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Abstract

With the increasing number of space objects, there is a growing need to monitor the

geospace, the region surrounding the Earth, to prevent collisions, which would gener-

ate additional space debris. Radar can be employed for space situational awareness

tasks, specifically for space object localization. While most space situational awareness

radar systems are ground-based, with some using radio telescopes as receivers, recent

advancements in spaceborne radar could offer more cost-effective solutions. In this con-

text, this thesis investigates the design and signal processing solutions for spaceborne

and ground-based radars for space situational awareness.

The spaceborne radar operates in a forward scatter configuration, a special bistatic

case in which the bistatic angle is approximately 180◦. The system is passive, mean-

ing it exploits signals from third-party sources to perform radar tasks. The proposed

design considers the radar mounted on a CubeSat orbiting on a low Earth orbit. As

the antenna is the most constraining component of a CubeSat, potentially determin-

ing its size, a directivity analysis of various antennas is conducted alongside a radar

range equation analysis to identify the most suitable option. Furthermore, the received

signals are processed to enhance the signal-to-noise ratio through multiple integration

across multiple operating frequencies and to enable accurate target localization, with

particular attention to reducing the computational cost of motion parameter estimation.

To achieve this, the traditional bank-of-correlators matched filter approach proposed in

previous studies is replaced by a novel zoom-in matched filter algorithm coupled with
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a recurrent neural network classifier.

The ground segment is investigated using a long-baseline distributed radar. In this

setup, one transmitter and multiple receivers spread across the Earth are considered.

Each transmitter–receiver combination forms a bistatic pair. Multiple receivers are

employed to combine bistatic measurements and provide more accurate and reliable

target localization. The system is first analysed from the perspective of the radar range

equation. A processing strategy based on the multiple-input-multiple-output ambiguity

function is then introduced to address the challenge of target localization.
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Chapter 1
Introduction

Radar (RAdio Detection And Ranging) is, as the acronym suggests, a system and

technology that detects and ranges targets using electromagnetic radio waves. Radio

makes reference to the radiofrequencies, the electromagnetic spectrum that covers the

frequencies from 30 kHz to 300GHz [1], although in practice the frequencies can be

much higher and still be considered radiofrequencies. Modern radars perform more

tasks than just detection and ranging, they also track targets, estimate their speed, and

produce images. Therefore, radar systems are used in a wide variety of applications,

from defence to air traffic control.

With the birth of radar, numerous questions about its potential applications emerged.

After the Second World War, Project Diana was launched to try to bounce electromag-

netic waves off the moon. In 1946, the project was successfully completed and the

results were published in [2, 3]. This was the first instance in history in which radar

was used for outer space. The success of Project Diana opened the possibility of using

radar for Space Situational Awareness (SSA).

Optic sensors are also utilized in SSA [4, 5, 6, 7] and astronomy, as they are able to

capture detailed images. However, radar sensors offer several significant advantages over

optical sensors. Most notably, radar sensors have the capability to operate effectively in

all weather conditions, including rain, fog, and cloud cover, which often hinder optical

sensors. Additionally, radar systems can function equally well during both day and
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night, providing consistent and reliable data irrespective of the time of day. Due to

these benefits, radar sensors are frequently employed in SSA, making them a common

tool in locating and tracking, monitoring, objects in space.

1.1 Motivation

In recent years the amount of space objects orbiting around the Earth has increased

dramatically [8]. The increasing number of space objects orbiting around the Earth,

from large satellites to small CubeSats, as seen on Figure 1.1, has created the need for

systems that can monitor those space objects. These can be either cooperative, such

as the artificial satellites, or uncooperative, such as space debris or small meteorites.

It is important to know the location of them to minimize the risk of a space collision.

Failure to avoid a collision will lead to operational disruption.

Figure 1.1: Payload launch during recent years for low-Earth orbit orbits, taken from
[8]

According to the 2024 space environment report from the European Space Agency

(ESA) [8], the number of objects larger than 10 cm in Low Earth Orbit (LEO) is over
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34 000, and the number objects larger than 1 cm is over a million. Moreover, as the

launching of micro-satellites for commercial and scientific purposes has become more

affordable, the LEO space is getting overcrowded. All these facts have led to a higher

chance of collision, Figure 1.2. Therefore, the localization of space objects for SSA has

become an important topic to research.

Figure 1.2: Near collision events per altitude, taken from [8]

While there are radio telescopes, antennas, that could be used as part of a radar sys-

tem for SSA purposes, the majority of them are used for astronomy purposes. Therefore,

with the increasing risk of collision between different space objects, SSA-only dedicated

system are becoming more prevalent. Such is the case with the ground-based radars

that LeoLabs has deployed in Costa Rica [9] and the Azores [10].

Two types of systems could be designed: a spaceborne radar and a ground-based

radar. On one hand, the main advantage of using a spaceborne radar for SSA is that

the atmospheric difficulties are overcome, as the atmosphere at LEO altitudes is very

thin [11] and its effect is minimal. The power capabilities are much lower, however

this is compensated by the smaller distance ranges that the radar works with. On the
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other hand, the advantages of a ground-based radar would be the ease of maintenance

and upgrades, if needed, and, most importantly, the higher power capabilities, which

are needed to cover the larger distance ranges that the radar would cover. It should

be noted that when talking about very high altitudes, such as Geostationary Equato-

rial Orbit (GEO), or just geostationary, targets, the advantages of spaceborne radars

in relationship to the distance are diminished since the altitude of a GEO target is

approximately 35 786 km. Certainly, it would be possible to set a spaceborne radar

monitoring GEO satellites, nonetheless, the radar platform would need high power re-

quirements to be able to communicate with the ground station. Because of the physics

of the speeds at those altitudes, the radar would only be able to monitor a few GEO

satellites, which would render this possible solution rather impractical. Therefore, in

these cases, a ground-based radar would be more reasonable. Consequently, a combi-

nation of spaceborne and ground-based radars would represent the optimal solution for

SSA.

1.2 Research questions and innovations

The aim of the thesis is to develop novel radar concepts, signal processing techniques

and algorithms in the context of SSA. Some of the radar concepts that are going to be

introduced in the following paragraphs will be more deeply studied in Chapter 2.

The thesis will introduce solutions tailored for the two mentioned categories: ground-

based radar and spaceborne radar. The ground-based radar comes from the aforemen-

tioned necessity of having a system to monitor the near-Earth space. The spaceborne

radar comes from the same need plus the additional demand of having a low-cost so-

lution, as demonstrated in [12]. In this context, the University of Strathclyde has an

on-going project, the STRATHcube project [13], which aims to launch a CubeSat carry-

ing the spaceborne radar payload. Please note that a CubeSat [14] is a small satellite of

size 1U, 2U, or up to even 12U [15], with 1U = 10×10×10 cm3. While the developments

of this thesis are not directly linked to STRATHcube, the author engaged with the team

to provide input regarding the functioning, potential limitations and requirements for

the radar system.
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In [12] the spaceborne system was designed to be mounted on a CubeSat. The radar

system was Passive Bistatic Radar (PBR) in a Forward Scatter (FS) configuration.

The main advantage of the FS configuration is the higher Radar Cross-Section (RCS)

compared to a monostatic radar if the frequency is high enough [16]. The CubeSat will

be orbiting at an altitude of 500 km, and the Illuminator of Opportunity (IO), will be

the OneWeb constellation satellites, which are orbiting at higher altitudes, at 1200 km.

The main advantage of using a constellation of satellites is that the large amount of

standardized transmitters that increases the possibility of detecting space objects. The

spaceborne radar will receive signals from the IOs and process them to obtain the FS

signals. These will be stored onboard and later downloaded to a ground station for the

extraction of the motion parameters of the possible target.

The aim of the spaceborne radar study is to develop a system that generates a

high-quality FS signal and processes them in less time than established methods while

maintaining comparable accuracy. The research questions, and solutions to the same,

that have been identified are:

• Which is the optimal antenna type to be mounted on the spaceborne

radar? This will be solved by comparing the different features of the antennas.

A radar range equation analysis will be computed per each antenna. The features

that are going to be looked at are:

– Robustness of the mount in the CubeSat platform.

– Directivity.

– Steering angle.

– Receiver complexity for that antenna.

There have been several studies on possible array processing techniques for FS

radar [17, 18], and a few works have investigated the feasibility of antennas suit-

able for CubeSat deployment in FS radar configurations [19]. However, the litera-

ture remains limited in addressing the possible antennas for the radar spaceborne

scenario. This study aims to contribute to filling this gap.
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• How to increase the Signal-to-Noise Ratio (SNR) of the FS signal for

a better signal quality? To decrease the possibility of erring when obtaining

the motion parameters from the orbital target, the SNR should be high. While

the immediate solution could be to increase the transmitted power, it would not

possible, as the parameters from the IOs cannot be changed. The other possible

solution could be to increase the signal acquisition time, as the received power

will also increase, but by increasing the acquisition time, the computational time

for extracting the motion parameters of the target will also increase. Therefore,

to increase Signal-to-Noise Ratio (SNR) via a multiple integration approach for

FS for better signal quality, could be a valid approach.

A dual-frequency Forward Scatter (FS) system was proposed in [20]. The ap-

proach exploits the fact that Doppler signatures of moving targets are correlated

across different operating frequencies, whereas clutter is largely uncorrelated. By

re-sampling and cross-correlating signals from different frequency channels, the

system enhances the processing gain and enables reliable detection of moving tar-

gets. However, this solution is presented for a stationary transmitter and receiver

case with relatively low frequencies, 64MHz and 135MHz. As it going to be

seen in Chapter 4, when the operating frequencies are comparatively high in the

moving-ends scenario, the FS signals are similar enough to be integrated without

needing to pre-process them.

• How to improve on the bank of correlators approach for the extraction

of the motion parameters of the target from the FS signal? This research

question focuses on enhancing the established bank of correlators, or matched

filter approach, for motion parameter estimation by reducing computational time.

Various approaches based on banks of correlators have been proposed in the lit-

erature. In [21], the velocity and trajectory angle of the crossing target were

extracted. The initial analysis assumed the target crossed the midpoint at a per-

pendicular angle, which enabled the introduction of quasi-optimal processing. In

this approach, only the phase signal, rather than the full FS signal, was replicated
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for different velocity values and then correlated with the received FS signal. The

method was subsequently evaluated for varying crossing points and trajectory an-

gles. The velocity estimation remained accurate for different trajectory angles and

for crossings near the midpoint. Nonetheless, its performance degraded when the

crossing occurred close to either the receiver or the transmitter. The quasi-optimal

approach was also used in [22], where the speed and distance from the receiver

were estimated. The speed was accurately extracted, while the range estimation

presented a relatively large error. The authors of [23] assumed the crossing point

to be known and estimated the velocity components. More recently, [24] intro-

duced a method for the spaceborne radar case, employing the bank of correlators

to estimate the altitude and trajectory angle of a space object orbiting the Earth.

However, as noted in [20, 21], the bank of correlators approach is computationally

expensive. To mitigate this issue, a zoom-in strategy combined with a machine

learning solution is proposed to significantly reduce computation time.

Furthermore, a ground-based radar will also be investigated. The reason being

to be able to explore how to extend the capabilities of more classic systems and to

explore new configurations and processing methods. The ground station will have a

Single-Input-Multiple-Output (SIMO) configuration. To integrate the different sensor

readings coherent and non-coherent fusion will be investigated. Two different set of

targets are going to be examined: LEO and GEO targets. A particular feature of this

system is that the different bistatic pairs will have a very long baseline, sometimes

resulting in the transmitter and receiver being in different continents.

Part of research in the ground-based radar will be to asses the feasibility of it. This

will be completed by using a radar range equation analysis. The challenge and solution

of the ground-based radar is:

• How to properly process the different bistatic readings? In [25] a Time

Difference of Arrival (TDOA) solution wags introduced for a multistatic radar

system, where the transmitter and the receivers were positioned in Italy. Certainly,

a similar TDOA solution could be used for the long baseline multistatic case.
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Nonetheless, the sensitivity of such method to the errors in the range estimation

[26] and the compensation in range needed because of the long baseline, yield this

method ineffective.

The processing tool that has been found useful in this situation is the Multiple-

Input-Multiple-Output Ambiguity Function (MIMO AF). As it is going to be seen

in Chapter 6, the MIMO AF, even if it is more computationally heavy, is also more

robust to the errors of the bistatic measurements estimation.

Certainly, it will be necessary to thoroughly assess the performance of these novel

developments. This assessment will involve simulating to determine their effectiveness

and efficiency. By doing so, any potential issues or areas for improvement could be

identified, and their suitability for radar applications in SSA could be validated.

1.3 Thesis outline

The rest of the thesis has been written as follows. In Chapter 2 and Chapter 3 the

preliminary knowledge and established techniques are reviewed. First, the radar defini-

tions and concepts are explained. Secondly, some of the techniques and mathematical

tools used in the design of the radar system and the processing of radar signals rele-

vant for this thesis are introduced. Finally, the state of the art of the spaceborne and

ground-based radar for SSA are described.

Following the establishment of the radar principles and preliminary knowledge,

Chapter 4 and Chapter 5 present the developed spaceborne radar framework. Chapter 4

focuses on the antenna study, building on [27], and introduces the multiple integration

approach for the FS signals, based on [28]. Chapter 5 describes the signal processing

solution for extracting the motion parameters of orbital targets in the FS scenario, part

of which was introduced in [29]. In addition, Chapter 6 introduces the long baseline

multistatic ground-based radar framework, presented in [30] and applied in [31]. These

chapters provide detailed system characterizations, including the parameters employed

in the proposed processing pipelines. Finally, Chapter 7 concludes the thesis and dis-

cusses future work.
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Chapter 2
Radar principles

This chapter introduces the basic radar concepts and methods that have been employed

during the research journey of the thesis. Furthermore, some of the existing radar

processing methods that have been utilized are explained. These foundational concepts

and tools will serve as the basis for the development presented novelties. The concepts

that are presented on this Chapter are based on [1, 32].

2.1 Radar overview

Since radar will be employed, it is important to provide an overview of the functioning

of such systems, covering both the physical principles and the mathematical aspects.

2.1.1 Concept of radar

A radar is a system that emits electromagnetic (EM) signals in the radiofrequency (RF)

spectrum into a medium, typically air, to illuminate a region of interest and detect,

measure the distance to, track and/or image objects, between other tasks, based on

the reflection of the EM waves. Additionally, RF generally refers to signals within the

3 kHz to 300GHz frequency spectrum, though in practice, higher frequencies may still

be considered RF.

As mentioned, radar systems can measure the distance, also known as range, to the

target, the detected object, which could be used for target localization. The range can
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be estimated using the time it takes for the signal to travel to the target and return

to the receiver. (2.1) shows the mathematical expression of the range, where R is the

range, c0 is the speed of light, and ∆T is the time between the transmission of the signal

and its reception.

R =
c0 ·∆T

2
(2.1)

Since radar employs EM waves, it is common for the system to encounter interference

when receiving the echo signal. These interferences can be:

• Internal and external electronic noise.

• Reflections from objects that are not of interest, also known as clutter.

• Unintentional EM waves from other human-made sources, also known as EM

interferences (EMI).

• Intentional jamming from electronic countermeasures (ECM). These could be

caused by devices that saturate the medium with noise or that create false targets.

2.1.2 The physics of EM waves

EM waves, as its name suggests, are composed by electric and magnetic field waves

oscillating at a carrier frequency. The electric field, (E), is orthogonal to the magnetic

field, (B). The direction of propagation is perpendicular to both fields and follows

the right-hand rule, where the vector product between the electric and the magnetic

field, (E ×B), determines the direction of wave propagation. Furthermore, EM waves

propagate through space at the speed of light.

The amplitude of the electric field of an EM wave propagating along the z-axis can

be mathematically expressed as:

EEM = EEM,0 cos (kz − ωf t+ ϕEM,0) , (2.2)

where EEM,0 is the peak amplitude, and ϕEM,0 is the initial phase. The wave number,
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k, a kind of spatial frequency, and the angular frequency, ωf , are related by:

k =
2π

λ
,

ωf = 2πf,

(2.3)

where λ is the wavelength in meters, and f is the carrier frequency in Hertz.

The relation between the wavelength and frequency is:

λ · f = c0. (2.4)

ϕEM,0, also known as fixed or initial phase, depends on the EEM initial conditions.

The concept of the relative phase, ∆ϕEM , is the phase difference between two waves,

which:

• ∆ϕEM = 0, then the two waves are in phase.

• ∆ϕEM ̸= 0, then the two waves are out of phase.

If two waves occupy the same location at the same time and have the same frequency,

their interference can be constructive or destructive, depending on whether they are in

phase or out of phase, respectively. The amplitude of constructive interference is greater

than the initial amplitudes of the individual waves, whereas the amplitude of destructive

interference is lower than the initial amplitudes of the individual waves.

2.1.3 Intensity

The intensity, QP , of a wave is defined as the power per unit area. Mathematically, is

expressed as the transmitted power divided by the area of a sphere of radius R:

QP =
Pt

4πR2
, (2.5)

where Pt is the total transmitted power, and R is the radius, which could also be

interpreted as the distance from the source. From this equation, we can observe that

intensity decreases proportionally to 1/R2, following the inverse square law.
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If the wavefront curvature is less than λ/16 over a given aperture dimension Da,

the wave is considered planar. This condition is satisfied if the distance from the source

to the aperture is at least 2D2
a/λ. This region is known as the far-field or plane-wave

approximation.

2.1.4 Polarization

Polarization is the description of the motion and orientation of the propagation of the

electric field vector. It is given by the phase offset and amplitudes of EEM,x and EEM,y.

There are three types of polarization:

• In the case of linear polarization, the electric field vector lies entirely within a

single plane, while the associated magnetic field vector is oriented perpendicularly

to both the electric field and the direction of wave propagation.

• On circular polarization the electrical field is on two planes, the amplitudes are

the same and the phase difference between EEM,x and EEM,y is ∆ϕEM,0 = π/2.

• On elliptical polarization the amplitudes are different and ∆ϕEM,0 ̸= 0.

2.1.5 Interaction of EM waves with matter

2.1.5.1 Diffraction

Diffraction is the bending of EM waves as they propagate through an aperture or around

the edge of an object. If:

• The antenna aperture, Da, is much larger than the wavelength, λ, diffraction

effects are minimal.

• The antenna aperture, Da, is much smaller than the wavelength, λ, diffraction

effects become significant.

The angular shape of the waves as they exit the aperture follows a sinc function.

For a sinc function, the half power, (−3 dB), beamwidth of the main lobe, θsinc,−3 dB,

is:
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θsinc,−3 dB =
0.89λ

Da
. (2.6)

2.1.5.2 Interaction with the atmosphere

There are many windows of transmission and absorption peaks in the frequency spec-

trum. Additionally, there is more refraction due to the atmosphere. Refraction is the

bending of EM waves at the interference of two different dielectric materials. The index

of refraction is given by:

nir =
c0
vmat

, (2.7)

where vmat is the speed of EM waves in the material. The effects must be taken into

account when radar signals are transmitted into the atmosphere.

Refraction can be beneficial for surface-to-surface radars, as it can help the signal

to propagate over the horizon, also known as ducting or atmospheric duct. The EM

signal is sent towards the ionosphere; the refractive bending causes the wave to travel

to the surface of the Earth, there it will hit the surface, many thousand miles away, and

then it will bounce back to the receiver. This effect, called skip, is used in the over the

horizon (OTH) radars.

2.1.5.3 Reflection

Scattering, or reflection, refers to the re-radiation of EM waves from a material surface.

For conducting materials, the incident EM wave is almost entirely re-radiated due to

the free electron response. In contrast, for dielectric materials, the incident energy is

partially re-radiated, partially absorbed within the medium, and partially transmitted

through it.

An important factor influencing reflection is the surface roughness, which describes

the variation in surface height. Roughness is commonly quantified by the standard

deviation of surface height relative to a reference plane. A surface is considered smooth

when the incident wavelength is significantly larger than the roughness scale. In this

case, the angle of incidence equals the angle of reflection, θi = θr, a phenomenon known
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as specular scattering. Conversely, when the wavelength is much smaller than the

roughness scale, the surface is regarded as rough. In this regime, scattering is locally

specular over small surface regions but collectively results in diffuse scattering, where

the incident energy is redistributed over a wide range of angles rather than concentrated

in the specular direction.

Another measurable feature is the Radar Cross-Section (RCS), σ. It is measured in

m2 and used to quantify the scattering phenomenology. RCS is a function of the target

viewing angle relative to the transmitting and receiving antenna and of frequency and

polarization of the incident EM wave, which basically is interception, reflection and

directivity. Regarding this theme, the concept of stealth targets is introduced. The aim

of stealth targets is to be invisible to radar. For this purpose different techniques are

applied:

• Minimize the physical cross section, which will minimize the EM wave energy

intercepted.

• Minimize the amount of energy reflected intercepted using radar absorbing mate-

rial (RAM).

• Minimize the shape of the target, which will decrease the amount of reflected

energy directed towards the radar receiver.

2.1.6 Basic radar configurations and waveforms

2.1.6.1 Monostatic versus bistatic radar

In monostatic radar the transmitter and the receiver are collocated, which means that

the antenna for transmission and reception are either the same or sufficiently close

enough. One of the benefits of using the same antenna is that the transmitter and the

receiver will be well isolated, avoiding feedback and false detection.

In a bistatic radar the transmitter and receiver are in two separate locations. The

key feature of bistatic radars is the bistatic angle, β, shown in Figure 2.1. One special

case of bistatic systems are pseudo-monostatic radars, in which the transmitter and
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receiver are placed close enough so that β ≈ 0 and it behaves as a monostatic radar.

Figure 2.1: Bistatic angle of a bistatic radar

2.1.6.2 Active versus passive radar

Active systems are a type of radars that have a dedicated, and often exclusive, transmit-

ter. Active systems can either be configured in a monostatic or bistatic way. In active

radars, there is full control of the waveform parameters, introduced in Section 2.1.6.3,

including the modulation, pulse width and pulse-repetition-interval; and the transmis-

sion parameters, these include the transmitted power and the operating frequency.

On the contrary, passive radars use an illuminator of opportunity (IO) as the trans-

mitter. An IO is a transmitter that belongs to a third party. As such passive systems

use exclusively bistatic configurations. IOs can be any kind of RF transmitters, from

FM radio transmitters to telecommunications satellites. One of the main benefits of

using passive radars are the reduced cost of the whole system, since there is no need

for a transmitter. Another advantage would be that the receiver is hard to locate as it

does not have and active RF signature. Nonetheless, it comes at a cost, since the radar

signal processing is, usually, more complex. Moreover, a minimum level of knowledge

of the transmitter must be had, such as the operating frequency or the location of the

transmitter itself.

2.1.6.3 Continuous wave versus pulsed

Continuous wave (CW) systems transmit constantly a signal, which implies that the

receiver is constantly hearing for echoes. Some problems that CW radars carry are:
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• Isolation between the transmitter and the receiver. A bad isolation could lead

to leakage. Some solutions for this problem involve using relatively low power,

resulting in short range applications. Another solution is to use a bistatic config-

uration.

• As CW radars are always transmitting the estimation of the signal round trip

time and the target range must be done by altering the features of the EM wave,

with frequency or code modulation techniques.

Contrarily, the pulsed waveform systems emits a sequence of finite duration pulses,

along with some periods where the receiver is receiving the reflections of the radar,

period in which the transmitter is not transmitting. Next, some concepts involving

pulsed waveforms will be introduced.

The pulse width, τ, of EW waves of pulsed waveforms have usually very short

durations. During the transmitting time, the receiver is isolated or blanked from the

antenna. The Pulse Repetition Interval (PRI) is the time that passes between the

beginning of one pulse and the beginning of the next. The inverse of the PRI is the

Pulse Repetition Frequency (PRF), measured in pulses per second or in Hz:

PRF =
1

PRI
. (2.8)

The amount of pulse width over the PRI, or the pulse width multiplied by the PRF, is

called the transmit duty factor, or duty cycle, dt:

dt =
τ

PRI
= τ · PRF. (2.9)

So, the average power, Pavg, of the transmitted EM wave is the product of the peak

power, Pt, and the transmit duty factor:

Pavg = Pt · dt = Pt · τ · PRF. (2.10)

An analogue to digital converter, (ADC), is used to sample the PRI. Each of the time
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samples represents a different range increment, or range bin, at a certain found range.

As previously presented, the range is determined by the round-trip time, ∆T . How-

ever, problems appear when ∆T is bigger than the PRI. A time like this would be given

by: ∆T = PRI+∆t, which could be interpreted as a target at a short range related to

∆t, or a target at a long range related to PRI + ∆t. Therefore, it is desired to have

the PRI be bigger than the time delay that would give the maximum range at which a

target is being searched.

PRI ≥ ∆Tmax =
2 ·Rmax

c0
. (2.11)

This implies that the maximum range would be:

Rmax ≤ c · PRI
2

=
c0

2 · PRF
. (2.12)

In the same way, the maximum range at which the range to a target can be measured

unambiguously by the radar would be:

Rua =
c0

2 · PRF
. (2.13)

2.1.6.4 Non-coherent versus coherent radar

Non-coherent radar systems rely solely on the detection of signal amplitude, requiring

the target return to exceed competing clutter in order to be discernible. In contrast,

coherent radar systems exploit both the amplitude and the phase of the received signal.

Access to phase information enables the measurement of phase variations, which can

reveal target motion characteristics and facilitate imaging. In a pulsed coherent radar

system, phase is measured on a pulse-to-pulse basis. The common phase reference for

both transmission and reception is established through the use of a stable local oscillator.

Coherent systems form the basis of Doppler radars. The Doppler effect, arising

from the relative motion between the radar and the target, causes the frequency of the

electromagnetic wave reflected from the target to differ from the transmitted frequency.

Consequently, the final received frequency would be the addition of the transmitted

frequency and the Doppler frequency. The resulting frequency of the received waveform
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would be:

fr = ft + fD, (2.14)

where fr is the received frequency, ft is the transmitted frequency and fD is the Doppler

frequency shift. The Doppler frequency shift, Doppler shift, or Doppler, is:

fD ≈ −2 · vr
λ

, (2.15)

where vr is the radial component of the velocity of the target. This approximation only

fulfils if vr is much smaller than the speed of light.

The velocity vector of the target is typically defined relative to a reference frame

centred on the radar. A positive radial velocity indicates that the target is receding,

while a negative velocity indicates that it is approaching. This convention explains the

negative sign in (2.15).

From (2.12), it can be concluded that if an increased maximum unambiguous range

is desired, then the PRF must be decreased. However, by the Nyquist sampling theorem,

the maximum Doppler frequency that can be unambiguously measured is:

fD,max = ±PRF

2
⇒ PRFmin = 2 · fD,max =

4 · vr,max

λ
. (2.16)

Therefore, if the PRF is lowered to increase the maximum range, the maximum Doppler

is decreased which may cause ambiguities in the Doppler domain. As a consequence,

different PRF values should be chosen depending on the application.

2.1.7 Noise, signal-to-noise ratio (SNR) and detection

All objects radiate thermal noise EM waves in almost all frequencies, as a matter of

fact, the receiver generates its own internal thermal noise. The SNR is the ratio of the

useful received signal power to the noise power.

For target detection in the case of high SNR, a simple amplitude threshold can

be set. If the amplitude of the power of a signal is above the threshold a target is

detected. However, if the noise at a certain instant is above the threshold it can cause
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false target detections. On the other hand, there also exists the possibility that the

power of the signal plus the power of the noise would be smaller than the amplitude

threshold, meaning that a target could be missed.

The probability of detection is the probability that the signal power plus the noise

power is greater than the set amplitude threshold. Similarly, the probability of false

alarm is the probability that the noise power is greater than the amplitude threshold.

The perfect radar would have a PD = 1, and a PFA = 0. It can be noticed that the PD

and PFA can be tuned with the amplitude threshold. If the threshold increases the PD

and PFA decreases, and vice-versa.

2.1.8 Basic radar measurements

2.1.8.1 Target position

Target position is given in a 3D space, as radar estimates, the range in a certain az-

imuth angle and at a certain elevation angle. Additionally, these could be transformed

into a Cartesian coordinate space. Modern radars can determine the following target

parameters:

• Azimuth and elevation angles. These angles are determined by the pointing angle

of the antenna main beam when detection occurs.

• Range, R, is measured by ∆T with (2.1). ∆T can be counted by numbers of

ADC clock pulses between transmit time and receive time (if the first clock is the

transmit pulse).

• Range rate, Ṙ, is measured by the fD, the Doppler frequency. The fD can be

estimated employing spectral analysis on the received signal in every range. fD

can be used to suppress clutter and determine multiple targets at the same range.

2.1.8.2 Resolution

Resolution describes the ability of the radar system to distinguish two or more targets

that are closely spaced, whether in range, angle, or Doppler frequency. Therefore, two
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targets are said to be resolved in range if they can be distinguished. The range resolution

is given by:

∆R =
c0 · τ
2

. (2.17)

Since, generally, the bandwidth of a system can be approximated as: BW ≈ 1/τ, then:

∆R ≈ c0
2 ·BW

. (2.18)

Range resolution is proportional to the pulse width, and inversely proportional to the

bandwidth of the radar signal. If the pulses are shorter the power decreases which will

decrease the SNR and the chance of detection, if no other parameters are changed. A

solution that could be implemented is pulse compression,a technique that maintains the

desired energy while providing better range resolution by modulating the signal. Chirp

pulses, a kind of pulse compression, sweep between two frequencies. Another type

of pulse compression are the phase-coded pulses, which has a constant frequency and

changes in the relative phase. For these waveforms the bandwidth no longer depends

on the pulse duration but (2.18) is still valid.

2.2 The radar range equation (RRE)

The radar performance depends on the SNR at the receiver. The concept of SNR

has been introduced but there are other similar concepts, such as the Signal-to-Clutter

Ratio (SCR), and the Signal-to-Interference Ratio (SCR). The equation to estimate the

SNR of the signal at the radar receiver is the Radar Range Equation (RRE). The RRE

predicts the received power of the radio waves of the radar reflected from a target, the

noise power level, and, thus, the SNR. It can also calculate the power received from

surface and volumetric clutter.
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2.2.1 Power density at a distance R

The power density at a certain distance R, if the antenna is isotropic, is mathematically

given by:

Qi =
Pt

4π ·R2
, (2.19)

where Pt, is the total peak power, R is the distance and Qi is the power density. By

looking at equation (2.19), it can be concluded that the total power divided by surface

area of a sphere of radius R, measured in Wm−2.

The antenna is usually not isotropic. The power density for a non-isotropic antenna

is:

Qi =
Pt ·Gt

4π ·R2
, (2.20)

where Gt is the gain of the antenna, which is the directivity of said antenna reduced

by the losses the signal encounters as it travels from the input power to the point at

which the signal enters into the air. In practice, the directivity can be used instead of

the gain. In this case, the antenna losses are added to the system losses.

2.2.2 Received power from a target

The reflected power from a target is related to the amount of power that bounces back

from the target. This power is directly related to the RCS, and mathematically is

provided by:

Preft = Qi · σ =
Pt ·Gt · σ
4π ·R2

. (2.21)

Therefore, the power density back at the radar receiving antenna is:

Qr =
Preft

4π ·R2
=
Pt ·Gt · σ
(4π)2 ·R4

. (2.22)

Thus, the received power from a target at a range R at the receiving antenna of effective

area Ae is the power density at the antenna times the effective area of the antenna:

Pr = Qr ·Ae =
PtGtσ ·Ae

(4π)2R4
. (2.23)
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Ae is related to the antenna gain by:

Gr =
4πAe

λ2
=

4πηaAant

λ2
, (2.24)

where ηa is the efficiency of the antenna, which takes values of ηa ∈ [0, 1], and Aant is

the physical area of the antenna. Combining (2.23) and (2.24):

Pr =
PtGtGrλ

2σ

(4π)3R4
, (2.25)

where Pt is the peak transfer power measured in watts, Gt is the gain of the transmitter

antenna in linear units, Gr is the gain of receiver antenna in linear units, λ is the

carrier wavelength measured in meters, σ is the previous mentioned RCS of the target

measured in m2 and R is the range from the radar to the target measured in meters.

2.2.3 Receiver thermal noise

The noise can be modelled as white noise, meaning that the power spectral density is

a constant uniform function across all the frequencies. The power Pn of the thermal

noise in the radar receiver is proportional to the receiver bandwidth and is given by:

Pn = kn · Ts ·B = kn · T0 · F ·BW , (2.26)

where k is the Boltzmann constant, with kn = 1.38× 10−23WsK−1, T0 is the standard

temperature, with T0 = 290K, Ts is the system noise temperature, Ts = T0 · F , BW

is the instantaneous receiver bandwidth measured in Hz, F is the noise factor of the

receiver subsystem measured in linear units.

From equation (2.26), it could be deduced that in order to reduce the noise, the

receiver bandwidth could be reduced. Nonetheless, if the receiver bandwidth is smaller

than the bandwidth of the signal, the range resolution suffers. The optimum bandwidth

will be depend on both the transmitted bandwidth and the receiver filter.
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2.2.4 SNR and the radar range equation

Taking into account (2.25) and (2.26), the SNR at the receiver for the monostatic radar

can be computed as:

SNR =
Pr

Pn
=

PtGtGrλ
2σ

(4π)3R4knT0FBW

. (2.27)

Whereas, for the bistatic radar it would be:

SNR =
PtGtGrλ

2σbs

(4π)3R2
1R

2
2knT0FBW

. (2.28)

2.2.5 Multiple pulse effects

Section 2.1.6.4 introduced coherent and non-coherent radars. These types of radars

rely on multiple pulse integration, or multiple integration, methods. The SNR resulting

from coherently integrating np pulses in white noise is:

SNRc(np) = np · SNR(1), (2.29)

where SNRc(np) is the SNR for np pulses and SNR(1) is the SNR for a single pulse.

Consequently, the RRE when np pulses are coherently integrated for the monostatic

radar is:

SNRc(np) = np ·
PtGtGrλ

2σ

(4π)3R4knT0FBW

. (2.30)

Whereas, for the bistatic radar it will be:

SNRc(np) = np ·
PtGtGrλ

2σbs

(4π)3R2
1R

2
2knT0FBW

. (2.31)

The SNR for non-coherent integration is:

√
np · SNR(1) ≤ SNRnc(np) ≤ np · SNR(1). (2.32)

For this reason, many times to estimate the SNR when non-coherent integration is

used, the variable np is replaced by √
np. Therefore, the RRE when np pulses are
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non-coherently integrated for the monostatic radar is:

SNRnc(np) =
√
np ·

PtGtGrλ
2σ

(4π)3R4knT0FBW

. (2.33)

Whereas, if it was a bistatic radar, it would be:

SNRnc(np) =
√
np ·

PtGtGrλ
2σ

(4π)3R2
1R

2
2knT0FBW

. (2.34)

2.2.6 Summary of losses

The total system loss is:

Ls = Lt · La · Lr · Lsp, (2.35)

where Ls is the system loss, La are the atmospheric losses, Lr are the receiver losses, Lsp

are the signal processing losses and Lt are the transmit losses, it should be mentioned

that the antenna losses will be part of the transmit losses.

The RRE with the losses for a monostatic radar with np pulses coherently integrated

is:

SNR =
PtGtGrλ

2σnp

(4π)3R4knT0FBWLs

. (2.36)

While for bistatic radar it would be:

SNR =
PtGtGrλ

2σbsnp

(4π)3R2
1R

2
2knT0FBWLs

. (2.37)

If non-coherent radar was employed, the np variable would be substituted by √
np.

The radar system is designed to search for targets in a given volume, defined by

the range of elevation and azimuth angles to be considered and the range of distances

from the nearest to the farthest. The radar can detect between [Rmin, Rmax], but not

in a continuous manner but with contiguous range movements of ∆R. Similarly, the

Doppler frequency can be unambiguously determined from −PRF/2 to PRF/2.
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2.2.7 RRE for other variables

The following RRE variations are given for monostatic radar systems with np pulses

coherently integrated. If the system were bistatic, σ will have to be substituted by σbs

and R4 would have to be changed by the product between R2
1 and R2

2. Similarly, if the

system were to integrate the pulses in a non-coherent way, np would have to be replaced

by √
np.

2.2.7.1 Range as a dependent variable

The detection range at which a given RCS can be detected with a given SNR is:

Rdet =

[
PtGtGrλ

2σnp

(4π)3 knT0FBWLs · SNR

] 1
4

. (2.38)

Note that some variables inside Ls are range-dependent.

2.2.7.2 Solving for minimum detectable RCS

The RRE is displayed supposing a minimum SNR, SNRmin, for a minimum RCS, σmin:

σmin = SNRmin · (4π)
3R4knT0FBWLs

PtGtGrλ2np
. (2.39)

It should be noted that the higher the required minimum SNR, the higher the required

RCS, which would probably translate into a bigger target.

2.2.7.3 Decibel form of the RRE

As it is known the decibel is a relative unit of measurement corresponding to the ratio

of one value of a power or field quantity to another. In the decibel form multiplications

are additions, and divisions are subtractions. So, the decibel form of the RRE is:

SNR[dB] =Pt[dBW] +Gt[dB] +Gr[dB] + 20 log10(λ) + σ[dB(m2)] + 10 log10(np)− 33

− 40 log10(R)− (204[dBWHz−1]− F [dB]− 10 log10(BW )[dBHz]− Ls[dB]).

(2.40)
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The −33 factor is ≈ 10 log10
[
(4π)3

]
and the −204 factor is ≈ 10 log10(knT0).

2.2.7.4 Average power form of the RRE

The average power form of the RRE is derived from the peak power, Pt, as:

Td = np,d · PRI = np,d/PRF ⇒ np,d = Td · PRF. (2.41)

With Td as the dwell time. The dwell time is the time that the antenna beam spends

on a target. np,D is the number of pulses, or hits per scan. Thus, the average power is

derived from the duty cycle:

Pavg = Pt ·
τ

PRI
. (2.42)

The optimum receiver bandwidth, BW , for a simple non-modulated pulse of width,

τ, is:

BW =
1

τ
. (2.43)

Combining (2.41), (2.42) and (2.43) yields in:

Pt =
PavgTdBW

np,d
. (2.44)

Combining (2.36) and (2.44), the average for of the RRE for coherent integration is:

SNR =

(
PavgTdBW

np,d

)
GtGrλ

2σnp

(4π)3R4knT0FBWLs

1
=
Pavg · Td ·GtGrλ

2σ

(4π)3R4knT0FLs

. (2.45)

In (2.45), equality 1 holds if np,d = np, which occurs if the dwell time equals the

integration time under coherent processing. In this scenario, the integration time is

referred to as Coherent Processing Interval (CPI). The CPI is the time duration over

which the received radar pulses are collected and processed together to perform coherent

integration and Doppler analysis. From (2.45), when coherent integration is applied over

Td and the receiver bandwidth matches the transmit bandwidth, the system SNR can

be adjusted by changing Td without any hardware modifications.
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For non-coherent integration, the average form of the RRE is:

SNR =

(
PavgTdBW

np,d

)
GtGrλ

2σ
√
np

(4π)3R4knT0FBWLs

1
=

Pavg · Td ·GtGrλ
2σ

(4π)3R4knT0FLs
√
np
, (2.46)

where equality 1 holds if the dwell time is the same as the integration time when

using non-coherent integration. For non-coherent processing, the integration time can

be defined as the period during which the amplitudes of the received radar pulses are

collected and summed.

In the hardware, generally, the average power, Pavg, the gain, Gt|r, the wavelength,

λ, the noise factor, F , and the losses, Ls, are fixed, while the dwell time, Td, is easily

changed affecting the SNR. It is worth mentioning that aggressive RCS reduction efforts

must be made to create significant reductions in radar detection range.

2.2.7.5 Pulse compression: intrapulse modulation

The origin of the pulse compression is the need of high bandwidth for good range

resolution as well as the need of high pulse widths for good SNR. Intrapulse modulated

waveforms are used to achieve fine range resolution while maintaining high average

power.

The RRE for a system using pulse compression is:

SNRpc = SNRu ·Gsp = SNRu · τ ·BW . (2.47)

where SNRpc is the SNR for a modulated pulse with pulse compression, SNRu is the

SNR for an unmodulated pulse, Gsp is the signal processing gain, τ is the pulse width,

and BW is the pulse bandwidth.

Combining (2.36) and (2.47):

SNRpc =
PtGtGrλ

2σnp ·Gsp

(4π)3R4knT0FBWLs

=
PtGtGrλ

2σnp · τ ·BW

(4π)3R4knT0FBWLs

. (2.48)
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2.2.8 RRE for bistatic radar

The SNR expression for a monostatic radar system with pulse compression in (2.48) is

reformulated for a bistatic radar configuration:

SNRbs =
PtGtGrλ

2σbsKmp ·Gsp

(4π)3R2
1R

2
2knT0FBWLs

, (2.49)

where σbs is the bistatic RCS of the target, R1 is the range from the transmitter to

the target, R2 is the range from the target to the receiver and Kmp is the multiple

integration factor, which is Kmp = np for coherent integration and Kmp =
√
np for

non-coherent integration.

From the SNR expression in (2.49), the formulas for a bistatic radar without pulse

compression or without multiple integration can be deduced. If pulse compression is not

used, then Gsp = 1. Similarly, if neither coherent nor non-coherent multiple integration

is applied, we have Kmp = 1.

2.2.9 RRE for multistatic radar

When the bistatic configuration is extended to multiple transmitters and/or receivers

to form multiple bistatic pairs, a multistatic radar configuration is generated. The

advantages of a multistatic radar lay on, not only the ability to increase the SNR, but

also the capability of the radar to observe the target from different angles, which might

increase the reflected RCS and decrease the ambiguity in the measurement.

The RRE presented in [1], can be extended for the multistatic case as:

SNRms =

Nbs∑
a

Mbs∑
b

SNRbs;a,b, (2.50)

for the coherent fusion the bistatic pair measurements, and as:

SNRms ≈

√√√√Nbs∑
a

Mbs∑
b

SNRbs;
2
a,b, (2.51)

for the non-coherent fusion. Where, SNRbs;a,b is the SNR of the signal emitted from
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transmitter a and received in the b receiver, and Nbs and Mbs are the number of trans-

mitters and receivers.

2.3 Radar signal processing: non-coherent vs coherent integration

As seen in Section 2.2.5, there are two methods to integrate multiple pulses to increase

the SNR: non-coherent and coherent integration.

In non-coherent integration only the magnitude of the echoed signal is used, whereas

in coherent integration both the phase and magnitude, or the in-phase and quadrature

components of the signal are employed to increase the SNR of the final signal.

The radar processing pipeline of the received signal would comprise of:

1. Amplify the received signals from the antenna using a low-noise amplifier (LNA)

and down-convert them to baseband. By up-convert it is understood that the

signal is modulated with a high-frequency RF signal from baseband, where the

frequency spectrum or bandwidth of the signal is centred around the 0Hz, to a

higher frequency. After the up-conversion the bandwidth of the resulting signal

will be centred around the frequency of the RF signal. Thus, by down-convert it

is understood that the signal is converted from a higher frequency to the 0Hz fre-

quency using the RF signal. Generally, the RF signal consists of a single frequency

component.

Most of the radar signals are up-converted, as the necessary antenna would be too

big for the signal to be transmitted. For instance, if a monopole antenna of size

λ/4 [33] were used, its theoretical length would be infinite; though in practice, it

would simply be extremely large.

2. The received signals are passed through a matched filter. The matched filter

maximizes the SNR in the presence of Additive White Gaussian Noise (AWGN)

by correlating the received radar signal with the original transmitted signal. The

matched filtering process can be described as:

sMF (t) = sR(t) ∗ s∗BB(−t), (2.52)
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where sMF is the matched filter output, sR is the received and amplified down-

converted signal, s∗BB(−t) is complex conjugate of the original sent signal in base-

band, sBB, which has been reversed in time, ∗ is the convolution operation. The

discrete-time convolution is defined as [1]:

s1[n] ∗ s2[n] =
∞∑
−∞

s1[a] · s2[n− a]. (2.53)

The matched filter provides the processing signal gain, Gsp, in (2.47).

3. If non-coherent processing is chosen, the received pulses are integrated by adding

the magnitude of the received pulses as such:

sNC =

np−1∑
a=0

|sMF,a| , (2.54)

where sMF,a are the different received signals after the matched filter and | · | is

the magnitude operation.

An example of non-coherent integration is shown in Figure 2.2. In this case, the

target is stationary at a range of 86.55 km, and an Linear Frequency Modulation

(LFM) chirp is transmitted. The LFM chirp is a modulated waveform in which the

frequency linearly increases or decreases with time. The transmitted signal has a

pulse width of 50 µs, the sampling frequency is 10MHz, and PRF is 1 kHz. The

post-antenna SNR is SNR = −5 dB. The corresponding propagation delay places

the target at sample index 5774. The outcome of the non-coherent integration

reveals a dominant peak at range bin 5774, indicating the correct estimation of

the location of the target. Because phase information is discarded, only the range

of the target can be estimated. The effect of the matched filter is also evident,

producing a peak in the range bin associated with the target.
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Figure 2.2: Non-coherent integration, target position=86.55 km, sampling
frequency=10MHz

Coherent processing can be achieved by Doppler processing. The resulting pulses

are arranged into rows resulting in the range-slow time matrix or fast-time slow-

time matrix, or map. Depending on the number of pulses to be integrated, the

number of rows will vary. Finally, the Fourier Transform (FT) is applied along the

slow time axis, and the range-Doppler map is computed. The Kf -point discrete

Fourier Transform (DFT) for discrete-time signals is defined as [34]:

SD[kf ] =
K−1∑
n=0

x[n]e
−j2πn

kf
Kf , with kf = 0, . . . ,Kf − 1. (2.55)

While the inverse DFT (IDFT) is defined as:

sD[n] =
1

Kf

K−1∑
kf=0

X[kf ]e
j2πn

kf
Kf , with n = 0, . . . ,Kf − 1. (2.56)

A fast version of the DFT, called fast Fourier Transform (FFT), is found in [35].

Figure 2.3 shows an example of Doppler processing and coherent integration. More

concretely, Figure 2.3a shows the target marked in red, while Figure 2.3b shows

the target, in yellow. Range-Doppler maps are useful tools when dealing with
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multiple targets in the same range bin but with different speeds, as it will result

in different Doppler shifts.

(a) Fast-time slow-time map taken from [36] (b) Range-Doppler map taken from [36]

Figure 2.3: Examples of fast-time slow-time and range-Doppler maps

The advantages of using coherent integration over non-coherent integration is the

higher integration gain, which would yield better results, as the SNR would be higher.

Nonetheless, the gain comes with the disadvantage of having a more complex receiver

or signal processing. Similarly, signal coherency must be ensured. This means that the

phase must be known, accurately timed and is consistent through the received signals.

Conversely, the non-coherent integration has a simpler processing pipeline and is more

straightforward. Since, only the magnitude is needed, the radar receiver is simpler.

As discussed in Section 2.2.7.4, the achievable multiple integration gain is con-

strained by the integration time, referred to as the CPI in the coherent case, and

equally named integration time in the non-coherent case. The integration time in the

non-coherent case is restricted by the relative position of the target with respect to the

radar. If the displacement of the target causes it to move into a different range bin, the

resulting change in delay leads to corrupted signals. Similarly, the CPI is constrained

by the motion parameters of the target. If the target changes range bin or its veloc-

ity during the CPI, coherent integration will not be possible. As mentioned, a change

in range introduces different delays, while a change in velocity results in variations in
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Doppler frequency and phase, both of which distort the coherently integrated signal.

The CPI and integration time for non-coherent processing can be calculated as:

CPI = ncp · PRI,

Tnc = nncp · PRI,
(2.57)

with ncp and nncp being the number of coherent and non-coherent pulses to be inte-

grated, respectively. They are both related to the dwell time as [32]:

CPI ≤ Td,

Tnc ≤ Td.
(2.58)

2.4 Summary

This chapter provided an introduction to radar concepts. Specifically, radar configura-

tions were discussed, covering monostatic and bistatic setups, as well as the distinctions

between active and passive radar systems. Additionally, key concepts such as SNR,

range, range resolution, and Doppler frequency shift were reviewed.

A central concept in radar systems is the RRE, which offers insight into the signal

quality at the receiver. The chapter also explored the impact of different multiple

integration techniques, such as non-coherent and coherent integration, on the RRE.

In summary, this chapter introduced the radar theory, essential for the development

and analysis of radar systems discussed in this thesis. The concepts introduced here form

the basis for further exploration into radar performance, system design, and processing

techniques in the following chapters.
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Chapter 3
Preliminary knowledge and established

techniques

This chapter comprises a comprehensive literature review focusing on spaceborne and

ground-based radar, alongside the mathematical tools that, despite not being directly

related to radar, have been utilized in this thesis. The review examines existing studies,

technologies, and advancements pertaining to radar relevant to SSA and the developed

novelties. By synthesizing this knowledge, the chapter seeks to establish a theoretical

framework and contextual understanding for the novelty developments of the research.

3.1 Spaceborne radar for space situational awareness

Several radar technologies have been developed for SSA, yet only a limited number

have been implemented on spaceborne platforms. Spaceborne radar offers distinct ad-

vantages, although these depend on the specific mission geometry and constraints. In

certain configurations, such as the one presented in this thesis, the reduced distance

between the platform and the target can lower signal power requirements. However, de-

pending on the orbital geometry, the radar may at times be positioned farther from its

target than a ground-based system. Moreover, spaceborne systems must operate under

strict onboard power limitations, unlike most ground-based installations. A clear ad-

vantage, nonetheless, is the absence of atmospheric losses and the need for atmospheric
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compensation techniques.

There are spaceborne radars that are used to perform imaging tasks using Synthetic

Aperture Radar (SAR) techniques. Spaceborne SAR is utilized to image the globe.

Continuing with the spaceborne radar for SSA, in the literature active systems

have been proposed. The main benefit of using an active spaceborne radar is that it

does not depend on any IOs, which in the space might be scarce. In [37], a sub-THz

inverse synthetic aperture radar, which would image space objects, was introduced.

There is also an on-going project [38] that explores distributed spaceborne radars and

employs the sub-THz radar. Similarly, in [39], a feasibility study was conducted on the

possibility of a phased array antenna, low PRF and processing techniques to feed an

on-board tracker. At last, in [40], an ontological framework for spaceborne radars with

the purpose of SSA was provided, which itself assumed an active radar scenario.

There are proposed spaceborne radar systems that are passive as well, such as in [12,

24, 41]. The main advantage of using a spaceborne passive system for SSA is that only

a receiver is required, making the RF system significantly simpler. Additionally, as the

number of satellite constellations is increasing, there are a high amount of standardized

IOs. This implies a larger coverage area, thereby increasing the probability of target

detection. However, the processing solutions in the passive case are more complex.

3.1.1 Forward scatter passive bistatic radar for SSA

In this section the study found in [12] is reviewed as it is the baseline for the novelties

presented in the thesis. In [12], a CubeSat-based Passive Bistatic Radar (PBR) was

introduced. The PBR relies on the FS configuration. In the FS configuration, the

bistatic angle is β ≈ 180◦, as in Figure 3.1, with the target crossing between the

transmitter and the receiver.

Figure 3.1: Forward scatter configuration
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FS applications have been found useful in many fields thanks to its advantages over

monostatic radar systems. According to [16], the RCS in FS is enhanced, see Figure 3.2.

Therefore, this configuration could be used to detect low flying objects, such as winged

missiles, and stealth coated aircrafts. More recently, as reported in [12], it was explained

that it was viable to use Forward Scatter Radar (FSR) for space situational awareness,

to track and detect space objects. As a consequence, if FSR is used along with Shadow

Inverse Synthetic Aperture Radar (SISAR) algorithms, space objects could be imaged.

Additionally, SISAR techniques can be used to extract the localization of the possible

target.

Figure 3.2: RCS of a target at f0 = 18GHz from [42]

3.1.2 Fundamentals of SISAR

First, it is important to know about the fundamental functioning of SAR. Typical SAR

[32] relies on a large antenna synthetic aperture. The synthetic aperture, which would

allow for a higher spatial resolution, could be formed by using the motion of the radar

platform. The signals are sent and received while the radar antenna is moving, and

using the information from the motion of the antenna they are processed. There is

a variation of SAR called Inverse Synthetic Aperture Radar (ISAR), which instead of

relying on the relative motion of the radar antenna to the target it relies on the relative

motion of the target to the radar antenna to create the synthetic aperture. It must be
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added that a phased array antenna could be used to expand the synthetic aperture.

In [43], the SISAR technique is explained as being an ISAR technique that exploits

the shadow or forward scattering geometry. When using SISAR, the Radio Holographic

Signal (RHS) is reconstructed. The RHS is a coherent radar signal whose phase and am-

plitude are fully recorded over multiple spatial positions to allow for the reconstruction

of the target. Since, at the receiver, both the target signal and the direct signal of the

transmitter are present, the RHS can be characterized as an interference signal which

would be the one-dimensional shadow radio hologram synthesized coherently in time.

The RHS, also referred to as the FS signal, is processed using a matched filter to extract

the motion parameters of the target. In this approach, the FS signal is replicated at

the receiver for different assumed motion parameters. Then, it is correlated with the

received FS signal through the matched filter to estimate the range and velocity of the

target.

It is evident that the FS signal is a crucial component for successful processing in

SISAR. Certainly, without the FS signal the algorithm would not work. The receiving,

or reconstruction, of the FS signal is itself a topic that is being investigated to this day.

Since, in a real scenario it is difficult to achieve the synchronous processing needed [44]

to retrieve the FS signal, in most of the cases an amplitude detector [45] is used to

obtain one of the quadrature components. The other component is recovered via RHS

reconstructions methods. Several of these methods, as reported in [44, 41], are based on

the Hilbert transform. Since the topic is out of the scope of this thesis, in the pertinent

chapters it is assumed that the full complex FS signal has been successfully retrieved.

In [41], the fundamentals of the Moving-Ends (ME) SISAR are laid out, which takes

into account the movement of the transmitter and receiver. In [24], it was explained

how the ME-SISAR could be implemented and applied for SSA in a spaceborne radar

scenario. The ME-SISAR geometry is shown in Figure 3.3, where TX is the transmitter,

RX is the receiver and P is the target. The three elements of the scenario, transmitter,

receiver and target, are moving with speeds of vT, vR and v, respectively.
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Figure 3.3: SISAR geometry

The SISAR algorithm is applied to the FS signal, the signal is emitted from the

transmitter, scattered by the target and captured at the receiver. For modelling the FS

signal, as for [46], it is assumed that the dimension of the target is comparably larger

than λ, the wavelength, so the Fresnel-Kirchhoff diffraction formula can be applied.

If the target were in the same order, or bigger, than the wavelength, the diffraction

formula would become invalid. The Fresnel-Kirchhoff formula is expressed as:

EFS(t) =
−jAFS

2λ

∫ ∫
ϵτ (x

′, z′)
ejk(r1+r2)

r1r2
(cos(α1) + cos(α2))dx

′dz′, (3.1)

with EFS(t) being the FS signal, AFS the amplitude of the transmitted signal and

k = 2π
λ . r1 describes the distance from the transmitter to every point of the target,

whereas r2 describes it from every point of the target to the receiver:

r1 =
√

{XT (t)− [Xp(t) + x′]}2 + {YT (t)− [Yp(t) + y′]}2 + {ZT (t)− [Zp(t) + z′]}2,

(3.2)

r2 =
√
{XR(t)− [Xp(t) + x′]}2 + {YR(t)− [Yp(t) + y′]}2 + {ZR(t)− [Zp(t) + z′]}2,

(3.3)

where (X,Y, Z)|T,R,p are the transmitter, receiver and target coordinates in time; and
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ϵτ is the function of the shadow profile of the target:

ϵτ =

 1 (x′, z′) ∈ SFS

0 (x′, z′) /∈ SFS

.

If it is assumed that the target is moving near the baseline in both X and Z directions,

and that L, from Figure 3.3, is not comparable to the size of the target, r1 and r2 can

be approximated as:

r1 ≈ rc1 +
x′2 + 2x′[Xp(t)−XT (t)] + z′2 + 2z′[Zp(t)− ZT (t)]

2rc1
, (3.4)

r2 ≈ rc2 +
x′2 + 2x′[Xp(t)−XR(t)] + z′2 + 2z′[Zp(t)− ZR(t)]

2rc2
, (3.5)

rc1 =
√
(XT − xp)2 + y2p + z2p , rc2 =

√
(XR − xp)2 + (YR − yp)2 + z2p ,

with rc1 and rc2 being the distance from the transmitter and the receiver to the target

when t = 0. As α1 ≈ α2 ≈ 0, then: cosα1 + cosα2 ≈ 2. Combining (3.1) with (3.4)

and (3.5), the FS signal for the ME scenario is:

EFS(t) =
AFSe

jk(rc1+rc2)

jλrc1rc1

∫
SFS

H(x′)e
jkx′2

(
1

2rc1
+ 1

2rc2

)
e
jkx′

(
Xp(t)−XT (t)

rc1
+

Xp(t)−XR(t)

rc2

)
dx′,

(3.6)

with H(x′) is the Complex Profile Function (CPF) of the target, defined as:

H(x′) =

∫
ϵτ (x

′, z′)e
jkz′2

(
1

2rc1
+ 1

2rc2

)
e
jkz′

(
Zp(t)−ZT (t)

rc1
+

Zp(t)−ZR(t)

rc2

)
dz′. (3.7)

Two parameters are introduced, h(x′) and m(x′), the height difference and the

median line of the target. They are related as:

m(x′) =
h(x′)

2
. (3.8)
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The limits of the CPF can be set from m(x′)− h(x′)/2 to m(x′) + h(x′)/2 as:

H(x′) =

∫ m(x′)+h(x′)
2

m(x′)−h(x′)
2

e
jkz′2

(
1

2rc1
+ 1

2rc2

)
e
jkz′

(
Zp(t)−ZT (t)

rc1
+

Zp(t)−ZR(t)

rc2

)
dz′. (3.9)

As per [24], by ignoring the second order variation of z′ and computing the integral,

the CPF can be approximated as:

H(x′) ≈ h(x′)sinc

[
kh(x′)

(
Zp(t)− ZT (t)

2rc1
+
Zp(t)− ZR(t)

2rc2

)]
e
jkm(x′)

(
Zp(t)−ZT (t)

rc1
+

Zp(t)−ZR(t)

rc2

)
.

(3.10)

The position vector of a space object in an assumed circular orbit can be determined

from Figure 3.4 using (3.11a). The orbital angular velocity of the object, denoted by

ωspc, is obtained from (3.11b), where µ ≈ 3.99 × 1014m3/s2 represents the standard

gravitational parameter of the Earth, and R denotes the radial distance between the

centre of the Earth and the space object. The parameter αspc corresponds to the

orbital inclination angle in the XY-plane, which may alternatively be interpreted as the

trajectory angle of the space object.

Pspc(t) =


X(t)

Y (t)

Z(t)

 = Rspc


sin(ωspct) cos(αspc)

cos(ωspct)

sin(ωspct) sin(αspc)

 , (3.11a) ωspc =

√
µ

R3
spc

. (3.11b)

Figure 3.4: Space geometry
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If ωspc is small enough for the small angle approximation to be used. The position

vector (3.11a) can be approximated as:

Pspc(t) =


X(t)

Y (t)

Z(t)

 ≈ Rspc


ωspc cos(αspc)t

1− (ωspct)2

2

ωspc sin(αspc)t

 . (3.12)

Combining (3.6) and (3.12) yields in:

E(t) = Q

∫
S
H(x′)ejηx

′2
ejγx

′tdx′; (3.13)

Q = Aejk(rc1+rc2)

jλrc1rc2
; η = k

(
1

2rc1
+ 1

2rc2

)
; (3.14)

γ = k
√
µ Γp

(
1−ΓT

Γp

rc1
+

1−ΓR
Γp

rc2

)
; ΓT |R|p =

cosαT |R|p√
RT |R|p

. (3.15)

To be able to extract the CPF with SISAR, the inverse transform is applied to

(3.13):

Ḣ(x′) =
γ

2πQ
e−jηx′2

∫
tobs

E(t)e−jγx′tdt, (3.16)

with Ḣ(x′) being the reconstructed CPF, E(t) the received FS signal and tobs the

observation time. As a consequence, to be able to extract the CPF, the Q, γ and η

variables from (3.14) and (3.15) must be estimated. Similarly, a target with a certain

shape and size is assumed for the H(x′) in (3.13).

The study in [24] showed that errors in altitude and trajectory angle estimation can

lead to a corrupted CPF reconstruction. In the considered scenario, the receiver was at

an altitude of 400 km, the target at 700 km, and the transmitter at 963 km. Altitude

errors of up to 200m still allowed for accurate reconstruction, whereas errors greater

than 2 km produced an incorrect profile. In contrast, even small trajectory angle errors,

as low as 3◦, resulted in an unreliable CPF. In terms of SNR, even relatively low values,

such as −10 dB, are sufficient to identify the target shape from the CPF.
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3.1.2.1 Extraction of the motion parameters of the target from the FS

signal

According to [24], to extract the motion parameters of the target from the FS signals

a bank of matched filters can be used. The received FS signal is down-converted to

baseband, and correlated with several reference FS signals previously created with dif-

ferent target altitudes and inclination angles. The FS signals are created using (3.6)

and correlated using a matched filter as in (3.17).

yMF (t) = sMF (t) ∗ x∗MF (−t) =
∫ ∞

−∞
sMF (ν) · x∗MF (ν − t)dν, (3.17)

where, yMF (t) is the output of the matched filter, sMF (t) is the reference FS signal,

xMF (t) is the received FS signal, ∗ is the convolution operation and ∗ is the complex

conjugate.

The matched filter could be expanded to be used in a bank of correlators, Figure

3.5. Once the received signal has been correlated with the different reference signals,

the maximum is chosen. From those maxima, the highest value is selected, and the

respective altitude and inclination angle are extracted.

Figure 3.5: Bank of correlators of motion parameters extraction

The main problem with this approach is that it is very time-consuming and, in some

cases, not feasible. This is because the search grid step needs to be small, requiring

many correlators to reduce the error in the estimation, which would require of a large

memory to store all of them, and a considerable amount of time to correlate them all.

Similarly, as deduced from [24], the SNR also plays an important role in the algorithm.

Therefore, two of the challenges are increasing the SNR to ensure the correct functioning

of the SISAR algorithm and developing an improved method for extracting the motion
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parameters, which will be introduced in Chapter 5.

3.1.3 Comparison with ISAR

For reference on the computational load, SISAR will be compared to ISAR. To create

the ISAR image the standard method is a 2D-IFFT algorithm [47]. First, an IFFT is

applied across each row (fast-time) to compress the radar pulses, resolving scatterers in

the range dimension based on their time delay. Subsequently, a FFT is applied across

each column (slow-time) of the range-compressed data. This second transform analyses

the Doppler frequency shift induced by target rotation, effectively resolving scatterers in

the cross-range dimension. The final output of this efficient process is a high-resolution

2D image where the intensity of each pixel represents the radar brightness of a scatterer

at a specific range and cross-range location on the target.

Assuming a size target of 1m, the possible ISAR computational time will be com-

puted. For this size, the range resolution of the radar should be 1 cm, the bandwidth

1.5GHz and the sampling frequency 3GHz. The cross-range resolution is defined as [47]:

∆CR =
λ

2 ·∆θ
(3.18)

with ∆CR being the cross-range resolution and ∆θ the angular rotation of the target.

For an operational frequency of 10GHz, the angular rotation should be: ∆θ = 0.15 rad.

If the angular rotation of the target is 0.01 rad s−1, the time to rotate by ∆θ would

be 15 s. For a PRF of 1 kHz, the number of collected pulses is: PRF · t∆θ = 15 000.

At this PRF, the received signal would contain 3 000 000 samples, or range bins. After

range compression, only the bins corresponding to the target are selected. Using an

FFT size of 2048, the resulting matrix would have a dimension of 2048× 15000. On an

i9 CPU, processing this matrix would take approximately 45ms.

For comparison, in the SISAR scenario, the receiver is at an altitude of 400 km, the

transmitter at 963 km, and the target at 702 km with a trajectory angle of 68◦. To

extract the motion parameters of the target, the correlation map generated by the bank

of correlators should use a step size of 1 km in altitude and 1◦ in the trajectory angle.
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This results in a correlation map of size 563× 360, corresponding to 202 680 FS signals

to be processed. Assuming a correlation time of 5ms per signal, the total computation

time would be 16.89min, which is significantly longer than for ISAR.

3.1.4 Summary

In summary, spaceborne radar technologies offer significant advantages for SSA, en-

abling the localization and imaging of space objects. Both active and passive spaceborne

radar systems have been reviewed. Active systems provide the advantage of total con-

trol over the transmitted signals, while passive systems benefit from using large satellite

constellations as transmitters, offering greater coverage.

A key development in spaceborne radar for SSA is the use of the FS configuration.

Forward scattering systems enhance the RCS of targets, resulting in a higher SNR com-

pared to monostatic systems. The integration of SISAR techniques with FSR provides

a powerful tool for imaging space objects and extracting motion parameters. Some of

the challenges with SISAR are the high computational cost of extracting the motion

parameters, as well as having high enough SNR for the accurate extraction of them.

The FS system could be combined with a conventional monostatic radar to improve

localization performance. In this configuration, the monostatic radar provides an initial

estimation of the motion parameters, while the FS system, making use of this prior

information, refines the result by performing a more accurate localization within the

reduced search space. Some issues that the system will face would be how to mitigate

the effect of the monostatic signal on the FS signal and vice-versa. In addition, the

final radar solution would be more complex, and would require higher power capabili-

ties. Similar systems, referred to as Reverse Forward Scatter (RFS) radars, have been

proposed in [48, 49]. In an RFS configuration, a reflector is placed behind the target,

while a monostatic radar transmits the signal. The FS signal is then generated by the

reflection of the monostatic signal.

47 of 197



3.2 Ground-based radar for space situational awareness

In 1946, the US Army Signal Corps conducted an experiment in which electromagnetic

signals were reflected off the Moon and received by an Earth-based antenna [2, 3]. It

was the first experiment of radar astronomy, and it proved that radar could be a viable

way to perform SSA. Ever since then, radar has been widely used for SSA to detect and

track cooperative objects orbiting around the Earth, such as satellites, or uncooperative

objects, such as space debris. Lately there has been an encouragement to develop space-

based SSA radar [37, 12]. However, most of the radar SSA systems are Earth-based.

While most SSA radars work in a monostatic configuration in some cases the bistatic

configuration has been proposed [50].

Many of the SSA systems use radio telescopes, mainly as receivers as they have

better sensitivity, improving the detection of targets with smaller RCS, and possibly

smaller targets, for a given range [51, 52]. However, the bistatic angle is not large

enough so that the bistatic advantages can be exploited and most of these systems work

in a quasi-monostatic configuration [1]. Examples of radio telescopes that have been

used are the Sardinia Radio Telescope (SRT) [53], the Millstone Hill Radar (MHR) [54,

36, 55] at the Haystack Observatory, the Tracking and Imaging Radar (TIRA) [56, 57,

55] located at the FGAN research institute, the Effelsberg Radio Telescope [58], the

Westerbork Synthesis Radio Telescope (WSRT) [36, 55].

The BIstatic RAdar for LEo Tracking (BIRALET) configuration was introduced in

[53]. On the experiment, two satellites, one CubeSAT and space debris of the Cosmos-

2237 satellite were tracked. The radar was configured in a bistatic way. The Flight

Termination System (FTS), part of the Italian Air Force, was transmitting the radar

signals, and the SRT was the receiver. The FTS has an output power of 4 kW, it

can transmit from 400 to 455MHz. The SRT has a 64m parabolic antenna, with an

operating frequency from 0.3 to 116GHz. The baseline for this bistatic radar was 40 km.

The MHR, along with the Haystack and Haystack Auxiliary (HAX), was employed

to detect different satellites and space debris [54]. With the different radio telescopes

multi-frequency RCS data was collected. Each space object was tracked at multiple
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elevation angles, and the radar data were used to extract the RCS values and target

sizes.

In [56] it was explained how the TIRA could use its 34m parabolic antenna with its

mono-pulse L-band tracking radar for detect and track space objects, while its Ku-band

imaging radar could be used to image them. The detection and tracking would be used

to determine the orbit of said space objects and characterize them. In one hand, because

of its 13 kW peak power and low noise amplifiers (LNA), the L-band radar is sensitive

enough to detect down to 2 cm sized objects at a distance of 1000 km. If the TIRA

transmits radar signals while the Effelsberg radio telescope [58] acts as a receiver, the

objects that could be detected were as small as 0.9 cm at 1000 km. More importantly,

[58] proved that a bistatic radar could be adopted to perform SSA tasks. On the other

hand, the Ku-band radar can be used to image space objects such as satellites to provide

support of Launch and Early Orbit Phases (LEOPs) and as a diagnosis tool to determine

attitude and shape of the possible target. More concretely, the study in [57] showed

how the TIRA could be operated to characterize de-orbiting satellites and space debris.

When multiple transmitter-receiver bistatic pairs are combined, multistatic systems

are created. Regarding the role of multistatic systems in SSA, there have been some

studies on multistatic radars [59, 60] for detecting space objects, but a limited number

of them used long baseline bistatic pairs. In this thesis, by long baseline, it is understood

a distance from transmitter to receiver of 5000 km, or greater. Additionally, following

[59, 60], a radar system is considered bistatic if it produces a bistatic angle, β, greater

than 10◦. In [59], as part of the German Experimental Surveillance and Tracking

Radar (GESTRA), transmitter and receiver units were built and assessed to create a

multistatic system with a maximum baseline of 500 km to detect a target at an altitude

of 1000 km. The configuration resulted in a bistatic angle of 14◦. In [60] a baseline of

250 km was employed to create a bistatic system to perform SAR imaging on a target

at 627 km. This system utilized a bistatic angle of 11◦. A more recent experiment was

conducted on [61], where a transmitter in Millstone Hill, USA, was used along with

two receivers, placed in Westerbork, Netherlands, and Sardinia, Italy, which created a

bistatic angle of around 8◦ and 10◦, respectively, with baselines of 5650 km and 5500 km,
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respectively. However, the multistatic capabilities and performance have not yet been

evaluated using real measurements.

A long baseline will enable the system to better exploit the bistatic capabilities in a

multistatic configuration and reduce the ambiguity in the target location derived from

the radar measurements. Configuring the system to work in a bistatic way, instead

of a monostatic or quasi-monostatic configuration, will allow distributing sensing and

to capture different target returns from the same transmission. Hence, if one of the

bistatic pairs returns an incorrect location detection of the target because of its low

signal-to-noise ratio (SNR), the other readings could help to locate it correctly, as it is

going to be seen in Section 6.5. Moreover, multistatic radars can offer better behaviour

characterization of the space object [62]. Being able to have multiple receivers in the

multistatic radar will open the possibility of increasing the SNR of the target if the

fusion of the radar data is performed with proper methods, such as the multiple-input-

multiple-output (MIMO) ambiguity function (AF), introduced in Section 6.2.

One key issue, not addressed in the thesis, is the synchronization problems that

might arise from having receivers and transmitters in different continents. Nevertheless,

several solutions have been proposed to synchronize digital systems, principally using

GNSS signals [63, 64].

In [36], it was shown how to detect GEO satellites. The MHR and the TIRA were

the transmitters and the SRT, the Westerbork Synthesis Radio Telescope (WSRT), and

the e-MERLIN array radio telescope situated in the United Kingdom (UK) were the

receivers. The e-MERLIN is a particular case since it has 7 antennas working together

as a single receiver. To achieve it, the 7 antennas, which have diameters from 25m

to 76m and are 10 km to 220 km apart, are connected by a dedicated optical network

and the coherence between the different transmitted or received signals is maintained by

radiofrequency (RF) timing signals on those same fibres. Table 3.1 shows the parameters

used in [36]. The peak power and bandwidth on TIRA is dependent on Nmod, the

Binary phase shift keyed (BPSK) modulation number. The pulse width itself is 1ms

divided into Nmod subpulses, therefore the bandwidth will be proportional to Nmod and,

assuming a fixed SNR at the receiver, the peak power will also be proportional to Nmod.
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On the contrary, the MHR uses a linear frequency modulated (LFM) chirp.

MHR TIRA

Modulation type LFM BPSK

Peak power 3000 kW Depends on Nmod

Operating freq. 1295MHz 1333MHz

Bandwidth 8MHz Depends on Nmod

Pulse width Maximum: 1ms 1ms divided into Nmod subpulses

PRF Algorithmically determined 30Hz

Table 3.1: MHR and TIRA parameters

The results demonstrated that GEO targets can be detected, tracked, and their RCS

extracted from radar returns. Range–Doppler maps, shown in Figure 3.6, confirm that

coherent processing is achievable. The number of coherently integrated pulses reached

up to 4000 when the MHR served as the transmitter and up to 2000 when TIRA was

used as the illuminator. Assuming comparable PRFs for both transmitters and applying

(2.57), the resulting CPIs are 133.33 s for the MHR and 66.67 s for TIRA. These results

indicate that high integration gains are achievable for GEO targets, ensuring sufficient

SNR for reliable detection and accurate motion estimation. Moreover, the CPI values

confirm that GEO targets maintain coherence over relatively long time intervals.

Figure 3.6: Range-Doppler maps extracted in [36]
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3.2.1 Bistatic radar for SSA

This section covers some of the peculiarities of the bistatic configuration when applied

in a SSA scenario. In a classical radar system, the transmitter and receiver are situated

in the same locations and, many times, use the same antenna for transmission and

reception purposes, forming the aforementioned monostatic configuration as seen on

Section 2.1.6.1.

On the contrary, a bistatic radar would use a transmitter and a receiver in different

locations. In SSA, due to their high sensitivity, radio telescopes are often used as

receivers in conjunction with radar transmitters to form bistatic pairs. Nevertheless,

due to the relatively small distance between the transmitter and receiver compared to

the target location, most bistatic SSA systems do not form large enough bistatic angles

and can be considered quasi-monostatic.

Indeed, a key property of a bistatic radar is its bistatic angle, β, which is the angle

with vertex at the location of the target and rays at the transmitter-target and target-

receiver paths. Figure 3.7 shows the basic bistatic configuration. The transmitter, Tx,

and receiver, Rx, are separated by a distance, LTx,Rx, also called the baseline, the target

travels at a speed, v, while the distance from the transmitter to the target is denoted

by dTx and the distance from the receiver to the target by dRx. A system can be

considered bistatic if β > 0. There is an exception though if β ≈ 10 while LTx,Rx ̸= 0,

then the system is considered quasi-monostatic. For example, in [50] a bistatic system

was used to detect a satellite at 800 km with a baseline of about 10 km. The estimated

bistatic angle of this configuration was 0.72◦, an angle associated with quasi-monostatic

configurations.
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Figure 3.7: Bistatic configuration

When considering earth-to-space observations, for a big enough bistatic angle to

be achieved, which according to [59, 60] should be around 10◦; the transmitter and

receiver will have to be separated by hundreds or thousands of kilometres, depending

on the intended maximum altitude to be observed. For example, assuming a bistatic

angle of 10◦ and dTx ≈ dRx, if the target is at an altitude of 1000 km, a LEO satellite, the

transmitter and receiver should be separated by 175 km, which is the distance between

Nottingham and London. On the other hand, if the observed object is orbiting at

35 786 km, a geostationary (GEO) satellite, the minimum distance between transmitter

and receiver for the radar system to be considered bistatic should be 6261 km, the

distance between Amsterdam and Washington DC. An example of a radar for SSA with

a big bistatic angle was shown in [65]. For the study a system with a baseline of 916 km

was used to detect a target at 620 km, which created an estimated bistatic angle of 72◦.

One of the key features of the bistatic radar is the bistatic angle, β. The bistatic

angle affects the bistatic RCS, RCSbs, of the target. Here the bistatic RCS will be

modelled as [42]:

RCSbs ≈ RCS cos
β

2
, (3.19)

where RCS is the monostatic RCS and β is the bistatic angle. The bistatic Doppler

frequency is given by [66]:

fD = −2v

λ
cosψ cos

β

2
. (3.20)
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While the Doppler resolution is calculated as [1]:

∆fD =
1

Td
=

1

np PRI
, (3.21)

where Td and np are observation time and number of pulses, respectively.

Furthermore, the bistatic range is computed as [67]:

rbs = R1 +R2, (3.22)

with R1 and R2 being the distance from the transmitter to the target and the target to

the receiver, respectively.

Following the bistatic range, in frequency-modulated radar the bistatic range reso-

lution can be deduced as [67]:

∆rbs =
∆r

cos(β/2) cos(ψ)
=

c0
2BW cos(β/2) cos(ψ)

, (3.23)

with ∆r being the range resolution for monostatic radar.

3.2.2 Summary

Ground-based radar systems have been crucial in advancing SSA technologies. The

majority of ground-based SSA radar systems utilize monostatic or quasi-monostatic

configurations to detect and track space objects. Advanced bistatic configurations could

offer enhanced target characterization and reduced localization ambiguities. However,

there are issues to consider when using bistatic radars for SSA, such as synchronization

over long baselines and achieving optimal bistatic angles. Multistatic systems could

further enhance detection reliability by fusing data from multiple transmitter-receiver

pairs. The challenge remains in how to effectively fuse the bistatic data.

3.3 Classification of radar signals using Artificial Intelligence (AI)

In AI, Neural Network (NN) architectures are used to perform a variety of tasks. Neu-

ral networks consist of neurons, mathematical functions designed to approximate the
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behaviour of biological neurons [68]. Among the most common architectures are Con-

volutional Neural Network (CNN), which use the convolution to hierarchically extract

spatially localized features, making them well-suited for image processing. Generative

Adversarial Networks (GANs), by contrast, are primarily used for data generation. A

GAN consists of a Generator, which produces synthetic data, and a Discriminator, which

distinguishes real data from generated outputs. Through this adversarial process, the

Generator progressively produces highly realistic data. In this thesis, Recurrent Neural

Network (RNN) are employed, an architecture tailored for sequential data that main-

tains a memory of previous inputs.

The output of a network depends on its training objective. For tasks typically

handled by CNNs and RNNs, outputs generally fall into two categories:

• Classification: a probability distribution over a set of discrete classes, obtained

via a softmax activation [69]. The predicted class is assigned to the one with the

highest probability. This value, often called the confidence score, represents the

estimated certainty of the model that the input belongs to that specific class.

• Regression: a continuous, scalar or vector-valued estimate of a variable. The

reliability of a regression output is not encapsulated by a single score for that

prediction but is instead evaluated globally using error metrics like Mean Squared

Error on a validation set.

AI, and in particular deep learning architectures such as CNN and RNN, has found

increasing application in the radar domain. Most commonly, these methods are em-

ployed for classification tasks, including the identification of different targets [70, 71,

72, 73] or human activities [74]. In addition, they are also widely used for the extraction

of radar signal parameters, such as modulation type, pulse repetition interval (PRI), or

pulse width [75, 76, 77, 78, 79]. These applications demonstrate the versatility of AI

methods in handling complex, high-dimensional radar data, where conventional signal

processing techniques may be limited in scalability or adaptability.
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3.3.1 Recurrent neural network (RNN) functioning

A RNN is a type of neural networks for processing sequential data [80], such as signals

or text. In this thesis, RNNs are going to be used to classify FS signals, therefore the

functioning of RNNs will be explained next.

The main advantage of RNNs when using them for signals is its memory. RNNs

have a hidden state that is used as a memory. This allows them to store and employ

information from previous time intervals. Thus, RNN would be very useful when pro-

cessing signals, as past data points would affect the current or future points. RNNs can

be used to predict the next step of the sequential data, to estimate how the data will

behave or to classify said sequential data into given classes.

The layers of a basic RNN architecture are [80]:

• Input: input feature signal, represented by xNN (t̨) in Figure 3.8.

• Hidden state: serving as the network memory. It is denoted by hNN (t̨) in Fig-

ure 3.8 and computed from the current input and the previous hidden state as:

hNN (t̨) = fa(bNN + UNN · xNN (t̨) +WNN · hNN (t̨ − 1)), (3.24)

where t̨ is the unit time, fa(·) is the activation function, which is a non-linear func-

tion, that would be more adequate to map non-linear dependencies, UNN ,WNN

are matrix weights, and bNN is a bias term. The bias term enables the layer to

model data distributions that are not centred at zero.

• Outputs: output of the network, represented by oNN (t̨) in Figure 3.8. It can be

mathematically expressed as:

oNN (t̨) = cNN + VNN · hNN (t̨), (3.25)

where oNN (t̨) denotes the output and cNN the bias term. The output oNN (t̨)

may serve as the input to a softmax(·) function, yielding a probability vector

that quantifies the likelihood of the input belonging to each class.
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• Weights: the input to hidden connections are parametrized by the weight matrix

UNN , the hidden to hidden recurrent connections are parametrized by the weight

matrixWNN and the hidden to output connections are parametrized by the weight

matrix VNN . The weights are updated using gradients, which indicate how much

the weight has to change in order to reduce the error.

Gradients are computed using the back-propagation method. Once the error is

computed for a set of weights and bias terms, it is back-propagated to each neuron

in the hidden layer to compute the gradient. The gradient is the vector of partial

derivatives of eNN,t̨ with respect to the ΘNN evaluated at the time step t̨ [81]:

GNN,t̨ = ∇ΘNN
eNN,t̨(ΘNN ), (3.26)

where Θ is the variable representing the UNN , VNN ,WNN , bNN , cNN parameters,

eNN,t̨(·) is the error at time step t̨, that could itself be interpreted as a random

stochastic function that is differentiable with respect to the parameters and t̨ is

the vector of time step, the discrete time vector.

The back-propagation method computes the gradient of the error with respect to

each layer of the neural network, starting from the output and finishing with the

top layers [82]. Therefore, the weights are updated from the bottom of the layers

to the top of them.

Figure 3.8: Basic architecture of a RNN as studied in [80]
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3.3.1.1 Long Short Term Memory (LSTM)

Introduced in 1997, the LSTM provided a solution for Back-Propagation Through Time

(BPTT) learning [83]. This was a challenge faced by early RNNs. For the BPTT,

the error signals, the error between the estimations and the real values, when back-

propagated could cause [84]:

• Increase dramatically, leading to oscillating weight values. Also called the Ex-

ploding Gradient Problem.

• Decrease down to small values. However, if the the input signal is very long, the

learning process of the RNN could take an insurmountable amount of time. This

is called the Vanishing Error Problem. As the aim is to minimize the error, a gra-

dient descent method is employed. The method relies on following the descending

gradient. Since the gradient is basically a derivative, it can be easily understood

how following the descending gradient would be similar to following a decreasing

slope, thus minimizing the error.

The gradient of the weights will decrease quickly with each iteration and with

back-propagation, specially if there are lots of layers. The very small values of the

gradients will make very hard for the network to find the gradient that descends,

and it will take longer to find the optimal result. This is specially true if the

signals are long, as the computation of the gradients and back-propagation will

take longer.

3.3.1.1.1. Constant Error Carousel

The Constant Error Carousel (CEC) [84] solution is used to prevent the Vanishing Error

Problem. CEC ensures that a constant error flow through each neuron in the RNN is

made. Mathematically, it is achieved by [85]:

fNN,uNN
(zNN,uNN

(t̨)) =
zNN,uNN

(t̨)
WNN,[uNN ,uNN ]

, (3.27)

where t̨ is a time unit, zNN,uNN
is the weighted input of the unit uNN , WNN,[uNN ,uNN ]

is the weight that connects the unit uNN to itself, fNN,uNN
is the squashing function
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of the unit, neuron, uNN . It is called squashing function because it can squash a large

input to a small output.

From (3.27), it can be deduced that fNN,uNN
is a linear function. Additionally, the

activation of the unit uNN must remain constant over time to have a constant error

flow:

yNN,uNN
(t̨ + 1) = fNN,uNN

(zNN,uNN
(t̨ + 1))

= fNN,uNN
(yNN,uNN

(t̨WNN,[uNN ,uNN ]))

1
= yNN,uNN

(t̨).

(3.28)

In (3.28), yNN,uNN
is the output of unit u. For the equality 1 in (3.28) to hold, fNN,uNN

must be the identity function, and by setting WNN,[uNN ,uNN ] = 1.

3.3.1.1.2. LSTM architecture

An LSTM block is illustrated in Figure 3.9, following the description in [85]. The

block consists of a single cell incorporating a constant error carousel (CEC) and a self-

recurrent connection with a fixed weight of 1. The state of the cNN -th cell in memory

block mNN is denoted as sNN,mNN ,cNN
.

The write operation to the cell state is controlled by the input gate, yNN,in, while

the read operation from the cell state is governed by the output gate, yNN,out, with

their respective activation functions fNN,in and fNN,out. The update of the internal

cell state proceeds by first computing the product of the input gate activation and

the transformed input, obtained via the squashing function gNN,a(·). This product is

then added to the previous cell state, sNN,mNN ,cNN
(t̨), yielding the updated cell state

sNN,mNN ,cNN
(t̨ + 1).

Prior to being transmitted to the output gate, the updated cell state is passed

through a squashing activation function hNN,a(·). The final cell output, yNN,mNN ,cNN
,

is obtained by multiplying this squashed cell state by the output gate activation. It

should be noted that yvNN (t̨) represents the output of unit vNN .
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Figure 3.9: LSTM architecture as per [85]

3.3.2 ADAptive Moment estimation (ADAM)

The gradient gt, a vector of partial derivatives of the error with respect to the pa-

rameters, is central to error minimization. Since the gradient points in the direction of

steepest ascent, parameters are updated opposite to this direction to reduce error: a pos-

itive gradient component indicates the parameter should be decreased, while a negative

component indicates it should be increased. Although many gradient-based optimizers

exist, AdaM [81], or simply Adam or ADAM, is used here and will be described.
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Adam is an algorithm for first-order gradient-based optimization of stochastic objec-

tive functions, based on adaptive estimates of lower-order moments [81]. The advantages

of Adam include its straightforward implementation, computational efficiency with min-

imal memory requirements, and suitability for problems involving large datasets or a

high number of parameters.

The pseudo-code of the Adam algorithm is:

1 ΘNN,0;
Initialize parameter vectors,

typically at random.

2 mA,0 = 0;
Initialize first moment (mean)

vector

3 vA,0 = 0;
Initialize second moment

(variance) vector

4 t̨ = 0; Initialize time-step

5 while ΘNN,t̨ does not converge

6 t̨ = t̨ + 1; Next step for next iteration

7 GNN,t̨ = ∇ΘNN
eNN,t̨(ΘNN,t̨);

Compute the gradient of

eNN,t̨, the error

8 mA,t̨ = βA,1 ·mA,t̨−1 + (1− βA,1) · gNN,t̨;
Update bias first moment es-

timate

9 vA,t̨ = βA,2 · vA,t̨−1 + (1− βA,2) · g2NN,t̨;
Update bias second raw mo-

ment estimate

10 m̂A,t̨ = mA,t̨/(1− βA,1,t̨);
Compute bias-corrected first

moment estimate

11 v̂A,t̨ = vA,t̨/(1− βA,2,t̨);
Compute bias-corrected sec-

ond raw moment estimate

12 ΘNN,t̨ = ΘNN,t̨−1−αA · m̂A,t̨/
(√

v̂A,t̨ + ϵA

)
; Update parameters

13 end

14 return ΘNN,t̨

In the pseudocode, the parameters that control the learning process, called hyper-
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parameters, are:

• αA: step-size.

• βA,1, βA,2 ∈ [0, 1): exponential decay rates for the moment estimates.

• ϵA: the denominator offset. It is usually a small value, on the order of 10−8. If

the estimated variance for the next step, v̂A,kt , computed in line 11, equals zero,

it would cause a computational error in line 12.

3.3.3 Some activation functions

This section delves into some of the activation functions that are commonly used in

RNNs. Three sigmoid functions are going to be introduced as the activation functions.

A sigmoid function is a mathematical function with a S-shaped curve [86]. Some of the

most common sigmoid functions are:

• Hyperbolic tangent, which is defined as:

tanhφ =
sinhφ

coshφ
=
e2·φ − 1

e2·φ + 1
. (3.29)

The tanh(·) has a lower limit of -1 and an upper limit of 1.

• The logistic function, also simply called the sigmoid function, is mathematically

defined as [87]:

σl(φ) =
1

1 + e−φ
. (3.30)

Contrary to the tanh function, the logistic function has an lower limit of 0 and an

upper limit of 1.

• A hard-sigmoid function is a linear approximation of a sigmoid function. A com-

mon definition is [88]:

σH(φ) =


0 ifφ < 2.5

0.2φ+ 0.5 if − 2.5 ≤ φ ≤ 2.5

1 ifφ > 2.5

. (3.31)
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The advantages of a hard-sigmoid is the simpler mathematical operations to com-

pute its output and derivative. The disadvantages would be the inaccurate ap-

proximation to the logistic function, which would impact the overall performance

of the neural network.

Classification activation functions are used in the last layer of a neural network.

They provide a value between [0, 1] that is used to classify the input into the different

classes. The two most common classification functions are:

• Logistic function. This has already been explained and is mathematically ex-

pressed by (3.30).

• Softmax activation function. Firstly introduced in [69], it computes a probability

distribution of the input to be of a certain class. The function preserves the rank

order of its input values, meaning that it provides a vector in which the first

value is the most probable class of the input, the second value is the second most

probable class and so forth.It is a generalization of the winner-takes-all approach

of picking the maximum value. Mathematically, it is expressed as [69]:

Qaf (φ) =
eVaf

(φ)∑Ncl−1
bf=0 e

Vbf
(φ)
, (3.32)

with φ being the input vector to the softmax function, Qaf is class membership

indicator of the af -th class, Vaf and Vbf are the outputs of the neural network

associated with the af and bf classes, and Ncl is the number of classes.

3.4 Conclusion on the preliminary knowledge

This chapter has provided an overview of existing radar systems, as well as signal

processing models and solutions proposed for both spaceborne and ground-based ap-

plications. Although numerous active spaceborne radar systems have been developed,

relatively few passive systems exist. The passive system considered in this thesis is

that presented in [12, 24], which operates using a FS configuration. For ground-based

63 of 197



radar, the focus of this thesis is on long-baseline multistatic systems. While many

bistatic ground radars are reported in the literature, only the system described in [36]

employs a long baseline. Section 3.2.1 discusses some of the distinctive characteristics

and challenges associated with bistatic radar operation. The chapter concludes with an

introduction of the RNN, specifically the LSTM architecture, and the Adam training

algorithm, which will be applied in Chapter 5.
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Chapter 4
Radar system and payload design for the

spaceborne segment

The increasing number of space objects orbiting the Earth has created the need for

systems that can detect space objects to prevent space collisions. Ground-based radar

systems, such as the Tracking and Imaging Radar (TIRA) of FGAN, use both radar

and optical techniques to detect and track space objects. However, these systems are

costly and often not accessible to all potential users, academic or commercial. Addi-

tionally, many of the antennas employed for space surveillance are primarily used for

radio astronomy, making the integration of dedicated radar systems less practical.

The high cost and limited accessibility of ground-based systems create the demand

for alternative solutions. A viable solution could be spaceborne radar systems, which

would be more affordable and widely accessible compared to current ground-based sys-

tems, as studied on [12]. A spaceborne system, such as a radar mounted on a CubeSat

acting as the receiver, coupled with a commercial satellite serving as the illuminator

of opportunity and transmitter, offers a cost-effective and practical alternative. This

approach would provide an easily accessible and feasible solution for detecting space

objects. Moreover, the system will be positioned in an orbit, it will have shorter dis-

tances to the possible targets, which will lead to more suitable SNRs. Furthermore,

since there is no active transmitter, the solution itself would be cheaper. Moreover,
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the system described in [12], consisted of a passive bistatic radar (PBR) equipped with

software defined radio (SDR), and, of course, an antenna so that the radars tasks for

space surveillance could be performed. The study proved that the system could be a

low budget solution and could detect space objects of even a few centimetres. In addi-

tion, the increasing number of satellites, namely commercial constellations, contributes

to improved coverage. Besides, at those altitudes the effects of the atmosphere in the

radar signals can be ignored. Therefore, the choice of the PBR seems appropriate.

In this chapter, the payload antenna and the radar system will be designed. It will

be seen how the design of the antenna will be conditioned by the IOs, the size of the

CubeSat and its ability to complete the radar tasks. Similarly, to justify the choice of

the design, a RRE analysis will be conducted.

4.1 Antenna design and RRE analysis

This section will introduce the system design, more concretely how the spaceborne

radar could be coupled with a phased array of monopoles, and a RRE analysis. Why

the phased array of monopoles is chosen would be justified, by comparing the advantages

and disadvantages of other possible antennas, and by using the RRE analysis. Similarly,

the different possible IOs are analysed. Once the most suitable antenna is chosen, the

bandwidth of the antenna will be computed. This task is left at the end of the study.

The last analysis will ensure that the antenna is able to receive the full bandwidth of

the signal from the IO. With the results of the RRE analysis, the observation time of

the possible target will be computed.

4.1.1 Introduction

As introduced in [12], the system would be a passive bistatic radar (PBR) mounted on

a CubeSat. In [12], the proposed radar sensor was a uniformly illuminated aperture,

without getting into which antenna would be suitable for the task. In this chapter

different antenna designs will be presented and the most suitable will be chosen. Sim-

ilarly, in [12], two satellites were considered as the IOs: the HY2A and the GSTAR.

This chapter examines more modern satellite constellations. The main advantage over
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the previous IOs is the higher number of satellites per constellation. Furthermore, the

service of the HY2A was terminated in December 2021, which would render its usage

in the analysis useless.

The CubeSat would be placed at a lower orbit than the satellite used as the IO and

the possible targets would be orbiting between them, Figure 4.1. The CubeSat will be

receiving the signal from the satellite with a bistatic angle of nearly βbs ≈ 180, the FS

configuration. The main advantage of using the FS configuration is the enhanced radar

cross section (RCS) [16] that will improve the SNR, as it was studied in Section 3.1.

Figure 4.1: PBR configuration for a constellation of satellites

The maximum RCS in FS, also known as forward scatter cross section (FS-CS),

is [42, 16]:

σFS,max =
4πA2

trg

λ2
, (4.1)

where Atrg is the forward scatter area, the area of silhouette of the target, and λ is the

wavelength. It can be observed that the smaller the λ, the higher σFS,max, so an IO, a

passive transmitter, working at relatively high frequencies will be more desirable than

one working a lower frequencies.

Figure 4.2 compares the FS-CS with the monostatic RCS of a perfectly conductive

sphere of radius 25 cm. While the monostatic RCS asymptotically approaches −7 dB

as the frequency increases, the FS-CS continues to grow with frequency. Consequently,

at higher frequencies, the FS configuration offers a significant advantage for detecting
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small targets.

Figure 4.2: FS vs back scatter for a perfectly conductive sphere of a 25 cm radius

4.1.2 Illuminator of opportunity

The ideal IOs would be satellite constellations, as the large number of standardized

transmitters would enhance the capability to detect space objects. Dedicated sensing

satellites already exist, such as the Sentinel missions [89], which observe the atmo-

sphere, oceans, and land using radar and optical sensors; EarthCARE [90], primarily

focused on cloud and aerosol observation; and Haiyang-2 (HY-2) [91], dedicated to ocean

monitoring and regional environmental trends. Each of these platforms carries radar

transmitters that could, in principle, support the task at hand. However, with only a

single satellite available per mission, passive radar operations are limited to narrow time

windows. By contrast, satellite constellations provide a larger number of transmitters,

thereby increasing detection opportunities and maximizing observation coverage.

Four constellations are considered: Starlink, Iridium, Globalstar and OneWeb. Irid-

ium and Globalstar are used for phone satellite and low-speed data communications.

Meanwhile, Starlink and OneWeb are used for high-speed data communications. The

specifications relevant for the passive radar sensing task of each constellation considered

is shown in Table 4.1 as per [92, 93, 94, 95, 96].
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f0 BW Altitude EIRP
Number of

satellites

Starlink 10.7-12.7GHz 250MHz 550 km 37.7 dBW 4519

Iridium 1616-1626.5MHz 35 kHz 783 km 30.9 dBW 66

GlobalStar 2.5GHz 16.5MHz 1400 km 37 dBW 48

OneWeb 10.7-12.7GHz 250MHz 1200 km 38.3 dBW 634

Table 4.1: Parameters of the different IOs

From these options the most useful ones are the Starlink and OneWeb constellations

because:

• Their operating frequencies, f0, are the highest, and, consequently, the FS CS will

also be higher.

• The large bandwidth which gives a high signal processing gain after the matched

filter, depending on the chosen pulse width of the received communications signal.

• The amount of satellites, which will increase the possibility of receiving a signal

and detecting space objects.

The final parameter to consider when selecting an IO is altitude. Although the lower

altitude of Starlink enhances the SNR due to the shorter distance between the CubeSat

and the transmitter, it significantly reduces the number of space objects that can be

detected. In contrast, the higher altitude of the OneWeb constellation offers broader

coverage, making it more suitable for the proposed design. Accordingly, OneWeb is

selected for the following analysis. In practice, both constellations could be employed

since they share the same bandwidth and frequency band; however, for clarity and

simplicity, the results presented in the next sections focus solely on OneWeb.

The pulse width of the IOs is not included in the analysis. In the proposed method,

as seen in Section 3.1.2, the reconstructed FS signal is treated as an interference signal.

This approach does not require prior knowledge of the waveform parameters. Instead,

the receiver can independently define the start and stop times for data collection. This
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interval, known as the observation or integration time, serves the same role as a pulse

width and is therefore a parameter chosen by the radar platform. It is assumed that the

communication satellite IOs are transmitting during this observation period. Although,

in practice, these satellites do not operate with a 100% duty cycle and their activity

depends on user demand, this variability does not affect the ability of the receiver to

set its own effective pulse width, or observation time.

4.1.3 Payload design

One of the primary constraints on the size, weight, and power consumption of a Cube-

Sat is the antenna. In the absence of such limitations, a promising candidate would

be a massive array of Vivaldi antennas [97]. The key advantage of this design lies in

the exceptionally wide bandwidth of the Vivaldi elements, which would allow a single

radar system to simultaneously receive signals across multiple frequency bands trans-

mitted by different OneWeb constellation satellites. Capturing a greater number of FS

signals from diverse IOs would markedly enhance the SSA capabilities of the system

by enabling multi-static, multi-perspective, and multi-frequency observations, leading

to richer target characterization and improved localization accuracy. Vivaldi arrays

typically suffer from lower aperture efficiency, meaning that their physical size is large

relative to their directivity. They also produce higher side lobes than narrowband ar-

rays, which increases the complexity of beamforming. Nevertheless, in the absence of

hardware constraints, the benefit of simultaneous multi-band reception could outweigh

these limitations. The physical size of such arrays ultimately prevents their integration

into a CubeSat platform.

To meet the size limitations of a 1U CubeSat, the antennas will be designed ac-

cordingly. They will operate at 11.075GHz, which corresponds to the centre frequency

of the second 250MHz channel of the OneWeb constellation. Additionally, a steering

beam For this analysis the following antennas will be considered:

• Patch antenna

• Array of patch antennas
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• 3-Dimensional Phased Array Antenna (3D-PAA)

• Phased Array of Monopoles (PAM)

It must be mentioned that the patch antenna, the array of patch antennas and the

PAM are analysed using the antenna toolbox from MATLAB, which uses the theory

in [98], and the mathematical formulas for the antennas, introduced in Section 4.1.3.1.

The 3D-PAA is going analysed only using the mathematical formulas due to its more

complex design.

The design and characterization of patch antennas and monopoles, as well as their

array implementations, are well established and not novel in themselves. Numerous

examples of array designs employing patches and monopoles can be found in [99, 100,

101, 102]. However, the analysis of the novel 3D-PAA and PAM in a spaceborne scenario

has not yet been conducted. This study seeks to address that gap and to demonstrate

that monopole arrays are strong candidates for spaceborne applications.

4.1.3.1 Antenna theory

As some of the antennas have been designed using MATLAB, to check and cross-validate

the results, the parameters of the antennas are also going to be calculated using the

mathematical formulas for the antennas and numerical methods.

4.1.3.1.1. Image theory for the ground plane

A common method to decrease the antenna size is to use a ground plane. The ground

plane mirrors the currents of the real antenna [97]. It would be similar to having a

mirror antenna. For a perfect electric conductor ground plane, the image currents are

created by mirroring in z = 0 [97]:

r′image = (x, y,−z), (4.2)
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with the current phase conjugation and sign reversal being:

Ix,image = −conj(Ix),

Iy,image = −conj(Iy),

Iz,image = −conj(Iz).

(4.3)

4.1.3.1.2. Computation of radiations fields

Once the currents of the antenna have been computed, the radiation pattern of the

electric field is calculated. The radiation pattern is given in Cartesian components

using the discretized radiation integral as [98]:

Erad(r̂) =
jηk

4π

N∑
n=1

In∆ln

[
(̂ln × r̂)× r̂

]
ejkr̂·rn , (4.4)

where:

• In is the complex current of segment n,

• ∆ln is the segment length (∆x,∆y,∆z),

• l̂n is the segment direction vector (x̂, ŷ, ẑ),

• rn is the segment position,

• r̂ is a unitary vector in the observation direction.

The electrical field is computed in Cartesian using the currents in the x component.

The process is repeated for the y component of the currents and the images of the x

and y currents. The total electric field is a result of adding all the electrical fields. The

electrical field is then projected from the Cartesian basis to the spherical basis:

Eθ = Ex cos θ cosϕ+ Ey cos θ sinϕ− Ez sin θ,

Eϕ = −Ex sinϕ+ Ey cosϕ,

Er = 0.

(4.5)

It should be noted that as the far field approximation is being used: Er = 0
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4.1.3.1.3. Finite Ground Plane Effect

The finite ground plane effect is modelled using aperture diffraction theory [103]:

G(θ, ϕ) = sinc
(
Lgk sin θ cosϕ

2π

)
· sinc

(
Wgk sin θ sinϕ

2π

)
, (4.6)

with Lg and Wg are length and width of the ground plate. The total fields are modified

as:

Eθ,G = Eθ ·G(θ, ϕ), Eϕ,G = Eϕ ·G(θ, ϕ). (4.7)

Naturally, the component in the radial axis will still be 0. Then, the Cartesian compo-

nents of the electric field are computed again, as:

Ex = Eθ,G cos θ cosϕ− Eϕ,G sinϕ,

Ey = Eθ,G cos θ sinϕ+ Eϕ,G cosϕ,

Ez = −Eθ,G sin θ.

(4.8)

4.1.3.1.4. Radiation Intensity and Directivity

The radiation intensity is computed as [98]:

Uant(r̂) =
1

2ηant

(
|Ex(r̂)|2 + |Ey(r̂)|2 + |Ez(r̂)|2

)
, (4.9)

where ηant is the impedance in the free space, which values is: 376.730 313 412Ω. The

total radiated power is:

Prad =

∫
r̂
|Uant(r̂)|2 dr̂. (4.10)

The directivity pattern is:

Dant(r̂) =
Uant(r̂)
1
4πPrad

. (4.11)

4.1.3.1.5. Radiation array factor

The directivity pattern of the antenna is going to be calculated using a two-step process

that starts with the Radiation Array Factor (RAF). The RAF approach is valid if the

following conditions are met [98]:
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1. All the antenna elements are the same.

2. All the antenna elements are oriented in the same direction.

3. The signal phase shift between antenna elements is constant.

The RAF is computed as [98]:

RAF (r̂) =

Nel−1∑
a=0

cae
jkr̂ r⃗a , (4.12)

where, r̂ is the unit position vector pointing to the position of interest, Nel is the number

of elements in the array, r⃗A is the position vector of element a, k is the wavenumber,

k = 2·π
λ , and ca is the complex-valued excitation coefficient of element a.

For a uniform linear array, where the elements are equally spaced and aligned along

a straight line, the RAF can be expressed as [97].:

RAFul =

Nel∑
a=1

ej(a−1)(kdul cos θul+βul), (4.13)

k denotes the wavenumber, dul the spacing between antenna elements, θul the elevation

angle at which the RAF is evaluated, and βul the inter-element phase shift. From (4.13),

it can be deduced that the maxima of the RAF occur when:

ψul = kdul cos θul + βul = 2π ·mul, (4.14)

with mul being an integer. Consequently, the main lobe is obtained at ψul = 0, while

the first grating lobes appear at ψul = ±2π.

If the main lobe is required in the broadside direction of the antenna, i.e. θul = 90◦,

then βul = 0. This implies that no phase shift is needed to place the main lobe along the

antenna normal. Conversely, if the main lobe is to be steered to a different elevation

angle, a phase shift of −kdul cos θst must be applied, where θst denotes the desired

steering angle. In general, the first grating lobes are set at θul = {0, π}, to avoid

unwanted interference. Consequently, the maximum steering angle can be determined
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by solving for θst such that the first grating lobe coincides with π.:

kdul cosπ − kdul cos θst,max = −2π → cos θst,max =
λ

dul
− 1 →

→ θst,max = arccos

(
λ

dul
− 1

)
.

(4.15)

(4.15) has been derived with respect to the elevation angle. If instead it is expressed in

terms of the inclination angle, i.e., the angle measured relative to the antenna normal,

then the relation can be written as:

cos
(π
2
− ϑst,max

)
= sinϑst,max =

λ

dul
− 1 → ϑst,max = arcsin

(
λ

dul
− 1

)
(4.16)

To compute the radiation pattern of the array antenna, the RAF is multiplied by

the radiation pattern of one of the elements [98]:

Ua(r̂) = Del(r̂) ·RAF (r̂), (4.17)

where Ua is the beam pattern of the array, Del is the directivity patter of a single

element and RAF is the radiation array factor. The final the directivity is computed

using (4.11).

Now that the mathematical elements for computing the directivity from the currents

in the antenna elements are known. The models of the currents for different antennas

are going to be introduced.

4.1.3.1.5.1. Grating lobes

Grating lobes are the side lobes of the directivity pattern

4.1.3.1.6. Patch antenna

To estimate the size of the patch antenna first the dielectric and the height of the patch

antenna must be selected. In [98] the height is chosen to be:

hp ≪ λ. (4.18)
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To fulfil this condition, the height is going to be chosen as 1% of the wavelength:

hp = 0.01 · λ. (4.19)

The width and length of the patch are computed as [98]:

Wp =
c

2fr

√
2

ϵr + 1
,

Lp =
c

2fr
√
ϵreff

− 2∆Lp,

(4.20)

with:

• fr is the resonance frequency, or the desired transmitting or receiving frequency

of the antenna,

• ϵr is the relative permittivity,

• ϵreff is the effective permittivity, calculated as [98]:

ϵreff =
ϵr + 1

2
+
ϵr − 1

2

[
1 + 12

hp
Wp

]−1/2

, (4.21)

• ∆L is length extension that accounts for the fringing fields that electrically elon-

gate the patch. It is computed as [98]:

∆L = 0.412 hp
(ϵreff + 0.3)

(
Wp

hp
+ 0.264

)
(ϵreff − 0.258)

(
Wp

hp
+ 0.8

) , (4.22)

If khp ≪ 1, then electrical field of the patch antenna can be computed as [98]:

Ep,ϕ ≈ j
2V0e

−jkrp

πrp

sin θp
sin
(
kWp

2 cos θp

)
cos θp

 cos

(
kLeff

2
sin θp sinϕp

)
, (4.23)

where

• Vp,0 = hp · Ep,0 is the voltage across the slot,
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• ϕp and θp are the azimuth and inclination angles,

• rp is the distance from the antenna to the observation point.

4.1.3.1.7. Dipole antenna

As per [98], the size of the monopole is chosen to be comparable to half of the size of

the wavelength:

Ldp ≈
λ

2
. (4.24)

The current distribution on a thin, centre-fed dipole of length Ldp is given by:

Idp(z) = I0 sin

[
k

(
Ldp

2
− |z|

)]
, for |z| ≤

Ldp

2
, (4.25)

where:

• Idp(z) is the current at position z,

• I0 is the current maximum,

• Ldp is the total length of the dipole.

4.1.3.1.8. Inverted-L monopole antenna

The inverted-L monopole is comprised of the ground plane, the vertical arm of size hm

connected to the feed, and the horizontal arm of size Lm connected to top of the vertical

arm. Since it is a monopole, the total size of the antenna will be [98]:

Lm + hm ≈ λ

4
. (4.26)

As stated in [104], to achieve maximum directivity at higher elevation angles, the lengths

of the vertical and horizontal arms are chosen as 33% and 67% of the total antenna

length, respectively:

Lm ≈ 0.67 · λ
4
,

hm ≈ 0.33 · λ
4
.

(4.27)
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The current in an inverted-L monopole is modelled for a wire of radius am as [105]:

Iz,m(z) = Io

(
1− |z|

hm + Lm

)
for − hm ≤ z ≤ hm,

Ix,m(x) = ±Io
(
1− x− am + hm

hm + Lm

)
for − am ≤ z ≤ Lm + am,

(4.28)

with the ± sign also models the currents in the monopole and its mirror.

4.1.3.2 Patch antenna

The patch antenna consists of a single rectangular metal patch. The advantages of using

a patch antenna include low volume, size, weight, cost and processing power. Additional

advantages include easier design and fabrication and a robust mounting. In the radar

processing side the design will be more simple, since only one receiving structure is

needed. The overall antenna will have an area of 10× 10 cm2, Figure 4.3, which would

fit into a 1U CubeSat. The radiating part of the antenna has an area of 4 ·Wp × 4 ·Lp,

where Wp and Lp have been taken from (4.20). The patch is several times more the

theoretical width and length, so the directivity of the antenna is comparable to the

directivity of the other cases. Therefore, the final size of the antenna is: 5.24× 5.4cm2.

Figure 4.3: Single patch antenna

The maximum directivity gain for this antenna design is 12.54 dBi. Figure 4.4 shows

that there are six main lobes, four on the crest-like shape and two to the sides of it.
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The multiple illuminators of the constellation in combination with the multiple lobes

will contribute to a higher probability of detecting space objects. However, if there were

multiple space objects, the shape of the directivity could lead to a higher ambiguity in

the detection and motion parameter estimation of the targets.

Figure 4.4: Directivity pattern of the patch antenna using MATLAB

The directivity is recomputed using the formulas from Section 4.1.3.1, and the re-

sulting pattern is shown in Figure 4.5. For clarity of observation and analysis, this figure

and the following ones derived from the formulas are plotted on a sphere. The max-

imum directivity is 10.29 dBi, 2.25 dBi less than the result from MATLAB. However,

unlike the MATLAB simulation, the pattern exhibits five main lobes, there is one wide

lobe at the top of the pattern, while the MATLAB pattern shows two. If this antenna

were selected, a more detailed study would be required to understand the discrepancies

between the two results and to obtain a reliable directivity model.
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Figure 4.5: Directivity pattern of the patch antenna using the formulas

4.1.3.3 Array of patch antennas

The array is composed of 16 patch antennas arranged in a 4× 4 configuration, as illus-

trated in Figure 4.6. This design retains several advantages of a single patch antenna,

such as low profile, compact size, light weight, and cost efficiency. Like the single patch,

it also ensures mechanical robustness and ease of fabrication. Moreover, the array offers

an additional advantage, its ability to electronically or digitally scan the surrounding

environment.

As shown in Figure 4.6, the antenna array occupies an area of 10×10 cm2, making it

suitable for integration into a 1U CubeSat. Each patch element measures 1.31×1.35 cm2

with a height of 270.69µm, calculated using (4.19) and (4.20). According to [106],

a spacing of 0.7λ enhances the maximum directivity at higher elevation angles. In

this design, a slightly smaller spacing of 0.67λ was selected as a trade-off to suppress

the sidelobes. Consequently, the row and column spacing between adjacent patches is

1.8 cm, measured from the centre of one patch to the centre of the next. The directivity

pattern is evaluated for two steering angles: 0◦ and 30◦. The latter was derived using

(4.16) with dul = 0.67λ and also ensures compliance with the tracking capabilities
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required by the system.

Figure 4.6: Array of patch antennas

Figure 4.7 presents the directivity patterns obtained using MATLAB. The maximum

directivity gain is 19.77 dBi for a 0◦ steering angle, and 18.36 dBi for a 30◦ steering

angle, indicating a small loss of only 1.41 dB due to beam steering. Unlike a single

patch antenna, the array exhibits a single main lobe, reducing ambiguity in the target

location. It should be noted, however, that implementing a phase shift increases the

sidelobe levels.

(a) No beam steering (b) Beam steering of 30◦

Figure 4.7: Directivity patterns for array of patch antennas using MATLAB
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Figure 4.8 presents the directivity patterns of the patch antenna array for different

steering angles. The formula-based results yield maximum directivities of 20.52 dBi

without beam steering and 19.10 dBi with beam steering, corresponding to errors of

0.62 dBi and 0.70 dBi, respectively. For both the non-steered case, Figure 4.8a, and the

steered case at 30◦, Figure 4.8b, the sidelobe levels are consistent between MATLAB

and the analytical formulas. Since the beam shapes agree and the directivity differences

are minor, the MATLAB results can be considered validated.

(a) No beam steering (b) Beam steering of 30◦

Figure 4.8: Directivity patterns for array of patch antennas using formulas

4.1.3.4 3-dimensional phased array antenna (3D-PAA): dipoles within poles

This is a novel antenna developed by Nobuyuki Kaya [107]. Originally, it was designed

to be used as a ground-based antenna to receive different communications signals from

multiple satellites, as per [107], using digital beamforming, Figure 4.9a. Some advan-

tages of using such antenna will be that it can electronically or digitally scan the en-

vironment. Additionally, in theory, the 3D-PAA has an improved directivity compared

to the other examined antennas.

The designed antenna occupies a volume of 1U, measuring 10 × 10 × 10 cm3, and

consists of 49 elements arranged as shown in Figure 4.9b. A hexagonal base shape has

been selected to ensure uniform separation between all poles. It should be noted that, in

Figure 4.9b, the poles shown in blue are not connected to the feed; only the horizontal

dipoles, highlighted in red, are fed. It is assumed that each dipole receives the same
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feed without any delay or unwanted phase mismatch. Furthermore, although the poles

are made up of dipoles, they do not constitute Yagi antennas, as the dipoles act as

radiating antenna elements and not as reflector or director rods.

(a) Digital beamforming technology (b) 3D-PAA design

Figure 4.9: 3D-PAA design with digital beamforming technology

The dipoles have a length of 12.81mm, calculated using (4.24). Due to the novelty

of the antenna, the maximum directivity was evaluated for different spacing values,

and the configuration that provided the highest directivity while fitting within 1U was

selected, as shown in Figure 4.10. Consequently, the separation between dipoles within

a pole is 0.6λ = 1.62 cm, and the separation between poles, i.e. the side of the hexagonal

base, is 1.85λ = 5 cm. The spacing of 1.9λ from Figure 4.10 was not selected, as it would

exceed the 1U volume constraint; therefore, the spacing was slightly reduced.
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Figure 4.10: Maximum directivity for different spacing values

The directivity of the 3D-PAA is calculated as described in Section 4.1.3.1, where the

RAF approach is applicable since the required conditions are satisfied. The maximum

directivity without beam steering is 19.5 dB, while steering the beam to 30◦ reduces

the directivity to 17.3 dB, corresponding to a loss of 2.2 dB. Unlike the patch antenna

array, this loss is relatively high. As shown in Figure 4.11a and Figure 4.11b, the antenna

exhibits noticeably high back lobes. These are partly attributable to the fact that the

CubeSat structure was not included in the simulation, even though its presence would

clearly influence the radiation pattern. Nevertheless, the back lobes are not expected

to cause significant issues, as no signals of interest are anticipated from behind the

antenna. If the 3D-PAA were selected, however, the radiation pattern would need

to be recalculated with the CubeSat included in the model. Should the back-lobe

issue persist, an additional mitigation strategy could involve placing electromagnetic

absorbing material on the rear side of the antenna to suppress unwanted signals.
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(a) No beam steering (b) Beam steering of 30◦

Figure 4.11: Directivity pattern of 3D-PAA

4.1.3.5 Trade-off: phased array of monopoles (PAM)

A trade-off between the 3D-PAA and the array of patches is the phased array of

monopoles (PAM). For the design of the PAM, the chosen antenna elements of the

array are inverted-L monopole antennas [108, 109]. Some of the advantages of the

inverted-L monopole over the simple monopole are the compact design and tunability

[110]. A detailed view on the size of the used inverted-L antenna can be found in Figure

4.12.

Figure 4.12: Measurements of the inverted-L monopole

The monopole features a height of 2.10mm and a length of 4.64mm, as specified by

(4.27). Its width is 299.44 µm, a dimension chosen to be significantly smaller than the

operating wavelength. 49 inverted-L antennas, Figure 4.13b, have been arranged in a

7×7 matrix as in Figure 4.13a. The antenna will have a total volume of 10×10×0.21 cm3.
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Since, there are many elements, it is expected to have a higher gain than the array of

patches, therefore the row and column spacing between the elements is λ/2 = 1.35 cm.

(a) PAM (b) Element of PAM

Figure 4.13: PAM

Similarly to the patch antenna, the inverted-L array antenna has been designed using

the Antenna Toolbox from Matlab, which uses the theory of [98]. A beam steering angle

of 30◦ is going to be implemented to be able to scan the environment.

Figure 4.14a and Figure 4.14b show the directivity pattern of the PAM. The com-

putations show that without a phase shift, the directivity is 20.19 dBi. If there is a

phase shift of 30◦, the directivity is 19.58 dBi, a degradation of 0.6 dB, practically un-

noticeable. The advantages over the rest of antennas are the improved directivity and

the smaller sidelobes, which would increase the accuracy of the position of the detected

target.

(a) No beam steering (b) Beam steering of 30◦

Figure 4.14: Directivity pattern of PAM
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As in the previous cases, the directivity patterns are recalculated using the formulas

in Section 4.1.3.1, with the results shown in Figure 4.15. The maximum directivity

is 20.33 dBi without beam steering and 19.49 dBi with a steering angle of 30◦. The

corresponding errors, 0.14 dB and 0.10 dB, are negligible. The overall shapes closely

match those obtained in MATLAB. Although the sidelobe levels are higher than in

the patch array case, they remain between 0 dB and −10 dB, which indicates minimal

impact on the overall performance of the antenna. As these results are consistent with

the MATLAB results, the antenna directivity pattern is validated.

(a) No beam steering (b) Beam steering of 30◦

Figure 4.15: Directivity pattern of PAM using the formulas

Similarly to the array of patches, the advantages of the PAM over the 3D-PAA are

the simpler design, easier to manufacture and mount robustness. Since the PAM is used

as a trade-off, the PAM is going to be used in the RRE analysis instead of the 3D-PAA.

Beam steering angle

0◦ 30◦

Patch antenna 12.54 dBi -

Array of patch antennas 19.77 dBi 18.36 dBi

3D-PAA 19.5 dBi 17.3 dBi

PAM 20.19 dBi 19.58 dBi

Table 4.2: Directivity gain for different antennas and beam steering angles
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4.1.4 RRE analysis

In order to assess the detection capabilities of the proposed spaceborne system, in

which we consider the payload selected in the previous section, the RRE is used. Since

a bistatic approach is being used, the RRE from Section 2.2.5 is going to be employed

with some changes:

SNR =
EIRP Gr Gsp λ

2 σFS

(4π)3 R2
1 R

2
2 kn T0 F Bw Ls

·Knp, (4.29)

where:

• EIRP is the effective isotropic radiated power, which is EIRP = Pt ·Gt.

• Gr is the receiver gain. Defined as the directivity gain of the receiver antenna,

Gr,ant, and the low noise amplifier (LNA) gain, GLNA.

• Gsp is the signal processing gain. This is approximately given by the product

between the transmitted pulse length and the transmitter bandwidth as seen in

(2.47). Since the IOs are the OneWeb constellation satellites, assuming that the

satellites are constantly transmitting, a pulse length of 0.5 s is chosen.

• Knp is the multiple integration factor, which is either np or √
np, depending on

whether the multiple integration, as shown in Section 2.2.5, is coherent or non-

coherent, respectively.

• σFS is the forward scatter cross section as defined in (4.1).

4.1.4.1 SNR fluctuations

Before examining the minimum detectable size, it is important to first consider how

fluctuations in the bistatic ranges and the FS-CS influence the SNR. In a monostatic

radar, the integration time is essentially the period during which the target remains

within the same range bin and, for coherent integration, within the same Doppler bin.

In this case, however, the signal of interest is not a conventional radar signal but an

interference signal, which means that standard range bin analysis cannot be applied.
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Instead, a more suitable approach is to study how variations in the target altitude affect

both the SNR and the observation time. The observation time, which depends on the

antenna used, will be examined in Section 4.1.6.

For a SNR variation of ±3 dB, the product R1R2 would have to be reduced or

incremented by a factor of
√
2:

SNRFS · 2 → 2 · 1

R2
1R

2
2

=
1(

R1R2√
2

)2 ,
SNRFS · 1

2
→ 1

2
· 1

R2
1R

2
2

=
1(√

2R1R2

)2 .
(4.30)

To determine how much the altitude must change to produce a variation of either
√
2

or
(√

2
)−1, the altitude is first fixed and then variated. The ratio is then obtained by

comparing the original product R1R2 with the modified product (R1+∆R)(R2−∆R).

Figure 4.16 shows the ratio results for different altitude changes. The blue region

marks where the ratio drops below 1/
√
2, while the red region indicates where it exceeds

√
2. For example, at an altitude of 882 km, a decrease of 308 km increases the product

R1R2 by a factor of 2.62, leading to an equivalent reduction in the SNR. Conversely, at

588 km, an increase of 231 km raises the SNR by a factor of 1/0.44 = 2.27. The figure

also shows that substantial altitude variations are generally required to cause large SNR

fluctuations. However, when the target is orbiting close to either the receiver or the

transmitter, even relatively small altitude changes, on the order of 3.5 km, can produce

significant effects on the SNR. For the assumed integration time of 0.5 s, this would

correspond to an altitude change rate of about 7 km/s, which is unrealistic for LEO

orbits given their typically very low eccentricity.
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Figure 4.16: Variation ratios resulting from changes in altitude

The FS-CS would be affected by the type of target. Certainly, if the target is

spheric, the FS-CS will not change. Therefore, the target to analyse will be a cube, more

concretely it will be analysed how a rotating cube influences σFS and, consequently, the

SNR. To this end, the scenario shown in Figure 4.17 is considered, where the target is

modelled as a cube rotating with angular velocity ωrot in the xy-plane of Figure 3.3. In

this configuration, the receiver consistently perceives a rectangular area, Figure 4.17b.

(a) Rotating target (b) Perceived shape and size

Figure 4.17: Perceived shape and size when a cube target is rotating

The base of the rectangle can be computed as:

btrg = lsq +∆lsq = lsq · (sinαrot + cosαrot), (4.31)

where lsp is the side of the cube, and αrot is the angle of rotation. Consequently, the
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perceived area can be computed as:

Atrg = lsq · btrg = l2sq(| sinαrot|+ | cosαrot|). (4.32)

If a variation of ±3 dB of the FS-CS is considered large enough for the RRE analysis

to become invalid, then, as the wavelength is constant, the area would have to increase

by a factor of
√
2, as in:

σFS · 2 =
4π
(
Atrg

√
2
)2

λ2
. (4.33)

An increment of
√
2 would correspond to an angle of 45◦. As the integration time is

0.5 s, the target would have to be rotating at ωrot = 45/0.5 = 90 deg/s = π
2 rad/s.

4.1.4.2 Minimum detectable size

For the RRE analysis, for the sake of simplicity, it will be assumed that the directivity

of the antenna will be the same as the antenna gain, and the target is modelled as a

perfect conductive sphere. In this case, the silhouette of the sphere corresponds to the

area of a circle:

Ac = πr2c . (4.34)

Combining (4.1), (4.29) and (4.34), the minimum detectable size is obtained:

rtrg = 2 4

√
SNR R2

1 R
2
2 k T0 F Bw Ls

EIRP Gr Gsp Knp
, (4.35)

where rtrg is the radius of the assumed sphere. The parameters used for the calculation

of the minimum detectable size are summarized in Table 4.3. The target SNR is set

at 20 dB, which is sufficient to guarantee reliable detection. The LNA gain is 40 dB, a

value reported as achievable in spaceborne implementations [111, 112]. System noise

characteristics, including the noise figure and associated losses, are adopted from [113],

resulting in a total noise temperature of 3570K. Using (4.36), where Ts denotes the sys-

tem temperature and T0 the reference temperature, this corresponds to a noise figure of

11.24 dB. Operating in the space environment eliminates atmospheric losses; therefore,
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total losses account only for system and polarization effects, with a combined value of

Ls = 2.5 dB. The number of pulses is set to np = 6, a choice that will be justified in

Section 4.2.

F = 10 · log10
(
Ts
T0

+ 1

)
. (4.36)

EIRP f0 BW Tx alt. Rx alt. Target alt.

38.3 dBW 11.075GHz 250MHz 1200 km 500 km 500-1200 km

SNR np F Ls GLNA Gr,ant

20 dB 6 11.24 dB 2.5 dB 40 dB [12.54; 19.77; 20.19]dB

Table 4.3: Minimum detectable size computing parameters

According to (4.35), if either R1 ≈ 0 or R2 ≈ 0, the minimum detectable size

approaches zero. This implies that when the target is located near the transmitter or

the receiver, the minimum detectable size becomes very small. The product R2
1 · R2

2

reaches its maximum when R1 = R2, corresponding to the case where the target is near

the midpoint between the transmitter and receiver orbits. Integration also influences

the minimum detectable size. Since √
np ≪ np, non-coherent integration will yield a

smaller minimum detectable size, whereas coherent integration results in a larger one

for the same system parameters.

Regarding the influence of the antennas on the minimum detectable size, a higher

antenna gain leads to a smaller detectable size. Consequently, the PAM, which provides

the highest gain, yields the smallest minimum detectable size, followed by the patch

array and the single patch antenna. Considering all factors in the RRE analysis, the

smallest detectable size occurs when coherent integration is applied with the PAM. For

a beam steering angle of 30◦, the directivity is lower than in the case without steering,

resulting in a larger minimum detectable size. Finally, since the directivities of the

patch array and the PAM are similar, their minimum detectable sizes are also expected

to be comparable.

Figure 4.18, Figure 4.19, Figure 4.20 and Figure 4.21 show the minimum detectable
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diameter for the theoretically perfectly conductive sphere. All the cases display the

maximum values of the minimum detectable sizes at an altitude of 850 km, with the

receiver being at 500 km and the transmitter being at 1200 km. The plots prove that

near the transmitter and the receiver the detectable sizes are very small, theoretically

0 cm.

In the non-coherent integration without beam steering, Figure 4.18, the largest

minimum detectable sizes are 25 cm for the PAM and 39 cm for the patch antenna.

By contrast, the coherent integration without beam steering, Figure 4.19, reduces the

minimum detectable sizes to 20 cm for the PAM and 31 cm for the patch antenna.

Overall, the PAM consistently achieves smaller detectable sizes, whereas the patch

antenna results in larger ones, making it the less effective option.

Figure 4.18: Minimum detectable size for different antennas with non-coherent
integration

Figure 4.19: Minimum detectable size for different antennas with coherent integration
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Figure 4.20 and Figure 4.21 show the minimum detectable sizes for the case where

the steering of the beam is performed. As expected, the minimum detectable size has

increased with respect to the previous cases. For the non-coherent integration, the value

is 26.36 cm for the PAM and 28.23 cm for the array of patch antennas. In the case of

coherent integration, the size is 21.07 cm for the PAM and 22.57 cm for the array of

patch antennas. With the beam steering, the differences between the two antennas are

more noticeable, with a difference of 1.87 cm and 1.5 cm between them.

Figure 4.20: Minimum detectable size for non-coherent integration with a 30◦ steering

Figure 4.21: Minimum detectable size for coherent integration with a 30◦ steering

4.1.5 Antenna bandwidth and beamwidth

The antenna bandwidth is estimated using the reflection coefficient, the S11 parameter

[114]. The S11 measures how much of the signal is returned to the antenna. The
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frequency values of S11 < −10 dB are generally accepted as the bandwidth [114]. As

per [114], the S11 parameter is computed using the impedance of the antenna as:

Γant =
Zant − Z0

Zant + Z0
,

S11(dB) = 20 · log10 (Γant) ,

(4.37)

where Z0 = 50Ω, the reference impedance, Zant is the antenna impedance, and Γant is

the voltage reflection coefficient.

The closed form of the impedance of the antenna can be found in [105]. The

impedance is going to be calculated for various frequencies to find the S11 for this

values. As all the elements are the same, only one S11 will be computed. The value of

the resistance is:

Rm = 15 (k hm)2 ·
(
2− hm

hm + Lm

)
·

[
2− 10

9
·
h2m + 3

5L
2
m + 6

5hm(Lm + am)

(hm + Lm)2

]
.

(4.38)

Similarly, the reactance of the antenna is:

Xin =
−60hm

(
2− hm

hm+Lm

)
k (hm + Lm)2

[
ln

√
3hm
am

− 1

3
− 20am

9hm
+
LaTm − hm/4√
L2
a + h2m/4

+
LaTm/3− 3hm/4√

L2
a + 9h2m/4

− 3k2h2m
8

+
k2h2m
2

[
1

4
−
(
1 +

Lm

hm

)2
]
ln

√
3hm
am

+
k2h2m
8

√
1

4
+
L2
a

h2m
+

3k2h2m
8

√
9

4
+
L2
a

h2m
+
Tmk
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8

ln
La +

√
L2
a + h2m/4

am + hm/2

+
3Tmk

2h2m
8

ln
La +

√
L2
a + 9h2m/4

am + 3hm/2

]
,

(4.39)

with La = Lm + am and Tm = 1− am
hm

.

The primary issue with the inverted-L antenna is the impedance mismatch caused

by the bend. This mismatch results in a high reflection coefficient, leading to a low

S11 and a reduced bandwidth. To address this problem, a matching impedance can be

introduced. At f0 = 11.075GHz, the resulting impedance is: Zm = 8.40 − 0.72j Ω.

For a reference impedance of 50Ω, the corresponding matching impedance would be:
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Zmatch = 41.60+0.72j Ω. One straightforward approach is to use a series combination of

a resistor and an inductor. While the inductor is lossless, the resistor dissipates power,

which reduces the radiated power. An alternative approach is to design a transmission

line with a stub [115]. At such high frequencies, the transmission line and stub are

physically small, making this a practical solution.

(a) No impedance matching (b) With impedance matching

Figure 4.22: S11 parameter for the PAM

Figure 4.22 shows the S11 parameter for the antenna element, both with and with-

out impedance matching. Without matching, Figure 4.22a, the S11 is approximately

−3 dB. With the matching impedance, Figure 4.22b, the S11 improves significantly,

ranging from −20 dB to −70 dB, resulting in a substantial increase in bandwidth. This

demonstrates that impedance matching is an effective method for enhancing the band-

width of the antenna. In addition, the antenna will be capable to receive the full

250MHz bandwidth from OneWeb. A band-pass filter should be implemented to avoid

interferences from the neighbouring bands.

For measuring the antenna beamwidth the zero azimuth cut of the directivity pattern

is going to be shown. From it, the −3 dB beamwidth will be estimated. The cases of

0◦ and 30◦ steering will be shown.

Figure 4.23 shows the zero azimuth beam patterns for the chosen PAM antenna.

Figure 4.23a shows the case where there is no beam steering, whereas Figure 4.23b

shows a 30◦ beam steer. For the first case, the −3 dB beamwidth is 20◦, and for the

second case, the the −3 dB beamwidth is 22◦.
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(a) Zero azimuth directivity pattern without
steering

(b) Zero azimuth directivity pattern for 30◦

steering

Figure 4.23: Zero azimuth directivity pattern for PAM

4.1.6 Observation time

Once the antenna has been selected, the observation time can be computed. It is

assumed that, given the amount of OneWeb satellites and the steering capabilities of

the antenna, the receiver can maintain uninterrupted signal availability. The target is

assumed to remain within the −3 dB beamwidth of the receiving PAM antenna, which,

as shown in Section 4.1.5, is a reasonable assumption.

The FS main lobe (FSML) is the angle in which the FS signal is scattered in the

forward direction. For the computation, the observation time is the time in which the

receiver is in FSML of the target, as the receiver will be able to receive the resulting FS

signal. The FSML is defined as [24]:

θFS =
λ

Dtrg
, (4.40)

where θFS is the main lobe of the forward scatter measured in radians and Dtrg is the

diameter of the simulated sphere. In (4.40), it can be seen that the larger the target,

the smaller the FSML, which would decrease the observation time.

To compute the observation time, the scenario illustrated in Figure 4.24a is consid-
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ered. The field of view is assumed to be conical, and its angle can be approximated

as:

αFV ≈ θFS + θ−3 dB + θst (4.41)

with θ−3 dB being the −3 dB beamwidth, and θst the steering angle. The distance from

the centre of the Earth to the receiver is RRx, and to the target is Rtrg. The orbits

are assumed to have very low eccentricity, and are therefore approximated as circular.

The corresponding field of vision angle relative to the centre of the Earth, ΛFV , can be

obtained by resolving the green triangle from Figure 4.24a using the law of sines:

ΛFV = 2

{
π −

(
π − αFV

2

)
− arcsin

[
RRx sin

(
π − αFV

2

)
Rtrg

]}

= 2

{
αFV

2
− arcsin

[
RRx sin

(
π − αFV

2

)
Rtrg

]}
.

(4.42)

The receiver and target move with angular velocities w⃗Rx and w⃗trg, respectively,

computed using the angular escape velocity from (3.11b). The relative angular velocity

is then given by w⃗trg − w⃗Rx. Accordingly, the observation time can be expressed as:

tobs = ΛFV · |w⃗trg − w⃗Rx| = ΛFV ·
√

|w⃗Rx|2 + |w⃗trg|2 − 2|w⃗Rx||w⃗trg| cosαrel, (4.43)

with | · | being the magnitude of the vector, and αrel the relative trajectory angle from

Figure 4.24b.

To obtain a comprehensive assessment of the observation time, the target will be

simulated at different altitudes, from the receiver to the transmitter, and will travel with

a relative angle of αrel = [0, 360]◦ with respect to the trajectory of the receiver, as in

Figure 4.24b. The target is modelled as a sphere, and two diameters will be considered:

5 cm, which has been shown to be detectable in Section 4.1.4.2, and 2m.
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(a) Observation time diagram (b) Relative angle between target and receiver

Figure 4.24: Observation time diagram and relative trajectory angle

Figures 4.25 and 4.26 present the observation times for two different target sizes,

altitudes, and relative angles, both with and without beam steering. The blank regions

in the plots correspond to observation times shorter than 0.5 s, which is the integration

time assumed in the RRE analysis of Section 4.1.4. The plots exhibit symmetry because,

as the relative angle increases beyond 180◦ and approaches 360◦, the trajectory angles

of the target and transmitter coincide. Observation time increases with altitude, as the

area covered by the FSML expands accordingly.

Figure 4.25b and Figure 4.26b show that larger targets result in fewer instances

where the observation time exceeds 0.5 s, thereby limiting the ability to detect the space

object. By contrast, smaller targets, as illustrated in Figure 4.25a and Figure 4.26a,

are preferable as their larger FSML will increase αFV and the observation time. For

larger targets, observation is more effective when the target follows the trajectory of the

receiver, since this reduces relative velocity and consequently increases observation time.

Finally, beam steering further improves observation time by enlarging the effective field

of view.
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(a) Observation time for a target of 5 cm of
diameter

(b) Observation time for a target of 2m of
diameter

Figure 4.25: Observation time at different altitudes and angles without steering

(a) Observation time for a target of 5 cm of
diameter

(b) Observation time for a target of 2m of
diameter

Figure 4.26: Observation time at different altitudes and angles with 30◦ steering

4.1.7 Conclusion on the payload antenna design and the RRE analysis

In this chapter, the payload has been designed, and the altitude of the CubeSat has been

set. Different antennas, appropriate for mounting on a CubeSat, have been studied and

to help choose between the proposed antennas, an RRE analysis has been conducted.

There are multiple IOs that could be used in the spaceborne radar. However, as

presented in Section 4.1.2, the best option is the OneWeb constellation satellites. The

combination of a high number of standardized satellites with favourable parameters and
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the high altitude would increase the number of possible space objects to be detected.

Four antennas have been presented and discussed: a patch antenna, an array of

patch antennas, the 3D-PAA, and the trade-off PAM. The flat nature of the patch

antenna and the array of patches is ideal because it does not increase the volume of

the CubeSat. The use of the 3D-PAA would be very useful for the task of detecting

space objects. It has the ability to scan the environment, and its directivity is better

than that of the array of patches. The trade-off antenna, the PAM, combines the best

characteristics of both, has an almost flat surface, and offers improved directivity.

Among the considered options, the single patch antenna exhibits the lowest power

consumption, cost, and weight. A more advanced alternative is the array of patch

antennas, which offers the additional capability of scanning the environment through

beam-steering technology. The 3D-PAA, consisting of nearly 50 elements, presents

significant power demands, not only for processing signals from each element but also for

steering the main beam during target tracking. Furthermore, due to the large number of

elements, the 3D-PAA occupies the greatest volume and contributes the highest weight.

An additional limitation is the presence of a pronounced back-lobe in the beam pattern,

which would require suppression. Considering these factors, the PAM emerges as the

most suitable choice for integration on the CubeSat. This antenna provides superior

directivity when beam steering is employed, while maintaining minimal weight and

volume and offering a robust mounting solution. Moreover, as demonstrated in the

minimum detectable size analysis, the PAM achieves the best performance for detecting

the smallest targets. Compared to the array of patch antennas, the PAM exhibits

higher directivity and reduced sidelobes during beam steering, thereby minimizing the

likelihood of detection errors. Although the PAM alone would not be able to cover

the full signal bandwidth, the inclusion of a matching transmission line and stub can

significantly enhance its bandwidth, enabling reception of the complete signal spectrum.

The analysis of observation time presented in Section 4.1.6 indicates that a reduction

in target size is advantageous, as it corresponds to an increased FSML and, consequently,

a longer observation time. Furthermore, when the target trajectory closely aligns with

that of the receiver, the observation time is further extended. Additional gains can be
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achieved through beamwidth steering, which effectively enlarges the perceived field of

view and thereby increases the duration of target observation.

4.2 Multiple frequencies system with forward scattering configuration

for the integration of multiple observations

While on Section 4.1 the main focus was on designing a payload suitable for the CubeSat

and for performing SSA tasks, the focus of this chapter, is to address the challenge of

reducing the noise of the FS signal. In the chapter, a multiple frequency radar system

is proposed that permits the integration of multiple observations.

4.2.1 Introduction

As explained on Section 3.1.2.1, part of the SISAR algorithm is the extraction of the

motion parameters in order to replicate the FS signal. To be able reduce the possibility

of erring when the motion parameters from the FS signals are extracted, the SNR from

the received signals has to be improved.

A way of increasing the SNR for the FS scenario is to increase the signal processing

gain by increasing the integration time. However, if the integration time is too long,

the algorithm will computationally costly, as the integration time increases, the number

of samples to be processed in the SISAR algorithm increases. In addition, achieving

relatively large integration times in a spaceborne scenario could be difficult to achieve.

Another issue is that the FS signal is generated when the target crosses the baseline. In

a space environment, even with a steering antenna, this crossing would occur only a few

times. This would difficultate the usage of common multiple integration methods, such

as coherent integration and non-coherent integration. To be able to surpass these issues

the multiple frequency system is proposed. The system would allow the integration

of multiple observations from different frequency channels, thus increasing the overall

SNR.
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4.2.2 Multiple frequency system with FS configuration for SSA

The multiple frequency radar system allows the system to receive several signals at

different frequencies at the same time, which opens the possibility of performing the

integration of multiple observations. This could be achieved by using an illuminator that

uses multiple frequencies simultaneously and a receiver that could detect the emitted

frequencies. The receiver could either have an antenna with a very large bandwidth

or an antenna for each frequency band, Figure 4.27. Additionally, a software defined

radio (SDR) receiver could be used for such a system as its adaptability and, above

all, wideband capabilities would make it a suitable candidate. In Figure 4.27, the

antenna beams for the various channels are depicted as an example, their directions

are illustrative and do not represent specific antenna steering angles. The figure aims

to demonstrate the concept of different beams operating at distinct transmitting and

receiving frequencies.

Figure 4.27: Multiple frequency transmitter and receiver

4.2.2.1 SISAR multiple observation integration method

The scenario presented for the method consists of an illuminator of opportunity, which

will operate on Nf number of channels with a different carrier frequency per channel,

such as fi ∈ {f0, f1, . . . , fNf−1}; a CubeSat with the radar receiver mounted on it,

with the proper antennas to receive the transmitted frequencies; and the target crossing

between them.

The multiple observation method simply consists on retrieving the FS signals the dif-

ferent channels and averaging them. Essentially, the performed operation is a coherent

averaging. The formulation of these the proposed averaging is shown in (4.44).
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Êfs(t) =
1

Nf

Nf−1∑
a=0

Efs,a(t), (4.44)

where Êfs is the averaged FS signal, Efs,a is the down-converted FS signal from channel

a and Nf is the number of frequency channels.

As described, the FS signals would be received through different channels, each

channel having a different operating frequency. As each channel has a different carrier

the resulting FS signal would be different, since, as seen on (3.13), the FS signal is fre-

quency dependent. Therefore, an analysis of the FS signal in (3.13) would be conducted

to find out which is the best compensation operation that can be used.

4.2.2.1.1. FS signal analysis for multiple frequencies

The FS signal in (3.13) has three variables that are frequency-dependent: Q and η from

(3.14) and γ from (3.15).

First, from (3.14), it can be deduced that the Q would be affected very little with

the changes in the operational frequency. This is because the result of the product of

rc1 and rc2 in the denominator is very large, therefore, if the changes in the frequency

are not very large, the Q function will remain practically the same for different values

of the frequency.

Secondly, in the η function from (3.14) and γ function from (3.15) the fraction

addition of ·
rc1

+ ·
rc2

would result in some bigger variation in their values compared to

the previous Q function. Nonetheless, if this is combined with the fact that both appear

in a complex exponential, it is safe to assume that the effect of these variations in the

values could be ignored in the final FS signal.

As a consequence, it is safe to assume that, despite the different frequencies and if

these are not very different in value, there is no need to use any kind of compensation

operation. Therefore, the received baseband FS signals from the different frequency

channels could be averaged without any kind of further processing, as shown in Figure

4.28. The reason for averaging the signals is to not affect the CPF of the target.

104 of 197



Figure 4.28: Multiple observation averaging receiver scheme

4.2.3 Methodology

To asses the system two analysis are conducted. One analysis relies on the visual

inspection of the CPF as it is a good indicator on the quality of the signal to recreate

the profile of the target. The other analysis will involves the mean square error (MSE).

The MSE between the CPF without any noise and the CPF recreated from the averaged

FS signals will be computed, (4.45). For proving that the signals are similar enough to

be directly averaged, the MSE will be computed between the FS signal generated using

the first channel and the averaged signals using a different number of channels, (4.46).

Since the aim of (4.46) is to see how the quality of the averaged signal degrades, no

noise is going to be introduced.In summary, (4.45) is a measure of error between the

reconstructed and the true CPF and (4.46) measures the error between the signal from

the first channel and the averaged signal with different number of channels.

MSESNR,a =
1

nCPF

∑
nCPF

∣∣∣H(x′)− Ĥa(x
′)
∣∣∣2 . (4.45)

MSEFS,b =
1

nsFS

∑
nsFS

∣∣∣Efs,1(t)− Êfs,b(t)
∣∣∣2 . (4.46)
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Please note that in (4.45), MSESNR,i is the MSE for the a-th value of SNR, H is the

CPF without any noise, Ĥa is the reconstructed CPF for the a-th value of the SNR, and

nCPF is the number of samples from the CPFs. Meanwhile, in (4.46), MSEFS,b is the

MSE when the first b channels are averaged, Efs,1 is the FS signal for the first channel,

Êfs,b is the averaged signal when the first b channels are used, and nsFS is the number

of samples from the FS signals.

The geometry of [24] is simulated. This assumes a spaceborne scenario. On the

analysis the target is assumed to be in the 3 dB beamwidth of the transmitting antennas

and the reflected power from the target is the same for all the observations. The

IOs are the OneWeb constellation satellites. OneWeb is a constellation that provides

telecommunication services and operates between [10.7, 12.7]GHz with bandwidths of

250MHz. The receiver has six PAM, as this antennas has proven to be the most suitable

in Chapter 4, tuned between [10.7, 12.2]GHz and is situated at an altitude of 500 km.

As the frequency increases the antenna becomes smaller. As a consequence, if 10.7GHz

antenna could fit into a 10 × 10 cm2, it is safe to assume that the 12.2GHz would fit

as well. Another safe assumption is that the bandwidth of a single antenna, although

enough to receive one channel from OneWeb, would struggle to capture two consecutive

channels, as seen in Section 4.1.5, thus the need for an antenna per channel. Altogether,

the system would fit into a 6U, 30× 30× 20 cm3, CubeSat, Figure 4.29. Summarizing,

6 different channels are simulated, each with a different operating frequency. The SNR

after the multiple averaging is considered within the interval −30 dB to 20 dB. The

noise is assumed to be AWGN.
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Figure 4.29: 6U radar receiver scheme

The transmitter and receiver have the same angle of trajectory, 0◦. The simulated

target is a perfectly conductive sphere. For the visual analysis, the target has a trajec-

tory angle of 180◦, a radius of 75 cm and an altitude of 850 km. For the MSE analysis,

100 different scenarios will be simulated. For each scenario the altitude, angle and size

of the target will be taken from a uniformly random generated variable. A summary of

the parameters can be found in Table 4.4.

Visual analysis MSE analysis

Operational frequency [10.7, 12.2] GHz

SNR [-30, 20] dB

Receiver altitude 500 km

Transmitter altitude 1200 km

Target altitude 850 km [500, 1200]km

Target angle 180 deg [0, 360] deg

Target radius 75 cm [5, 200] cm

Integration time 0.5 s

Number of channels 6

Number of iterations - 100

Table 4.4: Simulation parameters
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4.2.4 Results

Figure 4.30 shows the CPF with no noise. Figure 4.31 shows the retrieved CFPs for the

single channel and multichannel cases for different values of SNR. While Figure 4.31a

has been computed with an SNR of −30 dB, Figure 4.31b has been computed with a

SNR of 20 dB. A notable difference can be observed in the case of −30 dB, as the CPF

resulting from the multiple observation method is different in height and, if the edges

of the CPF are looked at, different in shape. Figure 4.31a shows the most differences,

as it has the lowest SNR. Whereas the CPF retrieved from the SNR of 20 dB, Figure

4.31b, is the most similar. For this last case, the CPF from the single channel and the

multiple observation are identical and almost indistinguishable from the true CPF on

Figure 4.30.

Figure 4.30: CPF with no noise
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(a) Reconstructed CPF with a SNR = −30 dB (b) Reconstructed CPF with a SNR = 20dB

Figure 4.31: Retrieved CPFs for different values of SNR

Figure 4.32 displays the MSE of the reconstructed CPFs. It can be seen that as the

SNR increases the error between the retrieved profile using the averaging method and

the CPF without any noise decreases from 2 cm to almost 0m, which means that the

error is not noticeable.

Figure 4.32: MSE of the reconstructed CPF with multiple averaging for different
values of SNR

In Figure 4.33, it is assumed that the FS signal is measured in volts (V), and, thus,

the MSE of the FS signals will also be measured in volts. Before computing the MSE,

the FS signals were normalized to ensure comparable magnitudes. It can be perceived
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that as the number of signals to be averaged increases, the error increases. Additionally,

if a few signals are averaged the error is almost zero. Despite that, the error no matter

how many signals are averaged is very small, in the order of 10−33, practically 0.

Figure 4.33: MSE of the averaged FS signals for different number of channels

4.2.5 Conclusion on the multiple frequency system with FS configu-

ration

The multiple observation integration method that should be applied for SISAR imaging

is, in essence, an averaging of the obtained FS signals from the different frequency

channels. In a real world scenario, the target might be tumbling which would produce

different profiles and different FS signals. This method overcomes that problem by

coherently averaging the received signals.

To validate the method three analysis have been completed, The first one is a visual

analysis of the resulting CPF, which was proven to be similar to the CPF without

any noise. The second analysis showed how the method behaved under different SNR

scenarios. Finally, the MSE for the synthesized FS with different number of channels

proved that the error between a FS signal and an averaged FS signal was minimal.

The benefits of using such a system are that there would not be any need for an

extra memory to store the FS signals to be integrated and that the integration is a more
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straightforward operation. Also, if the target is tumbling or rotating, different observa-

tion periods are used to perform multiple integration. As a result, the FS signals would

be created from different profiles of said target, producing different signals, leading to

a worse quality signal. This situation is avoided by simultaneously receiving all the FS

signals that will be averaged at a given time.

4.3 Conclusion on the radar system design

In this chapter, the radar system for the spaceborne segment have been designed. The

OneWeb constellation was selected as is the best choice for the IO due to its high-altitude

coverage and standardized satellite parameters, which will enhance the detection capa-

bilities. The payload design included setting the altitude of the CubeSat and evaluating

different antenna options capable of completing the radar tasks and being suitable to

be mounted on the CubeSat. The analysis proved that the PAM antenna is the optimal

choice due to its balance between directivity, beam-steering capability, low weight, and

compact size.

Additionally, a multiple observation integration system and method were introduced

for the FS signal processing. The system averages the received FS signals across multiple

frequency channels, improving the SNR. The results demonstrated that the method

preserves the CPF quality, improving the obtained CPF under low SNR conditions.

Similarly, it ensures minimal error between the FS signal for one of the channels and

the averaged FS signals. Furthermore, the approach eliminates the need for additional

memory storage, making it an efficient and practical solution for spaceborne radar

applications.

The system has thus far been evaluated under a single-target scenario. Extend-

ing the analysis to a multi-target environment introduces additional complexities that

are dependent on the relative timing of baseline crossings, as well as the altitude and

trajectory angle of each target. At the receiver, the observed signal constitutes a su-

perposition of FS components generated by targets with distinct motion parameters,

geometrical shapes, and physical dimensions. To address this, array processing meth-

ods such as beamforming may be employed to estimate the direction of arrival of each
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component, thereby facilitating the separation of individual target contributions. Nev-

ertheless, in cases where two or more targets cross the baseline simultaneously, the

existing FS signal model becomes inadequate and requires reformulation to explicitly

account for multi-target interference. Moreover, variations in SNR present a further

challenge, as targets at different altitudes may yield signals of substantially different

power levels. This necessitates pre-processing strategies, such as gain normalization, to

equalize signal amplitudes prior to the extraction of motion parameters.

In conclusion, this chapter presents a comprehensive system design that combines

an optimized payload with an advanced signal processing method. This will ensure a

high-quality FS signal acquisition for the subsequent stages of the spaceborne pipeline.
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Chapter 5
Novel signal processing methods and

algorithms for spaceborne radar with the

purpose of SSA

This chapter will introduce the appropriate signal processing methods and algorithms

for the extraction of the motion parameters of the detected space objects. It should

be noted that processing tools from Section 3.3 and Section 5.3.2.1.1 will be employed

here. Throughout all this chapter the system described in Chapter 4 is assumed.

5.1 Introduction

The overall aim in this chapter is to reduce the computational time of the motion

parameter extraction algorithm. The most straight-forward way is to use a matched

filter approach [24], where different values are employed to generate the FS signal locally

and then passed through a matched filter, a correlator, to find which one is the most

comparable. The main problem is the small step size needed in the search grid, This

would lead to a high density multi-dimensional grid, which is computationally costly.

To reduce the processing time, a combination of a recurrent neural network and the

zoom-in matched filter algorithm is used. The neural network is used as a classifier, to

reduce the computational load on the zoom-in algorithm. The algorithm consists on an
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iterative process of find and zoom-in around the grid points with highest correlation.

To asses the performance of the developed algorithms, the uncertainty, the error, in

the extracted motion parameters will be calculated. This will provide a comprehensive

understanding of the reliability, accuracy, and limitations of the algorithms. It will

quantify its accuracy and evaluate its robustness. An additional benefit of modelling

the error of the methods is that it can be used in the computation of probability of

collision with other space objects [116] or other SSA estimations.

5.2 Zoom-in matched filter algorithm

This section will introduce the concept of zoom-in matched filter algorithm for the

extraction of the motion parameters needed for the SISAR algorithm. This algorithm

is an improvement over the matched-filter approach proposed in [24].

5.2.1 Introduction

For the successful extraction of the CPF in the SISAR algorithm, as described in [24],

the correct FS signal must be estimated. The matched-filter (MF) approach in [24],

explains that for the estimation, several FS signals are replicated using different angle

and altitude values. The values of altitudes and angles used to generate the FS signals,

are chosen using a grid-like solution, which would create pairs of altitudes and angles.

These result in a correlation map, or MF map, similar to an ambiguity function (AF)

[1]. Later, these replicated signals are passed through a matched filter or correlator with

the received signal to find which one has the highest correlation. The pair of altitude

and angle with the highest correlation is chosen.

Figure 5.1 shows the output of the estimation process without any noise. A 1 km

altitude step and a 1◦ angle step have been used. The target in Figure 5.1 is orbiting at

an altitude of 701 km and an angle of 21◦. The motion parameters have been correctly

estimated, marked in red. However, the reason of the successful estimation is that the

simulated altitude has a value that is part of the search grid, which will not be the case in

a real scenario. Figure 5.1 also shows that there are lots of angle and altitude pairs that

are highly correlated, marked in white. In fact, in the FS scenario, the correlation map
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consistently exhibits this aspect: a curve along which all values are highly correlated,

while correlations outside this curve are very weak.

Figure 5.1: Altitude and angle estimation

Problems arise when the altitude of the target is not on the proposed altitudes and

angles. For example, in Figure 5.2, the altitude has been estimated using a step of

10 km; and the angle has been estimated with a step of 20◦. The estimated values for

the same target of Figure 5.1 are 810 km for the altitude and 40◦ for the angle.

Figure 5.2: Estimation of the altitude and angle using a smaller grid

115 of 197



Certainly, a way to increase the accuracy is to decrease the size of the step, but

it would come at a cost of computational time and power consumption. Therefore,

a better approach is needed to estimate the altitude and angle. Ultimately, this is a

maximization problem: if the search grid is not sufficiently dense, a local maximum

may be mistaken for the point of highest correlation.

The usual method of constructing the correlation map in the FS scenario consists of

a bank of correlators [21, 22, 23, 24]. Adaptive optimization methods could, in princi-

ple, offer a more efficient alternative. In signal processing, methods that minimize error

are often preferred when a matched filter solution is not feasible. Approaches such as

Bayesian optimization [117] and gradient-based techniques, including Adam [81], would

serve to minimize the error between the received and replicated signals. However, in

the presence of noise and with a large number of highly correlated candidate signals,

Figure 5.1, these optimization strategies would face challenges. The gradient-based

algorithms would converge to a local minimum corresponding to an incorrect pair of

altitude and angle, rather than the true solution. Bayesian optimization, while more

global in nature, relies on the acquisition function to balance exploration and exploita-

tion. When the search space contains many highly correlated signals, the marginal gain

from exploring new candidates becomes statistically insignificant. This would make

identifying the true global maximum computationally impractical. For these reasons, a

more brute force strategy is adopted to refine the search from a coarse grid to a finer

grid: the zoom-in matched filter algorithm.

5.2.2 Zoom-in MF algorithm description

As discussed in Section 5.2.1, the correlation map exhibits a curve-like structure, where

the points along the curve are highly correlated. Consequently, the primary objective

of the algorithm is to reconstruct the MF map with sufficient accuracy to ensure that

all maxima are correctly identified. The zoom-in MF algorithm addresses this objec-

tive through an iterative procedure, in which each iteration progressively zooms in on

the maxima obtained in the preceding step, thereby refining their localization. The

approach works as follows:
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1. Create an initial grid of Mang×Malt around a certain area of interest. To compute

the FS signal for the MF map, as seen in Section 3.1.2, the shape and size of the

target must be selected. So, a spherical target is assumed with a diameter of

Dtrg. The area of interest will most possibly be between [0, 360] for the angle of

trajectory and [altrx, alttx] for the altitude.

2. Compute the MF map and normalize the output. To calculate the replicated CPF

for the FS signal in (3.13) a number of Nsz points are computed as the profile of

the target.

3. Use a threshold level, κiL , to select the highest values.

4. Use a smaller grid of Nang,iL ×Nalt,iL to zoom-in on the values.

5. Repeat steps 2, 3 and 4 until the a certain number of iterations, L, have passed.

Please note that Malt|ang, Nalt|ang,iL , iL, L ∈ N and 0 < κiL ≤ 1. Nalt|ang,iL is the

number of altitude or angle values for the new grid around the threshold values for the

iteration iL. The values of these parameters are chosen to ensure that the estimation

process is completed within a reasonable time while maintaining sufficient grid density

to minimize errors. The target is assumed to remain the same across all iterations of

the algorithm. Although the shape and size of the target could vary between iterations,

accounting for such variations would substantially increase the algorithm complexity

and computational time of the algorithm, which the design aims to avoid.

Figure 5.3 illustrates several stages of the zoom-in MF algorithm for a scenario in

which the receiver is located at an altitude of 500 km and the transmitter belongs to

the OneWeb constellation at an altitude of 1200 km. The angles were computed within

the range [−50◦, 50◦]. The altitude and angle of the target, highlighted in red, are

approximately 600 km and 40◦, respectively. The inclusion of these values among the

resulting parameter pairs confirms that the MF map is being correctly computed. The

zoom-in algorithm progressively refines the MF output around the highly correlated

points, narrowing the search region at each iteration.
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(a) MF map of zoom-in algorithm after first iteration (b) MF map of zoom-in algorithm output after second
iteration

Figure 5.3: MF map of the zoom-in MF algorithm at different stages

(c) MF map of zoom-in algorithm after third iteration (d) MF map of zoom-in algorithm after fourth iteration

Figure 5.3: MF map of the zoom-in MF algorithm at different stages

The observed symmetry in altitude is expected, as the bistatic range remains iden-

tical for symmetric points, leading to nearly equivalent correlation values. Moreover,

the plots provide clear evidence of the statement in Section 5.2.1, namely that the cor-

relation maps form a curve of highly correlated points. Although an absolute maximum

exists, locating it using conventional adaptive grid methods is computationally imprac-
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tical, as previously discussed. Consequently, reconstructing the entire curve of highly

correlated points becomes a necessary objective.

It is assumed that the target will cross the baseline at least twice, this would be pos-

sible thanks to the steering capabilities of the antenna. These crossings will enable the

creation of a track of altitudes that could be used to estimate the speed and trajectory

of the space object. For this reason, the analysis focuses solely on altitude.

Some implications of the symmetry in altitude will be that two different sets of

results could be passed onto the orbit propagation module, from which collision proba-

bility could be computed. The first set of results, Figure 5.4, will be the altitude from

the maximum of the MF map and the uncertainty, or error, model that is derived from

it. The second set, Figure 5.5, will include two altitudes: the altitude corresponding to

the maximum value of the MF map and its symmetrical counterpart. The parameters

for the error model are obtained based on the assumption that the altitude with the

smallest error is selected. Including these two altitudes in the second set ensures that

the altitude with the smallest error is captured within the set.

Figure 5.4: First set of altitudes passed onto the next stages

Figure 5.5: Second set of altitudes passed onto the next stages
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5.2.3 Methodology

For analysing the performance of the estimation and to model the uncertainty in the

algorithm a Monte Carlo simulation will be conducted. The system in Chapter 4 is

assumed, and since, as it has been demonstrated in Section 4.2, the error in the final FS

signal is minimum if multiple frequency channels are integrated, only the first frequency

channel is simulated. In each iteration a different target will be simulated, while the

transmitter and the receiver will be the same. Besides, both transmitter and receiver

will have the same orbit inclination, the same angle of trajectory. In the simulated

scenarios, the parameters of the target, altitude, angle and size; are going to be chosen

from a uniform random variable.

The target will be a perfectly conductive sphere, the diameter will be chosen ran-

domly between 0.2m to 2m, taken from Section 4.1.4.2. The angles of trajectory of

the target are going to be picked from a uniform random variable between [0◦, 360◦].

The altitude of the target will be randomly chosen between the altitudes of the receiver

and the transmitter. The altitude of the receiver will be 500 km and the altitude of the

transmitter will be 1200 km, the altitude for the OneWeb constellation satellites. The

SNR of the FS signal after the receiver chain will be 20 dB, which is achievable as seen

in Section 4.1.4.

Several preliminary tests were conducted to select the optimal parameters for the

algorithm. The primary objective of these tests was to identify parameter sets capable

of generating the MF map in under 10min while preserving the highest possible level

of detail. The 10min constraint was imposed to ensure that, when the algorithm is

executed repeatedly within the Monte Carlo simulation framework, the overall compu-

tational cost remains manageable. The tests involved processing 10 FS signals randomly

generated according to the parameters listed in Table 5.1a, using different combinations

of Malt|ang, L, Nalt|ang,iL , and κiL . The final parameters selected for the zoom-in MF

algorithm are summarized in Table 5.1b, while Table 5.1 provides an overview of both

the simulation and zoom-in parameters. It should be noted that 100 iterations were

completed, and the simulations were performed in MATLAB on a PC equipped with

120 of 197



16GB of RAM and an Intel i9-9900K CPU.

Target

Rx. alt Tx. alt Altitude Angle Size SNR

500 km 1200 km [500, 1200]km [0◦, 360◦] [0.2, 2]m 20dB

(a) Parameters for the receiver, transmitter and target

Malt|ang L Nalt|ang,iL κiL

10 3 5, 3, 3 0.1, 0.15, 0.17

(b) Parameters for zoom-in MF algorithm

Number of iterations

100

(c) Number of iterations for the Monte Carlo simulation

Table 5.1: Parameters for the Monte Carlo simulation

The parameters in Table 5.1b give an insight into the functioning of the algorithm.

It can be seen that while, at first, it is necessary to have a higher amount of altitude

and angle values for the grid, with each iteration the number decreases, as the maxima

have been found and the process of zoom-in is being performed around them. Similarly,

the number of maxima that is chosen is less with each iteration as seen by the threshold

value, κiL , which increases with each passing iteration.

5.2.4 Results

Two errors are going to be presented: the altitude error and the absolute of the altitude

error. To illustrate them, histogram are displayed. In the same graph, the probability

density function of a Gaussian random variable is shown, to prove that, at least visually,

they fit into it. Similarly, a mathematical proof of its fit is going to be given ensuring

that the error can be modelled as a random Gaussian variable.

The histogram in Figure 5.6a show that with the maximum MF map altitude the

algorithm results in over 60 cases where the error is less than 174 km. In Figure 5.6b,

it can be observed that the cases where the error is below 182 km is around 90, the

121 of 197



majority of them. The reason for this is that, naturally, the minimum error altitude

will result in a higher estimation accuracy. One more notable difference between both

cases is that the error for the maximum MF altitude, Figure 5.6a, is contained within

0 km and 580 km, which would include the whole search area. Meanwhile, the histogram

for the minimum error altitude, Figure 5.6b, shows that the maximum achieved error

is 260 km.

(a) Histogram for the maximum MF map altitude (b) Histogram for minimum error altitude

Figure 5.6: Absolute error in the estimation of the altitude

Figure 5.6 shows that the error distributions for both altitude estimates can be

represented by two distinct random Gaussian variables. More specifically, they are well

described by a folded normal distribution. The error data also pass the Chi-Square

goodness-of-fit test [118] at the 5% significance level, confirming that the Gaussian

model is appropriate. Table 5.2 summarizes the results, where µ̄err,alt,|MaxMF,MinErr

denotes the mean of the extracted absolute errors, σerr,alt,|MaxMF,MinErr the variance

of the corresponding Gaussian variables, and tite the time per iteration. As expected,

the parameters associated with the minimum-error altitude are smaller. The mean

errors are 177.77 km and 64.58 km, respectively. This indicates that, although the error

is modelled as a folded Gaussian variable with zero mean, the average error remains

177.77 km and 64.58 km, depending on the chosen error model. The total runtime of

the Monte Carlo simulation was 24 h, corresponding to an average of 14.40min per
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iteration. This exceeds the target runtime by approximately 40%.

µ̄err,alt,MaxMF µ̄err,alt,MinErr σerr,alt,MaxMF σerr,alt,MinErr tite

177.77 km 64.58 km 234.95 km 86.80 km 14.40min

Table 5.2: Mean of errors, variances for the Gaussian variables and time per iteration

5.2.5 Computational complexity of the algorithm

To demonstrate that the zoom-in MF algorithm provides an improvement in terms of

computational load compared to the MF approach presented in [21, 22, 23, 24], the

analytical computational complexities of both algorithms are derived and compared.

5.2.5.1 Computational complexity of the zoom-in MF algorithm

For analysing the computational complexity of the algorithm it is assumed that both

MF and zoom-in MF algorithms will compute the same amount of points, Nsz, for

the CPF, therefore this variable will be ignored. Similarly, it is assumed that both

algorithms will compute the same amount of points when replicating the FS signal.

As described in Section 5.2.2, the computational complexity grows as follows:

1. The first step, which consists of the creating the initial grid will result in:

O(1)zoom−in =Mang ×Malt. (5.1)

2. The next operation that increases the computational complexity is the zoom-in

around the threshold values:

O(2)zoom−in = O(1)zoom−in +
∑
NiL

Nang,iL ×Nalt,iL , (5.2)

where, NiL will be the number of threshold values.

3. Since the operation is repeated L times, the final computational complexity will
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be:

Ozoom−in = O(1)zoom−in +
∑
L

∑
NiL

Nang,iL ×Nalt,iL

=Mang ×Malt +
∑
L

∑
NiL

Nang,iL ×Nalt,iL .
(5.3)

5.2.5.2 Algorithm comparison

As per [24], the computational complexity of the MF algorithm is:

OMF,FS = [3Ln logLn × Ln]×
∆R

ms
×

∆ϕ

ns
= [3Ln logLn × Ln]×Mcorr ×Ncorr, (5.4)

where, Ln is the length of the FS signal, ∆R is the length of the search area of the

altitudes, ∆ϕ is the length of the search area of the angles, and ms and ns are the

altitude and angles steps, respectively.

3Ln logLn × Ln is the amount of operations related to replicating and correlating

the FS signals. As both zoom-in and MF algorithms will have to replicate and correlate

the signals, this term can be ignored for the comparison, resulting in:

OMF =Mcorr ×Ncorr. (5.5)

At first, it can be observed that the computational complexity is less in the MF

algorithm, as the only operation to do will be to setup the search grid. However, if it is

assumed that:

Mang ×Malt ≪Mcorr ×Ncorr, (5.6)

then, it is safe to assume that:

∑
NiL

Nang,iL ×Nalt,iL ≪Mcorr ×Ncorr, (5.7)

because the number of threshold points is smaller than the total number of points in

the grid for the MF algorithm.
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Therefore, if the number of loops is not large, (5.6) and (5.7) yield in:

Mang ×Malt +
∑
L

∑
NiL

Nang,iL ×Nalt,iL ≪Mcorr ×Ncorr,

Ozoom−in ≪ OMF .

(5.8)

5.2.6 Conclusion on the zoom-in matched filter algorithm

This section has introduced a novel zoom-in approach for estimating the altitude of

space objects using the FS configuration. Additionally, it explained how the results of

the algorithm could be passed on to the next stages of the SSA pipeline. Two sets of

results were considered: the altitude corresponding to the maximum value of the MF

and two altitudes, one from the maximum of the MF and its symmetrical counterpart.

An analysis was conducted to evaluate the accuracy of the algorithm and to model

the error, providing insight into its performance, which is crucial for the next stages of

the SSA pipeline. The presented analysis of the zoom-in algorithm demonstrates that

the absolute error in altitude can be modelled as a folded normal distribution. Both

visual analysis, through histograms in Figure 5.6, and mathematical analysis, using the

Chi-Square goodness-of-fit test, confirm that the error follows a Gaussian distribution.

The algorithm achieves mean altitude errors of 177.77 km and 64.58 km. However, the

time per iteration, 14.4min, exceeds the intended iteration time.

From a broader perspective, the mean positioning error of 177.77 km represents

approximately 25.4% of the total baseline distance of 700 km. In relative terms, this

indicates a 74.6% reduction over the possible maximum error, the baseline length. The

mean error of 64.58 km corresponds to only 9.23% of the baseline, reflecting a 90.77% re-

duction. Although these relative improvements are substantial, the error in the altitude

estimation remains too large to enable accurate CPF reconstruction. Furthermore, the

obtained errors appear considerably higher than those reported in [22, 23]. However,

it is important to note that the baselines in those studies were on the order of 500m,

whereas the baseline in this study is 700 km, three orders of magnitude larger.

125 of 197



Section 5.2.5 provides a detailed comparison between the analytical computational

complexity of the zoom-in MF algorithm and that of the conventional MF approach

based on a bank of correlators. The results demonstrate that, as long as the number

of iterations in the zoom-in MF algorithm remains within a reasonable number, its

computational requirements are lower than those of the bank of correlators method.

This reduction in computational time highlights the efficiency of the iterative zoom-in

strategy, which focuses resources on progressively refined regions of interest rather than

exhaustively searching the entire parameter space.

5.3 RNN-zoom-in MF algorithm for the altitude estimation of space

objects

This section introduces and analyses the performance of the RNN-zoom-in MF algo-

rithm. It provides an overview of the RNN architecture and the various versions of the

zoom-in MF algorithm when coupled with the RNN, detailing their design and differ-

ences. The section also discusses the reasoning behind these design choices and their

impact on the performance.

5.3.1 Introduction

Although the zoom-in MF algorithm has been shown to be computationally more ef-

ficient than the conventional MF approach, it nevertheless remains computationally

demanding. For example, the total runtime for the 100 simulated scenarios reported

in Section 5.2.4 amounted to 24 h, corresponding to an average of 14.4min per signal.

This still exceeds the target runtime of 10min per signal. To further reduce compu-

tational time, a hybrid strategy is proposed that integrates a RNN classifier with the

zoom-in MF algorithm. As illustrated in Figure 5.7, the RNN is applied prior to the

zoom-in stage to classify key parameters of the target, such as altitude, trajectory an-

gle, or size, directly from the FS signal. This information is subsequently provided to

the zoom-in algorithm, thereby constraining the search space and reducing the overall

computational burden. The innovation and novelty of this approach lie in the introduc-

tion of a dedicated signal pre-processing stage and the integration of the RNN into the
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signal processing pipeline. These elements optimize the dataset for the chosen architec-

ture and enhance the effectiveness of the zoom-in algorithm by guiding its search more

efficiently.

Figure 5.7: Estimation of the altitude using the RNN aided zoom-in approach

5.3.2 Recurrent neural network

A RNN was chosen as the neural network as it has proven to be able to remember better

the time dependencies [119], making it more suitable for the classification of time signals.

In Section 5.2 there are two variables of the target that could be estimated: the angle of

trajectory and the altitude. In order to reduce the computational load on the zoom-in

MF algorithm, the area of search of these two variables could be divided into subsets.

Then, the RNN could classify the FS signals into these subsets, reducing the area of

search for the zoom-in MF approach. In the proposed framework, only the angle of

trajectory is going to be classified. The reason for not classifying the altitude is that,

while different altitudes of the target will result in different FS signals, the signals are

not different enough so that the RNN can distinguish them. This becomes evident when

the symmetrical shape of MF map, Figure 5.3, is taken into account, there is too much

ambiguity between them.

A reasonable assumption would be to divide the angle search area into NC equal

classification fields. For the proposed framework, NC = 4 such as the classification fields

are: {[−45◦, 45◦); [45◦, 135◦); [135◦, 225◦); [225◦, 315◦]}. The reason for choosing these

four fields, and not a higher number, is that they result in different enough FS signals

so that the RNN can differentiate them. However, there exists one issue with the angles

of [225◦, 315◦] and [45◦, 135◦], as they produce the same cosine values. If this is taken
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into account in (3.15), it can be noted that ΓT |R|p will be the same for these angles,

resulting in the same FS signals. Therefore, the angles from 225◦ to 315◦ are ignored

as the RNN would not be able to distinguish between [225◦, 315◦] and [45◦, 135◦]. So

the final selected classification fields are {[−45◦, 45◦); [45◦, 135◦); [135◦, 225◦]}.

5.3.2.1 Signal pre-processing

The magnitude and the unwrapped phase are fed into the RNN to classify their corre-

sponding signals into the different subsets. Phase unwrapping is performed by adding or

subtracting integer multiples of 2π whenever the phase difference between consecutive

samples is greater than or equal to π radians, thereby ensuring phase continuity. Incor-

rect unwrapping can lead to errors, as the resulting wrapped phase of the signal will no

longer accurately represent the true phase. Additionally, as the signal will be noisy, the

fed signals will also have noise. The noise is assumed to be AWGN. A SNR = 20dB is

chosen, as it has proven to be attainable in Section 4.1.4. To have a better classification

accuracy, the signal will be cleaned using the Fractional Fourier Transform.

5.3.2.1.1. Fractional Fourier Transform

The Fractional Fourier Transform (FrFT) is an operator that can rotate a signal in the

time-frequency plane. As it was seen in [41], the FS signal is similar to a linear chirp,

making the FrFT a very useful tool for the case at hand. The FrFT is a generalization

of the traditional Fourier transform. Being x [n′] a discrete signal of length N , the α-th

order discrete FrFT is defined as [120]:

XαFrFT [n] =

N/2∑
a=−N/2

KαFrFT [n, a]x [a] , (5.9)

where XαFrFT [n] denotes the FrFT of order αFrFT of the discrete signal x [n]. The

fractional order, αFrFT , is:

αFrFT =
2ϕFrFT

π
,
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KαFrFT [n, n′] is the FrFT kernel, defined as [120]:

KαFrFT [n, a] =


AFrFT,0 e

jπ(n2+a2) cotϕFrFT − jπ2na cscϕFrFT if ϕFrFT ̸= mFrFT · π

δD [n− a] if ϕFrFT = 2 ·mFrFT · π

δD [n+ a] if ϕFrFT i = 2 ·mFrFT · π + π

,

where, δD(·) is the Dirac delta function; j =
√
−1, the imaginary unit; mFrFT ∈ Z, an

integer; and AFrFT,0 is defined as:

AFrFT,0 =
e j

ϕFrFT
2

√
j sinϕFrFT

.

An interpretation of the FrFT is the clockwise rotation of the signal in the time-

frequency plane by an angle, ϕFrFT . Therefore, as seen on Figure 5.8, as the order

increases, the time duration decreases. It can be intuitively deduced that the inverse

of the FrFT of order αFrFT , which has an angle ϕFrFT associated to it, is the FrFT of

order −αFrFT , which would have an angle −ϕFrFT associated.

Figure 5.8: Real part of the output of the FrFT with different values of αFrFT for a
linear chirp starting at −250 kHz and ending at 250 kHz

Some of the properties of the FrFT are [121]:

1. Zero rotation: FrFTαFrFT=0{x[n]} = x[n].
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2. Consistency with Fourier transform: FrFTαFrFT=1{x[n]} = F{x[n]}.

3. Additivity of rotations:

FrFTαFrFT=αFrFT,1{FrFTαFrFT=αFrFT,2{x[n]}} = FrFT(αFrFT,1+αFrFT,2){x[n]}

(5.10)

4. Whole (2π) rotation: FrFTαFrFT=4{x[n]} = x[n].

From property (5.10) it can deduced that, indeed, there exists a inverse Fourier

Transform (IFrFT). The inverse FrFT of the fractional Fourier transform of order αFrFT

is the fractional Fourier transform of order −αFrFT : IFrFTαFrFT = FrFT−αFrFT .

5.3.2.1.2. Fractional Fourier Transform cleaning

The spectrogram in Figure 5.9 demonstrates that the FS signal exhibits characteristics

similar to those of a complex LFM chirp. Although direct cleaning of the signal using a

low-pass filter is possible, the application of the FrFT prior to filtering provides a more

effective means of obtaining a cleaner signal. As outlined in Section 3.1.2, multiple

approaches exist for extracting FS signals, several of which rely on constructing the

analytical signal via the Hilbert transform. In the present study, the signal depicted in

Figure 5.9 corresponds to the full complex FS signal reported in [24]. Accordingly, it is

assumed that the complete FS signal has been successfully acquired and is available for

subsequent processing.
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Figure 5.9: Spectrogram of the FS signal generated with a receiver at 500 km, a
transmitter at 1200 km, and a spherical target at 700 km altitude, radius 1.5m,

moving at a trajectory angle of 180◦. Both receiver and transmitter share a trajectory
angle of 0◦.

The FrFT cleaning process is as follows:

1. Estimate the angle that maximizes the time response using the instantaneous

frequency of the signal and its duration.

2. Rotate the signal in the frequency-time plane using said angle and the FrFT.

3. Remove the noise of the signal by digitally filtering it. The filter employed in this

step is an ideal filter. The rotated FS signal is first transformed into the frequency

domain, after which only the frequency components within the interval ±2 kHz

are retained, while all remaining components are suppressed. As this operation

is carried out in post-processing, issues of non-causality do not arise. In contrast,

for real-time implementation, a Finite Impulse Response (FIR) filter with the

corresponding characteristics would need to be designed.

4. Rotate the signal back to its original position.

The FS signals in Figure 5.10 have been created using the same parameters as in

Figure 5.9. As it can be seen in Figure 5.10, the FS signal can be properly cleaned

with the FrFT approach. The cleaned signal, in Figure 5.10b, is similar to the signal in
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5.9, except for the edges, that, due to the FrFT, have been removed. Because of this,

it is preferable to use the noisy FS signal, Figure 5.10a, in the zoom-in algorithm, as

the removal of the edges could lead to errors in the correlation. The new processing

structure is shown in Figure 5.11.

(a) Spectrogram of the FS signal with noise (b) Spectrogram of FS signal cleaned with the FrFT

Figure 5.10: FrFT cleaning example

Figure 5.11: Estimation of the altitude and angle using RNN aided zoom-in MF
algorithm with FrFT cleaning

5.3.2.2 RNN design and training

The RNN was implemented using the artificial intelligence toolbox from MATLAB. As

illustrated in Figure 5.12, the network consists of eight layers. The sequence input

layer receives two features: the magnitude and the unwrapped phase of the FS signal.

Both bi-LSTM layers [122] contain 256 hidden units. The dropout layers employ a

dropout rate of 0.5. Finally, the softmax layer outputs three classes, corresponding to

the predefined classification fields.
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Figure 5.12: RNN structure

The RNN will be trained using the Adam optimization method, Section 3.3.2. FS

signals will be generated for the three previously defined subsets, [−45◦, 45◦); [45◦, 135◦); [135◦, 225◦].

The target parameters used to generate the FS signals will be randomly assigned. The

receiver altitude is set to 500 km, while the transmitters correspond to satellites from

the OneWeb constellation at an altitude of 1200 km. The target is modelled as a per-

fectly conductive sphere, with diameters from 20 cm, shown in Section 4.1.4.2 to be

detectable, up to 2m. All generated signals assume a SNR of 20 dB. The trajectory an-

gles are randomly generated within the defined subsets, and 1000 signals are produced

for each subset, per class. Of these, 7.5%, 75 signals, are reserved for validation. A

summary of the training parameters is provided in Table 5.3.
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Target

SNR Rx. alt. Tx. alt. Diameter Altitude Angle # of signals per class

20 dB 500 km 1200 km [0.2, 2]m [500, 1200]m

[−45◦, 45◦) 1000

[45◦, 135◦) 1000

[135◦, 225◦] 1000

Table 5.3: Parameters for RNN training

Figure 5.13 illustrates the training accuracy for the case without FrFT cleaning,

where the RNN classifier achieves an accuracy of 84%. For comparison, the correspond-

ing training progress with FrFT cleaning is shown in Figure 5.14, reaching an accuracy

of 85.33%, which is slightly higher than in the case without FrFT cleaning. In both

scenarios, the accuracy eventually converges to a similar level, indicating that the two

RNNs produce comparable outputs. A closer look at the progression of the training

process reveals a notable distinction. Without FrFT cleaning, the RNN requires ap-

proximately 10 000 iterations before surpassing the 80% accuracy. In contrast, when

FrFT cleaning is applied, the RNN reaches an accuracy of about 85% in only 100 itera-

tions. This behaviour suggests that the dataset processed with FrFT cleaning provides

a more optimized input, enabling the RNN to learn more effectively and achieve high

accuracy much faster. Consequently, it can be inferred that the RNN benefits from the

application of FrFT cleaning. To further substantiate this conclusion, the confusion

matrices for both cases will be analysed and compared.
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Figure 5.13: Training accuracy and loss for the RNN without FrFT cleaning

Figure 5.14: Training accuracy and loss for the RNN with FrFT cleaning

The confusion matrix in Figure 5.15a shows that the RNN classifies the -45deg
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and 135deg classes with relatively high accuracy but encounters difficulties with the

45deg class. This challenge arises because the FS signals associated with 45deg closely

resemble those of 135deg, which leads to frequent misclassifications. Specifically, the

classification accuracy is 90.67% for the -45deg class, 78.67% for the 135deg class, and

only 49.33% for the 45deg class, resulting in an overall accuracy of 72.89%.

When FrFT cleaning is applied, the results presented in Figure 5.15b indicate a

clear improvement. In this case, the RNN classifies signals generated by targets within

[−45◦, 45◦) and [135◦, 225◦) with accuracies of 96% and 98.67%, respectively. For signals

in the range [45◦, 135◦), the accuracy improves compared to the unprocessed case but

remains lower at 60%, primarily due to confusion between the 45deg and 135deg classes.

Averaging across all three classes results in an overall accuracy of 84.89%, which is

consistent with the validation accuracy. As a consequence, the RNN with FrFt cleaning

will be chosen, as it has proven to have higher accuracy.

(a) Without FrFT cleaning (b) With FrFT cleaning

Figure 5.15: Confusion chart for the trained RNN using the validation signals

5.3.3 Zoom-in MF algorithm calibration for the different RNN classes

It is important that the zoom-in algorithm is calibrated for the different RNN classes,

or subsets, to ensure that the full potential of the algorithm is reached and that the

estimation is completed in under 10min. The way of calibrating the algorithm is to use

a Monte Carlo simulation in a similar manner to Section 5.2.3, but instead of using 50
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iterations, for sake of time, 10 iterations will be employed. Table 5.4 shows summarizes

the Monte Carlo parameters.

Target

Rx. alt. Tx. alt. Altitude Angle Size SNR Num. ite.

[−45◦, 45◦)

500 km 1200 km [500, 1200] km [45◦, 135◦) [0.2, 2]m 20dB 10

[135◦, 225◦]

Table 5.4: Monte Carlo parameters for the calibration of each of the tailored zoom-in
algorithms

The chosen zoom-in parameters for the algorithm are shown in Table 5.5. The table

also shows the time per iteration and the mean absolute error. While most of the

calibration parameters are the same for the different classes, the Nalt|ang,iL are different.

If the iteration time and the mean absolute errors are taken into consideration along

with the Nalt|ang,iL values, it would imply that the tailored zoom-in algorithm for the

135deg is able to reconstruct the MF map with high level of detail under less time and

with less number of computations.

Class Malt|ang L Nalt|ang,iL κiL

-45deg 10 3 [3, 5, 5] [0.1, 0.15, 0.17]

45deg 10 3 [3, 5, 5] [0.1, 0.15, 0.17]

135deg 10 3 [3, 3, 5] [0.1, 0.15, 0.17]

(a) Parameters for tailored zoom-in MF algorithms

Class tite µ̄err,alt,MaxMF µ̄err,alt,MinErr

-45deg 13.06min 198.68 km 76.20 km

45deg 9.70min 171.89 km 55.91 km

135deg 6.50min 76.15 km 21.75 km

(b) Time per iteration, mean error for the altitudes

Table 5.5: Tailored zoom-in algorithm parameters, time per iteration and mean errors
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5.3.3.1 FrFT compensation method

It is evident that it would be most advantageous if all of the targets had an angle

trajectory in [135◦, 225◦]. To accomplish it, a possible solution could be to somehow

add a compensation for the ΓT |R|p term in (3.13), which would not be possible. Another

solution involves analysing the FrFT angle that maximizes the time response of the FS

signals of the different subsets. For the analysis 100 signals will be created for each

subset using the parameters in Table 5.4, and the FrFT angle will be estimated.

The analysis of the FrFT angle, Figure 5.16 shows that, within the subsets, most

of the FrFT angles remain confined to a set of values. With this information, a FrFT

compensation technique is proposed. Specifically, the compensation involves adjusting

the FrFT angle for each subset. The adjustment is calculated as the mean FrFT angle of

the 135deg class minus the mean FrFT angle of the respective subset. This adjustment

is then applied to the frequency-time representations, ensuring that the resulting FrFT

angles closely align with the angle of the 135deg class. The mean angles from the

analysis and compensation angles, ϕFrFT,comp, are shown in Table 5.6.

Figure 5.16: Histograms for the FrFT angles for different classes
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Class Mean FrFT angle ϕFrFT,comp

-45deg 3.27◦ 33.11◦

45deg 22.17◦ 14.21◦

135deg 36.38◦ 0◦

Table 5.6: Mean FrFT angles and compensation angles

5.3.4 RNN-zoom-in algorithm performance analysis

From Section 5.3.3, two different processing frameworks can be designed: one for the

case where the tailored zoom-in algorithms are used, Figure 5.17, and one for the case

where the FrFT compensation is used, Figure 5.18.

Figure 5.17: Diagram for the processing framework with tailored zoom-in MF
algorithms
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Figure 5.18: Diagram for the processing framework with FrFT compensation

5.3.4.1 Methodology

To evaluate the performance of the RNN–zoom-in MF algorithm, a Monte Carlo simu-

lation will be conducted. The primary metric of interest is the error in estimating the

target altitude, as it represents the most critical target parameter. Additionally, the

score of the output of the RNN can be incorporated into the algorithm. As described in

Section 3.3, the output score corresponds to the probability that a given input belongs

to a particular class, providing a measure of confidence. Two approaches are taken to

extract the altitude of the target:

1. Use a threshold of 85%, the accuracy from Figure 5.14, for the scores of the

classification and pass it onto the zoom-in algorithm. If the score lowers from

the threshold, the zoom-in approach will be employed without the classificator

information.

2. Use the RNN without taking into account the scores and pass the information

onto the zoom-in algorithm. The score of a classification is the probability that a

certain signal is part of the predicted class. It is an indicator of how accurate the

classification is for the processed signal.
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The parameters listed in Table 5.5, Table 5.6, and Table 5.7 were used in the Monte

Carlo simulations. To ensure that all simulations were conducted under consistent

conditions, the FS signals were generated in advance, stored, and subsequently loaded

into the simulation framework. A total of 100 iterations were completed, with all

simulations performed in MATLAB on a PC equipped with 16GB of RAM and an

Intel i9-9900K CPU.

Target

Rx. alt Tx. alt Altitude Angle Size SNR Num. ite.

500 km 1200 km [500, 1200]km [0◦, 360◦] [0.2, 2]m 20dB 100

Table 5.7: Monte Carlo parameters for the receiver, transmitter and target

5.3.4.2 Results

This section presents the results obtained from the different proposed solutions that

integrate the RNN with the zoom-in MF algorithm. The analysis focuses on evaluating

both the accuracy and computational performance of these combined methods. In par-

ticular, the discussion emphasizes the role of the RNN in alleviating the computational

burden of the zoom-in MF algorithm, demonstrating how it can guide the search process

and reduce the number of computations required to achieve high-resolution correlation

maps.

5.3.4.2.1. Results for the RNN-zoom-in MF algorithm with tailored param-

eters

Figure 5.19 Figure 5.20 show the histograms for the maximum MF map and minimum

error altitude. The histogram for the maximum MF map, Figure 5.19a and Figure

5.20a, show a maximum error of 560 km. While the maximum error in Figure 5.19b and

Figure 5.20b is 270 km. Moreover, the errors in the minimum altitude error lowers when

the scores are used compared to when they are not. This is evident from the number

of errors below 27 km, which is 30 when the scores are used, versus 35 when the scores

are not considered. Regarding the observed distribution of errors for the maximum MF

altitude, the distribution of errors is more spread if the scores are not considered than
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if the scores are considered. The number of errors below 56 km is 30 and 25 for the case

with scores and the case without scores.

(a) Histogram of the maximum MF map altitude (b) Histogram of the minimum error altitude

Figure 5.19: Histograms of the errors for the RNN-zoom-in MF algorithm when using
the scores

(a) Histogram of the maximum MF map altitude (b) Histogram of the minimum error altitude

Figure 5.20: Histograms of the errors for the RNN-zoom-in MF algorithm without
using the scores

The error datasets pass the Chi-square goodness-of-fit test at the 5% significance

level. The time per iteration, shown in Table 5.8, are 11.08min and 9.06min if the
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scores are used and if the scores are not used, respectively. By looking at the val-

ues from Table 5.2 it can be noticed that compared to the zoom-in MF algorithm

the algorithm with the RNN is faster. The mean and variance, µ̄err,alt,MaxMF |MinErr

and σerr,alt,MaxMF |MinErr, for the maximum MF map altitude and the minimum er-

ror altitude mathematically prove the deduced features about the distribution of errors

observed in the histograms. It should be noted that the obtained parameters for the

minimum error altitude, µ̄err,alt,MinErr and σerr,alt,MinErr, are similar to the zoom-in

MF algorithm, but with less computational time needed.

Case µ̄err,alt,MaxMF µ̄err,alt,MinErr σerr,alt,MaxMF σerr,alt,MinErr tite

1 152.78 km 68.71 km 205.27 km 90.67 km 11.08min

2 171.41 km 66.87 km 229.54 km 89.63 km 9.06min

Table 5.8: Mean of errors, variances for the Gaussian variables and time per iteration
for the RNN-zoom-in MF algorithm

5.3.4.2.2. Results for the RNN-zoom-in MF algorithm with FrFT compen-

sation

The histograms in Figure 5.21 and Figure 5.22 show the errors for the RNN-zoom-in MF

algorithm with FrFT compensation. No major differences can be observed in the error

distributions between the case when the scores are utilized and the case where the scores

are ignored. An observation worth noting is the maximum value for the minimum error

altitude, which is 250 km. This value would imply that, for the minimum altitude error,

the algorithm is more precise than in the previous presented processing frameworks.
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(a) Histogram of the maximum MF map altitude (b) Histogram of the minimum error altitude

Figure 5.21: Histograms of the errors for the RNN-zoom-in MF algorithm with FrFT
compensation when using the scores

(a) Histogram of the maximum MF map altitude (b) Histogram of the minimum error altitude

Figure 5.22: Histograms of the errors for the RNN-zoom-in MF algorithm with FrFT
compensation and without using the scores

Compared to the previous cases, the results in Table 5.9, demonstrate that algo-

rithm for when the RNN is employed along the zoom-in MF algorithm with the FrFT

compensation is faster. The mean and variance parameters, µ̄err,alt,MaxMF |MinErr and

σerr,alt,MaxMF |MinErr, are bigger than the previous case where no FrFT compensation
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was implemented. However, the values are similar to the zoom-in MF algorithm but

with less computational time, 5min less if the scores are used and 7min if the scores

are neglected.

Case µ̄err,alt,MaxMF µ̄err,alt,MinErr σerr,alt,MaxMF σerr,alt,MinErr tite

1 161.87 km 70.75 km 219.81 km 92.84 km 9.05min

2 174.22 km 74.70 km 233.67 km 98.89 km 7.19min

Table 5.9: Mean of errors, variances for the Gaussian variables and time per iteration
for the RNN-zoom-in MF algorithm with FrFT compensation

5.3.5 Conclusion on the RNN-zoom-in MF algorithm

The novel RNN-zoom-in MF algorithm improves upon the zoom-in MF approach. As

demonstrated, the newly proposed processing frameworks are both faster and more

accurate than using only the zoom-in MF algorithm. The RNN reduces the search grid

of the zoom-in MF algorithm by classifying the received FS signal into three different

angle subspaces. Additionally, the RNN consists of two bi-LSTM layers and is trained

with random diameters, random altitudes, and random angles within the defined angle

subspaces.

Two different strategies were considered for integrating the RNN with the zoom-in

MF algorithm. In the first approach, the zoom-in MF algorithm was tailored to each

subset of outputs provided by the RNN. In the second approach, the RNN outputs

were used to rotate the FS signal in the time–frequency plane via the FrFT, producing

a signal aligned with the 135deg class. The error analysis indicates that FrFT-based

compensation yields the lowest computational time. Conversely, the combination of the

RNN with tailored zoom-in MF algorithms provides superior accuracy if the minimum

altitude error is selected. Furthermore, incorporating the RNN output scores improves

estimation accuracy compared to using only the class labels. Although this approach

increases computational time, by approximately 2min per signal, the mean error is

reduced, demonstrating a favourable trade-off between accuracy and computational

cost.
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To place the proposed approach into perspective, it is instructive to compare its

performance with that of the conventional MF method. As shown in Sections 5.2.4

and 5.3.4.2, the final altitude resolution achieved was approximately 42.80m, and the

final angular resolution was 0.0066◦. Over a search space of 700 km in altitude and 360◦

in angle, this corresponds to nearly 8.9210×108 signals that would need to be generated

and correlated using the standard MF approach. In [24], it is assumed that the signals

are pre-generated, thereby avoiding regeneration for each received signal. Even with

this assumption, and with a correlation time of 5.051ms per signal, the computation

time required to estimate the motion parameters from a single FS signal would be on

the order of 52 days, which is clearly impractical.

Introducing an RNN to reduce the search grid decreases the number of required

correlations to approximately 2.2302× 108, lowering the computation time to about 13

days per signal. However, this process would still need to be repeated for 100 signals

and would require substantial memory to store the large number of FS signals. By

contrast, the RNN–zoom-in algorithm achieves the same level of accuracy in a fraction

of the time, demonstrating its clear advantage over the conventional MF approach in

terms of computational feasibility.

5.4 Conclusion on the novel signal processing methods and algorithms

for spaceborne radar

In conclusion, this chapter has explored the developed novelties in signal processing

for the spaceborne segment, presenting improvements in the estimation of the altitude

of space objects. First, in Section 5.2, the novel zoom-in MF algorithm was intro-

duced, which improves upon the traditional MF algorithm by creating MF maps more

efficiently.

In Section 5.3, the RNN-based zoom-in MF algorithm was presented, further en-

hancing the zoom-in approach. By incorporating an RNN classifier, the search grid

is reduced, alleviating the computational load. The results show that integrating the

RNN significantly improves computational efficiency, which is crucial when processing

large amounts of FS signals. The FrFT-based approach is particularly effective for min-
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imizing altitude error, while the tailored zoom-in MF algorithm performs better when

the maximum MF map altitude is passed to the orbit propagator.

Section 5.2.5 has shown that, due to the increased complexity of the zoom-in algo-

rithm, the estimation is completed faster than with the MF algorithm, as it focuses on

computing the area around the maxima of the MF maps, provided that the number of

loops in the algorithm is not excessively high.

Table 5.10 summarizes the results of the algorithm for the extraction of the altitude

of the target. The different solutions that have been proposed are:

A. Zoom-in MF algorithm without using the RNN. This represents the sim-

plest case, where only the zoom-in algorithm is employed, without involving the

RNN.

B. RNN-zoom-in MF algorithm with tailored parameters and scores. A

decision threshold is set for the classification output. If the score falls below this

threshold, the zoom-in MF algorithm is applied without utilizing any information

from the RNN. Conversely, if the score exceeds the threshold, the information

provided by the classifier is incorporated into the tailored zoom-in MF algorithm

corresponding to the predicted class.

C. RNN-zoom-in MF algorithm with tailored parameters and without

scores. The zoom-in MF algorithm, which has been specifically designed to

correspond to the predicted class, is employed in every instance, independent of

the obtained scores.

D. RNN-zoom-in MF algorithm with FrFT compensation and with scores.

As in Case B., a threshold is defined. When the score falls below this threshold,

the zoom-in MF is applied directly, without any additional information. If the

score exceeds the threshold, the FrFT compensation is performed, and the FS

signal is passed through the 135deg class–specific zoom-in MF algorithm.

E. RNN-zoom-in MF algorithm with FrFT compensation and without

scores. The FrFT compensation is employed with the information of the RNN
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regardless of the value of the scores. Then, the compensated FS signal is passed

through the zoom-in MF algorithm corresponding to the 135deg class.

Case µ̄err,alt,MaxMF µ̄err,alt,MinErr tite

A. 177.77 km 65.58 km 14.40min

B. 152.78 km 68.71 km 11.08min

C. 171.41 km 68.87 km 9.06min

D. 161.87 km 70.75 km 9.05min

E. 174.22 km 74.70 km 7.19min

Table 5.10: Mean of errors and time per iteration for the various proposed solutions

If the maximum MF map altitude is chosen as the algorithm output, the optimal

solution is Case B., corresponding to the RNN–zoom-in MF algorithm with tailored pa-

rameters and the use of scores. This approach is also less computationally demanding

than the zoom-in–only algorithm. Conversely, if the priority is to minimize computation

time, the most suitable solution is Case E., which employs the RNN–zoom-in algorithm

with FrFT compensation and without scores. This strategy likewise requires less com-

putational effort than the zoom-in–only approach. When the output is the minimum

error altitude, Case A., corresponding to the zoom-in–only approach, achieves the best

accuracy. However, Case C. provides a comparable level of accuracy while reducing

computational time, making it a more efficient alternative. Similarly, Case D. offers

a favourable trade-off between accuracy and computational cost for the maximum MF

altitude case.
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Chapter 6
Advanced signal processing techniques

for long baseline ground-based

distributed systems for SSA

This chapter covers the novel signal processing techniques that have been used for the

data fusion and the ambiguity assessment in the radar measurements of multi-static

long-baseline ground-based radars. One of the main characteristics of this system is

that it is a single-input-multiple-output (SIMO) radar with long bistatic baselines. This

means that there is one transmitter and multiple receivers, in which each bistatic pairs

has a long baseline. The novelty in this chapter is the use of the MIMO AF from Section

6.2 when solving the localization problem of long baseline bistatic pairs.

6.1 Introduction

With the development of multi-static ground-based radars there is the need of developing

a way of fusing the different radar measurements from the different bistatic pairs. A

very useful tool is the MIMO AF. In a similar way to the multiple integration, the

MIMO AF is able to non-coherently or coherently add the individual AFs sourced from

the different bistatic pairs.
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6.2 Multiple-input-multiple-output (MIMO) ambiguity function (AF)

Because of the architecture in this chapter, the MIMO AF is going to be introduced, as

it is a useful processing tool that can be used to combine different bistatic signals.

A way to assess the performance and limits of a radar system is the Ambiguity Func-

tion (AF). In classic radar, the AF for a single transmitter and single receiver system

is defined as the output of a matched filter for a certain waveform and different values

of delay and Doppler shift [1]. Since the matched filter is in essence a correlation filter,

the AF could also be interpreted as how similar the transmitted signal is with respect

to signals with different ranges and Doppler shift. Mathematically can be expressed as:

AF (τ∆, fD) =

∫ ∞

−∞
s(t) · s∗(t− τ∆)e

j2πfDtdt, (6.1)

with τ∆ being the delay of the signal and fD the Doppler shift.

The MIMO AF approach employed in this study was originally presented in [123],

naturally, it has been adapted for the case at hand. In a similar way as in [124], the

radar parameters of range and Doppler rate are replaced by its Cartesian equivalents

of position and speed. The reason behind using Cartesian coordinates is that it will be

more helpful for performing later SSA tasks [62] and is easier to visualize, having similar

plots as in [125]. In the paper, a AF is introduced for multiple-inputs-single-outputs

(MISO) systems. If the MISO AF is generalized, the MIMO AF can be deduced. First,

the AF of one of the bistatic pairs is described as:

AFa,b(p⃗, v⃗) =

∫ ∞

−∞
sa,b(t, p⃗c, v⃗c) · s∗a,b(t, p⃗, v⃗)dt, (6.2)

where p⃗ = (px, py, pz) is the position vector, v⃗ = (vx, vy, vz) the speed vector, sa,b(t, p⃗k, v⃗k)

is a signal transmitted from the transmitter a and received at the receiver b assuming

a target at the position p⃗c = (pc,x, pc,y, pc,z) with a speed of v⃗c = (vc,x, vc,y, vc,z). Note

that compared to the traditional definition in (6.1), here the delay and Doppler have

been replaced with the 3-dimensional position and velocity parameters which allows us

to use a common space for all sensor pairs.
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Combining the AF of the different transmitter-receiver pairs, the MIMO AF can

now be defined as:

AF (p⃗, v⃗) =

Nbs∑
a=1

Mbs∑
b=1

AFa,b(p⃗, v⃗). (6.3)

Hence, here the MIMO AF is defined as the sum of the AF of the different bistatic pairs.

In (6.3) this sum is done coherently, also called coherent fusion, which implies that good

synchronization between the different sensors is necessary. An alternative approach is

to sum the AF from the different pairs non-coherently, non-coherent fusion:

AF (p⃗, v⃗) =

Nbs∑
a=1

Mbs∑
b=1

|AFa,b(p⃗, v⃗)|. (6.4)

6.2.1 Different forms of the MIMO AF

To reduce complexity, the MIMO AF in (6.2) can be simplified if the different speed

component values are replaced by the Doppler shift resulting from the perceived speed:

AFi,j(p⃗; fD;a,b) =

∫ ∞

−∞
sa,b(t; p⃗, fD;a,b;k) · s∗a,b(t; p⃗fD;a,b)dt, (6.5)

where fD;a,b is the Doppler frequency shift perceived from transmitter a at receiver b.

As different Doppler shifts are perceived from each bistatic pair, the fD;a,b returning

the maximum response in each AF can be used to synthesise the MIMO AF:

AF (p⃗) =

Nbs∑
a=1

Mbs∑
b=1

max
fD;a,b

|AFa,b(p⃗, fD;a,b)|, (6.6)

AF (p⃗) =

Nbs∑
a=1

Mbs∑
b=1

max
fD;a,b

AFa,b(p⃗, fD;a,b). (6.7)

It should be noted that in (6.6) the AF from the different pairs are added non-

coherently. Further, this definition can only be applied in the single target scenario or

the multiple target scenario where the targets are at different positions but have similar

velocity parameters.
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6.3 Radar system characterization

For the system characterization various components and properties of the employed

radar system are introduced. These are going to be used in later simulations and

analysis. At the current, stage the system would only be able to detect small satellites

in LEO, around half the size of a Starlink satellite, and large satellites in GEO, as

discussed on Section 6.4.2.

The radar system will not be a search radar, and, as such, it will not be scanning

the whole space, from horizon to horizon. Since many space objects, from satellites to

space debris, have two-line element (TLE) sets [126], the ephemerides, the trajectories,

of these could be calculated. The position of said space objects could be estimated and,

using this prior knowledge, the radio telescopes could be pointed to that location. Once

this is completed, the signal processing, using the MIMO AF, could be performed and

a constant false alarm rate (CFAR) detector [127] could be used to detect the possible

targets.

As a reminder, the configuration described in Section 3.2.1 is used in this chapter.

For reference, the configuration is shown again in Figure 6.1. In this setup, β represents

the bistatic angle, Tx and Rx denote the transmitter and receiver, respectively, and

LTx,Rx corresponds to the baseline. In this case, the bistatic range is given by:

Rbs = dTx + dRx (6.8)

Figure 6.1: Bistatic configuration
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6.3.1 Long baseline multistatic radar challenges in SSA

In SSA, the expected operating ranges are very large. This could result in aliasing prob-

lems in the Doppler processing specially when working with long baseline bistatic sys-

tems. For instance, assuming a transmitter in the Haystack Observatory, Massachusetts,

USA, and a receiver near Westerbork, Netherlands, as in [61], if the target to be detected

is at an altitude of 600 km, the PRI should be at least 20.02ms, an equivalent PRF of

49.96Hz. This means that the maximum speed that the radar would be able to detect,

assuming an operational frequency of 1.24GHz is vmax = PRF ·λ/4 = 3.02m s−1. The

orbital escape speed is [128]:

vesc =

√
2GcMearth

rtrg
, (6.9)

with Gc being the gravitational constant of the Earth, Mearth the mass of the Earth,

and rtrg = Rearth + htgr, Rearth being the radius of the Earth, and htgr the alti-

tude of the satellite. Using (6.9), the resulting speed of the target should be at least

vesc = 10.69 km s−1. If the angular speed of the rotation of the Earth is considered,

72.92 µrad s−1, the relative speed of the target is 10.19 km s−1. By using (3.20), with

β = 47.98◦, from the configuration in [61] and ψ = 80◦, so that the Doppler is not

zero, the perceived Doppler shift is fD = 13.73 kHz Thus, the PRF needed to detect the

target would produce aliasing in Doppler. Consequently, a correct Doppler processing

scheme must be adopted to avoid aliasing. In [129, 130] solutions have been presented

to solve the aliasing in space environments. Additionally, in [131] a two step solution

is presented for high speed targets, and a similar approach could be taken to overcome

the Doppler aliasing.

On one hand, regarding coherent integration processing for LEO targets, as they

have high speeds, the target would change between range bins and the coherent pro-

cessing interval (CPI) would be small. Range compensation techniques would be needed

to have larger CPIs. On the other hand, when it refers to the coherent fusion processing,

by examining (3.20) it is easy to see how different bistatic pairs will generate different

Doppler shifts. To be able to implement coherent multiple fusion Doppler compensation
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will be needed. The main implication for this issue is that between the bistatic pairs

there must be good synchronization and that the systems must be properly defined to

account for phase errors or different Doppler frequencies.

In cases of GEO targets, the relative speed is almost zero [132], as it matches the

rotation of the Earth, so the multiple coherent integration, in this case, would be much

simpler and less pre-processing for it will be necessary. The perceived zero-speed allows

for longer integration times without range compensation, since the target does not

change range bin. In addition, coherent multiple sensor fusion when using the MIMO

AF is also more direct, as there is no need for Doppler compensation since the perceived

speed is zero.

6.4 Radar system validation

To validate the proposed radar system configuration, a series of simulations are going to

be reproduced to assess the feasibility of the multistatic system. It must be mentioned

that most of the results that are going to be shown are the outcomes of one of the

bistatic pairs, since the rest of the results for the bistatic pairs are going to be similar.

For the results to be as most realistic as possible, transmitter and receiver parameters

of known radio telescopes are chosen.

6.4.1 Transmitter and receiver

The transmitter used in the simulation is located in MIT Haystack Observatory, USA,

and uses the Millstone Hill Radar (MHR). MHR is a 25.6m radius full steerable mechan-

ical antenna. The location of the receiver is in Cambridge, United Kingdom, and uses

one of the antennas of the Mullard Radio Astronomy Observatory (MURA). MURA is

comprised of several radio telescopes with antennas of different sizes and for the sake

of comparison, it is assumed that the antenna has a radius of 25m. The gain values of

the antennas are shown in Table 6.1. Knowing the radius of the antenna and assuming
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an efficiency of 70%, the antenna gain can be computed using [133]:

Gpa = eA

(
πdpa
λ

)2

, (6.10)

where eA is the antenna efficiency, dpa is the antenna diameter and λ the operating

wavelength.

Gain

MHR 55.29 dB

MURA 55.08 dB

Table 6.1: Gain values for MHR and MURA

As discussed on Section 6.3 the transmitted waveform is a LFM chirp. The rest of

the parameters for the simulation are presented on Table 6.2 as per [134, 135].

Center frequency (f0) 1.295GHz

Bandwidth (BW ) 2MHz

Peak power 3000 kW

Pulse width (τ) 1ms

Pulse Repetition Interval (PRI) 25ms

Pulse Repetition Frequency (PRF) 40Hz

Max. average power 120 kW

Table 6.2: Transmitter parameters

Circular polarization was selected for this study because it reduces power losses

caused by the Faraday rotation effect in the L-band, which arises due to ionospheric

interactions [136]. Beyond polarization effects, the ionosphere introduces additional

challenges, such as phase distortions and frequency shifts, which must also be mitigated

to ensure accurate signal processing. In [137], a method based on the map drift algo-

rithm was proposed to correct ionospheric anomalies in spaceborne radar observations

without requiring prior knowledge of the total electron content. This approach offers a

significant advantage over methods that depend strongly on electron content estimation.
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For instance, in [138], the study demonstrated that artifacts in the received signal could

be minimized in a dawn–dusk sun-synchronous orbit and subsequently corrected using

a background ionospheric model. While such techniques were originally developed for

radar systems transmitting from space toward Earth, analogous approaches could be

adapted and applied to the bistatic radar configuration investigated in this work.

6.4.2 Targets

To assess the feasibility of the proposed system, targets at different orbital altitudes

were simulated. For the LEO case, synthetic orbits were generated at several altitudes,

while for the GEO case, the orbit of the Alcomsat-1 satellite was replicated. The

corresponding orbital parameters are listed in Table 6.3. The semi-major axis was

calculated as the sum of Earth radius and the altitude provided in the parameter table.

For the Alcomsat-1 satellite, orbital parameters were extracted from Two-Line Elements

(TLEs) dated 16 January 2020. TLEs are standardized data files containing orbital

elements from which the position of a satellite can be calculated and propagated over

time [126].

In terms of physical dimensions, Alcomsat-1 has a size of 2.36×2.1×3.6m3, whereas

the synthetic LEO satellite was modelled as approximately half the size of a Starlink

satellite, with dimensions of 75 × 30 × 20 cm3, excluding the solar panels. These di-

mensional assumptions are necessary to provide RCS estimates for the analysis. The

monostatic RCS values were obtained using the rcs function from MATLAB, which

implements the physical optics (PO) method [139]. RCS values were estimated across

all azimuth and elevation angles of the cuboid models, and the mean value was then

calculated. To account for modelling uncertainties and potential errors, 3 dB were sub-

tracted from the mean before applying the result. Then, the bistatic RCS was computed

using (3.19). The values of the bistatic RCS where used in the link budget calculations

presented in Section 6.4.3.
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Alcomsat 1 LEO target

Norad ID 43039 -

Inclination (◦) 12× 10−3 52

Eccentricity 2.16× 10−4 2.54× 10−4

Epoch year 2020 2020

Epoch day 16.7935 16.7935

Mean anomaly 98.993◦ 98.993◦

Ascending node 302.9646◦ 302.9646◦

Argument of periapsis 334.5991◦ 334.5991◦

Altitude (km) 35 794.72 [1200− 2200]

RCS 15.17 dBm−2 −17.61 dBm−2

Table 6.3: Orbit parameters and RCS for targets

6.4.3 Link budget and visibility analysis

This section evaluates the possible observation time and the expected SNR of the pro-

posed system for the selected targets. These two aspects are essential, as the observation

time defines the duration for which a target can be monitored, while the SNR determines

the quality of the received signal and the likelihood of successful detection. The evalu-

ation is carried out using the parameters defined in Section 6.4.1, ensuring consistency

across all scenarios.

With respect to target visibility, the observation time for a GEO satellite can be

considered theoretically infinite, as its apparent position remains essentially constant

relative to the observer. By contrast, the visibility of LEO targets was determined by

propagating their orbits over a 24-hour period. A target was assumed to be observable

when it simultaneously was within the beamwidths of both the transmitting and receiv-

ing antennas and when the antenna pointing elevation exceeded 8.1◦. This minimum

elevation threshold was selected in accordance with the operational constraints of the

Effelsberg Radio Telescope [140].

Figure 6.2 illustrates the target visibility time over a 24-hour period. More specif-
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ically, Figure 6.2a presents the maximum, mean, and minimum visibility times per

observation instance, while Figure 6.2b depicts the cumulative visibility time across

the full 24 h. As expected, the observation time increases with target altitude. At

lower altitudes, the target may fall below the effective horizon of either the transmit-

ter or the receiver, thereby reducing the overall visibility time. At an orbital altitude

of 1100 km, the cumulative observation time amounts to only 43 s, with a mean of

21.6 s per instance, which may be insufficient for reliable detection. By contrast, at

1200 km, the cumulative visibility time reaches 3.03min, with an average of 1min per

instance—generally adequate to ensure detection. At higher altitudes, visibility times

continue to increase, with a maximum cumulative duration of approximately 30min

and up to 7.98min per instance observed at 2200 km. It can be observed that the

variations in maximum and minimum visibility times exhibit a periodic-like behaviour

as the altitude increases. Furthermore, the cumulative observation time at 1800 km is

greater than that at 1900 km. This occurs because the orbit propagation was limited

to 24 h, making the results dependent on the specific simulated scenario. Nonetheless,

the simulation provides a useful overview of the expected observation times.

(a) Observation time per instance (b) Accumulated observation time in 24 h

Figure 6.2: Observation time for different altitudes

The SNR is computed using the RRE in for a bistatic configuration assuming co-
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herent integration [1, 32] from during the periods where the target is visible:

SNRbs = np
PtGtGrGspλ

2 RCSbs

(4π)3R2
1R

2
2kT0FBWLs

, (6.11)

where

• np is the number of coherently integrated pulses. For the simulations np = 25 for

the LEO target and np = 50 for the GEO target.

• Pt is the transmitting power.

• Gt is the transmitter antenna gain.

• Gr is the receiver antenna gain.

• Gsp is the signal processing gain, defined as:

Gsp = τ ·BW . (6.12)

• λ is the operating wavelength.

• R1 is the distance from the transmitter to the target.

• R2 is the distance from the target to the receiver.

• k is the Boltzmann constant.

• T0 is the reference noise temperature, 290K.

• F is the noise factor. In this case, F = 3.62 dB, derived from the 150K system

temperature from the technical notes of the MHR [141].

• The losses, Ls, comprise four different categories:

– System losses, which are 6 dB, accounting for 3 dB per path.

– Dry air atmospheric losses. Which for a two-way path are estimated at

2.4 dB.

159 of 197



– Atmospheric losses for air containing vapour water, to account for any cloud

or humid environment assumed at 2.6 dB.

– Tropospheric losses, assumed at 1.6 dB.

Atmospheric and tropospheric losses will vary with range, which can affect the

resulting SNR. In this analysis, these losses were calculated for the longest slant

range, considering the altitude of the troposphere and the atmosphere. As such, the

computed values correspond to a worst-case scenario. The resulting loss, 6.6 dB,

is relatively modest and can be regarded as an error margin, ensuring that perfor-

mance requirements are satisfied even under the most unfavourable conditions.

The mean SNR for the geostationary target is 19.60 dB, with a variation of only

±5.72 × 10−6dB. Since the relative position of the Alcomsat satellite remains nearly

constant, the resulting SNR shows negligible fluctuations during the observation period.

In contrast, the SNR of the LEO target, shown in Figure 6.3, exhibits significant varia-

tions, particularly at higher altitudes. This effect arises because longer visibility times

at greater altitudes allow for more pronounced fluctuations in the received signal. Fur-

thermore, the mean SNR decreases with increasing altitude, as the satellite is located

farther from both the transmitter and the receiver. As with the observation time, the

SNR variations follow a repeating pattern determined by the simulated scenario.
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Figure 6.3: SNR variation for 24 hours for LEO target

6.5 System performance

Having assessed the feasibility of the radar system, this section investigates the perfor-

mance of the proposed long baseline radar under different sensor and target configu-

rations. For measuring the ambiguity of the radar measurements the multiple-input-

multiple-output (MIMO) ambiguity function (AF), introduced in Section 6.2, will be

used.

6.5.1 Simulated scenarios

The different radar configurations examined in this analysis are summarised as:

• Monostatic case. In the case of the monostatic configuration, the transceiver

will be placed in the same location as the MHR antenna.

• Bistatic case. In the case of the bistatic case, the receiver will be placed de-

pending on which multistatic receiver configuration is being studied. The different

receiver configuration cases are presented in the next point.

• Multistatic case. In the multistatic case, only one transmitter is assumed,
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located in MHR, while several receiver configurations are considered:

– Case 1: cluster of receivers. The main advantage of the cluster, or any of the

multiple receiver configurations, is that the overall SNR would increase by

the number of receivers. Also, it would be easier to synchronize and manage

the receivers if they are closer. The cluster of receivers takes its location from

the eMerlin radio telescope network based in the UK. The chosen locations

are:

∗ Jodrell Bank:

· Lovell telescope. Coordinates (53.2366, −2.3085, 10)

· Mark II telescope. Coordinates (53.2339, −2.3039, 10)

∗ Pickmere. Coordinates (53.2886, −2.4453, 10)

∗ Darnhall. Coordinates (53.1563, −2.5357, 10)

∗ Knockin. Coordinates (52.7902, −2.9971, 10)

∗ Defford. Coordinates (52.1005, −2.1443, 10)

– Case 2: receivers spread throughout the world. The spread configuration

would allow to decrease the ambiguity as the target is observed from different

angles. However, separating the receivers so far from each other, would make

synchronization challenging. The positions of these receivers are based on

pre-existing radio telescopes or observatories. Evidently, many of these pre-

existing radio telescopes function at a different operating frequency than the

one used in MHR, but it is assumed in the simulation that every receiver

works at the same frequency. The locations of the receivers are:

∗ Azores archipelago. The receiver is located in the RAEGE station in the

island of Santa Maria. Coordinates (36.9852, −25.1259, 276)

∗ Spain. This receiver is located in the Yebes Observatory. Coordinates

(40.5241, −3.0893, 980)

∗ Canary Islands. The receiver would be based in the Teide Astronomic

Observatory. Coordinates (28.2986, −16.5106, 2400)
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∗ Ghana. The receiver in Ghana is located in the Ghana Radio Astronomy

Observatory. Coordinates (5.7503, −0.3051, 70)

∗ Guyana. Although there is no radio telescope, it is assumed that the

receiver would be located in the rocket launch facilities of the French

Guyana. Coordinates (5.2264, −52.7774, 2)

∗ Puerto Rico. The antenna would be located in the old Arecibo Obser-

vatory. Coordinates (18.3442, −66.7526, 498)

– Case 3: combination of both Case 1 and Case 2. For this case there would

be two receivers per cluster. The distance between the receivers in the cluster

is around 200 km. The locations of the receivers are:

∗ Azores archipelago. One of the receivers will be placed in the RAEGE

Santa Maria station and the other one is located at SATCOM Earth

Station. The coordinates are:

· Azores I: (36.9852, −25.1259, 276)

· Azores II: (37.7908, −25.6649, 238)

∗ Ghana. The first receiver will be placed in the same place as in the

previous configuration, the Ghana Radio Astronomy Observatory, the

second one 200 km away from there. The coordinates are:

· Ghana I: (5.7503, −0.3051, 70)

· Ghana II: (7.4244, −0.8833, 70)

∗ Spain. One of the receivers will be placed on the Yebes Observatory and

the other one will be placed on the Javalambre Astrophysics Observatory.

The coordinates of the receivers would be:

· Spain I: (40.5241, −3.0893, 980)

· Spain II: (40.0419, −1.0162, 1957)
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Figure 6.4: Position of the transmitter (blue) and receivers (orange for Case 1, purple
for Case 2 and green for Case 3)

6.5.1.1 Receiver and transmitter parameters

By virtue of simplicity, an SNR of 22 dB and 19.60 dB is assumed for the LEO and GEO

targets, respectively, at the receiver after the matched filter and multiple integration.

The SNR after the matched filter and the multiple coherent integration can be calculated

as:

SNRnp = SNRant + 10 log(np) + 10 log(Gsp)− 3 dB

= SNRant + 10 log(np) + 10 log(Tp ·BW )− 3 dB,
(6.13)

where the extra 3 dB are to account for estimation or processing errors. So, using

parameters from Table 6.2, for achieving SNRLEO = 22dB and SNRGEO = 19.60 dB,

the SNR before the antenna should be SNRant,LEO = −18.01 dB and SNRant,GEO =

−23.30 dB, respectively.
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6.5.1.2 Targets

Two targets at different altitudes will be simulated for the examined scenarios: one

target at LEO and another target at GEO, at altitudes of 1200 km and 35 795 km,

respectively. Since it is assumed that the SNR is fixed, the targets are not considered

to have a particular size or RCS.

6.5.2 Results and discussion

As discussed, two satellites are going to be simulated at altitudes 1200 km and 35 795 km.

The MIMO AF will be computed for the monostatic case, for one of the bistatic pairs,

(6.5), and for the coherent and non-coherent multistatic cases. It should be noted

that the coordinates (0, 0, 0) correspond to the position of the target, such that the

actual location of the target over time is represented at the origin of the MIMO AF

plot. Furthermore, it is assumed that the antennas continuously point to the target

throughout the entire observation period. The graphs will show the (x, y) cut of the

z = 0m plane.

6.5.2.1 MIMO AF with Doppler shift estimates

For this set of results, the MIMO AF is computed using (6.6) for the non-coherent fusion

and (6.7) for the coherent fusion. Some of the results that are going to be displayed

present some errors in the Doppler estimation. Nonetheless, because of the multiple

fusion the final MIMO AF still presents the target in the correct position. It is worth

mentioning that only the results of the (x, y) cut of the LEO target are shown, since

the results of the GEO target are very similar to the results observed when no Doppler

processing was done.

In the following figures, the red lines represent the −3 dB limits. The −3 dB lines

will define the the uncertainty or ambiguity in the measurement. Similarly, the −3 dB

levels will give a measure on the possible location and the resolution of the system and

not a detection threshold. Moreover, the detection performance will also depend on the

chosen detector, which is out of the scope of this thesis.
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6.5.2.1.1. Case 1: cluster of receivers

Figure 6.5 shows the (x, y) cut for the z = 0 plane of the MIMO AF for the GEO case.

First, it must be noted that the ridge in all the graphs is similar because the bistatic

range also similar due to the configuration of the receivers. It can be noticed that the

introduction of multiple readings from different receivers reduces the uncertainty for the

multistatic cases, whether it is coherent or non-coherent. The multistatic case for the

non-coherent fusion, Figure 6.5b, shows that the main lobe has absorbed the sidelobes.

The AF in the coherent case, Figure 6.5c, presents lower floor levels, the surroundings

around the −3 dB levels are darker, and also lower uncertainty.

(a) Bistatic case (b) Non-coherent fusion

(c) Coherent fusion

Figure 6.5: Case 1, (x,y) cut, alt. = 35 795 km

In Figure 6.6 the MIMO AFs after applying Doppler approach are shown. The
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first feature to notice is the decrease in ambiguity. Specifically, compared to the GEO

target, the ridge has been replaced by a main lobe, Figure 6.6a. The non-coherent

fusion, Figure 6.6b, has a similar same shape as the bistatic case, while the coherent

fusion, Figure 6.6c, shows how the ambiguity has been highly reduced. One last thing

to notice is that some of the bistatic pairs have had their Doppler estimated incorrectly,

which results in some higher side lobe levels around the main lobe. However, because

of the fusion of the different bistatic readings with the MIMO AF, these do not affect

the −3 dB levels.

(a) Bistatic case (b) Non-coherent fusion

(c) Coherent fusion

Figure 6.6: Case 1, (x,y) cut, alt. = 1200 km
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6.5.2.1.2. Case 2: receivers spread throughout the world

Similarly, as in Case 1, the bistatic AF for a GEO altitude target, see Figure 6.7a,

presents a ridge. This is due to the GEO altitude diminishing the effect of the bistatic

configuration, as the bistatic angle, around 8◦, is small. However, as each MIMO AF is

different for each bistatic pair, when fusion is applied, see Figure 6.7b and Figure 6.7c,

the ambiguity in the final MIMO AF is reduced. For the coherent fusion, Figure 6.7c,

although it seems not to show major peaks are present, a maximum peak is present in

(0, 0). The ambiguity for these case has been reduced when compared to the previous

scenario, Figure 6.5c.

(a) Bistatic case (b) Non-coherent fusion

(c) Coherent fusion

Figure 6.7: Case 2, (x,y) cut, alt. = 35 795 km

For the LEO case, the Doppler in the presented bistatic case, Figure 6.8a, has been
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incorrectly estimated. This has resulted in the maximum changing position and the

target perceived on another location. However, due to the monostatic and the rest of

the bistatic readings, the maximum of the multiple fusion occurs in the correct position

of the target, Figure 6.8b and Figure 6.8c. At the same time, because of this error,

and some other miscalculations in the other bistatic AFs in both the coherent and non-

coherent fusion, there are some inconsistencies in the −3 dB levels that might led to

a wrong estimation of the location. The coherent fusion, Figure 6.8c, presents smaller

ambiguity than the non-coherent case, Figure 6.8b. However, compared to Case 1, the

ambiguity seems to be more spread along smaller lobes, instead of several thicker lobes,

Figure 6.6c.

(a) Bistatic case (b) Non-coherent fusion

(c) Coherent fusion

Figure 6.8: Case 2, (x,y) cut, alt. = 1200 km

169 of 197



6.5.2.1.3. Case 3: clusters spread throughout the world

For the third and final case, the multistatic AF of the coherent case, Figure 6.9b,

presents lower ambiguity than the ridge shaped AF of the non-coherent case, Figure

6.9a. No major improvements have been observed from Case 2.

(a) Non-coherent fusion (b) Coherent fusion

Figure 6.9: Case 3, (x,y) cut, alt. = 35 795 km

Case 3 does not present any significant changes from the previous cases for the LEO

target. The multiple fusion plots, Figure 6.10a and Figure 6.10b, show almost identical

outcomes as in Case 1 and Case 2 for the non-coherent fusion. In the case of the

coherent fusion, as in Case 2, the ambiguity is spread throughout multiple thin main

lobes, although these seem to be less, and more concentrated around the true position

of the target. As with Case 2, the higher values of the side lobes, appearing in a brighter

round patch around the true position of the target, come from bad estimations of the

other bistatic measurements. Although, the fusion of all of them result in the correct

position of the target.
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(a) Non-coherent fusion (b) Coherent fusion

Figure 6.10: Case 3, (x,y) cut, alt. = 1200 km

6.6 Conclusion on the long-baseline distributed ground-based radar

In this chapter a long baseline multistatic radar system was proposed as a potential

solution for SSA. The results from the feasibility analysis have proven that the SNR

would be enough for the detection of certain targets. Further, the results MIMO AF

analysis for the multistatic system shows that the extension from bistatic to multistatic

gives advantages in localisation performance and reduction in the ambiguity measure-

ment. Using the MIMO AF, the system was assessed under different target-receivers

configurations. Results demonstrated that distributed scenarios generally outperform

co-located receivers however accounting for synchronisation challenges in remote re-

ceivers, clusters of receivers operating coherently can be a good alternative. While

coherent fusing performs significantly better than non-coherent in all scenarios, proper

synchronisation between all the sensors can be very challenging, especially in highly

distributed geometries.

Moreover, comparing the results for different target-sensor configurations it was

demonstrated that distributed systems have an advantage over swarms of receivers. This

becomes more apparent for targets in lower altitudes where the bistatic angle increases

even more. The target is observed from different sides, which results in different bistatic

AFs and, when combined, produces an AF with less ambiguity. Nevertheless, in terms
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of system implementation, it should be noted that having access to several receivers in

different countries and continents can be very challenging. Hence, the cluster of receivers

(Case 1) might be more applicable. Furthermore, as the altitude of the target increases,

see GEO, the advantages of spread receivers start to diminish and therefore a clustered

configuration where coherence fusion could be achieved would be more desirable. It must

be noted that the results in Case 3 were more accurate and presented less ambiguity

than on the previous two cases. The reason is that compared to Case 1, since all the

receivers are in the same location, many of them will present similar processing errors,

and compared to Case 2, having less receivers spread through the world will lead to less

possible errors. As a consequence, Case 3 is the optimal case.
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Chapter 7
Conclusions and future work discussion

This thesis has introduced and analysed novel radar system architectures and advanced

signal processing techniques for SSA. As the number of space objects orbiting the Earth

continues to grow, the risk of collisions increases. Therefore, it is essential to deploy

systems that monitor the space environment to prevent such incidents. While traditional

ground-based radar systems play a crucial role in SSA, emerging technologies, such as

spaceborne PBR systems, as studied in [12], and long-baseline ground-based distributed

radar systems, offer additional advantages, including improved coverage and enhanced

location accuracy.

Chapter 2 provided a comprehensive exposition of fundamental radar principles, cov-

ering monostatic and bistatic configurations, active and passive radars, and the RRE.

These fundaments served as the basis for developing advanced systems and algorithms

designed to address the challenges of SSA. Meanwhile, Chapter 3 explored various es-

tablished techniques and preliminary knowledge employed throughout the thesis.

Regarding spaceborne radar, Chapter 4 introduced the design of the payload of the

CubeSat platform, utilizing the OneWeb constellation satellites as an IOs. Section 4.1

examined various antennas. It was concluded that the PAM antenna was the optimal

choice, providing a balance between directivity, beam-steering capabilities, and the

minimum detectable size. To enhance the performance of the system, an novel multiple

observation integration technique was developed in Section 4.2. The technique relied
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on the system being able to receive different signals from different frequency channels,

which would then be averaged. This technique increases the SNR, which would be

essential in later stages of the processing pipeline.

To optimize the estimation method of the altitude of the space objects when the

PBR is used, Chapter 5 introduced the zoom-in MF algorithm and the RNN-zoom-

in MF algorithm, which improved on the MF approach in [24]. In Section 5.3, the

computational load was decreased with the zoom-in algorithm, which computed the

MF map by zooming-in on the relevant search points. Additionally, in Section 5.3,

a RNN classifier was introduced into the processing pipeline, which reduces the search

space, decreasing computational time while maintaining, or in same cases surpassing the

accuracy of the zoom-in solution. Two key approaches were explored in this context:

the first method tailored the zoom-in MF algorithm for specific RNN classification

subspaces; the second approach used the FrFT to produce FS signals that were similar

to the [135, 225] subset. The results confirmed that the error could be modelled as a

folded Gaussian variable.

Regarding the future work for the spaceborne radar, in [142, 143], strategies for

multi-node FSR were explored to extract motion parameters. Similar principles could

be adapted to the multi-frequency solution presented in Section 4.2.2. Furthermore,

although the proposed solutions in Chapter 5 demonstrate improvements over the es-

tablished MF approach, the resulting estimation errors could be further reduced. The

key challenge lies in narrowing the search space prior to the extraction of target param-

eters. One straightforward strategy is to exploit ephemerides to constrain the search

grid, with a RNN could be employed to select the most appropriate ephemerides from

the FS signal. Following, the AI solutions, the proposed RNN in Section 5.3 could be

extended with a regression layer, providing direct estimates of altitude and trajectory

angle. The associated estimation error may subsequently be modelled and used to refine

the search space.

An alternative approach is to employ the derived error models from Section 5.3.4.2

directly, applying them to reduce the search space for altitude estimation before re-

estimating the motion parameters. Further reduction of the search space could also be
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achieved through beamforming and bistatic configurations, since bistatic measurements

would provide preliminary information about the position and velocity of the target

prior to FS signal processing. If the search space is sufficiently reduced, gradient-based

or Bayesian methods could then be applied for motion parameter estimation.

In the longer term, several developments are required to enable a practical imple-

mentation of the FSR system. First, an appropriate SDR platform, as discussed in [12]

must be selected to ensure that the system can meet both processing and operational

requirements. Parallel to this, dedicated detection strategies for FS signals must be

designed and validated. Existing approaches, such as those proposed in [144, 145],

provide useful foundations, but further adaptation and refinement will be necessary to

accommodate the specific constraints of the envisaged application. Finally, the physical

hardware must also be addressed: the antenna will need to be fabricated and experimen-

tally tested to guarantee adequate performance under realistic operational conditions.

Collectively, these steps represent the essential pathway toward a robust and deployable

FSR solution.

Chapter 6 proposed a long-baseline multistatic radar architecture, processing the

different bistatic signals with the MIMO AF to locate the target and reduce measure-

ment errors. The feasibility analysis established the sufficient SNR levels to result in

reliable localization results. The comparison between the different receiver configura-

tions proved that distributed receiver systems present an improvement over co-located

receiver setups, particularly for LEO targets, where larger bistatic angles significantly

enhance the observation diversity.

Future work on the long-baseline distributed radar will primarily focus on the de-

velopment of Doppler compensation techniques for scenarios in which different receivers

observe varying Doppler shifts. Given the high velocities of LEO targets and the asso-

ciated large Doppler shifts, additional signal processing will also be required to mitigate

potential aliasing effects. Accurate Doppler estimation in the presence of multiple tar-

gets represents another critical challenge. As discussed in Section 6.5.2, the MIMO

AF exhibits a distinguishable absolute maximum, suggesting that a gradient-based ap-

proach could be employed to compute the function more efficiently. For operational
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deployment, potential synchronization issues must be addressed to ensure reliable per-

formance. Furthermore, similarly to the spaceborne case, an appropriate detection

strategy must be implemented to reliably determine the presence of targets within the

observation area.

With respect to the state of the art, current SSA radar systems are predominantly

implemented as ground-based monostatic or pseudo-monostatic configurations [146,

147], with no operational long-baseline or spaceborne radar systems presently deployed.

Because of the considerable costs associated with deployment and maintenance, these

ground-based radars are not readily accessible to all individuals or institutions. In this

context, the spaceborne PBR offers a potential alternative. In the proposed configura-

tion, the reduced distance between the space object and the receiver, combined with

the bistatic arrangement that relies on IOs to collect the radar signals, could render

the system more cost-effective and accessible. Furthermore, long-baseline distributed

radars provide the additional advantage of enabling observations of a target from mul-

tiple perspectives. By exploiting the bistatic angle, such systems may also achieve the

capability to detect stealth targets, should they be deployed in the future.

When compared with spaceborne radars, ground-based radars are subject to obser-

vational constraints due to their fixed terrestrial location. Conversely, spaceborne radars

benefit from orbital motion, which facilitates broader coverage of space regions as they

are unconstrained by geographical limitations. From a performance standpoint, long-

baseline radars have demonstrated superior localization accuracy, as multiple bistatic

baselines provide more robust results even when individual bistatic measurements pro-

duce erroneous position estimates. Nevertheless, ground-based radars face difficulties

in detecting low-altitude LEO targets, since their observation windows are often too

short to guarantee reliable detection. In contrast, spaceborne systems are particularly

well-suited to monitoring such targets and, when operating in FS configurations, ex-

hibit enhanced sensitivity to small objects owing to the increased FSML. Additionally,

the FS-CS relative to the monostatic RCS is bigger at sufficiently high frequencies.

Despite this potential, spaceborne radars employing FS configurations remain at the

research stage, with several technical challenges yet to be addressed. Meanwhile, long-
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baseline ground-based systems benefit from the maturity of existing monostatic radar

technologies, which have been extensively developed and deployed over several decades.
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