirming that there was no effect of these patients’
exclusion from the data on the PCA results, therefore the original data was used for
further analyses.

Scores plots, superimposed with the information for the five clinical characteristics,
demonstrated that no PC can separate the patients with respect to their Response to
AEDs. This was confirmed by the construction of the general linear model with ex-
planatory variables being the first four components and dependent variable the recoded
Response to AEDs information. Concerning Gender, it was shown that the first two
PCs are sufficient to separate the patients, with females having low and males high
scores. Similar results were observed for the Seizure Type of the patients, with only
the first two PCs needed to separate the IGE from LRE patients. The IGE patients
were associated with high scores, whereas the LRE patients were mainly associated
with low scores on these two PCs. As with the Response to AEDs case, here also a
general linear model was used to confirm the findings for the Seizure Type. In the case
of Age, the scores plots illustrated that three PCs can separate the patients with regards
to the three pre-defined categories of Age, [16-26), [26-47) and [47-99). The first Age
category is associated with high PC1 and PC3 scores, whereas the other two categories
are associated with high PC2 scores and low PC2 scores respectively. Regarding BMI,
patients were divided into four categories, i.e. [16-22], (22-25], (25-28] and (28-45.1].
Analyses showed that the first three PCs are associated with BMI, but not as clearly as
in the case of Age. PC1 can separate the patients in the first two lower BMI categories
(high PC1 scores) from those patients in the last two higher BMI categories (low PC1
scores). PC2 is mainly associated with the patients in the last BMI category (high
scores) and PC3 mainly with those patients in the third category (high scores). The
first two categories cannot be separated well from each other by any of the PCs.

Loading plots were drawn to examine any relationship between the variables in the
data, as well as between samples and variables. Results indicated that female patients
seem to have larger values on variables 1.26, 1.22, 0.86 and 3.22, having large negative
loadings on PC2, whereas male patients have larger values on variable 1.3 having the
highest positive loadings on PC2. Concerning Seizure Type, only variable 1.3 on PC2
and PC3, and variable 0.9 on PC3 are indicative of the IGE patients, having larger
values for them. Results for Response to AEDs are inconclusive, as it was shown that
no PC can separate the patients with respect to this. On variables 1.3 and 1.34 (high
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positive loadings on PC2), patients in the Age category [26-47) have larger values than
the remaining patients. Variables 1.26, 1.22, 0.86 and 3.22, with negative loadings
on PC2, are associated with the patients in Age category [47-99), who are observed
to have the larger intensity values on these variables. Finally, variables in the range
3.46−4.1 ppm constitute a peak of high positive loadings on PC4, and could be related
to patient 44, who has the highest PC4 score in the second Age category. Regarding the
BMI categories, the variables in the range 1.26-1.34 ppm and 0.9 seem to be those where
the patients in the last two (higher) BMI categories have the larger values, but there
is no indication that for any variable the patients in the first two BMI categories have
larger values than patients in the last two categories. In Chapter 9, it will be discussed
which methods or statistical indicators can be used to identify which variables are most
significant to discriminate between the categories of the five clinical characteristics.

In general, PCA has been quite helpful in obtaining a good idea of the general struc-
ture of the epilepsy data and the clinical characteristics of the patients, with the ex-
ception of the Response to AEDs, for which the technique was not capable of providing
any information on whether the patients can be separated with regards to this particu-
lar clinical characteristic. In the next chapter, another unsupervised technique for data
exploration and dimension reduction, multidimensional scaling (MDS), will be reviewed
and applied to the epilepsy data, in order to establish if it can be proved more capable
of separating the patients with respect to their Response to AEDs and to confirm the
findings of PCA for the remaining clinical characteristics.

5.4. CONCLUSIONS



Chapter 6

Multidimensional Scaling

6.1 Introduction

Multidimensional scaling (MDS) covers a variety of multivariate statistical techniques
in the field of multivariate data analysis. These techniques include among others metric
and nonmetric MDS techniques, Unfolding, Correspondence analysis and Individual
differences scaling (Cox and Cox, 2001). In general, MDS scaling aims to provide a
representation of an observed proximity matrix by means of a mapped configuration
of points in a lower dimension than the original data space. That is, MDS uses as
input data the dissimilarities between all pairs of objects in a set of n objects. It
attempts to represent these dissimilarities as distances between n points (corresponding
to the n objects) in a lower-dimensional space (usually 2 or 3 dimensions), such that
the derived distances correspond as closely as possible to the original dissimilarities
(Groenen and de Velden, 2004; Williams, 2002; Izenman, 2008). The various MDS
techniques differ in the way in which the correspondence of the points’ distances to the
objects’ dissimilarities is defined.

The selection of the appropriate MDS technique totally depends on the type of the
data to be analysed. More specifically, the number of "modes" and "ways" of the
input data will indicate what type of analysis is the most appropriate. A mode in
the context of MDS is each set of objects that exists in the data. For example, the
dissimilarities δij between the epilepsy patients are one-mode data. Each index in the
measurement between objects is a way. Thus, the dissimilarities δij mentioned above
are two-way data, as there are two indices i and j. Correspondence and unfolding
analysis usually require two-mode, two-way data, while two-mode, three-way data can
be analysed using individual differences scaling, and other techniques can handle even
higher-mode, higher-way data (Cox and Cox, 2001). In addition, the scale on which the
dissimilarities are measured indicates whether metric or nonmetric MDS is needed. If
the dissimilarities are measured on the ratio or interval scale, then metric MDS is the
most appropriate, whereas if the data is ordinal or nominal (qualitative) then nonmetric
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MDS is more suitable as it is concerned only with the ranks of the dissimilarities and
not the actual values (Izenman, 2008; Cox and Cox, 2001).

6.2 Classical Scaling

Classical scaling algorithms are algebraic methods used for fitting n p-dimensional ob-
jects into n points in a lower-dimensional space, such that the original dissimilarities
(δij) of the objects are approximated as closely as possible to the interpoint distances
(dij). That is,

dij ≈ (δij).

If n p-dimensional objects are denoted by xi with i = 1, . . . , n, then a dissimilarity
(δij) between the objects xi and xj with coordinates xi = (xi1, . . . , xip) and xj =

(xj1, . . . , xjp) is given by

δij =

{
p∑

k=1

|xik − xjk|q
} 1

q

(q > 0).

The most common Lp metric in classical MDS is the Euclidean distance (given for
q = 2 in the above formula). A proximity matrix ∆ is an (n×n) matrix which contains
all pairwise dissimilarities between the n objects, i.e. ∆ = (δij). The classical MDS
algorithm can then be summarized in the following steps (Izenman, 2008; Wickelmaier,
2003; Williams, 2002; Everitt and Hothorn, 2006):

1. Given the (n×n) proximity matrix ∆ = (δij), obtain the (n×n) matrix A = (αij)

where
αij = −1

2
δ2
ij .

2. Obtain the double - centred symmetric (n× n) matrix

B = −1

2
JnAJn,

where
Jn = In − n−11n1

T
n .

and In, 1n are the (n×n) identity matrix and the (n×n) matrix with all elements
equal to 1, respectively.

3. Compute the eigenvalues and eigenvectors of B. If Λ = diag(λ1, . . . , λn) is the
matrix of the eigenvalues of B and V = (v1, . . . , vn), the matrix of B’s eigen-
vectors arranged as columns, then by the spectral theorem,

B = VΛVT .

6.2. CLASSICAL SCALING
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4. The derived configuration is the t-dimensional configuration of the n objects given
by the coordinate matrix

X = VtΛ
1
2
t

where Vt is the matrix of t eigenvectors and Λt is the diagonal matrix of the t
largest positive eigenvalues of B respectively (t ≤ p).

5. If the Lp distance metric in use is the Euclidean, then all eigenvalues of matrix
B are positive and the best fitting t-dimensional configuration is given by the
t-largest eigenvalues. This fitting is adequate if the size of the criterion

Pt =

t∑
i=1

λi

n−1∑
i=1

λi

which is a measure of the proportion of variation explained by using t dimensions,
or Mardia’s criterion

t∑
i=1
|λi|

n∑
i=1
|λi|

is of order of 0.8 or larger (Everitt and Hothorn, 2006). If other Lp metrics have
been used, then any negative eigenvalues of matrix B (with possible coordinate
values being complex numbers) can either be ignored or a suitable constant c be
added to the dissimilarities, e.g.

δij = δij + c(1− δij)

where δij is the Kronecker delta (Cox and Cox, 2001). The algorithm can then be
executed again from the first step to obtain new coordinate values for the points
in the t-dimensional space, corresponding to the n objects.

An important consideration when applying MDS techniques is the identification of
the number of dimensions that the derived configuration should have, to ensure that
no important information has been lost during the MDS procedure. The maximum
required dimensions will be identified by examining the eigenvalues of matrix B. If B

is positive semi-definite, as is the case when the Euclidean distance metric is used, then
the number of non-zero eigenvalues is the appropriate number of dimensions, otherwise
the dimensions are given by the number of positive eigenvalues. However, for practical
reasons, and if the above-mentioned criteria are satisfied, it is common to use the first
2 or 3 eigenvalues, giving a reasonably small dimensional space for the derived points.

6.2. CLASSICAL SCALING
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6.3 Metric MDS

6.3.1 Introduction

Metric MDS is applicable when the data to be analysed is measured on the ratio or
interval scale. If the data contains n objects with dissimilarities (δij), then the require-
ment is to obtain a configuration such that

dij ≈ f(δij)

where dij are the distances between the points representing the objects in the point
mapping of the original data space to the lower-dimensional space, and f is a con-
tinuous parametric monotonic function which transforms the dissimilarities into dis-
tances. Choices for f include, among others, the affine transformation (dij = αδij + β),
the logarithmic transformation (dij = α log(δij) + β), the exponential transformation
(dij = α exp(δij) + β), and the power transformation (dij = δµij , µ > 0), where α and β
are unknown positive coefficients (Williams, 2002; Hebert et al., 2006).

6.3.2 Metric Least - Squares (LS) Scaling

Metric LS scaling involves the use of the least squares method to fit the distances dij to
the transformation f(δij) deriving a configuration of points such that the stress function

STRESS =
∑
i<j

wij(dij − f(δij))
2

is minimized (Izenman, 2008), where wij are appropriately chosen weights. The dis-
tances dij are not restricted to be Euclidean. The choice of weights wij affects which

dissimilarities will be given more weight, e.g. if wij = δ
− 1

2
ij then small dissimilarities

between objects and the associated points are given more weight than large dissimilar-
ities (Cox and Cox, 2001). The stress function is also considered as a goodness of fit
criterion.

6.3.2.1 Sammon’s Non-linear Mapping (NLM)

Sammon’s non-linear mapping is a special case of metric LS scaling, where the weighting
system is

wij =
1

δij

1∑
i<j

δij

and f is the identity function (f(δij) = δij) (Sammon, 1969; Cox and Cox, 2001; Izen-
man, 2008).

6.3. METRIC MDS
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The stress function in this case becomes (Sammon, 1969; Sharaf et al., 1986)

STRESS =
1∑

i<j
δρij

∑
i<j

(dij − δij)2

δρij
.

This method preserves the small δij , so that in fitting the distances dij , it gives to small
δij greater importance than the large δij . This might be useful when the requirement of
the analyses is to identify any clusters in the data. The exponent ρ determines whether
small or large distances will prevail in weighting, e.g for ρ = 2, equal weights for small
and large distances are used whereas for ρ = −2 the large distances are preserved instead
of the small ones (Sharaf et al., 1986). Sammon’s metric stress function consists of a
set of non-linear least-squares equations, which are solved using an iterative numerical
procedure in order to minimize the value of the stress function (Izenman, 2008; Sammon,
1969).

6.4 Application of MDS to the Epilepsy Data

6.4.1 Introduction

The epilepsy data is of type one-mode two-way as mentioned previously. In addition,
the data consists of continuous variables of quantitative nature measured on the ratio
scale, as all values are non-negative due to the nature of the data (metabolite intens-
ities). Therefore, the dissimilarities matrix of the patients contains also quantitative
values and metric MDS is the most appropriate to obtain a configuration of points in a
lower-dimensional space (Izenman, 2008). An initial configuration will be derived using
classical scaling, which will be used as input to the NLM algorithm. The algorithm will
attempt to derive a configuration as close as possible to the original, minimizing the
value of the STRESS function described in the previous section. The data that will be
used in the MDS analyses is the same data that was used in Chapter 5, and has been
described in detail in Section 5.3.1.

6.4.2 Classical Scaling Solution

Upon exploring the various distance measures that can be used to obtain an initial con-
figuration of points, the criteria of accessing the adequacy of a 2-dimensional solution,
indicated that the best distance measure in this case is the Euclidean, having a value
of both criteria > 0.9, as can be seen in Table 6.1. Using a 2-dimensional solution is
justified by the fact that both criteria for all metrics indicate that a very high proportion
of the data variation is explained by using 2 dimensions. So, although for 3 dimensions
the criteria will improve, as is reasonable, the improvement is not great (especially in

6.4. APPLICATION OF MDS TO THE EPILEPSY DATA
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Table 6.1: Pk and Mardia criteria for various Minkowski metrics in classical scaling - k = 2.

Metric P2 Mardia

Euclidean 0.94949 0.94949
Manhattan 0.84435 0.74052
Maximum 0.98344 0.88297
Canberra 0.66185 0.52444

the case of the Pk criterion) to justify the use of a 3-dimensional space. Therefore, a
2-dimensional space should be sufficient in this case. As the Euclidean distance metric
is the most commonly used in MDS and for both criteria its value is the same, being
approximately 0.94, and suggesting that the fit is very good, it seems that it is the
most appropriate to use in classical MDS. Results of this metric will be compared to
those from the second best metric, Maximum. The 2-dimensional configuration derived
from the classical scaling using these two distance metrics can be seen in Figure 6.1. It

−0.02 −0.01 0.00 0.01 0.02 0.03 0.04

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

Coordinate 1

C
oo

rd
in

at
e 

2

001

002

003

004

005

006
007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

024

028

029

030

032

033

035

036

037

041

042

044

045

046

048
049050

051

052

053

054 055

056

058

059

060

061

062

063

064

065

066
068

069

070

074

075

076

077

078

079

080

081

082

087

089

090

091
092

093

096

097
098

099

100

101

104

105
106

107

109

110

111

112

113

114

115

116
117

118

119

120

122

123

124

125

−0.01 0.00 0.01 0.02 0.03 0.04

−
0.

00
8

−
0.

00
4

0.
00

0
0.

00
2

0.
00

4

Coordinate 1

C
oo

rd
in

at
e 

2

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018
019

020

021

024

028

029

030

032

033

035

036

037

041

042

044

045

046

048

049
050

051

052

053

054

055
056

058

059

060

061

062

063064065

066

068
069

070

074

075

076

077

078

079

080
081

082

087

089

090

091

092

093

096 097
098099

100
101

104

105
106

107

109

110

111

112
113

114

115

116

117

118

119

120

122
123

124
125

Figure 6.1: Two-dimensional solution of classical MDS using the Euclidean (left plot) and the
Maximum (right plot) distance metrics. The sample numbers in the plots are the
original ID numbers of the selected 97 patients. The data were row-scaled to a constant
total before using MDS.

is clear that the plot for the Euclidean distance is similar to that of the PCA for the
first two PCs in Figure 5.3, with the only difference being that the first coordinate in
the MDS plot is reflected. That is expected, as in classical MDS using the Euclidean
distance results to the same scores derived from PCA, except for a reflectional differ-
ence, as seen in the left panel of Figure 6.1 (Brereton, 2009). The use of the Maximum
metric results in the configuration seen in the right panel of Figure 6.1. This configur-
ation is not affected by any rotation or reflection of the samples, in comparison to the
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Euclidean metric plot, but succeeds in squeezing the points towards the left side of the
plot with respect to coordinate 1, and towards zero in coordinate 2 for those samples
with positive values in their first coordinate. This is not very helpful in identifying any
groups of patients in this configuration. However, in both configurations there are no
obvious groupings of the patients. Superimposing these two MDS configurations with
the clinical characteristics information of the patients may show if the findings of PCA
in Chapter 5, will be confirmed by MDS or even be improved.

A spanning tree is useful in MDS analysis, as it can provide a graphical way of
highlighting any possible distortion in the MDS solution. This type of tree is defined as
a tree spanning Ns multi-dimensional points (samples). This is any set of straight line
segments joining pairs of points such that

• No closed loops occur,

• Every point is visited at least once,

• The tree has paths between any pairs of points.

The sum of the lengths of the tree’s segments is defined as the length of the tree.
The minimum spanning tree (MST) is defined as the spanning tree with the minimum
length (Everitt and Hothorn, 2006). The links of the minimum spanning tree can be
superimposed to the 2-dimensional MDS configuration. Any distortions in the MDS
solution are then identified when any nearby points on the scores plot are not connected
by a direct line segment of the MST in the above MDS solution. Figure 6.2 illustrates the
minimum spanning tree for the derived MDS configurations above. From the minimum

−0.02 −0.01 0.00 0.01 0.02 0.03 0.04

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

Principal Coordinate 1

P
rin

ci
pa

l C
oo

rd
in

at
e 

2

001

002

003

004

005

006
007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

024

028

029

030

032

033

035

036

037

041

042

044

045

046

048
049050

051

052

053

054 055

056

058

059

060

061

062

063

064

065

066
068

069

070

074

075

076

077

078

079

080

081

082

087

089

090

091
092

093

096

097098

099

100

101

104

105
106

107

109

110

111

112

113

114

115
116

117

118

119

120

122

123

124

125

−0.01 0.00 0.01 0.02 0.03 0.04

−
0.

00
8

−
0.

00
4

0.
00

0
0.

00
2

0.
00

4

Principal Coordinate 1

P
rin

ci
pa

l C
oo

rd
in

at
e 

2

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018
019

020

021

024

028

029

030

032

033
035

036

037

041

042

044

045

046

048

049050

051

052

053

054

055
056

058

059

060

061
062

063064065

066

068
069

070

074

075

076

077

078

079

080
081

082

087

089

090

091

092

093

096 097
098099

100
101

104

105
106

107

109

110

111

112
113

114

115

116

117

118

119

120
122

123
124

125

Figure 6.2: Minimum spanning tree for the two MDS configurations. The sample numbers in the
plots are the original ID numbers of the selected 97 patients. The data were row-scaled
to a constant total before using MDS.
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spanning trees, it is clear that there are distortions in both models. For example,
patients 13 and 59 in the Euclidean model, as well as 53 and 79 in the Maximum
model, among others, appear to be quite close in the scores plot but they are not linked
directly in the minimum spanning tree.

The 2-dimensional configurations derived from the classical scaling using the Euc-
lidean and the Maximum distance measures, superimposed with the Gender informa-
tion can be seen in Figure 6.3. Both configurations in Figure 6.3 indicate that there is
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Figure 6.3: Two-dimensional solution of classical MDS using the Euclidean (left plot) and the
Maximum (right plot) distance metrics, superimposed with the Gender information.
The data were row-scaled to a constant total before using MDS.

indeed a distinction between the two categories of Gender, as in both cases the male pa-
tients are orientated towards the top of the panels and the females towards the bottom.
This confirms the findings of PCA, which showed that PC2 separates the patients with
respect to their Gender. Concerning Seizure Type, IGE patients are located mainly at
the left side of both panels, having negative values on coordinate 1, and slightly towards
the top left corner of the plots, as can be seen in Figure 6.4. However, LRE patients
are scattered in both configurations, therefore patients are not identified as clearly as
with respect to their Gender information. This is in agreement with the results ob-
tained from the PCA for this clinical characteristic, as PCA and the PCR general linear
model for the Seizure Type also showed that none of the first four PCs can separate the
patients with respect to their type of seizure.

Figure 6.5 illustrates the two-dimensional MDS configurations described previously,
superimposed with the Response to AEDs information. As it can be seen in both
configurations in Figure 6.5, there are no groupings of the patients for any of the two
Response to AEDs categories. As in the case of PCA, the two MDS models cannot
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Figure 6.4: Two-dimensional solution of classical MDS using the Euclidean (left plot) and the Max-
imum (right plot) distance metrics, superimposed with the Seizure Type information.
The data were row-scaled to a constant total before using MDS.

provide any helpful information on whether the patients can be separated according to
their Response to AEDs.

Regarding Age, as with PCA, the same three Age categories, [16-26), [26-47) and
[47-99), corresponding to Young, Middle and Old respectively, were used. The two-
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Figure 6.5: Two-dimensional solution of classical MDS using the Euclidean (left plot) and the
Maximum (right plot) distance metrics, superimposed with the Response to AEDs
information. Responders and non-responders to AEDs are depicted in black (R) and
red (N), respectively. The data were row-scaled to a constant total before using MDS.
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dimensional MDS configurations for the two distance metrics can be seen in Figure
6.6. In this case, clustering patterns can clearly be seen, although in the Maximum
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Figure 6.6: Two-dimensional solution of classical MDS using the Euclidean (left plot) and the
Maximum (right plot) distance metrics, superimposed with the Age information. The
labels of the points in the plots (Young, Middle, Old), correspond to the Age categories,
[16-26), [26-47) and [47-99) respectively. The data were row-scaled to a constant total
before using MDS.

configuration these are not as pronounced as in the Euclidean configuration, due to the
compression of the points that occurs by the use of the Maximum distance measure.
More specifically, patients belonging to the Young category are located to the left side of
the plots in both configurations. Although in the Euclidean MDS model the patients in
the Middle category are oriented towards neither the left nor right side of the plot, with
the Maximum metric, the majority of these patients are gathered towards the left side in
the configuration plot. However, patients in the two Age categories [26-47) and [47-99),
are located towards the top and bottom of both configuration plots, respectively. The
MDS findings are very consistent with the results of PCA for this clinical character-
istic, as the PCA findings confirm that PC1 can separate the Young patients from the
rest, while the patients of the other two Age categories are distinguishable along PC2.
Therefore, the MDS models are capable of identifying the existing clustering patterns
of the patients with respect to their age.

Concerning BMI, the four categories that are used in the analyses of the epilepsy data
are [16-22], (22-25], (25-28] and (28-45.1], corresponding to Small, Medium, Large and
Huge BMI values, respectively. Superimposing the BMI information of the patients on
the two MDS configurations, the plots in Figure 6.7 are obtained. Grouping patterns
are not as clear as in the case of Age, but some patterns can however be seen. Patients
with BMI values in the first two BMI categories are located towards the left side of
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Figure 6.7: Two-dimensional solution of classical MDS using the Euclidean (left plot) and the
Maximum (right plot) distance metrics, superimposed with the BMI information. The
labels of the points in the plots (S, M, L and H) correspond to the BMI categories
[16-22], (22-25], (25-28] and (28-45.1] respectively. The data were row-scaled to a
constant total before using MDS.

the plots in both MDS configurations, whereas patients belonging to the other two BMI
categories occupy the space on the right side of the plots. This fact is more pronounced
in the Maximum MDS configuration, as can clearly be seen in Figure 6.7. As with
PCA, it is not possible to distinguish the patients in the first two categories, as their
coordinate values are in the same range for both coordinates in the plots. The latter
two BMI categories are distinguishable along coordinate 2, as those patients with Large
BMI values are located towards the centre of the plots, while the patients with Huge
BMI values towards the top of the plots.

In general, classical MDS has been capable of confirming the results of PCA for the
five clinical characteristics in question. The Euclidean MDS model provides a two-
dimensional configuration which is easier to read than the Maximum MDS model, but
both MDS models have proved to be useful in the pattern recognition of the epilepsy.
However, so far MDS has not provided any additional information for the grouping
of the patients to that obtained by PCA. In the next section, an alternative method
of implementing non-linear MDS, Sammon’s non-linear mapping wil be applied to the
data, to investigate if NLM can improve the results obtained from the classical MDS
analysis.
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6.4.3 Sammon’s Non-linear Mapping (NLM) Solution

The initial configurations derived by classical scaling using the Euclidean and Maximum
distance metrics, will be used as input to the NLM algorithm. The optimal NLM
models are derived when the minimum value of the STRESS function is 0.00771 after
120 iterations and 0.00496 after 130 iterations, for the Euclidean and the Maximum
NLM models, respectively. Figure 6.8 illustrates the final configurations for the two
derived optimal NLM models. Comparing the NLM configurations to those obtained
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Figure 6.8: Two-dimensional solution of NLM MDS using the Euclidean (left plot) and the Max-
imum (right plot) distance metrics. As initial configurations the classical MDS models
depicted graphically in Figure 6.1 have been used. The sample numbers in the plots
are the original ID numbers of the selected 97 patients. The data were row-scaled to a
constant total before using MDS.

from classical MDS, it can clearly be seen that in the case of the Euclidean model, there
is no great difference in the distances between the samples in the two MDS models and
in the actual topology of the two Euclidean configurations, as most of the samples
are located at approximately the same place in both models. On the other hand, in
the case of the two Maximum models, the compression-like effect that occurs in the
classical MDS model has been eliminated in the NLM model, and therefore there is
a considerable difference in the between-samples distances of the formerly compressed
samples. The NLM configurations are much closer in their topology than in the classical
MDS models. In general, there is no rotation or reflection of the samples in the two
NLM models, compared to the classical MDS configurations. Further investigation
concerning the clinical characteristics of the patients might show any differences between
the configurations of the two MDS methods and the two distance methods in use.
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To assess the quality of the NLM solution, the differences between the distances
derived by the NLM algorithm and the original distances have been plotted (Figure 6.9).
Since Sammon’s algorithm uses the identity function as the ratio transformation of the
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Figure 6.9: Quality assessment of the two NLM solutions using the Euclidean (left plot) and the
Maximum (right plot) distance metrics.

dissimilarities of the objects, these differences should appear as a straight line, which if
extended towards zero would pass through the centre (0,0) of the plot axes. Thus, this
plot shows both the transformation and the error due to the fact that the NLM solution
uses only two dimensions (Groenen and de Velden, 2004). Indeed, the quality assessment
of the NLM solution in Figure 6.9 indicates that there is a good approximation of the
dissimilarities by the NLM solutions, although for small dissimilarities the differences
tend to divert from the straight line considerably more than for large dissimilarities.
The two models appear to have approximately similar goodness of fit, with only slight
differences above and below the line, with the Euclidean model having more points
above the line for dissimilarities in the range 0.005 - 0.04 than the Maximum model. In
general, the difference points in the Euclidean model are more centralised to the red line
of reference than those of the Maximum model, for which the majority of the difference
points are below the red line.

The 2-dimensional configurations derived from NLM using the Euclidean and the
Maximum distance measures, superimposed with the Gender information, can be seen
in Figure 6.10. The configurations in Figure 6.10 indicate that the two categories of
Gender are reasonably separated, with the male patients orientated towards the top
of the panels and the females towards the bottom. Both NLM solutions are good,
although the Maximum model seems to be slightly better than the Euclidean as it
separates better the groups of patients at the top and the bottom of the plot, with the
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Figure 6.10: Two-dimensional solution of NLM using the Euclidean (left plot) and the Maximum
(right plot) distance metrics, superimposed with the Gender information. The data
are row-scaled to a constant total.

bottom group containing only females, while the top consists of males except for two
females. However, at the right side of the plot, things look better for the Euclidean
model, as there are no females at the top right of the plot, whereas in the Maximum
configuration there is one female. In general, the Euclidean model is slightly better
in the direction bottom-left to top-right, whereas the Maximum model shows better
separation of the two categories of Gender strictly towards the top-bottom direction,
as if this solution is slightly rotated with respect to the Euclidean solution.

Concerning the Seizure Type of the patients, IGE patients are located towards the
top-left side of both panels in the corresponding plot, seen in Figure 6.11. As in the
case of the classical MDS models, the LRE patients are located everywhere in the two-
dimensional space defined by the two configurations, and they are far larger in numbers
than the IGE patients, therefore the patients’ separation with respect to their Seizure
Type is not as easy or straightforward as in the Gender case.

Figure 6.12 depicts the two-dimensional NLM configurations described previously,
superimposed with the Response to AEDs information. As can be seen in both config-
urations in Figure 6.12, there are no grouping patterns of the patients for any of the two
Response to AEDs categories. The Maximum model shows a slight inclination of the
responders towards the left side of its corresponding configuration plot, which is not as
evident in the case of the Euclidean model, but overall none of the two models is clearly
better than the other as far as the Response to AEDs information is concerned. In
general, NLM has not been more helpful than classical MDS, or PCA for that matter,
in providing information on whether the patients can be separated according to their
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Figure 6.11: Two-dimensional solution of NLM using the Euclidean (left plot) and the Maximum
(right plot) distance metrics, superimposed with the Seizure Type information. The
data were row-scaled to a constant total before using MDS.

Response to AEDs.

Regarding the Age of the patients, the two-dimensional NLM configurations for the
two distance metrics with the Age categories superimposed can be seen in Figure 6.13.
The Maximum NLM model is considerably better at identifying the clustering patterns
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Figure 6.12: Two-dimensional solution of NLM using the Euclidean (left plot) and the Maximum
(right plot) distance metrics, superimposed with the Response to AEDs information.
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spectively. The data were row-scaled to a constant total before using MDS.
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Figure 6.13: Two-dimensional solution of NLM using the Euclidean (left plot) and the Maximum
(right plot) distance metrics, superimposed with the Age information. The labels of
the points in the plots (Young, Middle, Old), correspond to the Age categories, [16-
26), [26-47) and [47-99) respectively. The data were row-scaled to a constant total
before using MDS.

for the Age than the Maximum MDS model. However, the Euclidean NLM model
provides a clearly superior pattern recognition result to the Maximum NLM. More
specifically, the patients belonging to the Young category are still located to the left
side of the plots in both configurations, those patients in the Middle category are clearly
oriented towards the top-right side of the plot in the Euclidean model, whereas in the
Maximum model, most patients in this Age category lie along the centre and top-left
part of the NLM configuration plot. Patients in the Age category [47-99) are located
towards the bottom in the graphs of both configurations, but in the Maximum model
some patients in this category lie towards the top-right corner of the plot. In general,
NLM gives good separation results for the Age, as the classical MDS models did, with
the Euclidean models in the two methods providing approximately similar topologies,
and the Maximum model derived by the NLM method being far better at separating
the patients in the Age categories corresponding to Young and Middle, than the same
distance model derived by the classical MDS method.

Concerning BMI, superimposing the BMI information of the patients to the two
MDS configurations, the plots in Figure 6.14 are obtained. Similarly to the classical
MDS models for BMI, grouping patterns are not as clear as in the case of Age, but
some patterns can however be seen. Patients with Small or Medium BMI values are
located towards the left side of the plots in both NLM configurations, whereas patients
belonging to the other two BMI categories lie along the right side of the plots. This is
still more pronounced in the Maximum NLM configuration, but the differences between
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Figure 6.14: Two-dimensional solution of NLM using the Euclidean (left plot) and the Maximum
(right plot) distance metrics, superimposed with the BMI information. The labels of
the points in the plots (S, M, L and H) correspond to the BMI categories [16-22],
(22-25], (25-28] and (28-45.1] respectively. The data were row-scaled to a constant
total before using MDS.

the two distance models are too small to be considered in any way important.

6.5 Conclusions

In this chapter, another data-projection method, with the advantage over PCA that
it is flexible and can be used with any dissimilarity measure, is applied to the same
epilepsy data as in PCA, for pattern recognition purposes, namely, multidimensional
scaling. More specifically, two MDS methods were described in detail and used, initially
the classical MDS, and then, the derived MDS configuration was used as input to the
NLM method.

In the case of the initial configuration, results using four different distance metrics,
Euclidean, Manhattan, Maximum and Canberra, were compared with the help of two
criteria, P2 and Mardia’s criterion. Considering the results of the criteria, only two met-
rics, the Euclidean and theMaximum were the best, giving a very good fit of the original
distances of the samples to the corresponding two-dimensional MDS space. The pattern
recognition capability of the two classical MDS models was tested both by examining
the graphical representations of the models’ configurations, and by superimposing the
information of the available five clinical characteristics of the patients.

Results proved to be very consistent to those of PCA, but overall classical MDS
was not capable of improving the PCA findings or adding more information to them.
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Concerning the Gender of the patients, the two categories are distinct along coordinate
2, with the male and female patients being towards the top and the bottom of the
configuration plot, respectively, in both distance models. Similarly, for the Seizure Type,
IGE patients lie towards the top-left corner of the plots with both distance models being
capable of showing this fact quite adequately. On the other hand, results proved that the
patients do not have any grouping behaviour with respect to their Response to AEDs.
The two classical MDS models are more capable of showing grouping patterns when
the Age of the patients is considered. Clustering results are easier to see in the case of
the Euclidean model, as the Young and Middle categories of Age are more separable
than in the Maximum model. The Young patients lie towards the top-left corner of the
plot, the Middle towards the right and top-right part of the plot and the Old towards
the bottom side of the plot. Regarding the BMI categories of the patients, a distinction
can be seen only between Small -Medium and Large-Huge BMI values, with the former
pair being in the left side and the latter pair towards the right side of the plots. Once
more, the separation of the patients with regards to their BMI values is clearly better
in the Euclidean than the Maximum model, due to the compression-like effect of the
points in the Maximum model.

In general, the Euclidean model proved to be slightly better than the Maximum in
identifying any clustering patterns concerning the patients, except for the Response to
AEDs where both distance models consistently failed to show any clustering of the
patients.

Applying the NLM method to the data, using the derived classical MDS models as
initial configuration, showed that only very slight differences are observed between the
classical MDS and the NLM results, when the Euclidean distance metric is used. On
the other hand, in the case of the Maximum models, the compression-like effect of the
points that had been observed in the classical MDS model has been remedied in the
NLM, with theMaximum NLM configuration being much closer to that of the Euclidean
NLM model. This was confirmed by the quality assessment of the two NLM solutions,
with the aid of Shepard-like plots (described in Section 6.4.3 and seen in Figure 6.9),
which showed that both NLM models fit the original epilepsy data quite well, with the
Maximum model fitting the data slightly better.

As far as the clinical characteristics of the patients are concerned, the results were
quite close to those of the classical MDS models. More specifically, for Gender, the
separation of the patients is similar to that of the classical MDS models, with the
Maximum NLMmodel showing slightly better the differences between the two categories
than the Euclidean. In addition, the separation in the Maximum model occurs towards
the top-bottom direction, whereas in the Euclidean model it is rather better in the
bottom-left to top-right of the plot. Results for Seizure Type were identical to those
of the classical MDS models, with only the IGE patients identified as being located in
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a specific place, the top-left of the plots, in both distance models. In addition, there
was no improvement of the findings concerning the Response to AEDs, as both NLM
models proved to be incapable of showing any separation of the patients regarding
their Response to AEDs. The quality of separation of the patients in the NLM models
with respect to the three Age categories, is quite good and very similar to that of
the classical MDS models. Especially, the Euclidean model illustrates clearly that the
Young patients lie towards the top-left corner, the Middle towards the top-right corner
and the Old towards the bottom of the configuration plot. In particular, the Maximum
NLM model shows far better separation of the patients in the three Age categories
than the classical MDS model using the same distance measure. Finally, in the case of
BMI, the findings of the two MDS methods are similar, with patients in the two smaller
BMI categories lieing at the left side of the plot and those with BMI in the larger
two categories being towards the right part of the plot, in both distance models. The
Maximum model provides a slightly better separation of these pairs of BMI categories,
but no model can show any clustering separately for each BMI category.

The two MDS models were capable of reproducing quite successfully the findings
of PCA, but they did not manage to provide any further information on the potential
clustering of the patients with respect to their clinical characteristics. More importantly,
in the case of the Response to AEDs, the MDS methods were not successful in identifying
any clustering pattern among the patients, as for PCA.

The next chapter describes in detail four of the most important unsupervised clas-
sification techniques, for types of data such as metabonomics data, in the areas of
hierarchical clustering, partitioning methods (fuzzy and hard clustering) and competit-
ive learning algorithms (self organising maps (SOM)), in an attempt to devise suitable
clustering models for the epilepsy data. These methods, as they are designed specifically
to identify groupings present in the data, are expected to confirm the findings of PCA
in Chapter 5 and MDS in the current chapter.

6.5. CONCLUSIONS



Chapter 7

Cluster Analysis

7.1 Introduction

Cluster Analysis includes a number of statistical techniques which aim to divide the
data into groups (clusters) of samples with similar characteristics. Although these
techniques belong to a wider area of statistics called Classification, they differ from
supervised classification techniques such as discriminant analysis. That is, because
they are unsupervised techniques, no samples in the data are known to belong to any
derived clusters, and the number of clusters needed to identify any similarities (or
dissimilarities) in the samples is not known beforehand.

Cluster analysis can be considered in two ways, either as identifying any natural
groupings in the data or subdividing the data to facilitate its analysis. The latter is
also known as dissection (Krzanowski and Marriott, 1995). Cluster analysis can be used
in many applications, such as data reduction, hypothesis generation and testing, as well
as in group prediction (Theodoridis and Koutroumbas, 2003). In metabonomics, the aim
is to identify any natural groupings, as certain biological procedures of living organisms
need to be assessed and usually certain biological reactions (e.g. drug response) to
be identified. As a prediction tool, it can be used to classify new patients to already
established groups of patients, according to their reaction to specific drugs. It is then
possible to decide on new patients’ medication, from the medication of the groups to
which they have been classified.

Clustering algorithms can be divided into many categories. The most commonly
used categories are the sequential algorithms, algorithms based on cost function optim-
isation, genetic clustering algorithms and competitive learning algorithms. Clustering
techniques in some of these categories can be divided further into subcategories. For
example, the hierarchical clustering algorithms can be divided, among others, into ag-
glomerative nesting and divisive algorithms.

In this chapter, a number of clustering techniques will be described and applied to the
same metabonomics data set that has been used in Chapters 5 and 6. These techniques
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include Hierarchical methods (Agglomerative nesting algorithms), Partitioning methods
(Fuzzy and Hard clustering algorithms) and Competitive Learning algorithms, as these
are deemed in the literature (Gordon, 1981; Lindon et al., 2001; Adams, 2004) to be
the most appropriate clustering techniques for types of data such as metabonomic data.
Section 7.2 states the various considerations and decisions that need to be made when
cluster analysis is applied. Section 7.3 covers the proximity measures which can be used
to represent the data for cluster analysis. Hierarchical clustering methods are discussed
in Section 7.5, with agglomerative nesting methods being described and applied to the
metabonomics data. Partitioning methods can be found in Section 7.6 with the fanny
fuzzy clustering technique and the k -means hard clustering algorithm described and
applied to the data. Finally, Competitive Learning algorithms, with emphasis on SOM
are described and applied to the metabonomics data in Section 7.7.

7.2 Clustering Considerations and Decisions

The procedure of applying a cluster analysis consists of the following considerations and
decisions (Theodoridis and Koutroumbas, 2003):

• Variable selection. The first thing for consideration when applying a cluster
analysis is to decide on the data to be used for the analysis. The selected vari-
ables must contain as much information about the required area of research as
possible. The aim of the research and the reason for applying cluster analysis
should direct the researcher to suitable variables for the analysis. For example,
the type of variables in the data might play an important role in the decision on
which proximity measure, clustering criterion and clustering algorithm to use for
the analysis. In addition, pre-processing and pre-treatment of the data might be
needed before their use in the analysis.

• Proximity measures. The selected variables, as discussed in the previous step,
should contribute equally to the computation of a proximity measure, which gives
an indication of how similar the paired objects in the data are. As will be seen
in the next section, there are various proximity measures which can be used in
cluster analysis.

• Clustering criteria. The type and number of clusters that are required will
dictate which criterion will have to be used in the analysis.

• Clustering algorithm. After selecting the proximity measure and clustering
criterion to be used, a specific clustering algorithm must be selected, to determine
the way of obtaining the clusters from the data.

• Cluster validation. After performing cluster analysis, certain tests must be
applied to certify the correctness of the results.

7.2. CLUSTERING CONSIDERATIONS AND DECISIONS
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• Cluster Interpretation. The final step in the procedure of cluster analysis
is to interpret the results of the analysis. At this step, the results from other
statistical techniques, e.g. PCA, might have to be combined with those of the
cluster analysis, to allow for easier interpretation.

Sometimes it is also necessary to assess the suitability of the data for cluster analysis
(clustering tendency). This involves the application of various tests on the data, to
establish whether the data appears to have a clustering structure or not. As is logical,
the considerations and decisions mentioned above are very important in clustering, as
for example, selecting different variables/descriptors, proximity measures and clustering
algorithms may produce completely different clustering solutions.

7.3 Proximity Measures

In order to cluster a set of objects into natural groups, it is necessary to introduce
the notion of proximity. As clustering involves the notion of objects being similar (or
close) or dissimilar (not close) to each other in a data set, a means of expressing the
closeness of objects to each other is needed. The way in which the objects in a dataset
are presented for analysis plays an important role in the approach that will be used to
cluster the objects into groups. There are two main ways to represent the data (Gordon,
1996):

The Pattern (or Profile Matrix)

This is a (n × p) matrix X with elements xik, such that xik is the observed value on
the kth variable for the ith object (i = 1, . . . , n, k = 1, . . . , p). In the epilepsy data, this
value is the intensity/concentration of the kth metabolite observed in the ith patient.
Matrix X is also called the data (or input) matrix, as most clustering techniques allow
the use of this data representation as input for the clustering procedure.

Proximity Matrices

Two types of matrices are considered as proximity matrices, the dissimilarity and the
similarity matrix.

• Dissimilarity Matrix. A dissimilarity matrix D with elements dij is an (n×n)

matrix, where dij is the dissimilarity between the ith and jth objects (i, j =

1, . . . , n). A dissimilarity coefficient, d, is a function from Φ×Φ to R, such that

dij ≥ 0 ∀ i, j ∈ Φ

dii = 0 ∀ i ∈ Φ

dij = dji ∀ i, j ∈ Φ (symmetric) (7.3.1)

7.3. PROXIMITY MEASURES
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where i, j = 1, . . . , n and Φ is the set of objects for classification (Gordon, 1981;
Lukasova, 1979). In addition, if d satisfies

dij ≤ dih + dhj ∀ i, j, h ∈ Φ (triangle inequality) (7.3.2)

then d is a distance function (Kaufman and Rousseeuw, 2005; Everitt, 1993).
A measure does not need to satisfy (7.3.1) and/or (7.3.2) to be considered as a
dissimilarity (Gordon, 1981; Kaufman and Rousseeuw, 2005). However, a distance
measure requires both equations (7.3.1) and (7.3.2) to hold. The most well-known
distance measures are the Minkowski metrics which are given by Eq. (7.3.3):

d
(q)
ij =

{
p∑

k=1

wk
∣∣xik − xjk∣∣q

} 1
q

(q > 0). (7.3.3)

For q = 1 and q = 2, eq. (7.3.3) gives the City block (or Manhattan) and
the Euclidean metric respectively. There are many other dissimilarity measures,
either distance measures or not (Gordon, 1981; Everitt and Rabe-Hesketh, 1997;
Krzanowski and Marriott, 1995; Everitt, 1993).

• Similarity Matrix. This is a (n × n) matrix S with elements sij , where sij is
the similarity between the ith and the jth objects (i, j = 1, . . . , n). The similarity
coefficient sij indicates how close (or alike) objects i and j are to each other.
It takes values between 0 and 1, with 0 when objects i and j are completely
dissimilar, whereas 1 means the objects have the maximal similarity. A similar-
ity function usually satisfies the following conditions (Kaufman and Rousseeuw,
2005):

0 ≤ sij ≤ 1 ∀ i, j ∈ 0, . . . , n

sii = 1 ∀ i ∈ 0, . . . , n

sij = sji ∀ i, j ∈ 0, . . . , n (symmetric). (7.3.4)

It is possible to convert similarities to dissimilarities, using an appropriate trans-
formation (Gordon, 1981; Krzanowski and Marriott, 1995; Everitt, 1993; Kaufman
and Rousseeuw, 2005).

The choice of proximity measure to use in a clustering study varies greatly. It depends
on the type of the data involved in the analysis, and even more on the type of variables
in the data set.

7.3. PROXIMITY MEASURES
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7.4 The Silhouette Coefficient

When applying a clustering algorithm, the derived partition needs to satisfy a number of
requirements concerning the solution’s quality. Questions that can be asked concerning
the quality of a derived partition include the following:

• Are the ’within’ cluster dissimilarities small in comparison to the ’between’ cluster
dissimilarities?

• Which patients are well-classified or poorly classified?

• How is the data structured?

• What is the actual number of ’natural’ clusters underlying the data?

A statistic developed by Rousseeuw (1987) to answer these questions is the Silhouette
coefficient. If, for any object i in the data, αi is the average dissimilarity of i to all other
objects in its cluster, ci, and dicj the average dissimilarity of object i to all objects in
cluster cj for all clusters cj different from ci, then by defining

βi = min
ci 6=cj

dicj , (7.4.1)

the cluster, say ck, which satisfies Eq. (7.4.1), is called the neighbour of object i. That
is, if object i had to be assigned to a different than its current cluster ci, then the second
best choice would be its neighbour cluster ck.

The silhouette width for object i is then given by

si =
βi − αi

max{αi, βi}

and takes values in the range −1 ≤ si ≤ 1. The higher the si values towards 1 are,
the more well-clustered the object i is, whereas if they are towards -1 then object i is
misclassified. For values near to 0, the object i lies in the boundary between its assigned
and its neighbour cluster and it is not clear any more to which of the two clusters this
object actually belongs.

Similarly, the average silhouette width, s̄c, is the average of all si for cluster c. The
overall average silhouette width is the average of s̄c for all objects i in the data set
(Rousseeuw, 1987).

Finally, Kaufman and Rousseeuw (2005) define the silhouette coefficient, SC, as the
maximum of the average silhouette widths. This can be seen as a measure of the amount
of structure that has been revealed by the clustering algorithm. They also proposed the
following interpretation for the values of SC (Table 7.1). An advantage of the silhouette
statistic is that it depends only on the derived partition of objects and the proximity
matrix, so it is not affected by the clustering algorithm that was used in the analysis of
the data.

7.4. THE SILHOUETTE COEFFICIENT
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Table 7.1: Interpretation of the silhouette coefficient values.

SC Interpretation

0.71 - 1.00 The data is very well-structured
0.51 - 0.70 The structure is reasonable
0.26 - 0.50 The structure is weak and could be artificial
≤ 0.25 No substantial structure has been found

7.5 Hierarchical Clustering Methods

7.5.1 Introduction

An important category of clustering techniques is the hierarchical clustering algorithms.
These algorithms require more than one step to complete the procedure of establishing
clusters in a data set. In addition, these techniques belong to the hard or crisp clustering
methods, as each object in the data set is assigned to exactly one cluster in each partition
(step) of the algorithm.

Hierarchical cluster analysis (HCA) has been used extensively in many studies such
as the identification and classification of micro-organisms, e.g. clinical isolates of the
bacterion Salmonella enteridis (Seltmann et al., 1994), and the development of animal
or other models for toxicological studies of drug candidates, e.g. the discrimination
between control rat populations and rats subjected to treatment with bacterial lipo-
polysaccharide, co-administered with ranitidine to induce hepatotoxicity in rats, in an
attempt to develop a predictive model of idiosyncratic toxicity (Harrigan et al., 2004).

Examples of the use of HCA in metabolite profiling are the identification of similarities
in the metabolite features observed between a number of different serum extraction
methods applied to LC-MS generated metabolic profiles of human serum (Want et al.,
2006) and the comparison and clustering of metabolic profiles of the kidney and urine of
three wild small mammals and the laboratory rat, obtained by 1H NMR spectroscopy
(Griffin et al., 2000).

Two important types of HCA algorithms are the aglomerative nesting and the divisive
algorithms. A detailed description of the former is given in Section 7.5.2, while a brief
mention to the latter can be found in Section 7.5.3. The application of HCA to the
epilepsy metabonomics data is applied in Section 7.5.4.

7.5.2 Agglomerative Nesting Algorithms

In these algorithms, the analysis starts with n clusters containing only one sample
each, and ends at one cluster containing all samples in the data set (Everitt, 1993). In
general, at each step of the procedure the agglomerative algorithm finds the nearest
(with regards to a pre-specified dissimilarity criterion) pair of different clusters, merges
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them and decreases the number of clusters by one. When the number of obtained
clusters equals one (all samples have been merged into one cluster), then the procedure
ends. The outcome of these techniques depends on the chosen distance or similarity
measure for the clusters.

Agglomerative nesting techniques are used almost exclusively in HCA studies, espe-
cially in studies involving Fourier Transform Infrared Spectroscopy (FTIR) generated
data (Mariey et al., 2001). They are also quite popular in NMR metabonomics studies
such as the identification of similarities in metabolic profiles generated by 1H NMR spec-
troscopy of urine samples collected from control and dosed (with 19 model compounds
in different doses) rats, investigating the metabolic effects and toxicity at different pre-
specified time points (Beckonert et al., 2003).

There are many agglomerative techniques, with the most commonly used being the
following:

Single Linkage

Known also as the Nearest Neighbour algorithm, this is one of the simplest methods.
The distance between groups is given by the closest (or furthest if a similarity measure
is used) pair of samples, where each pair consists strictly of one sample from each group
(Figure 7.1). In this algorithm, the dissimilarity between two clusters is defined as in

(a) Single linkage (b) Complete linkage

Figure 7.1: Illustrated example of single and complete linkage methods

the following equation
dCpCq = min

i∈Cp
j∈Cq

dij ,

where Cp and Cq are any two clusters and i,j are samples in clusters Cp and Cq respect-
ively. In general, the clusters obtained by single linkage are formed at low dissimilarities
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in the dissimilarity dendrogram (tree diagram such that in Figure 7.11). Therefore, this
algorithm is especially suitable for identifying elongated clusters.

Complete Linkage

This method is also known as the farthest neighbour algorithm. It is the opposite of
single linkage, due to the fact that the distance between groups is now that of the farthest
distant pair of samples, one sample from each group (Figure 7.1). The dissimilarity
between two clusters in this case is given by the equation below

dCpCq = max
i∈Cp
j∈Cq

dij ,

where Cp, Cq, i and j are defined as in the single linkage case. Contrary to single
linkage, in complete linkage the obtained clusters are formed at high dissimilarities in
the dissimilarity dendrogram, As the complete linkage is more capable of identifying
small, compact, spherical clusters, it should be the preferred method if there is any
evidence that compact clusters exist in the data.

Unweighted Pair-group Method Average (UPGMA)

This method is also called Average linkage. In this case, the distance between two
clusters is given by the average of all the dissimilarities between the samples of one
cluster and the samples of the other cluster. Each pair contains one sample from each
cluster. The distance between two clusters is given by Equation (7.5.1)

dCfCq =
ni

ni + nj
dCiCq +

nj
ni + nj

dCjCq (7.5.1)

where Cf and Cq are the newly formed and the old clusters respectively, and ni, nj the
cardinalities of clusters Ci and Cj respectively (Theodoridis and Koutroumbas, 2003).
This method is a compromise between the two extreme methods, single and complete
linkage, producing relatively spherical clusters (Kaufman and Rousseeuw, 2005).

Weighted Pair-group Method Average (WPGMA)

This method, also called theMcQuitty method, is a variant of the group average method,
described previously, whose dissimilarity between two clusters is defined as Equation
(7.5.2)

dCfCq =
1

2
dCiCq +

1

2
dCjCq (7.5.2)

where Cf , Cq, ni and nj are as in the unweighted average case (Theodoridis and
Koutroumbas, 2003). Similarly to UPGMA, this method is a compromise between
the two extreme methods, single and complete linkage, producing relatively spherical
clusters (Kaufman and Rousseeuw, 2005).
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Centroid Method

This method is also called the Unweighted pair-group method using Centroids (UP-
GMC). In this case, groups are represented by their mean vectors for each variable,
so that the distance between two groups, is now the distance between their two mean
vectors. The distance is given by Equation (7.5.3)

dCpCq = ‖xp − xq‖ (7.5.3)

where xp and xq are the centroids of clusters Cp and Cq respectively. This distance is
the Euclidean distance between the centroids of the clusters. The centroid method is
affected by the clusters’ sizes, since if the two clusters to be paired are of very different
size, then the centroid of the newly created cluster tends to be too close to that of the
larger of the old ones. The Median method (also called the Weighted pair-group method
using centroids (WPGMC)), can overcome this problem by assuming that both clusters
to be paired are of equal size, ensuring that the centroid of the newly formed cluster is
always between those of the two old clusters (Kaufman and Rousseeuw, 2005).

Ward’s Method

Each time that two clusters are fused to form a new one, loss of information is certain
(Everitt, 1993; Krzanowski and Marriott, 1995). Ward’s method attempts to minimise
that loss, by introducing a measure of the tightness of a cluster. In this case, the distance
between two clusters is defined as the sum of squared Euclidean distances between the
objects xi of the cluster and its centroid xC (Equation (7.5.4))

ESS(C) =
∑
i∈C
‖xi − xC‖. (7.5.4)

Other agglomerative hierarchical algorithms are Gower’s Method and the Flexible
Strategy (Kaufman and Rousseeuw, 2005; Gordon, 1996). Lance and Williams (1967)
developed a general recurrence formula,

d(Ci∪Cj)Ck = αidCiCk + αjdCjCk + βdCiCj +

+ γ|dCiCk − dCjCk | (7.5.5)

to allow the evaluation of the dissimilarity between fused clusters Ci ∪Cj and another
cluster Ck. Equation (7.5.5) allows the use of any clustering algorithm by selecting suit-
able values for the coefficients in the equation. As all the above mentioned algorithms
are represented graphically by means of a plot called a dendrogram, Jambu (1978), in-
troduced to this general Equation (7.5.5) the notion of the height, h of a cluster in such
a plot. The updated Equation for the evaluation of the distance between fused clusters
Ci ∪ Cj and another cluster Ck can be seen in Equation (7.5.6).
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d(Ci∪Cj)Ck = αidCiCk + αjdCjCk + βdCiCj +

+ γ|dCiCk − dCjCk |+

+ δihCi + δjhCj + εhCk (7.5.6)

where hCi is the height of cluster Ci in the dendrogram. The height (or similarity
value) of a node in a dendrogram, is proportional to the distance between corresponding
clusters (Ebbels, 2007). That is, clusters similar to each other are merged at low heights,
whereas clusters with higher dissimilarity are merged higher up in the dendrogram.
The greater the distance between heights at which clusters are merged, the easier the
identification of any structure in the data is (Izenman, 2008). One can obtain a specified
number of clusters (called a partition of a dendrogram) by breaking the dendrogram at
an appropriate similarity level. That is, if for example, a vertically-drawn dendrogram
is cut by a horizontal line at a given height, then the obtained partition contains a
number of clusters equal to the number of vertical lines cut by the horizontal line. Each
such intersection of a horizontal to a vertical line represents a cluster with its contents
(members) being all items lying at the end of all branches below the intersection.

A list of the most well-known and used agglomerative clustering strategies and the
values for the coefficients αi, β, γ, δi and ε, to obtain the algorithms from Jambu’s
general equation can be seen in Table 7.2 (Gordon, 1996).

The algorithm for agglomerative nesting clustering can be summarised in the following
steps (Izenman, 2008):

1. Input: A set of multivariate samples, Ω = {xi, i = 1, 2, . . . , Nc}, where Nc is the
number of clusters, with each cluster being a singleton.

2. Compute the (Nc ×Nc) dissimilarity matrix D = (dij) between the Nc clusters,
where dij = d(xi, xj), i, j = 1, 2, . . . , Nc and d is a pre-selected dissimilarity
measure.

3. Find the smallest dissimilarity, say dCiCj , in the dissimilarity matrix and merge
clusters Ci and Cj to form a new cluster Cij .

4. Compute the dissimilarities, dCijCk , between the newly formed cluster Cij and all
other clusters Ck 6= Ci, Cj , using a pre-selected agglomerative method.

5. Create a new ((Nc− 1)× (Nc− 1)) dissimilarity matrix, say D(2), removing from
matrix D rows and columns Ci and Cj and adding a new row and column Cij ,
using the computed dissimilarities in step 4.

6. Repeat steps 3, 4, and 5 for Nc−1 times. Hence, at the ith step, the dissimilarity
matrix D(i) ia a symmetric ((Nc − i+ 1)× (Nc − i+ 1)) matrix, i = 1, 2, . . . , Nc.
At the last step (i = Nc), D(Nc) = 0, as all clusters have been merged into a
single cluster.

7.5. HIERARCHICAL CLUSTERING METHODS



CHAPTER 7. Cluster Analysis 122

Table 7.2: Clustering techniques obtainable from the general formula of Jambu (1978).

Strategy αi β γ δi ε

Single 1

2
0 −1

2
0 0linkage

Complete 1

2
0 1

2
0 0linkage

Average
ni

ni + nj
0 0 0 0

McQuitty
1

2
0 0 0 0

Centroid
ni

ni + nj

−ninj
(ni + nj)2

0 0 0

Sum of ni + nj
ni + nj + nk

ni + nj
ni + nj + nk

0
−ni

ni + nj + nk

−nk
ni + nj + nksquares

Ward’s ni + nj
ni + nj + nk

−nk
ni + nj + nk

0 0 0method

Median
1

2
−1

4
0 0 0

Flexible
1

2
(1− β) β 0 0 0

Note: ni is the number of objects in cluster Ci.

7. Output: A list of which clusters are merged at each step, the dissimilarity value
(height) of each merge, and a summary of the procedure in the form of a dissim-
ilarity dendrogram.

7.5.3 Divisive Clustering Algorithms

In this case, the clustering procedure starts with one cluster containing all samples in
the data and proceeds at each step of the algorithm to increase the number of clusters
by one until there are n clusters with one sample in each of them. If there are n samples
in the data, there are 2n−1−1 non-trivial ways of dividing the samples into two clusters,
therefore it is computationally infeasible to examine all possible divisions, even for cases
with a moderate number of samples. As these algorithms require far more calculations
than agglomerative methods do, they are not so popular and these will not be described
in detail or used in the application of HCA to the epilepsy metabonomics data.
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7.5.4 Application of HCA to the Epilepsy Data

7.5.4.1 Introduction

The data that will be used in the hierarchical clustering analyses is the same as in the
analyses of Chapters 5 and 6. That is, the data set contains the selected 97 patients
with the 144 variables in the proton NMR chemical shift range 5.98 − 0.02 ppm. The
data is row-scaled to constant total.

The distance matrix of the samples will be computed using four different distance
measures, Euclidean, Manhattan, Maximum and Canberra, for comparison purposes.
Seven different agglomerative nesting methods will be used in order to perform the
HCA. These include Single linkage, Complete linkage, Average linkage, the McQuitty
method, the Centroid method, the Median method and Ward’s method.

To facilitate identification of the best clustering method for the epilepsy data among
the 28 mentioned in the previous paragraph, various statistics will be computed and
plotting tools will be used to compare the results of the clustering analyses. These
tools include banner plots, the agglomerative coefficient, the cophenetic correlation, the
Gower distance and the silhouette coefficient and plot. In addition, the optimal number
of clusters will be identified with the help of plotting tools such as graphs of fusion levels
and silhouette widths. An important consideration in these analyses is that, although
the above mentioned tools may prove sufficient to show the best hierarchical clustering
method with regards to the available data, it is not necessary that a clustering between
responders and non-responders to AEDs will be shown in the selected clustering method.

Three non-parametric statistical tests will be used to assess whether:

1. The clusters in the derived clustering partitions are homogeneous with respect
to the proportion of observations in each of the categories which the clinical
characteristics are divided into, and/or

2. The medians of the populations represented by the derived clusters are equal.

The first assessment will be tested with the X 2 test for homogeneity and Fisher’s
exact test (called X 2 and Fisher’s test respectively for brevity). The X 2 test is used
when the data consists of two or more independent samples (in this case the derived
clusters in each partition) categorized on a single dimension of a number of categories
(in this case the categories of an appropriate clinical characteristic) (Sheskin, 2000).
Hence, these tests will be used with the contingency tables for the clinical characteristics
Gender, Seizure Type and Response to AEDs, as their values are nominal. The reason
for using Fisher’s test in addition to the X 2 test is the requirement of X 2 for the
expected frequencies of all cells in the table to be of value 5 or greater (one commonly
used criterion of a sufficiently large sample size for the test to be valid). This is not a
requirement for Fisher’s test. Therefore, whenever an expected frequency in any cell of
a contingency table is less than 5, Fisher’s test will be used to assess the homogeneity

7.5. HIERARCHICAL CLUSTERING METHODS



CHAPTER 7. Cluster Analysis 124

of the clusters.

For the second assessment, the Kruskal-Wallis rank sum test (referred to as the KW
test for brevity) will be used. This test involves ordinal (rank-order) data in a design
with two or more independent samples (in this case the derived clusters). The raw
values of the clinical characteristics Age and BMI will be tested using this test. As
these values are in a ratio format, they will be transformed into a rank-order format to
conform with the test’s requirements.

7.5.4.2 Comparison of Hierarchical Clustering Results

A banner can be considered as a horizontal barplot (see Figure 7.2) depicting graphically
the agglomerative (or divisive) clustering. The values on the x-axis of the plot are the
heights (levels) at which a merge of observations or clusters occurs, scaled from 0 for
the very first merge, to the level value of the very last (final) merge. The level values
can be scaled to 0-1 by dividing each level value by the maximum level value. The
overall width of a banner is important as it gives an idea of the amount of structure
that has been found by the algorithm. When the between-cluster dissimilarities (and
consequently the highest level) are much larger than the within-cluster dissimilarities,
there is a clear cluster structure in the data, and the widths of the bars in the banner are
longer. The agglomerative coefficient can be calculated from such a plot, by taking the
average of all the widths of the bars in the 0-1 scaled banner (Kaufman and Rousseeuw,
2005). The labels on the y-axis (right side of the bars) correspond to a permutation
of the original observations, such that the creation of a dendrogram with this ordering
and merge information does not have any crossings of the branches. A banner will be
plotted using the R function bannerplot() of package cluster.

The agglomerative coefficient (AC), will be used to assess whether HCA finds natural
structure in the data or not. The AC will be calculated using R function calculateAC(),
developed for this purpose. This coefficient is a dimensionless quantity with values
between 0 and 1. If the AC for a specific agglomerative analysis is small, then no clusters
exist in the data, hence the data consist of one big cluster. The closer to 1 the value of
AC is, the clearer the clustering structure of the data is (the better the agglomerative
method worked to identify clusters). However, the AC value can be affected by the
existence of outliers in the data, so that it is necessary when AC is large to examine
also the graphical output of the clustering analysis, such as dendrograms and silhouette
plots, to ensure that the value of AC is representative of the clustering structure of the
data. Table 7.3 gives the agglomerative coefficient values obtained from the analyses of
the 28 hierarchical clustering methods described previously. From Table 7.3, it is clear
that the agglomerative coefficient has the highest value, 0.995, for the method obtained
by the Maximum distance metric using Ward’s agglomerative method. In general,
the Maximum metric seems to give the best results for all the available agglomerative
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Table 7.3: Agglomerative coefficients for the epilepsy (ROW-SCALED) data. In bold is shown the
clustering method with the largest agglomerative coefficient.

Agglomerative Method

Metric Single Complete Average Ward McQuitty Median Centroid

Euclidean 0.449 0.926 0.834 0.991 0.867 0.882 0.874
Manhattan 0.386 0.879 0.768 0.986 0.817 0.829 0.750
Maximum 0.644 0.957 0.936 0.995 0.934 0.937 0.926
Canberra 0.537 0.839 0.668 0.973 0.760 0.810 0.718

methods, and Ward’s method gives the best results for all metrics in comparison to the
other methods. The second best method, obtained by the Euclidean distance metric
for the same agglomerative method, has agglomerative coefficient 0.991, which is very
close to the best method’s value. The banner plot for the selected partition, Maximum
- Ward, can be seen in Figure 7.2. The levels of merges have been rescaled to 0-1 to
allow for the calculation of the agglomerative coefficient. The labels in the y-axis of the
banner are the original identifiers of the 97 patients in the epilepsy data set.

To confirm the method findings, two other statistics will be computed for all 28
methods, i.e. the Cophenetic correlation and the Gower distance (Borcard et al., 2011).
The Cophenetic correlation is related to the dendrogram which describes an hierarchical
clustering method. More specifically, the Cophenetic distance between two items in a
dendrogram is defined as the distance at which the two items are joined to the same
group. For a pair of items, starting from one of them, climbing up the dendrogram
to the first node which leads down to the second item, the level of this node is the
Cophenetic distance between the two items. Consequently, a Cophenetic matrix is a
matrix which contains the Cophenetic distances between all pairs of items. It is then
possible to compute a Pearson’s r correlation, which is called the Cophenetic correl-
ation, between the original dissimilarity matrix of an hierarchical clustering method
and the Cophenetic matrix. The method with the highest Cophenetic correlation can
be considered as having the agglomerative method which produced the best cluster-
ing method for the distance matrix of the original data. An important aspect of this
statistic is that it depends strongly on the clustering method, independently of the
data available for analysis. Table 7.4 gives the Cophenetic correlation values for all 28
hierarchical clustering methods. Model Maximum - Average has the largest cophen-
etic correlation of 0.806. The clustering method Maximum - Ward indicated by the
agglomerative coefficient has cophenetic correlation 0.684. Therefore according to this
statistic the appropriate method seems to be the former. The relationship between a
distance matrix and a Cophenetic matrix can be illustrated by means of a Shepard like
diagram (such as Figure 7.3), plotting the original distances against the Cophenetic
distances (Legendre and Legendre, 1998). Figure 7.3 illustrates this relationship for six
methods for comparison purposes. The Cophenetic correlation values of these methods
are shown in bold in Table 7.4. More specifically, the methods are the Maximum - Av-
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Figure 7.2: Banner plot for the 2-clustering partition derived by Ward’s method using the Maximum
distance metric. Height corresponds to the level of merge for a pair of observations,
while the labels in the y-axis of the plot are the original identifiers of the patients in
the data set.
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Figure 7.3: Shepard -like diagrams comparing six Cophenetic distances to original distances. The
Lowess smoothers (red lines) show the trend in each plot. The diagonal (black) lines
are visual references.
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Table 7.4: Pearson’s r Cophenetic correlation for the 28 hierarchical clustering methods. In bold
are shown the six clustering methods selected using as criteria the agglomerative coef-
ficient, cophenetic correlation and a combination of these statistics, with their metric
and agglomerative method (see the accompanying text for the reasoning).

Agglomerative Method

Metric Single Complete Average Ward McQuitty Median Centroid

Euclidean 0.609 0.669 0.755 0.738 0.779 0.741 0.723
Manhattan 0.504 0.708 0.743 0.582 0.703 0.676 0.711
Maximum 0.678 0.805 0.806 0.684 0.716 0.710 0.798
Canberra 0.526 0.631 0.680 0.622 0.657 0.510 0.560

erage having the largest cophenetic correlation, the Maximum - Ward with the largest
AC value, the Euclidean - McQuitty with the largest Cophenetic correlation among all
seven Euclidean methods, the Manhattan - Average having the largest Cophenetic cor-
relation among all seven Manhattan methods, the Maximum - Complete linkage with
the largest Cophenetic correlation among all four Complete linkage methods, and the
Canberra - Average method having the largest Cophenetic correlation among all seven
Canberra methods. No Single linkage or Median and Centroid methods were chosen.
The former showed extensive chaining in the dendrograms of all such methods, making
it difficult to interpret the solution independently of the low values of both the AC and
Cophenetic correlation statistics e.g. Figure 7.4 for the dendrogram of the Euclidean -
Single linkage method. The latter two types of methods introduced a lot of crossovers
of branches in the corresponding dendrograms, making it very difficult to identify any
patterns in their clustering solutions to the problem e.g. Figure 7.5 for the dendrogram
of the Maximum - Centroid method.

In the Shepard -like diagrams of Figure 7.3 there is another measure of the goodness-
of-fit between the matrices, the Gower distance. This statistic is defined as the sum
of squared differences between the values in the two matrices (Legendre and Legendre,
1998). That is,

DGower =
∑
i,j

(original dij − cophenetic dij)2.

The smaller the value of this statistic, the better the fit of the method to the original
data. Similarly to the Cophenetic correlation, the Gower distance requires the results
for comparison to be from the same original distance matrix. In addition, it is not
necessary that both statistics indicate the same clustering method as the best. The
lowess function that was used to draw the smoothers (red lines) in the diagrams of
Figure 7.3 required extensive experimentation with two of its arguments (the smoother
span, f, corresponds to the proportion of points in the plot that influence the smoothness
at each value, and delta, determines the range of points around the last computed point
for which the local polynomial fit will not be computed). Each smoother line in the six
diagrams was drawn with different values of these two arguments, to allow the line to
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Figure 7.4: Dendrogram for the 2-cluster partition derived by the Euclidean - Single linkage clus-
tering method. The labels at the end-leafs of the tree are the original identifiers of the
patients in the data set.
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Figure 7.5: Dendrogram for the 2-cluster partition derived by the Maximum - Centroid clustering
method. The labels at the end-leafs of the tree are the original identifiers of the patients
in the data set.
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approximate as accurately as possible the trend of the points in the plots.

The Gower distance values for all available clustering methods can be seen in Table
7.5. The Average method is clearly the best among all agglomerative methods in all

Table 7.5: Gower distance for the 28 hierarchical clustering methods. In bold is shown the clustering
method with the smallest Gower distance value.

Agglomerative Method

Metric Single Complete Average Ward McQuitty Median Centroid

Euclidean 1.467 4.697 0.294 642.73 0.301 0.530 0.695
Manhattan 23.475 40.119 4.508 12348.73 10.277 11.451 14.761
Maximum 1.120 1.824 0.197 717.634 0.720 0.518 0.360
Canberra 97245.42 228031.3 18523.17 24316750 46636.64 85383.48 93594.2

metrics, as the Gower distance value for this method is the smallest in comparison to all
other methods and in each and every metric. Therefore, the Average method seems to
be the most appropriate, with respect to the Gower distance results. As the Maximum
- Average method had the highest Cophenetic correlation (as seen on Table 7.4), it
seems so far that the best fit to the original data is given by the Maximum - Average
method. The Shepard -like diagram for method Maximum - Ward clearly indicates that,
despite having the highest agglomerative coefficient, it does not fit the original data
well, However, further investigation is needed to confirm which of the two Maximum
methods, Average and Ward, gives the best-fit of the data, with respect to the response
to AEDs information.

7.5.4.3 Identification of the Optimal Number of Clusters

An important part of the clustering procedure is to decide at what level to cut the
dendrogram of a clustering solution. This decision can be taken either subjectively
by choosing the number of clusters from visual inspection of the dendrogram, or such
chosen that it satisfies some criteria. Silhouette widths and plots of the fusion level
values are two methods which can be used to define criteria for the appropriate number
of clusters.

As has already been described in detail in Section 7.4, the silhouette width is a measure
of the degree of membership of an item to its cluster. This measure can be computed
and the obtained values drawn in a bar plot for all possible numbers of clusters in a
clustering solution. The R function silhouette() of package cluster will be used to
obtain such a plot for the clustering solutions of the epilepsy data. This plot will be
drawn for the two clustering methods being discussed, namely the Maximum - Average
and the Maximum - Ward, which have been identified as those methods with most
potential as the best-fit method of the original distance matrix. Figure 7.6 illustrates
the average silhouette widths for all partitions, from 2-96 clusters, for the two clustering
methods mentioned previously. It is clear that in both methods the optimal number of

7.5. HIERARCHICAL CLUSTERING METHODS



CHAPTER 7. Cluster Analysis 132

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of clusters

A
ve

ra
ge

 s
ilh

ou
et

te
 w

id
th

Optimum
2

●

Silhouette Coefficient:  0.593 Optimal number of clusters:  2

(a) Maximum - Average

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of clusters

A
ve

ra
ge

 s
ilh

ou
et

te
 w

id
th

Optimum
2

●

Silhouette Coefficient:  0.589 Optimal number of clusters:  2

(b) Maximum - Ward

Figure 7.6: Average silhouette widths for partitions of 2-96 clusters for the two selected clustering
methods. The optimal number of clusters is indicated in red.
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clusters is 2. In fact, this is true for all 28 clustering methods.

To confirm the findings from silhouette widths another type of graph can be used.
The fusion level values of a dendrogram can be plotted, and from this plot the optimal
number of clusters can be identified. A fusion level value is the distance at which
a fusion between two branches of a dendrogram occurs. Figure 7.7 shows the fusion
level values corresponding to the dendrograms of the two clustering methods. Reading
the graphs from right to left (2 clusters to 97 clusters), it can be seen that in both
methods there is a large jump after the two-clusters fusion. Especially in the case of
the Maximum - Ward graph, this is even more pronounced. Therefore, both plotting
tools indicate that the optimal number of clusters is 2 for both clustering methods.

As the optimal number of clusters is now known, it is possible and useful to compare
the cluster contents among the dendrograms by means of contingency tables. Table 7.6
shows the comparison of the classifications obtained by the two clustering methods. The

Table 7.6: Cross-tabulation of the 2-cluster partitions for Response to AEDs.

Maximum - Average

1 2

Maximum - Ward 1 63 0
2 31 3

contingency tables show that Maximum - Average has classified all but three patients
to the first cluster, whereas Maximum - Ward has classified 63 patients to cluster 1 and
31 to cluster 2. This could be important with respect to the ability of these clustering
methods to discriminate between responders and non-responders to AEDs.

7.5.4.4 Identification of the Best Method for the Response to AEDs
Information

Contingency tables can also be used to compare the cluster contents with respect to a
clinical characteristic of the patients in the data, such as the Response to AEDs. Table
7.7 contains the clustering information for the two clustering methods with respect
to Response to AEDs. It is clear that the results for Maximum - Ward are far more
balanced than those of Maximum - Average with respect to the Response to AEDs.
This is not surprising, as it was already known from Table 7.6 that the latter method
classified 94 patients in the first cluster, therefore it could not be possible to separate
the patients with regards to their Response to AEDs using this method. In addition,
Table 7.7 indicates that the method Maximum - Ward has misclassified 17 + 28 = 45

patients with respect to Response, while the Maximum - Average method misclassified
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Figure 7.7: Graphs of the fusion level values of the corresponding dendrograms to the two clustering
methods. The numbers in red are the number of clusters obtained at specific node
heights.
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Table 7.7: Cross-tabulation of 2-cluster partition for the two methods to the Response to AEDs
clinical characteristic.

Response to AEDs

Responder Non-responder

Maximum - Average 1 50 44
2 2 1

Maximum - Ward 1 35 28
2 17 17

2 + 44 = 46 patients1. Hence, the former method seems to be very slightly more
accurate with respect to the Response information. However, both methods clearly
are not capable of discriminating, with a small misclassification error the patients with
regards to their Response information. This will become more obvious with the aid of
a number of plotting tools, to illustrate these findings graphically.

Although dendrograms (e.g. Figure 7.11) and heat maps (e.g. Figure 7.12) illustrate
the clustering result achieved by the application of a clustering method to the data,
another type of graphical tool, the silhouette plot (based on the silhouette widths) can
show how well each and every patient has been assigned to its respective cluster after
the classification process, i.e. That is, to what degree a patient is a member of its
cluster. The silhouette plots for the two clustering methods can be seen in Figures 7.8
and 7.9 for the Maximum - Average and Maximum - Ward methods respectively. All
patients’ silhouette width values can be seen in the silhouette plot as bars, ranked in
decreasing order, with the colours of these bars corresponding to the Response to AEDs
information, e.g. responders to AEDs are depicted with blue bars and non-responders
with pink bars. It is therefore, clear, which patients lie well within their cluster. The
wider the silhouette bar for a patient is, the larger the silhouette value for this patient
and the better the patient lies in the cluster. That is, the within cluster dissimilarity
of the patient is much smaller than the smallest dissimilarity of the patient to other
clusters. Both clustering methods have Average Silhouette width for the entire data of
0.59 (which is also the Silhouette coefficient for both methods), therefore there is no
difference between them with respect to the overall data set. According to Table 7.1,
a reasonable amount of clustering structure has been discovered by the classification
algorithm that was used. On the other hand, the Average Silhouette widths for the
clusters differ considerably, as the number of patients in the two clusters are not the same
as has already been seen from the contingency tables. In addition, the silhouette plot for
method Maximum - Average shows that there are 8 patients clearly misclassified (highly
negative Silhouette widths) as members of cluster 1, while according to the silhouette

1It should be noted that the results of the cross-tabulation of the 2-cluster partitions to
Response to AEDs, were not improved, when computed by all other 26 clustering methods,
hence these were the best results among the available methods.
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Figure 7.8: Silhouette plot for the 2-cluster partition derived by the Maximum - Average clustering
method. The blue and the pink bars correspond to responders and non-responders
respectively. The average silhouette width for clusters 1 and 2 is 0.59 and 0.82 respect-
ively, and the average silhouette width for the entire data set is 0.59.

plot these should have been members of cluster 2. Model Maximum - Ward is definitely
more balanced, with only 1 patient misclassified in cluster 1 (actually belonging to
cluster 2) and 3 patients in cluster 2 (belonging to cluster 1) having in general far
smaller negative silhouette widths than the misclassified patients in method Maximum -
Average. The findings and the information obtained by the silhouette plots practically
mean that only the Maximum - Ward method should be retained for further analyses,
as it is deemed to be the best with regards to the Response to AEDs information.

To illustrate the clustering solution derived by the Maximum - Ward method, a
number of graphical tools will be used. A two-dimensional projection of the clustering
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Figure 7.9: Silhouette plot for the 2-cluster partition derived by the Maximum - Ward clustering
method. The blue and the pink bars correspond to responders and non-responders
respectively. The average silhouette width for clusters 1 and 2 is 0.68 and 0.43 respect-
ively, and the average silhouette width for the entire data set is 0.59.

solution can be seen in Figure 7.10. The first two principal component scores (according
to the results from Chapter 5) can be seen superimposed with the partition derived by
Ward’s method. In both scores plots, black and red represent the patients clustered
to the first and second cluster respectively. The bottom scores plot illustrates the
Response to AEDs information, such that points labelled as "R" and "N" correspond
to responders or non-responders to AEDs respectively. The scores plots show clearly
that there is no discrimination between responders and non-responders to AEDs.

A dendrogram for the 2-clustering partition derived by the Maximum - Ward cluster-
ing method can be seen in Figure 7.11. The labels at the end-leafs of the tree correspond
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Figure 7.10: Scores plots of the first two PCs, superimposed with the 2-cluster partition derived by
the Maximum - Ward clustering method. Black and red points represent the patients
in the first and second cluster respectively. The labels of the points in the bottom
plot correspond to the responders (R) and non-responders (N) to AEDs.
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to the responders (R) and non-responders (N) to AEDs. As expected from the results
obtained so far, there are indeed two main clusters fused at a very high level of height of
0.595, compared to all other fusions (with the next highest merge of patients or clusters
occurring at height 0.154). The dendrogram is also quite balanced.

A dendrogram can also be represented, perhaps more accurately, by a heat map, a
square matrix of coloured pixels such that the colour intensity represents the similarity
among the patients. The heat map of the distance matrix reordered according to the
dendrogram of Figure 7.11 can be seen in Figure 7.12. The reordering of the heat
map sorts the matrix such that most of the darker (or red) values representing high
similarities are located closer to the main diagonal. The heat map shows the two large
dark red square areas at the top-left and bottom-right of the matrix, corresponding to
the two clusters identified from previous analyses.

Despite the optimal number of clusters being 2, it might be useful to examine whether
partitions of larger number of clusters than 2 can provide an insight to the discrimin-
ation of the Response information. Table 7.8 shows the results of cross-tabulating
the Response information with the partitions of 3-6 clusters, obtained from clustering
method Maximum - Ward. As can be seen, no cluster in all four partitions in Table

Table 7.8: Cross-tabulation of 3-6 cluster partitions for the Maximum - Ward method with the
Response to AEDs clinical characteristic. In bold are depicted the clusters that are not
affected by the introduction of new clusters in the 3-cluster partition.

Response to AEDs

Clusters Responder Non-responder

3
1 35 28
2 7 7
3 10 10

4

1 7 7
2 28 21
3 7 7
4 10 10

5

1 7 7
2 8 8
3 20 13
4 7 7
5 10 10

6

1 7 7
2 8 8
3 20 13
4 5 6
5 10 10
6 2 1

7.8 contains only one of the two categories of response to AEDs. In addition, it seems
that the last two clusters in the 3-cluster partition (of size 14 and 20 respectively) are
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Figure 7.11: Dendrogram for the 2-cluster partition derived by the Maximum - Ward clustering
method. The labels at the end-leafs of the tree correspond to the responders (R) and
non-responders (N) to AEDs.

7.5. HIERARCHICAL CLUSTERING METHODS



CHAPTER 7. Cluster Analysis 141

02
0

03
6

10
1

11
4

08
2

06
6

11
6

12
2

12
3

05
2

09
7

00
8

01
0

03
5

01
3

06
4

09
2

07
8

05
0

06
3

11
0

06
8

02
8

01
8

05
9

01
4

04
6

04
2

12
4

09
9

04
9

03
3

09
8

01
9

01
5

02
1

07
0

07
6

09
3

03
2

00
1

05
1

02
9

10
0

11
5

06
2

06
0

09
6

11
2

00
2

08
0

00
9

12
5

06
1

00
4

11
7

03
7

08
7

09
1

04
8

05
6

06
5

01
2

00
7

05
3

10
4

07
9

03
0

07
5

01
7

11
8

00
3

10
9

05
8

04
5

01
1

04
1

09
0

06
9

05
5

07
4

08
1

05
4

01
6

00
6

11
3

08
9

11
9

10
7

00
5

10
5

10
6

07
7

11
1

02
4

04
4

12
0

120
044
024
111
077
106
105
005
107
119
089
113
006
016
054
081
074
055
069
090
041
011
045
058
109
003
118
017
075
030
079
104
053
007
012
065
056
048
091
087
037
117
004
061
125
009
080
002
112
096
060
062
115
100
029
051
001
032
093
076
070
021
015
019
098
033
049
099
124
042
046
014
059
018
028
068
110
063
050
078
092
064
013
035
010
008
097
052
123
122
116
066
082
114
101
036
020

Figure 7.12: Heat map of the distance matrix of the Maximum - Ward clustering method according
to the dendrogram of Figure 7.11. The colour intensity represents the similarity among
the patients, such that the darker the colour the closer the similarity.

not separated when 1 or 2 more clusters are introduced, and the cluster of size 20 also
remains unchanged even in the 6-cluster partition. Most of the clusters in all partitions
are balanced with regards to Response to AEDs, having the same number of respon-
ders and non-responders. In the 6-cluster partition, cluster 6 contains just one more
responder than non-responder, whereas cluster 4 is the only cluster among all clusters
in all partitions which contains more non-responders than responders. Only the largest
cluster shows any real difference between the two responses, with the responders dom-
inating the cluster, with sizes 35 and 28 in 3-clusters, 28 and 21 in 4-clusters, 20 and
13 in 5 and 6-clusters, for responders and non-responders respectively.

To investigate the homogeneity of the four partitions in Table 7.8 with respect to the
observations in each cell for the two categories of Response to AEDs, the X 2 test will
be used. The p-values for the five (including the 2-cluster partition) cases can be seen
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in Table 7.9. All p-values are much larger than the significance level of 0.05, therefore

Table 7.9: X 2 test for homogeneity of the clusters with respect to the proportion of observations
in each of the categories which the Response to AEDs is divided into. The p-value
for the 6-cluster partition has been computed with Fisher’s test, as there are expected
frequencies of value < 5 in at least one of the cells of the respective contingency table.

Clusters P -value

2 0.7565
3 0.8719
4 0.9195
5 0.9121
6 0.9168

there is not enough evidence to reject the null hypotheses of the tests that the clusters
in all partitions are not homogeneous with respect to the Response to AEDs. That is,
the proportions of observations in each of the categories of Response to AEDs are not
different in the five derived partitions (2-6 clusters).

Figure 7.13 illustrates the results derived from the contigency tables (Table 7.8) for
the Response. The colours of the points in the scores plots correspond to the clusters in
each partition. In the 3-cluster partition, the left-most cluster (red points) is the cluster
of size 14, which remains unchanged up to and including the 5-clusters partition, and
the middle cluster (green points) is the cluster of size 20, which remains unchanged
in all four partitions. The right-most cluster (black points) is the largest cluster in all
partitions, which keeps being broken into smaller partitions until the 6-cluster partition,
where the left-most partition is broken for the first time. Figure 7.13 shows clearly that
there is no discrimination between responders and non-responders in any of the four
partitions.

As a conclusion to these analyses, it can be said that the hierarchical clustering
methods have not been efficient in classifying the patients according to their Response
to AEDs. In general, it can be seen from the scores plots that the clusters are more
elongated than compact and the distance between them is not great, in most of the
cases.

7.5.4.5 Investigation on Other Clinical Characteristics

Response to AEDs is not the only clinical characteristic of the patients in the epilepsy
data. It might be useful to assess whether the hierarchical clustering method Maximum
- Ward discussed in the previous sections can provide a better insight to the clusters of
the derived partitions than for the Response to AEDs. Four main characteristics will be
used in the analyses, namely Gender, Age, BMI and Seizure Type. The Age and BMI
categories are those defined in Chapter 2. Table 7.10 contains the contingency tables
between the 2-6 cluster partitions and the clinical characteristics Gender and Age.
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Figure 7.13: Scores plots of the first two PCs, superimposed with the cluster partitions for 3-6
clusters, derived by the Maximum - Ward clustering method. The labels of the points
in the plots correspond to the responders (R) and non-responders (N) to AEDs.

The cross-tabulation of Gender shows that, as expected, due to their large number in
the data set, males dominate most of the clusters in all partitions, with practically the
only exception being cluster 3 in the last two partitions in the table. The third cluster
in the 3-cluster partition (indicated in bold in the table), of size 20 (13 males and 7
females) is retained as it is, in the following three partitions, albeit in the last two as
cluster 5. Contrary to Response to AEDs, in this case there is one cluster that contains
only males, the sixth cluster in the last partition, and a few other clusters with very
high numbers of males compared to females, e.g. cluster 1 in the 3-5 cluster partitions
contains 13 males and 1 female.

To investigate the homogeneity of the five partitions in Table 7.8 with respect to the
observations in each cell for the two categories of Gender, the X 2 test will be used. The
p-values for the five cases can be seen in Table 7.11. The p-values for the first three
partitions are larger than the significance level of 0.05, therefore there is not enough
evidence to reject the null hypotheses of the tests that the clusters in these partitions are
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Table 7.10: Cross-tabulation of 2-6 cluster partitions derived by the Maximum - Ward method with
the Gender and Age clinical characteristics. In bold are shown the clusters that are
not affected by the introduction of new clusters in the 3 or 4-cluster partition.

Gender Age

Clusters Male Female (16-26] (26-47] (47-99]

2 1 41 22 27 19 17
2 24 10 4 13 17

3
1 41 22 27 19 17
2 11 3 0 8 6
3 13 7 4 5 11

4

1 13 1 8 4 2
2 28 21 19 15 15
3 11 3 0 8 6
4 13 7 4 5 11

5

1 13 1 8 4 2
2 12 4 5 7 4
3 16 17 14 8 11
4 11 3 0 8 6
5 13 7 4 5 11

6

1 13 1 8 4 2
2 12 4 5 7 4
3 16 17 14 8 11
4 8 3 0 6 5
5 13 7 4 5 11
6 3 0 0 2 1

non homogeneous with respect to the Gender. That is, the proportions of observations
in each of the categories of Gender are not different in these 3 partitions. The p-values
for the 5 and 6-cluster partitions are smaller than 0.05 (0.0301 and 0.042 respectively).
The clusters in these partitions are not homogeneous with respect to Gender as the
proportions of observations for the categories of Gender are different in at least one of
the clusters. From Table 7.10, it can be seen that the third cluster in both the 5 and
6-cluster partitions (containing 16 males and 17 females is the only one with a balanced

Table 7.11: X 2 test for homogeneity of the clusters with respect to the proportion of observations
in each of the categories which Gender is divided into. The p-value for the 6-cluster
partition has been computed with Fisher’s test, as there are expected frequencies
of value < 5 in at least one of the cells of the respective contingency table. The
statistically significant p-values at 95% confidence level are shown in bold.

Clusters P -value

2 0.7457
3 0.6098
4 0.0637
5 0.0301
6 0.0429
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number of patients with respect to their gender. This cluster has proportionately more
females than we would expect, due to the dominance in number of the males in the
data. The rest of the clusters contain more males than females to a ratio of at least 2:1.

Concerning the contingency table for Age, cluster 2 in the 3-cluster partition (becom-
ing cluster 3 and 4 in the 4 and 5-cluster partitions respectively), does not contain any
patients of age less than or equal to 26, with the patients in this cluster being rather
balanced between the other two Age intervals. That is, they are not affected by the
introduction of new clusters in these three partitions. Two other clusters (containing
4-5-11 and 8-4-2 patients in each Age interval respectively), printed in bold in Table
7.10, remain unchanged from the 3 and 4-cluster partitions respectively. The former
cluster contains twice as many males as females and their age is above 26 with those
of age above 47 dominating this cluster, whereas the latter cluster contains males, the
majority of which are of age less than or equal to 26. The cluster with more females
than males contains patients of balanced age among the three Age levels, with slightly
more young and old patients than middle-aged.

Figure 7.14 illustrates the results derived from the contingency tables for Age. The
colours of the points in the scores plots correspond to the clusters in each partition. In
the 3-cluster partition, the left-most cluster (red points) is the cluster of size 14 with
only middle-aged or old patients, and remains unchanged in the 3-5 cluster partitions.
The middle cluster (green points) is the cluster of size 20, which remains unchanged in
all four partitions. This cluster contains mainly old patients in a ratio of approximately
2:1 to the young and middle-aged patients. The right-most cluster (black points) is
the largest cluster in all partitions containing patients of all ages (although there are
slightly more young patients with a ratio of 4:3), which keeps being divided into smaller
partitions until the 6-cluster partition, where the left-most partition is broken for the
first time. Things are even clearer in the partitions with larger numbers of clusters.
Especially in the 6-cluster partition, cluster 1 is dominated by young patients, whereas
in clusters 4 and 6 there are no young patients at all. In addition, clusters 2 and 3 are
quite balanced with respect to Age. Thus, there is clearly discrimination between the
three categories of Age in the derived partitions, and the clustering method works in
this case, as was also shown by the results of the KW test (7.14).

Table 7.12 contains the contingency tables between the 2-6 cluster partitions and the
clinical characteristics Seizure type and BMI. Concerning Seizure Type, all clusters in
all partitions are dominated by the LRE patients, as their number in the data set is
considerably larger than those patients of IGE type. Similarly to the other previously
mentioned clinical characteristics, there are also a couple of clusters here that are very
consistent among the various partitions. More specifically, the third cluster in the 3-
cluster partition remains unchanged in the rest of the partitions (containing 17 LRE
and 3 IGE patients). Also, the first cluster in the 4-cluster partition remains as it is, in
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Figure 7.14: Scores plots of the first two PCs, superimposed with the cluster partitions for 3-6
clusters, derived by the Maximum - Ward clustering method and the Age information.
The labels of the points in the plots correspond to the young (Y), middle-aged (M)
and old (O) patients.

the 5- and 6-cluster partitions (containing 9 LRE and 5 IGE patients).

To investigate the homogeneity of the five partitions in Table 7.12 with respect to
the observations in each cell for the two categories of Seizure Type, the X 2 test will be
used. The p-values for the five cases can be seen in Table 7.13. All p-values are larger
than the significance level of 0.05 therefore there is not enough evidence to reject the
null hypotheses of the tests that the clusters in all partitions are not homogeneous with
respect to Seizure type. That is, the proportions of observations in each of the categories
of Seizure Type are not different in the 6 derived partitions.

Similarly to the findings for Seizure Type, the results for BMI show that the same
clusters are consistent among the various partitions (containing 4-4-6-6 and 9-4-1-0
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Table 7.12: Cross-tabulation of 2-6 clusters partitions derived by the Maximum - Ward method
with the Seizure Type and BMI clinical characteristics. In bold are shown the clusters
that are not affected by the introduction of new clusters in the 3 or 4-cluster partition.

Seizure Type BMI

Clusters LRE IGE (16-22] (22-25] (25-28] (28-45.1]

2 1 45 18 20 21 12 10
2 30 4 5 6 10 13

3
1 45 18 20 21 12 10
2 13 1 1 2 4 7
3 17 3 4 4 6 6

4

1 9 5 9 4 1 0
2 36 13 11 17 11 10
3 13 1 1 2 4 7
4 17 3 4 4 6 6

5

1 9 5 9 4 1 0
2 12 4 3 4 5 4
3 24 9 8 13 6 6
4 13 1 1 2 4 7
5 17 3 4 4 6 6

6

1 9 5 9 4 1 0
2 12 4 3 4 5 4
3 24 9 8 13 6 6
4 10 1 1 2 2 6
5 17 3 4 4 6 6
6 3 0 0 0 2 1

patients in the four BMI levels for the same clusters and partitions as for the Seizure
Type.

Figure 7.15 illustrates the results derived from the contingency tables for BMI. The
colours of the points in the scores plots correspond to the clusters in each partition. In
the 3-cluster partition, the left-most cluster (red points) is the cluster of size 14 which
is dominated by patients with BMI values greater than 28, and remains unchanged in
the 3-5 cluster partitions. The middle cluster (green points) is the cluster of size 20,
with balanced BMI values, and remains unchanged in all four partitions. The right-

Table 7.13: X 2 test for homogeneity of the clusters with respect to the proportion of observations in
each of the categories the Seizure Type is divided into. The p-value for the 3-6 cluster
partitions have been computed with Fisher’s test, as there are expected frequencies of
value < 5, in at least one of the cells of the respective contingency table.

Clusters P-value

2 0.1027
3 0.1757
4 0.2152
5 0.3654
6 0.5673
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Figure 7.15: Scores plots of the first two PCs, superimposed with the cluster partitions for 3-6
clusters, derived by the Maximum - Ward clustering method. The labels of the points
in the plots correspond to patients with small (S), medium (M), large (L) and huge
(H) BMI values.

most cluster (black points) is the largest cluster in all partitions, containing patients of
mainly small and medium BMI values (in a ratio of approximately 2:1), which keeps
being divided into smaller partitions until the 6-cluster partition, where the left-most
partition is broken for the first time. In the partitions with larger number of clusters,
the results are consistent with those obtained by the scores plots for Age. In the 6-
cluster partition, cluster 1 contains no patients with very high (huge) BMI values, with
the majority of the patients having small BMI values. On the other hand, cluster 6
contains only patients with large or huge BMI values. Thus, as with Age, there is clearly
discrimination between the four categories of BMI in the derived partitions, and the
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clustering method works in this case.

To investigate whether the medians of the populations represented by the derived
clusters are all equal in the five partitions (whether the Age and/or the BMI values
of the patients play any role in the derivation of the clusters) or not, the KW test
will be used with the raw Age and BMI values of the patients. The p-values for the
five partitions can be seen in Table 7.14. In all cases, the p-values are smaller than the

Table 7.14: Kruskal-Wallis rank sum test for the 5 partitions with respect to Age and BMI to test
the equality of the medians of all clusters in each partition. The statistically significant
p-values at 95% confidence level are shown in bold.

P-value

Clusters Age BMI

2 0.0034 0.0023
3 0.0109 0.0070
4 0.0063 0.0003
5 0.0151 0.0006
6 0.0305 0.0013

significance level of 0.05, therefore there is enough evidence to reject the null hypotheses
of the tests that the clusters in each of these partitions represent populations with equal
median values. That is, there is at least one cluster for which, the median value of the
population it represents is different than that of the represented populations of the rest
of the clusters.

Concerning Age, from Table 7.10, the first cluster in the 2-cluster partition contains
much younger patients than the second cluster. In the case of BMI, in Table 7.12, the
first cluster in the 2-cluster partition contains mainly patients with small or medium
BMI values, whereas the second cluster is mainly of patients with large to huge BMI
values. These facts are even more pronounced for both clinical characteristics in the
rest of the partitions with the distributions of the clusters with respect to Age differ-
ing significantly. Low-numbered clusters contain younger patients than high-numbered
clusters, and with respect to BMI, low-numbered clusters contain in general, patients
with lower BMI values than the high-numbered clusters. It is clear that the clustering
method works with respect to the Age and BMI characteristics.

Comparing the test results (and the clusters of the partitions in the two contingency
tables), it seems that there is a pattern with respect to Age and BMI. More specific-
ally, low-numbered clusters contain younger patients with low BMI values, whereas the
high-numbered clusters contain older patients with higher BMI. However, despite the
clustering method being capable of discriminating patients with regards to Age and
BMI, and in some cases Gender, it was not capable of discriminating the patients with
respect to their Seizure Type and Response to AEDs with a low misclassification rate.
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The dominating characteristics that were observed in each of the two groups are sum-
marised below:

1. Males in the (16-26] Age category with LRE Seizure Type, responders to AEDs
and BMI values small to medium.

2. Males in the (26-47] and (47-99] Age categories with LRE Seizure Type, balanced
Response to AEDs and BMI values large to huge.

7.6 Partitioning Methods

7.6.1 Introduction

This is a popular category of clustering algorithms, based on the optimization of a cost
function with the aid of various numerical algorithms. A cost function is given in terms
of the input vectors xi (i = 1, . . . , Ns, where Ns is the number of samples in the data
set) and an unknown parameter vector ϑ. For the optimum solution to the clustering
problem, this parameter has to be estimated such that the derived partition represents
as closely as possible the clusters which describe the input vectors xi. The shape of
clusters determines the type of parameter ϑ to be used in the analysis. For example, ϑ
can be considered as a set of point representatives (e.g. centroids, medoids), a quadric
surface or a hyperplane if the clusters are compact, quadric-shaped (e.g hyper-ellipsoids
or hyperparaboloids) or hyperplanar respectively (Theodoridis and Koutroumbas, 2003).

Optimal partitioning methods are non-hierarchical clustering algorithms which split
the objects to be clustered into a predefined number of clusters, say Nc, such that there
is no hierarchical relationship between the Nc and the Nc + 1 solution (Izenman, 2008).
The objects are partitioned into Nc clusters such that the items in one cluster are similar
to each other but different from those in other clusters. These methods are iterative and
use only a limited amount of enumeration. Therefore, as they do not need to store large
proximity matrices, they are computationally more efficient than hierarchical methods.
Such algorithms include, among others, Sequential, Probabilistic, Possibilistic, Hard and
Fuzzy clustering algorithms (Theodoridis and Koutroumbas, 2003).

7.6.2 Fuzzy Clustering Algorithms

7.6.2.1 Introduction

These algorithms are based on the concept that an input vector xi can belong to a
certain degree to more than one cluster at the same time. They are independent of
the shape of clusters, so they are efficient in obtaining an optimal partition in any case
(Theodoridis and Koutroumbas, 2003). The degree of membership of a vector xi to a
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cluster c is determined by a membership coefficient, mic. A fuzzy m-clustering of a
matrix X (containing all the input vectors xi) can then be defined as a set of functions

mc : X → A, c = 1, . . . , Nc

where A = [0, 1]. If A = {0, 1} then a hard m-clustering is defined, such that each input
vector belongs to one and only cluster. Considering the case of point representatives, if
ϑ ≡ [ϑT1 , . . . , ϑ

T
Nc

]T , such that ϑi is the representative of the ith cluster, then a general
form of a cost function for a fuzzy c-means clustering algorithm is

Ns∑
i=1

Nc∑
j=1

mq
ijd(xi, ϑj)

with respect to ϑ and M , subject to the constraints

Nc∑
j=1

mij = 1,

mij ∈ [0, 1],

0 <

Ns∑
i=1

mij < Ns, i = 1, . . . , Ns, j = 1, . . . , Nc

where M is an (NsxNc) matrix with elements (i, j) = (mj(xi), d(xi, ϑj)) representing
the dissimilarity between input vector xi and parameter vector ϑj , and q (≥ 1) is a
parameter called the fuzzifier. Assuming ϑ is fixed, if the fuzzifier parameter is q = 1

then there is no better fuzzy clustering than the best hard-clustering solution, whereas
if q > 1 then it is possible to obtain fuzzy clustering optimal solutions which are better
than the best hard clustering solution (Theodoridis and Koutroumbas, 2003).

Fuzzy clustering algorithms have not been used much in metabo(lo)nomics, but in
general, have proved quite useful in the analysis of metabolic profiles. The most popular
fuzzy clustering method is the fuzzy c-means (FCM). An example of its use, is the
clustering of Escherichia coli gene types on the basis of their metabolic profiles. The
method successfully clustered the samples, revealing main phenotype changes in the
metabolic profiles and allowing the identification of significantly changed metabolites
(Li et al., 2009). Other research involves the use of FCM in proton NMR metabolomics
samples of cancer cell line extracts and of urine of type 2 diabetes patients and animal
methods (Culf et al., 2009). FCM was able to classify more accurately the samples in
both data sets in comparison to other methods such as PCA, HCA and k -means, by
clearly separating the individual cell lines, both groups of cancer and normal cell lines
and non-invasive and invasive tumour cell lines. In the case of the diabetes data, only
FCM was capable of clearly separating healthy controls and diabetics in all the methods
that were used.
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An important type of fuzzy c-means clustering algorithm is the fanny algorithm,
described in Section 7.6.2.2. A statistic to assess the fuzziness of a clustering solution,
Dunn’s partition coefficient, is given in Section 7.6.2.3. The application of the fanny

clustering algorithm to the epilepsy data can be seen in Section 7.6.3.

7.6.2.2 The Fanny Fuzzy Clustering Algorithm

This fuzzy clustering algorithm has been developed by Kaufman and Rousseeuw. In
this case, the cost function to be minimized is given by

Nc∑
c=1

Ns∑
i,j=1

m2
icm

2
jcd(xi, xj)

2
Ns∑
j=1

m2
jc

subject to the constraints

mic ≥ 0 for i = 1, . . . , Ns c = 1, . . . , Nc (7.6.1)∑
c

mic = 1 for i = 1, . . . , Ns (7.6.2)

where d(xi, xj) is the distance (or dissimilarity) between objects xi and xj , mic the
unknown membership coefficient of object i to cluster c, Ns the number of samples
in the data set and Nc the number of clusters. The first constraint ensures that no
membership coefficient is negative and the second that each object has a constant total
membership distributed over the c clusters.

An advantage of this algorithm is that it uses only inter-object dissimilarities, not
involving any averages of objects. This algorithm is also more robust to the assumption
of spherical clusters, as the distances in the objective function’s formula are not squared.
A detailed description of the numerical algorithm used to optimally minimize the above
cost function is given in Kaufman and Rousseeuw (2005). It should be noted that when
the chosen distance metric is the squared Euclidean distances (the sum of squares of
differences), the algorithm becomes the standard fuzzy c-means method.

7.6.2.3 Fuzziness of a Clustering Solution

The fuzziness of a clustering solution, that is, how close to a hard clustering solution
is, can be estimated using Dunn’s partition coefficient. This statistic can be calculated
using the following formula

Fc(M) =

Ns∑
i=1

Nc∑
c=1

m2
ic

Ns
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whereM is the matrix of membership coefficients mic (Kaufman and Rousseeuw, 2005).
The value of this statistic is the sum of squares of all membership coefficients divided by
the number of objects. In a hard clustering solution, the statistic obtains its maximum
value, 1, whereas it takes its minimum value, 1

Nc
, when all membership coefficients have

the value 1
Nc

. Thus, the statistic’s values are in the range [ 1
Nc
, 1]. The normalized

version of the statistic

F ′c(M) =
Fc(M)− (1/Nc)

1− (1/Nc)
=
NcFc(M)− 1

Nc − 1

is more straightforward as it takes values in [0, 1], where 0 means total fuzziness and 1
a completely hard solution.

7.6.3 Application of Fuzzy Clustering to the Epilepsy Data

7.6.3.1 Introduction

The data that will be analysed by fuzzy clustering is the same that was used in the
hierarchical clustering analyses. The data set includes the 97 patients with specific re-
sponse to AEDs information (only responders or non-responders), with intensity values
in the proton NMR chemical shift range of 5.98 − 0.02 ppm. The data has also been
row-scaled to a constant total.

The fanny fuzzy clustering algorithm will be used to analyse the data, as described
in Section 7.6.2.2. The reason for this is that according to the authors of the function,
and as mentioned in Section 7.6.2.2, fanny compared to other fuzzy clustering methods,
can accept as data input also a dissimilarity matrix. In addition, it is more robust to
the spherical cluster assumption and provides silhouette information (silhouette widths
and plot) which can be used to assess the quality of the results obtained by a fuzzy
clustering method.

Things to be considered in order to compare the results of the fuzzy clustering ana-
lyses are the distance measure, the number of required clusters and the value of the
fuzzifier (membership exponent). Four different distance metrics will be used to com-
pute the distance matrix of the observations in the epilepsy data, i.e. the Euclidean, the
Manhattan, the Maximum and the SqEuclidean (sum of squares of differences), as it is
not clear which distance metric is the best for this type of data. It should be noted that,
according to the authors of the fanny function, using the SqEuclidean metric results
in a fuzzy clustering analysis equivalent to the fuzzy c-means method. The number of
clusters will be chosen in the range 2-6, and the fuzzifier values to be used include 1.1,
1.5, 2, 2.5 and 3.0.

The best (if any) fuzzy clustering method will be identified using tools such as the
optimal (minimum) objective function value, Dunn’s partition coefficient, as well as its
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normalised version and the silhouette information. These will allow the selection of
the optimal method with respect to the optimum number of clusters, distance measure
and fuzzifier value. The silhouette coefficients will be used in the optimal method with
respect to the distance measure and fuzzifier value to determine the optimum number
of clusters for the selected method.

The X 2, Fisher’s and KW tests will be used to assess whether the distributions of
the populations represented by the clusters of the optimal partition with regards to the
various clinical characteristics have differences or not, as has already been done in the
case of the hierarchical clustering methods.

7.6.3.2 Comparison of Fuzzy Clustering Methods

To examine how the value of the fuzzifier parameter affects the fuzzy clustering solution,
a number of runs were performed using various fuzzifier values for fuzzy 2-cluster parti-
tions with the four pre-selected distance metrics. A comparison of various fanny fuzzy
clustering methods with respect to the distance measure and the value of the fuzzifier
can be seen in Table 7.15. The table shows that the best overall fuzzy 2-cluster method

Table 7.15: Comparison of fuzzy clustering methods with regards to pre-selected fuzzifier values
and distance measures. The number of clusters is set to 2. OASW stands for the
overall average silhouette width. In bold are shown the clustering methods which give
the best results (for each metric) with respect to the pair of values of OASW and the
objective function. The different number of decimals in some of the entries of the table
is due to the fact that all values were put in the table as they were returned by the
analyses in R (and are not a result of any rounding).

Metric Fuzzifier Iterations Objective Dunn Dunn (Norm) OASW

Euclidean 3.0 40 0.22748 0.51946 0.03892 0.51761
Euclidean 2.5 36 0.31684 0.55087 0.10174 0.51761
Euclidean 2.0 34 0.43003 0.63566 0.27132 0.52752
Euclidean 1.5 31 0.54072 0.83974 0.67948 0.53194
Euclidean 1.1 16 0.57708 0.98449 0.96898 0.53582

Manhattan 3.0 73 1.0955 0.5 7.9e-15 0.42119
Manhattan 2.5 220 1.5491 0.50278 0.00555 0.42119
Manhattan 2.0 30 2.1641 0.55831 0.11662 0.42561
Manhattan 1.5 19 2.8407 0.76302 0.52603 0.44208
Manhattan 1.1 19 3.0913 0.98165 0.96331 0.44984

Maximum 3.0 24 0.16755 0.55111 0.10221 0.58442
Maximum 2.5 21 0.22974 0.59696 0.19392 0.58442
Maximum 2.0 28 0.30492 0.69721 0.39443 0.58761
Maximum 1.5 16 0.37398 0.87935 0.7587 0.59384
Maximum 1.1 29 0.39733 0.97841 0.95682 0.59384

SqEuclidean 3.0 20 0.00444 0.6538 0.3076 0.73667
SqEuclidean 2.5 20 0.00584 0.72398 0.44797 0.73667
SqEuclidean 2.0 31 0.00734 0.8251 0.65019 0.74391
SqEuclidean 1.5 17 0.00854 0.93272 0.86544 0.74391
SqEuclidean 1.1 26 0.00894 0.98437 0.96873 0.74391

with respect to its overall average silhouette width of 0.74391, is the SqEuclidean with
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fuzzifier value of 2. Despite the methods with fuzzifier values 1.5 and 1.1 having the
same value of overall average silhouette width as the best method, these methods are
far less fuzzy than the former method, as indicated by the values of the Dunn statistics.
In the case of the Euclidean methods, the overall average silhouette width values of the
methods with fuzzifier 1.5 and 1.1 are 0.53194 and 0.53582 respectively. These values
are very close, therefore, as this is fuzzy clustering analysis, the former method is chosen
as the best fuzzy method for the Euclidean metric. The Manhattan metric is clearly not
suitable for fuzzy clustering analysis, as all the Manhattan methods in question have
the lowest overall average silhouette width values among all metric distances. Due to
this fact, the best, and the chosen, Manhattan method is the one with fuzzifier 1.1 and
overall average silhouette width value of 0.44984, which if it remains at these levels for
all possible numbers of clusters, will mean that the structure of the data is weak. The
second best, among all metrics, overall average silhouette width values can be found in
the Maximum methods, which seems to be consistent with the results obtained from
HCA (although the metric SqEuclidean was not used in the HCA methods). The Max-
imum method with fuzzifier 1.5 and overall average silhouette width value of 0.59384 is
the best among the Maximum methods, and is retained for further analyses.

7.6.3.3 Identification of the Optimal Number of Clusters

The four retained methods among all metrics and fuzzifier values, as seen in Table 7.15,
will be analysed further for the cases of partitions having 2-6 clusters, with the purpose
of identifying the optimal number of clusters. The reason for not retaining for further
analyses only the best clustering method with respect to the overall average silhouette
width value, is the need to confirm whether or not the number of clusters plays any role
in the value of the overall average silhouette width. A comparison of the analyses of the
four clustering methods with partitions of 2-6 clusters can be seen in Table 7.16. The
fuzzifier parameter has been set equal to 1.5, 1.1, 1.5 and 2.0 for the methods Euclidean,
Manhattan. Maximum and SqEuclidean respectively in all partitions in Table 7.16. As is
logical, Dunn’s coefficient (and its normalised version) reduces as the number of clusters
increases. That is, the larger the number of clusters in the derived partition, the lower
the value of Dunn’s coefficient is (the greater the fuzziness of the clustering solution is).
From Table 7.16, it is clear that the best overall fuzzy clustering method is derived for
two clusters using the SqEuclidean distance as the metric to calculate the dissimilarities
among the observations, as its overall average silhouette value, 0.74391, is the highest
among all clustering methods in the table. The data is well-structured for this partition.
In general, fuzzy 2-cluster partitions seem to fit the data better, independently of the
metric used. The SqEuclidean metric is the most efficient in fitting the data, as even
when a fuzzy 6-cluster partition is selected, the structure of the data is close to being
reasonable with its overall average silhouette width value being 0.48742.
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Table 7.16: Comparison of fuzzy clustering methods with regards to pre-selected number of clusters
and distance measures. The fuzzifier values are the same as those of the best methods
for the four distance metrics in Table 7.15. OASW stands for the overall average
silhouette width. In bold is shown the fuzzy clustering method which gives the best
result with respect to the value of OASW and if necessary, the objective function. The
different number of decimals in some of the entries of the table is due to fact that all
values were put in the table as they were returned by the analyses in R (and are not a
result of any rounding).

Clusters Metric Iterations Objective Dunn Dunn (Norm) OASW

2

Euclidean 31 0.54072 0.83974 0.67948 0.53194
Manhattan 19 3.0913 0.98165 0.96331 0.44984
Maximum 16 0.37398 0.87935 0.7587 0.59384
SqEuclidean 31 0.00734 0.8251 0.65019 0.74391

3

Euclidean 277 0.4309 0.6485 0.47275 0.33149
Manhattan 70 2.7191 0.94597 0.91895 0.2925
Maximum 32 0.28536 0.80841 0.71262 0.51676
SqEuclidean 57 0.00439 0.69228 0.53843 0.62966

4

Euclidean 30 0.35567 0.60939 0.47918 0.34561
Manhattan 26 2.43 0.94607 0.9281 0.2677
Maximum 23 0.22846 0.72013 0.62683 0.43039
SqEuclidean 65 0.00295 0.59456 0.45941 0.51954

5

Euclidean 61 0.31411 0.51477 0.39346 0.31654
Manhattan 37 2.2627 0.93848 0.9231 0.26332
Maximum 216 0.20212 0.62337 0.52921 0.35796
SqEuclidean 150 0.00226 0.55099 0.43874 0.49749

6

Euclidean 112 0.28299 0.49266 0.39119 0.30385
Manhattan 118 2.1346 0.93108 0.9173 0.23864
Maximum 98 0.17614 0.60691 0.5283 0.35626
SqEuclidean 54 0.00177 0.48979 0.38775 0.48742

Figure 7.16 gives the overall average silhouette widths of the best fuzzy clustering
method of Table 7.16 with the SqEuclidean metric and fuzzifier value of 2, for all
partitions from 2-47 clusters. The maximum number of clusters in a fanny partition is
n
2−1, therefore, as in the epilepsy data n is equal to 97, the maximum number of clusters
is 47. The degree of membership (membership coefficients) of the 97 patients to the 2
clusters in the optimum fanny partition can be seen in Table 7.17. The membership
values for patients 13, 18, 56 and 92 are quite balanced for the two clusters meaning
that the chosen clustering method has not been able to categorize these patients to
either of the two clusters successfully. Three other patients, namely 28, 50 and 110,
have membership coefficients indicating one or the other cluster but these are rather
moderate (0.60-0.65), therefore they do not belong very strongly to their respective
clusters. However, the majority of the patients have membership coefficients above
0.85, so the selected fuzzy clustering method seems to cluster well the data. It remains
to be seen whether the selected fuzzy clustering method can discriminate the patients
with respect to their clinical characteristics.
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Table 7.17: Membership coefficients for the fuzzy 2-cluster partition obtained by the fanny method
with the SqEuclidean metric and fuzzifier value 2. In bold are shown the largest of the
two membership coefficients for each of the patients.

Patient Cluster 1 Cluster 2 Patient Cluster 1 Cluster 2

001 0.89789 0.10210 063 0.28798 0.71201
002 0.97210 0.02789 064 0.27254 0.72745
003 0.95434 0.04565 065 0.72238 0.27761
004 0.90067 0.09932 066 0.06864 0.93135
005 0.98077 0.01922 068 0.27908 0.72091
006 0.98041 0.01958 069 0.99069 0.00930
007 0.73638 0.26361 070 0.94026 0.05973
008 0.05531 0.94468 074 0.97878 0.02121
009 0.83720 0.16279 075 0.92017 0.07982
010 0.03100 0.96899 076 0.95796 0.04203
011 0.94942 0.05057 077 0.98310 0.01689
012 0.66878 0.33121 078 0.63952 0.36047
013 0.54106 0.45893 079 0.87566 0.12433
014 0.09275 0.90724 080 0.89758 0.10241
015 0.88204 0.11795 081 0.97353 0.02646
016 0.96350 0.03649 082 0.03815 0.96184
017 0.94671 0.05328 087 0.79947 0.20052
018 0.46290 0.53709 089 0.97547 0.02452
019 0.10710 0.89289 090 0.98781 0.01218
020 0.21147 0.78852 091 0.88940 0.11059
021 0.93419 0.06580 092 0.50292 0.49707
024 0.96301 0.03698 093 0.95184 0.04815
028 0.39543 0.60456 096 0.93462 0.06537
029 0.92234 0.07765 097 0.01003 0.98996
030 0.93072 0.06927 098 0.12414 0.87585
032 0.93897 0.06102 099 0.21114 0.78885
033 0.12501 0.87498 100 0.92044 0.07955
035 0.04287 0.95712 101 0.17739 0.82260
036 0.14191 0.85808 104 0.79656 0.20343
037 0.93919 0.06080 105 0.96778 0.03221
041 0.94619 0.05380 106 0.98667 0.01332
042 0.04400 0.95599 107 0.95408 0.04591
044 0.89802 0.10197 109 0.93806 0.06193
045 0.94295 0.05704 110 0.34845 0.65154
046 0.02514 0.97485 111 0.94266 0.05733
048 0.87648 0.12351 112 0.82025 0.17974
049 0.11305 0.88694 113 0.99284 0.00715
050 0.34574 0.65425 114 0.06378 0.93621
051 0.92179 0.07820 115 0.95156 0.04843
052 0.01344 0.98655 116 0.11247 0.88752
053 0.88286 0.11713 117 0.94726 0.05273
054 0.97644 0.02355 118 0.97669 0.02330
055 0.99254 0.00745 119 0.95935 0.04064
056 0.52016 0.47983 120 0.94673 0.05326
058 0.93060 0.06939 122 0.09088 0.90911
059 0.17163 0.82836 123 0.04991 0.95008
060 0.93917 0.06082 124 0.03576 0.96423
061 0.93249 0.06750 125 0.94084 0.05915
062 0.93763 0.06236
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Figure 7.16: Average silhouette widths for partitions of 2-47 clusters for the selected fuzzy clustering
method (SqEuclidean metric and fuzzifier value 2). The optimal number of clusters
is indicated in red.

7.6.3.4 Discrimination of the Clinical Characteristics

The capability of the selected clustering method to discriminate the patients with re-
spect to their clinical characteristics can be assessed in many ways. A silhouette plot
can confirm the findings for the membership coefficients and the response to AEDs in-
formation of the patients. The silhouette plot for the selected fuzzy clustering method
can be seen in Figure 7.17. The silhouette values confirm the findings concerning the
membership coefficients for patients 13, 18, 56 and 92. More specifically, patient 18
has negative silhouette width and has been wrongly classified to cluster 2 instead of
1. Patients 28, 50 and 110 have very small silhouette width values around 0.1, so they
have been classified poorly in cluster 2. In addition, patients 13, 56 and 92, which have
balanced membership coefficients, as discussed previously, have been weakly classified
to cluster 1 with very small silhouette width values (around 0.2). Therefore, the sil-
houette plot indicates clearly, that the silhouette widths (depicted as bars in the plot)
for all these patients are consistent with their membership coefficients. The silhouette
plot shows that the first and second cluster contain 66 and 31 patients respectively.
Compared to the results from the best HCA method, this fuzzy clustering method fits
the epilepsy data better, as the overall average silhouette width of 0.74 for the fuzzy
method is clearly higher than that of the HCA method (0.59). The average silhouette
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Figure 7.17: Silhouette plot for the 2-cluster partition derived by the SqEuclidean - fuzzifier 2
fuzzy clustering method. The blue and the pink bars correspond to responders and
non-responders respectively. The average silhouette width for clusters 1 and 2 is 0.81
and 0.60 respectively, and the average silhouette width for the entire data set is 0.74.

width for the two clusters of the fuzzy partition are also higher than those of the HCA
partition, being 0.81 and 0.60 for clusters 1 and 2 of the fuzzy partition respectively,
while for the HCA partition they are 0.68 and 0.43 for cluster 1 and 2 respectively.
In addition, the plot confirms the results of Table 7.18, indicating clearly that there is
no discrimination of the patients, with low misclassification rate, with respect to their
Response to AEDs.

Table 7.18 gives the results of cross-tabulating the response to AEDs information with
the clusters of the fuzzy method. The results of the table show that the misclassification
rate of Response in the fuzzy clustering method is not smaller than that of the optimal
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Table 7.18: Cross-tabulation of the optimal 2-cluster fuzzy partition to Response to AEDs.

Response to AEDs

Clusters Responder Non-responder

1 36 30
2 16 15

HCA method, as there are 16 + 30 = 46 misclassified patients when using the fuzzy
method. This result is consistent with the HCA findings. Graphical tools can also
confirm that the fuzzy clustering method cannot discriminate with low misclassification
rates between responders and non-responders to AEDs.

To investigate the homogeneity of the 2-cluster partition in Table 7.18 with respect
to the observations in each cell for the two categories of Response to AEDs, the X 2

test will be used. The p-value of the test, 0.9587, is larger than the significance level of
0.05, therefore there is not enough evidence to reject the null hypothesis of the test that
the clusters in the partition are homogeneous with respect to the Response to AEDs.
The proportions of observations in each of the categories of Response to AEDs are not
different in the selected partition.

To illustrate the clustering solution derived by the SqEuclidean - Fuzzifier value 2
fuzzy clustering method, a two-dimensional projection of the clustering solution can be
seen in Figure 7.18. The first two principal component scores (according to the results
from Chapter 5) can be seen superimposed with the partition derived by the selected
fuzzy clustering method. In both scores plots, black and red represent the patients
clustered to the first and second cluster respectively. The bottom scores plot illustrates
the Response to AEDs information, such that points labelled as "R" and "N" correspond
to responders or non-responders to AEDs respectively. It is clear from Figure 7.18 that
the derived clusters are not compact. Also, there is no distinction among responders
and non-responders to AEDs by this clustering. This algorithm has not been efficient
in classifying patients according to their response to AEDs.

Table 7.19 contains the contingency tables between the selected 2-cluster fuzzy par-
tition and the clinical characteristics Gender and Age.

Table 7.19: Cross-tabulation of the optimal 2-cluster fuzzy partition to Gender and Age clinical
characteristics.

Gender Age

Cluster Male Female (16-26] (26-47] (47-99]

1 43 23 28 20 18
2 22 9 3 12 16

The cross-tabulation of Gender shows that, as expected due to their large number
in the data set, males dominate both clusters in the partition. This is even more

7.6. PARTITIONING METHODS



CHAPTER 7. Cluster Analysis 161

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

PC1

P
C

2

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

024

028

029

030

032

033

035

036

037

041

042

044

045

046

048

049 050

051

052

053

054055

056

058

059

060

061

062

063

064

065

066
068

069

070

074

075

076

077

078

079

080

081

082

087

089

090

091
092

093

096

097
098

099

100

101

104

105
106

107

109

110

111

112

113

114

115

116
117

118

119

120

122

123

124

125

(a) 2-cluster partition

R

N

R

N

R

R
R

R

R

N

R

R

N

R

N

N

R

N

R

R

R

N

N

R

N

N

N

N

N

N

N

N

R

R

N

R

R R

N

R

R

NN

N

R

R

N

R

N

N

R

N

N
N

N

N

R

R

R

R

R

R

R

N

R

N

R

R

R
N

R

N

R
N

R

R

R

N

N
R

R

R

R

N

N

R

N

R

N
N

N

N

R

N

R

R

R

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

PC1

P
C

2

(b) Response to AEDs

Figure 7.18: Scores plots of the first two PCs, superimposed with the 2-cluster partition derived by
the SqEuclidean - Fuzzifier 2 fuzzy clustering method. Black and red represent the
patients in the first and second cluster respectively. The labels of the points in the
bottom plot correspond to the responders (R) and non-responders (N) to AEDs.
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pronounced due to the fact that the first cluster contains approximately twice as many
patients as the second. Concerning the Age of the patients, as in the optimal HCA
method, the first cluster, although rather balanced in all Age categories, contains more
young patients than the other two categories. However, the second cluster is clearly
dominated by middle-aged and old patients, having only 3 young patients among the
29 patients of cluster 2. There seems to be a pattern with respect to Age.

The p-value of the X 2 test for homogeneity of the 2 clusters with respect to the
Gender is 0.7364. There is not sufficient evidence to reject the null hypothesis that
the 2 clusters are homogeneous with regards to Gender, therefore the proportions of
patients in the two Gender categories are not different in the selected partition.

Concerning the contingency table of Age, results are similar to those of the 2-cluster
HCA partition. That is, the first cluster in the fuzzy partition contains more patients
of younger ages (most being young) in a ratio of approximately 3:2 (young compared
to each of the other two categories), whereas the second cluster contains only 3 young
patients with the patients of the other two categories dominating the cluster.

The p-value of the KW test for the select fuzzy clustering partition is 0.001741,
which is much smaller than the significance level of 0.05, therefore the null hypothesis
is rejected and the populations represented by the two clusters in the partition have
different median values. There is clearly a relationship between the clusters and the
Age of the patients.

The selected fuzzy clustering method is depicted as a two-dimensional projection of
the data superimposed with the Age information in Figure 7.19. The first two principal
component scores (according to the results from Chapter 5) can be seen superimposed
with the partition derived by the selected fuzzy clustering method and the points of
the plot labelled as young (Y), middle-aged (M) and old (O) patients. Black and red
points represent the patients clustered to the first and second cluster respectively. The
relationship of the clusters with the Age is clear, as the second cluster contains only 3
young patients, whereas the majority of patients in the first cluster are young. Thus,
the selected fuzzy clustering method works in this case, as it was also shown by the
results of the KW test.

The contingency tables for Seizure Type and BMI can be seen in Table 7.20. The

Table 7.20: Cross-tabulation of the optimal 2-cluster fuzzy partition to the Seizure Type and BMI
clinical characteristics.

Seizure Type BMI

Cluster LRE IGE (16-22] (22-25] (25-28] (28-45.1]

1 47 19 20 21 14 11
2 28 3 5 6 8 12

results of Table 7.20 for the Seizure Type show a similarity to those of the best HCA
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Figure 7.19: Scores plots of the first two PCs, superimposed with the 2-cluster fanny partition,
derived by the SqEuclidean - Fuzzifier 2 clustering method and the Age information.
The labels of the points in the plots correspond to the young (Y), middle-aged (M)
and old (O) patients. Black and red points correspond to the first and second cluster
respectively.

method. That is, both clusters are dominated by LRE patients with ratios 5:2 and 6:1
in cluster 1 and 2 respectively. That is expected as the number of LRE patients in the
data set is considerably larger than that of the IGE patients.

The p-value of the X 2 test for the homogeneity of the 2 clusters with respect to the
Seizure Type is 0.06637, which is larger than the significance level of 0.05. Hence, there is
not sufficient evidence to reject the null hypothesis that the 2 clusters are homogeneous
with regards to Seizure Type, therefore the proportions of patients with respect to the
two Seizure Type categories are not significantly different in the two clusters of the
selected partition.

Concerning BMI, it is clear that there is a discrimination of the patients, as the first
cluster contains mainly patients with small and medium BMI values (with a ratio of
approximately 2:1 to the patients with large or huge BMI values), whereas the second
cluster is dominated by patients with large and huge BMI values with similar ratio to
the patients having small or medium BMI values.

The p-value of the KW test for the select fuzzy clustering partition is 0.01079, which is
much smaller than the significance level of 0.05, therefore the null hypothesis is rejected
and the populations represented by the two clusters in the partition, have different
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median values. There is clearly a relationship between the clusters and the BMI values
of the patients. Thus, the selected fuzzy clustering method manages to discriminate the
patients with respect to BMI.

A two-dimensional projection of the data, superimposed with the fuzzy clustering
result and the BMI information can be seen in Figure 7.20. The scores plot for BMI
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Figure 7.20: Scores plots of the first two PCs, superimposed with the 2-cluster fanny partition,
derived by the SqEuclidean - Fuzzifier 2 clustering method and the BMI information.
The labels of the points in the plots correspond to patients with small (S), medium
(M), large (L) and huge (H) BMI values. Black and red correspond to the first and
second cluster respectively.

shows that indeed there are many more patients with low and medium BMI values than
large and huge values in the first cluster (black symbols), whereas in the second cluster
(red symbols) the majority of patients have large or huge BMI values.

Comparing the optimal 2-cluster partitions derived by HCA and fuzzy clustering, it
can be seen that concerning the patients in the two clusters of the partitions, the only
difference is that in cluster 1 of the fuzzy clustering partition there are three patients,
namely 13, 78 and 92, who have been assigned to cluster 2 in the HCA clustering parti-
tion. The dominating characteristics that were observed in each of the two groups of the
fuzzy clustering method are quite similar to those of the HCA method, as the difference
of only three patients does not change significantly the dominating characteristics of the
patients in the two clusters. Therefore, similarly to the HCA clustering method results,
the dominating characteristics of the patients in the two clusters are summarised as:
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1. Males in the (16-26] Age category with LRE Seizure Type, responders to AEDs
and BMI values small to medium.

2. Males in the (26-47] and (47-99] Age categories with LRE Seizure Type, balanced
Response to AEDs and BMI values large to huge.

7.6.4 Hard Clustering Algorithms

7.6.4.1 Introduction

In this case, each input vector xi belongs exclusively to one and only cluster. A hard
m-clustering of a data set of a matrix X (containing all the input vectors xi) can then
be defined as a set of functions

mc : X → A, c = 1, . . . , Nc

where A = {0, 1}. A common form of a cost function for a hard clustering algorithm is
given by

Ns∑
i=1

Nc∑
j=1

mijd(xi, ϑj) (7.6.3)

subject to the constraints

mij ∈ {0, 1}, i = 1, . . . Ns, j = 1, . . . Nc

Nc∑
j=1

mij = 1,

where M is as in the case of fuzzy clustering. Equation 7.6.3 is minimized when each
input vector xi is assigned to its closest cluster

mij =


1, if d(xi, ϑj) = min

1,...,Nc
d(xi, ϑc)

0, otherwise

as only one mij is equal to 1 and all other membership coefficients are equal to 0 for
each input vector xi (Theodoridis and Koutroumbas, 2003).

The most popular hard clustering algorithm, k -means, is described in detail in Section
7.6.4.2. This algorithm is applied to the epilepsy data and the results can be seen in
Section 7.6.5.
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7.6.4.2 The k-means Clustering Algorithm

This algorithm is one of the most popular hard clustering algorithms. In this case,
point representatives are used (centroids, ϑ) and the squared Euclidean distance used
to measure the distance between the input vectors xi and the centroids ϑj . As in this
case ϑj is the mean vector of cluster j, the derived clusters are as compact as possible.
The algorithm is described below (Izenman, 2008; Theodoridis and Koutroumbas, 2003):

1. Given a set of objects xi, i = 1, 2, . . . , n and Nc the number of clusters, initialize
the algorithm by one of the following:

• Randomly assign the objects into Nc clusters and for each cluster c compute
its current centroid, x̄c.

• Pre-specify Nc cluster centroids, x̄c, c = 1, 2, . . . , Nc.

2. Compute the optimum criterion (here the squared Euclidean distance) of each
object to its current centroid

ESS =

Nc∑
c=1

∑
ci=c

(xi − x̄c)T (xi − x̄c)

where x̄c is the cth cluster centroid and ci is the cluster containing xi.

3. Re-assign each object to its nearest cluster centroid, such that ESS is reduced in
magnitude. Update the cluster centroids after each reassignment.

4. Repeat steps 3 and 4 until no further reassignment of items takes place.

Advantages of using k -means clustering are:

• If the number of variables is large, as in the case of metabonomics data, this
clustering method can be computationally faster than HCA.

• Due to the fact that the algorithm seeks to minimise the within-clusters sum of
squares and maximise the between-clusters sum of squares, this method is likely
to produce tighter clusters than HCA.

Despite k -means being faster and capable of handling greater numbers of observations
than hierarchical clustering, there are a number of disadvantages when using it (Myatt,
2007):

• The number of clusters must be defined before creating the clusters

• Outliers can affect the quality of an optimal clustering

• No hierarchical organization is generated using k -means clustering.

• This technique is more suitable for identifying compact spherical clusters, so it
is not the ideal method for clustering data if the shapes of the clusters are not
expected to be multivariate normal.

• Different initial partitions can result in different final clusters.
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The k -means algorithm is very popular in many scientific areas, but has not been
used widely in metabolic profiling applications. As there are no specific visualisation
or diagnostic tools associated with k -means, it is usually used in combination with
other clustering and visualisation methods. One such case is the statistical analysis of
NMR spectra from partially purified marine and plant extracts, using three different
unsupervised methods, PCA, k -means and MDS (Pierens et al., 2005).

The algorithm given by Hartigan and Wong (1979) will be applied to the epilepsy
data. This is an efficient version of the k -means algorithm described in detail in Hartigan
(1975). Algorithm AS 136 as it is called, is the preferred and default version of k -
means implemented in R, since the majority of authors of k -means R functions consider
that in general it does a better job than other k -means algorithms such as those de-
veloped by MacQueen (MacQueen, 1967) and Lloyd (Lloyd, 1982). Hartigan’s AS 136

algorithm contains two main stages, the optimal-transfer (OPTRA) and the quick-
transfer (QTRAN) stage, to search for a k -cluster partition with locally optimal (min-
imum) within-cluster sum of squares, by moving objects from one cluster to another.
To improve the chance of finding the global minimum, after assigning the objects at
random to the various clusters and finding a local optimal solution, the whole proced-
ure is repeated for a pre-specified number of times (usually 100) starting in every run
from a different random configuration. The global optimal solution is the one with the
minimum within-cluster sum of squares among all runs (Legendre and Legendre, 1998).

The main steps of algorithm AS 136 are given below (Hartigan and Wong, 1979).

INPUT: A matrix X of xi, i = 1, . . . , Ns objects in a p-dimensional space and an
initial centroid configuration. This can be either the number of required clusters,
say Nc, or a set of initial centroids for the required number of clusters. In the
former case, a random set of distinct rows in X is chosen as the initial centroids,
say C̄j , j = 1, . . . , Nc. The number of points in a cluster, say c, is denoted by
NSc, and the Euclidean distance between object xi and cluster centroid C̄j by
d(xi, C̄j).

Step 1. For each object xi, i = 1, . . . , Ns, find its closest and second closest centroids,
C̄1i and C̄2i respectively. Assign object xi to cluster C1.

Step 2. Update the centroids to be the averages of the points that they contain.

Step 3. Initially, all clusters are members of the live set.

Step 4 - OPTRA. For each object xi in turn, if cluster C is updated in the last
QTRAN stage, then it belongs to the live set throughout this stage. Otherwise,
at each step, it is not in the live set if it has not been updated in the last Ns

optimal-transfer steps. Let object xi be in cluster Cj . If Cj is in the live stage,
go to Step 4a, otherwise go to Step 4b.
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Step 4a. Compute the minimum of the quantity

R2 =
NScd(xi, C)2

NSc + 1

for all clusters C (C 6= Cj , j = 1, . . . , Nc). Let Cl be the cluster with the
smallest R2. If this vaue is greater than or equal to

NSCjd(xi, Cj)
2

NSCj − 1
,

no reassignment is necessary and Cl is the new C̄2i. Otherwise object xi is
assigned to cluster Cl and Cj is the new C̄2i. Centroids are updated to be
means of objects assigned to them if reassignment has taken place. The two
clusters that are involved in the transfer of object xi at this particular step
are now in the live set.

Step 4b. The same as Step 4a, with the only exception being that the minimum
R2 is computed only for clusters in the live set.

Step 5. Stop if the live set is empty. Otherwise go to step 6 after one pass through
the data set.

Step 6 - QTRAN. For each object xi in turn, let Cj = C̄1i and Cl = C̄2i. Compute
the values

R1 =
NSCjd(xi, Cj)

2

NSCj − 1

and
R2 =

NSCld(xi, Cl)
2

NSCl + 1
.

If R1 is less than R2, object xi remains in cluster Cj . Otherwise, switch C̄1i and
C̄2i and update the centres of clusters Cj and Cl.

Step 7. If no transfer took place in the last Ns steps, go to Step 4, otherwise go to
Step 6.

7.6.4.3 Clustering Criteria

There are a large number of stopping rules that can be used in k -means clustering, to
determine the optimal number of clusters. These can be divided into three categories
(Dimitriadou et al., 2002).

• Those based on the within-clusters sum of squares (SSW) and the between-
clusters sum of squares (SSB). Such criteria are, among others, the Calinski-
Harabasz and Hartigan measures.
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• Criteria based on the statistics of the scatter matrix of the data, and the sum
of the scatter matrices in every cluster. Criteria in this category, include among
others, the Scott and Friedman measures.

• Criteria that do not belong to the two previously mentioned categories. Such
criteria are the Simple Structure Index (SSI) and the Negative Log-Likelihood.

In this project, four criteria, will be used, the Calinski-Harabasz, the Ratkowsky-Lance,
Hartigan’s criterion and Trace W, to ensure a representation of a range of criteria for
better determination of the optimal number of clusters. The optimum number of clusters
will be determined by examining the following aspects of the values of the criteria, in a
plot of criterion value vs the number of clusters (see Figure 7.21):

• The maximum or minimum value of the criterion (maxk ik or mink ik, respectively,
with k being the number of clusters and ik the criterion value for k clusters).

• The maximum difference from the cluster at the right side of the plot, maxk(ik−
ik+1), where the curve has its maximum decrease.

• The maximum difference from the cluster at the left side of the plot, maxk(ik+1−
ik), where the curve has its maximum increase.

• The maximum or minimum value of the second differences, maxk((ik+1 − ik) −
(ik − ik−1)), where the curve has an elbow.

The four chosen criteria are described in detail below:

Calinski-Harabasz

This index is computed as
SSB/(Nc − 1)

SSW/(Ns −Nc)

where Ns and Nc are the total number of objects and number of clusters, respectively
(Milligan and Cooper, 1985). The optimal number of clusters is that for which this
index obtains its maximum value.

Ratkowsky-Lance

This is given by √√√√ varSSB

varSST
Nc

where varSSB and varSST are the between-clusters and total sum of squares respect-
ively, for each dimension in the data, and Nc is the number of clusters (Milligan and
Cooper, 1985). The optimal number of clusters is given by considering the two points
that give the maximum value of the difference of a point from the point at its right side
in the plot and choosing the number which gives the highest value of Ratkowsky-Lance’s
index.
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Hartigan

This index was proposed by Hartigan (1975) as

log

(
SSB

SSW

)
based on the sum of squares. The optimal number of clusters is given by considering
the two points that give the maximum value of the difference of a point from the point
at its left side in the plot and choosing the number which gives the lowest value of
Hartigan’s index.

Trace W

This is one of the most popular criteria in clustering analyses (Milligan and Cooper,
1985). W is the within clusters covariance matrix. The optimal number of clusters is
given by considering the three points that give the maximum value of the second order
differences of sequential values of the criterion in the plot and choosing the number
which gives the highest value of Trace W. The lower the value of this criterion, the
more homogeneous (compact) the clusters are (Dimitriadou et al., 2002).

7.6.5 Application of the k-means Algorithm to the Data

7.6.5.1 Introduction

The data that will be analysed by k -means clustering methods is the same that was
used in the HCA and fuzzy clustering analyses. The data set includes the 97 patients
with specific response to AEDs information (only responders or non-responders), with
intensity values in the proton NMR chemical shift range of 5.98− 0.02 ppm. The data
has also been row-scaled to a constant total before analysis.

7.6.5.2 Determination of the Optimal Number of Clusters

The algorithm described in Section 7.6.4.2 will be used to provide a k -means clustering
method. To improve the chances of the algorithm converging to the global solution,
in all analyses 1000 random sets of distinct rows of the data matrix were chosen as
the initial centroids of the clusters. To determine the optimal number of clusters, four
different criteria will be used in the derived k -means partitions of 2-10 clusters. These
criteria are the Ratkowsky-Lance, the Calinski-Harabasz, Hartigan and Trace W. Figure
7.21 shows the results for the four criteria. In red is shown the point which corresponds
to the optimum number of clusters. All four criteria point to an optimum solution of 2
clusters.

To confirm the results of the criteria, the silhouette values for the k -means partitions
of 2-96 clusters will be computed. Figure 7.22 gives the overall average silhouette widths
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Figure 7.21: Values of four clustering criteria for k-means partitions of 2-10 clusters. The red point
represents the optimum number of clusters. The red segments indicate the maximum
difference between two clusters (Ratkowsky-Lance and Hartigan) and the maximum
second differences (Trace W).

for all partitions of 2-96 clusters. In red is depicted the optimal number of clusters. As
can be seen, the silhouette coefficient is 0.54, as this is the highest average silhouette
width and is derived from the 2-cluster method. From the silhouette information and the
criteria values, it can be concluded that the optimum number of clusters is 2. Although
the 2-cluster k -means partition has proved to be the most appropriate to fit the epilepsy
data, it remains to be seen whether this clustering method can also discriminate the
patients with respect to their clinical characteristics.
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Figure 7.22: Average silhouette widths for partitions of 2-96 clusters for the selected k-means
clustering method. The optimal number of clusters is indicated in red.

7.6.5.3 Discrimination of the Clinical Characteristics

A silhouette plot for the 2-cluster partition can be seen in Figure 7.23. The colour in the
bars corresponds to the response to AEDs categories, with blue and pink representing
responders and non-responders, respectively.

The average silhouette width values for clusters 1 and 2 are 0.58 and 0.45, respectively,
and the average silhouette width for the entire data set is 0.54. Although these values are
lower than those obtained from fuzzy and HCA clustering, in the k -means clustering
solution there are no misclassified patients. Patients 13, 44 and 70 have very low
silhouette values in cluster 1, whereas patients 18 and 23 have similarly low values in
cluster 2. Patients 13 and 18 in particular have been identified in all three clustering
methods as weakly classified or misclassified in the two clusters, therefore it looks as if
these patients are either outliers or possibly belong to a third cluster.

The silhouette plot also shows that the first and second clusters contain 66 and 31
patients respectively, exactly as in the fuzzy clustering case. However, the k -means
clustering method being discussed does not fit the epilepsy data as well, as the fuzzy
clustering method (having an overall average silhouette width of 0.74). It is however,
approximately as good as the HCA method is in fitting the data, as the HCA method’s
overall average silhouette width of 0.59 is quite close to that of the k -means clustering
method (0.54). Comparing the k -means with the HCA clustering method, the patients
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Figure 7.23: Silhouette plot for the 2-cluster partition derived by the k-means clustering method.
The blue and the pink bars correspond to responders and non-responders respectively.
The average silhouette width for clusters 1 and 2 is 0.58 and 0.45 respectively, and
the average silhouette width for the entire data set is 0.54.

in the k -means partition are slightly better fitted as cluster 2’s silhouette widths are
0.45 and 0.43 for k -means and HCA respectively. In addition, the plot confirms that
there is no discrimination of the patients with low misclassification rate, with respect
to their Response to AEDs.

The cross-tabulation of Response to AEDs information with the clusters of the se-
lected k -means clustering method can be seen in Table 7.21. There are 16 + 30 = 46

misclassified patients in the k -means method, which is slightly worse than for HCA
and as good as the fuzzy clustering method, having 45 and 46 misclassified patients,
respectively. Considering the results in Tables 7.18 and 7.21, it seems that the optimal
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Table 7.21: Cross-tabulation of the optimal 2-cluster k-means partition to Response to AEDs.

Response to AEDs

Clusters Responder Non-responder

1 36 30
2 16 15

partitioning fuzzy and k -means clustering methods are quite similar in capability with
respect to the allocation of patients to the two clusters in their partitions. However,
the Response results in both methods show that they cannot discriminate the patients
with respect to their Response to AEDs with low misclassification rates. The derived
optimal 2-cluster k -means partition is the same as was obtained by the optimal fuzzy
clustering partition, therefore the results of any extra analysis is the same as in the
fuzzy clustering case.

The clinical characteristics’ cross-tabulation with the two clusters of the optimal k -
means method, being the same as for fuzzy clustering, can be seen in Tables 7.19 for
Gender and Age, and 7.20 for Seizure type and BMI. Results of the two statistical tests
of the relationship of the clinical characteristics to the two clusters of the partition,
similarly to fuzzy clustering, shows that there is no relationship for Response to AEDs,
Gender and Seizure type, whereas there is a relationship for Age and BMI.

Figure 7.18, for fuzzy clustering, illustrates also the clustering solution derived by
the 2-cluster k -means method. That is, a two-dimensional projection of the clustering
solution is drawn, such that the first two principal component scores (according to
the results from Chapter 5) can be seen superimposed with the partition derived by
the selected k -means clustering method. In both scores plots, black and red represent
the patients clustered to the first and second cluster respectively. The bottom scores
plot illustrates the Response to AEDs information, such that points labelled as "R"
and "N" correspond to responders or non-responders to AEDs respectively. Similarly,
Figures 7.19 and 7.20 illustrate the component scores superimposed with the Age and
BMI information, respectively. Similarly to fuzzy clustering, both of the clusters are
not compact. Also, there is no distinction among responders and non-responders to
AEDs by this clustering. Therefore, as in the fuzzy clustering and HCA methods, this
algorithm has not been efficient in classifying patients according to their Response to
AEDs.

The 2-cluster k -means partition is exactly the same as the 2-cluster fuzzy partition
with regards to the patients contained in the two clusters of the partitions. The only
thing which differs is the silhouette width of the patients in the two methods.
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7.7 Competitive Learning Algorithms

7.7.1 Introduction

The general idea behind these algorithms is simple. Given a set of representatives
wi, i = 1, . . . ,m, when an input vector x is presented to the algorithm, all m repres-
entatives compete with each other and the winner is the representative which is closer
(with respect to some distance measure) to x. The winner is updated to move it closer
to x, while the representatives that lost either remain unchanged or are updated to
be closer to x but at a much slower rate (Theodoridis and Koutroumbas, 2003). An
important competitive learning algorithm is Kohonen’s self organizing maps which will
be described in the following section.

7.7.2 Self Organizing Maps

7.7.2.1 Introduction

Kohonen’s Self Organizing Map (SOM) is a statistical approach for cluster analysis
and data visualization. It is based on the Artificial Neural Networks (ANN) learning
technique (Izenman, 2008) as this was used to create simplified models of the way
the human brain and its neural paths work (Taner, 1997). SOMs were introduced by
Kohonen in the 1970s, and the initial algorithms have since been improved in many
ways such as those described in Dittenbach et al. (2002); Wang et al. (2002); Jin et al.
(2004); Wang et al. (2005); Salas et al. (2007), to accommodate various types of input
data and areas of application. Areas of application include, among others, the selection
of representative species in multivariate ecological data (Park et al., 2006), the analysis
of metabolic profiles of patients with various diseases such as coronary heart disease
(Suna et al., 2007) and type I diabetes (Makinen et al., 2008), and even the analysis
and solution of water resources problems (Kalteh et al., 2008).

The SOM approach uses unsupervised learning to produce a mapping of a high-
dimensional input space onto a two or three-dimensional output space, while it pre-
serves the topological relationships between the input data elements as closely as pos-
sible (Dittenbach et al., 2002; Brereton, 2009). The SOM algorithm attempts to find
clusters such that any two clusters that are close to each other in the output space have
representatives close to each other in the input space. In the area of chemometrics and
metabonomics, it can be used to provide information about the relationship between
samples, to visualize characteristic variables, specific samples or groups of samples (Suna
et al., 2007; Makinen et al., 2008).

The visualization of an input space in SOM consists of a grid of a large number of
interconnected nodes. A SOM plot in two dimensions contains nodes usually arranged
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as a square, rectangular or hexagonal grid (Figure 7.24). The size of an SOM grid is

Figure 7.24: Visualization of SOM data projection - 2D rectangular grid.

selected before the analysis by the researcher. That is, initially the number of required
nodes in the grid is not usually known, therefore the total number of nodes is usually
selected to be much larger than the suspected number of clusters in the data. After trial
and error, the SOM grid can be adjusted, reducing the total number of nodes in the grid
to a more representative size. Each node in the grid is associated with a representative
(or prototype or codebook vector) in the input space, say wc. This is a weight vector,
such that the number of weights for each node (map unit) corresponds to the number
of variables measured in the original data space. Therefore, this layer of weights for
each variable can be considered as the third dimension of the SOM grid. Initially the
components of all wc vectors are set to be random numbers, using a random number
generator which takes values within the range of the observed data. There are two
main versions of the classic SOM algorithm, the on-line and the batch SOM (Izenman,
2008; Silva and Marques, 2007). In the former case, the input vectors are presented to
the algorithm sequentially (one at a time and usually in random order), whereas in the
latter case all input vectors are presented together at a time.

7.7.2.2 Classic On-line SOM Algorithm

The algorithm to follow in order to run an on-line SOM analysis can be summarized by
the following steps:

Identification of Best Matching Unit

• An initial representative is chosen. Some of the choices that can be made include
random samples from the data, random vectors from a N(0,1) distribution and
the linear grids from the directions of the first two principal components of the
PCA of the data. Usually a sample vector, xk, is selected randomly (with or
without replacement) from the data.
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• Next step is the computation of the dissimilarity distance d(xk,wij) between the
selected random sample xk and each of the map units’ weights wij . The most
common distance metric used for that purpose is the Euclidean distance measure

d(xk,wij) =
∣∣∣∣xk − wij∣∣∣∣2 =

√√√√ n∑
j=1

(
xkj − wij

)2
where xkj is the value of variable j for sample xk, n the total number of samples
and wij is the weight of the jth variable for map unit i. The map unit with the
smallest d(xk,wij) for vector xk is then located and called as the Best Matching
Unit (BMU), UBMU of sample xk for the current iteration. That is,

d(xk,wBMU ) = min
k

{
d(xk,wij)

}
where

BMU = arg min
k

{
d(xk,wij)

}
.

Identification and Weights’ Updating of Map Units

• To identify which map units are closer to the BMU, it is necessary to introduce
the concept of neighbourhood and neighbouring units. A map unit Ů ∈ M (M
is the set of units in the map) is defined as a neighbour of the BMU unit UBMU

if the Euclidean distance of their codebook vectors wŮ and wBMU is smaller
than a predefined threshold η called the neighbourhood width. That is, the
neighbourhood setNBMU of BMU contains those units which satisfy the following:

NBMU =
{
u : d(wBMU ,wu) < η

}
.

• Only the weight vectors of those units which belong to the neighbourhood set of
BMU will be updated, using a distance-weighted formula such as the following

wu = wu + αηf
(
xk − wu

)
where α is a learning rate function and ηf is a neighbourhood function. The
learning rate function indicates how much the selected map unit will be updated
in each iteration, to approximate a sample as much as possible. There are many
such functions (Izenman, 2008) and the most popular can be seen below:

Exponential : αi = α0e
−
iln(η0)

I

Linear : αi = α0

(
1− i

I

)
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Power : αi = α0

(
0.005

α0

) i
I

Inverse : αi =
α0(

1 +
100i

I

)
where i is the current iteration of the algorithm, α0 the initial learning rate, η0 the
initial neighbourhood width and I the total number of iterations. All the above
mentioned functions ensure that the learning rate will monotonically decrease
until the end of the training. A neighbourhood function is used to update the
neighbourhood width in every iteration. Usually η has a large value initially, but
as training continues it decreases monotonically until at the end of the training
only the BMU and its adjacent units (adjacent neighbours) are updated. A
number of neighbourhood functions that can be used in a SOM analysis are given
below:

Exponential : ηi = η0e
−
iln(η0)

I

Gaussian : ηi = e
−
|wu − wBMU |2

2r2
η

Square (or bubble) : ηi =

1, if
∣∣wu − wBMU

∣∣ ≤ rη
0, if

∣∣wu − wBMU

∣∣ > rη

where rη is the neighbourhood radius. The algorithm is executed until the total
number of iterations I is reached. A recommended value for I is 500 times the
number of units in the map, for η0 half width of the map and for α0 0.1 (Brereton,
2009). It is also useful sometimes to perform the training using two stages of the
algorithm. At stage 1, the initial learning rate is large, e.g. 0.1, whereas at stage
2 fine-tuning is performed using a much smaller value, e.g. 0.01, for the initial
learning rate, as the map has already been trained at the first stage. Sometimes
the k -means algorithm is used as the fine tuning stage (Brereton, 2009).

7.7.2.3 Classic Batch SOM Algorithm

In batch SOM, updates of the weight vectors occur only at the end of each learning
epoch (the presentation of the whole training data to the algorithm). The new weights,
wu′ can be computed using the following equation:

wu′ =

∑
(ηf ′xk)∑
ηf ′
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and winner unit (BMU) can then be found using equations

d(xk,wu′ )
=
∣∣∣∣xk − wu′ ∣∣∣∣2

and
d(xk,wBMU ) = min

k

{
d(xk,wu′ )

}
.

This procedure is repeated from the beginning until the selected convergence criterion
is met. There is no change in the neighbourhood function from that in the on-line
algorithm, but the learning rate function is not used in batch SOM, thus reducing sig-
nificantly the risk of poor convergence. Due to the way that the batch algorithm is
executed, it is much faster than the on-line version. It is also clear from the algorithm
that the batch SOM requires the whole set of input vectors during the training proced-
ure. In addition, as the weight vectors are updated after an epoch, the order in which
the input vectors are presented is of no importance and the last input vectors do not
influence the final results.

7.7.2.4 Goodness of Mapping

Self-organizing maps aim to preserve the topological information of the input space
(Villmann et al., 1997). Due to the fact that SOM is a vector quantization algorithm
(Vesanto, 1999), the projection of a multi-dimensional input space to two or three
dimensional output spaces, as is usually the case in biological data spaces, can affect
the goodness of the mapping. Although the probability distribution of the input space
is usually depicted adequately in SOM algorithms (Kiviluoto, 1996), there are other
aspects of the mapping that need to be considered in order to establish that the mapping
is of good quality and that it preserves the input space topology (Brereton, 2009).
Criteria to evaluate the goodness of a SOM mapping include the mapping continuity
(Neme and Miramontes, 2005; Kiviluoto, 1996) and resolution (Polani, 1999; Brereton,
2009). As Kiviluoto (1996) states, when a mapping is continuous any samples that are
close in the input space are mapped close to each other in the output space as well,
while a mapping of good resolution means that no samples that are distant in input
space are mapped close in the output space. There are many goodness of fit measures
in SOM (Pölzlbauer, 2004; Bauer et al., 1999). The following are the most commonly
used in chemometrics and metabonomics studies:

Mean Quantization Error (MQE)

This is a quality measure which can be applied to any form of vector quantization and
clustering algorithm (Pölzlbauer, 2004). In general, it represents the average distance
of the sample vectors to the cluster centroids they belong to. In SOM, it is the average
distance of each sample to the representative of its Best Matching Unit after the last of
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the iterations of the SOM training algorithm has been completed. This can be calculated
as

MQE =
1

n

n∑
k=1

d(xk,wBMU ).

MQE cannot be used to compare SOMs of different grid sizes, since the measure de-
creases monotonically as the map size increases. In addition, MQE depends on the
initialization procedure and on the training data, and gives the best results when the
number of map units is at least as large as the number of training samples (Brereton,
2009).

Topographic Error (TE)

Topological preservation can be measured by using this measure. More specifically,
it measures the continuity of the SOM mapping. If for a sample x the closest and
second closest representatives represent adjacent map units, the map is locally continu-
ous, otherwise there is a local topographic error (Pölzlbauer, 2004). Summing up and
normalizing the number of local topographic errors for all samples gives the topographic
error for the whole mapping (Kiviluoto, 1996). The topographic error is given (Neme
and Miramontes, 2005; Villmann et al., 1997) by the formula:

TE =
1

n

n∑
k=1

θ(xk,wu),

where u = 1, ..., U and

θ(xk,wu) =



1, if ∀ i ∃ j, k : i ∈

{1, . . . , j − 1, j + 1, . . . , k − 1, k + 1, . . . u}

||uj − xi|| ≤ ||uk − xi|| < ||ul − xi||, |j − k| > 1

0, otherwise

with ui being the representative vector of unit i, and U the last unit in the map.
Although the topographic error indicates the proportion of local neighbourhoods that
are mapped correctly, it cannot describe the type of local discontinuities that may
appear in the map (Kiviluoto, 1996). A large number of discontinuities in the map
means that the topology of the input space has not been preserved and the mapping is
not accurate. Similarly to MQE, the TE depends on the input data and the training
parameters, giving better results when the map is overfitted.

7.7.2.5 Means of Visualization

There are many ways to illustrate the results of a SOM analysis. The most useful are
the following:
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Unified Distance Matrix (U-matrix)

A U-matrix is a visualization tool which allows the identification of any clustering in the
map by using a representation such as colour-coding of the Euclidean distance between
the neighbouring representatives in the input space. Small values indicate that the
nodes in the map are quite close in similarity not only in output space but also in input
space, whereas larger values indicate that the representatives are not neighbours in the
input space (Brereton, 2009). An example of a U-matrix for the epilepsy data using a
grid of size 12 × 8 can be seen in Figure 7.25. In this example, for instance, the three

Figure 7.25: Example of a Unified Distance matrix.

yellow units contain samples which are far away from each other in the input space,
as their values are very large (> 0.025), in comparison to the dark red units at the
top-right and bottom -right of the map, which have very small values (< 0.005).

Hit Histogram

This type of plot is used in order to visualise the Best-matching Unit for each sample and
at the end of the training. Each unit has a value showing the number of times that the
map unit was the Best-matching Unit of any sample at the end of the training (Brereton,
2009). The visualization can be done in two or three-dimensional histograms. A two-
dimensional histogram illustrates the number of BMU hits by the size of the shaded map
units (or by colour-coding the hits), whereas in a three-dimensional histogram the height
of each hexagon bar is proportional to the number of hits. Ideally, in a case of several
classes present in a dataset, only one or a small number of map units should correspond
to the BMU of all samples from the same class and therefore correspond to a high
number of hits. Map units with high numbers of hits usually suggest a concentration
of samples around these units and these units are mainly on the periphery of a SOM
map. In addition, map regions with a large number of hits correspond to map regions of
similarity shown in the U-matrix plot. An example of a 2D colour-coded hit histogram
for a grid of size 12× 4 for the epilepsy data, can be seen in Figure 7.26. For instance,
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Figure 7.26: Example of a hit histogram.

the bottom-right unit in the hit histogram has a value of 5, meaning that this specific
unit was the best-matching unit of any sample five times when the training finished.
The grey units do not contain any samples. The six yellow units (having four or five
hits each) in the example map, could suggest the existence of six clusters lying around
these units.

Component Planes

The above mentioned visualization tools cannot illustrate the importance of the vari-
ables in the input space. In a similar way to PCA, it might be useful to explore the
contribution of variables to the map. More specifically, component planes can illustrate
how each input variable influences the map and the relationship among the variables
and the samples in the data (Brereton, 2009; Makinen et al., 2008). A single component
plane is constructed for each variable by converting the weights for a specific variable
into colour-coding according to the importance for describing a given region to the map
(such as in case of the U-matrix). In this way, the relationship between samples and
variables is visualized by colouring each map unit, k, proportionally to the weight wkj
of unit k for the chosen variable j. The main interest in using component planes is to
identify whether a variable can describe a class and not if it can discriminate between
two classes. In the case of only two classes existing in the data, those variables that best
describe a class are also good discriminators, but if more than two classes are indicated
in the data, this fact is not necessarily true any more. For example, in Figure 7.27 the
component planes of two human blood serum metabolites, isoleucine at 1.98 ppm and
threonine at 4.26 ppm, can be seen in an SOM map of dimensions 12×4 for the epilepsy
patients. The planes show the magnitude of each map unit’s weight for isoleucine and

(a) Threonine (b) Isoleucine

Figure 7.27: Examples of component planes.

threonine. In map regions with darker shading, the variables have larger values and
these regions correspond to regions with high similarity (in the context of the U-matrix
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visualization). That is, a variable is associated more with those patients for whose,
the map regions belonging to, are darker. So, in the given examples, in both metabol-
ites, for instance, the dark-red coloured units, which have very small values (< 0.053 for
threonine and < 0.013 for isoleucine), contain samples which are very closely associated
with these two metabolites, whereas in the case of the white-coloured units in threonine,
with values > 0.0062, the patients contained in these units are related in any way to
this specific metabolite.

7.7.2.6 Application to the Epilepsy Data

Introduction

As the SOM maps that are produced are completely dependent on the input data
used for the analyses and the various learning parameters, there are no standard rules
established which produce a good quality map, i.e. a highly accurate and well-ordered
map in every case. For example, in the case of epilepsy data, it is logical that it is
probably more important to obtain a highly accurate map (as good representation as
possible of the input space to the output space) than to preserve the topological order
of the input space), whereas in a data-mining application the order would logically be
more important than the accuracy as it commonly involves documents. Therefore, in
the epilepsy case, the mean quantization error is probably more important than the
topographic error. With these considerations in mind, the following SOM analyses and
the selected parameters of the methods, were chosen to investigate whether the SOM
algorithms can be used to identify any common patterns among patients with response
or no response to AEDs, and not to find the best possible mapping of the data.

Initialization

Before the analyses, the samples were normalised to eliminate the possibility of any
influence on the SOM results by any of the metabolites due to a metabolite’s large
variance or absolute value. The shape of the SOM grid was chosen to be hexagonal
to avoid a preference of the SOM algorithm towards horizontal or vertical directions
(Park et al., 2006). In addition, the size of the map must not be such that it has more
units than samples in the data set, to ensure better response from the map quality
criteria. The classic online SOM algorithm was used. The map size was determined
using Vesanto’s (Vesanto et al., 2000) heuristic formula which states that the total
number of map units, NU , is given by

NU = 5
√
ns

where ns is the number of samples in the input space. The lengths of the grid sides can
be calculated by setting the ratio of the lengths of the sides similar to that of the two
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largest eigenvalues of the training data such that the product of the lengths is as close
as possible to NU . In our case, NU is approximately 49 (5

√
97), whereas the ratio of

the two largest eigenvalues of the covariance matrix is approximately 13
1 , thus the grid

dimension can be 24 × 2 to approximate as closely as possible the map size without
violating the ratio rule (Vesanto et al., 2000; Park et al., 2006).

The training parameters are the following: The learning rate initially has a value
of 0.05 and decreases monotonically until it reaches the value 0.01 at the end of the
number of epochs. The initial radius of the neighbourhood function is approximately 2

3

of the estimated map width, to allow for a large part of the map to be updated initially.
A sufficient initial radius value is usually to cover 2

3 of all unit-to-unit distances. Thus,
the initial radius for the 24 × 2 grid is 16, whereas for the 3 × 2 grid it is 2. The final
value of the radius is 0 at the end of the algorithm. The initial representatives were
chosen randomly without replacement from the data set.

Training

A series of runs was performed using the recommended values for the training paramet-
ers (Brereton, 2009; Tan and George, 2004). Thus, the total number of iterations was
chosen in each case to be 500 times the map size. Two map sizes were used. Specifically
the 24 × 2 and the 3 × 2 maps were chosen for further investigation. The neighbour-
hood width function converges to 0 after 24000 and 3000 iterations respectively for the
estimated maps (Figure 7.28 shows the convergence for the 24 × 2 grid). The quality
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Figure 7.28: Convergence of the neighbourhood width function for the selected map (24× 2 grid).

of the mapping can be examined by using specific plots to illustrate how closely to the
codebook vectors in each unit the samples in the unit have been mapped. The mean
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distance of samples mapped in each unit to the codebook vector of that unit can be
illustrated using colour-coding such that the smaller the distances (darker colouring),
the better the samples in the unit are represented by this unit’s codebook vector. In
Figure 7.29 the codebook vectors are illustrated beside the quality map for the samples.
It can be seen that in general, the quality of the mapping is quite good, as in most of

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

(a) Codebook vectors
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(b) Quality map

Figure 7.29: Illustration of the quality of mapping with regards to the samples. The grey unit in
the quality map means that there is no sample mapped to this unit.

the map units the samples are quite close to the respective codebook vectors. However,
clearly, three of the units have not been mapped accurately, with the worst approxim-
ation being in the top left-most unit. The two bottom right map units (in light blue
colour) have also been mapped badly.

In addition, the Unified Distance matrix can be used to illustrate the average distance
of each map unit to all immediate neighbour units. As is logical, units near a cluster
boundary are expected to have higher average distances to their neighbour units (Figure
7.30). The black lines indicate a six-cluster solution using hierarchical clustering to allow
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Figure 7.30: Unified Distance matrix for the 24× 2 grid.

comparison of the SOM clustering to the HCA solution. The units on the right side of
the U-matrix are closer to each other than those on the left side of the matrix, however
there is no indication from this matrix that there is a small number of clusters in the
data according to the 24× 2 SOM analysis.

A two-dimensional colour-coded hit histogram for the SOM solution can be seen in
Figure 7.31. The units with three or four hits indicate the existence of clusters in the
areas surrounding these units, and the concentration of samples around these units is
expected to be far larger than elsewhere in the map. Four such units are (2,1), (2,10),
(1,13) and (1,23) where the first number corresponds to the row and the second to the
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●
1
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3
4

Figure 7.31: Hit histogram for the 24× 2 SOM solution.

column in which the unit is located in the map (with (1,1) being the bottom left-most
unit and (2,24) the top right-most unit in the map). The results of the hit histogram
for these four units correspond to those regions in the U-matrix with high similarity
e.g. the single unit (2,1) at the top-left of the map and the 7 units at the right part
of the U-matrix plot (as they are separated by the black lines of the six-cluster HCA
partition), indicate the existence of clusters in these areas.

The mapping of the samples assigned to each of the six groups provided by the 3× 2

map, as well as the colour-coded samples map (using the corresponding label colours
of the groups obtained by the 3 × 2 map) for the 24 × 2 grid can be seen in Figure
7.32. The cluster sizes of the above maps are 25, 21, 5, 18, 15 and 13 for groups 1-6
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Figure 7.32: Illustration of clustering the epilepsy data to six groups using SOM.

respectively. In the 3×2 grid, group 1 corresponds to the bottom-left unit, while group
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6 corresponds to the top-right unit counting from left to right and then from the bottom
to the top row of the map. In the 24 × 2 grid, the corresponding groups to the 3 × 2

grid are 3, 6, 2, 1, 5, 4 from left to the right of the map. In the 24× 2 map, a number
of units contain samples from more than one group of patients as were identified in
the 3 × 2 grid. Comparing the clustering results of the 24 × 2 map to those of the
hierarchical clustering in the U-matrix plot (Figure 7.30), it is clear that only cluster 4,
at the right-most side of the map, is identical in both solutions, with the other clusters
having slight differences (e.g. cluster 2, the third cluster from the left in the map) or
large differences (e.g. clusters 1 and 5 at the middle - right part of the map have been
merged to one cluster in the hierarchical clustering solution).

The mean spectra of the six groups can be seen in Figure 7.33. The main differences
in the intensity levels of the variables in the six groups can be isolated in the ppm
areas of ≈ 5.5 − 5.1, ≈ 3.5 − 3.1, 2.1 − 2 and 1.6 − 1 with the more important area
being the last one, as the variables lying in this area have the largest intensity values.
This is most significant around 1.3 ppm, where the mean intensity values for groups 3
and 6 are approximately 0.08 and 0.06 respectively, whereas group 4’s mean value is
approximately 0.03 (being the smallest of all six groups of patients).

To investigate whether there are any common patterns in the data with regards to
the clinical characteristics of the patients, mappings of the samples with the clinical
characteristics colour-coded have been plotted (Figure 7.34). The labels used in the
Gender plot are F andM for Female and Male respectively. In the case of Seizure type,
I means IGE, whereas L means the LRE type of seizure. Concerning the Response to
AEDs, R stands for Responder (improvement to the patient’s seizures) and N stands for
Non-responder (no improvement to the patient’s seizures). Age has three labels, namely
Y , M and O for the three Age categories (Young, Middle and Old respectively). The
BMI categories mentioned in Chapter 2, Section 2.4.3, represented by Small, Medium,
Large and Huge, have the labels S, M , L and H in the BMI plot. An initial assessment
of the clinical characteristics in Figure 7.34 shows that groups 3, 4 and 6 are dominated
by males, and group 5 by females. In all groups, LRE is the dominating type due to
the fact that there are many more LRE than IGE patients, whereas with respect to
Response to AEDs, the groups are more balanced with only group 5 being dominated
by responders to AEDs. Groups 3 and 6 are dominated by middle-aged and old age
patients, whereas in group 4 the majority of patients are young. Large or huge BMI
is observed in group 3, but not in groups 4 and 5 where the majority of patients have
small or medium BMI.

To examine how the variables influence the map and what is the relationship between
each variable and the samples in the data, component planes have been created for a
selected number of variables. The maps for the ten variables with the largest mean
values can be seen in Figure 7.35. Most of these variables are also in the ten variables
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Figure 7.33: Mean spectra for the six groups of patients.
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(a) Gender

(b) Seizure Type

(c) Response to AEDs

(d) Age

(e) BMI

Figure 7.34: Illustration of the mapping of the samples according to the patients’ clinical charac-
teristics. The bold lines divide the map units to the six clusters in the SOM partition
of Figure 7.32.

with the largest variance. These variables are at the spectral areas with chemical shifts
1.3, 1.26, 1.34, 0.9, 1.22, 0.86, 3.22, 2.02, 5.3 and 1.58 ppm in order of magnitude of
means from larger to smaller. The darker a unit in a component plane for a variable
is, the closer the relation of this variable to the unit is. Upon investigation of the
component planes, the following can be deduced:

• The most common variables are at 0.90, 1.30, 1.34 and 3.22 ppm, i.e. these
metabolites appear to be very closely related to almost all units in the map.
Especially in the case of 3.22, only samples 55 and 81 (belonging to cluster 1,
eighth unit from the right at the top row) are not associated with this metabolite.

• The least common variables are 2.02 and 5.30. Very few units appear to be
associated with these metabolites, with 5.30 being the least associated to the
map, of the two.

• The consistent samples with regards to high intensity values in all component
planes are samples 116 and 122 in cluster 3 and samples 1 and 15 in cluster 4.
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Figure 7.35: Component planes for selected variables in the blood serum of the epilepsy patients,
labelled by the chemical shift
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• Samples 46 and 124 in cluster 6, and samples 3 and 58 in cluster 5, are the samples
least associated with the variables.

• The four variables with the largest mean values, lying at spectral areas 1.30, 1.34,
1.58 and 0.90 ppm in order of appearance, are clearly more closely related to
clusters 3 and 4 than any of the other clusters.

• None of the component planes is capable of describing the six clusters.

The clinical characteristics information for the six groups are given in Tables 7.22
and 7.23 below. Upon examining these summary tables, it is clear that certain groups

Table 7.22: Number of patients in each of the six clusters returned by SOM and the clinical char-
acteristics Gender, Seizure type and Response to AEDs.

Gender Seizure type Response to AEDs

Group Male Female LRE IGE Responder Non-responder

1 19 6 20 5 15 10
2 13 8 16 5 10 11
3 4 1 5 0 2 3
4 15 3 11 7 7 11
5 4 11 11 4 11 4
6 10 3 12 1 7 6

Totals 65 32 75 22 52 45

appear to be dominated by specific characteristics. In particular, concerning the Gender
of the patients, groups 1, 3, 4 and 6 are male-dominated, whereas group 5 is dominated
by females and group 2 is balanced. Considering Seizure type, only group 4 is balanced
whereas the rest of the groups are dominated by the LRE type, due to their larger
numbers in the data. Group 5 is dominated by patients who showed improvement to
AEDs treatment while all other groups are rather balanced, although group 4 contains
approximately 50% more non-responders than responders. Concerning Age, group 4

Table 7.23: Number of patients in each of the six clusters returned by SOM and the clinical char-
acteristics Age and Body-Mass-Index (BMI ).

Age BMI

Group (16-26] (26-47] (47-99] (16-22] (22-25] (25-28] (28-45.1]

1 7 11 7 3 9 7 6
2 6 5 10 4 3 7 7
3 0 4 1 0 0 2 3
4 11 5 2 11 5 1 1
5 7 1 7 5 7 2 1
6 0 6 7 2 3 3 5

Totals 31 32 34 25 27 22 23

is also the only group which is dominated by young people (16-26 years old), whereas
group 3 is dominated by middle-aged patients (26-47 years old) and group 6 contains
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only middle-aged and old people (47-99 years old). Group 5 contains young and old
patients, while groups 1 and 2 are rather balanced towards the three age categories.
The information for BMI shows that group 4 contains mainly people with low BMI
values (16-22], whereas groups 1, 3 contain people with higher BMI values (22-45.1].
Group 5 is oriented towards small to medium BMI values. Groups 1, 2 and 6 are rather
balanced with respect to the BMI values.

The dominating characteristics observed in each of the six groups as derived from the
SOM analyses are given below:

1. Males of all Age categories with LRE seizure type and improvement to AEDs
treatment and BMI values medium to huge.

2. Males and females of all ages (although half of them are of age above 47 years)
with LRE seizure type with balanced Response to AEDs and large to very large
BMI values (25-45.1].

3. Middle-aged males with LRE seizure type with balanced Response to AEDs (al-
though there are slightly more non-responders than responders) and large to very
large BMI values (25-45.1].

4. Young or middle-aged males of both seizure types, non-responders to AEDs treat-
ment and small to middle BMI values (16-25].

5. Young or old females with LRE seizure type, responders to AEDs treatment and
small to middle BMI values (15-25].

6. Middle-aged and old males with LRE seizure type, balanced Response to AEDs
treatment and rather balanced BMI values (although above 22 and mainly large
to very large BMI values).

A two-dimensional projection of the epilepsy data superimposed with the clustering
solution derived by the 6-cluster SOM partition (top left plot) and the five clinical
characteristics can be seen in Figure 7.36. More specifically, the first two principal
component scores (according to the results from Chapter 5) can be seen superimposed
with the partition derived by the selected SOM clustering model. The remaining five
scores plots illustrate the clinical characteristics information, with points labelled as
"R" and "N" for responders and non-responders to AEDs respectively, "F" and "M" for
females and males respectively, "I" and "L" for IGE and LRE seizure type respectively,
"Y", "M" and "O" for the the categories of Age, and finally, "S", "M", "L" and "H"
for the four BMI categories, in each of their respective plots. Figure 7.36 confirms the
findings for the five clinical characteristics of the patients, with the Age and BMI score
plots especially showing the discrimination of the patients into the respective categories
of the characteristics. On the other hand, there is clearly no discrimination of the
patients with regards to their Seizure type and Response to AEDs.

To examine whether there are any relationships among the six groups of patients and
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Figure 7.36: Scores plots of the first two PCs, superimposed with the 6-cluster partition derived
by the SOM clustering model and the information of the five clinical characteristics.
The six colours correspond to the six clusters in the SOM partition of Figure 7.32,
with black, red, green, blue, cyan, magenta corresponding to clusters 1-6 respectively.
The labels of the points in the bottom plot correspond to the labels assigned in each
of the categories of the five clinical characteristics.
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their clinical characteristics, Chi-Square and KW tests will be applied. More specific-
ally, the homogeneity of the derived 6-cluster partition with respect to the observations
in each cell for the two categories of the characteristics Response to AEDs, Gender and
Seizure type will be assessed using the X 2 test. The remaining two clinical character-
istics, Age and BMI, will be assessed using the KW non-parametric test. In this case,
the null hypothesis is that the medians of the populations represented by the derived
six clusters are all equal with respect to Age and BMI. The results of these tests can be
seen in Table 7.24.

Table 7.24: X 2 test for the homogeneity of the derived 6-clusters with respect to the proportion of
observations in each of the categories of the clinical characteristics Response to AEDs,
Gender and Seizure type, and Kruskal-Wallis test for the 6-clusters with respect to Age
and BMI. The statistically significant p-values at the 95% confidence level are shown
in bold.

P-Value

Characteristic X 2 Kruskal-Wallis

Gender 0.00902
Seizure Type 0.2983
Response to AEDs 0.4158
Age 0.03552
BMI 0.00011

Concerning Seizure Type and Response to AEDs, the p-values of the X 2 tests, being
larger than the significance level of 0.05, show that there is not enough evidence to reject
the null hypothesis that the six clusters in the selected SOM partition are homogeneous
with respect to these two characteristics. That is, the proportions of observations in
each of the categories of Seizure type and Response to AEDs are not different in the
6-cluster SOM partition.

Considering the X 2 result for Gender, the p-value of 0.00902 is clearly smaller than
0.05. Therefore, in this case, the null hypothesis is rejected, as the clusters in the 6-
cluster SOM partition are not homogeneous with respect to the gender of the patients,
meaning that the proportions of observations for the categories of Gender are different
in at least one of the clusters.

The KW tests for Age and BMI return p-values of 0.03552 and 0.00011, respectively.
Both values are below the significance level of 0.05, therefore there is enough evidence
to reject the null hypothesis that the clusters in the 6-cluster SOM partition represent
populations with equal median values. In other words, there is at least one cluster for
which the median value of the population it represents is different than that of the
represented populations of the rest of the clusters in the partition with respect to Age
and BMI. There is clearly a relationship between these two clinical characteristics and
the six clusters of the SOM partition. Table 7.23 is consistent with the findings of the
KW tests. Concerning Age there are distinct clusters without young patients (clusters
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3 and 6), or practically without middle-aged patients (cluster 5), as well as a cluster
with young patients dominating (cluster 4). A similar situation is observed for BMI,
as there are clusters dominated by patients in each of the four BMI categories, such
as cluster 6 (patients with (28-45.1] BMI values), cluster 4 (patients with (16-22] BMI
values) and clusters 1 and 5 (patients with (22-25] BMI values).

Thus, the SOM clustering model has been capable of discriminating the patients with
respect to Gender, Age and BMI, but has not been successful in identifying any patterns
for the patients’ Seizure type and Response to AEDs.

7.8 Conclusions

This chapter involved the application of a number of clustering algorithms to the epi-
lepsy data. After extensive investigation of the literature, the algorithms deemed to
be the most appropriate for metabonomics data included Hierarchical clustering, Op-
timal partitioning with fuzzy and hard clustering methods and Competitive learning
algorithms. The main aim was to assess the possible existence of any natural groupings
in the data, and consequently identify any patterns with regards to the patients’ clin-
ical characteristics, and in particular any discrimination of the patients with respect to
their Response to AEDs. Three non-parametric tests were applied to the results of the
analyses, to assess whether there was any relationship between clinical characteristics
and the partitions derived by the constructed clustering models, partitions. More spe-
cifically, the X 2 and in some cases Fisher’s exact tests were used with Gender, Seizure
type and Response to AEDs, whereas the Kruskall-Wallis rank sum test was used with
Age and BMI.

Hierarchical methods (HCA) involved the clustering of the data with a range of ag-
glomerative nesting algorithms, the single linkage, the complete linkage, the unweighted
and weighted pair-group methods using arithmetic averages, as well as the unweighted
and weighted pair-group methods using cluster centroids and Ward’s method. These
algorithms cover most types of clusters from non-compact elongated (single linkage)
to compact spherical (Ward’s method and within-clusters sum-of-squares minimization
method). Four different distance metrics were used in the construction of the agglom-
erative clustering models, namely the Euclidean, Manhattan, Maximum and Canberra
distances. Therefore, to improve the chances of HCA identifying any natural groupings,
28 clustering models were constructed and their clustering results were compared. After
extensive experimentation with the use of a range of statistics to assess the quality of
fitting of the data by the clustering models (such as the Silhouette width, the agglom-
erative coefficient and the cophenetic correlation), the overall best fitting result found
was to be that of the 2-cluster partition derived by the Maximum - Ward model. The
Silhouette coefficient of 0.59 was the highest among all models and the cluster sizes of 63
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and 34 were far more balanced compared to those of the second best model Maximum
- Average (cluster sizes of 94 and 3).

The statistical tests, applied to the 2-6 cluster Maximum - Ward partitions showed
that concerning Response to AEDs and Seizure type, there is no relationship with these
partitions. On the other hand, the clustering models with 5- and 6-cluster partitions,
were capable of discriminating the patients with respect to Gender. In addition, test
results on the Age and BMI of the patients clearly indicated that there is a relationship
between these two characteristics and the selected 2-6 cluster partitions. Therefore,
hierarchical clustering models were capable of discriminating the patients with respect
to their Gender, Age and BMI, but not with regards to their epilepsy characteristics,
Seizure type and Response to AEDs.

Optimal partitioning methods, based usually on the minimisation of a cost function,
were applied as a next step to HCA. More specifically, two algorithms of partitioning
methods were applied to the data, a fuzzy clustering and a hard clustering algorithm.

The fanny fuzzy clustering algorithm described in Section 7.6.2.2 was used and 20
different fuzzy clustering models were constructed with respect to four distance metrics,
Euclidean, Manhattan, Maximum and SqEuclidean, and 5 fuzzifier values selected after
extensive experimentation in the range 1.1−3.0. Silhouette coefficients for all 20 models
and for 2-6 cluster partitions confirmed that the best fuzzy clustering model was the
2-cluster fuzzy partition derived by the model with the SqEuclidean metric and fuzzifier
value 2, with Silhouette coefficient 0.74 and clusters of size 66 and 31. Concentrating
on this partition, which proved to have the largest Silhouette coefficient of all clustering
models assessed in this work, it was confirmed by the statistical tests that as in HCA,
there is a relationship only between the Age and BMI of the patients. In other words,
the fuzzy clustering model was not capable of discriminating the patients with respect
to their two epilepsy characteristics and Gender.

In the case of hard partitioning, the k -means method was the obvious choice, as it is
the most popular in metabonomics data analyses. The k -means algorithm described in
Section 7.6.5.1 was used on the epilepsy data and the optimum number of clusters was
determined with the aid of a range of stopping rules, such as the Ratkowsky-Lance and
the Trace W indexes, as well as the Silhouette coefficient. As expected from the HCA
and fuzzy clustering, the 2-cluster partition derived by the k -means clustering model
was the best hard partition. Coincidentally, it was the same partition with that derived
from the best fuzzy clustering model, despite the differences in the fitting and the
silhouette width values of the two models. Therefore, the selected two-cluster optimal
partitioning models have the same discriminating ability with respect to the five clinical
characteristics of the patients.

Finally, a category of clustering algorithms which have not been used widely in
metabonomics is that of the competitive learning algorithms. The classic online Self-
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organizing maps algorithm was chosen, as it has some innovative advantages compared
to the other clustering methods. Apart from allowing the visualisation of the data in
a map-like graph, it provides a range of visualisation tools for assessing the quality of
the derived map, such as unified distance matrix plots, the hit histograms, quality maps
and component planes. Two maps were chosen for comparison and analysis purposes,
the main one being of size 24× 2 and a smaller one of size 3× 2.

The available visualisation tools showed that the quality of the mapping of the data
to the 24× 2 map was quite good, with the samples in all map units except three being
quite close to their respective codebook vectors. The sizes of the six clusters for both
maps were 25, 21, 5, 18, 15 and 13 for clusters 1-6, respectively. The six-cluster solution
indicated that ppm areas of 5.5 - 5.1, 3.5 - 3.1, 2.1 - 2 and 1.6 - 1 are responsible for the
main differences in the intensity levels of the variables in the six clusters, with the ppm
area of 1.6 - 1 being the most important, as the variables in this area have the largest
intensity values. Component planes showed that the variables at 0.90, 1.30, 1.34 and
3.22 ppm are very closely related to almost all map units, whereas the least common
variables were at 2.02 and 5.30 ppm. Patients 116 and 122 in cluster 3 and samples 1 and
15 in cluster 4 were the most closely associated patients with the previously mentioned
variables, while patients 46 and 124 in cluster 6 and patients 3 and 58 in cluster 5 were
the least associated patients with the variables. In addition, four variables at 1.30, 1.34,
1.58 and 0.90, which were observed to have the highest mean values, were found to be
clearly more closely related to clusters 3 and 4 than any other of the six clusters.

Considering the patients’ clinical characteristics, clusters 1, 3, 4 and 6 were dominated
by males, whereas only cluster 5 was dominated by females. Patients with LRE Seizure
Type dominated all but one clusters, while responders dominated clusters 1 and 5 and
non-responders only cluster 4. Finally, clusters 4 and 5 contained mainly patients with
small to middle BMI values, whereas clusters 2, 3 and 6 contained patients with large
to huge BMI values.

Statistical tests for the 6-cluster SOM partition and the five characteristics showed
that the SOM algorithm was capable of distinguishing the patients with respect to their
Gender, Age and BMI, but not their epilepsy characteristics.

Comparing the four clustering methods, it is clear that, despite the fact that none of
the methods were able to discriminate the patients in terms of all clinical characterist-
ics, two of these methods, i.e. HCA and SOM, were able to discriminate the patients
also with respect to Gender, therefore HCA and SOM can be considered as the best
overall methods for gathering information about patterns in such data regarding the
clinical characteristics. An important advantage of HCA is that its results are repres-
ented in a hierarchical structure, which allows the comparison of partitions of different
number of clusters, without the need to re-run the algorithm and obtain a new parti-
tion. Considering the type of clusters that have been observed in the data, which are
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rather non-compact and elongated, it seems that algorithms such as Ward’s method in
HCA and k -means are not so suitable, since their aim is to seek compact and spherical
clusters. Fuzzy clustering could have been useful if more than 2 categories of Response
to AEDs existed in the data, as some of these categories are not clearly defined and
patients in such Response to AEDs categories could actually lie somewhere between
the two groups of responders and non-responders to AEDs. SOM has the advantage
that the data can be represented in a map-like visualisation form, but such a map must
contain more than 2 nodes (units) to represent the data faithfully, therefore SOM is
more suitable for cases where the data contains at least 4-6 clusters. If this requirement
is satisfied by the data, then SOM is the best approach with respect to the available
visualisation tools for the examination not only of the patterns in the data and the qual-
ity of the analyses, but also for the investigation of any relationship between variables
and map units (and consequently the patients). Overall, and considering these facts,
HCA seems to be the most appropriate method for the analyses of metabonomics data
of patients with epilepsy.

In general, all the clustering models derived by these various clustering algorithms,
proved not to be capable of discriminating the patients with regards to their Response to
AEDs. Further research is needed, to assess the conditions under which the unsupervised
statistical techniques described in Part II of this work, could discriminate the response
information with low misclassification rates. This is the aim and subject of Part III of
this thesis, where, in a wide range of simulations, data sets will be generated from the
epilepsy data to assess whether aspects such as the sample size of the data play any
role in improving the discriminating ability of the unsupervised techniques.
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Summary

Part II of the thesis covered a range of linear and non-linear pattern recognition tech-
niques attempting to identify any natural clustering patterns in the epilepsy data. More
specifically, initially, in Chapter 5, a linear dimension-reduction technique, i.e. PCA,
was applied in the data, to reduce the dimensionality of the input space of the data to
two or three dimensions, making the pattern recognition procedure easier by visualising
the data in a 2 or 3 dimensional representation. Results indicated that two PCs (or
dimensions) are sufficient to describe 95% of the total variation of the data. Addition
of the clinical characteristics information of the patients to the two-dimensional scores
plots for the first two PCs confirmed that patterns were identified for the Gender, the
Seizure Type, Age and BMI, but more importantly not for the Response to AEDs. It
was also shown beyond any doubt by the use of GLM, that the patients cannot be
separated with respect to their Response to AEDs. Loadings plots indicated the rela-
tionship between some of the variables in the data and the four clinical characteristics,
as can be seen in detail in Section 5.4. In general, PCA was proved to be useful in
identifying patterns for all clinical characteristics apart from the Response to AEDs,
and for obtaining a good picture of the general structure of the data.

As PCA is used exclusively with the Euclidean distance, a non-linear dimension-
reduction technique, i.e. the multidimensional scaling (MDS), was chosen for application
to the epilepsy data, in the hope of deriving more information about any patterns of the
patients with respect to their clinical characteristics, especially Response to AEDs, for
which no useful information was obtained by PCA. MDS algorithms have the advantage
that unlike PCA, they can be used for dimension-reduction and pattern recognition
purposes with any dissimilarity (or similarity) measure. Two such methods were applied
to the data, i.e. the classical MDS and a special case of metric MDS, i.e. Sammon’s
non-linear mapping. Four distance metrics were used for comparison purposes, with the
Euclidean and the Maximum distance models giving the best results with respect to
two criteria. Results of the analyses showed that both MDS methods were consistent
with PCA in identifying the patterns observed in the four previously mentioned clinical
characteristics, as well as in failing to identify any clustering patterns of the patients with
regards to their Response to AEDs. Concerning the two distance metrics, in the case
of classical MDS, the Euclidean model was slightly better in illustrating the clustering
behaviour of the patients with respect to their four clinical characteristics, while in the
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NLM the maximum had a slight edge to the Euclidean model, especially for the Gender,
Age and BMI characteristics. In general, MDS was not capable of providing any further
information about the clustering behaviour of the patients than PCA.

The next step in the exploratory analysis involved the application of a range of unsu-
pervised clustering techniques to the epilepsy data, to classify if possible, the patients to
groups concerning their spectral and clinical characteristics, and particularly exploring
the possibility of finding any clustering behaviour of the patients with respect to their
Response to AEDs. These clustering techniques included hierarchical agglomerative al-
gorithms, optimal partitioning methods such as fuzzy and k -means clustering, as well
as competitive learning algorithms with emphasis on the use of self-organising maps.

Concerning HCA, among many methods tested, the Maximum - Ward model for 2-
6 cluster partitions proved to be the best at clustering the data with respect to the
clinical characteristics. Specifically, using statistical tests it was shown that there was
no relationship between these partitions and the clinical characteristics Response to
AEDs and Seizure Type. A relationship was found between the 5-6 cluster partitions
and Gender, as well as between all five clustering partitions and the characteristics Age
and BMI. Overall, HCA was capable of discriminating the patients with respect to all
their clinical characteristics, except for their Response to AEDs.

In the optimal partitioning methods, two types of fuzzy and hard clustering algorithms
were applied to the data, more specifically the fanny and k -means methods respectively.
In fanny, the 2-cluster SqEuclidean fuzzy clustering model was found to be the best,
among a range of distance metrics and fuzzifier values. Results of the fuzzy analyses
showed that the selected fuzzy model was consistent with the results of HCA, concerning
Age and BMI of the patients, but was not capable of discriminating the patients with
respect to their two epilepsy characteristics or Gender.

Hard clustering analyses resulted in obtaining a k -means clustering model, with the
derived 2-cluster partition being the best. This partition proved to be the same as that
obtained from fuzzy clustering with respect to the patients in each of the two clusters,
differing only in the silhouette width of the patients in the two models. Therefore,
the k -means algorithm was as successful as the fanny model in clustering the patients
regarding their clinical characteristics.

A different clustering approach was then used, with the self-organising maps method
being the algorithm of choice for clustering the epilepsy data. As there was no point
in using a two-unit map in such an algorithm, a different approach was adopted by
comparing a 3 × 2 map to the maximum, recommended for the specific epilepsy data
set, i.e 24 × 2 SOM map. Both maps had good quality mapping of the data to their
respective dimensions, especially the smaller of the two maps, giving precise information
about the spectral areas of variables with high intensity values for the six clusters, and
the relationship of specific variables to the patients in the six clusters. Details of this
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information can be found in Section 7.8. Statistical tests confirmed that the 6-cluster
SOM partition was capable of distinguishing the patients regarding their Gender, Age
and BMI but incapable of doing the same for the two epilepsy characteristics.

Despite all previously mentioned exploratory methods being able to describe to some
extent the structure of the epilepsy data, none of them was able to show any clustering
structure of the data as far as the Response to AEDs information is concerned. The
reasons behind this failure will be investigated in Chapter 8, where the PCA information
will be used in an extensive number of simulations, to assess whether aspects such as the
sample size of the data and characteristics of the distributions of the variables, affect in
any way the discriminating ability of PCA.
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Simulation Experiments



Chapter 8

Data Simulation

8.1 Introduction

As has already been seen in chapters 5, 6 and 7, none of the unsupervised techniques
that were used to perform exploratory analysis on the epilepsy data were found to be
able to discriminate the patients with respect to their response to AEDs treatment. To
assess if the capability of these techniques to identify clusters of patients depends on the
available epilepsy data or not, and in what way, further investigation will be needed.
More specifically, two possible cases need to be assessed:

• There is no difference in the spectrum between the responders and non-responders
in the epilepsy data, hence none of the techniques finds a difference.

• There is a difference, but the techniques cannot find it because either the sample
size is too small or the difference is too small.

To identify which of the two cases is valid, two data sets will be generated based upon
the epilepsy data with known differences in the spectra and the circumstances under
which PCA can detect the groups will be examined.

In this chapter, a series of simulation studies based on the epilepsy data will be
described. These involve the generation of two new data sets in each of these experiments
- a reference and a test set - from the original data which includes the 97 responders
and non-responders to AEDs. The original data will be called the epilepsy data for
the simulation studies in this chapter. The simulation studies will involve the mean-
shifting of various subsets of the variables in the epilepsy data - the shifted means
and standard deviations of which will be used for the generation of the test set - with
the purpose of comparing this set to the reference set. The size of the subsets of
variables - the number of variables to be mean-shifted - has been set for five such
subsets, containing 244, 120, 20, 3 and 1 variables, called MS244, MS120, MS20, MS3
and MS1 respectively from now on. These were chosen to allow for covering a wide
range of variable sets between the full set of 244 variables up to a single variable where
one area in the spectrum is targeted. The 3, 20 and 120 variables’ subsets represent
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approximately 1 %, 10 % and 50 % of the variables in the data set. Various methods of
selecting which variables in these subsets to mean-shift are applied to allow comparisons
of various descriptive statistics and their effect in the simulation results. These include
the maximum or minimum standard deviations and the maximum mean values, called
MAXDEV, MINDEV and MAXMEAN respectively from now on. The variables’ means
measure the central tendency of their distributions and those variables with the higher
mean values are expected to play an important role in the discrimination of the two
sets, since the information contained in most of them is described by the first two
principal components at most, as it was shown in Subsection 5.3.4. The standard
deviation is the most reliable statistic to measure the variability in a variable (and
any potential differences among distributions of points) and by using MAXDEV and
MINDEV the importance (existence or not) of the variability in the variables of the
data set is assessed. It is also important to examine whether the variability of the
variables is related to the distances between distributions of points, therefore standard
deviation is the most suitable statistic for this purpose. The reference set will be
generated in the same way from the epilepsy data but without mean-shifting. Sample
sizes of 100, 500 and 1000 were chosen to represent a good range of small to large
samples (Osborne and Costello, 2004), with the case of 100 samples being quite close to
the sample size of the original epilepsy data. This range is also suggested by previous
research (Guadagnoli and Velicer, 1988). These sample sizes will be called S100, S500
and S1000 respectively in this chapter. A very high level of discrimination wil be used
(almost complete separation for a 1% misclassification rate) to increase the probability
of uncovering the structure of the data in all cases.

Linear discriminant analysis (LDA) will be applied, for the first two PCs only, to
the PCA scores plot of each experiment based upon the generated data, to obtain a
linear boundary between the two sets and to allow the estimation of offset values when
the PC analysis discriminates between the two sets with misclassification error rates of
20%, 15%, 10%, 5% and 1%. These threshold values were chosen after extensive exper-
imentation, so that they cover a wide range of error rates (Rubingh et al., 2006). An
introduction to supervised classification including a description of two-class classifiers,
the Bayes decision rule and of discriminant functions, as well as a description of linear
discriminant functions which will be used in the simulation experiments, is given in the
next section (8.2).

In Section 8.3, a detailed description of the steps followed to perform these simulation
studies is given, followed by the results of the simulations in each of the pre-selected
cases. From these, conclusions will be reached on the identification of thresholds for
the offsets, the number of samples in the two data sets and the number of mean-
shifted variables which will allow PCA to discriminate between the two artificial sets.
In general, if small changes in the test set, compared to the reference set, reveal the
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existence of structure in the results of an unsupervised technique, e.g. PCA, then we
would conclude that the epilepsy data analysed in Chapters 5-7 have no structure,
whereas ideally the results should show that only a larger sample is required.

8.2 Supervised Learning Techniques

8.2.1 Introduction

An important stage in a pattern recognition problem is the application of classifica-
tion techniques to investigate the structure of the data. These techniques are divided
into two categories, unsupervised (or clustering) techniques and supervised classific-
ation techniques. Clustering techniques were described and applied in the epilepsy
(unlabelled) data in Chapter 7, with the purpose of exploring the data structure for po-
tential groups and the features which distinguish these groups from each other. In this
chapter, supervised classification techniques will be described and applied to the simu-
lated data to discriminate between the two artificially generated data sets. In supervised
techniques, a learning set of multivariate observations is given, with each observation
labelled as belonging to one of C predefined classes of similar characteristics. If each of
the observations is assigned a unique class label, then the observations are described as
labelled observations. A classifier combines the input variables in such a set to define a
discrimination rule for classification purposes. There are two main purposes of applying
supervised techniques to data (Izenman, 2008):

Discrimination To construct a classifier using the information in a learning or training
set of labelled observations (i.e. each observation has been assigned to one of the
classes) such that it will separate the predefined classes as much as possible.

Classification To use the constructed classifier to predict the class of new unlabelled
observations.

8.2.2 Supervised Classification

In general, if x is a vector containing a set of measurements, classification involves the
assignment of this vector to one of C classes, ci, i = 1, . . . ,C . To achieve this, the
measurement space needs to be partitioned into C regions ri, i = 1, . . . ,C . This can
be done by using a decision rule. Thus, if a vector x is in the region ri, it belongs to
class ci. The boundaries between the regions ri are called the decision boundaries or
decision surfaces (Webb, 2002). Each such region is not necessarily convex, as it may
consist of many disjoint regions.
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8.2.3 Two Class Classifiers

Two class or binary classifiers are used when decisions have to be made to classify a
sample to one of two predefined groups. In the simulation experiments, the two groups
predefined by the simulation algorithm are the regions of feature space occupied by the
reference and the test data set. Therefore, a binary classifier (and one discriminant
function and decision boundary) will be used to investigate whether a sample in the
data space belongs to the reference or the test data set. Visually, this is accomplished
by drawing a border between the two data sets of samples, e.g. in a scores plot, with
the samples from each data set lying mainly on one of the sides of the border. Due to
the way the two data sets are generated, their variance structure is similar. That means
that it is possible to achieve linear separation of the two sets and there is no need for
highly complex boundaries. Therefore, a linear classifier could suffice to discriminate
between the two data sets.

There are many binary classifiers which can be used in metabonomics data. The
most popular include the Euclidean Distance to Centroids (EDC), Linear Discriminant
Analysis (LDA) and Partial Least Squares Discriminant Analysis (PLS-DA), Learn-
ing Vector Quantisation (LVQ) and Support Vector Machines (SVM) (Brereton, 2009;
Webb, 2002). Classifiers such as PLS-DA, LVQ and especially SVMs are more powerful
than EDC or LDA in obtaining boundaries between classes but can be very complex and
computationally intensive. These are usually the preferred choice of classifier for classi-
fication problems where boundaries of very high complexity are required. In the case of
the simulation experiment, it is sufficient to use either EDC or LDA. Since LDA takes
into consideration the different variances of each variable and the correlation between
the variables (so that correlated variables are not weighted too much against other vari-
ables measuring different properties (Brereton, 2009)), whereas EDC does not, LDA was
the classifier of choice in these simulation experiments. An example of the application
of the LDA classifier for the construction of a linear decision boundary in the epilepsy
data for the two groups of patients corresponding to responders and non-responders to
AEDs can be seen in Figure 8.1. In this case, it is clear that the two groups (responders
and non-responders to AEDs) are not separable in the first two PCs, as there are more
than 30 misclassified patients in both groups. The range of values of PC1 is far greater
than that of PC2 which might have affected the classification of the patients.

8.2.4 Bayes Decision Rule

If
p(x ∈ ci) = p(ci), i = 1, . . . , C
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Figure 8.1: Illustration of an LDA decision boundary for the original epilepsy data. The data is log-
transformed. The two groups are the responders (brown points) and non-responders
(blue points) to AEDs from the 97 patients in the original epilepsy data. The stars
represent the group means estimated using the first two principal components of the
epilepsy data.

is the prior probability that a randomly selected vector x belongs to class ci, and

p(x|x ∈ ci) = p(x|ci), i = 1, . . . , C

is the class-conditional density function of x for class ci, then the posterior probability
(the probability of belonging to class ci given the observation vector is x) is given by
Bayes’s Theorem as (Izenman, 2008)

p(x ∈ ci|x) = p(ci|x) =
p(x|ci)p(ci)

p(x)
(8.2.1)

where p(x) is the unconditional probability density function of the vector x. A decision
rule can then be to assign vector x to the class with the higher posterior probability.
That is, if

p(ci|x) > p(cj |x), j = 1, . . . , C, j 6= i (8.2.2)
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then assign x to class ci (Webb, 2002). Using 8.2.1 in 8.2.2, the rule becomes

p(x|ci)p(ci) > p(x|cj)p(cj), j = 1, . . . , C, j 6= i (8.2.3)

as the unconditional probability density p(x) is independent of the class and does not
affect the classification decision (Bishop, 1997). Equation 8.2.3 is known as the Bayes
rule for minimum error. In the case of C = 2, 8.2.3 becomes such that x is assigned to
class c1 if

p(x|c1)

p(x|c2)
>
p(c2)

p(c1)
(8.2.4)

and otherwise x is assigned to class c2.

8.2.5 Discriminant Functions

The Bayes decision rule is based on knowledge of the class-conditional density functions,
p(x|ci). Another approach for obtaining a classification rule is by defining a discriminant
function. A discriminant function is a function of an observed vector x which provides
a classification rule. If fi(x) for i = 1, . . . , C is a set of discriminant functions, then the
observed vector x is assigned to class ci if

fi(x) > fj(x), j = 1, . . . , C, j 6= i .

The regions where the discriminant functions are equal determine the decision boundar-
ies, so that for two contiguous regions, ri and rj , the decision boundary which separates
them is given by

fi(x) = fj(x) .

In the case of C = 2, a single discriminant function is used of the form

f(x) = f1(x)− f2(x)

and the decision rule can be considered as assigning the vector x to class c1 if f(x) > 0

and to class c2 if f(x) < 0 (Bishop, 1997). The main difference between the Bayesian
decision and discriminant function approaches is that the form of the discriminant
function to use is not imposed by the assumed distribution of the data. It may depend
either on knowledge about the observed vectors, or the functions’ parameters can be
adjusted by training procedures (Webb, 2002). For the purposes of the simulation
experiments, the use of linear discriminant functions has been employed.
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8.2.5.1 Linear Discriminant Functions

Linear discriminant functions are the simplest forms of discriminant functions, as they
are linear combinations of the components of a vector x = (x1, . . . , xn)T . Therefore, a
linear discriminant function can be written as

f(x) =
n∑
i=1

wixi + w0 = wTx + w0 (8.2.5)

which is fully specified by the weight vector w and the threshold weight w0 (Webb,
2002). Geometrically, equation 8.2.5 is a hyperplane with orientation in the direction of
w and perpendicular distance

w0

‖ w ‖
from the origin (Bishop, 1997). The value of f(x)

for a vector x is the perpendicular distance of x from the hyperplane, as can be seen in
Figure 8.2 (based on (Webb, 2002), p. 20 and (Bishop, 1997), p. 79).

x2

x1

w

W0/||w||
f(x)=0

f(x)<0

f(x)>0

X

f(x)/||w||

Figure 8.2: Geometry of a linear discriminant function in a 2-dimensional input space (x1, x2).
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8.3 Simulation Procedure

In this section the various steps of the simulation algorithm are described in detail. The
algorithm has been developed in the script language of R, the free software and open
source environment for statistical computing and graphics.

8.3.1 Preparation of the Epilepsy Data

The original epilepsy data consists of 97 patients who are the responders and non-
responders to AEDs treatment. As is usual in proton NMR metabonomic data, the
recorded NMR spectra include resonances which do not correspond to any endogenous
metabolites (Ross et al., 2007). Spectral regions which do not contain any endogenous
metabolites are not useful in data analysis and therefore need to be removed before
any data analysis is performed. Such regions are the spectral ranges below 0 ppm and
above 10 ppm which do not contain any endogenous metabolites (Williams and Fleming,
1995). In addition, the spectrum resonances in the spectral range 4.7− 4.9 ppm, which
are the remaining water resonances after the application of water suppression techniques
in the spectra, need to be excluded as well, since the analysis of signals of metabolites
below the water resonances is not possible as the water peak dominates the proton
NMR spectrum, affecting the multivariate data analysis of the spectral peaks of interest
(Ross et al., 2007). After the exclusion of these regions from the spectral data, the
remaining spectral data, that will be used to generate the two artificial data sets for the
simulation experiments, consist of 97 subjects and 244 variables in the spectral range
0.02 − 9.98 ppm. The elements of the data matrix were log-transformed (natural log)
to reduce the influence of large intensities of outliers and large peaks in the spectra -
such as the large peaks in the epilepsy data in the range 1 − 2 ppm - and to increase
the symmetry of the distributions of intensities (Brereton, 2009). The effect of the log-
transformation can be seen in Figure 8.3 compared to the raw data, both in the mean
spectra and the 2D PCA scores plots. From the comparison of the mean spectra, it is
clear that in the log-transformed data, the very large peaks in spectral regions such as
the region 1− 2 ppm do not dominate the spectral data any more. The code developed
for the preparation of the epilepsy data can be seen in function createDataClass() on
page 311.

8.3.2 Generation of the Reference Data Set

The simulation experiments aim to investigate the discriminating ability of the PCA
unsupervised technique for metabonomic data of this type by comparing - using ap-
propriate statistical analyses - pairs of artificially generated data sets, using various
parameters such as the number of variables and method of selecting the variables to
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Figure 8.3: Illustration of the effect of log-transforming the epilepsy data. The UNSCALED data
are compared to the LOG-TRANSFORMED data with respect to their mean spectra
and PCA scores plots. In the PCA function the data are mean-centred. Both the
UNSCALED and the LOG-TRANSFORMED data are not row-scaled.
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mean-shift, and the samples sizes. To achieve this, the parameters of the multivariate
distribution of the epilepsy data obtained after the preparation steps described in Sub-
section 8.3.1, will be used in the simulation of the pairs of data sets. A reference data set
will be generated in each simulation using a random multivariate normal distribution
generator with mean as the mean vector and dispersion matrix as the covariance matrix
of the multivariate distribution (spectral data) obtained as described in Subsection 8.3.1
from the epilepsy data.

However, because the original data matrix is of dimension 97 × 244, its covariance
matrix is not positive definite. As the R function mvrnorm(), used to generate the artifi-
cial data, applies eigen-decomposition of the covariance matrix, this cannot be singular,
therefore first it is necessary to convert the matrix to positive definite. The covariance
matrix of the data was converted using the R function make.positive.definite()

from package corpcor. In the conversion, after experimentation and investigation, a
tolerance level of 5 × 10−6 has been chosen, to ensure that all eigenvalues of the new
covariance matrix are positive. Figure 8.4 illustrates the fact that using the positive
definite version of the covariance matrix does not affect the structure of the data, which
remains similar to that of the original epilepsy data. The generated reference data set
X follows a multivariate normal distribution of the form

X = µ+ SZ ∼ N (µe,Σe)

where Z is a vector of independent standard normal deviates, µe is the vector of means of
the epilepsy variables and Σe the covariance matrix of the epilepsy variables with Σe =

SST (Ripley, 1987). Alternatively, the vector of standard deviations of the epilepsy
variables could be used but it is not preferable as in this case no information is retained
in the generated data sets about the covariances of the variables in the epilepsy data,
therefore the distribution of the generated data will not be as close to that of the
original epilepsy data as it would be in the case of using the covariance matrix. Function
generateSet() which contains the R code developed for the generation of a reference
data set, can be seen on page 314.

8.3.3 Generation of a Test Data Set

The procedure for generating a test data set is similar to that used in the generation
of the reference data set. In this case though, mean-shifting of a pre-selected set of
variables takes place before the generation of the data. In each simulation experiment
the number of variables to mean-shift is selected (referred to as cases MS244, MS120,
MS20, MS3 or MS1), a statistic (MAXDEV, MINDEV or MAXMEAN) is applied to the
epilepsy data to identify the variables to mean-shift and an offset chosen after extensive
experimentation is added to the means of the selected variables (see Section 8.1 for the
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Figure 8.4: Comparison of the original epilepsy mean spectrum (brown) to the generated mean
spectrum (blue) using the positive definite covariance matrix obtained from the epilepsy
data. As the original data contain 97 samples, the generated data also contains 97
samples for easier comparison. In both plots the data are log-transformed but not
row-scaled.

definition of the settings used in the simulation experiments). The number of samples
in the test data set is the same as in the reference data set. The generated test data set
X follows a multivariate normal distribution of the form

X = (µ+ offset) + SZ ∼ N ((µe + offset) ,Σe)

where Z is a vector of independent standard normal deviates, µe is the vector of means
of the epilepsy variables and Σe the covariance matrix of the epilepsy variables with
Σe = SST as in the reference data set case (Ripley, 1987). The offset term is the
vector of logarithmic values added to the vector of means of the variables pre-selected
for mean-shifting. For example, adding an offset of 1 (on the logarithmic scale) to the

8.3. SIMULATION PROCEDURE



CHAPTER 8. Data Simulation 214

mean of a variable is equivalent to increasing the variable’s mean approximately three-
fold on the original scale (≈ 2.72 times). Function generateSet() which contains the
R code developed for the generation of a test data set, can be seen on page 314. Table
8.1 illustrates all the simulation experiments done with the offset ranges used initially
(these were refined later on).

Table 8.1: List of simulation experiments. The sample sizes refer to both the reference and the test
data set and the two data sets have equal sample sizes in all experiments. The offsets
represent the multiplicative factors on the original scale of the data.

Subset of variables Offset Range Sample Sizes

MS244 2.0 - 20.5

S100, S500, S1000
MS120 1.0 - 2.0
MS20 1.0 - 2.5
MS3 2.0 - 8.0
MS1 4.0 - 50.0

8.3.4 Row-scaling of Data Sets

In each simulation experiment, the samples of the two artificially generated data sets are
combined to one data set, to allow for statistical analyses to be applied to the generated
data. An important consideration before applying any statistical analysis to the data
is to decide if it will be of benefit to apply row-scaling of the data to a constant total to
make the spectra more comparable. This scaling is applied to each and every sample
in the data set. Each variable (column of the data matrix) is divided by the sum of all
variables in the sample, effectively replacing element xij by

xij
J∑
j=1

xij

in sample i and variable j, where J is the number of variables. After this scaling
operation,

J∑
j=1

xij = 1

for each sample in the data set, meaning that the absolute intensities have become
proportions. Although the log-transformation of the epilepsy data reduced the influence
of some very high peaks in the spectra, there are still some high peaks, as seen in Figure
8.3, which, upon row-scaling the data, might affect the samples in a negative way. That
is, variables with very high values in most of the samples in the data are not necessarily
relevant to the pattern recognition stage of the simulation but can still cause significant
reduction of the variance of more relevant variables with smaller values (Brereton, 2009).
Therefore, caution is needed when applying row-scaling in multivariate data.
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It should be noted that there is no point in applying row-scaling in case MS244.
Figure 8.5 illustrates why row-scaling should not be applied to the case MS244. The
selected offsets of 2.83, 4.71 and 15.96 correspond to misclassification rates of 20%, 10%

and 1% respectively, covering thus the whole range of possible offsets. From the mean
spectra plots in Figure 8.5, it is clear that in the row-scaled data discrimination of the
two data sets is not possible, whereas in the raw data the two data sets are separated
with only a 10% error rate. The PCA scores plots indicate that the two data sets
are separated far more clearly in the original data case than in the row-scaled case.
Therefore, row-scaling to a constant total will not be applied in case MS244.

Figure 8.6 illustrates the effect of applying row-scaling to the original epilepsy data.
It is clear, that by row-scaling the data the intensity levels of the samples in the data
have been adjusted so that differences between them are much smaller. Hence, the
effect of samples with generally very high intensity values compared to those samples
with small intensity values in the analyses will be far smaller than in the original raw
data. However, row-scaling was not used initially in the experiments done, as the
results obtained from the unscaled data compared (in the conclusions of this chapter)
to those obtained from the row-scaled data were found not to differ noticeably. Row-
scaling of the epilepsy data set is accomplished using the function createDataClass()

on page 311.

8.3.5 Column-scaling of Data Sets

The row-scaled epilepsy spectra in Figure 8.6 indicate that there are still variables
which are very intense in magnitude (in the range 2− 0.8 ppm) which could dominate
the analysis and variation in smaller variables might not influence the results as much as
it probably could. Therefore, we need to ensure that all variables have similar influence
in the analysis of the data. Column-scaling takes care of this problem. Figure 8.7
illustrates the effect of column-scaling on the original row-scaled epilepsy data. As
described in Subsection 4.4.2, mean-centring is the usual column-scaling method used
in multivariate data. Before applying column-scaling, the two generated data sets are
joined to create a new data set which contains all samples from the two data sets. For
the two groups (sets) in the generated data, it is preferable to calculate a global mean
for each variable (instead of using an overall mean as in mean-centring), using weighted
centring for two groups with the general formula for weighted centring becoming for
Nc = 2

x̄j =
x̄(ref,j) + x̄(test,j)

2

where x̄(ref,j) and x̄(test,j) are the column means of variable j in the reference and
test data sets respectively. The use of a global mean as described is recommended in
multivariate analyses when the data contains more than one group (as in our case),

8.3. SIMULATION PROCEDURE



CHAPTER 8. Data Simulation 216

19
22

25

Mean spectra − UNSCALED Data 
 Offset:  4.71    Sample Size:  500

Chemical Shift (ppm)

In
te

ns
iti

es

10 9 8 7 6 5 4 3 2 1 0

−
8

−
6

−
4

Mean spectra − ROW SCALED Data 
 Offset:  4.71    Sample Size:  500

Chemical Shift (ppm)

In
te

ns
iti

es

10 9 8 7 6 5 4 3 2 1 0

−40 −20 0 20

−
3

−
1

0
1

2

UNSCALED Data − Offset: 2.83
Sample Size: 500

PC1

P
C

2

Average Separation: 18.15

−40 −20 0 20

−
3

−
1

0
1

2
3

UNSCALED Data − Offset: 4.71
Sample Size: 500

PC1

P
C

2

Average Separation: 24.98

−40 0 20 40

−
3

−
1

0
1

2
3

UNSCALED Data − Offset: 15.96
Sample Size: 500

PC1

P
C

2

Average Separation: 42.45

−4 −2 0 2

−
2

−
1

0
1

2

ROW SCALED Data − Offset: 2.83
Sample Size: 500

PC1

P
C

2

Average Separation: 1.815

−2 0 2 4

−
3

−
2

−
1

0
1

2

ROW SCALED Data − Offset: 4.71
Sample Size: 500

PC1

P
C

2

Average Separation: 1.798

−3 −1 0 1 2 3

−
2

−
1

0
1

2

ROW SCALED Data − Offset: 15.96
Sample Size: 500

PC1

P
C

2

Average Separation: 1.757

Figure 8.5: Illustration of the mean spectra of the UNSCALED and the ROW-SCALED data sets
for the case MS244. The blue colour represents the test data set and the brown the
reference data set. The row-scaling was applied before log-transformation took place.
Both UNSCALED and ROW-SCALED data are log-transformed.
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Figure 8.6: The original epilepsy spectra before (top) and after (bottom) row-scaling. In both plots
the data are log-transformed after any scaling.

since the global mean is not biased towards any of the groups in the data (Brereton,
2009). This does not affect the outcome of the simulation experiments in our case, as
the two groups have the same sample size in all experiments. Column-scaling of the
epilepsy data set is accomplished using the function simulateData() on page 318.

8.3.6 Principal Component Analysis

PCA is applied to the data set obtained after applying column-scaling as described
above, to investigate whether the PCA technique (or any clustering technique for that
matter) can discriminate between the two data sets, with respect to the selected para-
meters in each simulation experiment. A statistic called the average separation (between
two samples of points) will be used to estimate the distance between the two data sets
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Figure 8.7: The row and column (mean-centred) scaled epilepsy spectra. The plot is log-
transformed after being row-scaled and before being column-scaled.

from the PCA scores (Webb, 2002). This measure is defined as the average distance
between all pairs of points, with one point in each pair coming from each sample. If the
sample size for the reference set data is nr and of the test data set nt, then the average
separation between the reference and the test data set is given by

Davsep(r, t) =
1

nrnt

nr∑
i=1

nt∑
j=1

d(xi, yj)

where xi and yj are the ith and jth points in the reference and test data set respectively,
and d is a distance metric between xi and yj . In these simulation studies the Euclidean
distance metric was used, as it is the most commonly used one in such studies. The
average separation is estimated using the Euclidean distance matrix of the PCA scores
of the first two components. The centre points plotted in the PCA scores plot (in
Figure 8.10 and all such figures) are estimated as the mean values of the PCA scores
for the two data sets. According to Webb (2002), although there are many measures
of distance between distributions, only the average separation measure is of practical
interest, as the use of other measures requires numerical integration and estimation of
the probability density functions from samples. Function simulateData() developed
to perform PCA can be seen on page 318.

8.3.6.1 PCA Scores and Average Separation Plots

A series of scores plots is used to assess the capability of PCA to discriminate between
the two data sets. This involved experiments with offsets in the range 1.0−50 (0−3.91

on the log scale), as seen in Table 8.1. Depending on the experiment parameters, the
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average separation value indicated a distance threshold necessary for the two data sets to
be linearly separated. To explore the behaviour of the two distributions of points using
the various parameters, 100-run experiments were executed and the average separation
values versus offsets in 100 runs were plotted. These plots allow conclusions about the
required offsets to achieve LDA misclassification rates of 1 − 20%, which consequently
will indicate when PCA can discriminate between the two data sets.

The information concerning the average separation (value and mean in each run)
and plots of this, was taken after 100 runs of the simulation algorithm and the mean
values of this statistic are used in the plots. The average separation versus offsets plot is
superimposed with vertical error bars, such that the top and bottom of a bar correspond
to the maximum and minimum average separation at the respective offset point in 100
runs of an experiment. The error bars are used to show the stability of the average
separation at each offset in 100 runs of each experiment. The larger the range of the
average separation (the width of the error bar variation) in an offset, the less stable the
statistic is at this offset. An example of this fact can be seen in Figure 8.8. In Figure 8.8,
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Figure 8.8: Example of a statistics versus offsets plot with error bars superimposed.

the range of values (width of the error bar variation) of average separation in 100 runs, at
offset 3.67 is clearly larger than that at offset 4.06. Therefore, in this case, the statistic
is slightly more stable at offset 4.06 than offset 3.67. Function plotSimStats() on
page 328 creates the average separation plots. As the PC scores were plotted in single
run experiments, there might be some inconsistency in the calculated values of the
average separation in an MS case between the three offsets. For instance, in MINDEV,
the average separation values for 20 % and 10 % misclassification rate are 11.59 and
11.12 respectively in MS120 (Figure B.1), but the statistics’ plot in Figure B.2 in 100
runs shows clearly that the average separation increases as the misclassification rate
decreases (offset increases).

To allow the comparison of the values of the two statistics, (misclassification rate and
average separation), as they are measured on completely different scales, the coefficient
of variation (CV), will be used. This statistic is computed as the ratio of the standard
deviation to the mean, multiplied by 100. The smaller the value of CV of a variable,
the less dispersed the variable is. Due to its formula of computation, CV is unitless,
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therefore, it describes the dispersion of a variable in a way which is independent of the
variable’s unit of measurement. It allows comparison of variables of different scales,
which is not possible with dispersion statistics such as the standard deviation. The
only requirements for its application are that the mean of a variable must not be zero
and the variable contains only positive values. CV will be applied in each offset for
the 100 runs of the simulation algorithm for both statistics. More specifically, it will
be applied to the values described by the error bars in the statistics plots versus the
offsets. Comparison of the values for the two statistics should indicate which of the two
is more affected by aspects of the simulation such as offsets and sample sizes, and which
of the two statistics is more stable. Function computeCV(), which has been developed
to compute the CV for both statistics, can be seen on page 330.

8.3.7 Linear Discriminant Analysis (LDA)

An important step in the algorithm is to apply LDA to the first two PCs of the com-
bined simulated data set to assess the effects of the variables’ mean-shifting and of the
change of sample sizes in the two data sets with regard to the misclassification rate.
More specifically, LDA is applied to the first two PCs of the data in each case, and the
misclassification rate is calculated for each specific offset. In addition, LDA produces
boundaries for the two data sets in the scores plots. Similarly to the average separation
versus offset plots, misclassification error versus offset plots are drawn using the average
error rates in 100 runs of the algorithm, superimposed with vertical error bars, corres-
ponding to the maximum and minimum misclassification rate at that offset point in
100 runs of the experiment. The error bars for the misclassification rate are similar to
those of the average separation, as described in Subsection 8.3.6.1. However, the width
of the error bar variation in the misclassification error versus offset plots is greater than
in the average separation versus offset plots, therefore the misclassification error de-
pends far more on the offsets than the average separation. Function plotSimStats(),
on page 328, creates the misclassification rate plots.

8.3.8 Simulation Algorithm

The simulation procedure can be summarized in the following steps (in square brackets
is given the section where each step is described in detail):

1. Exclude spectral regions below 0 ppm and above 10 ppm, as well as the remaining
water resonances from the original epilepsy spectra, obtaining a data set of 97
samples and 244 variables, the epilepsy data [8.3.1].

2. If the case is not MS244, row-scale the data to a constant total in the merged data
set. This step was used in the conclusions of this chapter for comparative purposes
with the data set without row-scaling, which was used in the experiments [8.3.4].
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3. Log-transform (natural log) the epilepsy data [8.3.1].

4. Convert to positive definite the covariance matrix of the variables in the epilepsy
data from step 2 [8.3.2].

5. Select a sample size for the reference and test data sets (100, 500 or 1000) [8.1].

6. Generate the reference data set using a random multivariate normal distribution
generator with mean as the mean vector of the log data and dispersion matrix as
the covariance matrix obtained in step 3 [8.3.2].

7. Select the number of variables to mean-shift, from 244, 120, 20, 3 and 1 [8.1].

8. Select the method of choosing which variables to be mean-shifted using the
MAXDEV, MINDEV or MAXMEAN method [8.1].

9. Select the offset for the mean-shifting of the chosen variables [8.3.3].

10. Obtain the shifted mean vector [8.3.3].

11. Generate the test data set similarly to step 5 but using as mean the shifted mean
vector [8.3.3].

12. Merge the two artificially generated data sets to one [8.3.5].

13. Column-scale (weighted centring) the merged data set [8.3.5].

14. Perform PCA on the merged data set of step 13 [8.3.6].

15. Apply Linear Discriminant analysis (LDA) to the two artificial data sets using
the scores of the first two PCs, and calculate the LDA misclassification rates and
the average separation between the two data sets from the PCA scores [8.3.7].

16. Repeat steps 4− 15 a pre-selected number of times (100).

17. Calculate average values of the misclassification rates of LDA in 100 runs and
plot these rates versus offsets superimposed with the vertical error bars of the
misclassification rates at each offset point in the plot [8.3.7].

18. Calculate average values of the average separation in 100 runs and plot the average
separation versus offsets superimposed with the vertical error bars of the average
separation at each offset point in the plot [8.3.6.1].

19. Compute the coefficient of variation for the two statistics, corresponding to the
error bars at each offset point in the plot [8.3.6.1].

Function runSimulation(), on page 322, is the main function of the simulation al-
gorithm running all previously mentioned R functions to perform the 19 steps described
above. In addition, function plotBoundaries()[page 326] plots a LDA boundary for
the two sets in each of the simulation experiments, such as Figure 8.10 and function
plotMeanShifting() [on page 324] creates a plot of the comparison of the mean spectra
of the two data sets in each simulation experiment, such as Figure 8.9.
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8.4 Simulation Experiments and Results

8.4.1 Introduction

In this section the results of a number of simulation experiments are described in detail.
The experiments are divided into four subsections. The first is the special case MS244,
as it is the same for all the variable selection methods, and the other three cover the
experiments using the methods MAXDEV, MINDEV and MAXMEAN in this order.
The results in MAXDEV are given in detail in the second subsection with the cases
MS120, MS20, MS3 and MS1 in this order. The last two subsections state briefly the
main findings and the results are given in the appendices. The results of each experiment
include the following in this order:

• An illustration of the mean-shifting procedure, by plotting the mean spectra of
the two data sets in S500 and an offset chosen to correspond to a misclassification
rate of ≈ 0 %.

• A table with the misclassification rates and the Average separation for the three
sample size cases (S100, S500, S1000) using offsets such that the misclassification
rate is approximately in the range 0− 30 % in 100 runs of an experiment.

• Principal components scores plots, for offsets corresponding to misclassification
rates of 20 %, 10 % and 1 % in sample size case S500, superimposed with the
LDA boundary of the two data sets.

• Plots of the two statistics (misclassification rate and average separation) versus
offsets for the three sample size cases, superimposed with vertical error bars, in
100 runs of an experiment.

• A table containing the coefficient of variation values for the two statistics to
compute and compare the dispersion of the two stats in each offset value and
sample size case.

• At the end of the MS244 and of the MAXDEV sections, a summary table for
the offsets required in all subsets of variables (MS120, MS20, MS3 and MS1) and
sample size cases (S100, S500 and S1000) to achieve misclassification rates of
20, 15, 10, 5, and 1 % in 100 runs of an experiment.

All the offsets in this section are given on the original scale of the data (multiplicative
offsets) and the values on the y axis of the spectra plots are log-transformed (but not
row-scaled) intensities.

8.4.2 Case MS244

There is no variable selection in case MS244, since all variables in the data set are
mean-shifted. An example of the mean-shifting procedure for case MS244, with S500
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and offset 20.09 (corresponding to a misclassification rate of ≈ 0 %), can be seen in
Figure 8.9. Experiments in all three sample size cases showed that the two data sets are
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Figure 8.9: Illustration of the mean-shifting procedure in the case MS244 with S500 and offset
20.09. The brown and blue lines are the mean spectra of the reference and test data
set respectively. The mean-shifted variables correspond to the points in the spectra for
which the blue line is above the brown.

linearly separated for offsets above 20.09, with LDA misclassification rates below 1% and
average separation value of ≈ 47. Table 8.2 gives the misclassification rates and average
separation values of the experiments in the cases S100, S500 and S1000 respectively, for
offset values in the range 2.23− 20.09. From this table it can be seen that in all sample
size cases offsets in the range 2.23− 20.09 are required to achieve misclassification rates
of ≈ 25 − 0.5 % respectively. Similarly, the average separation between the two data
sets is ≈ 15 for a 20 % misclassification rate and the two data sets are almost linearly
separable when the average separation is ≈ 17 with misclassification rate less than 1 %,
as expected. In general, there are no great differences among the three sample size cases
with respect to the misclassification rate, average separation and the offsets required
to obtain those statistics (e.g. for offset 2.23, the misclassification rates are 25.63%,
25.60% and 25.71%, the average separation values are 15.35, 15.37 and 15.41 in cases
S100, S500 and S1000 respectively, and for offset 20.09 the misclassification rates are
0.52%, 0.81% and 0.78% and the average separation values are 47.06, 46.82 and 46.90
for the same simulation cases).

An illustration of how the mean-shifting procedure affects the capability of PCA to
discriminate the two data sets can be seen in Figure 8.10, for offsets 2.86, 4.76 and
16.12, which correspond to 20 %, 10 % and 1 % misclassification rates respectively. A
graphical representation of the relation between offsets and the two statistics can be
seen in Figure 8.11. These plots confirm the findings from Table 8.2 concerning the
sample size of the two data sets. That is, the sample size does not play any role in the
offsets, as the required offsets to achieve misclassification rates of 0 − 20 % are similar
in all three sample size cases.
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Table 8.2: Average LDA misclassification rates and average separation values for the case MS244
in 100 runs of the experiment.

S100
Offset 2.23 2.72 3.32 4.06 4.95 6.05
Error Rate (%) 25.63 20.79 16.90 12.50 9.57 7.18
Average Separation 15.35 17.39 19.78 22.66 25.56 28.37

Offset 7.39 9.03 11.02 13.46 16.44 20.09
Error Rate (%) 4.97 3.47 2.39 1.46 1.00 0.52
Average Separation 31.23 34.37 37.43 40.75 43.97 47.06

S500
Offset 2.23 2.72 3.32 4.06 4.95 6.05
Error Rate (%) 25.60 21.09 16.62 12.85 9.78 7.23
Average Separation 15.37 17.49 19.95 22.67 25.52 28.42

Offset 7.39 9.03 11.02 13.46 16.44 20.09
Error Rate (%) 5.25 3.75 2.54 1.75 1.19 0.81
Average Separation 31.39 34.55 37.61 40.68 43.72 46.82

S1000
Offset 2.23 2.72 3.32 4.06 4.95 6.05
Error Rate (%) 25.71 21.00 16.78 12.95 9.85 7.34
Average Separation 15.41 17.47 19.95 22.64 25.41 28.36

Offset 7.39 9.03 11.02 13.46 16.44 20.09
Error Rate (%) 5.32 3.79 2.60 1.82 1.19 0.78
Average Separation 31.39 34.44 37.52 40.61 43.73 46.90

In addition, Figure 8.11 shows that for both statistics, the width of the error bar
variation obtained in 100 runs reduces considerably as the sample size increases, indic-
ating that the stability of the misclassification rate and the average separation depends
on the sample size. The two statistics monotonically (but non-linearly) increase (in the
case of the average separation) or decrease (in the case of the misclassification rate), as
the offsets increase. To compare the dispersion of the two statistics in each offset over
10 runs, the coefficient of variation will be computed. Table 8.3 gives the results of the
computations for the CV, the standard deviation and the mean of the two statistics
for each of the selected offsets. It is clear that the dispersion of the average separation
is far smaller than that of the misclassification rate, decreasing as the offsets decrease,
whereas in the case of misclassification rate, as the mean of the error decreases towards
1, the CV increases considerably, especially for large offset values. As is logical, the lar-
ger the offset, the larger the distance is between the two data sets; that is, the larger the
mean of the average separation is, and the CV decreases as the offsets increase. The CV
values for both statistics are definitely affected by the increase in the sample size, with
both statistics showing far smaller dispersion in the S500 and S1000 cases. In general,
in the case MS244, the average separation is far more stable than the misclassification
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Figure 8.10: Visualisation of the LDA boundaries using the first two PCs of the two artificial data
sets in the case MS244. The reference and test data points are depicted in brown and
blue respectively.

rate, as the CV values for both statistics indicate.

A summary of the offsets required to achieve misclassification rates of 20, 15, 10, 5

and 1 % for all sample size cases can be seen in Table 8.4. It can be concluded that for
PCA to discriminate between the two data sets giving a misclassification rate of 1 %

or less, an approximately 16-fold increase of all 244 variables is required. This size of
increase is not practically feasible. Therefore, PCA cannot discriminate between the
two data sets in the case MS244 given the means and variances used in the simulation,
regardless of the data sets’ sample size.

8.4.3 Maximum Deviation (MAXDEV)

Introduction

The MAXDEV method chooses a specific subset of variables to mean-shift in decreasing
order of size of their standard deviation. This will be applied to simulation experiments
with subsets of 120, 20, 3 and 1 variables for all three sample size cases, S100, S500 and
S1000.

Case MS120

The mean-shifting procedure for case MS120, with S500 and offset 1.55 (corresponding
to a misclassification rate of ≈ 0 %), can be seen in Figure 8.12. The 120 mean-shifted
variables and their standard deviation can be seen in Table A.1 in decreasing order of
standard deviation. Experiments in all three sample size cases showed that the two
data sets are linearly separated for offsets above 1.55, with LDA misclassification rates
below 1% and average separation value of ≈ 12.2. Table 8.5 gives the misclassification
rates and average separation values of the experiments in the cases S100, S500 and
S1000 respectively, for offsets in the range 1.25− 1.55. It can be seen that offsets in the
range 1.25− 1.55 are required in all sample size cases, to achieve misclassification rates
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Figure 8.11: Graphical representation of the relation among LDA misclassification rates, average
separation and offsets in the case MS244. The blue lines represent the mean values
of each statistic for each offset in the selected offset range. The offsets are the
multiplicative factors on the original scale of the data. The vertical error bars are such
that the top and bottom of a bar correspond to the maximum and minimum statistic
value at the respective offset. The statistics values are the average values in 100 runs
of the experiment. The two average separation plots in each sample size case are
drawn using the same range of values for the average separation.
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Table 8.3: Coefficient of variation results for case MS244, of the LDA misclassification rates and
average separation values in 100 runs of the experiment.

S100
Offset 2.23 2.72 3.32 4.06 4.95 6.05
Error Rate (CV) 13.06 14.73 14.61 17.77 21.14 25.01
Error Rate (StDev) 3.34 3.06 2.47 2.22 2.02 1.79
Error Rate (Mean) 25.63 20.79 16.90 12.50 9.57 7.18
Average Separation (CV) 6.82 6.26 5.88 5.34 4.97 5.09
Average Separation (StDev) 1.04 1.08 1.16 1.21 1.27 1.44
Average Separation (Mean) 15.35 17.39 19.78 22.66 25.56 28.37

Offset 7.39 9.03 11.02 13.46 16.44 20.09
Error Rate (CV) 32.28 43.67 41.46 73.60 90.17 125.80
Error Rate (StDev) 1.60 1.51 0.99 1.07 0.90 0.66
Error Rate (Mean) 4.97 3.47 2.39 1.46 1.00 0.52
Average Separation (CV) 4.21 4.41 3.42 3.74 3.46 2.79
Average Separation (StDev) 1.31 1.51 1.28 1.52 1.52 1.31
Average Separation (Mean) 31.23 34.37 37.43 40.75 43.97 47.06

S500
Offset 2.23 2.72 3.32 4.06 4.95 6.05
Error Rate (CV) 4.86 5.33 7.28 7.65 11.54 12.36
Error Rate (StDev) 1.24 1.13 1.21 0.98 1.13 0.89
Error Rate (Mean) 25.60 21.10 16.63 12.86 9.79 7.23
Average Separation (CV) 2.73 2.55 2.65 2.48 2.56 2.01
Average Separation (StDev) 0.42 0.45 0.53 0.56 0.65 0.57
Average Separation (Mean) 15.37 17.49 19.96 22.68 25.53 28.43

Offset 7.39 9.03 11.02 13.46 16.44 20.09
Error Rate (CV) 13.52 17.94 19.35 20.39 26.81 40.65
Error Rate (StDev) 0.71 0.67 0.49 0.36 0.32 0.33
Error Rate (Mean) 5.26 3.76 2.55 1.76 1.20 0.81
Average Separation (CV) 1.93 1.92 1.54 1.59 1.46 1.35
Average Separation (StDev) 0.61 0.66 0.58 0.65 0.64 0.63
Average Separation (Mean) 31.39 34.56 37.61 40.68 43.73 46.82

S1000
Offset 2.23 2.72 3.32 4.06 4.95 6.05
Error Rate (CV) 3.95 3.95 4.40 5.84 7.24 7.99
Error Rate (StDev) 1.01 0.83 0.74 0.76 0.71 0.59
Error Rate (Mean) 25.71 21.00 16.79 12.95 9.85 7.34
Average Separation (CV) 1.85 1.88 1.92 1.69 1.61 1.39
Average Separation (StDev) 0.29 0.33 0.38 0.38 0.41 0.39
Average Separation (Mean) 15.42 17.47 19.96 22.65 25.41 28.36

Offset 7.39 9.03 11.02 13.46 16.44 20.09
Error Rate (CV) 9.56 11.56 13.51 14.97 23.88 24.34
Error Rate (StDev) 0.51 0.44 0.35 0.27 0.29 0.19
Error Rate (Mean) 5.33 3.80 2.60 1.82 1.19 0.79
Average Separation (CV) 1.46 1.27 1.05 0.95 1.06 0.95
Average Separation (StDev) 0.46 0.44 0.39 0.38 0.46 0.45
Average Separation (Mean) 31.40 34.45 37.52 40.62 43.73 46.91

of ≈ 25 − 0.1 % respectively. Similarly, the average separation between the two data
sets is ≈ 11.3 for a 20 % misclassification rate and the two data sets are almost linearly
separable when the average separation is ≈ 12.2 , with misclassification rate less than
1 % as expected. In general, there are no noticeable differences among the three sample
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Table 8.4: Summary results (offsets) for the LDA misclassification rates in the case MS244. The
results are for 100 runs of the simulation algorithm and the offsets correspond to mul-
tiplicative factors on the original scale of the data. An offset is the value above which
a selected misclassification rate percentage is achieved, e.g in case S500, at most 10%
of the samples are misclassified when the offset is 4.75 or above.

Subset of
Variables

Sample
Size

Misclassification Rate

20% 15% 10% 5% 1%

MS244
S100 2.85 3.49 4.71 7.61 15.64
S500 2.85 3.56 4.75 7.69 16.11
S1000 2.85 3.56 4.80 7.69 16.60

size cases with respect to the misclassification rate, average separation and the offsets
required to obtain those statistics.

An illustration of how the mean-shifting procedure affects the capability of PCA to
discriminate the two data sets in this case can be seen in Figure 8.13, for offsets 1.27, 1.32

and 1.45 which correspond to 20 %, 10 % and 1 % misclassification rates respectively.

A graphical representation of the relation between offsets and the two statistics can
be seen in Figure 8.14. Similarly to the case MS244, the sample size does not play
any role in the offsets in case MS120, as the required offsets to achieve misclassification
rates of 0− 20 % are the same in all three sample size cases. The range of values in the
two statistics obtained in 100 runs reduces significantly as the sample size increases,
indicating that the stability of the misclassification rate values depends on the sample
size. To assess whether this is true, Table 8.6 contains the results for the coefficient
of variation in this case. As in case MS244, the dispersion of the average separation
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Figure 8.12: llustration of the mean-shifting procedure with method MAXDEV in the case MS120
with S500 and offset 1.55. The brown and blue lines are the mean spectra of the
reference and test data set respectively. The mean-shifted variables correspond to the
points in the spectra for which the blue line is above the brown.
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Table 8.5: Average LDA misclassification rates and average separation values for the case MS120,
applying the MAXDEV method in 100 runs of the experiment.

S100
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (%) 25.10 20.29 15.05 11.01 7.54 4.57
Average Separation 11.28 11.38 11.40 11.54 11.63 11.65

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (%) 2.50 1.68 0.87 0.31 0.18 0.09
Average Separation 11.70 11.79 11.80 11.96 12.18 12.23

S500
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (%) 25.24 20.05 15.49 10.96 7.19 4.87
Average Separation 11.37 11.32 11.44 11.49 11.65 11.70

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (%) 2.89 1.59 0.87 0.53 0.22 0.11
Average Separation 11.79 11.83 11.94 12.00 12.09 12.15

S1000
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (%) 25.27 20.02 15.60 11.10 7.41 4.73
Average Separation 11.31 11.34 11.42 11.53 11.57 11.63

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (%) 2.84 1.63 0.92 0.48 0.23 0.12
Average Separation 11.73 11.81 11.91 12.01 12.06 12.18

is far smaller than that of the misclassification rate, decreasing as the offsets decrease,
whereas in the case of misclassification rate the CV increases considerably, especially
for large offset values. An interesting observation is that comparing the CV values
for the two statistics in the cases MS244 and MS120 using MAXDEV, despite the
reduction of mean-shifted variables from 244 to 120, the CV of the misclassification
rate is considerably larger in case MS120 for all three sample size cases and all offsets,
whereas the CV of the average separation is slightly smaller in case MS120 for small
offsets and slightly larger for large offsets than in case MS244. In general, the sample size
clearly affects the CV values of both statistics independently of the number of mean-
shifted variables, as the larger the sample size is, the smaller the CV values of both
statistics for all offsets. In addition, the standard deviation and mean of the average
separation error bars in Figure 8.14, are very consistent, with their values for all offsets
being very close to each other in the three sample size cases (especially in the cases S500
and S1000), whereas in the case of misclassification rate the standard deviation reduces
considerably as the sample size and the offsets increase, and its mean, as expected,
decreases monotonically. Thus, as in the case MS244, in the case MS120, the average
separation error bar values are far more consistent, stable and far less affected than the
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Figure 8.13: Visualisation of the LDA boundaries for the two artificial data sets in the case MS120
(MAXDEV)). The data corresponds to the first two PCs for LDA. The reference and
test data points are depicted in brown and blue respectively.

misclassification rate.

For PCA to discriminate between the two data sets with a misclassification rate of
1 % or less, an approximate 50% increase (the multiplicative offset is 1.46) is required
in the means of the selected 120 variables. Hence, it is possible for PCA to discriminate
between the two data sets in case MS120 with MAXDEV, independently of the data
sets’ sample size. Thus, reducing the number of mean-shifted variables from 244 to 120,
using the MAXDEV method, results in smaller (feasible) offsets and average separation
values required in the simulation experiments.

Case MS20

The mean-shifting procedure for case MS20, with S500 and offset 2.18 (corresponding
to a misclassification rate of ≈ 0 %), can be seen in Figure 8.15. The 20 mean-shifted
variables and their standard deviation can be seen in Table A.1 in decreasing order of
standard deviation. Experiments using offsets in the range 1.40−2.18 in all three sample
size cases showed that the two data sets are linearly separated for offsets above 2.05, with
LDA misclassification rates below 1% and average separation value of ≈ 11.8. Table 8.7
shows the misclassification rates and average separation values of the experiments in
the cases S100, S500 and S1000 respectively, for offsets in the range 1.40− 2.18. From
the table it can be seen that offsets in the range 1.52− 2.05 are required in all sample
size cases, to achieve misclassification rates of ≈ 20 − 0.1 % respectively. Similarly,
the average separation between the two data sets is ≈ 11.1 for a 20 % misclassification
rate and the two data sets are almost linearly separable when the average separation is
≈ 11.8 , with misclassification rate less than 1 % as expected. In general, there are no
big differences among the three sample size cases with respect to the misclassification
rate, average separation and offsets required to obtain those statistics.

An illustration of how the mean-shifting procedure affects the capability of PCA to
discriminate the two data sets in this case can be seen in Figure 8.16, for offsets 1.52, 1.62
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Figure 8.14: Graphical representation of the relation among LDA misclassification rates, average
separation and offset in the case MS120 for method MAXDEV. The blue lines represent
the mean values of each statistic for each offset in the selected offset range. The offsets
are the multiplicative factors on the original scale of the data. The vertical error bars
are such that the top and bottom of a bar correspond to the maximum and minimum
statistic value at the respective offset. The statistics values are the average values
in 100 runs of the experiment. The two average separation plots in each sample size
case, are drawn using the same range of values for the average separation.
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Table 8.6: Coefficient of variation results for case MS120 using method MAXDEV, of the LDA
misclassification rates and average separation values in 100 runs of the experiment.

S100
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (CV) 19.93 20.33 28.68 32.12 36.38 47.58
Error Rate (StDev) 5.00 4.13 4.32 3.54 2.75 2.17
Error Rate (Mean) 25.10 20.30 15.05 11.01 7.54 4.57
Average Separation (CV) 5.48 5.15 4.70 5.18 4.94 4.58
Average Separation (StDev) 0.62 0.59 0.54 0.60 0.58 0.53
Average Separation (Mean) 11.28 11.38 11.40 11.54 11.64 11.66

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (CV) 64.29 78.97 108.87 165.26 219.52 288.84
Error Rate (StDev) 1.61 1.33 0.95 0.52 0.41 0.26
Error Rate (Mean) 2.50 1.68 0.87 0.32 0.18 0.09
Average Separation (CV) 5.69 4.90 4.74 4.91 4.35 4.88
Average Separation (StDev) 0.67 0.58 0.56 0.59 0.53 0.60
Average Separation (Mean) 11.71 11.79 11.80 11.96 12.18 12.24

S500
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (CV) 8.29 9.98 11.10 13.73 17.93 18.35
Error Rate (StDev) 2.09 2.00 1.72 1.51 1.29 0.89
Error Rate (Mean) 25.25 20.06 15.49 10.96 7.20 4.87
Average Separation (CV) 1.96 2.06 2.32 2.15 2.56 2.24
Average Separation (StDev) 0.22 0.23 0.27 0.25 0.30 0.26
Average Separation (Mean) 11.37 11.32 11.45 11.49 11.65 11.70

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (CV) 26.46 32.28 36.44 52.48 81.06 104.49
Error Rate (StDev) 0.77 0.52 0.32 0.28 0.18 0.12
Error Rate (Mean) 2.90 1.60 0.88 0.53 0.23 0.12
Average Separation (CV) 2.35 2.19 2.14 1.98 1.97 2.02
Average Separation (StDev) 0.28 0.26 0.26 0.24 0.24 0.25
Average Separation (Mean) 11.79 11.84 11.94 12.01 12.10 12.15

S1000
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (CV) 6.00 6.94 8.05 9.40 9.96 16.63
Error Rate (StDev) 1.52 1.39 1.26 1.04 0.74 0.79
Error Rate (Mean) 25.28 20.02 15.60 11.10 7.42 4.73
Average Separation (CV) 1.71 1.77 1.51 1.61 1.47 1.37
Average Separation (StDev) 0.19 0.20 0.17 0.19 0.17 0.16
Average Separation (Mean) 11.31 11.35 11.42 11.53 11.57 11.63

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (CV) 17.70 25.11 27.29 32.85 52.15 67.27
Error Rate (StDev) 0.50 0.41 0.25 0.16 0.12 0.08
Error Rate (Mean) 2.85 1.63 0.93 0.49 0.23 0.12
Average Separation (CV) 1.59 1.45 1.42 1.30 1.47 1.48
Average Separation (StDev) 0.19 0.17 0.17 0.16 0.18 0.18
Average Separation (Mean) 11.74 11.82 11.92 12.01 12.06 12.18

and 1.86, which correspond to 20 %, 10 % and 1 % misclassification rates respectively.

The relation among misclassification rates, average separation and offsets in the case
MS20 in 100 runs is shown in Figure 8.17. It can be seen that the change in the
average separation with offsets is much less than the change in the misclassification
rate. Similarly to cases MS244 and MS120, the sample size does not play any role
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Figure 8.15: Illustration of the mean-shifting procedure with method MAXDEV in the case MS20
with S500 and offset 2.18. The brown and blue lines are the mean spectra of the
reference and test data set respectively. The mean-shifted variables correspond to the
points in the spectra for which the blue line is above the brown.

in the offsets in case MS20, as the required offsets to achieve misclassification rates
of 0 − 20 % are similar in all three sample size cases. The range of values in the two
statistics obtained in 100 runs again reduces noticeably as the sample size increases,
indicating that the stability of the misclassification rate depend on the sample size.
Table 8.8 contains the results for the coefficient of variation, the standard deviation
and the mean values of the error bars in Figure 8.17, for the two statistics in the case
MS20. The table shows clearly that the values of CV, standard deviation and mean
of the error bars for the average separation do not differ in general from those of case
MS120, being also very stable between all offsets (especially the mean, which in all three
samples size cases has values in the range 11.1 - 12). On the other hand, the values of
the same statistics for the misclassification rate indicate that this criterion is affected
by the number of mean-shifted variables, as the values of CV, standard deviation and
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Figure 8.16: Visualisation of the LDA boundaries for the two artificial data sets in the case MS20
(MAXDEV). The data corresponds to the first two PCs for LDA. The reference and
test data points are depicted in brown and blue respectively.
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Figure 8.17: Graphical representation of the relation among LDA misclassification rates, average
separation and offset in the case MS20 applying the MAXDEV method. The blue lines
represent the mean values of each statistic for each offset in the selected offset range.
The offsets are the multiplicative factors on the original scale of the data. The vertical
error bars are such that the top and bottom of a bar correspond to the maximum and
minimum statistic value at the respective offset. The statistics values are the average
values in 100 runs of the experiment. The two average separation plots in each sample
size case are drawn using the same range of values for the average separation.
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Table 8.7: Average LDA misclassification rates and average separation values for the case MS20,
applying the MAXDEV method in 100 runs of the experiment.

S100
Offset 1.40 1.46 1.52 1.58 1.65 1.72
Error Rate (%) 34.74 29.08 20.14 14.13 8.04 4.27
Average Separation 11.13 11.22 11.27 11.35 11.41 11.46

Offset 1.79 1.86 1.93 2.01 2.10 2.18
Error Rate (%) 1.94 0.99 0.49 0.12 0.09 0.01
Average Separation 11.54 11.54 11.55 11.67 11.81 11.93

S500
Offset 1.40 1.46 1.52 1.58 1.65 1.72
Error Rate (%) 35.62 28.83 20.07 13.16 7.31 4.18
Average Separation 11.17 11.21 11.29 11.30 11.38 11.45

Offset 1.79 1.86 1.93 2.01 2.10 2.18
Error Rate (%) 2.12 1.12 0.52 0.28 0.09 0.03
Average Separation 11.52 11.58 11.63 11.72 11.80 11.86

S1000
Offset 1.48 1.52 1.57 1.62 1.67 1.72
Error Rate (%) 26.47 20.70 14.83 10.05 6.72 4.10
Average Separation 11.21 11.22 11.29 11.35 11.41 11.46

Offset 1.77 1.82 1.88 1.93 1.99 2.05
Error Rate (%) 2.58 1.54 0.95 0.53 0.29 0.15
Average Separation 11.49 11.56 11.65 11.64 11.71 11.74

mean are in general higher than those of MS120 and MS244. This is also logical, as the
method for selecting the 20 variables is MAXDEV. As in the cases MS244 and MS120,
the dispersion of the average separation is far smaller than that of the misclassification
rate, decreasing slightly but not monotonically, as the offsets decrease, whereas in the
case of misclassification rate the CV increases considerably, especially for large offset
values. An interesting observation is that comparing the CV values for the two statistics
in the cases MS244, MS120 and MS20 using MAXDEV, despite the reduction of mean-
shifted variables from 244 to 20, the CV of the misclassification rate is generally larger
in case MS20 for all three sample size cases and all offsets, whereas the CV of the
average separation is slightly smaller in case MS20 for small offsets and slightly larger
for large offsets than in the other two cases. The sample size affects the CV values of
both statistics independently of the number of mean-shifted variables, as the larger the
sample size is, the smaller the CV values of both statistics in all offsets. However, the
misclassification rate is affected much more than the average separation from the sample
size and the number of mean-shifted variables. In addition, the standard deviation and
mean of the average separation error bars in Figure 8.17, are very consistent, with
their values for all offsets being very close to each other in the three sample size cases
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Table 8.8: Coefficient of variation results for case MS20 using method MAXDEV, of the LDA
misclassification rates and average separation values in 100 runs of the experiment.

S100
Offset 1.40 1.46 1.52 1.58 1.65 1.72
Error Rate (CV) 18.80 24.95 36.26 41.33 40.43 54.63
Error Rate (StDev) 6.53 7.26 7.30 5.84 3.25 2.33
Error Rate (Mean) 34.74 29.09 20.14 14.13 8.04 4.27
Average Separation (CV) 5.37 5.15 4.71 5.21 4.92 4.58
Average Separation (StDev) 0.60 0.58 0.53 0.59 0.56 0.53
Average Separation (Mean) 11.14 11.23 11.27 11.36 11.42 11.47

Offset 1.79 1.86 1.93 2.01 2.10 2.18
Error Rate (CV) 76.78 108.91 128.81 302.67 286.77 703.53
Error Rate (StDev) 1.49 1.08 0.64 0.36 0.27 0.07
Error Rate (Mean) 1.94 1.00 0.50 0.12 0.10 0.01
Average Separation (CV) 5.90 4.63 4.32 4.75 4.07 4.51
Average Separation (StDev) 0.68 0.53 0.50 0.55 0.48 0.54
Average Separation (Mean) 11.54 11.54 11.55 11.67 11.81 11.94

S500
Offset 1.40 1.46 1.52 1.58 1.65 1.72
Error Rate (CV) 8.42 13.21 15.90 18.03 19.90 26.52
Error Rate (StDev) 3.00 3.81 3.19 2.37 1.45 1.11
Error Rate (Mean) 35.63 28.83 20.07 13.16 7.31 4.18
Average Separation (CV) 2.13 2.08 2.00 1.98 2.24 2.17
Average Separation (StDev) 0.24 0.23 0.23 0.22 0.25 0.25
Average Separation (Mean) 11.17 11.22 11.29 11.30 11.38 11.45

Offset 1.79 1.86 1.93 2.01 2.10 2.18
Error Rate (CV) 30.12 41.07 55.08 59.16 130.71 169.91
Error Rate (StDev) 0.64 0.46 0.29 0.17 0.12 0.06
Error Rate (Mean) 2.12 1.12 0.52 0.28 0.09 0.04
Average Separation (CV) 2.09 2.11 2.02 2.22 2.37 2.12
Average Separation (StDev) 0.24 0.24 0.23 0.26 0.28 0.25
Average Separation (Mean) 11.52 11.59 11.63 11.72 11.80 11.87

S1000
Offset 1.48 1.52 1.57 1.62 1.67 1.72
Error Rate (CV) 9.16 10.56 11.58 13.54 13.78 17.65
Error Rate (StDev) 2.43 2.19 1.72 1.36 0.93 0.73
Error Rate (Mean) 26.48 20.70 14.83 10.06 6.72 4.11
Average Separation (CV) 1.64 1.62 1.53 1.39 1.63 1.49
Average Separation (StDev) 0.18 0.18 0.17 0.16 0.19 0.17
Average Separation (Mean) 11.22 11.23 11.29 11.35 11.41 11.47

Offset 1.77 1.82 1.88 1.93 1.99 2.05
Error Rate (CV) 21.10 24.65 28.03 38.00 45.94 66.20
Error Rate (StDev) 0.55 0.38 0.27 0.20 0.13 0.10
Error Rate (Mean) 2.59 1.55 0.96 0.54 0.29 0.16
Average Separation (CV) 1.56 1.49 1.47 1.45 1.39 1.53
Average Separation (StDev) 0.18 0.17 0.17 0.17 0.16 0.18
Average Separation (Mean) 11.49 11.57 11.65 11.65 11.71 11.74

(especially in the cases S500 and S1000), whereas in the case of misclassification rate the
standard deviation reduces considerably as the sample size and the offsets increase, and
its mean, as expected, decreases monotonically. Thus, as in cases MS244 and MS120,
also in case MS20, the average separation error bar values are far more consistent, stable
and far less affected, than the misclassification rate.

For PCA to discriminate between the two data sets with a misclassification rate of
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1 % or less, an approximately 100% increase is required in the means of the 20 variables
selected by MAXDEV. Reducing the number of mean-shifted variables from 244 to 20
using the MAXDEV method results in smaller (feasible) offsets and average separation
values required.

Case MS3

The mean-shifting procedure for case MS3, with S500 and offset 7.39 (corresponding
to a misclassification rate of ≈ 0 %), can be seen in Figure 8.18. The 3 mean-shifted
variables are 5.78, 5.82 and 5.98 and their standard deviations 0.876, 0.787 and 0.681

respectively (Table A.1). Simulation experiments using offsets in the range 2.46− 7.77
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Figure 8.18: Illustration of the mean-shifting procedure in the case MS3 with S500 and offset 7.39
(MAXDEV). The brown and blue lines are the mean spectra of the reference and
test data set respectively. The mean-shifted variables correspond to the points in the
spectra for which the blue line is above the brown. The 3 mean-shifted variables are
at 5.78, 5.82 and 5.98 ppm.

in all three sample size cases showed that the two data sets are linearly separated for
offsets above 7.39, with LDA misclassification rates below 1% and average separation
value of ≈ 11.9. Table 8.9 shows the results of the experiments in the cases S100,
S500 and S1000 respectively, for offsets in the range 2.46 − 7.77. It can be seen that
offsets of 2.46 − 7.77 are required in all sample size cases to achieve misclassification
rates of ≈ 25 − 0.5 % respectively. The average separation between the two data sets
is ≈ 11.3 for a 20 % misclassification rate and the two data sets are almost linearly
separable when the average separation is ≈ 11.9 , with misclassification rate less than
1 % as expected. In general, there are no great differences among the three sample size
cases with respect to the misclassification rate, average separation and offsets required
to obtain those statistics.

An illustration of the capability of PCA to discriminate the two data sets in this
case can be seen in Figure 8.19, for offsets 2.83, 3.74 and 6.69 which correspond to
20 %, 10 % and 1 % respectively. The relation among misclassification rates, average
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Table 8.9: Average LDA misclassification rates and average separation values for the case MS3,
applying the MAXDEV method in 100 runs of the experiment.

S100
Offset 2.46 2.72 3.00 3.32 3.67 4.06
Error Rate (%) 25.89 22.04 17.27 14.20 11.07 8.06
Average Separation 11.19 11.27 11.33 11.40 11.47 11.48

Offset 4.48 4.95 5.47 6.05 6.69 7.39
Error Rate (%) 5.47 4.25 2.80 1.65 1.09 0.52
Average Separation 11.54 11.58 11.59 11.71 11.85 11.94

S500
Offset 2.46 2.72 3.00 3.32 3.67 4.06
Error Rate (%) 26.16 21.57 17.72 14.07 10.79 8.02
Average Separation 11.24 11.29 11.34 11.34 11.43 11.50

Offset 4.48 4.95 5.47 6.05 6.69 7.39
Error Rate (%) 5.81 3.95 2.92 1.94 1.23 0.78
Average Separation 11.55 11.63 11.66 11.76 11.84 11.90

S1000
Offset 2.59 2.86 3.16 3.49 3.86 4.26
Error Rate (%) 23.85 19.79 15.95 12.42 9.32 6.86
Average Separation 11.23 11.29 11.37 11.43 11.47 11.50

Offset 4.71 5.21 5.75 6.36 7.03 7.77
Error Rate (%) 4.93 3.41 2.34 1.47 1.02 0.59
Average Separation 11.61 11.64 11.70 11.77 11.87 11.89

separation and offsets in the case MS3 in 100 runs, is visualised in Figure 8.20. As in
the previous cases, the sample size does not play any role in the offsets in case MS3,
as the required offsets to achieve misclassification rates of 0 − 20 % are similar in all
three sample size cases. The range of values in the two statistics obtained in 100 runs
reduces significantly as the sample size increases, indicating that the stability of the
misclassification rate depends on the sample size. In the case MS3 with MAXDEV,
average separation values are in the interval 9.5− 13.1, for LDA misclassification rates
between 0 and 40 %.

To examine whether the average separation values are more stable (less dispersed
around its mean value) for each offset than the misclassification rate in all three sample
size cases, the coefficient of variation will be computed for both statistics. Table 8.10
contains the results for the CV, standard deviation and mean values for the error bars
corresponding to each of the two statistics for each offset, in all three sample size cases.
As in all previous MS cases, the CV of the misclassification rate increases monotonically
as the offsets increase, although for large sample sizes this increase is far less rapid,
with the CV values being considerably smaller than in the case S100. The average
separation is far less affected by the sample size, as although a decrease is observed
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Figure 8.19: Visualisation of the LDA boundaries for the two artificial data sets in the case MS3
(MAXDEV). The data corresponds to the first two PCs for LDA. The reference and
test data points are depicted in brown and blue respectively.

in its CV values for large sample sizes, this decrease is not nearly as large as in the
case of the misclassification rate. However, the CV values of the average separation are
inconsistent, since their increase or decrease do not depend much on the offsets in all
three sample size cases. This is something that occurs in all MS cases with MAXDEV
so far, whereas in the case MS244 the CV of average separation decreases far more
consistently as the offsets increase. Therefore, it is clear that the average separation is
affected considerably by the number of mean-shifted variables, with respect to the trend
of the CV to decrease monotonically, and not the actual CV values, which are fairly
consistent (very slightly decreasing) as the number of mean-shifted variables decreases.
These facts are expected to be consistent also in the case MS1 using the MAXDEV
method of selecting the mean-shifted variables. Comparing the CV results in Tables
8.3, 8.6, 8.8 and 8.10, it can be seen that the CV of the misclassification rate increases
considerably in all sample size cases, as the number of variables decreases, up to but
not including the MS3 case, where the CV values decrease again closely to those of the
case MS244. Clearly, the number of mean-shifted variables affects the CV values of the
error bars for the misclassification rate, with a number of mean-shifted variables using
method MAXDEV, in the range 20− 3 being the point at which the CV values start to
decrease again towards those of MS244, independently of the sample size and the offsets.
This is not true regarding the CV values of the average separation, as in this case the
CV values in all selected subsets of mean-shifted variables (with the exception of the
case MS244 where the CV values decreasing monotonically as the offsets increase), differ
very slightly and in general, do not seem to be dependent on the offsets. It is clear that
the number of mean-shifted variables affects mainly the misclassification rate, whereas
the sample size affects both statistics in approximately equal measure.

The requirement for PCA to discriminate between the two data sets with a misclas-
sification rate of 1 % or less is an approximate seven-fold increase in the means of the 3
variables selected by MAXDEV (seen in Figure 8.18). This is clearly not acceptable as
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(c) S1000

Figure 8.20: Graphical representation of the relation among LDA misclassification rates, average
separation and offset in the case MS3 applying the MAXDEV method. The blue lines
represent the mean values of each statistic for each offset in the selected offset range.
The offsets are the multiplicative factors on the original scale of the data. The vertical
error bars are such that the top and bottom of a bar correspond to the maximum and
minimum statistic value at the respective offset. The statistics values are the average
values in 100 runs of the experiment. The two average separation plots in each sample
size case are drawn using the same range of values for the average separation.
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Table 8.10: Coefficient of variation results for case MS3 using method MAXDEV, of the LDA
misclassification rates and average separation values in 100 runs of the experiment.

S100
Offset 2.46 2.72 3.00 3.32 3.67 4.06
Error Rate (CV) 16.20 15.89 20.68 24.09 21.77 29.60
Error Rate (StDev) 4.19 3.50 3.57 3.42 2.41 2.39
Error Rate (Mean) 25.89 22.05 17.27 14.20 11.07 8.06
Average Separation (CV) 5.24 4.98 4.64 5.04 4.72 4.40
Average Separation (StDev) 0.59 0.56 0.53 0.58 0.54 0.51
Average Separation (Mean) 11.19 11.28 11.33 11.41 11.47 11.48

Offset 4.48 4.95 5.47 6.05 6.69 7.39
Error Rate (CV) 33.98 41.50 51.27 59.92 84.30 128.15
Error Rate (StDev) 1.86 1.77 1.44 0.99 0.92 0.67
Error Rate (Mean) 5.47 4.25 2.80 1.66 1.09 0.52
Average Separation (CV) 5.86 4.49 4.16 4.70 3.96 4.56
Average Separation (StDev) 0.68 0.52 0.48 0.55 0.47 0.55
Average Separation (Mean) 11.55 11.59 11.60 11.72 11.85 11.95

S500
Offset 2.46 2.72 3.00 3.32 3.67 4.06
Error Rate (CV) 6.87 6.64 7.71 11.14 11.18 13.38
Error Rate (StDev) 1.80 1.43 1.37 1.57 1.21 1.07
Error Rate (Mean) 26.16 21.57 17.72 14.07 10.79 8.02
Average Separation (CV) 2.10 2.08 2.03 2.08 2.09 2.09
Average Separation (StDev) 0.24 0.23 0.23 0.24 0.24 0.24
Average Separation (Mean) 11.24 11.29 11.34 11.34 11.44 11.51

Offset 4.48 4.95 5.47 6.05 6.69 7.39
Error Rate (CV) 15.67 18.10 21.16 26.80 34.59 36.71
Error Rate (StDev) 0.91 0.72 0.62 0.52 0.43 0.29
Error Rate (Mean) 5.82 3.95 2.92 1.94 1.24 0.78
Average Separation (CV) 2.47 1.90 2.03 2.29 1.93 2.02
Average Separation (StDev) 0.29 0.22 0.24 0.27 0.23 0.24
Average Separation (Mean) 11.56 11.64 11.67 11.76 11.85 11.90

S1000
Offset 2.59 2.86 3.16 3.49 3.86 4.26
Error Rate (CV) 5.18 5.52 7.21 7.14 8.15 10.20
Error Rate (StDev) 1.24 1.09 1.15 0.89 0.76 0.70
Error Rate (Mean) 23.85 19.79 15.96 12.43 9.32 6.86
Average Separation (CV) 1.38 1.45 1.55 1.51 1.56 1.76
Average Separation (StDev) 0.15 0.16 0.18 0.17 0.18 0.20
Average Separation (Mean) 11.23 11.30 11.37 11.43 11.48 11.51

Offset 4.71 5.21 5.75 6.36 7.03 7.77
Error Rate (CV) 11.36 13.29 15.57 20.64 24.45 30.01
Error Rate (StDev) 0.56 0.45 0.37 0.31 0.25 0.18
Error Rate (Mean) 4.93 3.41 2.35 1.48 1.02 0.60
Average Separation (CV) 1.50 1.50 1.26 1.62 1.39 1.18
Average Separation (StDev) 0.17 0.18 0.15 0.19 0.16 0.14
Average Separation (Mean) 11.61 11.65 11.70 11.77 11.88 11.89

these are very big differences noticeable by eye when plotting the data, therefore redu-
cing the number of mean-shifted variables from 244 to 3 using the MAXDEV method
results in the size of the offsets required for separation of the two data sets being not
acceptable.
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Case MS1

The mean-shifting procedure for case MS1, with S500 and offset 40.45 (corresponding
to a misclassification rate of ≈ 0 %), can be seen in Figure 8.21. The variable selected
for illustration of the mean-shifting was at 5.78 ppm with standard deviation 0.876

(Table A.1). Experiments using offsets in the range 4.48−49.40 in all three sample size
19
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Figure 8.21: Illustration of the mean-shifting procedure in the case MS1 with S500 and offset 40.45
(MAXDEV). The brown and blue lines are the mean spectra of the reference and test
data set respectively. The mean-shifted variables correspond to the points in the
spectra for which the blue line is above the brown. The mean-shifted variable is at
5.78 ppm.

cases showed that the two data sets are linearly separated for offsets above 40.45, with
LDA misclassification rates below 1% and average separation value of ≈ 12. Table 8.11
shows the results of the experiments in the cases S100, S500 and S1000 respectively,
for offsets in the range 4.48 − 49.40. From Table 8.11, it can be seen that offsets in
the range 4.48− 40.45 are required in all sample size cases, to achieve misclassification
rates of ≈ 25 − 0.5 % respectively. The average separation between the two data sets
is ≈ 11.3 for a 20 % misclassification rate and the two data sets are almost linearly
separable when the average separation is ≈ 12 , with misclassification rate less than
1 % as expected. In general, there are no great differences among the three sample size
cases with respect to the misclassification rate, average separation and offsets required
to obtain those statistics. However, there are noticeable differences in the required
offsets from the previous cases, as in case MS1 they are much higher than for the rest
of the cases.

An illustration of how the mean-shifting procedure affects the capability of PCA to
discriminate between the two data sets in this case can be seen in Figure 8.22, for offsets
5.99, 10.07 and 31.50 which correspond to 20 %, 10 % and 1 % misclassification rates
respectively.

The relation among misclassification rates, average separation and offsets in the case
MS1 in 100 runs, is shown in Figure 8.23. In the case MS1 with MAXDEV, average
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Table 8.11: Average LDA misclassification rates and average separation values for the case MS1,
applying the MAXDEV method in 100 runs of the experiment.

S100
Offset 4.48 5.47 6.69 8.17 9.97 12.18
Error Rate (%) 26.59 22.53 17.25 13.90 10.51 7.40
Average Separation 11.18 11.27 11.33 11.41 11.49 11.51

Offset 14.88 18.17 22.20 27.11 33.12 40.45
Error Rate (%) 4.87 3.64 2.11 1.16 0.59 0.35
Average Separation 11.59 11.64 11.66 11.79 11.94 12.05

S500
Offset 4.48 5.47 6.69 8.17 9.97 12.18
Error Rate (%) 26.59 22.08 17.89 13.89 10.18 7.31
Average Separation 11.24 11.29 11.29 11.40 11.48 11.54

Offset 14.88 18.17 22.20 27.11 33.12 40.45
Error Rate (%) 5.11 3.56 2.25 1.54 0.88 0.52
Average Separation 11.64 11.73 11.71 11.83 11.92 11.99

S1000
Offset 5.47 6.69 8.17 9.97 12.18 14.88
Error Rate (%) 22.34 17.88 13.82 10.16 7.36 5.07
Average Separation 11.29 11.31 11.36 11.44 11.53 11.62

Offset 18.17 22.20 27.11 33.12 40.45 49.40
Error Rate (%) 3.42 2.26 1.44 0.84 0.48 0.31
Average Separation 11.66 11.75 11.85 11.92 12.03 12.07

separation values are in the interval 9.5− 13.1, for LDA misclassification rates between
0 and 40 %, similarly to the MS3 case. As in the previous cases, the sample size
does not play any role in the offsets in case MS1, as the required offsets to achieve
misclassification rates of 0− 20 % are similar in all three sample size cases. The range
of values of the two statistics obtained in 100 runs reduces significantly as the sample
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Figure 8.22: Visualisation of the LDA boundaries for the two artificial data sets in the case MS1
(MAXDEV). The data corresponds to the first two PCs for LDA. The reference and
test data points are depicted in brown and blue respectively.
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Figure 8.23: Graphical representation of the relation among LDA misclassification rates, average
separation and offsets in the case MS1 applying the MAXDEV method. The blue lines
represent the mean values of each statistic for each offset in the selected offset range.
The offsets are the multiplicative factors on the original scale of the data. The vertical
error bars are such that the top and bottom of a bar correspond to the maximum and
minimum statistic value at the respective offset. The statistics values are the average
values in 100 runs of the experiment. The two average separation plots in each sample
size case are drawn using the same range of values for the average separation.
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size increases, indicating that the stability of the misclassification rates depends on the
sample size.

Table 8.12 gives the results for the CV, standard deviation and mean of the error
bars for the two statistics in case MS1 for all three sample sizes. The CV of the

Table 8.12: Coefficient of variation results for case MS1 using method MAXDEV, of the LDA
misclassification rates and average separation values in 100 runs of the experiment.

S100
Offset 4.48 5.47 6.69 8.17 9.97 12.18
Error Rate (CV) 15.38 14.94 19.94 23.87 21.32 31.18
Error Rate (StDev) 4.09 3.37 3.44 3.32 2.24 2.31
Error Rate (Mean) 26.59 22.53 17.25 13.90 10.51 7.40
Average Separation (CV) 5.23 4.97 4.64 5.02 4.69 4.38
Average Separation (StDev) 0.59 0.56 0.53 0.57 0.54 0.50
Average Separation (Mean) 11.19 11.28 11.34 11.42 11.50 11.51

Offset 14.88 18.17 22.20 27.11 33.12 40.45
Error Rate (CV) 36.34 41.74 59.62 73.72 119.47 142.86
Error Rate (StDev) 1.77 1.52 1.26 0.86 0.70 0.50
Error Rate (Mean) 4.88 3.64 2.12 1.17 0.59 0.35
Average Separation (CV) 5.83 4.45 4.09 4.65 3.90 4.51
Average Separation (StDev) 0.68 0.52 0.48 0.55 0.47 0.54
Average Separation (Mean) 11.59 11.64 11.66 11.80 11.94 12.06

S500
Offset 4.48 5.47 6.69 8.17 9.97 12.18
Error Rate (CV) 6.45 7.55 8.61 8.35 10.55 14.28
Error Rate (StDev) 1.72 1.67 1.54 1.16 1.07 1.04
Error Rate (Mean) 26.59 22.09 17.89 13.89 10.19 7.31
Average Separation (CV) 2.17 1.93 2.08 1.91 2.16 2.36
Average Separation (StDev) 0.24 0.22 0.23 0.22 0.25 0.27
Average Separation (Mean) 11.24 11.29 11.30 11.41 11.49 11.54

Offset 14.88 18.17 22.20 27.11 33.12 40.45
Error Rate (CV) 15.83 17.54 25.12 26.68 36.28 44.77
Error Rate (StDev) 0.81 0.63 0.57 0.41 0.32 0.23
Error Rate (Mean) 5.11 3.56 2.25 1.55 0.89 0.52
Average Separation (CV) 2.23 1.97 2.17 2.10 2.21 2.16
Average Separation (StDev) 0.26 0.23 0.25 0.25 0.26 0.26
Average Separation (Mean) 11.65 11.74 11.72 11.84 11.92 11.99

S1000
Offset 5.47 6.69 8.17 9.97 12.18 14.88
Error Rate (CV) 4.90 5.27 5.95 7.48 10.47 10.45
Error Rate (StDev) 1.10 0.94 0.82 0.76 0.77 0.53
Error Rate (Mean) 22.35 17.89 13.83 10.16 7.36 5.08
Average Separation (CV) 1.61 1.53 1.46 1.48 1.45 1.25
Average Separation (StDev) 0.18 0.17 0.17 0.17 0.17 0.15
Average Separation (Mean) 11.29 11.32 11.36 11.45 11.54 11.62

Offset 18.17 22.20 27.11 33.12 40.45 49.40
Error Rate (CV) 12.42 15.21 20.85 26.93 32.93 37.49
Error Rate (StDev) 0.43 0.35 0.30 0.23 0.16 0.12
Error Rate (Mean) 3.43 2.27 1.45 0.85 0.49 0.31
Average Separation (CV) 1.51 1.59 1.54 1.47 1.38 1.35
Average Separation (StDev) 0.18 0.19 0.18 0.17 0.17 0.16
Average Separation (Mean) 11.66 11.76 11.86 11.92 12.03 12.07

misclassification rate increases as the offsets increase, with the sample size affecting the
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CV values such that, independently of the offsets, the larger the sample size is, the
lower the CV values are. The most consistent behaviour (monotonic increase) of the
CV values is observed in the S1000 case. The CV values for the average separation are
consistent for all three sample sizes, being in general quite similar to those of the other
MS cases using MAXDEV, but lower than those of MS244. Their pattern is inconsistent
with respect to decreasing or increasing, independently of the sample size, which shows
that they depend only slightly (if at all), on the offsets. Thus, the CV of the error
bars for both statistics are affected by the sample size, but only the misclassification
rate depends heavily on the offsets. In addition, the error bars of the misclassification
rate depend more heavily on the number of mean-shifted variables than the average
separation, as the 5 CV tables for all MS cases seen so far indicate. Therefore, the
findings of MS3 are confirmed by those of MS1 for the CV values of the two statistics.

PCA can discriminate between the two data sets with a misclassification rate of 1 %

or less, if there is an approximate thirty-fold increase in the mean of the variable with
the highest standard deviation. This is not acceptable, as in the MS3 case, therefore re-
ducing the number of mean-shifted variables from 244 to 1 using the MAXDEV method
results in data sets that cannot be linearly separated. In other words, small changes in
only one variable are unlikely to be detected through using PCA only.

A summary of the misclassification rate percentages with regard to the required
offsets to achieve those rates for all four variable cases can be seen in Table 8.13. This

Table 8.13: Summary results (offsets) for the LDA misclassification rates in all MS cases for
MAXDEV. The results are for 100 runs of the simulation algorithm and the offsets
correspond to multiplicative factors on the original scale of the data. An offset is the
value above which a selected misclassification rate percentage is positively achieved,
e.g. in case MS20 with S500 at most 10% of the samples are misclassified when the
offset is 1.61 or above.

Subset of
Variables

Sample
Size

Misclassification Rate

20% 15% 10% 5% 1%

MS120
S100 1.27 1.29 1.32 1.36 1.44
S500 1.27 1.29 1.32 1.37 1.44
S1000 1.27 1.29 1.32 1.37 1.44

MS20
S100 1.52 1.56 1.61 1.69 1.85
S500 1.52 1.56 1.61 1.69 1.85
S1000 1.52 1.56 1.61 1.69 1.85

MS3
S100 2.82 3.18 3.78 4.66 6.61
S500 2.82 3.22 3.74 4.66 6.68
S1000 2.82 3.22 3.74 4.66 6.68

MS1
S100 5.92 7.61 10.07 15.02 28.50
S500 5.98 7.61 10.07 15.02 31.50
S1000 5.98 7.61 10.07 15.02 31.50
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summary table shows that for PCA to discriminate between the two data sets with a
misclassification rate of 1 % or less requires mean-shifting between 20 and 200 variables,
as in case MS20 the increase of the selected variables’ means is 100% and in case MS120
50%. Mean-shifting subsets of variables of number less than 20 increases significantly
the required offsets to a practically infeasible size, e.g. a seven-fold increase in the case
MS3, a thirty-fold increase in the case MS1 and a sixteen-fold increase in MS244. The
sample size is not important in any of the cases, as there are no differences among the
results for S100, S500 and S1000 in all cases for MAXDEV. The average separation
increases as the number of mean-shifted variables increases, as the results of the five
MS cases indicate.

8.4.4 Minimum Deviation (MINDEV)

Introduction

As described in Subsection 8.4.1, here the main findings are stated briefly, and the
results are given in the appendices. Experiments performed in the case MAXDEV
showed that in the cases MS3 and MS1, independently of the sample size, PCA cannot
discriminate between the two data sets and the LDA algorithm cannot separate linearly
the two data sets, as the required offsets for an LDA misclassification rate of less than
1% are larger than 7 and 28.5 in cases MS3 and MS1 respectively. In this section,
another method, MINDEV, for selecting the variables to mean-shift is used in the
simulation experiments. This method selects a specific subset of variables for mean-
shifting according to increasing order of size of their standard deviation. Similarly to
MAXDEV, it will be applied to the simulation experiments for subsets of 120, 20, 3
and 1 variables, and for all three sample size cases, S100, S500 and S1000. The lists
of mean-shifted variables and their standard deviation for all MS cases can be seen
in Table A.2 in increasing order of standard deviation. The three variables with the
smallest standard deviations in increasing order are at 4.98, 4.94 and 5.02 ppm with
standard deviations 0.584, 0.585 and 0.592 respectively.

MINDEV Simulation Results

Figure 8.24 ilustrates the mean-shifting effect in the four MS cases for offsets 1.55, 2.27

4.95 and 12.18 respectively. In general, the sample size does not play any role in the
results of the four MS cases, as the offsets to achieve 1 − 20 % misclassification rates
are quite similar for all three sample sizes (Tables B.1 - B.4). However, it is clear
that the number of mean-shifted variables is important for the capability of PCA to
discriminate between the two sets, since for instance an offset of 1.44 is required to
achieve a misclassification rate of 1 % in case MS120, whereas in case MS1 the same
misclassification rate is at an offset of approximately 10. As Figures B.2 - B.5 show, the
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Figure 8.24: Illustration of the mean-shifting procedure for MINDEV in all MS cases with S500.
The brown and blue lines are the mean spectra of the reference and test data set
respectively. The mean-shifted variables correspond to the points in the spectra for
which the blue line is above the brown. The offsets are such that the misclassification
rate is ≈ 0 % in all four MS cases.
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two statistics seem to be increasingly less dispersed when the number of mean-shifted
variables decreases.

Tables B.5 -B.8 indicate that the coefficient of variation for the two statistics depends
on the sample size, but not on the number of mean-shifted variables. However, only
the CV of the misclassification rate depends on the offsets. The dispersion (CV) of
the average separation is much smaller and less dependent on the number of mean-
shifted variables than that of the misclassification rate for all MS cases and sample
sizes. Considering case MS244, MAXDEV and MINDEV, the CVs of the two statistics
obtained in all MS cases using MINDEV are smaller in case MS244 than for MAXDEV
and MINDEV, although in the case of average separation, for small offsets in all MS
cases using MAXDEV and MINDEV, the CVs of the statistics are smaller than those
of MS244.

Figure B.1 illustrates the PC scores plots superimposed with the LDA boundaries in
the four MS cases for 20 %, 10 % and 1 % misclassification rates with sample size S500.

A summary of the misclassification rate percentages with regard to the required
offsets to achieve those rates for the four variable cases, MS120, MS20, MS3 and MS1,
can be seen in Table 8.14. This table shows that in the case of MINDEV, independently
of the sample size, it is feasible for PCA to discriminate between the two data sets in
the cases MS120 and MS20, at 1% error rate, with an approximately 44 % and 85 %

increase of the means of the selected variables. In addition, an increase of the selected
variables’ means of approximately 400 % (four-fold) and 1000 % (ten-fold) in cases
MS3 and MS1 respectively is required, which is clearly not feasible. Therefore, PCA
can discriminate between the two data sets in the case of MINDEV, only if at least
10 % of the variables in the data set are mean-shifted.

8.4.5 Maximum Mean (MAXMEAN)

Introduction

Previous results showed that at least 10 % of the variables need to be mean-shifted
in order to allow PCA to discriminate between the two data sets. This section covers
the simulation experiments using MAXMEAN. That is, a specific subset of variables to
mean-shift is chosen according to decreasing order of their size of mean. This will be
applied in the usual MS and S cases seen so far. The lists of mean-shifted variables and
their standard deviations for all MS cases can be seen in Table A.3 in decreasing order
of their mean. The three variables with the largest means in decreasing order are 1.30,
1.26 and 0.86 with means 24.05, 24.04 and 23.70 respectively.
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MAXMEAN Simulation Results

The mean-shifting procedure for the four MS cases, with S500 and offsets 1.55, 2.27,
4.95 and 16.50 (corresponding to a misclassification rate of ≈ 0 %), can be seen in Figure
8.25.

Tables B.9 - B.12 show that, similarly to the previous two methods, only the number
of variables to mean-shift plays any role in the offsets required for linear separation
of the two data sets. The average separation values are affected, as the smaller the
number of mean-shifted variables is, the smaller the value of average separation is in
an experiment, e.g. the average separation values in cases MS120 and MS1, with S500
and misclassification rate 1 % are 11.89 and 11.38 respectively. The PC scores plots
and the LDA boundaries in the four MS cases for 20 %, 10 % and 1 % misclassification
rates with S500 can be seen in Figure B.6. Higher instability in the values of the two
statistics is observed in MS cases of smaller numbers of variables. Especially in the
case of the misclassification rate this fact is more evident than in the average separation
(Figures B.7 - B.10).

The coefficient of variation for the two statistics, as can be seen in Tables B.13 -
B.16, confirms that the average separation is more stable than the misclassification
rate in all three sample size cases. Both statistics are affected by the sample size
in all MS cases. As with the previous cases, MS244, MAXDEV and MINDEV, the
CV of the misclassification rate is clearly affected by the offsets in all MS cases using
MAXMEAN, whereas the CV of the average separation is independent of the offsets,
for all MS cases and sample sizes. The dispersion of average separation is consistently
much smaller and is affected far less by the number of mean-shifted variables, than that
of the misclassification rate. In general, the CV of the misclassification rate is larger for
MAXDEV and MINDEV, but smaller in case MS244, than that of MAXMEAN, while
in the case of average separation, there is practically no difference in its value, between
the methods used to select the variables to mean-shift.

In summary, from Table 8.14 it can be seen that similarly to the previous methods,
using MAXMEAN, at least 10 % of the variables in the data set need to be mean-shifted
to achieve linear separation of the two data sets, independently of the sample size. More
specifically, PCA can discriminate between the two sets in cases MS120 and MS20 with
an approximate 44 % and 85 % increase, respectively, of the means of the variables
selected by MAXMEAN (which is feasible), whereas a four-fold and eleven-fold increase
is required in the cases MS3 and MS1 respectively (which is not practically feasible).

8.5 Conclusions

In the previous sections of this chapter a series of simulation experiments was performed
to investigate the capability of PCA to discriminate between two groups of points,
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Figure 8.25: Illustration of the mean-shifting procedure for MAXMEAN in all MS cases with S500.
The brown and blue lines are the mean spectra of the reference and test data set
respectively. The mean-shifted variables correspond to the points in the spectra for
which the blue line is above the brown. The offsets are such that the misclassification
rate is ≈ 0 % in all four MS cases.
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a reference and a test data set. Experiments included the mean-shifting of selected
subsets of variables, comprised of 244, 120, 20, 3 and 1 variables, using three different
methods of selecting these variables, namely MAXDEV, MINDEV and MAXMEAN. In
addition, three sample size cases were examined, S100, S500 and S1000, to investigate
the possibility of the sample size of the two artificially generated data sets playing any
role in the discriminating ability of PCA. Two different statistics were used to assess
the discriminating performance of the simulation algorithm, the LDA misclassification
rate and the average separation of two distributions of points. A summary of the results
obtained from all 39 experiments for all subsets of variables, sample sizes and selection
methods can be seen in Tables 8.14 and 8.15 for the required offsets and the average
separation of the two data sets with the corresponding offsets respectively.

From Table 8.14 and the results in the previous sections, the following can be con-
cluded:

• The discriminating ability of PCA depends on the number of variables that are
mean-shifted. In the cases MS120 and MS20, the required offsets for linear separ-
ability of the two artificial data sets are less than 2, meaning that the increase
in the means of the selected variables is at most two-fold, and such differences
may occur in practice. In general, for any subset of variables of size above 120
or below 20, the required offsets are between ≈ 3.93 and 31.50, which are clearly
not feasible, as the structure of the test data set is then no longer similar to the
structure of the original epilepsy data. This is confirmed in cases MS244, MS3
and MS1 where PCA cannot discriminate between the two data sets which do
retain the original epilepsy data structure.

• The sample size of the two data sets does not affect the results of the simulation
experiments concerning the misclassification rate, as the offsets are similar in all
MS cases for the three sample size cases chosen (S100, S500 and S1000). Sample
size affects only the stability of the misclassification rate, as indicated by the
misclassification rate vs offsets plots in all the experiments, since the range of
values of the misclassification rate in all MS cases is considerably smaller in cases
S500 and S1000 than in case S100 in 100 runs of the experiments. This means
that in metabonomics studies the sample size does not really play any important
role in the results, therefore it is of little value to collect data on 500 people as
opposed to 200, unless subgroup analysis is required.

• Concerning the three methods used to select the variables, MAXDEV, MINDEV
and MAXMEAN, differences in the offsets were observed only in experiments
involving the cases MS3 and MS1. More specifically, in the cases MS244, MS120
and MS20, the offsets were not affected by the method used, as in all these
experiments and independently of the sample size of the two data sets, they are
similar for all five levels of misclassification rate (20, 15, 10, 5 and 1%). However,
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in the case MS3 and even more in MS1, it is clear that the way the variables
were selected affects the offsets required to achieve the misclassification rates in
Table 8.14. That is, method MINDEV results in the smallest offsets among the
three methods used in the experiments, which is not surprising as the variation
using this method is smaller. The differences in offsets are more noticeable for
misclassification rates of 10% and below. As expected due to the largest amount
of variation, the worst method in cases MS3 and MS1 is MAXDEV (resulting in
considerably larger offsets, especially in case MS1, than the other two methods),
while the offsets for MAXMEAN are quite close to those of MINDEV. It should be
noted though, that these three methods were only convenient ways of selecting the
variables and do not have any medical or physical basis for their choice. That is, a
random choice could also have been made instead. From the results for the three
methods used to select the variables, it can be said that in MS cases with less than
20 mean-shifted variables, the lack of standard deviation in the variables, affects
the offsets, being the smallest among all three methods. That is, in MINDEV, the
fewer the mean-shifted variables are, the smallest the offsets required to achieve
the selected levels of misclassification rate are. Using MAXMEAN results in these
MS cases with offsets being approximately the average value of the offsets in the
other two methods. That can be explained, since the subset of mean-shifted
variables obtained by using MAXMEAN, contains both variables with high and
medium or low standard deviation, as it can be confirmed by Tables A.1, A.2 and
A.3. In general, large standard deviation in the variables negatively affects the
offsets, as the results of the MAXDEV experiments indicate.

From Table 8.15 and the results in the previous sections, the following can be concluded:

• In general, the average separation statistic is very stable in the simulation exper-
iments, as there are no great differences in its values among the various variable
cases, sample size cases and methods used to select the variables. In Table 8.15,
case MS244 is measured on a different scale than the rest of the cases. In the
other four MS cases the average separation values are fairly consistent, in the
range 11.19−11.91, for offsets in the range 20−1% respectively, independently of
the sample size. As expected, the smaller the misclassification rate is, the higher
the average separation of the two data sets is. However from the average separ-
ation vs offset plots, the increase of the average separation is smooth only in the
case MS244, whereas in the rest of the MS cases it does not increase smoothly,
as the graphical representation of the relation between average separation and
offsets is not a curve and does not monotonically increase for each offset.

• The coefficient of variation of the average separation for each offset in 100 runs
is far smaller than that of the misclassification rate and it is affected by the
sample size of the two data sets. More specifically, the higher the sample size
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is, the smaller the width of error bars variation (and the coefficient of variation)
of the average separation at each offset is, therefore the more stable the average
separation is. The last fact is also true for the misclassification rate, in which the
CV is also affected considerably by the sample size.

Row-scaling the Data

As was discussed in Section 8.3, it is possible to add an extra step, namely the row-
scaling to a constant total of the original epilepsy data matrix, in the pre-processing of
the original epilepsy data. This step would be carried out before log-transforming the
elements of the epilepsy data matrix. As all the values of the data matrix after row-
scaling are in the range 0 − 1, log-transforming the data causes all these values to be
negative. This does not affect the execution of the simulation algorithm and the results
of the analyses for all MS cases, apart from MS244, for which it is not appropriate to
row-scale the data (an illustration of this can be seen in Figure 8.5), as seen in Table
8.16.

Comparing the results of the simulation experiments in Tables 8.14 and 8.16, it is
clear that although the row-scaled data results are slightly better (in most cases the
required offsets are slightly smaller than in the raw data), they are not small enough to
be considered to improve the situation with cases MS3 and MS1. For example, in the
case MS1 with S500, an offset of 24.05 is required to achieve 1% LDA misclassification
rate in the row-scaled data, whereas in the raw data the same experiment requires an
offset of 31.50. Despite the row-scaled offset being smaller than the raw offset, it is still
very large and not feasible in practice. As this situation is similar in almost all the
simulation experiments, the row-scaled data does not offer a clear improvement of the
results to those of the raw data, and therefore it is not a preferred pre-treatment step
for the raw data.

The simulation experiments in this chapter showed that to design an experiment
based on PCA as the tool for discrimination of the data groups, large samples are not
necessary, and that PCA will not be very useful unless there are a lot of variables
changing in the ways mentioned previously. Other unsupervised techniques such as
SOM could be more capable of discriminating between the groups if only a few variables
change. With regard to the implications for the design and analysis of the epilepsy data
that was used in the experiments,

• it is clear that there are not enough non-responder patients

• no differences were detected in a large number of variables, suggesting that here
are no major differences between responders and non-responders.
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Table 8.14: Summary results for the offsets required to achieve 20%, 15%, 10%, 5% and 1% mis-
classification rate for all variable methods, MS and S cases. The results are over 100
runs of the simulation algorithm and on the original scale of the data. An offset is the
value above which a selected misclassification rate percentage is positively achieved,
e.g in the case MS20 with S100 and MAXDEV, at most 10% of the samples are
misclassified when the offset is 1.61 or above.

Subset of
Variables

Sample
Size

Selection
Method

Misclasssification Rate

20% 15% 10% 5% 1%

MS244
S100 2.85 3.49 4.71 7.61 15.64
S500 2.85 3.56 4.75 7.69 16.11
S1000 2.85 3.56 4.80 7.69 16.60

MS120

S100
MAXDEV 1.27 1.29 1.32 1.36 1.44
MINDEV 1.25 1.28 1.30 1.36 1.43
MAXMEAN 1.25 1.28 1.30 1.36 1.43

S500
MAXDEV 1.27 1.29 1.32 1.37 1.44
MINDEV 1.25 1.28 1.32 1.36 1.44
MAXMEAN 1.25 1.28 1.32 1.36 1.44

S1000
MAXDEV 1.27 1.29 1.32 1.37 1.44
MINDEV 1.25 1.28 1.32 1.36 1.44
MAXMEAN 1.25 1.28 1.32 1.36 1.44

MS20

S100
MAXDEV 1.52 1.56 1.61 1.69 1.85
MINDEV 1.53 1.58 1.63 1.71 1.85
MAXMEAN 1.52 1.56 1.61 1.69 1.84

S500
MAXDEV 1.52 1.56 1.61 1.69 1.85
MINDEV 1.53 1.58 1.63 1.71 1.85
MAXMEAN 1.53 1.56 1.61 1.69 1.85

S1000
MAXDEV 1.52 1.56 1.61 1.69 1.85
MINDEV 1.53 1.58 1.63 1.71 1.85
MAXMEAN 1.52 1.56 1.61 1.69 1.85

MS3

S100
MAXDEV 2.82 3.18 3.78 4.66 6.61
MINDEV 3.00 3.12 3.25 3.49 3.93
MAXMEAN 2.88 3.18 3.22 3.49 4.17

S500
MAXDEV 2.82 3.22 3.74 4.66 6.68
MINDEV 3.00 3.12 3.25 3.49 3.93
MAXMEAN 2.88 3.15 3.18 3.49 4.17

S1000
MAXDEV 2.82 3.22 3.74 4.66 6.68
MINDEV 3.00 3.12 3.25 3.49 3.93
MAXMEAN 2.88 3.00 3.18 3.45 4.17

MS1

S100
MAXDEV 5.92 7.61 10.07 15.02 28.50
MINDEV 7.02 7.38 7.76 8.41 9.97
MAXMEAN 6.35 6.82 7.38 8.58 11.02

S500
MAXDEV 5.98 7.61 10.07 15.02 31.50
MINDEV 7.09 7.38 7.61 8.16 10.07
MAXMEAN 6.17 6.61 7.09 8.24 11.02

S1000
MAXDEV 5.98 7.61 10.07 15.02 31.50
MINDEV 7.09 7.38 7.69 8.08 9.02
MAXMEAN 6.17 6.55 7.09 8.16 11.02
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Table 8.15: Summary results for the average separation of the two data sets when the misclassi-
fication rate is 20%, 15%, 10%, 5% and 1% for all variable methods, MS and S cases.
The results are over 100 runs of the simulation algorithm.

Subset of
Variables

Sample
Size

Selection
Method

Misclasssification Rate

20% 15% 10% 5% 1%

MS244
S100 17.89 20.98 25.06 31.13 43.97
S500 18.04 21.03 25.22 31.69 45.27
S1000 17.97 20.95 25.11 32.89 45.23

MS120

S100
MAXDEV 11.38 11.40 11.57 11.65 11.80
MINDEV 11.33 11.46 11.52 11.69 11.86
MAXMEAN 11.42 11.41 11.55 11.67 11.87

S500
MAXDEV 11.32 11.44 11.53 11.69 11.91
MINDEV 11.37 11.45 11.50 11.67 11.89
MAXMEAN 11.38 11.46 11.51 11.62 11.88

S1000
MAXDEV 11.34 11.43 11.54 11.62 11.89
MINDEV 11.38 11.44 11.50 11.64 11.88
MAXMEAN 11.38 11.42 11.50 11.62 11.89

MS20

S100
MAXDEV 11.27 11.33 11.39 11.45 11.54
MINDEV 11.22 11.31 11.38 11.43 11.58
MAXMEAN 11.48 11.23 11.35 11.40 11.55

S500
MAXDEV 11.29 11.30 11.35 11.43 11.59
MINDEV 11.26 11.28 11.35 11.45 11.59
MAXMEAN 11.28 11.30 11.34 11.42 11.56

S1000
MAXDEV 11.23 11.29 11.35 11.45 11.64
MINDEV 11.29 11.32 11.34 11.46 11.59
MAXMEAN 11.26 11.29 11.36 11.42 11.58

MS3

S100
MAXDEV 11.29 11.38 11.47 11.56 11.86
MINDEV 11.24 11.28 11.27 11.36 11.45
MAXMEAN 11.24 11.33 11.34 11.41 11.48

S500
MAXDEV 11.31 11.34 11.45 11.58 11.87
MINDEV 11.23 11.29 11.36 11.38 11.48
MAXMEAN 11.24 11.27 11.35 11.37 11.51

S1000
MAXDEV 11.29 11.38 11.46 11.60 11.87
MINDEV 11.23 11.26 11.32 11.37 11.46
MAXMEAN 11.23 11.28 11.30 11.38 11.48

MS1

S100
MAXDEV 11.30 11.39 11.49 11.58 11.82
MINDEV 11.19 11.25 11.34 11.32 11.41
MAXMEAN 11.23 11.23 11.36 11.41 11.49

S500
MAXDEV 11.29 11.38 11.48 11.64 11.90
MINDEV 11.25 11.29 11.28 11.31 11.38
MAXMEAN 11.26 11.24 11.26 11.37 11.42

S1000
MAXDEV 11.30 11.34 11.45 11.62 11.90
MINDEV 11.26 11.28 11.33 11.32 11.37
MAXMEAN 11.24 11.27 11.31 11.33 11.47
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Table 8.16: Summary results for the offsets required to achieve 20%, 15%, 10%, 5% and 1% mis-
classification rate for all variable methods, MS and S cases. The results are over 100
runs of the simulation algorithm and on the original scale of the data. The data are
ROW-SCALED and then LOG-TRANSFORMED. An offset is the value above which a
selected misclassification rate percentage is positively achieved, e.g. in the case MS120
with S1000 and MINDEV, at most 5% of the samples are misclassified when the offset
is 1.29 or above.

Subset of
Variables

Sample
Size

Selection
Method

Misclasssification Rate

20% 15% 10% 5% 1%

MS120

S100
MAXDEV 1.23 1.25 1.26 1.30 1.36
MINDEV 1.22 1.24 1.26 1.29 1.35
MAXMEAN 1.21 1.23 1.27 1.31 1.40

S500
MAXDEV 1.23 1.25 1.27 1.30 1.36
MINDEV 1.22 1.25 1.26 1.28 1.34
MAXMEAN 1.22 1.25 1.28 1.32 1.40

S1000
MAXDEV 1.23 1.25 1.27 1.30 1.36
MINDEV 1.23 1.25 1.26 1.29 1.35
MAXMEAN 1.22 1.25 1.28 1.33 1.41

MS20

S100
MAXDEV 1.43 1.52 1.62 1.75 2.01
MINDEV 1,45 1.48 1.51 1.55 1.63
MAXMEAN 1.34 1.39 1.47 1.57 1.74

S500
MAXDEV 1.44 1.52 1.62 1.76 2.07
MINDEV 1.46 1.49 1.52 1.55 1.62
MAXMEAN 1.35 1.41 1.47 1.58 1.78

S1000
MAXDEV 1.45 1.52 1.62 1.77 2.05
MINDEV 1.46 1.49 1.52 1.55 1.62
MAXMEAN 1.34 1.40 1.47 1.57 1.79

MS3

S100
MAXDEV 2.35 2.68 3.05 3.88 5.37
MINDEV 2.64 2.71 2.81 2.91 3.21
MAXMEAN 2.07 2.28 2.53 2.96 3.72

S500
MAXDEV 2.37 2.68 3.15 3.88 5.85
MINDEV 2.68 2.75 2.79 2.88 3.06
MAXMEAN 2.09 2.31 2.56 3.02 4.16

S1000
MAXDEV 2.37 2.68 3.16 3.89 5.85
MINDEV 2.69 2.74 2.80 2.88 3.06
MAXMEAN 2.09 2.30 2.56 3.01 4.16

MS1

S100
MAXDEV 5.47 6.81 8.88 12.61 22.30
MINDEV 5.33 5.61 5.83 6.28 7.29
MAXMEAN 3.78 4.41 5.30 6.85 8.94

S500
MAXDEV 5.48 7.09 8.62 12.80 24.03
MINDEV 5.46 5.66 5.80 6.14 6.82
MAXMEAN 3.86 4.45 5.45 7.47 19.69

S1000
MAXDEV 5.58 6.89 8.94 12.81 24.29
MINDEV 5.47 5.70 5.75 6.11 6.69
MAXMEAN 3.74 4.39 5.42 7.42 19.11
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Chapter 9

Conclusions and Further Work

9.1 Conclusions

This thesis covers a range of unsupervised multivariate statistical techniques, with the
aim of investigating the possibility that these methods can be useful in the exploratory
analysis of metabonomics data. For this purpose, a data set containing 122 patients with
epilepsy was used to compare the results of the analyses obtained by these techniques. A
review of NMR and MS, two important analytical techniques in metabonomics, was the
subject of Chapter 3, and detailed description of the available pre-processing and pre-
treatment techniques is given in Chapter 4. It was hoped that detailed analysis of these
data would allow the determination of blood serum metabolites which could discriminate
the patients between responders and non-responders to AEDs. This analysis involved a
novel comparison of a variety of statistical clustering techniques, and an assessment of
their suitability for the analysis of such NMR data. Commonly used methods included
PCA, HCA and k -means, whereas novel methods seldom used in this area included
methods such as MDS, Fuzzy clustering and SOM. In general, all these methods were
capable of identifying some structure in the epilepsy data, according to some patient
clinical characteristics. Finally, a simulation investigation was carried out to assess
the ability of PCA to identify structure under specific conditions such as data sets of
different sample sizes, for all clinical characteristics of the patients.

The data used for the analyses was generated by proton NMR spectroscopy and
before the application of any statistical method, the data was pre-processed (by an
NMR researcher) and pre-treated in ways such as row and column-scaling, as well as
element transformations of the data matrix. The original dimensions of the data (338)
were reduced to 144 (in the range 0.02−5.98 ppm). Various scaling and transformation
methods were investigated with the data at the end being row-scaled to a constant total
and column-scaled by mean-centring of the variables. Table 9.1 gives the results of the
comparison of two criteria, Normalised Entropy and the Gleason - Staelin statistic
using the correlation matrix, both described in detail in Chapter 5, in assessing the
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data suitability for PCA. It is clear that log-transforming the data affects negatively

Table 9.1: Comparison of scaling techniques using the original epilepsy data. The labels UN-
SCALED, ROW and LOG mean that the data are unscaled, are row-scaled to a constant
total and are natural log-transformed, respectively. The data contain the variables in
the spectral regions 5.98− 0.02 ppm.

Data Set Normalised Entropy Gleason - Staelin

UNSCALED 0.064 0.953
ROW 0.121 0.555
LOG, ROW 0.349 0.559

(increasing) the value of the Normalised Entropy, whereas the value of the Gleason -
Staelin statistic is approximately the same to that of the ROW data. Thus, the variables
are considerably more correlated, and consequently more suitable for PCA, in the row-
scaled data than in the log-transformed data. In addition, the percentage of the total
variance explained by the first three PCs, for the three data sets mentioned previously,
can be seen in Table 9.2. In the ROW case, only three PCs are required to explain

Table 9.2: Proportions of the total variance explained by the first three principal components. The
numbers in parentheses () are the cumulative proportions. The labels UNSCALED,
ROW and LOG mean that the data are unscaled, are row-scaled to a constant total and
are natural log-transformed , respectively. The data contain the variables in the spectral
regions 5.98− 0.02 ppm.

Data Set PC1 PC2 PC3

UNSCALED 93.30% (93.30%) 5.49% (98.79%) 0.68% (99.48%)
ROW 88.30% (88.30%) 6.64% (94.94%) 1.27% (96.22%)
LOG, ROW 43.55% (43.55%) 29.06% (72.61%) 13.40% (86.02%)

approximately 96% of the total variation in the data, while in the LOG case more than
three PCs are clearly required to explain the same percentage of variation in the data.
This makes the pattern recognition procedure more difficult, as at least a 4-dimensional
space is required to describe the original data, which means that in the LOG case, the
structure of the data cannot easily be visualised. Thus, from the results of the two
tables, it is indicated that the ROW case should be used, but no log-transformation
should take place. In addition, mean centring was applied to the columns of the data
set.

Two exploratory data unsupervised techniques, Principal components analysis (PCA)
and Multi-dimensional scaling (MDS) were used initially (the techniques and their res-
ults are described in detail in Chapters 5 and 6 respectively), to project the original
input space of the data to a 2- or 3-dimensional output space (effectively reducing thus
the required number of dimensions for pattern recognition) and to facilitate the identi-
fication of any patterns in the data. PCA is restricted to Euclidean spaces, but on the
other hand it allows the investigation of any relationship between variables and samples.
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MDS can be used with any dissimilarity (or similarity) measure, but it is very difficult
to extract any information about the variables (or the spectral regions) from the results
of the MDS analyses.

Results of the PCA were positive for four of the five clinical characteristics in question,
i.e. Gender, Seizure Type, Age and BMI. It was shown that the first two or three
PCs can separate the patients with respect to these characteristics. More importantly,
concerning the fifth clinical characteristic, i.e. the Response to AEDs, no PC was
capable of separating the patients into responders and non-responders. This fact was
confirmed by constructing a general linear model with the first four PCs being the
explanatory variables and the (recoded to 0-1 values) Response to AEDs information of
the patients, as the dependent variable. Investigating the relationship between variables
in the data, and between variables and samples, certain relations were found, so that
patients belonging to specific categories of the clinical characteristics were considered to
associate with specific variables in the NMR spectra. More specifically, it was discovered
that, as PC2 indicated very high negative loadings for variables 1.26, 1.22, 0.86 and
3.22 and a high positive loading for 1.30, females usually have larger intensity values
than males on these four variables, and smaller values than males on variable 1.30.
Information about Seizure Type was conclusive only for those patients with IGE type,
with variables 1.3 and 0.9 associated with them, so that these patients have larger
intensity values on these two variables than the patients of LRE type do. Concerning the
Age categories of the patients, those in category [26-47) have higher values of variables
1.3 and 1.34, while category [47-99) have higher values of variables 1.26, 1.22, 0.86 and
3.22. In addition, patient 44 could be related to the variables in the range 3.46−4.1 ppm.
Finally, variables in the range 1.26 - 1.34 ppm and at 0.9 ppm seem to be associated
with patients belonging to the two largest BMI categories, such that patients in these
two categories have larger intensity values of these variables than those patients with
BMI values in the two lower categories. In general, PCA has been proved useful to
the pattern recognition of the data, with respect to the clinical characteristics of the
patients, apart from the Response to AEDs for which no PCs were capable of identifying
any patterns in the data.

The second dimension reduction and data visualisation technique that was used was
the classical MDS method, and the derived 2-dimensional configuration was used as
input to Sammon’s non-linear mapping (NLM) method. An important advantage of
these methods is that the required between-samples distances can be calculated using
any dissimilarity (or similarity) measure. Comparing the MDS configurations derived
by various distance metrics, it was shown that classical MDS was not capable of giv-
ing more information than PCA about the clustering behaviour of the patients with
respect to their clinical characteristics. Results confirmed the findings of PCA for all
clinical characteristics, including the Response to AEDs, for which none of the two
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methods identified any clustering patterns. Two MDS configurations were retained, the
Euclidean and the Maximum (both having far better results in identifying clustering
patterns for the patients than any other distance metric examined), and were used for
further analyses as input to NLM. It was found that the derived Maximum NLM con-
figuration fitted the data slightly better than the Euclidean NLM configuration. In
general, the Maximum NLM configuration proved to be slightly better than the two
MDS and the Euclidean NLM configurations in separating the patients regarding their
clinical characteristics, and, especially in the case of Age and BMI, it provided the best
separation. Nevertheless, none of the four configurations, or any configuration for that
matter, achieved any separation of the patients with regards to their Response to AEDs.

The data exploration part of the thesis gave good indications concerning the clus-
tering patterns of the patients and their clinical characteristics. The next step was to
apply the data clustering methods, in order to develop clustering methods confirming
the findings of the exploratory stage of the pattern recognition analyses. Four different
categories of unsupervised classification methods were assessed and clustering methods
were developed for them. More specifically, considering the relevant literature for meta-
bonomics data, hierarchical clustering algorithms, optimal partitioning methods and
competitive learning algorithms were more or less the most popular and suitable unsu-
pervised classification techniques, therefore they were chosen for the clustering analysis
of the epilepsy data.

Hierarchical clustering algorithms such as agglomerative nesting algorithms are im-
portant in the area of metabonomics. These methods involve more than one step to
establish the clustering patterns of the data, and each patient is assigned to one and
only cluster. The data is clustered in a form of a dendrogram, showing the relationships
between the patients. The procedure initially assigns one patient per cluster, and ends
when all samples are contained in a single cluster. An important advantage of these
algorithms is that the derived clusters are not restricted to a spherical shape, there-
fore, depending on the data in question, they might be more useful and flexible than
other clustering methods. For example, single linkage produces non-compact elongated
clusters, whereas Ward’s method produces compact spherical clusters. Four distance
measures were used to calculate the distances between the samples, and seven agglom-
erative nesting algorithms were used, such that 28 HCA methods were constructed and
their results compared. Among these clustering methods, using suitable statistics and
tests, the best method was found to be the 2-cluster partition derived by the Maximum
- Ward HCA method. This method provided the best overall fit to the data, discrim-
inating the patients regarding their clinical characteristics Gender, Age and BMI, but
not in terms of their Seizure Type and Response to AEDs.

Optimal partitioning methods are non-hierarchical clustering algorithms, based on
the minimisation of an objective function. In these algorithms, in general, the objects
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are split into a predefined number of clusters, without any hierarchical relationship
between partitions of different numbers of clusters, such that the items in a cluster
are similar to each other, but different to those in other clusters. Two popular such
methods, i.e. the fuzzy clustering and the hard clustering, were used in the thesis, for
comparison purposes.

The main characteristic of fuzzy clustering algorithms is that an object can belong, to
a certain degree, to more than one cluster at the same time. Such clustering algorithms
cam provide clusters of any shape, therefore they can derive an optimal partition with
any type of data. The fanny fuzzy clustering algorithm was used in the analysis of the
epilepsy data, as, contrary to other fuzzy methods, the data input can also be a dissim-
ilarity matrix, it is more robust to the spherical cluster assumption and certain tools
exist which allow the quality assessment of the results obtained by a fuzzy clustering
method. Various fanny methods were compared, based on the distance matrix in use,
the number of required clusters and the value of the membership exponent. Tools such
as Dunn’s partition coefficient and silhouette information were used to assess the quality
of the derived partitions, and thus, to select the optimal fuzzy clustering mode for the
epilepsy data. Results of the analyses showed that the optimal fuzzy clustering method
is the 2-cluster fuzzy partition derived by the fuzzy method using the SqEuclidean met-
ric and fuzzifier value 2. Suitable statistical tests proved that there is a relationship
among the patients with respect to their Age and BMI categories, whereas fuzzy clus-
tering was not able to discriminate the patients regarding their two epilepsy clinical
characteristics and their Gender.

In hard clustering algorithms, each and every object belongs exclusively to one and
only one cluster. In addition, the derived clusters are restricted to being compact
and having spherical shape. The k -means hard clustering algorithm was used in the
analysis of the epilepsy data, a very popular clustering approach, albeit not widely used
until now in metabolic profiling applications. The optimality criterion is to minimise
the within-clusters sum of squares while maximising at the same time the between-
clusters sum-of-squares, using the squared Euclidean distance metric to measure the
distance between the objects and the centroids of the clusters. Due to the nature of
optimisation in this algorithm, it usually produces tighter clusters than HCA. It is also
computationally faster than HCA when the number of variables is large, as happens in
the case of metabonomics data. The results of the analyses showed that the 2-cluster
partition is the best partition derived by a k -means clustering method. This was found
to be the same partition as the best fuzzy clustering partition, save the differences in the
fitting and the silhouette width values of the two methods. Therefore, both methods
have the same discriminating ability concerning the five clinical characteristics of the
patients.
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Competitive learning algorithms form a different category of clustering methods than
those previously mentioned. In this case, for each object presented to the algorithm, all
the predefined representatives in a set compete with each other and the winner is the
representative which is closer, using some distance measure, to the object. Consequently,
the winner representative is being updated to be closer to the object, with the procedure
continuing for all objects, until no updates can occur in any and all representatives. The
Self-organising maps technique, which was used to analyse the epilepsy data, is one such
algorithm. In this case, the representatives are called codebook vectors. This is a non-
linear method for dimension reduction and visualisation of data (like NLM), as well
as for unsupervised classification (like a clustering algorithm). That is possible, as the
SOM provides a map-like visualisation of a multidimensional input space to a usually
two-dimensional array of nodes, with each node associated with a codebook vector.
Contrary to PCA and MDS, an important feature of SOM is its granularity, as the map
consists of a discrete array and mapping to intermediate positions between the nodes is
not defined. This granularity depends on the number of nodes in the map and the width
of the neighbour function used for the updates in the algorithm. Two maps were used
for the SOM analyses, a large one of (as recommended in the literature) size 24×2 nodes
(with respect to the number of patients in the data) and a smaller one of size 3× 2 for
comparison purposes. A map of fewer than 6 nodes is not recommended, as, if a map has
very few nodes, it will almost certainly fail to represent faithfully the distribution of the
input data. The analyses for both maps, concentrating on the 6-cluster method defined
by the 6 node map, showed that the SOM algorithm was capable of discriminating the
patients according to Gender, Age and BMI, but not with respect to their Seizure Type
and Response to AEDs. In addition, the appropriate graphical tools proved that the
most important spectral area, for the differences in the intensity levels of the variables
in the six clusters, is in the range 1 - 1.6 ppm. The four variables with the highest mean
values were found to be related mainly to clusters 3 and 4, with patients 116 and 122
in cluster 3, as well as patients 1 and 15 in cluster 4, being most closely associated with
those variables.

Despite all the findings in the analyses described previously, a common characteristic
of all clustering algorithms used was their incapability of distinguishing the patients
with regards to their epilepsy characteristics, and more importantly their Response to
AEDs. That essentially means that further investigation is needed, to establish whether
the failure of the exploratory methods is caused by the available epilepsy data or not
and in what way. More specifically, the assessment of two possibilities: a) No difference
exists in the spectrum between the responders and non-responders to AEDs in the data,
so that no exploratory technique can illustrate it, and b) There is a difference, but the
methods applied cannot illustrate it, due to either the sample size being too small or
the difference being too small.
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To answer which of the two possibilities is valid in this case, a series of simulation
studies based on the epilepsy data was presented in Chapter 8. In each simulation case,
two data sets were generated and used to investigate the capability of PCA to discrim-
inate between two groups of points, i.e. a reference and a test data set. This involved
the mean-shifting of subsets of variables in the test set, containing 244, 120, 20, 3 and
1 variables in each simulation experiment. The selected variables in each experiment
were chosen in three different ways, according to decreasing and increasing order of
their standard deviation values and decreasing order of their mean values. Simulation
experiments were performed, with each data set having 100, 500 and 1000 samples in
each experiment, to allow for conclusions on whether the sample size plays any role
in the discriminating ability of PCA. This ability was assessed using two statistics,
namely the LDA misclassification rate and the average separation of two distributions
of points. Results showed that the discriminating ability of PCA depends on the number
of mean-shifted variables. Also, the results of the simulation experiments proved to be
independent of the sample size of the two data sets. Selecting the variables to mean-shift
according to their increasing standard deviation results in the smallest offsets among all
three variable selection methods in the experiments, with the decreasing means method
of selection being the second best. Concerning the two statistics, their coefficient of
variation values indicated that the average separation is more stable than the misclas-
sification rate, especially for large samples sizes. Summary results of the simulation
experiments for the misclassification rate for different subsets of mean-shifted variables,
can be seen in Tables 9.3 and 9.4 for unscaled data and data row-scaled to a constant
total, respectively. An illustration of the relation between misclassification rates and
offsets for these experiments can be seen in Figures 9.1 and 9.2, for the unscaled and
the row-scaled data, respectively.

In the case of the unscaled data, the misclassification rate becomes considerably
smaller for large offsets (values above 5), when the number of mean-shifted variables is
either very large (>= 240) or very small (< 5), whereas in the case of the row-scaled
data, this is valid only for very small subsets of mean-shifted variables (<= 3).

Overall, it was shown that under certain conditions, PCA (and consequently other
data exploratory techniques) could be capable of discriminating the patients with re-
spect to their epilepsy characteristics, and therefore, these methods could be important
in metabolic profiling, should these conditions be met. As far as the implications for
the design and analysis of the epilepsy data used in the simulation experiments are con-
cerned, it is clear that there are not enough non-responder patients, and no differences
were detected in a large number of variables, meaning that no major differences exist
in this case between responders and non-responders.
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Table 9.3: Summary results (offsets) for the various MS cases with S500 and using MAXMEAN
(apart from MS244) with the UNSCALED and LOG-TRANSFORMED data. The results
are for 100 runs of the simulation algorithm and the offsets correspond to multiplicative
factors on the original scale of the data. In bold are shown the MS cases that were used
in the simulation experiments.

Subset of
Variables

Misclassification Rate

20% 15% 10% 5% 1%

MS244 2.85 3.56 4.75 7.69 16.11
MS240 2.64 3.10 3.60 4.14 5.10
MS235 2.01 2.10 2.18 2.29 2.44
MS225 1.58 1.63 1.67 1.73 1.86
MS200 1.35 1.39 1.42 1.48 1.58
MS175 1.30 1.32 1.35 1.38 1.46
MS150 1.27 1.30 1.32 1.36 1.43
MS120 1.25 1.28 1.32 1.36 1.44
MS100 1.27 1.30 1.32 1.36 1.45
MS75 1.28 1.31 1.34 1.39 1.48
MS20 1.53 1.56 1.61 1.69 1.85
MS3 2.88 3.15 3.18 3.49 4.17
MS1 6.17 6.61 7.09 8.24 11.02
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Figure 9.1: Misclassification rate vs offset for various MS cases with the UNSCALED and LOG-
TRANSFORMED data. The experiments are the same as described in Table 9.3.
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Table 9.4: Summary results (offsets) for the various MS cases with S500 and using MAXMEAN
(apart from MS244) with the ROW-SCALED and LOG-TRANSFORMED data. The
results are for 100 runs of the simulation algorithm and the offsets correspond to multi-
plicative factors on the original scale of the data. In bold are shown the MS cases that
were used in the simulation experiments.

Subset of
Variables

Misclassification Rate

20% 15% 10% 5% 1%

MS244 —– —– —– —– —–
MS240 2.41 2.44 2.46 2.51 2.61
MS235 1.80 1.82 1.84 1.86 1.90
MS225 1.48 1.50 1.52 1.57 1.68
MS200 1.30 1.33 1.35 1.39 1.49
MS175 1.23 1.25 1.27 1.30 1.38
MS150 1.23 1.25 1.27 1.29 1.34
MS120 1.22 1.25 1.28 1.32 1.40
MS100 1.21 1.25 1.28 1.32 1.40
MS75 1.21 1.25 1.28 1.32 1.42
MS20 1.35 1.41 1.47 1.58 1.78
MS3 2.09 2.31 2.56 3.02 4.16
MS1 3.86 4.45 5.45 7.47 19.69
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Figure 9.2: Misclassification rate vs offset for various MS cases with the ROW-SCALED and LOG-
TRANSFORMED data. The experiments are the same as described in Table 9.4.
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9.2 Further Recommendations

As has already been seen, classical PCA methods are based on the empirical covariance
matrix of the data, which means that they can be affected by the presence of outliers.
For this reason, it is often recommended that a robust PCA method should be used if
there are indications of the presence of potential outliers. In Chapter 5, an investigation
was presented concerning the possibility of any existing outliers affecting the results of
the PCA. It was shown that when the potential outliers indicated by certain tests are
removed from the data and the PCA is applied again, there are no great changes to
the results, compared with those of the full data set. However, it would be prudent, if
for example, a robust PCA method (such as the Grid search algorithm, proposed and
described in Croux et al. (2007)), is used for the analysis of epilepsy data, to ensure that
indeed no effects from any potential outliers are observed in the results of the analyses.
A comparison of the interpretation of the results derived from Classic and Grid PCA,
with and without the outlier samples in the data, can be seen in Table 9.5. In the Grid

Table 9.5: Interpretation of the derived PCs in the two PCA methods. The data for both methods
are the same as those used in the analyses of Chapter 5. The quotes “ mean that results
were the same as the corresponding results for the data without the outliers removed.

Classic PCA Grid PCA

Gender PC2 PC3
Seizure type PC1, PC2, PC3 (IGE) (+) PC1, PC3 (IGE) (-)
Response - -

Age
PC1, PC3 [16-26) (+) PC1 [16-26) (-)

PC2 [26-47) (+) [47-99) (-) PC2 [26-47) (-)
PC3 [47-99) (+)

BMI PC1 [16-22] (22-25] (28-45.1] (+) PC1 [16-22] (22-25] (-)
PC3 (25-28] (+) PC2 [25-28] (28-45.1] (-)

Removed outliers - Classic Removed outliers - Grid
Gender ” PC4
Seizure type ” ”
Response ” ”
Age ” ”
BMI ” PC3 (25-28] (28-45.1] (-)

PCA results, the R function PCAgrid of package pcaPP was used, with the squared
median absolute deviation being the robust variance estimator. The indicative results
in Table 9.5 show that, for instance, regarding the Age categories of the patients, the
Grid PCA results are easier to interpret, with each of the first three PCs associated
with just one Age category, whereas in the case of the Classic PCA, two PCs, i.e. PC1
and PC3, are associated with the young patients, and PC2 with the patients in the
rest of the Age categories. The same can be said for BMI. Further experimentation is
needed to assess the usefulness of robust PCA methods for the epilepsy data.
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Considering the results obtained by PCA in Chapter 5, another useful aspect of
the analyses is often to assess the significance of the variables to these results. There
are many statistical methods which can be used to answer this question (Brereton,
2009). For example, two of these methods are the t-statistic and the Fisher weight. The
former is a univariate method used to determine which variables differ most between
two groups, examining the ratio of the difference of the means and the pooled standard
deviation of the intensities of each variable. In the case of more than two classes, this
statistic can be applied as a series of one vs all comparisons. The Fisher weight assesses
the significance of variables by using the ratio of within class variance to between class
variance, defined by

fj =

G∑
g=1

Ig(x̄jg − x̄j)2

s2
jpool

G∑
g=1

(Ig − 1)

,

for G classes, where x̄j is the mean of variable j over all classes, x̄jg the mean of variable
j for class g, Ig the number of samples in class g and sjpool is a weighted mean of the
standard deviation s within each class (and not the overall standard deviation over all
samples). Unlike the t-statistic, the Fisher weight can be computed for any number of
classes.

In fuzzy clustering, a recent development is the introduction of a new algorithm,
namely DifFUZZY, which, according to its creators, yields better results than traditional
fuzzy clustering algorithms in certain cases (Cominetti et al., 2010). More specifically,
in cases where the data sets to be analysed are of convex shape, the results are similar
to those of the traditional fuzzy methods, but when the data contains clusters with a
complex, non-linear geometric structure (e.g. curved or elongated or clusters of different
dispersion), only DifFUZZY can handle them successfully. In addition, DifFUZZY does
not require any information in advance concerning the number of clusters in the data.

Another method which could result in better clustering of the data involves the com-
bination of the fuzzy c-means (FCM) method with partial least squares (PLS), which,
according to Li et al. (2009), can be successful in modelling the metabolic profiles to be
analysed, in cases where other multivariate explorative techniques fail. This happens
because the combination of FCM with PLS allows for better optimisation of the two
parameters of the method, the number of clusters and the fuzziness coefficient. Ex-
amples are given, to illustrate the efficiency of this method in metabolomics, compared
to other multivariate techniques such as PCA.

The SOM method, which was described in Chapter 7, was found to be quite useful
for clustering metabonomics data. However, a drawback of this technique is that the
SOM’s structure is fixed and has to be determined in advance. This effectively means
that the method is restricted by its structure in finding groups in a more natural way.
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A technique which was found to overcome this restriction is the growing self-organizing
map (GSOM). This method allows for a dynamic structure with the spread of the map
controlled by a parameter called spread factor. This method has been applied success-
fully in biomedical data discovery, such as in class discovery from leukemia and colon
cancer microarray data (Hsu et al., 2003), and in the improvement of the binning pro-
cess in environmental whole-genome shotgun sequencing (Chan et al., 2008). The effect
of spread factor value to the cluster formation and separation in GSOM is investigated
by Ahmad et al. (2010).

A general recommendation for improving the results of the analyses in Chapters 5
to 7 is the increase of the resolution of the NMR spectra, obtaining and analysing thus
metabonomics data sets with a higher number of metabolites (variables). This could
be achieved during the pre-processing of the signals, by using a smaller bin size of, e.g.
0.01 ppm, instead of that used in the analyses in the thesis (0.04 ppm).

Regarding the simulation experiments, two things could be considered for further
experimentation, i.e. the sample size of the generated data sets and the offsets used to
mean-shift the selected variables. In the experiments of Chapter 8, both the reference
set and the test set in each experiment had the same sample size. Another possibility
is to investigate what will happen when the two data sets have different sample sizes,
with either the reference set having a larger sample size than the test set or vice versa.
Concerning the offsets, the following questions could be investigated:

• In all the experiments done, the offsets were added to the variables. What would
be the outcome of the experiments in the case of adding the offset to some of the
variables and subtracting the same offset from other variables?

• In addition, so far all offsets were the same for all variables. Would there have
been any difference in the outcome of the experiments, if offsets of different sizes
were used?

• Would there have been any difference in the case of a random choice of offsets ?

Finally, concerning the method to select the variables to mean-shift, if the variables
were chosen according to decreasing order of their correlation, would the results of the
experiments been affected in any way?

The clustering methods described in Chapter 7 and applied in the epilepsy data, were
used to explore the data structure for potential groups and the features which distin-
guish these groups from each other. Another important step in chemometrics and the
analysis of metabonomics data is the application of supervised techniques (described in
Section 8.2) to the grouping information of the samples obtained from the unsupervised
clustering methods or groups known from previously recorded data. There are two types
of classifiers, that is, discrimination rules for classification purposes (Brereton, 2009):

1. Two- or more (multi) class classifiers, in which the samples in a data set are
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assigned to one of two (or more, in the case of multi-class classifiers) groups, e.g.
linear (LDA), partial least squares (PLS-DA) (Lindon et al., 2001) and quadratic
discriminant analysis (QDA) as well as learning vector quantization (LVQ) and
support vector machines (SVMs) (Brereton, 2009).

2. One-class classifiers, in which each group is modelled separately, i.e. soft inde-
pendent modelling of class analogy (SIMCA) (Lindon et al., 2001; Brereton, 2009)
and support vector data description (SVDD) (Brereton, 2009).

Then, for example, the selected classifier could be used to predict the class of the
remaining (25 patients with unclassified Response to AEDs) in the original epilepsy
data set of the 122 patients, classifying them to either the responders or non-responders.
Such a classifier could predict the class of the patients of any other epilepsy data set
with samples of similar type to those in the epilepsy data set.
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Table A.1: Mean-Shifted Variables for the MAXDEV cases. The numbers in normal typeface are
the standard deviations of the 244 original variables for the 97 patients with epilepsy.

MS120
5.78 5.82 5.98 6.02 6.30 5.74 4.66 6.26 4.62 1.30
0.876 0.787 0.681 0.671 0.658 0.658 0.657 0.656 0.656 0.654
5.94 5.34 5.86 6.06 2.46 7.74 7.78 3.34 6.22 7.06
0.652 0.650 0.649 0.648 0.647 0.647 0.646 0.646 0.642 0.642
4.58 7.82 8.86 8.90 8.82 6.18 7.54 6.78 7.58 8.94
0.641 0.641 0.640 0.640 0.640 0.640 0.639 0.639 0.639 0.639
7.86 7.70 6.34 6.82 2.62 7.62 6.58 6.14 8.98 9.02
0.638 0.638 0.638 0.638 0.638 0.638 0.637 0.637 0.637 0.637
7.02 8.78 7.46 8.54 9.06 6.38 2.50 8.50 8.14 9.10
0.637 0.637 0.637 0.637 0.637 0.637 0.637 0.637 0.636 0.636
8.58 9.14 2.58 5.30 7.38 6.62 3.10 9.18 6.46 7.90
0.636 0.636 0.636 0.636 0.636 0.636 0.636 0.636 0.636 0.636
8.46 6.10 8.42 8.10 4.42 6.42 8.18 8.74 2.42 4.38
0.636 0.636 0.635 0.635 0.635 0.635 0.635 0.635 0.635 0.635
3.38 6.90 4.14 8.62 8.22 9.58 4.50 7.50 5.26 7.42
0.634 0.634 0.634 0.634 0.634 0.634 0.634 0.634 0.634 0.634
4.54 7.94 8.02 9.22 9.26 8.38 7.98 8.70 8.34 9.54
0.634 0.634 0.634 0.634 0.633 0.633 0.633 0.633 0.633 0.633
7.10 8.66 9.50 6.54 8.26 6.98 8.30 6.74 4.46 9.62
0.633 0.633 0.633 0.633 0.633 0.633 0.633 0.632 0.632 0.632
9.30 8.06 6.86 3.06 4.22 6.66 2.66 6.70 9.66 6.50
0.632 0.632 0.632 0.632 0.632 0.632 0.632 0.632 0.632 0.631
7.14 2.70 7.30 2.10 9.98 7.34 9.34 3.30 4.18 3.22
0.631 0.631 0.631 0.631 0.631 0.631 0.630 0.631 0.630 0.630

MS20
5.78 5.82 5.98 6.02 6.30 5.74 4.66 6.26 4.62 1.30
0.876 0.787 0.681 0.671 0.658 0.658 0.657 0.656 0.656 0.654
5.94 5.34 5.86 6.06 2.46 7.74 7.78 3.34 6.22 7.06
0.652 0.650 0.649 0.648 0.647 0.647 0.646 0.646 0.642 0.642

MS3
5.78 5.82 5.98
0.876 0.787 0.681

MS1
5.78
0.876
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Table A.2: Mean-Shifted Variables for the MINDEV cases. The numbers in normal typeface are
the standard deviations of the 244 original variables for the 97 patients with epilepsy.

MS120
4.98 4.94 5.02 5.06 5.10 0.90 5.14 5.18 5.54 0.70
0.584 0.585 0.592 0.599 0.604 0.605 0.606 0.607 0.609 0.609
0.86 5.42 0.14 5.46 5.22 2.02 1.18 5.38 0.62 1.58
0.609 0.609 0.611 0.611 0.611 0.611 0.611 0.612 0.612 0.612
0.02 1.38 0.74 2.06 0.58 0.66 5.50 3.66 0.18 0.94
0.612 0.612 0.612 0.613 0.613 0.613 0.613 0.613 0.613 0.614
0.34 1.02 0.30 0.78 0.38 2.26 1.14 0.26 0.42 1.26
0.614 0.614 0.614 0.614 0.614 0.614 0.615 0.615 0.615 0.615
5.58 0.22 0.54 0.10 4.30 5.90 0.06 1.10 1.42 1.22
0.615 0.615 0.616 0.616 0.616 0.616 0.616 0.617 0.617 0.617
1.62 0.98 0.50 0.82 2.22 0.46 1.54 1.46 3.62 3.86
0.617 0.617 0.617 0.617 0.617 0.618 0.618 0.618 0.620 0.620
1.94 4.26 3.90 1.82 1.98 3.70 2.18 1.06 1.70 2.94
0.620 0.620 0.620 0.620 0.635 0.620 0.621 0.621 0.621 0.622
1.66 3.26 2.86 4.06 3.58 2.74 1.50 1.86 2.98 5.62
0.622 0.623 0.623 0.623 0.624 0.624 0.624 0.624 0.624 0.625
7.22 2.82 2.34 4.10 3.82 3.46 2.78 3.78 3.42 2.30
0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.626
3.98 7.26 7.66 2.38 5.66 3.18 7.18 3.74 5.70 4.02
0.626 0.626 0.626 0.626 0.626 0.626 0.627 0.627 0.627 0.627
1.90 6.94 3.54 1.74 2.54 2.14 9.42 4.34 3.02 9.94
0.627 0.627 0.628 0.628 0.628 0.628 0.628 0.628 0.628 0.628
1.78 9.38 9.74 9.78 1.34 9.82 9.90 9.46 3.50 9.86
0.628 0.628 0.628 0.629 0.629 0.629 0.629 0.629 0.629 0.629

MS20
4.98 4.94 5.02 5.06 5.10 0.90 5.14 5.18 5.54 0.70
0.584 0.585 0.592 0.599 0.604 0.605 0.606 0.607 0.609 0.609
0.86 5.42 0.14 5.46 5.22 2.02 1.18 5.38 0.62 1.58
0.609 0.609 0.611 0.611 0.611 0.611 0.611 0.612 0.612 0.612

MS3
4.98 4.94 5.02
0.584 0.585 0.592

MS1
4.98
0.584
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Table A.3: Mean-Shifted Variables for the MAXMEAN cases. The numbers in normal typeface are
the means of the 244 original variables for the 97 patients with epilepsy.

MS120
1.30 1.26 0.86 1.22 0.90 1.34 2.02 0.82 0.94 1.18
24.05 24.04 23.70 23.62 23.54 23.52 23.30 23.29 23.26 23.16
0.98 2.06 1.98 1.58 1.50 1.54 1.02 1.14 1.46 1.38
23.14 23.12 23.04 23.02 23.01 23.00 22.99 22.95 22.95 22.93
1.06 1.10 1.42 0.78 1.70 1.62 3.22 1.94 1.74 2.10
22.92 22.89 22.87 22.80 22.80 22.78 22.78 22.77 22.77 22.75
1.66 2.22 2.26 1.78 1.90 1.82 1.86 3.90 0.74 2.14
22.74 22.73 22.71 22.68 22.67 22.67 22.66 22.65 22.61 22.59
2.30 2.18 0.70 2.34 3.74 3.70 0.66 3.82 3.26 3.86
22.56 22.51 22.51 22.50 22.41 22.40 22.40 22.39 22.37 22.33
4.10 2.38 4.06 3.66 3.98 2.42 3.02 3.94 4.14 3.42
22.33 22.31 22.31 22.31 22.30 22.27 22.27 22.27 22.27 22.26
3.78 5.30 4.02 2.46 0.62 4.26 3.46 4.30 2.98 4.18
22.26 22.24 22.23 22.23 22.21 22.17 22.16 22.15 22.15 22.14
3.54 2.94 2.74 4.22 2.50 0.58 3.50 3.06 2.70 2.90
22.10 22.07 22.07 22.07 22.06 22.05 22.04 22.00 22.00 21.97
3.58 2.78 2.54 0.54 4.34 3.62 5.26 4.42 4.46 3.18
21.95 21.95 21.94 21.92 21.92 21.92 21.90 21.89 21.89 21.88
3.10 4.38 2.66 4.50 2.58 0.50 2.86 2.82 3.34 2.62
21.86 21.84 21.81 21.80 21.80 21.80 21.79 21.75 21.74 21.73
3.14 3.38 4.66 3.30 0.46 4.54 7.06 0.42 7.10 7.02
21.72 21.72 21.70 21.69 21.68 21.68 21.63 21.58 21.58 21.54
4.58 7.18 7.14 7.22 6.98 0.38 5.34 7.26 7.30 5.22
21.53 21.53 21.52 21.51 21.51 21.49 21.49 21.48 21.48 21.42

MS20
1.30 1.26 0.86 1.22 0.90 1.34 2.02 0.82 0.94 1.18
24.05 24.04 23.70 23.62 23.54 23.52 23.30 23.29 23.26 23.16
0.98 2.06 1.98 1.58 1.50 1.54 1.02 1.14 1.46 1.38
23.14 23.12 23.04 23.02 23.01 23.00 22.99 22.95 22.95 22.93

MS3
1.30 1.26 0.86
24.05 24.04 23.70

MS1
1.30
24.05
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Appendix B.1

MINDEV Results
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B.1.1 MINDEV - Case MS120 statistics results

Table B.1: Average LDA misclassification rates and average separation values for the case MS120,
applying the MINDEV method in 100 runs of the experiment.

S100
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (%) 23.45 18.19 13.63 9.43 6.34 3.94
Average Separation 11.29 11.35 11.50 11.52 11.53 11.77

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (%) 2.49 1.25 0.59 0.34 0.13 0.06
Average Separation 11.69 11.82 11.95 12.05 12.13 12.23

S500
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (%) 23.09 18.65 13.29 9.39 6.19 4.01
Average Separation 11.32 11.40 11.47 11.51 11.61 11.71

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (%) 2.32 1.25 0.71 0.35 0.20 0.10
Average Separation 11.80 11.84 11.95 12.02 12.07 12.17

S1000
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (%) 23.38 18.55 13.60 9.31 6.34 3.95
Average Separation 11.34 11.40 11.46 11.50 11.60 11.67

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (%) 2.35 1.32 0.71 0.35 0.17 0.09
Average Separation 11.74 11.86 11.90 12.05 12.11 12.18

Table B.1 gives the results of the MS120 experiments in the cases S100, S500
and S1000 for offsets in the range 1.25 − 1.55. It can be seen that offsets in the
range 1.25−1.55 are required in all sample size cases, to achieve misclassification
rates of ≈ 24− 0.1% respectively. The average separation between the two data
sets is ≈ 11.3 for a 20% misclassification rate and the two data sets are almost
linearly separable when the average separation is ≈ 12.2 with misclassification
rate less than 1%.
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B.1.2 MINDEV - Case MS20 statistics results

Table B.2: Average LDA misclassification rates and average separation values for the case MS20,
applying the MINDEV method in 100 runs of the experiment.

S100
Offset 1.40 1.46 1.52 1.58 1.65 1.72
Error Rate (%) 34.50 28.96 21.71 14.14 8.62 5.22
Average Separation 11.18 11.11 11.19 11.33 11.40 11.43

Offset 1.79 1.86 1.93 2.01 2.10 2.18
Error Rate (%) 2.34 1.09 0.42 0.12 0.04 0.03
Average Separation 11.44 11.56 11.69 11.75 11.71 11.90

S500
Offset 1.46 1.52 1.58 1.65 1.72 1.79
Error Rate (%) 28.27 22.10 14.91 8.36 4.79 2.44
Average Separation 11.23 11.26 11.28 11.38 11.46 11.53

Offset 1.86 1.93 2.01 2.10 2.18 2.27
Error Rate (%) 1.18 0.52 0.22 0.07 0.03 0.00
Average Separation 11.57 11.67 11.71 11.80 11.83 11.99

S1000
Offset 1.48 1.52 1.57 1.62 1.67 1.72
Error Rate (%) 26.88 21.69 16.18 11.30 7.58 4.79
Average Separation 11.26 11.27 11.32 11.32 11.38 11.47

Offset 1.77 1.82 1.88 1.93 1.99 2.05
Error Rate (%) 2.92 1.71 0.98 0.48 0.27 0.13
Average Separation 11.51 11.54 11.59 11.66 11.70 11.76

The results of the MS20 experiments in all three sample size cases can be seen
in Table B.2. It can be seen that offsets in the range 1.52−2.05 are required in all
sample size cases, to achieve misclassification rates of ≈ 22 − 0.1% respectively.
The average separation between the two data sets is ≈ 11.2 for a 20% misclassi-
fication rate and the two data sets are almost linearly separable when the average
separation is ≈ 11.6 with misclassification rate less than 1%.
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B.1.3 MINDEV - Case MS3 statistics results

Table B.3: Average LDA misclassification rates and average separation values for the case MS1,
applying the MINDEV method in 100 runs of the experiment.

S100
Offset 2.72 2.86 3.00 3.16 3.32 3.49
Error Rate (%) 31.51 25.21 20.54 14.59 9.94 5.54
Average Separation 11.16 11.26 11.24 11.28 11.27 11.34

Offset 3.67 3.86 4.06 4.26 4.48 4.71
Error Rate (%) 3.33 1.78 1.23 0.41 0.22 0.09
Average Separation 11.42 11.42 11.44 11.51 11.55 11.56

S500
Offset 2.86 3.00 3.16 3.32 3.49 3.67
Error Rate (%) 25.87 21.15 13.69 8.55 4.83 2.71
Average Separation 11.23 11.21 11.34 11.31 11.38 11.37

Offset 3.86 4.06 4.26 4.48 4.71 4.95
Error Rate (%) 1.39 0.78 0.40 0.20 0.08 0.03
Average Separation 11.43 11.50 11.49 11.56 11.55 11.58

S1000
Offset 2.86 3.00 3.16 3.32 3.49 3.67
Error Rate (%) 26.12 19.87 14.05 8.44 4.90 2.64
Average Separation 11.22 11.23 11.26 11.33 11.37 11.40

Offset 3.86 4.06 4.26 4.48 4.71 4.95
Error Rate (%) 1.42 0.66 0.33 0.15 0.07 0.03
Average Separation 11.43 11.48 11.51 11.55 11.59 11.60

Table B.3 shows the misclassification rates and average separation values of the
experiments in the cases S100, S500 and S1000 for offsets in the ranges 2.72−4.71,
2.86 − 4.95 and 2.86 − 4.95 respectively. Offsets in the range ≈ 2.86 − 4.95 are
required in all sample size cases, to achieve misclassification rates of ≈ 25−0.05%
respectively. The average separation between the two data sets is ≈ 11.2 for a
20% misclassification rate and the two data sets are almost linearly separable
when the average separation is ≈ 11.5 with misclassification rate less than 1%.
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B.1.4 MINDEV - Case MS1 statistics results

Table B.4: Average LDA misclassification rates and average separation values for the case MS1,
applying the MINDEV method in 100 runs of the experiment.

S100
Offset 7.03 7.39 7.77 8.17 8.58 9.03
Error Rate (%) 20.32 14.23 11.66 6.02 3.34 2.44
Average Separation 11.19 11.26 11.35 11.31 11.27 11.46

Offset 9.49 9.97 10.49 11.02 11.59 12.18
Error Rate (%) 1.98 0.97 0.25 0.55 0.13 0.06
Average Separation 11.34 11.41 11.46 11.47 11.48 11.53

S500
Offset 7.03 7.39 7.77 8.17 8.58 9.03
Error Rate (%) 21.87 13.91 9.67 5.03 2.46 1.21
Average Separation 11.24 11.30 11.28 11.31 11.35 11.35

Offset 9.49 9.97 10.49 11.02 11.59 12.18
Error Rate (%) 0.54 0.19 0.14 0.08 0.02 0.00
Average Separation 11.45 11.40 11.45 11.43 11.47 11.54

S1000
Offset 7.03 7.39 7.77 8.17 8.58 9.03
Error Rate (%) 21.05 14.29 8.63 4.34 2.16 1.04
Average Separation 11.26 11.28 11.34 11.32 11.34 11.37

Offset 9.49 9.97 10.49 11.02 11.59 12.18
Error Rate (%) 0.39 0.20 0.07 0.03 0.01 0.00
Average Separation 11.40 11.41 11.44 11.47 11.46 11.52

The results of the experiments in the cases S100, S500 and S1000 respectively,
for offsets in the range 7.03 − 12.18 can be seen in Table B.4. It can be seen
that offsets in the range 7.1 − 12.18 are required in all sample size cases, to
achieve misclassification rates of ≈ 20− 0% respectively. The average separation
between the two data sets is ≈ 11.2 for a 20% misclassification rate and the two
data sets are almost linearly separable when the average separation is ≈ 11.4

with misclassification rate less than 1%.
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B.1.5 MINDEV - LDA Boundaries

An illustration of how mean-shifting affects the capability of PCA to discriminate
the two data sets in all four MS cases with S500 for MINDEV, superimposed with
the LDA boundary for the two artificial data sets, can be seen in Figure B.1, for
suitably selected offsets which correspond to 20%, 10% and 1% misclassification
rates respectively.
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Figure B.1: Visualisation of the LDA boundaries for the two artificial data sets in all four cases MS
(MINDEV). The data corresponds to the first two PCs for LDA. The reference and
test data points are depicted in brown and blue respectively.
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B.1.6 MINDEV - Error Plots for case MS120
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(c) S1000

Figure B.2: Graphical representation of the relation among LDA misclassification rates, average
separation and offsets in the case MS120 for method MINDEV. The blue lines represent
the mean values of each statistic for each offset in the selected offset range. The offsets
are the multiplicative factors on the original scale of the data. The vertical error bars
are such that the top and bottom of a bar correspond to the maximum and minimum
statistic value at the respective offset. The statistics values are the average values in
100 runs of the experiment. The two average separation plots in each sample size case
are drawn using the same range of values for the average separation.

283



B.1.7 MINDEV - Error Plots for case MS20
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Figure B.3: Visualisation of the relation among LDA misclassification rates, average separation and
offsets in the case MS20 with MINDEV. The blue lines represent the mean values of
each statistic for each offset in the selected offset range. The offsets are the multi-
plicative factors on the original scale of the data. The vertical error bars are such that
the top and bottom of a bar correspond to the maximum and minimum statistic value
at the respective offset. The statistics values are the average values in 100 runs of
the experiment. The two average separation plots in each sample size case are drawn
using the same range of values for the average separation.
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B.1.8 MINDEV - Error Plots for case MS3
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(c) S1000

Figure B.4: Visualisation of the relation among LDA misclassification rates, average separation and
offsets in the case MS3 with MINDEV. The blue lines represent the mean values of each
statistic for each offset in the selected offset range. The offsets are the multiplicative
factors on the original scale of the data. The vertical error bars are such that the
top and bottom of a bar correspond to the maximum and minimum statistic value at
the respective offset. The statistics values are the average values in 100 runs of the
experiment. The two average separation plots in each sample size case are drawn using
the same range of values for the average separation.
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B.1.9 MINDEV - Error Plots for case MS1
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Figure B.5: Visualisation of the relation among LDA misclassification rates, average separation and
offsets in the case MS1 with MINDEV. The blue lines represent the mean values of each
statistic for each offset in the selected offset range. The offsets are the multiplicative
factors on the original scale of the data. The vertical error bars are such that the
top and bottom of a bar correspond to the maximum and minimum statistic value at
the respective offset. The statistics values are the average values in 100 runs of the
experiment. The two average separation plots in each sample size case are drawn using
the same range of values for the average separation.
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B.1.10 MINDEV - Case MS120 CV results

Table B.5: Coefficient of variation results for case MS120 using method MINDEV, of the LDA
misclassification rates and average separation values in 100 runs of the experiment.

S100
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (CV) 18.11 22.73 28.44 32.40 35.66 43.23
Error Rate (StDev) 4.25 4.14 3.88 3.06 2.26 1.71
Error Rate (Mean) 23.45 18.20 13.63 9.43 6.34 3.94
Average Separation (CV) 5.51 5.79 4.15 5.57 4.90 5.11
Average Separation (StDev) 0.62 0.66 0.48 0.64 0.56 0.60
Average Separation (Mean) 11.29 11.36 11.51 11.52 11.54 11.78

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (CV) 66.77 103.88 131.76 169.48 216.12 282.05
Error Rate (StDev) 1.67 1.30 0.78 0.58 0.29 0.18
Error Rate (Mean) 2.50 1.25 0.60 0.34 0.14 0.06
Average Separation (CV) 5.07 4.58 4.63 4.72 5.17 4.68
Average Separation (StDev) 0.59 0.54 0.55 0.57 0.63 0.57
Average Separation (Mean) 11.69 11.82 11.95 12.05 12.13 12.23

S500
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (CV) 8.82 9.27 12.60 14.24 16.07 22.12
Error Rate (StDev) 2.04 1.73 1.68 1.34 1.00 0.89
Error Rate (Mean) 23.10 18.65 13.30 9.39 6.20 4.02
Average Separation (CV) 1.95 2.22 2.18 2.20 2.07 2.26
Average Separation (StDev) 0.22 0.25 0.25 0.25 0.24 0.26
Average Separation (Mean) 11.32 11.41 11.47 11.51 11.61 11.72

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (CV) 26.20 32.99 41.22 55.49 71.71 111.01
Error Rate (StDev) 0.61 0.41 0.29 0.20 0.15 0.11
Error Rate (Mean) 2.32 1.26 0.71 0.36 0.20 0.10
Average Separation (CV) 2.07 2.24 2.27 2.28 2.07 2.11
Average Separation (StDev) 0.24 0.26 0.27 0.27 0.25 0.26
Average Separation (Mean) 11.80 11.84 11.96 12.03 12.07 12.18

S1000
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (CV) 5.45 6.50 8.69 10.62 12.95 18.58
Error Rate (StDev) 1.27 1.21 1.18 0.99 0.82 0.74
Error Rate (Mean) 23.39 18.55 13.60 9.31 6.34 3.96
Average Separation (CV) 1.53 1.62 1.90 1.34 1.75 1.48
Average Separation (StDev) 0.17 0.19 0.22 0.15 0.20 0.17
Average Separation (Mean) 11.34 11.40 11.47 11.51 11.60 11.67

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (CV) 19.22 25.00 29.02 38.72 62.13 68.32
Error Rate (StDev) 0.45 0.33 0.21 0.14 0.11 0.06
Error Rate (Mean) 2.35 1.32 0.72 0.36 0.18 0.09
Average Separation (CV) 1.51 1.50 1.42 1.60 1.57 1.54
Average Separation (StDev) 0.18 0.18 0.17 0.19 0.19 0.19
Average Separation (Mean) 11.75 11.86 11.90 12.05 12.11 12.18
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B.1.11 MINDEV - Case MS20 CV results

Table B.6: Coefficient of variation results for case MS20 using method MINDEV, of the LDA
misclassification rates and average separation values in 100 runs of the experiment.

S100
Offset 1.40 1.46 1.52 1.58 1.65 1.72
Error Rate (CV) 15.74 19.78 27.20 32.51 36.16 61.03
Error Rate (StDev) 5.43 5.73 5.90 4.60 3.12 3.19
Error Rate (Mean) 34.50 28.96 21.71 14.14 8.62 5.22
Average Separation (CV) 5.04 5.46 4.78 5.13 4.93 4.90
Average Separation (StDev) 0.56 0.61 0.53 0.58 0.56 0.56
Average Separation (Mean) 11.19 11.12 11.19 11.33 11.41 11.43

Offset 1.79 1.86 1.93 2.01 2.10 2.18
Error Rate (CV) 70.50 102.76 171.65 230.28 389.89 397.81
Error Rate (StDev) 1.65 1.13 0.73 0.28 0.18 0.12
Error Rate (Mean) 2.34 1.09 0.42 0.12 0.04 0.03
Average Separation (CV) 4.57 5.14 5.35 4.66 4.65 4.31
Average Separation (StDev) 0.52 0.59 0.63 0.55 0.54 0.51
Average Separation (Mean) 11.45 11.57 11.69 11.75 11.71 11.91

S500
Offset 1.46 1.52 1.58 1.65 1.72 1.79
Error Rate (CV) 8.37 13.72 15.20 18.94 24.24 30.95
Error Rate (StDev) 2.37 3.03 2.27 1.58 1.16 0.76
Error Rate (Mean) 28.27 22.10 14.91 8.36 4.79 2.45
Average Separation (CV) 2.06 2.16 2.21 2.24 2.11 1.90
Average Separation (StDev) 0.23 0.24 0.25 0.25 0.24 0.22
Average Separation (Mean) 11.23 11.26 11.29 11.39 11.46 11.54

Offset 1.86 1.93 2.01 2.10 2.18 2.27
Error Rate (CV) 39.80 52.96 82.23 115.06 192.57 356.47
Error Rate (StDev) 0.47 0.28 0.18 0.09 0.07 0.03
Error Rate (Mean) 1.19 0.53 0.22 0.08 0.03 0.01
Average Separation (CV) 1.85 1.88 2.12 2.06 1.84 1.96
Average Separation (StDev) 0.21 0.22 0.25 0.24 0.22 0.24
Average Separation (Mean) 11.57 11.68 11.71 11.81 11.84 11.99

S1000
Offset 1.48 1.52 1.57 1.62 1.67 1.72
Error Rate (CV) 7.24 8.26 10.23 12.49 13.37 18.98
Error Rate (StDev) 1.95 1.79 1.66 1.41 1.01 0.91
Error Rate (Mean) 26.88 21.69 16.18 11.30 7.58 4.79
Average Separation (CV) 1.68 1.58 1.46 1.48 1.40 1.60
Average Separation (StDev) 0.19 0.18 0.17 0.17 0.16 0.18
Average Separation (Mean) 11.26 11.28 11.33 11.33 11.38 11.48

Offset 1.77 1.82 1.88 1.93 1.99 2.05
Error Rate (CV) 21.67 27.19 26.58 35.36 53.15 62.05
Error Rate (StDev) 0.63 0.46 0.26 0.17 0.15 0.08
Error Rate (Mean) 2.93 1.71 0.99 0.48 0.28 0.13
Average Separation (CV) 1.33 1.39 1.36 1.49 1.39 1.39
Average Separation (StDev) 0.15 0.16 0.16 0.17 0.16 0.16
Average Separation (Mean) 11.52 11.55 11.59 11.66 11.70 11.77
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B.1.12 MINDEV - Case MS3 CV results

Table B.7: Coefficient of variation results for case MS3 using method MINDEV, of the LDA mis-
classification rates and average separation values in 100 runs of the experiment.

S100
Offset 2.72 2.86 3.00 3.16 3.32 3.49
Error Rate (CV) 23.34 35.89 41.15 57.62 75.15 86.72
Error Rate (StDev) 7.36 9.05 8.46 8.41 7.47 4.80
Error Rate (Mean) 31.51 25.21 20.55 14.60 9.94 5.54
Average Separation (CV) 5.17 4.43 5.17 4.78 4.42 4.50
Average Separation (StDev) 0.58 0.50 0.58 0.54 0.50 0.51
Average Separation (Mean) 11.17 11.27 11.24 11.28 11.28 11.35

Offset 3.67 3.86 4.06 4.26 4.48 4.71
Error Rate (CV) 106.07 123.14 132.44 197.92 228.58 296.36
Error Rate (StDev) 3.53 2.19 1.63 0.81 0.51 0.28
Error Rate (Mean) 3.33 1.78 1.23 0.41 0.22 0.10
Average Separation (CV) 5.03 4.96 4.65 4.79 4.29 5.07
Average Separation (StDev) 0.57 0.57 0.53 0.55 0.50 0.59
Average Separation (Mean) 11.42 11.43 11.45 11.51 11.55 11.56

S500
Offset 2.86 3.00 3.16 3.32 3.49 3.67
Error Rate (CV) 13.79 18.29 24.20 34.89 42.34 56.74
Error Rate (StDev) 3.57 3.87 3.31 2.98 2.05 1.54
Error Rate (Mean) 25.88 21.16 13.70 8.55 4.83 2.72
Average Separation (CV) 2.26 2.08 2.06 2.12 2.09 1.88
Average Separation (StDev) 0.25 0.23 0.23 0.24 0.24 0.21
Average Separation (Mean) 11.23 11.22 11.34 11.32 11.39 11.38

Offset 3.86 4.06 4.26 4.48 4.71 4.95
Error Rate (CV) 65.31 81.48 76.74 106.33 111.67 208.56
Error Rate (StDev) 0.91 0.64 0.31 0.22 0.10 0.07
Error Rate (Mean) 1.39 0.79 0.40 0.20 0.09 0.04
Average Separation (CV) 2.12 1.98 1.91 1.91 2.12 2.12
Average Separation (StDev) 0.24 0.23 0.22 0.22 0.24 0.25
Average Separation (Mean) 11.44 11.51 11.50 11.57 11.55 11.59

S1000
Offset 2.86 3.00 3.16 3.32 3.49 3.67
Error Rate (CV) 11.05 15.48 17.87 24.64 30.04 42.75
Error Rate (StDev) 2.89 3.08 2.51 2.08 1.47 1.13
Error Rate (Mean) 26.12 19.88 14.05 8.44 4.90 2.65
Average Separation (CV) 1.44 1.56 1.50 1.51 1.32 1.43
Average Separation (StDev) 0.16 0.18 0.17 0.17 0.15 0.16
Average Separation (Mean) 11.23 11.24 11.27 11.34 11.37 11.40

Offset 3.86 4.06 4.26 4.48 4.71 4.95
Error Rate (CV) 41.66 58.07 70.68 76.94 99.18 154.40
Error Rate (StDev) 0.59 0.39 0.24 0.12 0.07 0.06
Error Rate (Mean) 1.42 0.66 0.33 0.15 0.07 0.04
Average Separation (CV) 1.33 1.60 1.37 1.37 1.60 1.51
Average Separation (StDev) 0.15 0.18 0.16 0.16 0.19 0.18
Average Separation (Mean) 11.44 11.48 11.52 11.55 11.59 11.61
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B.1.13 MINDEV - Case MS1 CV results

Table B.8: Coefficient of variation results for case MS1 using method MINDEV, of the LDA mis-
classification rates and average separation values in 100 runs of the experiment.

S100
Offset 7.03 7.39 7.77 8.17 8.58 9.03
Error Rate (CV) 62.49 83.17 89.31 128.89 121.06 156.80
Error Rate (StDev) 12.70 11.84 10.42 7.76 4.05 3.83
Error Rate (Mean) 20.32 14.23 11.66 6.02 3.35 2.44
Average Separation (CV) 5.41 5.92 3.97 5.16 4.65 5.09
Average Separation (StDev) 0.61 0.67 0.45 0.58 0.52 0.58
Average Separation (Mean) 11.19 11.27 11.35 11.32 11.28 11.46

Offset 9.49 9.97 10.49 11.02 11.59 12.18
Error Rate (CV) 226.10 231.80 258.20 259.23 310.79 418.55
Error Rate (StDev) 4.49 2.26 0.65 1.43 0.42 0.27
Error Rate (Mean) 1.99 0.98 0.25 0.55 0.14 0.06
Average Separation (CV) 5.15 4.79 4.80 4.73 5.05 4.98
Average Separation (StDev) 0.58 0.55 0.55 0.54 0.58 0.57
Average Separation (Mean) 11.34 11.41 11.47 11.47 11.49 11.54

S500
Offset 7.03 7.39 7.77 8.17 8.58 9.03
Error Rate (CV) 34.68 43.84 55.20 84.84 84.37 104.97
Error Rate (StDev) 7.58 6.10 5.34 4.27 2.08 1.27
Error Rate (Mean) 21.87 13.92 9.67 5.04 2.47 1.21
Average Separation (CV) 1.98 2.08 2.26 2.14 2.12 1.88
Average Separation (StDev) 0.22 0.23 0.26 0.24 0.24 0.21
Average Separation (Mean) 11.24 11.31 11.29 11.31 11.36 11.35

Offset 9.49 9.97 10.49 11.02 11.59 12.18
Error Rate (CV) 138.09 167.33 200.43 365.41 285.88 420.66
Error Rate (StDev) 0.75 0.32 0.29 0.29 0.06 0.04
Error Rate (Mean) 0.54 0.19 0.14 0.08 0.02 0.01
Average Separation (CV) 1.94 2.06 2.13 2.06 2.07 1.99
Average Separation (StDev) 0.22 0.24 0.24 0.24 0.24 0.23
Average Separation (Mean) 11.46 11.41 11.45 11.44 11.47 11.54

S1000
Offset 7.03 7.39 7.77 8.17 8.58 9.03
Error Rate (CV) 23.04 32.47 42.59 48.07 76.36 103.27
Error Rate (StDev) 4.85 4.64 3.68 2.09 1.66 1.08
Error Rate (Mean) 21.06 14.30 8.63 4.34 2.17 1.05
Average Separation (CV) 1.82 1.45 1.41 1.55 1.56 1.62
Average Separation (StDev) 0.21 0.16 0.16 0.18 0.18 0.18
Average Separation (Mean) 11.26 11.28 11.35 11.33 11.34 11.37

Offset 9.49 9.97 10.49 11.02 11.59 12.18
Error Rate (CV) 111.34 148.35 168.18 213.10 240.40 522.23
Error Rate (StDev) 0.44 0.30 0.13 0.08 0.03 0.01
Error Rate (Mean) 0.39 0.20 0.08 0.04 0.01 0.00
Average Separation (CV) 1.21 1.40 1.34 1.58 1.34 1.36
Average Separation (StDev) 0.14 0.16 0.15 0.18 0.15 0.16
Average Separation (Mean) 11.41 11.42 11.44 11.47 11.46 11.53
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Appendix B.2

MAXMEAN Results
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B.2.1 MAXMEAN - Case MS120 statistics results

Table B.9: Average LDA misclassification rates and average separation values for the case MS120,
applying the MAXMEAN method in 100 runs of the experiment.

S100
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (%) 24.39 19.35 12.87 9.70 6.54 3.59
Average Separation 11.28 11.42 11.41 11.56 11.67 11.67

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (%) 1.95 1.21 0.51 0.36 0.13 0.10
Average Separation 11.82 11.84 11.93 11.99 12.09 12.21

S500
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (%) 23.59 18.17 13.67 9.37 5.96 3.74
Average Separation 11.37 11.39 11.49 11.51 11.61 11.63

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (%) 2.13 1.29 0.77 0.40 0.23 0.11
Average Separation 11.78 11.84 11.91 12.03 12.08 12.24

S1000
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (%) 23.67 18.37 13.65 9.40 6.15 3.80
Average Separation 11.33 11.39 11.43 11.51 11.57 11.68

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (%) 2.31 1.35 0.75 0.38 0.21 0.09
Average Separation 11.75 11.84 11.92 12.00 12.09 12.22

Table B.9 gives the average statistics values in 100 runs of the simulation exper-
iment for method MAXMEAN in case MS120 and offsets in the range 1.25−1.55.
Offsets in the range 1.26 − 1.45 are required in all sample size cases, to achieve
misclassification rates of ≈ 20−1% respectively. The average separation between
the two data sets is ≈ 11.35 for a 20% misclassification rate and the two data
sets are almost linearly separable when the average separation is ≈ 12.2 with
misclassification rate ≈ 0.1%.
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B.2.2 MAXMEAN - Case MS20 statistics results

Table B.10: Average LDA misclassification rates and average separation values for the case MS20,
applying the MAXMEAN method in 100 runs of the experiment.

S100
Offset 1.40 1.46 1.52 1.58 1.65 1.72
Error Rate (%) 35.81 28.72 20.91 13.67 7.53 3.95
Average Separation 11.15 11.33 11.46 11.21 11.42 11.40

Offset 1.79 1.86 1.93 2.01 2.10 2.18
Error Rate (%) 2.42 1.05 0.31 0.18 0.07 0.02
Average Separation 11.52 11.55 11.63 11.72 11.83 11.89

S500
Offset 1.48 1.52 1.57 1.62 1.67 1.72
Error Rate (%) 26.79 21.34 15.11 10.21 6.79 3.90
Average Separation 11.25 11.28 11.30 11.34 11.39 11.43

Offset 1.77 1.82 1.88 1.93 1.99 2.05
Error Rate (%) 2.52 1.39 0.73 0.45 0.22 0.12
Average Separation 11.50 11.53 11.57 11.68 11.72 11.76

S1000
Offset 1.48 1.52 1.57 1.62 1.67 1.72
Error Rate (%) 27.23 21.02 15.27 10.27 6.48 3.97
Average Separation 11.24 11.26 11.29 11.36 11.39 11.44

Offset 1.77 1.82 1.88 1.93 1.99 2.05
Error Rate (%) 2.340 1.45 0.76 0.41 0.22 0.09
Average Separation 11.51 11.56 11.59 11.63 11.69 11.76

The misclassification rates and average separation values of the experiments
for offsets in the range 1.40− 2.18 for case S100 and 1.48− 2.05 in the other two
sample size cases, can be seen in Table B.10. Offsets in the range 1.52− 1.85 are
required in all sample size cases, to achieve misclassification rates of ≈ 20− 1%

respectively. The average separation between the two data sets is ≈ 11.3 for a
20% misclassification rate and the two data sets are almost linearly separable
when the average separation is ≈ 11.8 with misclassification rate ≈ 0.1%.
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B.2.3 MAXMEAN - Case MS3 statistics results

Table B.11: Average LDA misclassification rates and average separation values for the case MS3,
applying the MAXMEAN method in 100 runs of the experiment.

S100
Offset 2.72 2.83 2.94 3.06 3.19 3.32
Error Rate (%) 26.79 22.11 18.66 13.96 11.17 7.87
Average Separation 11.21 11.15 11.30 11.33 11.38 11.32

Offset 3.46 3.60 3.74 3.90 4.06 4.22
Error Rate (%) 5.87 5.00 2.94 2.24 1.46 0.77
Average Separation 11.31 11.41 11.50 11.49 11.47 11.48

S500
Offset 2.86 3.00 3.16 3.32 3.49 3.67
Error Rate (%) 21.25 14.86 10.88 7.50 4.59 3.18
Average Separation 11.24 11.27 11.35 11.34 11.37 11.41

Offset 3.86 4.06 4.26 4.48 4.71 4.95
Error Rate (%) 1.93 1.39 0.85 0.58 0.31 0.19
Average Separation 11.45 11.48 11.51 11.56 11.53 11.62

S1000
Offset 2.86 3.00 3.16 3.32 3.49 3.67
Error Rate (%) 21.36 15.15 10.30 7.12 4.81 3.10
Average Separation 11.22 11.28 11.30 11.34 11.38 11.42

Offset 3.86 4.06 4.26 4.48 4.71 4.95
Error Rate (%) 2.05 1.34 0.82 0.46 0.32 0.18
Average Separation 11.43 11.46 11.49 11.56 11.57 11.61

Table B.11 gives the misclassification rates and average separation values of the
experiments, for offsets in the range 2.72− 4.22 for case S100 and 2.86− 4.95 for
the other two sample size cases. Offsets in the range 2.9 − 4.15 are required, to
achieve misclassification rates of ≈ 20− 1% respectively. The average separation
between the two data sets is ≈ 11.25 for a 20% misclassification rate and the
two data sets are almost linearly separable when the average separation is ≈ 11.6

with misclassification rate ≈ 0.2%.
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B.2.4 MAXMEAN - Case MS1 statistics results

Table B.12: Average LDA misclassification rates and average separation values for the case MS1,
applying the MAXMEAN method in 100 runs of the experiment.

S100
Offset 5.47 6.05 6.69 7.39 8.17 9.03
Error Rate (%) 30.95 24.48 15.23 11.95 6.20 3.65
Average Separation 11.13 11.23 11.23 11.33 11.42 11.39

Offset 9.97 11.02 12.18 13.46 14.88 16.44
Error Rate (%) 2.16 1.13 0.61 0.30 0.19 0.09
Average Separation 11.48 11.48 11.44 11.51 11.62 11.65

S500
Offset 5.47 6.05 6.69 7.39 8.17 9.03
Error Rate (%) 32.21 22.92 14.18 8.45 5.00 2.82
Average Separation 11.21 11.26 11.24 11.27 11.37 11.38

Offset 9.97 11.02 12.18 13.46 14.88 16.44
Error Rate (%) 1.99 1.10 0.57 0.37 0.18 0.12
Average Separation 11.44 11.41 11.49 11.54 11.56 11.61

S1000
Offset 5.47 6.05 6.69 7.39 8.17 9.03
Error Rate (%) 31.99 22.32 13.54 8.19 4.98 2.88
Average Separation 11.18 11.24 11.27 11.34 11.33 11.37

Offset 9.97 11.02 12.18 13.46 14.88 16.44
Error Rate (%) 1.80 1.03 0.55 0.31 0.15 0.08
Average Separation 11.43 11.47 11.48 11.56 11.58 11.62

Table B.12 gives the misclassification rates and average separation values of
the experiments, for offsets in the range 5.47 − 16.44 for all the sample size
cases. Offsets in the range 6.3 − 11.2 are required, to achieve misclassification
rates of ≈ 20 − 1% respectively. The average separation between the two data
sets is ≈ 11.2 for a 20% misclassification rate and the two data sets are almost
linearly separable when the average separation is ≈ 11.6 with misclassification
rate ≈ 0.1%.
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B.2.5 MAXMEAN - LDA Boundaries

An illustration of how mean-shifting affects the capability of PCA to discriminate
the two data sets in all four MS cases with S500 for MAXMEAN, superimposed
with the LDA boundary for the two artificial data sets, can be seen in Figure B.6,
for suitably selected offsets which correspond to 20%, 10% and 1% misclassific-
ation rates respectively.
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Figure B.6: Visualisation of the LDA boundaries for the two artificial data sets in all four MS cases
(MAXMEAN). The data corresponds to the first two PCs for LDA. The reference and
test data points are depicted in brown and blue respectively.
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B.2.6 MAXMEAN - Error Plots for case MS120
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(c) S1000

Figure B.7: Visualisation of the relation among LDA misclassification rates, average separation
and offsets in the case MS120 with MAXMEAN. The blue lines represent the mean
values of each statistic for each offset in the selected offset range. The offsets are the
multiplicative factors on the original scale of the data. The vertical error bars are such
that the top and bottom of a bar correspond to the maximum and minimum statistic
value at the respective offset. The statistics values are the average values in 100 runs
of the experiment. The two average separation plots in each sample size case are drawn
using the same range of values for the average separation.
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B.2.7 MAXMEAN - Error Plots for case MS20
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(c) S1000

Figure B.8: Visualisation of the relation among LDA misclassification rates, average separation
and offsets in the case MS20 with MAXMEAN. The blue lines represent the mean
values of each statistic for each offset in the selected offset range. The offsets are the
multiplicative factors on the orignal scale of the data. The vertical error bars are such
that the top and bottom of a bar correspond to the maximum and minimum statistic
value at the respective offset. The statistics values are the average values in 100 runs
of the experiment. The two average separation plots in each sample size case are drawn
using the same range of values for the average separation.
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B.2.8 MAXMEAN - Error Plots for case MS3
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(c) S1000

Figure B.9: Visualisation of the relation among LDA misclassification rates, average separation
and offsets in the case MS3 with MAXMEAN. The blue lines represent the mean
values of each statistic for each offset in the selected offset range. The offsets are the
multiplicative factors on the original scale of the data. The vertical error bars are such
that the top and bottom of a bar correspond to the maximum and minimum statistic
value at the respective offset. The statistics values are the average values in 100 runs
of the experiment. The two average separation plots in each sample size case are drawn
using the same range of values for the average separation.
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B.2.9 MAXMEAN - Error Plots for case MS1
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(c) S1000

Figure B.10: Visualisation of the relation among LDA misclassification rates, average separation
and offsets in the case MS1 with MAXMEAN. The blue lines represent the mean
values of each statistic for each offset in the selected offset range. The offsets are
the multiplicative factors on the original scale of the data. The vertical error bars are
such that the top and bottom of a bar correspond to the maximum and minimum
statistic value at the respective offset. The statistics values are the average values
in 100 runs of the experiment. The two average separation plots in each sample size
case are drawn using the same range of values for the average separation.
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B.2.10 MAXMEAN - Case MS120 CV results

Table B.13: Coefficient of variation results for case MS120 using method MAXMEAN, of the LDA
misclassification rates and average separation values in 100 runs of the experiment.

S100
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (CV) 19.30 23.45 26.86 34.36 37.76 54.99
Error Rate (StDev) 4.71 4.54 3.46 3.33 2.47 1.98
Error Rate (Mean) 24.39 19.35 12.87 9.70 6.54 3.60
Average Separation (CV) 4.80 4.68 4.55 5.36 5.11 4.72
Average Separation (StDev) 0.54 0.53 0.52 0.62 0.60 0.55
Average Separation (Mean) 11.28 11.42 11.41 11.57 11.67 11.67

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (CV) 75.30 95.26 129.05 153.01 229.47 213.20
Error Rate (StDev) 0.58 0.60 0.48 0.58 0.52 0.57
Error Rate (Mean) 1.96 1.22 0.52 0.36 0.13 0.10
Average Separation (CV) 4.88 5.05 4.06 4.88 4.32 4.65
Average Separation (StDev) 0.58 0.60 0.48 0.58 0.52 0.57
Average Separation (Mean) 11.83 11.85 11.93 11.99 12.09 12.22

S500
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (CV) 8.86 10.88 11.89 15.35 17.61 24.64
Error Rate (StDev) 2.09 1.98 1.63 1.44 1.05 0.92
Error Rate (Mean) 23.59 18.18 13.68 9.38 5.96 3.75
Average Separation (CV) 2.21 1.85 2.19 2.34 2.23 2.09
Average Separation (StDev) 0.25 0.21 0.25 0.27 0.26 0.24
Average Separation (Mean) 11.37 11.40 11.49 11.51 11.62 11.64

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (CV) 31.37 34.37 42.59 58.05 74.52 90.88
Error Rate (StDev) 0.67 0.45 0.33 0.24 0.17 0.10
Error Rate (Mean) 2.14 1.30 0.78 0.41 0.23 0.11
Average Separation (CV) 2.29 2.09 1.95 2.06 2.17 2.07
Average Separation (StDev) 0.27 0.25 0.23 0.25 0.26 0.25
Average Separation (Mean) 11.78 11.85 11.91 12.03 12.09 12.25

S1000
Offset 1.25 1.27 1.30 1.32 1.35 1.38
Error Rate (CV) 5.82 8.50 8.72 11.71 12.85 17.67
Error Rate (StDev) 1.38 1.56 1.19 1.10 0.79 0.68
Error Rate (Mean) 23.67 18.37 13.65 9.40 6.16 3.85
Average Separation (CV) 1.43 1.40 1.77 1.39 1.66 1.37
Average Separation (StDev) 0.16 0.16 0.20 0.16 0.19 0.16
Average Separation (Mean) 11.34 11.40 11.44 11.52 11.57 11.68

Offset 1.40 1.43 1.46 1.49 1.52 1.55
Error Rate (CV) 19.69 25.28 32.46 35.75 51.38 67.48
Error Rate (StDev) 0.46 0.34 0.25 0.14 0.11 0.07
Error Rate (Mean) 2.32 1.35 0.76 0.39 0.22 0.10
Average Separation (CV) 1.48 1.33 1.57 1.40 1.34 1.45
Average Separation (StDev) 0.17 0.16 0.19 0.17 0.16 0.18
Average Separation (Mean) 11.75 11.84 11.92 12.01 12.09 12.22
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B.2.11 MAXMEAN - Case MS20 CV results

Table B.14: Coefficient of variation results for case MS20 using method MAXMEAN, of the LDA
misclassification rates and average separation values in 100 runs of the experiment.

S100
Offset 1.40 1.46 1.52 1.58 1.65 1.72
Error Rate (CV) 17.15 25.50 31.82 38.90 42.53 58.26
Error Rate (StDev) 6.14 7.33 6.65 5.32 3.20 2.30
Error Rate (Mean) 35.81 28.73 20.91 13.67 7.53 3.96
Average Separation (CV) 5.00 4.54 4.87 5.32 4.92 4.81
Average Separation (StDev) 0.56 0.51 0.56 0.60 0.56 0.55
Average Separation (Mean) 11.15 11.34 11.46 11.21 11.43 11.41

Offset 1.79 1.86 1.93 2.01 2.10 2.18
Error Rate (CV) 70.11 109.24 200.09 247.93 305.21 607.20
Error Rate (StDev) 1.70 1.15 0.63 0.46 0.23 0.12
Error Rate (Mean) 2.42 1.05 0.32 0.18 0.08 0.02
Average Separation (CV) 4.71 4.37 4.39 4.69 4.06 4.85
Average Separation (StDev) 0.54 0.51 0.51 0.55 0.48 0.58
Average Separation (Mean) 11.53 11.56 11.63 11.73 11.83 11.90

S500
Offset 1.48 1.52 1.57 1.62 1.67 1.72
Error Rate (CV) 12.75 13.72 17.82 16.53 21.19 24.96
Error Rate (StDev) 3.42 2.93 2.69 1.69 1.44 0.98
Error Rate (Mean) 26.80 21.34 15.12 10.21 6.79 3.91
Average Separation (CV) 1.87 2.26 2.27 1.97 2.16 2.09
Average Separation (StDev) 0.21 0.25 0.26 0.22 0.25 0.24
Average Separation (Mean) 11.25 11.29 11.30 11.35 11.39 11.43

Offset 1.77 1.82 1.88 1.93 1.99 2.05
Error Rate (CV) 27.56 42.41 44.08 52.16 65.77 105.26
Error Rate (StDev) 0.70 0.59 0.32 0.24 0.15 0.13
Error Rate (Mean) 2.53 1.40 0.73 0.46 0.23 0.12
Average Separation (CV) 2.08 1.77 2.37 2.11 2.11 1.92
Average Separation (StDev) 0.24 0.20 0.27 0.25 0.25 0.23
Average Separation (Mean) 11.50 11.53 11.58 11.68 11.72 11.76

S1000
Offset 1.48 1.52 1.57 1.62 1.67 1.72
Error Rate (CV) 8.82 9.35 10.47 15.62 15.66 21.00
Error Rate (StDev) 2.40 1.97 1.60 1.60 1.02 0.83
Error Rate (Mean) 27.24 21.02 15.28 10.28 6.48 3.97
Average Separation (CV) 1.56 1.47 1.59 1.52 1.44 1.61
Average Separation (StDev) 0.18 0.17 0.18 0.17 0.16 0.18
Average Separation (Mean) 11.24 11.27 11.30 11.36 11.39 11.45

Offset 1.77 1.82 1.88 1.93 1.99 2.05
Error Rate (CV) 21.48 24.24 35.17 36.75 48.78 70.10
Error Rate (StDev) 0.50 0.35 0.27 0.15 0.11 0.07
Error Rate (Mean) 2.34 1.45 0.76 0.42 0.22 0.09
Average Separation (CV) 1.33 1.43 1.49 1.39 1.41 1.39
Average Separation (StDev) 0.15 0.17 0.17 0.16 0.17 0.16
Average Separation (Mean) 11.51 11.57 11.60 11.63 11.70 11.77
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B.2.12 MAXMEAN - Case MS3 CV results

Table B.15: Coefficient of variation results for case MS3 using method MAXMEAN, of the LDA
misclassification rates and average separation values in 100 runs of the experiment.

S100
Offset 2.72 2.83 2.94 3.06 3.19 3.32
Error Rate (CV) 35.47 38.29 46.84 54.05 63.68 66.72
Error Rate (StDev) 9.50 8.47 8.74 7.55 7.12 5.25
Error Rate (Mean) 26.80 22.11 18.66 13.96 11.18 7.87
Average Separation (CV) 4.34 4.96 4.46 4.59 4.13 5.15
Average Separation (StDev) 0.49 0.55 0.50 0.52 0.47 0.58
Average Separation (Mean) 11.21 11.15 11.30 11.34 11.38 11.33

Offset 3.46 3.60 3.74 3.90 4.06 4.22
Error Rate (CV) 57.56 71.87 84.49 93.34 95.47 113.93
Error Rate (StDev) 3.38 3.59 2.49 2.09 1.39 0.88
Error Rate (Mean) 5.87 5.00 2.94 2.24 1.46 0.78
Average Separation (CV) 4.95 4.32 4.42 4.77 4.74 4.37
Average Separation (StDev) 0.56 0.49 0.51 0.55 0.54 0.50
Average Separation (Mean) 11.31 11.41 11.50 11.49 11.48 11.48

S500
Offset 2.86 3.00 3.16 3.32 3.49 3.67
Error Rate (CV) 22.56 24.47 25.49 25.11 29.31 35.34
Error Rate (StDev) 4.80 3.64 2.77 1.88 1.35 1.12
Error Rate (Mean) 21.26 14.86 10.88 7.51 4.60 3.18
Average Separation (CV) 2.07 2.00 1.91 1.95 2.22 2.19
Average Separation (StDev) 0.23 0.23 0.22 0.22 0.25 0.25
Average Separation (Mean) 11.25 11.27 11.36 11.34 11.37 11.41

Offset 3.86 4.06 4.26 4.48 4.71 4.95
Error Rate (CV) 35.90 44.38 47.14 52.14 69.41 80.40
Error Rate (StDev) 0.70 0.62 0.40 0.31 0.22 0.15
Error Rate (Mean) 1.94 1.40 0.85 0.59 0.32 0.19
Average Separation (CV) 2.15 2.03 2.11 2.05 1.93 1.96
Average Separation (StDev) 0.25 0.23 0.24 0.24 0.22 0.23
Average Separation (Mean) 11.45 11.49 11.52 11.56 11.53 11.62

S1000
Offset 2.86 3.00 3.16 3.32 3.49 3.67
Error Rate (CV) 15.03 23.20 21.58 21.20 20.27 22.07
Error Rate (StDev) 3.21 3.52 2.22 1.51 0.98 0.68
Error Rate (Mean) 21.36 15.15 10.30 7.12 4.81 3.10
Average Separation (CV) 1.69 1.68 1.44 1.47 1.28 1.32
Average Separation (StDev) 0.19 0.19 0.16 0.17 0.15 0.15
Average Separation (Mean) 11.23 11.29 11.30 11.34 11.39 11.43

Offset 3.86 4.06 4.26 4.48 4.71 4.95
Error Rate (CV) 27.88 28.32 32.69 35.55 42.37 63.01
Error Rate (StDev) 0.57 0.38 0.27 0.16 0.14 0.12
Error Rate (Mean) 2.06 1.34 0.83 0.46 0.32 0.19
Average Separation (CV) 1.54 1.40 1.51 1.48 1.56 1.42
Average Separation (StDev) 0.18 0.16 0.17 0.17 0.18 0.16
Average Separation (Mean) 11.44 11.47 11.49 11.56 11.57 11.61
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B.2.13 MAXMEAN - Case MS1 CV results

Table B.16: Coefficient of variation results for case MS1 using method MAXMEAN, of the LDA
misclassification rates and average separation values in 100 runs of the experiment.

S100
Offset 5.47 6.05 6.69 7.39 8.17 9.03
Error Rate (CV) 34.73 43.49 54.35 71.61 76.01 79.60
Error Rate (StDev) 10.75 10.65 8.28 8.56 4.72 2.91
Error Rate (Mean) 30.95 24.48 15.23 11.96 6.21 3.65
Average Separation (CV) 4.70 4.44 4.42 5.27 5.04 4.46
Average Separation (StDev) 0.52 0.50 0.50 0.60 0.58 0.51
Average Separation (Mean) 11.14 11.24 11.23 11.33 11.42 11.40

Offset 9.97 11.02 12.18 13.46 14.88 16.44
Error Rate (CV) 94.72 129.36 137.15 233.16 214.15 266.54
Error Rate (StDev) 2.05 1.47 0.84 0.77 0.41 0.25
Error Rate (Mean) 2.16 1.14 0.61 0.33 0.19 0.10
Average Separation (CV) 4.88 5.14 4.08 4.83 4.25 4.54
Average Separation (StDev) 0.56 0.59 0.47 0.56 0.49 0.53
Average Separation (Mean) 11.48 11.48 11.45 11.51 11.63 11.65

S500
Offset 5.47 6.05 6.69 7.39 8.17 9.03
Error Rate (CV) 22.19 33.34 32.68 32.57 30.95 32.42
Error Rate (StDev) 7.15 7.65 4.64 2.75 1.55 0.91
Error Rate (Mean) 32.21 22.93 14.18 8.45 5.00 2.82
Average Separation (CV) 2.05 2.32 2.19 1.94 2.04 2.15
Average Separation (StDev) 0.23 0.26 0.25 0.22 0.23 0.24
Average Separation (Mean) 11.21 11.27 11.25 11.28 11.38 11.38

Offset 9.97 11.02 12.18 13.46 14.88 16.44
Error Rate (CV) 34.65 46.55 49.66 65.95 92.02 94.35
Error Rate (StDev) 0.69 0.52 0.28 0.25 0.17 0.12
Error Rate (Mean) 2.00 1.11 0.57 0.38 0.19 0.12
Average Separation (CV) 2.11 1.84 2.27 1.99 2.23 2.07
Average Separation (StDev) 0.24 0.21 0.26 0.23 0.26 0.24
Average Separation (Mean) 11.45 11.41 11.50 11.54 11.56 11.61

S1000
Offset 5.47 6.05 6.69 7.39 8.17 9.03
Error Rate (CV) 19.12 25.65 26.47 26.41 24.37 25.11
Error Rate (StDev) 6.12 5.73 3.58 2.16 1.21 0.72
Error Rate (Mean) 32.00 22.33 13.54 8.19 4.98 2.89
Average Separation (CV) 1.54 1.47 1.67 1.60 1.39 1.51
Average Separation (StDev) 0.17 0.17 0.19 0.18 0.16 0.17
Average Separation (Mean) 11.19 11.24 11.27 11.34 11.34 11.37

Offset 9.97 11.02 12.18 13.46 14.88 16.44
Error Rate (CV) 27.92 31.80 39.47 43.60 62.14 83.48
Error Rate (StDev) 0.50 0.33 0.22 0.14 0.09 0.07
Error Rate (Mean) 1.81 1.04 0.56 0.32 0.15 0.08
Average Separation (CV) 1.48 1.32 1.34 1.38 1.54 1.39
Average Separation (StDev) 0.17 0.15 0.15 0.16 0.18 0.16
Average Separation (Mean) 11.43 11.48 11.48 11.56 11.59 11.63
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List of R functions
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Table C.1: List of R functions written for the analyses in the thesis.

CHAPTER OBJECT FUNCTION
PART I - Project and
Data Description

Project Description Figure 2.3 [2.4.3]a plotClinChars()b

Internal functionb plotBars()

Pre-processing and
pre-treatment of the data

Figure 4.1 [4.3.1] compareBinWidths()1

Figure 4.2 [4.3.2] plotBaseline()c,d

Figures 4.3 - 4.6 [4.4.2-3] compareMethods()c,d

Internal functionc createPlotEnv()
Internal functiond plotLines()

PART II - Pattern Re-
cognition

Principal Components
Analysis

Calculates Normalised Entropy [5.3.2] calculateNE()
Calculates the Gleason-Staelin statistic [5.3.2] calculateGS()
Figure 5.2, Table 5.2 [5.3.3] plotStopRules()
Figure 5.11 [5.3.4] plotLoadsVsPCs()c,d

Figures 5.3, 5.6-10 [5.3.4] plotPCA()
Main function runPCA()
Figure 5.4 [5.3.4] calculateDist()

Multidimensional Scaling

Figures 6.1-7, Table 6.1 [6.4.2] runClassicalMDS()e,f

Internal functione plotMDS()
Internal functionf plotMST()
Figure 6.8-14 [6.4.3] runSammonMDS()g,h

Internal functiong plotNLM()
Internal functionh assessQualNLM()

Cluster Analysis

General Modules

Generic functionα createPLT()
Method - Figure 7.29 [7.7.2.6] plotGroupMeans()α,1

Main function - Figures 7.16-18,22,34 plotScores()
Main functionj - Figures 7.4-7,14-15,20-21 plotSilhouette()
Main function - Tables 7.6-8,10,12,18-23 tabulateChar()
Main function - Tables 7.9,11,13-14,24 runChiSquareTest()a

Hierarchical Clustering

Main function runHCA()
Method - Figures 7.9-10 plotHCAtree()α

Main function - Figures 7.8,11-13 plotHCAscores()
Main function assessQualHCA()i,j,k,l

Internal functioni - Table 7.3 calculateAC()
Internal functionk - Figure 7.2 plotBanner()
Internal functionl - Tables 7.4-5, Figure 7.3 computeCophCor()

Fuzzy Clustering Main function - Tables 7.15-17 runFuzzyClust()

Hard Clustering Main function runKmeans()
Main function - Figure 7.19 computeClustInd()

Competitive Learning Main function createSOM()
Method - Figures [7.5.2.5-6] plotSOM()α,a

PART III - Data Simu-
lation

Data Simulation

Figure 8.1 [8.2.3] plotLDA()
Figure 8.3 [8.3.1] plotElemTransComp()1,3

Figure 8.4 [8.3.2] plotCovComp()1

Figure 8.5 [8.3.4] plotMS244Scaling()1

Figure 8.6 [8.3.4] plotRowScaling()2

Figure 8.7 [8.3.5] plotMeanCentring()2

Internal function1 plotMeanSpectrum()
Internal function2 plotSpectra()
Internal function3 plotScores()
Simulation Algorithm - Main createDataClass()
Simulation Algorithm - Main generateSet()
Simulation Algorithm - Main simulateData()4

Simulation Algorithm - Main runSimulation()
Simulation Algorithm - Main plotMeanShifting()1

Simulation Algorithm - Main plotBoundaries()
Simulation Algorithm - Main plotSimStats()7

Simulation Algorithm - Main computeCV()
Simulation Algorithm - Internal4 plotData()1,3,5,6

Simulation Algorithm - Internal5 plotVarExpl()
Simulation Algorithm - Internal6 plotLoads()
Simulation Algorithm - Internal7 createStatsPlots()
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Appendix C.2

Chapter 8 - Simulation Algorithm

Contents

1. createDataClass()
2. generateSet()
3. simulateData()
4. runSimulation()
5. plotMeanShifting()
6. plotBoundaries()
7. plotSimStats()
8. computeCV()
9. plotData()

10. plotVarExpl()
11. plotLoads()
12. createStatsPlots()
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C.2 R code used in the simulation algorithm

C.2.1 Main function: createDataClass()

#---------------------------------------------------------------#
# AIM #
# Creates the data set to be used in the simulation experiments ,#
# from the original epilepsy data. #
#---------------------------------------------------------------#
# ARGUMENTS #
# sFile: A character string giving the filename of the file #
# containing the spectral information. By default, the #
# file should be in the current working directory. #
# cFile: A character string giving the filename of the file #
# containing the clinical information. By default, the #
# file should be in the current working directory #
# dppm: The number of downfield variables to exclude from #
# the data e.g. dppm = 26 means, that the first 25 #
# variables (corresponding to the variables with #
# chemical shifts above 9.98 p.p.m.) will be excluded #
# from the analyses. #
# uppm: The number of upfield variables to exclude from the #
# data e.g. uppm = 275 means, that all variables with #
# chemical shifts below 0.02 p.p.m. will be excluded #
# from the analyses. #
# water: A vector giving the range of water variables to #
# exclude from the data e.g. 153:158 for the spectral #
# data with 0.04 bin width. #
# fVar: The position of the last variable in the spectral #
# data e.g. 338, in the spectral data with 0.04 bin. #
# rowScal: A logical value. If TRUE, row-scaling is applied. #
# posDev: A logical value. If TRUE, the covariance matrix is #
# converted to positive definite. #
# tol: Tolerance level for singular values and for absolute #
# eigenvalues. #
# trnType: Character string corresponding to the selection of #
# "log" or "sqrt" element transformation. #
#---------------------------------------------------------------#
# DETAILS #
# -createDataClass() is also used to combine the spectral and #
# clinical information of the patients to a data frame in R, #
# in most of the statistical analyses in the thesis. #
# -createDataClass() depends on package *corpcor*, as it uses #
# the R function make.positive.definite() to convert the #
# covariance matrix of the data, to positive definite. #
#---------------------------------------------------------------#

createDataClass <- function ( sFile , cFile ,
dppm , uppm , water , fVar ,
rowScal = c (TRUE , FALSE ) ,
posDev = c (TRUE , FALSE ) , tol ,
trnType = c ( " l o g " , " s q r t " ) )

{
# Locate the epilepsy data in the storage media
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specFile <- paste ( getwd ( ) , "/" , sFile , sep = "" )

# Exclude unsuitable for the analyses patients
exclRows <- c (23 , 85 , 86)

if ( identical (dppm , 0) )
# Exclude the water, the high-frequency 1H NMR chemical
# shifts above 10 p.p.m.and the low-frequency 1H NMR
# chemical shifts below 0 p.p.m.
exclCols <- c ( 1 : 2 5 , water , ( uppm + 1) : fVar )

else if ( identical (dppm , −1) )
# Retain the variables in spectral range 6-0 p.p.m.
exclCols <- c ( 1 : 1 25 , water , ( uppm + 1) : fVar )

else
# Exclude the high-frequency 1H NMR chemical
# shifts above (dppm - 1) p.p.m. and the low-frequency
# 1H NMR chemical shifts below 0 p.p.m.
exclCols <- c ( 1 : ( dppm − 1) , ( uppm + 1) : fVar )

# Input the spectral information to R
specData <- read . csv ( specFile , header = TRUE , row . names = 1 ,

sep = " , " ) [−exclRows , −exclCols ]
rownames ( specData ) <- sub ( "MN05−" , "" , rownames ( specData ) )

for (i in seq ( along = specData ) ) {
# Remove the ’d..’ and ’d.’ from the rownames
nameTwoDots <- ( regexpr ( "d . . " , names ( specData ) [ i ] ,

fixed = TRUE ) [ 1 ] == 1)
if ( nameTwoDots )

names ( specData ) [ i ] <- gsub ( "d . . " , "−" ,
names ( specData ) [ i ] )

else names ( specData ) [ i ] <- gsub ( "d . " , "" ,
names ( specData ) [ i ] )

}

if ( identical ( rowScal , TRUE ) ) {
# Row-scale to a constant total the data
varsTotal <- apply ( specData , 1 , sum )
specData <- specData / varsTotal
print ( "Row s c a l i n g to a con s t an t t o t a l !" )

}
else print ( "No row s c a l i n g to a con s t an t t o t a l !" )

if ( missing ( trnType ) )
# No element transformation of the data
print ( paste ( "No e lement t r a n s f o rma t i o n o f the data!" ,

sep = "" ) )
else {

if ( identical ( trnType , " l o g " ) )
# Log transformation of the data
specData <- log ( specData )

else
# Square root transformation of the data
specData <-sqrt ( specData )

print ( paste ( "Element " , trnType ,
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" t r a n s f o rma t i o n o f the data!" , sep = "" ) )
}

# Exclude unwanted clinical characteristics
exclCols <- c ( 8 : 1 0 , 13 : 14 , 17 : 18 )

# Input the clinical characteristics information to R
clinFile <- paste ( getwd ( ) , "/" , cFile , sep = "" )
clinData <- read . csv ( clinFile , header = TRUE , row . names = 1 ,

sep = " , " ) [−exclRows , −exclCols ]

# Join the spectral with the clinical information
epilData <- list ( clinical = clinData , spectra = specData )

# Extract the responders and non-responders to AEDs from the data
outcome <- epilData$clinical$Out . 6 . m . s
respLevels <- levels (as . factor ( outcome ) )
selectResp <- function (x ) subset (x , ( outcome != respLevels [ 3 ] ) )
respData <- lapply ( epilData , selectResp )

# Obtain the mean, standard deviation and median of the
# distributions of the variables in the extracted data
respDataMean <- apply ( respData$spectra , 2 , mean )
respDataStDev <- apply ( respData$spectra , 2 , sd )
respDataMedian <- apply ( respData$spectra , 2 , median )

# Calculate the covariance matrix of the extracted data and
# convert it to positive definite
if ( identical (dppm , 0) )

respDataCov <- cov ( respData$spectra )
else respDataCov <- cov ( respData$spectra [ , −c ( water ) ] )
if ( posDev ) respDataCov <- make . positive . definite ( respDataCov ,

tol )

# Construct the required data object
refData <- list ( response = respData ,

respMean = respDataMean ,
respCov = respDataCov ,
respStDev = respDataStDev ,
respMedian = respDataMedian )

class ( refData ) <- " ep iData "

return ( refData )
}
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C.2.2 Main function: generateSet()

#---------------------------------------------------------------#
# AIM #
# Generates a reference or test data set for the simulation #
# experiments. #
#---------------------------------------------------------------#
# ARGUMENTS #
# dSet: A data set of class epiData created by #
# createDataClass(). #
# water: A vector giving the range of water variables to #
# exclude from the data e.g. 153:158 for the spectral #
# data with 0.04 bin width. #
# dppm: The number of downfield variables to exclude from #
# the data e.g. dppm = 26 means, that the first 25 #
# variables (corresponding to the variables with #
# chemical shifts above 9.98 p.p.m.) will be excluded #
# from the analyses. #
# offSet: A log value to add to the means of the selected #
# variables for mean-shifting, in the test set. To #
# generate a reference data set, an offset of size 0 #
# is used. #
# nVars: The number of variables to mean-shift. The number is #
# set to 0 when a reference set is generated. #
# nRows: The number of samples in the reference or the test #
# set. #
# vMethod: Character string corresponding to the method to #
# select the variables for mean-shifting. Three #
# methods are available: stdev, mean and median. #
# vOrder: A logical value. If TRUE, the variables are #
# selected in decreasing order, otherwise in #
# increasing order. #
# rSet: Character string corresponding to a generated #
# reference set and is used for the generation of the #
# test set. #
#---------------------------------------------------------------#
# DETAILS #
# -generateSet() depends on package *MASS* to generate the #
# multivariate normal distribution samples (using mvrnorm()). #
#---------------------------------------------------------------#

generateSet <- function (dSet , water , dppm , offSet , nVars , nRows ,
vMethod = c ( " s t d e v " , "mean" , "median" ) ,
vOrder = c (TRUE , FALSE ) , rSet )

{
# if true, water variables have been removed
noWater <- identical (dppm , 0)

if ( noWater )
NUMVARS <- length ( dSet [ [ 2 ] ] )

else NUMVARS <- length ( dSet [ [ 2 ] ] [ − c ( water ) ] )
sSize <- nRows
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# Test if a reference or a test set is generated
if ( missing ( rSet ) ) {

# A reference set is generated
meanOffSet <- rep (0 , NUMVARS )

}
else {

# A test set is generated
rSamples <- dim ( rSet [ [ 1 ] ] ) [ 1 ]
vMethod <- match . arg ( vMethod )
if ( identical ( vMethod , "mean" ) ) {

# Selection method is MAXMEAN
ifelse ( noWater , rVars <- dSet [ [ 2 ] ] ,

rVars <- dSet [ [ 2 ] ] [ − c ( water ) ] )
}
else if ( identical ( vMethod , " s t d e v " ) ) {

# Selection method is MAXDEV or MINDEV
ifelse ( noWater , rVars <- dSet [ [ 4 ] ] ,

rVars <- dSet [ [ 4 ] ] [ − c ( water ) ] )
}
else {

# Selection method is median
ifelse ( noWater , rVars <- dSet [ [ 5 ] ] ,

rVars <- dSet [ [ 5 ] ] [ − c ( water ) ] )
}

# Sort the variables in decreasing or increasing order
varList <- sort ( rVars , decreasing = vOrder ) [ 1 L : nVars ]
varLength <- seq ( NUMVARS )
offSetRuns <- seq ( varList )
meanOffSet <- numeric ( NUMVARS )

for ( index in seq ( along = varLength ) ) {
# Select the variables to mean-shift
if ( noWater ) varLabel <- names ( dSet [ [ 2 ] ] [ index ] )
else varLabel <- names ( dSet [ [ 2 ] ] [ − c ( water ) ] ) [ index ]
for ( vIndex in seq ( along = offSetRuns ) ) {

offSetLabel <- names ( varList ) [ vIndex ]
nameMatch <- identical ( varLabel , offSetLabel )
if ( nameMatch ) {

# if variable satisfies criteria mean-offset
meanOffSet [ index ] <- offSet
break

}
else {

# Do not mean-shift the variable
meanOffSet [ index ] <- 0

}
}

}
}

# Generate a reference or a test data set
if ( noWater )

tSet <- mvrnorm ( nRows , mu = dSet [ [ 2 ] ] +
as . numeric ( meanOffSet ) ,

Sigma = dSet [ [ 3 ] ] , empirical = FALSE )
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else tSet <- mvrnorm ( nRows , mu = dSet [ [ 2 ] ] [ − c ( water ) ] +
as . numeric ( meanOffSet ) ,

Sigma = dSet [ [ 3 ] ] , empirical = FALSE )
if ( identical ( nVars , 0) ) {

rownames ( tSet ) <- as . character ( seq (1 , nRows ) )
if ( noWater )

colnames ( tSet ) <- colnames ( dSet [ [ 1 ] ] [ [ 2 ] ] )
else colnames ( tSet ) <- colnames ( dSet [ [ 1 ] ] [ [ 2 ] ] [ − c ( water ) ] )

}
else {

rownames ( tSet ) <- as . character ( seq ( sSize + 1 ,
nRows + sSize ) )

if ( noWater )
colnames ( tSet ) <- colnames ( dSet [ [ 1 ] ] [ [ 2 ] ] )

else colnames ( tSet ) <- colnames ( dSet [ [ 1 ] ] [ [ 2 ] ] [ − c ( water ) ] )
}

# Calculate the mean and standard deviation of the variables in
# the generated data set
tDataMean <- apply (tSet , 2 , mean )
tDataStDev <- apply (tSet , 2 , sd )

# Construct the required data object
tData <- list ( Values = tSet ,

Mean = tDataMean ,
StDev = tDataStDev )

return ( tData )
}
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C.2.3 Main function: simulateData()

#---------------------------------------------------------------#
# AIM #
# Creates the PC scores plots with an LDA boundary or #
# calculates and returns the misclassification rate and the #
# average separation in an experiment. #
#---------------------------------------------------------------#
# ARGUMENTS #
# dSet: A data set of class epiData created by #
# createDataClass(). #
# rSet: String corresponding to a generated reference set #
# tSet: String corresponding to a generated test set for the #
# same experiment as the rSet. #
# ofValue: The log value which has been used as an offset for #
# the generation of the tSet. #
# rppm: The number of intervals in which to break the range #
# of chemical shifts in a spectrum plot. For example, #
# rpm = 10, means that the chemical shifts from #
# 0 - 10 p.p.m. will be plotted in a spectrum plot. #
# rowScal: A logical value for the row-scaling, here used to #
# print the appropriate information in the title of #
# the PCA scores plot. #
# simTest: Character value to select either to plot the PCA #
# scores (value "pca") or calculate the statistics #
# (value "stat"). #
# runTool: A logical value. If runTool = TRUE then call #
# plotData(). Default value is FALSE. #
# storePCA:A logical value. If storePCA = TRUE then the object #
# pcaData is stored in the working environment. #
# Default value is FALSE. #
#---------------------------------------------------------------#
# DETAILS #
# -The function simulateData() also contains a call to internal #
# function plotData() which provides additional information #
# for every single run of the simulation algorithm (used for #
# debugging purposes). #
# -simulateData() depends on package *MASS* to perform LDA, #
# using the R function lda(). #
#---------------------------------------------------------------#

simulateData <- function (dSet , rSet , tSet ,
ofValue , rppm ,
rowScal = c (TRUE , FALSE ) ,
simTest = c ( "pca" , " s t a t " ) ,
runTool = FALSE ,
storePCA = FALSE )

{
if ( identical ( rowScal , TRUE ) ) {

# Exponentiate , row-scale to a constant total and
# log-transform the reference data set
rSet [ [ 1 ] ] <- exp ( rSet [ [ 1 ] ] )
varsRef <- apply ( rSet [ [ 1 ] ] , 1 , sum )
rSet [ [ 1 ] ] <- rSet [ [ 1 ] ] / varsRef
rSet [ [ 1 ] ] <- log ( rSet [ [ 1 ] ] )
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# Obtain the mean vector for the new reference set
rSet [ [ 2 ] ] <- apply ( rSet [ [ 1 ] ] , 2 , mean )
# Exponentiate , row-scale to a constant total and
# log-transform the test data set
tSet [ [ 1 ] ] <- exp ( tSet [ [ 1 ] ] )
varsTest <- apply ( tSet [ [ 1 ] ] , 1 , sum )
tSet [ [ 1 ] ] <- tSet [ [ 1 ] ] / varsTest
tSet [ [ 1 ] ] <- log ( tSet [ [ 1 ] ] )
# Obtain the new mean vector for the new test set
tSet [ [ 2 ] ] <- apply ( tSet [ [ 1 ] ] , 2 , mean )

}

# Row-bind a reference and a test set
rbSet <- rbind ( rSet [ [ 1 ] ] , tSet [ [ 1 ] ] )
class ( rbSet ) <- " rBindData "

# Store the row-binded data in the working environment
bdSet <<- rbSet

# Perform PCA on the combined data set
weightedMean <- ( rSet [ [ 2 ] ] + tSet [ [ 2 ] ] ) / 2
pcaData <- prcomp ( rbSet , retx = T , center = weightedMean ,

scale = F , tol = sqrt ( . Machine$double . eps ) )

# Store the PCA data in the working environment
if ( identical ( storePCA , TRUE ) ) {

pcData <<- pcaData
}

# Call internal function plotData() for further information
# about the PCA and debugging purposes
if ( identical ( runTool , TRUE ) ) plotData (dSet , rbSet , pcaData ,

3 , rppm )

# Store information about the PCs and their variance in each
# single run of the algorithm.
# Variance of the first PC
VPC1 <- format ( pcaData$sdev [ 1 ] ^2 , digits = 2 , nsmall = 2)
# Proportion of variance explained by the first PC
PC1 <- format ( ( ( pcaData$sdev [ 1 ] ^ 2 ) /

sum ( pcaData$sdev^2) ) * 100 , digits = 2 , nsmall = 2)
# Variance of the first PC
VPC2 <- format ( pcaData$sdev [ 2 ] ^2 , digits = 2 , nsmall = 2)
# Proportion of variance explained by the second PC
PC2 <- format ( ( ( pcaData$sdev [ 2 ] ^ 2 ) /

sum ( pcaData$sdev^2) ) * 100 , digits = 2 , nsmall = 2)
# Number of PCs to extract
RPCS <- length ( pcaData$sdev )
pc <- c (VPC1 , PC1 , VPC2 , PC2 , RPCS )

# Create a vector of type factor, with colouring information
# for the points of the two data sets in the PCA scores plots
isColour <- character ( dim ( rbSet ) [ 1 ] )
isArtificial <- numeric ( dim ( rbSet ) [ 1 ] )
rSize <- dim ( rSet [ [ 1 ] ] ) [ 1 ]
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for (i in seq ( along = rownames ( rbSet ) ) ) {
isArtificial [ i ] <- (as . numeric ( rownames ( rbSet ) [ [ i ] ] ) >=

rSize + 1)
ifelse ( isArtificial [ i ] , isColour [ i ] <- "#00A5C6" ,

isColour [ i ] <- "#AD4A18" )
}

# Calculate the average separation
totSamples <- dim ( rbSet ) [ 1 ]
tSize <- totSamples − rSize
distData <- as . matrix ( dist ( pcaData$x [ , 1 : 2 ] ,

method = " e u c l i d e a n " ) )
samplesDistance <- sum ( distData [ 1 : rSize ,

( rSize + 1) : totSamples ] )
SamplesNumProduct <- tSize * ( totSamples − tSize )
averSep <- samplesDistance / SamplesNumProduct

# Perform LDA on the first two PCs
ldaData <- lda ( pcaData$x [ , 1 : 2 ] , grouping = isArtificial ,

method = "moment" )

if ( identical ( simTest , "pca" ) ) {
# Plot PCA scores
if ( rowScal ) title <- "ROW SCALED Data"

else title <- "UNSCALED Data"
plotTitle <- paste ( title , " − Of f s e t : " ,

format ( exp (as . numeric ( ofValue ) ) ,
digits = 2 , nsmall = 2) , "\n" ,
"Sample S i z e : " , rSize , sep = "" )

# Calculate the slope of the LDA boundary
slope <- −(ldaData$scaling [ 1 , 1 ] / ldaData$scaling [ 2 , 1 ] )
# Adjust the plotting settings for the scores plot
par ( mar=c (4 , 4 , 4 , 2) + 0 . 1 , mgp=c (2 , 0 . 5 , 0) , tcl = −0.5 ,

xpd = FALSE , xaxs = " i " , yaxs = " i " )
# Plot the PCa scores for the first two PCs
plot ( pcaData$x [ , 1 : 2 ] , pch = " . " , col = isColour ,

cex . main = 0 .5 , cex . lab = 0 .5 , cex . axis = 0 .5 ,
main = plotTitle )

# Plot the centre of the points in the reference set
points ( ldaData$means [ 1 , 1 ] , ldaData$means [ 1 , 2 ] ,

col = "#632910" , pch = 8 , cex = 2 . 0 )
# Plot the centre of the points in the test set
points ( ldaData$means [ 2 , 1 ] , ldaData$means [ 2 , 2 ] ,

col = "#00394A" , pch = 8 , cex = 2 . 0 )
# Plot the LDA boundary
abline (a = 0 , b = slope , col = "#8C007B" , lwd = 1 . 5 )
# Add the Average Separation value to the scores plot
textSide <- 3
mtext ( paste ( "Average Sepa r a t i o n : " ,

format ( averSep , digits = 4) , sep ="" ) ,
adj = 0 , side = textSide , cex = 0 . 3 )

}
else {

# Obtain and process the information from the LDA, about the
# misclassified samples in the two data sets
predSet <- predict ( ldaData )
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classType <- table ( predSet [ [ 1 ] ] [ 1 : rSize ] )
isRefTrue <- ( identical ( classType [ [ 1 ] ] , 100L ) &&

identical ( classType [ [ 2 ] ] , 0L ) )
isTestTrue <- ( identical ( classType [ [ 1 ] ] , 0L ) &&

identical ( classType [ [ 2 ] ] , 100L ) )
isCorrect <- isRefTrue | | isTestTrue
if ( isCorrect ) {

rError <- tError <- 0
if ( identical ( classType [ [ 2 ] ] , 0L ) ) {

rGroup <- 0
tGroup <- 1

}
else {

rGroup <- 1
tGroup <- 0

}
}
else {

rClass <- predSet [ [ 1 ] ] [ 1 : rSize ]
tClass <- predSet [ [ 1 ] ] [ ( rSize + 1) : totSamples ]
groupOneSize <- table ( predSet [ [ 1 ] ] [ 1 : rSize ] ) [ [ 1 ] ]
groupTwoSize <- rSize − groupOneSize
if ( groupOneSize > groupTwoSize ) {

rGroup <- 0
tGroup <- 1
rError <- table ( rClass ) [ [ 2 ] ]
tError <- table ( tClass ) [ [ 1 ] ]

}
else {

rGroup <- 1
tGroup <- 0
rError <- table ( rClass ) [ [ 1 ] ]
tError <- table ( tClass ) [ [ 2 ] ]

}
}

# Calculate the LDA misclassification rate
ldaError <- ( ( rError + tError ) / totSamples ) * 100

# Costruct the object containing the misclassification
# rate, the average separation and the PCs information
# in each experiment
predSet$classes <- list ( ref = rGroup , test = tGroup )
predSet$aversep <- averSep
predSet$error <- ldaError
predSet$pc <- pc

}

# If a PCA scores plot is not required , return the statistics
# information
isStat <-identical ( simTest , " s t a t " )
ifelse ( isStat , return ( predSet ) ,

return ( list ( ldaData , averSep , pc ) ) )
}
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C.2.4 Main function: runSimulation()

#---------------------------------------------------------------#
# AIM #
# The main function, which runs the simulation algorithm. #
#---------------------------------------------------------------#
# ARGUMENTS #
# dSet: A data set of class epiData created by #
# createDataClass(). #
# water: A vector giving the range of water variables to #
# exclude from the data e.g. 153:158 for the spectral #
# data with 0.04 bin width. #
# sValue: A real value corresponding to the first value of #
# an offset range of values for an experiment. #
# eValue: A real value corresponding to the last value of #
# an offset range of values for an experiment. #
# stepSize:A real value corresponding to the step size between #
# offsets in the selected offset range. #
# nRuns: The number of runs of an experiment. #
# nPars: The number of parameters (statistics) to store #
# information about. In the standard case, nPars is #
# equal to 2, as we have two statistics , the #
# misclassification rate and the average separation #
# for which we store information. #
# nVars: The number of variables to mean-shift. The number is #
# set to 0 when a reference set is generated. #
# rSize: The number of samples in the reference set. #
# tSize: The number of samples in the test set. #
# vMethod: Character string corresponding to the method to #
# select the variables for mean-shifting. Three #
# methods are available: stdev, mean and median. #
# vOrder: A logical value. If TRUE, the variables are #
# selected in decreasing order, otherwise in #
# increasing order. #
# rppm: The number of intervals in which to break the range #
# of chemical shifts in a spectrum plot. For example, #
# rpm = 10, means that the chemical shifts from #
# 0 - 10 p.p.m. will be plotted in a spectrum plot. #
# dppm: The number of downfield variables to exclude from #
# the data e.g. dppm = 26 means, that the first 25 #
# variables (corresponding to the variables with #
# chemical shifts above 9.98 p.p.m.) will be excluded #
# from the analyses. #
# rowScal: A logical value for the row-scaling. #
# plotTrue:A logical value. If plotTrue = TRUE then the PCA #
# scores are plotted and if FALSE, the statistics #
# are calculated. Default value is FALSE. #
# runTool: A logical value. If runTool = TRUE then call #
# plotData(). Default value is FALSE. #
# storePCA:A logical value. If storePCA = TRUE then the object #
# pcaData is stored in the working environment. #
# Default value is FALSE. #
# multiple:A logical value. If multiple = TRUE then #
# plotRows * plotCols scores plots are plotted. #
# Default value is FALSE. #
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# plotRows:The number of scores plots in a column of a multiple #
# plot. #
# plotCols:The number of scores plots in a row of a multiple #
# plot. #
#---------------------------------------------------------------#
# DETAILS #
# -If sValue, eValue and stepSize are e.g. 0.4, 0.6 and 0.1 #
# respectively , then the experiment will be executed for #
# offsets 0.4, 0.5 AND 0.6. #
# -Starting a graphics device driver for X requires a machine #
# with access to an X server. A different graphics device #
# driver may be needed in a Windows (e.g. cairo) or Mac OS X #
# System (quartz). #
# -runSimulation() depends on package *xtable* to convert the #
# statistics information matrix to a latex table, using R #
# function xtable(). #
#---------------------------------------------------------------#

runSimulation <- function (dSet , water , sValue , eValue , stepSize ,
nRuns , nPars , nVars , rSize , tSize ,
vMethod , vOrder , rppm , dppm ,
rowScal = c (TRUE , FALSE ) ,
plotTrue = FALSE , runTool = FALSE ,
storePCA = FALSE , multiple = FALSE ,
plotRows = NULL , plotCols = NULL )

{
# Calculate the offset range
startValue <- sValue
endValue <- eValue
ofValue <- seq ( startValue , endValue , by = stepSize )
nCols <- length ( ofValue )

# Set some bounds for counters
seqPlots <- seq (1 , nCols , by = 1)
seqRuns <- seq (1 , nRuns , by = 1)

# Create a list to store the statistics information
setsInfo <- list ( misrate = matrix ( nrow = nRuns , ncol = nCols ) ,

aversep = matrix ( nrow = nRuns , ncol = nCols ) )

if ( plotTrue ) {
# Plot the PCA scores plot
if ( multiple ) {

# Start a graphics device driver for X with width and
# height of the plotting window with respect to plotCols
# and plotRows
x11 ( width = plotCols * 3 , height = plotRows * 3)
par ( mfrow = c ( plotRows , plotCols ) )

}
simTest <- "pca"

}
else {

# Calculate the statistics
simTest <- " s t a t "

}
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# If a call to plotData() is required , start a graphics
# device driver for X with width and height equal to 8 inches
if ( identical ( runTool , TRUE ) ) x11 ( width = 8 , height = 8)

# Execute the simulation algorithm nRuns times
for ( run in seq ( along = seqRuns ) ) {

print ( paste ( "Run : " , run , sep = "" ) )
for ( index in seq ( along = seqPlots ) ) {

# Generate a reference set
refSet <- generateSet (dSet , water , dppm , 0 , 0 , rSize )
# Generate a test set
testSet <- generateSet (dSet , water , dppm , ofValue [ index ] ,

nVars , tSize , vMethod , vOrder ,
refSet )

# Plot PCA scores or obtain the statistics
ldaInfo <- simulateData (dSet , refSet , testSet ,

as . character ( ofValue [ index ] ) ,
rppm , rowScal , simTest ,
runTool , storePCA )

if ( identical ( simTest , " s t a t " ) ) {
# If statistics have been obtained, store them
# for each single run, to the created list
ldaError <- format ( ldaInfo$error , digits = 2 ,

nsmall = 1)
setsInfo$misrate [ run , index ] <- as . numeric ( ldaError )
ldaAverSep <- format ( ldaInfo$aversep , digits = 4 ,

nsmall = 4)
setsInfo$aversep [ run , index ] <- as . numeric ( ldaAverSep )

}

if ( identical ( simTest , "pca" ) ) {
# Send to the standard output information about the
# offset
print ( paste ( " O f f s e t ( l o g ) : " ,

format ( ofValue [ index ] , digits = 2 ,
nsmall = 2) ,

" O f f s e t : " ,
format ( exp ( ofValue [ index ] ) ,

digits = 2 , nsmall = 2) ,
sep = "" ) )

}
else {

# Send to the standard output information about the
# offset, the PCs and their variance for each single
# experiment
print ( paste ( " O f f s e t ( l o g ) : " ,

format ( ofValue [ index ] , digits = 2 ,
nsmall = 2) ,

" O f f s e t : " ,
format ( exp ( ofValue [ index ] ) ,

digits = 2 , nsmall = 2) ,
sep = "" ) )

print ( paste ( " VPC1 : " , ldaInfo$pc [ 1 ] ,
" PC1 : " , ldaInfo$pc [ 2 ] ,
" VPC2 : " , ldaInfo$pc [ 3 ] ,
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" PC2 : " , ldaInfo$pc [ 4 ] ,
" RPCS : " , ldaInfo$pc [ 5 ] , sep = "" ) )

}
}

}

if ( identical ( simTest , " s t a t " ) ) {
# If statistics have been obtained, create a matrix to store
# the mean values of the statistics in nRuns of the algorithm
setSeparation <- matrix ( nrow = nPars , ncol = nCols )
rownames ( setSeparation ) <- c ( " E r r o r Rate (%)" ,

"Average Sepa r a t i o n " )
colnames ( setSeparation ) <- format ( exp ( ofValue ) , digits = 2 ,

nsmall = 2)

# Obtain the mean values for each statistic and store them to
# the created matrix
seqPars <- seq (1 , nPars , by = 1)
for ( param in seq ( along = seqPars ) ) {

for ( index in seq ( along = seqPlots ) ) {
setSeparation [ param , index ] <-

mean ( setsInfo [ [ param ] ] [ 1 : nRuns , index ] )
}

}

# Convert the R information in the matrix to a latex table
align <- paste ( " l " , paste ( rep ( "c" , nCols ) , collapse = "" ) ,

sep = "" )
setParams <- xtable ( setSeparation , align = align ,

digits = 4)

class ( setSeparation ) <- " s ta tData "
return ( list ( setSeparation , setsInfo , setParams ) )

}
}
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C.2.5 Main function: plotMeanShifting()

#---------------------------------------------------------------#
# AIM #
# Plots the mean shifting results in each simulation experiment.#
#---------------------------------------------------------------#
# ARGUMENTS #
# dSet: A data set of class epiData created by #
# createDataClass(). #
# water: A vector giving the range of water variables to #
# exclude from the data e.g. 153:158 for the spectral #
# data with 0.04 bin width. #
# smpSize: The number of samples in the reference and the test #
# set. #
# offSet: A log value to add to the means of the selected #
# variables for mean-shifting, in the test set. To #
# generate a reference data set, an offset of size 0 #
# is used. #
# nVars: The number of variables to mean-shift. The number is #
# set to 0 when a reference set is generated. #
# vMethod: Character string corresponding to the method to #
# select the variables for mean-shifting. Three #
# methods are available: stdev, mean and median. #
# vOrder: A logical value. If TRUE, the variables are #
# selected in decreasing order, otherwise in #
# increasing order. #
# rppm: The number of intervals in which to break the range #
# of chemical shifts in a spectrum plot. For example, #
# rpm = 10, means that the chemical shifts from #
# 0 - 10 p.p.m. will be plotted in a spectrum plot. #
#---------------------------------------------------------------#
# DETAILS #
# -plotMeanShifting() uses the R function plotMeanSpectrum() to #
# plot the two mean spectra in each experiment. #
# -plotMeanShifting() calls R function generateSet() to #
# generate reference and test sets for comparison of their #
# means in each simulation experiment. #
#---------------------------------------------------------------#

plotMeanShifting <- function (dSet , water , smpSize , offSet ,
nVars , vMethod , vOrder , rppm )

{
# Start a graphics device driver for X with width 7 inches
# and height 3 inches, and adjust specific plotting settings
x11 ( width = 7 , height = 3)
par ( mar = c (4 , 4 , 2 , 2) + 0 . 1 , mgp = c (2 , 0 . 5 , 0) , tcl = −0.5 ,

xpd = FALSE , yaxs = " i " )

# Generate a reference set
rSet <- generateSet (dSet , water , 0 , 0 , 0 , smpSize , vMethod ,

vOrder )

# Generate a test set
tSet <- generateSet (dSet , water , 0 , offSet , nVars , smpSize ,

vMethod , vOrder , rSet )
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# Adjust the water variables in the generated data sets
rSet [ [ 2 ] ] <- append ( rSet [ [ 2 ] ] , c (NA , NA , NA , NA , NA , NA ) , after = 127)
names ( rSet [ [ 2 ] ] ) [ water ] <- c ( " 4 .90 " , " 4 .86 " , " 4 .82 " ,

" 4 .78 " , " 4 .74 " , " 4 .70 " )
tSet [ [ 2 ] ] <- append ( tSet [ [ 2 ] ] , c (NA , NA , NA , NA , NA , NA ) , after = 127)
names ( tSet [ [ 2 ] ] ) [ water ] <- c ( " 4 .90 " , " 4 .86 " , " 4 .82 " ,

" 4 .78 " , " 4 .74 " , " 4 .70 " )

# Calculate the y-limits for the mean-shifting plot
plotMin <- min ( rSet [ [ 2 ] ] [ − c ( water ) ] , tSet [ [ 2 ] ] [ − c ( water ) ] )
plotMax <- max ( rSet [ [ 2 ] ] [ − c ( water ) ] , tSet [ [ 2 ] ] [ − c ( water ) ] )
yLim <- c ( plotMin , plotMax )

# Set the title for the mean spectra plot
pTitle <- NULL

# Create the mean-shifting plot for the two data sets.
plotMeanSpectrum ( rSet [ [ 2 ] ] , rppm , pTitle , "#AD4A18" , yLim )

# Add the mean spectrum of the test set to the previous plot
lines ( tSet [ [ 2 ] ] , col = "#00A5C6" , lwd = 1 . 1 )

}
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C.2.6 Main function: plotBoundaries()

#---------------------------------------------------------------#
# AIM #
# Creates the Figures with the three PCA scores plots in each #
# experiment. #
#---------------------------------------------------------------#
# ARGUMENTS #
# dSet: A data set of class epiData created by #
# createDataClass(). #
# water: A vector giving the range of water variables to #
# exclude from the data e.g. 153:158 for the spectral #
# data with 0.04 bin width. #
# v1, v2, #
# v3: Three offsets for the three PCA scores plots, #
# corresponding to misclassification rates of 20, 10 #
# and 1 % respectively. #
# nVars: The number of variables to mean-shift. The number is #
# set to 0 when a reference set is generated. #
# sSize: The number of samples in the reference and the test #
# set. #
# vMethod: Character string corresponding to the method to #
# select the variables for mean-shifting. Three #
# methods are available: stdev, mean and median. #
# vOrder: A logical value. If TRUE, the variables are #
# selected in decreasing order, otherwise in #
# increasing order. #
# rppm: The number of intervals in which to break the range #
# of chemical shifts in a spectrum plot. For example, #
# rpm = 10, means that the chemical shifts from #
# 0 - 10 p.p.m. will be plotted in a spectrum plot. #
# dppm: The number of downfield variables to exclude from #
# the data e.g. dppm = 26 means, that the first 25 #
# variables (corresponding to the variables with #
# chemical shifts above 9.98 p.p.m.) will be excluded #
# from the analyses. #
# rowScal: A logical value for the row-scaling. #
#---------------------------------------------------------------#

plotBoundaries <- function (dSet , water , v1 , v2 , v3 , nVars ,
sSize , vMethod , vOrder , rppm ,
dppm , rowScal = FALSE )

{
# Start a graphics device driver for X with width 7 inches
# and height 2.5 inches, and adjust specific plotting settings
x11 ( width = 7 , height = 2 . 5 )
par ( mar = c (4 , 4 , 4 , 2) + 0 . 1 , mgp = c (2 , 0 . 5 , 0) , tcl = −0.5 ,

xpd = FALSE , xaxs = " i " , yaxs = " i " )
par ( mfrow = c (1 , 3) )

# Create a list of offsets
vList <- c (v1 , v2 , v3 )
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# Plot the PCA scores for the three offsets
for (i in 1 : length ( vList ) ) {

# Plot PCA scores of for offset i
runSimulation (dSet , water , vList [ i ] , vList [ i ] , 1 , 1 , 2 ,

nVars , sSize , sSize , vMethod , vOrder , rppm ,
dppm , rowScal , TRUE , FALSE , FALSE , FALSE )

}
}
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C.2.7 Main function: plotSimStats()

#---------------------------------------------------------------#
# AIM #
# Creates the comparison plots of the two statistics versus #
# the offset values for an experiment (misclassification rate #
# versus offset, etc). #
#---------------------------------------------------------------#
# ARGUMENTS #
# parData: A data set of class statData created by #
# runSimulation(). #
# sValue: A real value corresponding to the first value of #
# an offset range of values for an experiment. #
# eValue: A real value corresponding to the last value of #
# an offset range of values for an experiment. #
# stepSize:A real value corresponding to the step size between #
# offsets in the selected offset range. #
#---------------------------------------------------------------#
# DETAILS #
# -To obtain a parData object, a user must store the output of #
# runSimulation() to an object #
# e.g. parData <- runSimulation(...). #
# -plotSimStats() depends on the package *Hmisc* to plot the #
# error bars in the comparison plots. #
# -plotSimStats() uses the R function createStatsPlots() to #
# create the plots for the two statistics. #
#---------------------------------------------------------------#

plotSimStats <- function ( parData , sValue , eValue , stepSize )
{

# Calculate the offset range
ofValue <- seq ( sValue , eValue , by = stepSize )

# Start a graphics device driver for X with width 9 inches
# and height 3 inches, and adjust specific plotting settings
x11 ( width = 9 , height = 3)
par ( mar=c (4 , 4 , 4 , 2) + 0 . 1 , tcl = −0.5 ,

xpd = FALSE )
par ( mfrow = c ( 1 , 3 ) )

# Calculate the maximum error
maxErr <- max ( parData [ [ 2 ] ] [ [ 1 ] ] )

# Set the x-axis limits for the error vs offsets plot
xLim <- c ( exp ( sValue ) , exp ( eValue ) )

# Set the y-axis limits for the error vs offsets plot
yLim <- c (0 , maxErr )

# The title of the error vs offsets plot
pTitle <- " E r r o r Rate Vs O f f s e t "

# Plot the misclassification rate versus offsets
createStatsPlots ( ofValue , parData , pTitle , "#00A5C6" ,

xLim , yLim , 1)
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# Set the x-axis limits for the average separation
# versus offsets plot
xLim <- c ( exp ( sValue ) , exp ( eValue ) )

# Set the y-axis limits for the average separation
# versus offsets plot
minASep <- min ( parData [ [ 2 ] ] [ [ 2 ] ] )
maxASep <- max ( parData [ [ 2 ] ] [ [ 2 ] ] )
yLim <- c ( minASep , maxASep )

# The title of the error vs offsets plot
pTitle <- "Average Sepa r a t i o n Vs O f f s e t "

# Plot the misclassification rate versus offsets
createStatsPlots ( ofValue , parData , pTitle , "#00A5C6" ,

xLim , yLim , 2)

# Set the x-axis limits for the error rate versus
# average separation plot
xLim <- c ( minASep , maxASep )

# Set the y-axis limits for the error rate versus
# average separation plot
yLim <- c (0 , maxErr )

# The title of the error vs offsets plot
pTitle <- " E r r o r Rate Vs Average Sepa r a t i o n "

# Plot the misclassification rate versus offsets
createStatsPlots ( ofValue , parData , pTitle , "#00A5C6" ,

xLim , yLim , 3)
}
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C.2.8 Main function: computeCV()

#---------------------------------------------------------------#
# AIM #
# Computes the coefficient of variation (CV) for the #
# misclassification rate or the average separation in a #
# simulation 100-run experiment. #
#---------------------------------------------------------------#
# ARGUMENTS #
# parData: A data set of class statData created by #
# runSimulation(). #
# sOption: A character string to select the statistic to #
# compute the CV for. If "error", then the CV of the #
# misclassification rate is computed, otherwise if it #
# is "aversep", the average separation and if "both" #
# the CV for both statistics is computed. #
#---------------------------------------------------------------#

computeCV <- function ( parData ,
sOption = c ( " e r r o r " , " av e r s e p " , "both " ) )

{
# Define number of columns
cvCols <- ncol ( parData [ [ 2 ] ] [ [ 1 ] ] )

# Define row names for the output
rNames <- c ( " E r r o r Rate (CV) " , " E r r o r Rate ( StDev ) " ,

" E r r o r Rate (Mean) " , "Average Sepa r a t i o n (CV) " ,
"Average Sepa r a t i o n ( StDev ) " ,
"Average Sepa r a t i o n (Mean) " )

# Set options depending on the type of variable
if ( identical ( sOption , " e r r o r " ) ) {

rLabs <- rNames [ 1 : 3 ]
nRow <- 3
pData <- parData [ [ 2 ] ] [ [ 1 ] ]

}
else if ( identical ( sOption , " av e r s e p " ) ) {

rLabs <- rNames [ 4 : 6 ]
nRow <- 3
pData <- parData [ [ 2 ] ] [ [ 2 ] ]

}
else {

rLabs <- rNames
nRow <- 6
pData <- parData [ [ 2 ] ]

}

# Define dimnames for the CV matrix
cLabs <- attr ( parData [ [ 1 ] ] , "dimnames" ) [ [ 2 ] ]

# Create the CV matrix
cvMat <- matrix (NA , nrow = nRow , ncol = cvCols , byrow = TRUE ,

dimnames = list ( rLabs , cLabs ) )
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# Compute the CV, stdev and mean of a variable
cvCalc <- function ( pData , nRow , cvCols ) {

# Create a matrix to store the CV information
cvData <- matrix (NA , nrow = nRow ,

ncol = cvCols , byrow = TRUE )

# Calculates the CV of the variable
funCV <- function (x ) (sd (x ) / mean (x ) ) * 100

# Stores the CV, StDev and mean information to
# the cvData matrix for further use
cvData [ 1 , ] <- apply ( pData [ , 1 : cvCols ] , 2 ,

funCV )
cvData [ 2 , ] <- apply ( pData [ , 1 : cvCols ] , 2 , sd )
cvData [ 3 , ] <- apply ( pData [ , 1 : cvCols ] , 2 ,

mean )

#Return the CV information
return ( cvData )

}

# Store the computed information to the CV matrix
if ( identical ( sOption , " e r r o r " ) | |

identical ( sOption , " av e r s e p " ) )
cvMat [ 1 : 3 , ] <- cvCalc ( pData , nRow , cvCols )

else {
nRow <- 3
cvMat [ 1 : 3 , ] <- cvCalc ( pData [ [ 1 ] ] , nRow , cvCols )
cvMat [ 4 : 6 , ] <- cvCalc ( pData [ [ 2 ] ] , nRow , cvCols )

}

# Return the CV matrix to the standard output
return ( round ( cvMat , digits = 2) )

}
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C.2.9 Internal function: plotData()

#---------------------------------------------------------------#
# AIM #
# Provides additional information for every single run of the #
# simulation algorithm. It is to be used for debugging #
# purposes only. #
#---------------------------------------------------------------#
# ARGUMENTS #
# dSet: A data set of class epiData created by #
# createDataClass(). #
# bdSet: An object of class rBindData created by function #
# simulateData(). #
# pcData: An object of class prcomp created by function #
# simulateData(). #
# nPC: The number of principal components to plot #
# information about. #
# rppm: The number of intervals in which to break the range #
# of chemical shifts in a spectrum plot. For example, #
# rpm = 10, means that the chemical shifts from #
# 0 - 10 p.p.m. will be plotted in a spectrum plot. #
#---------------------------------------------------------------#
# DETAILS #
# -plotData() calls the internal functions , plotMeansSpectrum(),#
# plotScores(), plotLoads() and plotVarExpl() to plot #
# information about the PCs loadings and the variance #
# explained by the PCs. In addition , it plots the mean and #
# stdev spectra for the reference and the test set in an #
# experiment , as well as the standard deviation of all PCs #
# and the scores plots for the first three PCs. #
#---------------------------------------------------------------#

plotData <- function (dSet , bdSet , pcData , nPC , rppm )
{

# Adjust the layout settings for the required plots
par ( mar = c (4 , 5 , 3 , 3) + 0 . 1 , tcl = −0.5 , xpd = FALSE )
layout ( rbind (c (1 , 1 , 1 , 3) ,

c (2 , 2 , 2 , 6) ,
c (4 , 4 , 4 , 7) ,
c (5 , 5 , 8 , 9) ) )

# Extract the reference set information and statistics
# (mean, stdev) from the row-binded set
ref <- bdSet [ 1 : ( dim ( bdSet ) [ [ 1 ] ] / 2) , ]
refMean <- apply (ref , 2 , mean )
refDev <- apply (ref , 2 , sd )

# Extract the test set information and statistics
# (mean, stdev) from the row-binded set
test <- bdSet [ ( ( dim ( bdSet ) [ [ 1 ] ] / 2) + 1) : nrow ( bdSet ) , ]
testMean <- apply (test , 2 , mean )
testDev <- apply (test , 2 , sd )
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# Calculate the y-axis limits of the mean spectra plot
plotMin <- min ( refMean , testMean )
plotMax <- max ( refMean , testMean )
yLim <- c ( plotMin , plotMax )

# Set the title of the mean spectra plot
pTitle <- "Mean s p e c t r a "

# Plot the mean spectra of the reference and the test set
plotMeanSpectrum ( refMean , rppm , pTitle , "#AD4A18" , yLim )

# Plot the mean spectra for the test set
lines ( testMean , col = "#00A5C6" , lwd = 1 . 1 )

# Calculate the y-axis limits of the stdev spectra plot
plotMin <- min ( refDev , testDev )
plotMax <- max ( refDev , testDev )
yLim <- c ( plotMin , plotMax )

# Set the title of the stdev spectra plot
pTitle <- " Stdev s p e c t r a "

# Plot the standard deviation spectra of the reference and
# the test set
plotMeanSpectrum ( refDev , rppm , pTitle , "#AD4A18" , yLim )

# Plot the stdev spectra for the test set
lines ( testDev , col = "#00A5C6" , lwd = 1 . 1 )

# plot the standard deviation of the PCs
plot ( pcData$sdev ,

main = " Standard Dev i a t i o n o f PCs" ,
cex . main = 0 .6 , cex . lab = 0 .5 , cex . axis = 0 .5 ,
xlab = "Component" ,
ylab = " Standard Dev i a t i o n " ,
xlim = c (0 , length ( pcData$sdev ) ) ,
pch = " . " , cex = 3 . 0 )

# Plot the PCs loadings versus the variables
plotLoads ( bdSet , pcData , nPC , rppm )

# Plot the variance explained by the PCs
plotVarExpl ( pcData )

# Plot a biplot of the first two PCs
biplot ( pcData , main = " B i p l o t o f f i r s t 2 PCs" ,

cex . main = 0 .6 , cex . lab = 0 .5 , cex . axis = 0 . 5 )

# Set the title of the scores plot for PC1 and PC2
pTitle <- " Sco r e s o f PC1 and PC2"

# Plot the PCs scores for the first two PCs
plotScores (dSet , pTitle , " red " , 1 , 2 , pcData )

# Set the title of the scores plot for PC1 and PC3
pTitle <- " Sco r e s o f PC1 and PC3"
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# Plot the PCs scores for the first and the third PC
plotScores (dSet , pTitle , " green " , 1 , 3 , pcData )

# Set the title of the scores plot for PC2 and PC3
pTitle <- " Sco r e s o f PC2 and PC3"

# Plot the PCs scores for the second and the third PC
plotScores (dSet , pTitle , " b l u e " , 2 , 3 , pcData )

}
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C.2.10 Internal function: plotVarExpl()

#---------------------------------------------------------------#
# AIM #
# Creates a barplot of the proportion of total variation #
# explained by the first ten PCs. #
#---------------------------------------------------------------#
# ARGUMENTS #
# pcData: An object of class pcaInfo created by function #
# simulateData(). #
#---------------------------------------------------------------#
# DETAILS #
# -plotVarExpl() can be used with pcaInfo objects obtained by #
# either princomp() or prcomp(). #
#---------------------------------------------------------------#

plotVarExpl <- function ( pcData )
{

# Set the colours for the boxes of the standard deviations of
# the first ten PCs
colorset <- c ( "#BDC6DE" , "#949CCE" , "#6373B5" , "#3152A5" ,

"#083194" , "#082984" , "#08296B" , "#08215A" ,
"#00184A" , "#180042" )

# Calculate the percentage of variation explained by each PC
pcs <- numeric (10)
for (p in ( 1 : 1 0 ) ) {

pcs [ p ] <- as . numeric ( format ( ( ( pcData$sdev [ p ]^2) /
sum ( pcData$sdev^2) ) * 100 ,
digits = 2 , nsmall = 2) )

}

# Stores the scores information , checking which PCA function
# has been used
if ( identical ( pcData$scores , NULL ) ) scores <- pcData$x
else scores <- pcData$scores

names ( pcs ) <- colnames ( scores ) [ 1 : 1 0 ]

# Plot the bar plot with the PCs
pcabar <- barplot (pcs , names . arg = names ( pcs ) ,

beside = TRUE , col = colorset , border = NA ,
main = "" ,
xlab = "Component" ,
ylab = " P ropo r t i o n o f Tota l V a r i a t i o n

Exp l a i n ed (%)" ,
ylim = c (0 , 110) , xpd = TRUE ,
axes = TRUE , axisnames = TRUE ,
cex . axis = 0 .7 , cex . names = 0 .7 ,
cex . lab = 0 .7 , cex . main = 0 . 8 )

text ( pcabar , pcs , labels = pcs , col = rev ( colorset ) , pos = 3 ,
cex = 0 . 7 )

}
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C.2.11 Internal function: plotLoads()

#---------------------------------------------------------------#
# AIM #
# Plots the PCs loadings versus the variables. #
#---------------------------------------------------------------#
# ARGUMENTS #
# bdSet: An object of class rBindData created by function #
# simulateData(). #
# pcData: An object of class pcaInfo created by function #
# simulateData(). #
# nPC: The number of principal components to plot #
# information about. #
# rppm: The number of intervals in which to break the range #
# of chemical shifts in a spectrum plot. For example, #
# rpm = 10, means that the chemical shifts from #
# 0 - 10 p.p.m. will be plotted in a spectrum plot. #
#---------------------------------------------------------------#

plotLoads <- function ( bdSet , pcData , nPC , rppm )
{

# Store the minimum and maximum loading for the first nPC PCs
minRot <- round ( min ( pcData$rotation [ , 1 : nPC ] ) , digits = 3)
maxRot <- round ( max ( pcData$rotation [ , 1 : nPC ] ) , digits = 3)

# Adjust the layout settings for the required plots
par ( mar = c (5 , 5 , 1 , 1) + 0 . 1 )

# Plot the loadings for the first PC
plot ( pcData$rotation [ , 1 ] ,

type = "n" ,
xlab = "Chemica l S h i f t (ppm) " ,
ylab = " Load ings " ,
col = rainbow ( nPC ) [ 1 ] ,
ylim = c ( minRot , maxRot ) ,
xaxt = "n" ,
yaxt = "n" )

dfield <- dim ( bdSet ) [ 2 ]
ppmInterval <- dfield / rppm
axis (1 , at = seq (0 , dfield , ppmInterval ) ,

labels = seq (rppm , 0 , −1) , cex = 0 . 6 )
axis (2 , at = seq ( minRot , maxRot , 0 . 1 ) , cex = 0 . 6 )

# Plot the loadings for the next nPC-1 PCs
k <- 0
sComp <- seq (1L , nPC , by = 1L )
for (pc in seq ( along = sComp ) ) {

# Adds the pcth component ’s loadings line to the existing
# loadings plot
k <- k + 0.1
lines ( pcData$rotation [ , pc ] , type = " l " ,

col = rainbow ( nPC ) [ pc ] , lwd = 1 . 1 )
}
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#Add a legend to the plot
pcLoads <- abs ( minRot ) >= abs ( maxRot )
location <- ifelse ( pcLoads , " bo t tomr i gh t " , " t o p r i g h t " )
legendText <- c ( paste ( "PC" , as . character ( 1 : nPC ) , sep="" ) )
legend ( location ,

legend = legendText ,
col = rainbow ( nPC ) ,
lty = 1 ,
bty = "n" ,
xjust = 0 ,
cex = 0 . 8 )

abline (h = 0 , lwd = 1 .2 , lty = 2)
}
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C.2.12 Internal function: createStatsPlots()

#---------------------------------------------------------------#
# AIM #
# Plots the comparisons of the two statistics versus offsets. #
#---------------------------------------------------------------#
# ARGUMENTS #
# ofValue: The log value which has been used as an offset for #
# the generation of the tSet. #
# parData: A data set of class statData created by #
# runSimulation(). #
# pTitle: Character string to give the title of the plot. #
# sCol: The colour of the line of a statistics ’ values. #
# xLim: The limits of the values in the x-axis of the plot. #
# yLim: The limits of the values in the y-axis of the plot. #
# tPlot: A numeric value (1,2 or 3) for the type of plot. #
#---------------------------------------------------------------#
# DETAILS #
# -createStatsPlots() depends on package *Hmisc* to plot the #
# vertical error bars in the comparison plots, using R #
# function errbar(). #
#---------------------------------------------------------------#

createStatsPlots <- function ( ofValue , parData , pTitle , sCol ,
xLim , yLim , tPlot )

{
# Set the type of plot required
if ( identical ( tPlot , 1) ) {

# Plot of type error vs offset
stat1 <- exp ( ofValue )
stat2 <- parData [ [ 1 ] ] [ 1 , ]
pDat <- parData [ [ 2 ] ] [ [ 1 ] ]
xLab <- " O f f s e t "
yLab <- " E r r o r Rate (%)"

}
else if ( identical ( tPlot , 2) ) {

# Plot of type aversep vs offset
stat1 <- exp ( ofValue )
stat2 <- parData [ [ 1 ] ] [ 2 , ]
pDat <- parData [ [ 2 ] ] [ [ 2 ] ]
xLab <- " O f f s e t "
yLab <- "Average Sepa r a t i o n "

}
else {

# Plot of type error vs aversep
stat1 <- parData [ [ 1 ] ] [ 2 , ]
stat2 <- parData [ [ 1 ] ] [ 1 , ]
pDat <- parData [ [ 2 ] ] [ [ 1 ] ]
xLab <- "Average Sepa r a t i o n "
yLab <- " E r r o r Rate (%)"

}
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# Plot the misclassification rate versus offsets
plot ( stat1 , stat2 , type = "b" , main = pTitle , col = sCol ,

xlab = xLab , ylab = yLab , xlim = xLim , ylim = yLim )
minStat <- apply (pDat , 2 , min )
maxStat <- apply (pDat , 2 , max )
errbar ( stat1 , stat2 , maxStat , minStat , add = TRUE )

}
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User Guide for the Simulation

Algorithm

Contents

1. Data Input and Pre-treatment - createDataClass()

2. Reference and Test Sets - generateSet()
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5. The Effect of Mean-Shifting - plotMeanShifting()

6. Plot PCs Scores and LDA Boundary - plotBoundaries()

7. Plot Statistics vs Offsets - plotSimStats()

8. Plot Additional Information - plotData()
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D.1 Data Input and Pre-treatment

The original epilepsy data consists of two data files in the Comma Separated
Value (.csv) file format. This is a file format commonly used to exchange data
between various applications, and its usual form is that used in spreadsheets. The
first .csv file contains the clinical characteristics information of the patients, as
described in Chapter 2. The second .csv file contains the spectral information of
the patients. More specifically, the intensity levels of the metabolites of the blood
serum of the patients, obtained by 1H NMR spectroscopy. A formatted part of
such a file can be seen in Figure D.1 for 0.04 ppm bin width data. Function

Figure D.1: Example of a .csv file containing the spectral information of the epilepsy patients.

createDataClass() is responsible for inputting these two data files to R as data
frames, joining and storing the information to a data list of class epiData for
further use in the analyses. Figure D.2 shows an example of such a list with
the clinical and spectral information. The epiData list stores also the mean,

Figure D.2: Example of the patients clinical and spectra information as stored in an R object of
class epiData.
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standard deviation and median spectra of the data, as well as the covariance
matrix. An example of such information stored in an epiData list can be seen
in Figure D.3. The second object in the list is the mean vector of the spectra,

Figure D.3: Example of the mean, stdev, median and covariance matrix information as stored in
an R object of class epiData.

the third the covariance matrix, the fourth the standard deviation vector and the
fifth the median vector. Pre-treatment of the data is also handled here in two
stages:

• Row scaling to a constant total, by dividing each sample (row) in the
data frame (matrix) by the sum of the values of the variables in each column.

• Element transformation of the data, by applying either the log or the
square root transformation to the elements of the data matrix.

Extraction of the unclassified (with respect to their response to AEDs) patients
also takes place, before calculating the mean, standard deviation and median
vectors. The covariance matrix of the data is converted to positive definite matrix
before being stored to the epiData matrix.

Function createDataClass() was created to read the data from two .csv files,
and to create from these data an object of class epiData. There are ten arguments
which take care of the above mentioned operations to the data.

The first two arguments, sFile and cFile, are the names of the .csv files
containing the spectral and the clinical information of the patients respectively,
if these files are in the current working directory of R, or the full path of the
directories in the media the files are stored.

Arguments dppm and uppm are integer values, representing the range of variables
to retain in the data frame. The former argument has three options for its value,
of which only the third can be used for data of any number of variables, whereas
the other two are suitable only for the data with the 338 variables with 0.04 ppm
bin width.
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• Value 0, means that the first 25 variables, from 10.02 - 10.98 ppm chemical
shifts will be removed, as well as the water variables (4.70 - 4.90 ppm).

• Value -1, means that the first 125 variables, from 6.02 - 10.98 ppm chemical
shifts will be removed, as well as the water variables (4.70 - 4.90 ppm).

• Any other value of ddpm, removes the first dppm variables, from 10.98 to-
wards 0.02 ppm chemical shifts, but does not remove any water variables,
as this is needed in some of the analyses.

The latter argument is independent of the number of variables in the data set
and is the variable (written as column number in the data matrix) above which
all variables will be excluded. In the 338 variables data, setting uppm to 275, will
result in excluding the variables with chemical shifts below 0.02 ppm.

Argument water is a vector with the range of variables containing water, writ-
ten as column numbers in the data matrix. In the 338 variables data, the water
variables are in columns 153 : 158. The last variable in the data set is stated, as
the last column in the data matrix, by argument fVar. This is 338 for the data
with 338 variables.

With regards to scaling or transforming the data, row-scaling to constant total
is applied to the data by setting the rowScal argument to TRUE. The obtained
covariance matrix of the data is converted to positive definite, using the R function
make.positive.definite() of package *corpcor*, by setting argument posDev
to TRUE and the tolerance level argument tol to a value such as 5e − 06, to
ensure all singular values of the covariance matrix will be positive. The tol value
is to be selected after examining the covariance matrix and its singular values,
and before creating a data frame from the data for the final time. Transformation
of the elements in the data matrix is taken care by the trnType argument, which
can be set to either log or sqrt for log or square root transformation of the data
respectively. If TrnType is missing, then no element transformation of the data
takes place, during the creation of the data frame. Appropriate text messages are
send to the standard output, to state what type of scaling or transformation has
been chosen, each time createDataClass() is used to create an object of class
epiData.

An example of creating an object of class epiData can be seen in Figure D.4.
In this example, the spectral and the clinical information are contained in the
.csv files spec.csv and clin.csv respectively. Both files are in the current
working directory of R, therefore there is no need to write down the whole absolute
path of the directory in which the files are, in the storage media in use. The
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Figure D.4: An example of the use of R function createDataClass() to obtain an R object of
class epiData.

patient information is for the 0.04 bin width data with 338 variables. Setting
ddpm and uppm to 0 and 275 respectively, means that the selected data, contains
the variables with chemical shifts in the range 0.02 - 9.98 ppm, with the water
variables (set as columns 153:158) in the range 4.70 - 4.90 ppm being removed.
The final data frame contains 244 variables in the range mentioned previously.
The final variable is in column 338. No row-scaling has been selected, but the
covariance matrix is converted to positive definite with tolerance 5e-06. Finally,
the data is log transformed, as the message on the standard output states.

D.2 Generation of Reference and Test Sets

Function generateSet() is used to generate a reference and a test set, as re-
quired by the simulation experiments. A test set is usually generated after a
reference test, as these will constitute the pair of generated tests for the compar-
isons in a simulation experiment. There are nine arguments which can be set in
generateSet(). The first argument, dSet, is an object of class epiData, which is
used to generate the two data sets. Arguments water and dppm are practically the
same that were used, as described in the previous section, in createDataClass()

to create the dSet object. These two arguments are used to ensure that epiData
objects with or without the water variables can be used in generateSet().

Argument offSet is a logarithmic value, as the spectral information in dSet

have been log-transformed and are in logarithmic scale. Its value is 0 if a reference
set is required, otherwise it is the value to be added to the mean of a selected
for mean-shifting variable, when generating a test set. The number of variables
to mean-shift is set by argument nVars. This number can be from 1 (case MS1)
up to the total number of variables in dSet. When generating a reference set, its
value should be set to 0. Argument nRows is the number of required samples in
the reference or test set to be generated. The number of samples in the two sets
can be equal or unequal.

Three methods can be used to select the variables for mean-shifting. The
required method is controlled by the two arguments vMethod and vOrder. More
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specifically, the available methods include the standard deviation, the mean and
the median of the variables, selected by argument vMethod. The order (increasing
or decreasing) of the variables values with regards to the selected method, is
selected by argument vOrder. For example, if the required method is to select
the nVars variables with the maximum standard deviation, vMethod must be set
to "stdev" and vOrder to TRUE (means decreasing is TRUE). In addition, when
generating a test set, argument rSet is used, corresponding to a character string
containing the name of the already generated reference set. If this argument is
missing (not used), then a reference set is generated.

An example of the use of generateSet(), and the generated sets can be seen
in Figure D.5 In this example, the epiData object is the one created as seen in

Figure D.5: An example of the use of R function generateSet() to create a reference and a test
set.

Figure D.4, with the water and dppm arguments set to 153:158 and 0 respectively.
The offset in the generation of the test set is set to 0.4, the number of variables
to mean-shift in the test set to 120, the sample size of the two sets to 500,
the method of selecting the variables to mean-shift to "mean" in decreasing order
(MAXMEAN), and the name of the reference set in the generation of the test set,
to "refSet". Function generateSet() calculates also the mean and the standard
deviation vectors of the two sets and adds the information to the two objects
generated for the two data sets (in this case refSet and testSet).

D.3 Simulation Analyses

A simulation experiment, as described in Chapter 8, consists of inputting a data
set with the original epilepsy data to R, generate two data sets based on the
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epilepsy data and perform a series of statistical analyses on the generated data
sets, to assess whether the data sets and the selected parameters for the sim-
ulation experiments are satisfactory to the requirements of the experiments or
not. The most important part of the statistical analyses is taken care by function
simulateData(). More specifically, there are two main aims when using this
function, to either illustrate graphically the potential ability of PCA to discrim-
inate between the two data sets, or to return the information about the misclas-
sification error of LDA and average separation of the two sets, with respect to
the selected parameters of the simulation experiment. The first three arguments
of simulateData(), dSet, rSet and tSet are an object of class epiData, a gen-
erated by dSet reference data set and a similarly generated test set, respectively.
Argument ofValue is the offset used in the generation of tSet. The number of
intervals in which to break the range of chemical shifts in any spectrum plot cre-
ated by simulateData(), is set by argument rppm. If the spectral data in dSet

and consequently in rSet and tSet have been row-scaled to constant total, it is
necessary before continuing to any analysis, to pre-treat the data in the generated
sets, by re-exponentiating, row-scaling to constant total and log-transforming the
data in both sets. Argument rowScal ensures that these operations will be done,
if set to TRUE. If dSet is unscaled, then rowScal must be set to FALSE.

The selection of which of the two main operations of simulateData() will be
executed is done by setting the argument simTest to either "pca" for plotting the
PCA scores for the two data sets, or "stat" to obtain results for the two statistics.
An example of the output obtained by "pca" can be seen in Figures D.6 and D.7.
In this example, the data sets dSet, refSet and testSet, which were produced

Figure D.6: Results of a simulation analysis with the use of the R function simulateData() for
option "pca".
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in the examples of the previous sections, have been used. The offset is 0.4, as
in the generation of testSet previously, rppm has been set to 10, to plot the
variables in the range 0-10 ppm, the data is unscaled, and the last two arguments
have been set to their default values FALSE. The information returned by "pca"
on the standard output, includes in this order, the prior probabilities of the two
sets, their group means coordinates and the coefficients of the linear discriminant,
as calculated by LDA. In addition, PCA returns the average separation value, the
proportion of variance explained by the first PC, the variance of the first PC, the
proportion of variance explained by the second PC, the variance of the second PC
and the number of PCs that have been retained. In the case of simTest being set

−30 −20 −10 0 10 20
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−
1

0
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UNSCALED Data − Offset: 1.49
Sample Size: 500
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P
C

2
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Figure D.7: PCA scores plot with the superimposed LDA boundary for the analysis in Figure D.6.

to "stat", an object, containing the information about the two statistics and the
PCA, is returned. Figure D.8 illustrates such an object, for the same example as
in Figure D.6, but with simTest set to "stat". In this case, information about
the number of classes and the class to which each sample in the two data sets
belongs, as well as the values of the two statistics, together with the results of
the PCA (as returned also in "pca"), is contained in the produced object.
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Figure D.8: Results of a simulation analysis with the use of the R function simulateData() for
option "stat".

Additional information about the procedure of analysing the data in a simula-
tion experiment, can be seen by setting argument runTool to TRUE. This will
set a call to R function plotData(), which produces a detailed graphical output
of all results of PCA, as well as of the means of the two data sets. The number
of PCs, that plotData() plots information about has been set to 3 (the first
three PCs), due to space limitations and the structure of the graphical output.
An example of the output produced by plotData(), for the same arguments as
in the "pca" example previously, can be seen in Figure D.9. The last argument
in simulateData(), if set to TRUE, then the PCA information is stored to a
pcaData object in R’s working environment, for further use in other analyses
required by the simulation experiments.

D.4 Execution of the Simulation Algorithm

A simulation experiment requires all steps of the algorithm to be executed as
described in Subsection 8.3.8. This is the job of function runSimulation(),
the main function of the simulation algorithm. More specifically, during each
experiment, this function calls functions generateSet() and simulateData(),
to generate a pair of sets and run the appropriate statistical analyses, respect-
ively. However, before executing runSimulation(), it is necessary to execute
createDataClass(), in order to obtain the required object of class epiData.

A large number of arguments need to be set in order to execute simulation ex-
periments. Argument dSet is an object of class epiData, as described previously.
The water argument has been described in detail in the previous sections.

To allow the determination of offsets such that misclassification rates in the
range of 20% to 1% can be identified, a range of offsets must be defined and the
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Figure D.9: Example of the graphical output of R function plotData() for the simulation experi-
ment in Figure D.6.

algorithm executed in a sequence of experiments with fixed step size. For ex-
ample, if we want in a single run of the algorithm, to perform experiments in the
range of offsets 0.4 - 0.7 with step size 0.05, then seven experiments with offsets
0.4, 0.45, 0.5, 0.55, 0.6, 0.65 and 0.7 will take place, and the values of the two
statistics, misclassification rate and average separation for each of these experi-
ments will be stored to suitable objects for further analyses and interpretation of
the results. Arguments sValue and eValue represent the first and the last offset,
respectively, for which the algorithm will be executed and argument stepSize,
the increment value which is added in each run of the algorithm to the offset,
until offset is at most equal to eValue.
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The number of runs of the algorithm is set by nRuns, and the number of
statistics to calculate and store information about, is set by nPars. The sample
size of the two sets to be generated in an experiment is set by arguments rSize
and tSize for the reference and the test set respectively. The two sets may either
have equal sample sizes or unequal. Arguments nVars, vMethod and vOrder

are similar to those in generateSet(). Similarly, rppm and dppm are the same
as in simulateData() and createDataClass(). Arguments rowScal, runTool
and storePCA are the same as in simulateData(). The decision on whether a
PC scores plot will be created or the statistics will be calculated is handled by
plotTrue. If it is set to TRUE, then a PC scores plot is produced, otherwise the
statistics are returned. This is used, when a call to simulateData() is required.

An example of the output returned by runSimulation() with plotTrue set to
TRUE, can be seen in Figure D.10. Arguments dSet, water, vMethod, vOrder,

Figure D.10: Example of the output of R function runSimulation() with plotTrue set to TRUE
and multiple to FALSE.

rppm, dppm and rowScal, are the same as in the previous examples, being set
to dSet, 153:158, "mean", TRUE, 10, 0 and FALSE respectively. Starting offset
is 0.22 and last offset 0.36 in the logarithmic scale, while a small number of
experiments for illustrative purposes has been chosen, hence the step size is set
to 0.07, with three experiments in each run taking place. The chosen offsets in
the three experiments correspond to misclassification rates 20%, 10% and 1%.
The number of runs is set to 4, also for illustrating purposes. The case of mean-
shifting 120 variables is chosen, with both generated data sets having in each
experiment the same sample size of 500.

It is important to note that, when plotTrue is set to TRUE, unless only one
experiment has been selected, the graphics device driver that has been created
for the first scores plot, will just be refreshed each time a new experiment takes
place, with the corresponding scores plot taking the place of the existing scores
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plot in the device driver, and no new device driver will be started. Therefore,
only the scores of the last experiment will be retained at the end of the runs
of the algorithm. This can be avoided by setting the argument multiple to
TRUE, and selecting the number of scores plots in a column and in a row of
the multiple plot using the arguments plotRows and plotCols respectively. The
same example to that in Figure D.10 but with multiple set to TRUE, plotRows
to 4 and plotCols to 3 can be seen in Figure D.11.

If plotTrue is set to FALSE, that is, if the results for the two statistics, mis-
classification rate and average separation are required, then instead of any scores
plots, information about each single experiment in every single run of the sim-
ulation algorithm is send on the standard output and stored in pre-defined R
objects. More specifically, in each experiment, apart from the offset, both in
logarithmic and decimal scale (additive value and multiplicative factor respect-
ively), the variances of the first two PCs (VPC1 and VPC2), the proportion of
the variance explained by the first two PCs (PC1 and PC2) and the number of
PCs retained, are send to the standard output. In addition, an R list is created,
containing the average values of the two statistics in each offset for all runs, the
analytical tables of the two statistics for each and every run and offset, and a
latex table generated by R function xtable, containing the average values of the
two statistics. Setting plotTrue to FALSE in the example of Figure D.10 results
to the output which can be seen in Figure D.12.

Although the main results of the simulation experiments are given by execut-
ing runSimulation(), there is other important information to be gathered from
each experiment, such as the effect of the mean-shifting to the mean spectra of
the two sets, the scores plots for the offsets corresponding to misclassification
rates 20%, 10% and 1%, in each experiment case, and the relationship between
the two statistics and the offsets in a pre-selected number of runs of the simu-
lation algorithm. The R functions developed with the purpose of gathering and
presenting in a graphically way, this information, are described in the following
sections.

D.5 Illustrate the Effect of Mean-shifting

Function plotMeanShifting() has been developed to allow the graphical com-
parison between the mean spectra of the two generated data sets in each ex-
periment. The arguments of this function, include the already seen dSet, water,
offSet, nVars, vMethod, vOrder and rppm. Argument smpSize is the sample size
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Figure D.11: Example of the output of R function runSimulation() with plotTrue set to TRUE
and multiple to TRUE.

351



Figure D.12: Example of the output of R function runSimulation() with plotTrue set to FALSE.
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of the two generated data sets and it is assumed to be equal in both data sets. It
should be noted that dSet must not contain any water variables, when using this
function, as this function introduces water variables in the mean spectra of the
two data sets, to allow for correct plotting of the two mean spectra. This function
is applicable to data sets with 244 variables, as in the cases in Chapter 8. Figure
D.13 shows the effect of the mean-shifting in one of the cases seen in the previous
examples, with the arguments set as previously, apart from the offSet which is
set to 0.36. In addition, the water in this case is set to 128:133 due to the water

(a) Command for plotMeanShifting()

19
20
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23
24

Chemical Shift (ppm)

In
te

ns
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10 9 8 7 6 5 4 3 2 1 0
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Figure D.13: Example of the output of R function plotMeanShifting().

adjustments that occur when using this function. The blue and brown colours
correspond to the mean spectra of the test and reference data set respectively.

D.6 Plot PCs Scores and LDA Boundary

In each simulation experiment, a set of three PCs scores plots is produced. The
offsets selected for these plots correspond to misclassification rates of 20%, 10%
and 1%. This is used, to illustrate how the samples in the two generated data sets
are affected by the mean-shifting operation, and to show graphically the actual
distance (discriminating ability of PCA) between the two data sets. Arguments
dSet, water, nVars, sSize, vMethod, vOrder, rppm, dppm and rowScal have
been discussed in the previous sections. The sample size must be the same for
both data sets, and it is independent of whether dSet contains water variables or
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not. In addition, the number of variables in dSet is not restricted to 244, as in
plotMeanShifting().

An example of the output of function plotBoundaries() can be seen in Figure
D.14, for v1, v2 and v3 set to 0.22, 0.29 and 0.36 respectively. The rest of the
arguments are set to similar values to the previous examples. The blue and brown

(a) Command for plotBoundaries()
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(b) PCs Scores plots

Figure D.14: Example of the output of R function plotBoundaries().

colours correspond to the samples of the test and reference data set respectively.
The line is the LDA boundary and the stars are the means of the two data sets.

D.7 Plot Statistics vs Offsets

Function plotSimStats() has been developed to allow the graphical depiction of
the relationship between the average values of the two statistics in a pre-selected
number of runs and the offsets required to obtain these statistics. In order to
use plotSimStats() one needs to first obtain an R object of class statData,
created by runSimulation(). Figure D.15 illustrates how this can be done.
The information stored in the object parData, as well as its structure, can be

Figure D.15: Example of obtaining an object of class statData.
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seen in Figure D.16. Object parData can then be used as the first argument in

Figure D.16: Example of an object of class statData.

plotSimStats(). The values of the arguments sValue, eValue and stepSize,
are the same that were used to run the experiments in runSimulation(), whose
results are stored in parData. It is also necessary, to load package *Hmisc*
before running plotSimStats(), to allow the use of function errbar(), which
plots the error bars in the statistics plots. Function plotSimStats() calls another
function, createStatsPlots(), which was developed to create the three plots,
with regards to the information stored in parData.

An example of the output of plotSimStats(), using the object parData,
sValue set to 0.22, eValue to 0.36 and stepSize to 0.07, can be seen in Figure
D.17.
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(a) Command for plotSimStats()
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(b) Stats vs Offset plots

Figure D.17: Example of the output of R function plotSimStats().

D.8 Plot Additional Information

As was described in Section 9.2, and shown in Figure D.9, function plotData()

provides additional information for the simulation experiments. This is an in-
ternal function, in the sense that it is usually executed through runSimulation()

and simulateData(). That is mainly because two of the required arguments in
plotData(), bdSet and pcData, are R objects obtained during the execution
of simulateData(). It is therefore necessary to execute simulateData() before
running plotdata(). Object bdSet is automatically created and stored in R’
s working environment by simulateData(), but to obtain the object pcData,
argument storePCA must be set to TRUE in simulateData().

An example of the structure of these two objects, for the dSet used in the
previous examples and the experiments in Figure D.12, can be seen in Figures
D.18 and D.19 respectively. The object bdSet contains the row-binded set of the

Figure D.18: Example of the structure of a bdSet object.

two generated sets and pcData the results of the PCA for the current experiment.
The R function prcomp() is used to perform the PCA, hence the object pcData
is of class prcomp().
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Figure D.19: Example of the structure of a pcData object.

A number of plotting functions are called by plotData() to plot the vari-
ous objects and results of the simulation experiments. These internal func-
tions are plotMeanSpectrum(), which plots the mean spectra of the data sets,
plotLoads(), which plots the PCs loadings vs variables, plotVarExpl(), which
plots the variance explained by the first ten PCs and function plotScores(),
which plots the scores for the first three PCs in all combinations of pairs. Object
bdSet is also used as an argument of plotLoads(), whereas object pcData is
used as an argument of plotVarExpl().

357



Appendix E

Components of Mass

Spectrometers

Contents

1. List of ionisation methods

2. List of mass analysers

3. List of MS detectors
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Table E.1: Comparison of ionisation sources

Source Typical Mass Sensitivity Type of
Range (Da) ionisation

Electron 500 picomole Hard
Chemical 500 picomole Hard
FAB 7,000 nanomole Semi-hard
ESI 70,000 high femtomole - low picomole Soft
MALDI 300,000 low to high femtomole Soft

Table E.2: Comparison of mass analysers

Analyser Accuracy (p.p.m.) Resolution m
z
Range

Quadrupole 100 4,000 4,000
Time-of-flight 200 8,000 > 300,000
Ion Trap 100 4,000 4,000
Magnetic Sector < 5 30,000 10,000
FTMS < 5 100,000 10,000

Table E.3: Comparison of the most commonly used detectors

Detector Advantages Disadvantages

Faraday Cup Good for checking ion transmission Low amplification
and low sensitivity measurements (approximately 10)

Photomultiplier
Conversion
Dynode (PCD)

-Robust Cannot be exposed
-Long lifetime (> 5 years) to light while
-Sensitive (approximately gains of 106) in operation

Electron
Multiplier
(SEM)

-Robust Shorter lifetime
-Fast response than PCD
-Sensitive (approximately gains of 106) (around 3 years)

Charge
Detection

Detects ions Limited compatibility
independent of mass with most existing
and velocity instruments
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