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Abstract

In many real-life dynamical systems, the future evolution of the state variables depends

not only on their current values but also on their past values over a finite period of time.

Such systems are called time-delay systems or delay systems. For both their theoretical

and practical impact, time-delay systems have been an enduring theme in the study of

systems and control theory. Stochastic delay systems are those affected by random noise.

Although they may be regarded as deterministic when the noise content is negligible, all

practical systems are stochastic. Itô stochastic systems are a class of the most important

stochastic systems.

In recent years, Itô stochastic delay systems, or simply, stochastic delay systems have

been intensively studied since stochastic modelling has come to play an important role

in many branches of science and engineering. An area of particular interest has been

the stability analysis of this class of dynamical systems and its application to automatic

control. This thesis is focused on developing stability criteria and their applications to

stabilisation problems of stochastic delay systems.

Due to time spent, e.g., in computation and transfer, control input is usually subject

to delays. The presence of input delay may be the cause of the poor performance or

even instability of the resulting controlled system if it is not considered in controller

design. Problems of stabilisation for deterministic systems with input delay have received

a great deal of attention while few works are concerned with those for stochastic systems.

This thesis establishes a delay-dependent criterion for exponential stability of stochastic

delay systems and, based on the stability result, proposes a state-feedback controller for

stabilisation of stochastic systems with input delay. And then this thesis further develops

the techniques and obtains the corresponding results for neutral stochastic delay systems.

Sliding mode control (SMC) has various attractive features and has been one of the
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most popular control methods. In recent years, there has been a growing interest in

extension of SMC to accommodate stochastic systems. However, the existing results

employ an assumption on the structure of the control system such that their controller

design does not need to deal with the diffusion and then they can use the SMC methods

for deterministic systems. This thesis aims to remove such an assumption and propose a

practical SMC design method for stochastic (delay) systems.

It is noted that, since Markov jump linear systems were first introduced in the

early 1960s, hybrid systems driven by continuous-time Markov chains have been widely

employed to model many practical systems where they may experience abrupt changes in

system structure and parameters. Consequently, an area of particular interest has been

the stability analysis of these hybrid systems. This thesis presents the Razumikhin-type

theorems on pth moment asymptotic stability. Since many practical systems are subject

to disturbance, the thesis also studies pth moment input-to-state stability of stochastic

retarded systems with Markovian switching. Moreover, this thesis investigates almost

sure stability of hybrid stochastic systems with mode-dependent delays by proposing a

new concept for Markovian jump delay systems and improving an existing result.
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General notation

a.e. : Almost everywhere.

a.s. : Almost surely, or with probability 1.

∅ : The empty set.

A := B : A is defined by B or B is denoted by A.

IA : The indicator function of set A,

i.e. IA(x) = 1 if x ∈ A or otherwise 0.

AC : The complement of A in Ω, i.e. AC = Ω− A.

A ⊂ B : A ∩BC = ∅.
A ⊂ B a.s. : P (A ∩BC = ∅) = 1.

σ(C) : The σ-algebra generated by C.

a ∨ b : The maximum of a and b.

a ∧ b : The minimum of a and b.

f : A → B : The mapping f from A to B.

R = R1 : The real line.

R+ : The set of all nonnegative real numbers, i.e. R+ = [0,∞).

B = B1 : The Borel-σ-algebra on R.

Bn : The Borel-σ-algebra on Rn.

| · | : The Euclidean norm of a vector and its induced norm of a matrix.

C(D; Rn) : The family of continuous Rn-valued functions defined on D.

Cm(D; Rn) : The family of continuously m-times differentiable Rn-valued

functions defined on D.

C2,1(D×R+; R) : The family of all real-valued functions V (x, t) defined on D×R+
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which are continuously twice differentiable in x ∈ D and once

differentiable in t ∈ R+.

Vx : =

(
∂V

∂x1

, · · · ,
∂V

∂xn

)
.

Vxx : =

(
∂2V

∂xi∂xj

)

n×n

.

‖ξ‖L
p : = (E|ξ|p)1/p.

(Ω,F ,P) : a complete probability space.

(Ω,F ,Ft,P) : a complete probability space with a filtration {Ft}t≥0 satisfying

the usual conditions.

Lp(Ω; Rn) : The family of Rn-valued random variables X defined on (Ω,F ,P)

with E|X|p < ∞ .

Lp
Ft

(Ω; Rn) : The family of Rn-valued Ft-measurable random variables X

with E|X|p < ∞.

C([−h, 0]; Rn) : The space of all continuous Rn-valued functions φ defined on

[−h, 0] with a norm ‖φ‖ = sup
−h≤θ≤0

|φ(θ)|.
Lp([a, b]; Rn) : The family of Borel measurable functions f : [a, b] → Rn

such that

∫ b

a

|f(t)|pdt < ∞.

Lp([a, b]; Rn) : The family of Rn-valued Ft-adapted processes {f(t)}a≤t≤b

such that

∫ b

a

|f(t)|pdt < ∞ a.s.

Mp([a, b]; Rn) : The family of Rn-valued Ft-adapted processes {f(t)}a≤t≤b

in Lp([a, b]; Rn) such that E
∫ b

a

|f(t)|pdt < ∞.

K : The class of continuous strictly increasing functions µ : R+ → R+

with µ(0) = 0, whose inverse function is denoted by µ−1 with

domain [0, µ(∞)).

K∞ : The class of functions µ ∈ K with µ(r) →∞ as r →∞.

VK : The class of functions µ ∈ K and µ is convex.

CK : The class of functions µ ∈ K and µ is concave.
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KL : The class of functions β : R+ ×R+ → R+ such that, for each fixed t,

the mapping β(·, t) is of class K while, for each fixed s, β(s, t) is

decreasing to zero on t as t →∞.

Other notations will be explained where they first appear.
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Chapter 1

Introduction

1.1 Background

The modelling of any physical system is subject to uncertainty. Such uncertainty may be

due to nonmeasurable disturbances and unknown or only partly known system parame-

ters. Having realized the necessity of introducing more realistic models of disturbances,

we are faced with the problem of finding suitable ways to characterize them. A char-

acteristic feature of practical disturbances is the impossibility of predicting their future

values precisely.

Itô stochastic systems, or simply, stochastic systems are widely used to model dy-

namical processes in many disciplines, ranging from biology to finance (see, e.g., [56]

and [94]). The study of stochastic systems is a particularly multidisciplinary subject.

Brownian motion for example owes its name to the botanist R. Brown, who observed the

incessant random motion of tiny pollen particles in water under a microscope in 1828.

There were numerous explanations of such motion of the small pollen grains proposed and

disposed of in the more than 70 years until A. Einstein’s relatively independent and more

famous treatment that the motion of the particles was due to impact with fluid molecules

subject to their expected Boltzmann distribution of velocities (see [70] and [56]). The

observations of Brownian motion would have significant consequences, ranging from the

experimental proof that matter was made from molecules to today’s growing understand-

ing of how biological molecules keep cells going such as Brownian ratchets forming the

basis of molecular motors [9] and self-avoiding random walks on lattices employed as
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models of proteins and polymers [107]. In the world of finance, the earliest attempts to

mathematically introduce Brownian motion into the financial models can be traced to

the work of L. Bachelier in the context of speculation in the stock markets (see, e.g., [16]).

However, this result along with mathematical developments closely related to Brownian

motion remained obscure until much later when Black and Scholes employed the ideas to

investigate how to price derivative securities. Many branches of science, e.g., statistical

physics, study stochastic modelling and attempt to describe macroscopic properties in

terms of the average behavior of an extremely large number of microscopic degrees of

freedom.

For a long time, noise has been a challenging problem that has to be dealt with

in engineering (see, e.g., [2], [4], [11], [49] and [125]). This leads to a wide range of

fundamental physical discoveries including thermal noise and shot noise (see, e.g., [70] and

[56]). Interestingly, in the viewpoint of practice, Brownian motion was also introduced

into the early engineering models in the form of white noise. Let us consider the dynamics

of a finite dimensional system

dx(t)

dt
= f(x(t), t) + N(t), ∀ t ≥ 0 (1.1)

where N(t) represents the external noise disturbances. The noise process N(t) is, to

begin with, not as well-defined as the signal of the state x(t). About all that one can say

for the noise process is that, since it accounts for the (non-systematic) instrument error

and can often be ascribed to thermodynamic origin, it can be modelled as a wide-sense

stationary Gaussian process with a spectral density which is constant over a range of

frequencies wider than the frequency range of the state (since the instrument, if well

designed, is not supposed to “distort” the signal of the state). In the absence of precise

information about the noise bandwidth, which is characteristically the case in practice, it

has been customary to translate the concept of “large” bandwidth to infinite bandwidth

and refer to it as white noise in the early engineering literature (see, e.g., [4]). Moreover,

in a case when N(t) in system (1.1) is a process with large but finite bandwidth, it has

been shown that only a correction term need to be introduced if system (1.1) is to be

modelled by an Itô equation (see [125]).

Time delay is the property of a dynamical system by which the response to an applied

force is delayed in its effect (see [136] and the references therein). Dynamical systems
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with delays, or say, time-delay systems abound in the world. One of the important

reasons is that whenever material, information or energy is physically transmitted from

one place to another, there is a delay associated with the transmission. Some delays are

short, some are very long. They appear in various systems such as biological, ecological,

economic, social, engineering systems etc. For example, in biological systems, delays may

well be of a few hundred milliseconds duration (response-time in human being), whereas

in signal processing, delays measured in microseconds, or much shorter times, may be

very important. Over exposure to radiation increases the risk of cancer, but the onset of

cancer typically follows exposure to radiation by many years. In electronic engineering

systems, the physical limit to speed of processing in digital computing systems is set

by transition times, that is the time for electrons to travel finite distances. The delay

between the transmission of electromagnetic waves from an aerial and the reception of

its reflection from a distant object though of short duration is the principal feature upon

which radar is based. In economics, the central bank in a country often attempts to

influence the economy by adjusting interest rates, the effect of which takes months to

be translated into an impact on the economy. In politics, politicians need some time to

make decisions and they will have to wait for some time before they find out whether

the decisions are correct or not. In daily life, the driver has to wait for the steering to

take effect when reversing a car around a corner. There are many more examples for

real-life systems with time delays, see, e.g., [33], [93], [136] and the references therein.

It is observed that the future evolution of a time-delay system depends not only on its

present state but also on its history. This particular cause and effect relationship can be

most succinctly captured, and has been traditionally modelled, by differential-difference

equations, or more generally, by functional differential equations. The presence of time

delays makes system analysis and control design much more complex. For both their

theoretical and practical impact, time-delay systems have been an enduring theme in the

study of systems and control theory, see, e.g., [33], [34], [53], [93] and [136].

Itô stochastic delay systems, or simply, stochastic delay systems are time-delay sys-

tems affected by white noise. Consequently, there are many practical examples of stochas-

tic delay systems, see, e.g., [98]. In recent years, stochastic delay systems have received

much attention since stochastic modelling has come to play an important role in many

branches of science and engineering (see, e.g., [5], [17], [19], [25], [42]-[45], [53], [60], [67],
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[72]-[78], [82]-[84], [88], [98], [102], [110], [112]).

Since Markov jump linear systems were first introduced in the early 1960s (see, e.g.,

[92], [48] and [135]), hybrid systems driven by continuous-time Markov chains have been

widely employed to model many real-life systems where they may experience abrupt

changes in system structure and parameters such as battle management in command,

control and communication (BM/C3) systems [3], biological systems [41], electric power

systems [124], failure prone manufacturing [30], macroeconomic models of national econ-

omy [49], population dynamics [68] and solar-powered systems [117]. In his monograph

[92], Mariton discussed how such hybrid systems have also emerged as a convenient math-

ematical framework for the formulation of various design problems in target tracking,

fault tolerant control and manufacturing processes. Recently, stochastic delay systems

with Markovian switching, also called hybrid stochastic delay systems, have been studied

in many works. For example, Mao et al. studied stability and stabilisation of stochastic

delay systems with Markovian switching (see, e.g., [79]-[81], [85]-[91], [133]) while Yang et

al. proposed a comparison theorem for one-dimensional hybrid stochastic delay systems

[132]. Consequently, the stability analysis of these hybrid systems has received a great

deal of attention.

1.2 Overview of the study

This thesis focuses on developing stability criteria that are less conservative than the ex-

isting results and their applications to stabilisation problems of stochastic delay systems.

As is known, hybrid systems driven by continuous-time Markov chains have been widely

employed to model many practical systems where they may experience abrupt changes

in system structure and parameters. This thesis also studies stability of stochastic delay

systems with Markovian switching.

Chapter 2 introduces the basic theory of stochastic analysis. It begins with elemen-

tary probability definitions and proceeds to the basic theory of stochastic calculus and

stochastic differential equations including the important results that are used in this the-

sis. It should be pointed out that concepts and theorems in this chapter may be found

in many mathematical books on stochastic analysis, see, e.g., [29], [62], [105], [113] and
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[123] while Mao’s book [88] is the main source of reference for this thesis.

Due to time spent in computation and transfer, control input is usually subject to

delays. Problems of deterministic systems with input delay have received considerable

attention. However, relatively few works are concerned with problems of stochastic sys-

tems with input delay. Chapter 3 studies delayed feedback stabilisation of uncertain

stochastic systems. Based on a new delay-dependent stability criterion established in

this chapter, a robust delayed-state-feedback controller that exponentially stabilises the

uncertain stochastic systems is proposed. Numerical examples are given to verify the

effectiveness and less conservativeness of the proposed method.

Extending the techniques proposed in Chapter 3 to neutral-type systems, Chapter

4 studies stability and stabilisation of neutral stochastic delay systems with delayed

state feedback control by the linear matrix inequality (LMI) approach. Delay-dependent

criteria for exponential stability are presented and a memoryless delayed-state-feedback

control law is proposed to exponentially stabilise the neutral stochastic delay systems.

In recent years, there has been a growing interest in extension of sliding mode control

(SMC) to accommodate stochastic systems. However, the existing results employ an as-

sumption on the system structure that may be too restrictive in many practical situations

(see [13]-[15], [45] and [102]-[104]). Chapter 5 aims to remove such an assumption and

propose a sliding mode control design method for stochastic delay systems. Our design

method is presented in terms of LMIs, which can be easily implemented.

The Razumikhin method has been developed to cope with the difficulty arisen from

the large, fast varying and nondifferentiable time delays. It plays an important role in sta-

bility theory of time-delay systems (see [33] and [34]). Chapter 6 studies Razumikhin-type

theorems on general asymptotic stability of stochastic retarded systems with Markovian

switching, which are a generalization of an existing result on exponential stability of

stochastic functional differential equations with Markovian switching (see, e.g., [86]).

Chapter 7 develops a Razumikhin-type theorem on pth moment input-to-state sta-

bility of hybrid stochastic retarded systems (also known as stochastic retarded systems

with Markovian switching), which is an improvement of the result in Chapter 6. An

application to hybrid stochastic delay systems verifies the effectiveness of the improved

result.
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The classical stochastic analysis theory studies stability not only in moment sense

but also in almost sure sense (see, e.g., [36], [84] [97] and [133]). Among the existing

results, [133] studied almost sure stability of HSDSs with the techniques proposed in

[84] while most of the others dealt with moment stability. However, the results in [133]

require the time delays of all subsystems to be equal to a constant. This may be too

restrictive to apply to hybrid systems in many practical cases. Chapter 8 extends the

results in [133] to hybrid stochastic systems (HSSs) with mode-dependent interval delays,

which exploits a relationship between the bounds of time delays and the generator of the

continuous Markov chain. A couple of numerical examples are exhibited to show that

our result applies to some cases where the existing results do not work.

1.3 Main contributions

The output of the study includes a number of publications. They are main results of

Chapters 3-8 in this thesis respectively and listed as follows:

• Lirong Huang and Xuerong Mao, Robust delayed-state-feedback stabilization of

uncertain stochastic systems, Automatica, vol.45, 2009, 1332-1339.

• Lirong Huang and Xuerong Mao, Delay-dependent exponential stability of neutral

stochastic delay systems, IEEE Transactions on Automatic Control, vol.54, 2009,

147-152.

• Lirong Huang and Xuerong Mao, SMC design for robust H∞ control of uncertain

stochastic delay systems. Automatica, vol.46, 2010, 405-412.

• Lirong Huang, Xuerong Mao and Feiqi Deng, Stability of hybrid stochastic retarded

systems, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.55,

2008, 3413-3420.

• Lirong Huang and Xuerong Mao, On input-to-state stability of stochastic retarded

systems with Markovian switching, IEEE Transactions on Automatic Control,

vol.54, 2009, 1898-1902.

• Lirong Huang and Xuerong Mao, On almost sure stability of hybrid stochastic

systems with mode-dependent interval delays, IEEE Transactions on Automatic

Control, vol.55, 2010, 1946-1952.
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Chapter 2

Basic stochastic analysis

In this chapter, we introduce basic concepts and theory of stochastic analysis that are

useful for the development of this thesis. We omit the proofs since they can be found in

many textbooks, e.g., [1], [29], [36], [53], [62], [87], [88], [113] and [114].

2.1 Probability theory

Probability theory is the mathematics for trials with uncertainty. The outcome of a trial

cannot be precisely predicted but is known to be one of a specified set of possibilities.

We call this set the sample space and denote it by Ω. Generally, not every subset of

Ω is an observable or interesting event. We denote by F a family of those observable,

interesting and satisfying the following properties

(1) ∅ ∈ F , where ∅ is the empty set.

(2) If A ∈ F , then the complement of it AC ∈ F .

(3)
⋃∞

i=1 Ai ∈ F when Ai ∈ F for all i ≥ 1.

The family F is called a σ-algebra. The pair (Ω,F) is called a measurable space;

the elements of F are called measurable sets. If C is a collection of subsets of Ω, then

the smallest σ-algebra σ(C) containing C is called the σ-algebra generated by C. When

Ω = Rn and C is the collection of all open sets, Bn = σ(C) is called the Borel σ-algebra

and the elements of Bn are called the Borel sets.
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Let (Ω,F) and (Ω′,F ′) be measurable spaces. A mapping X : Ω → Ω′ is said to be

(Ω, Ω′)-measurable if

{ω : X(ω) ∈ A′} ∈ F , ∀ A′ ∈ F ′.

Particularly, when Ω′ = R and F ′ = B, the function X is called a real-valued (F -

measurable) random variable. For example, the indicator of set A ∈ F

IA(ω) =





1 for ω ∈ A,

0 for ω 6∈ A.

is an F -measurable random variable.

Let (Ω,F) be a measurable space. A function µ : F → R is called a measure if

(1) 0 ≤ µ(A) ≤ ∞, ∀ A ∈ F ,

(2) µ(∅) = 0,

(3) µ(
⋃∞

i=1 Ai) =
∑∞

i=1 µ(Ai), if Ai ∈ F for all i ≥ 1 and An ∩ Am = ∅ (n 6= m).

Then the triple (Ω,F , µ) is called a measure space and µ(A) is called the measure of

set A. The measure µ is said to be finite if µ(Ω) < ∞. A probability measure P on

(Ω,F) is a finite measure such that P(Ω) = 1. In this case, the triple (Ω,F ,P) is called

a probability space. Set

F = {A ⊂ Ω : ∃B , C ∈ F such that B ⊂ A ⊂ C and P(B) = P(C)}

is a σ-algebra and is called the completion of F . If F = F , then the probability space

(Ω,F ,P) is said to be complete.

In the sequel, let (Ω,F ,P) be a complete probability space.

Suppose {An} is a sequence of sets in F . The upper limit of {An} is defined as

lim sup
n→∞

An = {ω : ω ∈ Ak for infinitely many k} =
∞⋂
i=1

∞⋃
n=i

An .

Then we have the following famous lemma.

Lemma 2.1 (Borel-Cantelli lemma)
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(1) If {An} ⊂ F and
∑∞

n=1 P(An) < ∞, then

P(lim sup
n→∞

An) = 0

.(2) If the sequence {An} ⊂ F is independent and
∑∞

n=1 P(An) = ∞, then

P(lim sup
n→∞

An) = 1.

If a real-valued random variable X is absolutely integrable with respect to the prob-

ability measure P, then

EX =

∫

Ω

X(ω)dP(ω)

is called the expectation of X (with respect to P). Similarly, E[Xp] (p > 0) is called the

pth moment of X.

For p > 0, let Lp = Lp(Ω; R). Suppose that X ∈ L2 and Y ∈ L2. The covariance of

X and Y is given as

Cov(X,Y ) = E[(X − EX)(Y − EY )] .

Random variables X and Y are said to be uncorrelated if Cov(X,Y ) = 0; otherwise,

correlated. Some important inequalities are introduced as follows.

(1) Hölder’s inequality

|E(XT Y )| ≤ (E|X|p) 1
p (E|Y |q) 1

q , where p > 1,
1

p
+

1

q
= 1, X ∈ Lp, Y ∈ Lq.

This is also known as the Cauchy-Schwarz inequality when p = 2.

(2) Minkowski’s inequality

(E|X + Y |p) 1
p ≤ (E|X|p) 1

p + (E|Y |p) 1
p , where p ≥ 1, X ∈ Lp, Y ∈ Lp.

Sometimes this is called triangle inequality in Lp.

(3) Chebyshev’s inequality

P (|X| ≥ c) ≤ c−pE|X|p, where p > 0, c > 0, X ∈ Lp.

(4) Jensen’s inequality

Ec(X) ≥ c(EX) ,

where c : G → R is a convex function on an open subinterval G of R and X is a

random variable such that E|X| < ∞, P(X ∈ G) = 1 and E|c(X)| < ∞.
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(5) Fatou’s lemma ∫

Ω

lim inf
n→∞

Xn dP ≤ lim inf
n→∞

∫

Ω

Xn dP,

where {Xn} are a sequence of nonnegative random variables defined on (Ω,F ,P).

Let A ∈ F , B ∈ F and P(B) > 0. The conditional probability of A under condition

B is

P(A|B) =
P(A ∩B)

P(B)
.

Suppose that G is a sub-σ-algebra of F , that is, G is a σ-algebra such that G ⊂ F . Ob-

viously, triplet (Ω,G,P) is probability space. Let X ∈ L1. Although it is F -measurable,

X may be not G-measurable. However, by the Radon-Nikodym theorem, there exists an

integrable G-measurable random variable Y such that

E(IGY ) = E(IGX) or

∫

G

Y (ω)dP(ω) =

∫

G

X(ω)dP(ω), ∀G ∈ G.

Moreover, if Y ′ is another random variable with these properties, then Y ′ = Y a.s., that

is, P(Y ′ = Y ) = 1. Such a random variable Y is called (a version of) the conditional

expectation of X given G, which is written as Y = E(X|G).

2.2 Stochastic Processes

A filtration {Ft}t≥0 is a family of increasing sub-σ-algebras of F , that is, Fs ⊂ Ft ⊂ F
for all 0 ≤ s < t < ∞. The filtration is said to be right continuous if Ft =

⋂
u>tFu for

all t ≥ 0. Since (Ω,F ,P) is a complete probability space, we say the filtration {Ft}t≥0

satisfies the usual conditions if it is right continuous and F0 contains all P-null sets.

In the sequel, let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration

{Ft}t≥0 satisfying the usual conditions.

A stochastic process is a collection of Rn-valued random variables {Xt}t∈I defined on

(Ω,F ,P). The parameter set I is usually {0, 1, 2, · · · } (the discrete case), some interval

[t1, t2] or the halfline R+ = [0,∞) of R (the continuous case). It is worth noting that,

for each fixed t ∈ I, Xt : Ω → Rn is a random variable while, for each fixed ω ∈ Ω,

Xt : I → Rn is a function. We also write the stochastic process Xt(ω) as X(t, ω),

which may be regarded a function of t and ω from I × Ω to Rn. When I = R+, the

Rn-valued stochastic process X(t, ω) is said to be measurable if X : R+ × Ω → Rn

10



is B(R+) × F -measurable, and is said to be progressively measurable or progressive if

X : [0, T ]× Ω → Rn is B([0, T ])×F -measurable for all T ≥ 0.

An Rn-valued stochastic process {Xt}t≥0 is said to be continuous (resp. left continu-

ous, right continuous) if for almost all ω ∈ Ω the function Xt(ω) is continuous (resp. left

continuous, right continuous) on t ≥ 0. It is said to be integrable if Xt is an integrable

random variable for all t ≥ 0. It is said to be square integrable if E|Xt|2 < ∞ for all t ≥ 0.

It is said to be Ft-adapted, or simply, adapted if Xt is Ft-measurable for all t ≥ 0. It is

said to be (strictly) stationary if its finite-dimensional joint probability distribution does

not change when shifted in time while it is said to be wide-sense stationary if Xt ∈ L2,

EXt = m and Cov(Xt, Xs) = c(t − s) for all s ≥ 0 and t ≥ 0, where m and c are

constants.

An Ft-stopping time, or simply, stopping time is a random variable τ : Ω → [0,∞]

for which {ω : τ(ω) ≤ t} ∈ Ft for all t ≥ 0. If X = {Xt}t≥0 is a progressive process and

τ is a stopping time, then Xτ = {Xτ∧t}t≥0 is called a stopped process of X.

An Rn-valued Ft-adapted integrable process {Mt}t≥0 is called a martingale with

respect to Ft, or simply, a martingale if

E(Mt|Fs) = Ms a.s. for all 0 ≤ s < t < ∞.

The stochastic process is called a supermartingale or a submartingale when the equality

is replaced with ≤ or ≥ respectively. Two of the well-known Doob’s martingale theorems

are given as follows.

Theorem 2.1 (Doob’s martingale stopping theorem) Let {Mt}t≥0 be a Rn-valued

martingale with respect to {Ft}. If τ is a stopping time, then the stopped process M τ =

{Mτ∧t} is still a martingale with respect to the same filtration {Ft}.

Theorem 2.2 (Doob’s martingale inequality) Let M = {Mt}t≥0 be a Rn-valued

martingale. Let [a, b] be a bounded interval in R+.

(1) If p ≥ 1 and Mt ∈ Lp(Ω; Rn), then

P{ω : sup
a≤t≤b

|Mt(ω)| ≥ c} ≤ E|Mb|p
cp

holds for all c > 0

11



(2) If p > 1 and Mt ∈ Lp(Ω; Rn), then

E( sup
a≤t≤b

|Mt|p) ≤ (
p

p− 1
)pE|Mb|p.

An Ft-adapted process {Mt}t≥0 is called a local martingale if there exists a nonde-

creasing sequence of stopping times {τk}k≥1 with τk ↑ ∞ a.s. such that {Mτk∧t−M0}t≥0

is a martingale for all k. Any martingale is a local martingale while the converse is not

true. If M = {Mt}t≥0 is a real-valued continuous (local) martingale, then there exists a

unique continuous square-integrable adapted increasing process denoted by {〈Mt,Mt〉}
such that {M2

t − 〈Mt,Mt〉} is a continuous (local) martingale vanishing at t = 0. The

process {〈Mt,Mt〉} is called the quadratic variation of M , for which we have the following

result.

Theorem 2.3 (Strong law of large numbers) Let M = {Mt}t≥0 be a real-valued

continuous local martingale vanishing at t = 0. Then

lim sup
t→∞

〈Mt,Mt〉
t

< ∞ a.s. ⇒ lim
t→∞

Mt

t
= 0 a.s. ;

lim
t→∞

〈Mt,Mt〉 = ∞ a.s. ⇒ lim
t→∞

Mt

〈Mt,Mt〉 = 0 a.s. .

To close this section we state one more useful convergence theorem (see [62] and

[88]).

Theorem 2.4 Let {At}t≥0 and {Ut}t≥0 be two continuous adapted increasing process

with A0 = U0 = 0 a.s.. Let {Mt}t≥0 be a real-valued continuous local martingale with

M0 = 0 a.s.. Let ξ be a nonnegative F0-measurable random variable such that Eξ < ∞.

Define

Xt = ξ + At − Ut + Mt, ∀ t ≥ 0.

If Xt is nonnegative, then

{ lim
t→∞

At < ∞} ⊂ { lim
t→∞

Xt < ∞} ∩ { lim
t→∞

Ut < ∞} a.s.

where C ⊂ D a.s. means P(C ∩DC) = 0. In particular, if limt→∞ At < ∞ a.s., then for

almost all ω ∈ Ω

lim
t→∞

Xt < ∞, lim
t→∞

Ut < ∞ and −∞ < lim
t→∞

Mt < ∞.

That is, the three processes Xt, Ut and Mt almost surely converge to finite random vari-

ables.
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2.3 Brownian Motion

Botanist R. Brown observed and described the irregular motion of a pollen particle

suspended in fluid in 1828. There were numerous explanations of such motion of the

small pollen grain, later called Brownian motion, proposed and disposed of in the more

than 70 years until A. Einstein, in 1905, argued that the movement is due to bombardment

of the particle by the molecules of the fluid. He also obtained the equations of Brownian

motion. The mathematical foundation for Brownian motion as a stochastic process was

done by N. Wiener in 1931, and this process is also called the Wiener process.

The Brownian motion process W (t) serves as a basic model for the cumulative effect

of pure noise (also known as white noise). If W (t) denotes the position of a particle at time

t, then the displacement W (t) −W (0) is the effect of the purely random bombardment

by the molecules of the fluid, or the effect of noise over time t. Let us now give the

mathematical definition of Brownian motion.

Definition 2.1 Let (Ω,F ,P) be a probability space with a filtration {Ft}t≥0. A (stan-

dard) one-dimensional Brownian motion is a real-valued continuous {Ft}-adapted process

{Wt}t≥0 with the following properties:

(i) W0 = 0 a.s.;

(ii) for 0 ≤ s < t < ∞, the increment Wt −Ws is normally distributed with mean zero

and variance t− s;

(iii) for 0 ≤ s < t < ∞, the increment Wt −Ws is independent of Fs.

It is observed that Brownian motion is a wide-sense stationary Gaussian process.

Sometimes, we shall speak of a Brownian motion {Wt}0≤t≤T for some T > 0, and the

meaning of this terminology is apparent. The Brownian motion has many important

properties, some of which are summarized as follows

(a) {−Wt} is a Brownian motion with respect to the same filtration {Ft}.

(b) Let c > 0. Define

Xt =
Wct√

c
, ∀ t ≥ 0 .

Then {Xt}t≥0 is a Brownian motion with respect to the filtration {Fct}.
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(c) {Wt} is a continuous square-integrable martingale, and its quadratic variation

〈Wt,Wt〉 = t for all t ≥ 0.

(d) The strong law of large numbers states that

lim
t→∞

Wt

t
= 0 a.s. .

(e) For almost all ω ∈ Ω, the Brownian motion sample path W (t, ω) is nowhere differ-

entiable with respect to t.

We can easily generalize slightly and consider an m-dimensional Brownian motion.

It is not difficult to see that an m-dimensional Brownian motion is an m-dimensional

continuous martingale with the joint quadratic variations

〈W i
t ,W

j
t 〉 = δijt , ∀ 1 ≤ i, j ≤ m

where δij is the Dirac delta function, i.e., δij = Ii=j.

It turns out that this property characterizes Brownian motion among continuous

local martingales. To close this section, we introduce the well-known Lévy theorem.

Theorem 2.5 (Lévy theorem) Let {Mt} = {(M1
t , · · · ,Mm

t )} be an m-dimensional

continuous martingale with respect to the filtration {Ft} and M0 = 0 a.s.. If

〈M i
t ,M

j
t 〉 = δijt , ∀ 1 ≤ i, j ≤ m

then {Mt} is an m-dimensional Brownian motion with respect to {Ft}.

2.4 Itô integrals

Let {Wt}t≥0 be a one-dimensional Brownian motion defined on (Ω,F , {Ft},P). Suppose

T > 0 and f(t, ω) is given. We want to define

∫ b

a

f(s, ω)dW (s, ω) , (2.1)

where 0 ≤ a < b. In general, it is natural to approximate a given function f(t, ω) by

∑
j≥0

f(t∗j , ω)It∈[j·2−n,(j+1)·2−n) (2.2)
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on a ≤ t ≤ b, where t∗j ∈ [tj, tj+1] and

tj = t
(n)
j =





j · 2−n, a ≤ j · 2−n ≤ b

a, j · 2−n < a

b, j · 2−n > b

(2.3)

with some natural number n. Then define integral (2.1) as the limit of

∑
j≥0

f(t∗j , ω) [W (tj+1, ω)−W (tj, ω)] (2.4)

as n → ∞. However, unlike the Riemann-Stieltjes integral, it is found that the value of

the limit of (2.4) depends on what points t∗j are chosen. The following two choices have

turned out to be the most useful ones (see, e.g., [105]): (I) t∗j = tj (the left end point),

which leads to the Itô integral; and (II) t∗j = (tj + tj+1)/2 (the mid point), which leads

to the Stratonovich integral. In this thesis, only Itô integrals are involved.

It is reasonable to start with a definition for a simple class of functions f and then

extend by some approximation procedure. Thus, let us first assume that f has the form

φ(t, ω) =
∑
j≥0

It∈[j·2−n,(j+1)·2−n) · ej(ω) (2.5)

where, for all j ≥ 0, ej is an Ftj -measurable function. A function φ ∈ M2([a, b]; R)

that has the form (2.5) is called elementary. For the family of elementary functions it is

reasonable to define

∫ b

a

φ(s, ω)dW (s, ω) =
∑
j≥0

ej(ω) [W (tj+1, ω)−W (tj, ω)] . (2.6)

Definition 2.2 (The Itô integral) Let f ∈ M2([a, b]; R). Then the Itô integral of f

(from a to b) is defined by

∫ b

a

f(t, ω)dW (t, ω) = lim
n→∞

∫ b

a

φn(t, ω)dW (t, ω) (2.7)

where {φn} is a sequence of elementary functions such that

E
[∫ b

a

[f(t, ω)− φn(t, ω)]2dt

]
→ 0 as n →∞ . (2.8)

By the definitions of (2.6) and (2.7), it is not difficult to prove
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Theorem 2.6 (The Itô isometry)

E

[(∫ b

a

f(t, ω)dW (t, ω)

)2
]

= E
[∫ b

a

f 2(t, ω)dt

]
(2.9)

for all f ∈M2([a, b]; R).

For simplicity, W (t, ω) is also written as W (t) or Wt. Some properties of the Itô integral

are listed as follows.

Theorem 2.7 Let f, g ∈ M2([a, b]; R), 0 ≤ a < c < b and let α, β be two real numbers.

Then

(1)
∫ b

a
f(t)dWt is Fb-measurable;

(2)
∫ b

a
f(t)dWt =

∫ c

a
f(t)dWt +

∫ b

c
f(t)dWt;

(3)
∫ b

a
[αf(t) + βg(t)]dWt = α

∫ b

a
f(t)dWt + β

∫ b

a
g(t)dWt.

(4) E(
∫ b

a
f(t)dWt|Fa) = 0;

(5) E(| ∫ b

a
f(t)dWt|2|Fa) =

∫ b

a
E(|f(t)|2|Fa)dt.

But the basic definition of Itô integrals is not very useful when we try to evaluate

a given integral. This is similar to the situation for ordinary Riemann integrals, where

we do not use the basic definition but rather the fundamental theorem of calculus plus

the chain rule in explicit calculations. However, in the context of Itô integrals, we do

not have differentiation theory but only the integration concept. Nevertheless it turns

out that it is possible to establish an Itô integral version of the chain rule, called Itô’s

formula, which is very useful for evaluating Itô integrals.

Let Xt be a scalar continuous {Ft}-adapted process on t ≥ 0 and have the form

Xt = X0 +

∫ t

0

f(s)ds +

∫ t

0

g(s)dWs , (2.10)

where f ∈ L1(R+; R) and g ∈ L2(R+; R). This process may also be written in the

differential form

dXt = f(t)dt + g(t)dWt . (2.11)
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Theorem 2.8 (1-dimensional Itô’s formula) Let Xt be a process given by (2.11).

Let y(t, x) ∈ C2,1(R+ ×R; R). Then Yt = y(t,Xt) has the form of (2.10) and

dYt =

[
∂y

∂t
(t,Xt) +

∂y

∂x
(t,Xt)f(t) +

1

2
g(t)

∂2y

∂x2
(t,Xt)g(t)

]
dt +

∂y

∂x
(t,Xt)g(t)dWt a.s. .

Let us now turn to the situation in higher dimensions. Let Wt = (W 1
t , · · · ,Wm

t )T

be an m-dimensional Brownian motion. Itô’s formula can be easily generalized to the

n-dimensional case.

Theorem 2.9 (The general Itô’s formula) Let v = v(t, x) be a function such that

v ∈ C2,1(R+ ×Rn; R) with partial derivatives denoted by

∂

∂t
v(t, x) = vt,

∂

∂xi

v(t, x) = vxi
,

∂2

∂xi∂xj

v(t, x) = vxixj
,

where x = [x1, · · · , xn]T and 1 ≤ i, j ≤ n. Moreover, let Xt be an n-dimensional stochas-

tic process defined on t ≥ 0 by the stochastic differential

dXt = f(t)dt + g(t)dWt,

where f ∈ L1(R+; Rn) and g ∈ L2(R+; Rn×m). Then Vt = v(t,Xt) is a stochastic process

such that

dVt = [vt(t,Xt) + vx(t,Xt)f(t) +
1

2
trace(gT (t)vxx(t,Xt)g(t))]dt + vx(t,Xt)g(t)dWt a.s.

where

vx =

(
∂v

∂x1

, · · · ,
∂v

∂xn

)
and vxx =

(
∂2v

∂xi∂xj

)

n×n

.

It is easy to verify that the Itô integral

Xt = X0 +

∫ t

0

g(s)dWs , t ≥ 0

is always a martingale with respect to {Ft}t≥0 when g ∈ L2([0, t]; Rn×m) for any t ≥ 0.

But the converse is also true. This result, called the martingale representation theorem,

is important for many applications.

Theorem 2.10 (The martingale representation theorem) Suppose that Mt is an

n-dimensional {Ft}-martingale and that Mt ∈ L2
Ft

(Ω; Rn) for all t ≥ 0. Then there

exists a unique stochastic process g(s, ω) such that g ∈ L2([0, t]; Rn×m) and

Mt(ω) = EM0 +

∫ t

0

g(s, ω)dWs a.s. (2.12)
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for all t ≥ 0. The process g(s, ω) is said to be unique if any other process ḡ ∈ L2([0, t]; Rn×m)

satisfying (2.12) is indistinguishable from g(s, ω), that is

P{g(s, ω) = ḡ(s, ω) for all 0 ≤ s ≤ t} = 1 .

Finally, we introduce the following important inequalities of the Itô integral that are

useful in many applications.

Theorem 2.11 Let p ≥ 2, t ≥ 0 and g ∈M2([0, t]; Rn×m). Then

E
∣∣∣∣
∫ t

0

g(s)dWs

∣∣∣∣
p

≤ (
p(p− 1)

2
)

p
2 t

p−2
2 E

∫ t

0

|g(s)|p ds.

In particular, this holds as an equality when p = 2.

Theorem 2.12 (Burkholder-Davis-Gundy inequality) Let g ∈ L2(R+; Rn×m),

x(t) =

∫ t

0

g(s)dWs and A(t) =

∫ t

0

|g(s)|2ds

for any t ≥ 0. Then for every p > 0, there exist universal positive constants cp and Cp

such that

cpE|A(t)| p2 ≤ E( sup
0≤s≤t

|x(s)|p) ≤ CpE|A(t)| p2

for all t ≥ 0. In particular, one may take

cp = (p/2)p, Cp = (32/p)p/2 if 0 < p < 2;

cp = 1, Cp = 4 if p = 2;

cp = (2p)−p/2, Cp = [pp+1/2(p− 1)p−1]p/2 if p > 2.

2.5 Stochastic differential equations

Let W (t) = (W1(t), · · · ,Wm(t))T , t ≥ 0, be an m-dimensional Brownian motion defined

on (Ω,F , {Ft},P). Let f : Rn × [t0, T ] → Rn and g : Rn × [t0, T ] → Rn×m be both

Borel measurable with 0 = t0 < T < ∞. Let x0 be an Ft0-measurable Rn-valued

random variable such that E|x0|2 < ∞. Then the definition of n-dimensional stochastic

differential equations (SDEs) of Itô type can be given for the Rn-valued stochastic process

{Xt}t∈[t0,T ].

18



Definition 2.3 An equation of the form

dx(t) = f(x(t), t)dt + g(x(t), t)dW (t), ∀t ∈ [t0, T ] (2.13)

with initial value x(t0) = x0, or, written componentwise as

dxi(t) = fi(x(t), t)dt +
m∑

j=1

gij(x(t), t)dWj(t), (2.14)

is called a stochastic differential equation (SDE). The random variable x0 is called the

initial value at time t0.

Definition 2.4 An Rn-valued stochastic process {x(t)}t0≤t≤T is called a (strong) solution

of equation (2.13) with initial value x0 if it has the following properties:

(1) {x(t)} is continuous and Ft-adapted;

(2) P{x(t0) = x0} = 1;

(3) {f(x(t), t)} ∈ L1([t0, T ]; Rn) and {g(x(t), t)} ∈ L2([t0, T ]; Rn×m);

(4) the integral version of equation (2.13) holds for every t ∈ [t0, T ] with probability 1.

A solution {x(t)} is said to be unique if any other solution {x̄(t)} is indistinguishable

from {x(t)}, that is

P{x(t) = x̄(t) for all t0 ≤ t ≤ T} = 1 .

The Itô equation (2.13) may not have a unique solution on the whole interval [t0, T ].

Let us give the conditions that guarantee the existence and uniqueness of solutions to

SDE (2.13).

Theorem 2.13 Assume that there exist two positive constants K and K̄ such that

(1) (Lipschitz condition) for all x,y ∈ Rn and t ∈ [t0, T ],

|f(x, t)− f(y, t)|2 ∨ |g(x, t)− g(y, t)|2 ≤ K|x− y|2; (2.15)

(2) (linear growth condition) for all (x,t) ∈ Rn × [t0, T ],

|f(x, t)|2 ∨ |g(x, t)|2 ≤ K̄(1 + |x|2); (2.16)
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Then there exists a unique solution x(t) to equation (2.13) with initial value x(t0) = x0

and the solution belongs to M2([t0, T ]; Rn).

Theorem 2.14 Assume that the linear growth condition (2.16) holds. But the Lipschitz

condition (2.15) is replaced with the following condition

(3) (local Lipschitz condition) for every integer k ≥ 1, there exists a positive constant

Lk such that, for all t ∈ [t0, T ] and all x, y ∈ Rn with |x| ∨ |y| ≤ k,

|f(x, t)− f(y, t)|2 ∨ |g(x, t)− g(y, t)|2 ≤ Lk|x− y|2. (2.17)

Then there exists a unique solution x(t) to equation (2.13) with initial value x(t0) = x0

and the solution belongs to M2([t0, T ]; Rn).

The above theory of SDEs can be extended to stochastic functional differential equa-

tions (SFDEs) (see, e.g., Sec. 5.2, p149, [88]).

2.6 Stochastic stability theory

Stability of a process (in particular, of a stationary state) is the ability of the process

to resist a priori unknown (small) influences. A process is said to be stable if such

disturbances do not essentially change it. This property turns out to be of utmost

importance. It should be emphasized that an individual predictable process can be

physically realized only if it is stable in the corresponding natural sense. It is well known

that Lyapunov’s second method is an interesting and fruitful technique that has gained

increasing significance and has given decisive impetus to the modern development of

stability theory of dynamical systems. A manifest advantage of this method is that

it does not demand detailed knowledge of solutions and therefore has great power in

applications. Lyapunov function serves as a vehicle to transform a given complicated

differential system into relatively simpler differential equations and hence it is sufficient

to study the properties of solutions of this simpler differential equation.

When we try to carry over the principles of the Lyapunov stability theory for deter-

ministic systems to stochastic systems, we face several problems, the basic one being to

give a suitable definition of stochastic stability. In this section, we shall introduce various

types of stability for stochastic differential equation (2.13).
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(a) Stability in distribution: the solution process x(t) of (2.13) is said to be asymptoti-

cally stable in distribution if there exists a probability measure π(·) on Rn such that

the transition probability p(t; x; dy) of x(t) converges weakly to π(dy) as t → ∞
for every x ∈ Rn. System (2.13) is said to be asymptotically stable in distribution

if x(t) is asymptotically stable in distribution.

(b) Stability in probability: system (2.13) is said to be

(i) stable in probability if ∀ ε > 0 there is a class K function γ(·) such that

P{|x(t)| < γ(|x0|)} ≥ 1− ε , ∀ t ≥ t0, x0 ∈ Rn\{0};

(ii) asymptotically stable in probability if ∀ ε > 0 there is a class KL function

β(·, ·) such that

P{|x(t)| < β(|x0|, t)} ≥ 1− ε , ∀ t ≥ t0, x0 ∈ Rn\{0}.

(c) Stability in pth (p > 0) moment sense: system (2.13) is said to be

(i) pth (p > 0) moment stable if there is a class K function γ(·) such that

E|x(t)|p < γ(|x0|) , ∀ t ≥ t0, x0 ∈ Rn\{0};

(ii) pth (p > 0) moment asymptotically stable if there is a class KL function β(·, ·)
such that

E|x(t)|p < β(|x0|, t) , ∀ t ≥ t0, x0 ∈ Rn\{0}.

Particularly, when p = 2, system (2.13) is said to be mean-square (asymptotically)

stable.

(d) Stability in almost sure sense (or say, with probability 1): system (2.13) is said to

be almost surely asymptotically stable if

P{sup
t≥t0

|x(t; x0)| < ∞} = 1 and P{lim sup
t→∞

|x(t; x0)| = 0} = 1

for all x0 ∈ Rn.

These concepts of stability have the following relationship, where stability means

asymptotic stability.
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qth (q > 0) moment stability

⇓
pth (0 < p ≤ q) moment stability

⇓
almost sure stability ⇒ stability in probability ⇒ stability in distribution

Moreover, we introduce the definitions of exponential stability as follows.

(e) Exponential stability in pth (p > 0) moment sense: system (2.13) is said to be pth

(p > 0) moment exponentially stable if there is a pair of positive constants C and

ε such that

E|x(t; x0)|p ≤ C|x0|pe−εt, ∀ t ≥ t0, x0 ∈ Rn

which also implies that

lim sup
t→∞

1

t
log(E|x(t; x0)|p) ≤ −ε, ∀x0 ∈ Rn.

(f) Exponential stability in almost sure sense: system (2.13) is said to be almost surely

exponentially stable if there is a positive constant ε such that

lim sup
t→∞

1

t
log |x(t; x0)| ≤ −ε a.s., ∀x0 ∈ Rn.

2.7 Continuous-time Markov chains

In this section, we will recall some basic facts about a continuous-time Markov chain

(see [1] and [122]). Let X = {Xt}t≥0 be an n-dimensional stochastic process defined on

(Ω,F , {Ft},P) and taking values in a countable set S̄, which is called the state space of

the process.

Definition 2.5 The n-dimensional {Ft}-adapted process X = {Xt}t≥0 is called a continuous-

time Markov chain if it satisfies the Markov property, that is, for all 0 < t1 < · · · < tk ≤
t < ∞, il ∈ S̄ (1 ≤ l ≤ k) and j ∈ S̄,

P(Xt = j|Xt1 = i1, · · · , Xtk = ik) = P(Xt = j|Xtk = ik)

for any integer k > 0.
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Definition 2.6 A function p(s, i; t, j) = pij(s, t), defined on 0 ≤ s ≤ t < ∞, i ∈ S̄ and

j ∈ S̄, is called the transition probability of the continuous-time Markov chain X and

the matrix P (s, t) =
(
pij(s, t)

)
i,j∈S̄

is called the transition matrix of X if the following

properties are satisfied:

(i) pij(s, t) = P(Xt = j|Xs = i) for all t ≥ s ≥ 0 and i, j ∈ S̄;

(ii) pij(s, s) = δij for all s ≥ 0 and i, j ∈ S̄;

(iii)
∑

j∈S̄ pij(s, t) = 1 for all t ≥ s ≥ 0 and i ∈ S̄;

(iv) the Chapman-Kolmogorov equation

pij(s, t) =
∑

k∈S̄

pik(s, u)pkj(u, t) ,

or in matrix form

P (s, t) = P (s, u)P (u, t)

holds for all t ≥ u ≥ s ≥ 0.

The Markov chain X is said to be stationary if its transition probabilities pij(s, t),

i, j ∈ S̄, are stationary, that is, pij(s, t) depends only on the difference t − s for all

0 ≤ s ≤ t < ∞ and i, j ∈ S̄, which implies

P (s, s + u) = P (u)

for all s ≥ 0 and u ≥ 0. In this case, the transition probability and the transition

matrix of X can be written as pij(t) and P (t) (t ≥ 0) respectively. The transition matrix

P (t) =
(
pij(t)

)
i,j∈S̄

is said to be standard if limt→0 pii(t) = 1 for all i ∈ S̄.

Theorem 2.15 Let P (t) be a standard transition matrix, then

γi = lim
t→0

1− pii(t)

t

exists (but may be ∞) for every i ∈ S̄.

A state i ∈ S̄ is said to be stable if γi < ∞.
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Theorem 2.16 Let P (t) be a standard transition matrix and i ∈ S̄ is a stable state.

Then

γij = lim
t→0

pij(t)− pij(0)

t

exists and is finite for every j ∈ S̄.

It is observed that γii = −γi for all i ∈ S̄. The matrix Γ =
(
γij

)
i,j∈S̄

is called the

generator of the Markov chain X. The Markov chain X is said to be finite when the

number of elements in its state space S̄ is finite. In this thesis, we assume that all Markov

chains are finite and all their states are stable.

In the sequel, let S̄ = S = {1, 2, · · · , N} be the finite state space of continuous-time

Markov chain X.

Theorem 2.17 Let P (t) =
(
pij(t)

)
N×N

be the transition matrix and Γ =
(
γij

)
N×N

be

the generator of the continuous-time Markov chain X. Then

P (t) = etΓ

for all t ≥ 0.

Recall that a continuous-time Markov chain X with generator Γ =
(
γij

)
N×N

can

be represented as a stochastic integral with respect to a Poisson random measure (see

[114], [30], [6] and [133]). Let {∆ij} be a sequence of consecutive, left-closed, right-open

intervals of length γij on the real axis such that

∆12 = [0, γ12) ,

∆13 = [γ12, γ12 + γ13) ,

...

∆1N =

[
N−1∑
j=2

γ1j,

N∑
j=2

γ1j

)
,

∆21 =

[
N∑

j=2

γ1j,

N∑
j=2

γ1j + γ21

)
,

∆23 =

[
N∑

j=2

γ1j + γ21,

N∑
j=2

γ1j + γ21 + γ23

)
,

...

∆2N =

[
N∑

j=2

γ1j +
N−1∑

j=1,j 6=2

γ2j,

N∑
j=2

γ1j +
N∑

j=1,j 6=2

γ2j

)
,
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and so on. Define a function h : S ×R → R by

h(i, y) =





j − i , if y ∈ ∆ij ,

0 , otherwise.
(2.18)

Then

dXt =

∫

R

h(Xt−, y)ν(dt, dy) (2.19)

with initial condition X0 = i0 ∈ S, where ν(dt, dy) is a Poisson measure with intensity

dt×m(dy), in which m is the Lebesgue measure on R.

2.8 Stochastic differential equations with Markovian

switching

Let W (t) be an m-dimensional Brownian motion defined on (Ω,F , {Ft},P). Let r(t), t ≥
0, be a right-continuous Markov chain, on the same probability space, taking values in a

finite state space S = {1, 2, · · · , N} with generator Γ = (γij)N×N given by

P {r(t + ∆) = j : r(t) = i} =





γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,
(2.20)

where ∆ > 0 and γij ≥ 0 is the transition rate from i to j if i 6= j while γii = −∑
j 6=i γij.

Assume that the Markov chain r(·) is independent of the Brownian motion W (·). It is

known that almost all sample paths of r(t) are right-continuous step functions with a

finite number of simple jumps in any finite subinterval of R+ := [0,∞).

Consider an n-dimensional stochastic differential equation with Markovian switching

dx(t) = f(x(t), t, r(t))dt + g(x(t), t, r(t))dW (t) (2.21)

on t ≥ 0 with initial data x(0) = x0 ∈ Rn and r(0) = r0 ∈ S, where f : Rn×R+×S → Rn

and g : Rn × R+ × S → Rn×m are Borel measurable functions. We assume that both f

and g are sufficiently smooth so that equation (2.21) has a unique solution (see [79] and

[133]).

Let C2,1(Rn × R+ × S; R+) denote the family of all nonnegative functions V (x, t, i)

on Rn × R+ × S that are twice continuously differentiable in x and once in t. If V ∈
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C2,1(Rn ×R+ × S; R+), define an operator associated with (2.21), L, from Rn ×R+ × S

to R by

LV (x, t, i) = Vt(x, t, i) + Vx(x, t, i)f(x, t, i)

+
1

2
trace

[
gT (x, t, i)Vxx(x, t, i)g(x, t, i)

]
+

N∑
j=1

γijV (x, t, j), (2.22)

where

Vt(x, t, i) =
∂V (x, t, i)

∂t
, Vx(x, t, i) =

(
∂V (x, t, i)

∂x1

, · · · ,
∂V (x, t, i)

∂xn

)

and

Vxx(x, t, i) =

(
∂2V (x, t, i)

∂xj∂xk

)

n×n

.

The generalized Itô’s formula, cited as follows (see p105 [114]), is useful for the

development of this thesis.

Lemma 2.2 If V ∈ C2,1(Rn ×R+ × S; R+), then

V (x(t), t, r(t))

= V (x(0), 0, r(0)) +

∫ t

0

LV (x(s), s, r(s))ds

+

∫ t

0

Vx(x(s), s, r(s))g(x(s), s, r(s))dW (s)

+

∫ t

0

∫

R

[
V (x(s), s, r(0) + h(r(s), l))− V (x(s), s, r(s))

]
µ(ds, dl) (2.23)

for all t ≥ 0, where function h(·, ·) is defined as (2.18) and µ(ds, dl) = ν(ds, dl)−m(dl)ds

is a martingale measure (see also [6], [30] and [133]).

Taking expectation on both sides of (2.23) immediately yields

Lemma 2.3 Let V ∈ C2,1(Rn × R+ × S; R+) and ρ1, ρ2 be stopping times such that

0 ≤ ρ1 ≤ ρ2 < ∞ a.s.. If

sup
t∈[ρ1,ρ2]

|V (x(t), t, r(t))| < ∞ and sup
t∈[ρ1,ρ2]

|LV (x(t), t, r(t))| < ∞ a.s. ,

then

EV (x(ρ2), ρ2, r(ρ2)) = EV (x(ρ1), ρ1, r(ρ1)) + E
∫ ρ2

ρ1

LV (x(s), s, r(s))ds . (2.24)
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Generally, stopping times ρ1 and ρ2 are defined such that supt∈[ρ1,ρ2] |x(t)| < ∞ a.s.

when this formula (2.24) is applied.

These results can be extended to stochastic functional equations with Markovian

switching (see [79], [87] and [133]).
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Chapter 3

Robust state-feedback stabilisation

of uncertain stochastic systems with

input delay

3.1 Introduction

Problems of stability and stabilisation of delay systems have been investigated in many

works (see, e.g., [17]-[20], [26]-[28], [31]-[35], [57], [66], [99]-[102], [108], [127]-[135]) over

the past decades. Time delays often appear in practical systems and may inhibit the

performance of a system. Particularly, due to time spent for example in computation,

sensor-to-controller and controller-to-actuator transfer, control input is usually subject to

delays. The presence of time delays of input may be the cause of serious deterioration of

performance or even instability of the resulting controlled system if it is not considered in

a controller design. Problems of stabilisation for deterministic systems with input delay

have been intensively studied (see [18], [52], [66], [99], [134] and [135]) over the past few

years.

Since stochastic modelling plays an important role in many branches of science and

engineering, stochastic systems have received much attention in recent years (see, e.g.,

[25], [53] and [88]). An area of particular interest has been control of stochastic delay

systems, with consequent emphasis on analysis of stability of stochastic models (see [17],

[25], [42], [43], [53], [60], [80]-[91], [135]). These works can be classified into two categories
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according to their dependence on the information about the size of time delays of the

system, say, they are either delay-independent results ([25], [42], [53], [60], [75]-[78], [84],

[88], [112], [128], [130]) or delay-dependent criteria ([17], [43], [53], [74], [88], [135]).

Generally, for the cases of small delays, delay-independent results are more conservative

than those dependent on size of delays. Recently, increasing attention has been placed on

delay-dependent stability of stochastic delay systems (see [5], [17], [59], [74], [88], [110]

and [135]). Particularly, Corollary 6.6, p182, [88] applied the Razumikhin technique

to establish a delay-dependent criterion that only requires the time delay τ(t) to be a

bounded function of t, see Example (6.55), p189, [88] and Example 3.1 below. However,

these existing methods do not deal with the structure of the diffusion terms but estimate

their upper bound, which induces conservativeness in many cases such as Example 3.2.

Moreover, stochastic systems with input delay have been studied in [130]. But the results

can not be applied to a significant number of cases when the unforced non-delay system

is unstable (see, e.g., Example 3.3).

The study in this chapter is concerned with problems of delay-dependent stability and

delayed-state-feedback stabilisation of uncertain stochastic systems. By the approach of

linear matrix inequalities (LMIs), we present a delay-dependent criterion for exponential

stability of uncertain stochastic delay systems, which exploits the advantages of structure

of the diffusion term and reduces the conservativeness of the existing methods. Based

on this stability result, we further study the problem of stabilisation of systems with

input delay and propose a state-feedback controller design that exponentially stabilises

the uncertain stochastic system with input delay. Numerical examples are exhibited to

show that our results are considerably less conservative than the existing ones.

3.2 Problem statement

Throughout this chapter, unless otherwise specified, we will employ the following nota-

tion. Let (Ω,F , {Ft}t≥0,P) be a probability space with a filtration {Ft}t≥0 satisfying

the usual conditions and E[·] be the expectation operator with respect to the probability

measure. Let w(t) be a scalar Brownian motion defined on the probability space. If A

is a vector or matrix, its transpose is denoted by AT . If P is a square matrix, P > 0

(P < 0) means that P is a symmetric positive (negative) definite matrix of appropriate
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dimensions while P ≥ 0 (P ≤ 0) is a symmetric positive (negative) semidefinite matrix.

I stands for the identity matrix of appropriate dimensions. Denote by λM(·) and λm(·)
the maximum and minimum eigenvalue of a matrix respectively. Let | · | denote the

Euclidean norm of a vector and its induced norm of a matrix. Unless explicitly stated,

matrices are assumed to have real entries and compatible dimensions. For h > 0 let

C([−h, 0]; Rn) denote the family of all continuous Rn-valued functions ϕ on [−h, 0] with

the norm ‖ϕ‖ = sup{|ϕ(θ)| : −h ≤ θ ≤ 0}. Let L̃2
F0

([−h, 0]; Rn) be the family of all

F0-measurable C([−h, 0]; Rn)-valued random variables ϕ such that E‖ϕ‖2 < ∞.

Let us consider an n-dimensional uncertain stochastic delay system

dx(t) = [A0(t)x(t) + A1(t)x(t− τ(t)) + B(t)u(t− τ(t))] dt

+ [H0(t)x(t) + H1(t)x(t− τ(t))] dw(t) (3.1)

on t ≥ 0 with initial data x0 = {x(θ) : −h ≤ θ ≤ 0} = ξ ∈ L̃2
F0

([−h, 0]; Rn), where

x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the control input; the time delay of the

system τ(t), also written as τ in this chapter, is a Borel-measurable function on t ≥ 0

with 0 ≤ τ(t) ≤ h for all t ≥ 0, where h is a positive scalar constant; Ai(t), B(t), and

Hi(t), i = 0, 1, are matrix functions with time-varying uncertainties described as follows:

Ai(t) = Ai +∆Ai(t) , B(t) = B +∆B(t) , Hi(t) = Hi +∆Hi(t) , where Ai, B, and Hi are

known constant matrices while uncertainties ∆Ai(t), ∆B(t), and ∆Hi(t) are assumed to

be norm bounded, i.e.,

[
∆Ai(t) ∆B(t)

]
= LAFA(t)

[
EAi EB

]
,

∆Hi(t) = LHFH(t)EHi

(3.2)

with known constant matrices LA, EAi, EB, LH , and EHi, and unknown matrix functions

FA(t) and FH(t) having Lebesgue measurable elements and satisfying

F T
A (t)FA(t) ≤ I, F T

H(t)FH(t) ≤ I, ∀t ≥ 0. (3.3)

The parameter uncertainties ∆Ai(t), ∆B(t), and ∆Hi(t), i = 0, 1, are said to be admis-

sible if both (3.2) and (3.3) hold.

Denote

f(t) = f(t, xt) = A0(t)x(t) + A1(t)x(t− τ) ,

g(t) = g(t, xt) = H0(t)x(t) + H1(t)x(t− τ)
(3.4)

30



for all t ≥ 0. One can observe that

|f(t)|+ |g(t)| ≤ CL‖xt‖ , ∀t ≥ 0 (3.5)

where xt = {x(t+θ) : −h ≤ θ ≤ 0} and CL =
∑1

i=0 ( |Ai|+ |LA| |EAi|+ |Hi|+ |LH | |EHi| ) .

This implies that both f(·, ·) and g(·, ·) satisfy the local Lipschitz condition and the lin-

ear growth condition with respect to the second argument. According to Theorem 2.2,

p150, [88], there exists a unique solution denoted by x(t; ξ) to the stochastic functional

differential equation

dx(t) = [A0(t)x(t) + A1(t)x(t− τ)] dt + [H0(t)x(t) + H1(t)x(t− τ)] dw(t) (3.6)

on t ≥ 0.

In this chapter, we intend: (i) to establish new delay-dependent sufficient conditions

for robust exponential stability of the unforced uncertain stochastic delay system (3.6);

and (ii) to design a robust state-feedback controller

u(t) = Kx(t) (3.7)

which exponentially stabilise system (3.1), where K is a constant gain matrix to be

determined. For simplicity only, we take a single delay τ = τ(t) in our models. The

proposed method can be easily extended to those cases with multiple and distributed

delays.

At the end of this section, let us introduce the following definitions and lemmas that

are useful for the development of our results.

Definition 3.1 ([88]) The uncertain stochastic delay system (3.6) is said to be robustly

exponentially stable in mean square if there is a positive constant ε such that

lim sup
t→∞

1

t
logE|x(t; ξ)|2 ≤ −ε (3.8)

for all admissible uncertainties (3.2) and (3.3).

Definition 3.2 ([88]) The uncertain stochastic delay system (3.6) is said to be robustly

almost surely exponentially stable if there is a positive constant ε such that

lim sup
t→∞

1

t
log |x(t; ξ)| ≤ −ε a.s. (3.9)

for all admissible uncertainties (3.2) and (3.3).
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Lemma 3.1 ([126]) For any constant matrix M ∈ Rq×l, the inequality

2uT Mv ≤ ruT MGMT u +
1

r
vT G−1v , u ∈ Rq , v ∈ Rl

holds for any symmetric positive definite matrix G ∈ Rl×l and any positive number r > 0.

Lemma 3.2 ([32])For any symmetric positive definite constant matrix G ∈ Rl×l and

any scalar r > 0, if there exists a vector function v : [0, r] → Rl such that integrals
∫ r

0
vT (s)Gv(s)ds and

∫ r

0
v(s)ds are well defined, then the following inequality holds

r

∫ r

0

vT (s)Gv(s)ds ≥
(∫ r

0

v(s)ds

)T

G

(∫ r

0

v(s)ds

)
.

Lemma 3.3 ([100]) Assume that u ∈ Rq, v ∈ Rl and M ∈ Rq×l. For any constant

matrices X ∈ Rq×q, Y ∈ Rq×l and Z ∈ Rl×l, the inequality

−2uT Mv ≤

u

v




T 
 X Y −M

Y T −MT Z





u

v




holds when


 X Y

Y T Z


 ≥ 0 .

3.3 Delay-dependent exponential stability

Sufficient conditions for robust exponential stability of the uncertain stochastic delay

system (3.6) are proposed as follows.

Theorem 3.1 The uncertain stochastic delay system (3.6) is robustly mean-square expo-

nentially stable and is also robustly almost surely exponentially stable provided that there

exist matrices P11 > 0, R > 0, S > 0, Q ≥ 0, W ≥ 0, P21, P22, P23, P31, P32, P33, M

and scalar numbers εA > 0, εH > 0 such that



Φ11 ∗ ∗ ∗ ∗ ∗ ∗
Φ21 Φ22 ∗ ∗ ∗ ∗ ∗
Φ31 Φ32 Φ33 ∗ ∗ ∗ ∗
Φ41 Φ42 Φ43 Φ44 ∗ 0 0

Φ51 Φ52 Φ53 Φ54 Φ55 0 0

LT
AP21 LT

AP22 LT
AP23 0 0 −εAI 0

LT
HP31 LT

HP32 LT
HP33 0 0 0 −εHI




< 0 (3.10)
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and 
W MT

M Q


 ≥ 0 , (3.11)

where

W =




W11 ∗ ∗
W21 W22 ∗
W31 W32 W33


 , M =

[
M1 M2 M3

]
,

Φ11 = P T
21(A0 + A1) + (A0 + A1)

T P21 + P T
31(H0 + H1) + (H0 + H1)

T P31 + hW11

+ εA(EA0 + EA1)
T (EA0 + EA1) + εH(EH0 + EH1)

T (EH0 + EH1) ,

Φ21 = P T
22(A0 + A1) + P T

32(H0 + H1) + P11 − P21 + hW21 ,

Φ31 = P T
23(A0 + A1) + P T

33(H0 + H1)− P31 + hW31 ,

Φ41 = h
(
M1 − AT

1 P21 −HT
1 P31 − εAET

A1(EA0 + EA1)− εHET
H1(EH0 + EH1)

)
,

Φ51 = −AT
1 P21 −HT

1 P31 − εAET
A1(EA0 + EA1)− εHET

H1(EH0 + EH1) ,

Φ22 = −P T
22 − P22 + h(W22 + R + Q) , Φ32 = −P T

23 − P32 + hW32 ,

Φ42 = h
(
M2 − AT

1 P22 −HT
1 P32

)
, Φ52 = −AT

1 P22 −HT
1 P32 ,

Φ33 = −P T
33 − P33 + P11 + h(W33 + S) , Φ43 = h

(
M3 − AT

1 P23 −HT
1 P33

)
,

Φ53 = −AT
1 P23 −HT

1 P33 , Φ44 = −hR + εAh2ET
A1EA1 + εHh2ET

H1EH1 ,

Φ54 = h
(
εAET

A1EA1 + εHET
H1EH1

)
, Φ55 = −S + εAET

A1EA1 + εHET
H1EH1 ,

and entries denoted by ∗ can be readily inferred from symmetry of a matrix.

Proof. By notation (3.4), we can rewrite the unforced system (3.6) for short as

dx(t) = f(t)dt + g(t)dw(t) (3.12)

on t ≥ 0 with initial data ξ. So we have

x(t2)− x(t1) =

∫ t2

t1

f(s)ds + g(s)dw(s) (3.13)

for all t2 ≥ t1 ≥ 0.

By (3.4) and (3.13), we can observe that

f(t) =
1∑

i=0

Ai(t)x(t)− A1(t)

∫ t

t−τ

f(s)ds + g(s)dw(s) (3.14)
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g(t) =
1∑

i=0

Hi(t)x(t)−H1(t)

∫ t

t−τ

f(s)ds + g(s)dw(s) (3.15)

for all t ≥ h.

Choose a Lyapunov-Krasovskii functional candidate for system (3.13) as follows:

V (t) = V1(t) + V2(t) + V3(t) , (3.16)

where

V1(t) = xT (t)P11x(t) ,

V2(t) =

∫ t

t−h

(s− t + h)fT (s)(R + Q)f(s)ds ,

V3(t) =

∫ t

t−h

(s− t + h)gT (s)Sg(s)ds .

for all t ≥ h. By Itô’s formula, we have

dV (t) = LV (t)dt + σ(t)dw(t) , (3.17)

where

LV (t) = 2xT (t)P11f(t) + gT (t)P11g(t) + V̇2(t) + V̇3(t),

σ(t) = 2xT (t)P11g(t) .

(3.18)

Denote

y(t) =




x(t)

f(t)

g(t)


 and P =




P11 0 0

P21 P22 P23

P31 P32 P33


 . (3.19)

By equalities (3.14) and (3.15), we have

2xT (t)P11f(t) = 2




x(t)

f(t)

g(t)




T 


P11 P T
21 P T

31

0 P T
22 P T

32

0 P T
23 P T

33







f(t)

0

0


 = 2yT (t)P T




f(t)

0

0




= 2yT (t)P T








0 I 0
1∑

i=0

Ai(t) −I 0

1∑
i=0

Hi(t) 0 −I




y(t)−




0

A1(t)

H1(t)




∫ t

t−τ

f(s)ds + g(s)dw(s)





. (3.20)
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By Lemma 3.3 and equalities (3.11)-(3.13), we see

−2yT (t)P T
[
0 AT

1 (t) HT
1 (t)

]T
∫ t

t−τ

f(s)ds

=

∫ t

t−τ

−2yT (t)P T
[
0 AT

1 (t) HT
1 (t)

]T

f(s)ds

≤
∫ t

t−τ


y(t)

f(s)




T 
 W ∗

M −
[
0 A1(t) H1(t)

]
P Q





y(t)

f(s)


 ds

≤ hyT (t)Wy(t) +

∫ t

t−h

fT (s)Qf(s)ds

+ 2yT (t)

(
MT − P T

[
0 AT

1 HT
1

]T
) ∫ t

t−τ

f(s)ds

− 2yT (t)P T
[
0 ∆AT

1 (t) ∆HT
1 (t)

]T
∫ t

t−τ

f(s)ds . (3.21)

Substitution of (3.21) into (3.20) gives

2xT (t)P11f(t)

≤ yT (t)
[
P T Ā + ĀT P + hW

]
y(t) + 2yT (t)P T ∆AH(t)x(t)

+ 2yT (t)

(
MT − P T

[
0 AT

1 HT
1

]T
) ∫ t

t−τ

f(s)ds

− 2yT (t)P T
[
0 AT

1 HT
1

]T
∫ t

t−τ

g(s)dw(s) +

∫ t

t−h

fT (s)Qf(s)ds

− 2yT (t)P T
[
0 ∆AT

1 (t) ∆HT
1 (t)

]T
(∫ t

t−τ

f(s)ds +

∫ t

t−τ

g(s)dw(s)

)
, (3.22)

where Ā =




0 I 0
∑1

i=0 Ai −I 0
∑1

i=0 Hi 0 −I


 and ∆AH(t) =




0
∑1

i=0 ∆Ai(t)
∑1

i=0 ∆Hi(t)


.

Let ẼA =
[∑1

i=0 EAi 0 0 − hEA1 − EA1

]
, L̃T

A =
[
LT

AP21 LT
AP22 LT

AP23 0 0
]T

, ẼH =
[∑1

i=0 EHi 0 0 − hEH1 −EH1], L̃T
H =

[
LT

HP31 LT
HP32 LT

HP33 0 0
]
, and

zT (t) =
[
zT
1 (t) zT

2 (t) zT
3 (t) zT

4 (t) zT
5 (t)

]T

=

[
xT (t) fT (t) gT (t)

1

h

∫ t

t−τ

fT (s)ds

∫ t

t−τ

gT (s)dw(s)

]T

.

Then, by Lemma 3.1, we have

2yT (t)P T

{[
0

1∑
i=0

∆AT
i (t) 0

]T

x(t)−
[
0 ∆AT

1 (t) 0
]T

·
(∫ t

t−τ

f(s)ds +

∫ t

t−τ

g(s)dw(s)

)}

= 2zT (t)L̃AFA(t)ẼAz(t) ≤ ε−1
A zT (t)L̃AL̃T

Az(t) + εAzT (t)ẼT
AẼAz(t) (3.23)
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and

2yT (t)P T

{[
0 0

1∑
i=0

∆HT
i (t)

]T

x(t)−
[
0 0 ∆HT

1 (t)
]T

·
(∫ t

t−τ

f(s)ds +

∫ t

t−τ

g(s)dw(s)

)}

≤ ε−1
H zT (t)L̃HL̃T

Hz(t) + εHzT (t)ẼT
HẼHz(t) . (3.24)

Inequalities (3.23) and (3.24) imply

2yT (t)P T

{
∆AH(t)x(t)−

[
0 ∆AT

1 (t) ∆HT
1 (t)

]T
(∫ t

t−τ

f(s)ds +

∫ t

t−τ

g(s)dw(s)

)}

≤ zT (t)
[
ε−1

A L̃AL̃T
A + εAẼT

AẼA + ε−1
H L̃HL̃T

H + εHẼT
HẼH

]
z(t) . (3.25)

Combination of inequalities (3.20)-(3.25) yields

2xT (t)P11f(t) + gT (t)P11g(t) ≤ zT (t)Γz(t) +

∫ t

t−h

fT (s)Qf(s)ds , (3.26)

where Γ is a symmetric matrix, i.e.,

Γ =




Γ11 ∗ ∗ ∗ ∗
Γ21 Γ22 ∗ ∗ ∗
Γ31 Γ32 Γ33 ∗ ∗
Γ41 Γ42 Γ43 Γ44 ∗
Γ51 Γ52 Γ53 Γ54 Γ55




with

Γ11 = Φ11 + ε−1
A P T

21LALT
AP21 + ε−1

H P T
31LHLT

HP31 ,

Γ21 = Φ21 + ε−1
A P T

22LALT
AP21 + ε−1

H P T
32LHLT

HP31 ,

Γ31 = Φ31 + ε−1
A P T

23LALT
AP21 + ε−1

H P T
33LHLT

HP31 , Γ41 = Φ41 , Γ51 = Φ51 ,

Γ22 = Φ22 − h(R + Q) + ε−1
A P T

22LALT
AP22 + ε−1

H P T
32LHLT

HP32 ,

Γ32 = Φ32 + ε−1
A P T

23LALT
AP22 + ε−1

H P T
33LHLT

HP32 , Γ42 = Φ42 , Γ52 = Φ52 ,

Γ33 = Φ33 − hS + ε−1
A P T

23LALT
AP23 + ε−1

H P T
33LHLT

HP33 , Γ43 = Φ43 , Γ53 = Φ53 ,

Γ44 = Φ44 + hR , Γ54 = Φ54 , Γ55 = Φ55 + S .

Direct computations give

V̇2(t) = zT
2 (t)h(R + Q)z2(t)− zT

4 (t)hRz4(t)− rf (t)−
∫ t

t−h

fT (s)Qf(s)ds, (3.27)

V̇3(t) = zT
3 (t)hSz3(t)−

∫ t

t−τ

gT (s)Sg(s)ds− rg(t), (3.28)
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where, according to Lemma 3.2, rf (t) =
∫ t

t−h
fT (s)Rf(s)ds − zT

4 (t)hRz4(t) ≥ 0 and

rg(t) =
∫ t−τ

t−h
gT (s)Sg(s)ds ≥ 0 for all t ≥ h.

Substitution of inequalities (3.26)-(3.28) into (3.18) yields

LV (t) ≤ zT (t)Γz(t) + zT
2 (t)h(R + Q)z2(t) + zT

3 (t)hSz3(t)

− zT
4 (t)hRz4(t)−

∫ t

t−τ

gT (s)Sg(s)ds− rf (t)− rg(t) . (3.29)

By isometry property, we have

E
[
zT
5 (t)Sz5(t)

]
= E

[∫ t

t−τ

gT (s)Sg(s)ds

]
.

Therefore, taking expectation on both sides of (3.29) yields

ELV (t) ≤ E
[
zT (t)Γ̃z(t)− rf (t)− rg(t)

]
, (3.30)

where Γ̃ = Γ + diag
{

0, h(R + Q), hS, −hR, −S
}

.

By the Schur complement lemma, inequality (3.10) implies that Γ̃ < 0. So we have

ELV (t) ≤ −λ0E|z(t)|2 − E[rf (t)]− E[rg(t)]

≤ −λ0E[|z1(t)|2 + |z4(t)|2 + |z5(t)|2]− E[rf (t)]− E[rg(t)]

≤ −λ0E|x(t)|2 − E[zT
4 (t)(λ0I − hR)z4(t)]

− E
∫ t

t−h

fT (s)Rf(s)ds− λgE
∫ t

t−h

|g(s)|2ds,

where λ0 = λm(−Γ̃) > 0 and λg = min{λ0, λm(S)} > 0.

By definition of (3.16), we see

α0|x(t)|2 ≤ V (t) ≤ α1|x(t)|2 + h

∫ t

t−h

fT (s)(R + Q)f(s)ds + αg

∫ t

t−h

|g(s)|2ds (3.31)

for all t ≥ h, where α0 = λm(P11), α1 = λM(P11) and αg = hλM(S). Choose ε > 0 such

that

λ0 ≥ εα1, λg ≥ εαg, λ0 ≥ εαf and Rf > 0, (3.32)

where αf = h2λM(R + Q) and Rf = R− εh(R + Q).

By Itô’s formula, we have

d [eεsV (s)] = eεs [εV (s) + LV (s)] ds + eεsσ(s)dw(s) . (3.33)
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Let t0 = h, then, by Lemma 3.2, we have

E
[
eεtV (t)

]− E [
eεt0V (t0)

]

= E
∫ t

t0

eεs [εV (s) + LV (s)] ds

≤
∫ t

t0

eεs
{
E

[
(εα1 − λ0)|x(s)|2 − zT

4 (s)(λ0I − hR)z4(s)

−
∫ s

s−h

fT (v)Rff(v)dv + (εαg − λg)

∫ s

s−h

|g(v)|2dv
]}

ds

≤ −
∫ t

t0

eεs
{
E

[
zT
4 (s)(λ0I − hR + hRf )z4(s)

]}
ds

≤ −
∫ t

t0

eεs
{
E

[
zT
4 (s)(λ0I − εh2(R + Q))z4(s)

]}
ds

≤ −
∫ t

t0

eεs
{
E

[
(λ0 − εαf )|z4(s)|2

]}
ds

≤ 0 (3.34)

for all t ≥ t0. By linear growth condition (3.5) and Theorem 4.1, p160, [88], there are

positive constants C1 and C2 such that

eεtEV (t) ≤ eεt0EV (t0) ≤ C1 + C2E‖ξ‖2 (3.35)

for all t ≥ t0. So we have

E|x(t)|2 ≤ α−1
0 Che

−εt, (3.36)

where Ch = C1 + C2E‖ξ‖2 < ∞. This implies

lim sup
t→∞

1

t
logE|x(t)|2 ≤ −ε . (3.37)

The mean-square exponential stability has been proven. Moreover,

|f(t)|2 ≤ 2
[|A0(t)|2|x(t)|2 + |A1(t)|2|x(t− h)|2] .

Let Kf = 2
1∑

i=0

(|Ai|+ |LA| · |EAi|)2, then we have

E|f(t)|2 ≤ 2
[|A0(t)|2E|x(t)|2 + |A1(t)|2E|x(t− h)|2]

≤ Kf sup
−h≤θ≤0

E|x(t + θ)|2 . (3.38)

Similarly, letting Kg = 2
1∑

i=0

(|Hi|+ |LH | · |EHi|)2, we have

E|g(t)|2 ≤ Kg sup
−h≤θ≤0

E|x(t + θ)|2 . (3.39)
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But, by Theorem 6.2, p175, [88], or, Theorem 2.2, [75], inequalities (3.36), (3.38) and

(3.39) imply

lim sup
t→∞

1

t
log |x(t)| ≤ −ε

2
a.s. , (3.40)

which completes the proof.

Remark 3.1 It is easy to derive a corollary from Theorem 3.1 by setting P31 = P32 = 0,

which will be used in the study of stabilisation of stochastic delay system (3.1).

3.4 Robust state-feedback stabilisation

This section is devoted to designing a state-feedback controller of form (3.7) that robustly

stabilises uncertain stochastic delay system with input delay (3.1).

Theorem 3.2 The closed-loop stochastic delay system (3.1) and (3.7) is robustly mean-

square exponentially stable and is also robustly almost surely exponentially stable if, for

given scalar numbers δR > 0, δS > 0, δQ > 0 and δM , there exist matrices X1 > 0, X2,

X3, Y , Z, K̄, W̄ and positive numbers βA > 0, βH > 0 such that



Ψ11 ∗ ∗ 0 0 ∗ 0 ∗ ∗
Ψ21 Ψ22 ∗ ∗ ∗ ∗ 0 0 0

Ψ31 Ψ32 Ψ33 ∗ ∗ ∗ ∗ 0 0

0 Ψ42 Ψ43 −δRhX1 0 0 0 ∗ ∗
0 Ψ52 −X1H

T
1 0 −δSX1 0 0 ∗ ∗

Ψ61 Ψ62 Ψ63 0 0 −X1 0 0 0

0 0 Ψ73 0 0 0 −X1 0 0

Ψ81 0 0 Ψ84 Ψ85 0 0 −βAI 0

Ψ91 0 0 −hEH1X1 −EH1X1 0 0 0 −βHI




< 0 (3.41)

and 
W̄ M̄T

M̄ δQX1


 ≥ 0 , (3.42)

where

W̄ =




W̄11 ∗ ∗
W̄21 W̄22 ∗
W̄31 W̄32 W̄33


 , M̄ = δM

[
0 X1A

T
1 + K̄T BT X1H

T
1

]
,
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Ψ11 = −Y T − Y + hW̄11, Ψ21 = (A0 + A1)X1 + BK̄ + XT
2 + Y + hW̄21,

Ψ31 = −ZT + (H0 + H1)X1 + hW̄31, Ψ61 =
√

h(δR + δQ) Y,

Ψ81 = (EA0 + EA1)X1 + EBK̄, Ψ91 = (EH0 + EH1)X1,

Ψ22 = −XT
2 −X2 + hW̄22 + βALALT

A, Ψ32 = ZT + hW̄32,

Ψ42 = h(δM − 1)(X1A
T
1 + K̄T BT ), Ψ52 = −(X1A

T
1 + K̄T BT ),

Ψ62 = −
√

h(δR + δQ) X2, Ψ33 = −XT
3 −X3 + hW̄33 + βHLHLT

H ,

Ψ43 = h(δM − 1)X1H
T
1 , Ψ63 =

√
h(δR + δQ) Z, Ψ73 =

√
1 + hδS X3,

Ψ84 = −h(EA1X1 + EBK̄), Ψ85 = −(EA1X1 + EBK̄).

In this case, the gain matrix of (3.7) can be chosen as K = K̄X−1
1 .

Proof. Substituting (3.7) into (3.1) yields dynamics of the closed-loop system

dx(t) = [A0(t)x(t) + (A1(t) + B(t)K)x(t− τ)] dt + [H0(t)x(t) + H1(t)x(t− τ)] dw(t)

(3.43)

for all t ≥ 0. From the proof of Theorem 3.1, we observe that system (3.43) is exponen-

tially stable if inequalities (3.11) and Θ < 0 are satisfied, where Θ is derived from Γ̃ in

(3.30) by replacing A1 and EA1 with A1 + BK and EA1 + EBK respectively.

In order to obtain a convex optimization problem, we consider the case of R = δRP11,

S = δSP11, Q = δQP11, M = δM

[
0 (A1 + BK)T HT

1

]
P ,

P =




P11 0 0

P21 P22 P23

0 0 P33




and

P−1 =




P−1
11 0 0

−P−1
22 P21P

−1
11 P−1

22 −P−1
22 P23P

−1
33

0 0 P−1
33


 . (3.44)

Define X1 = P−1
11 > 0, X2 = P−1

22 , X3 = P−1
33 , βA = ε−1

A , βH = ε−1
H , Y = P−1

22 P21P
−1
11 ,

Z = P−1
22 P23P

−1
33 , K̄ = KX1, W̄ = (P−1)T WP−1, and G = diag{P−1, P−1

11 , P−1
11 }. By

the Schur complement lemma, inequality (3.41) implies Θ̃ < 0 and hence Θ < 0, where

Θ̃ = GT ΘG. Moreover, premultiplying by diag{(P−1)T , P−1
11 } and postmultiplying by

diag{P−1, P−1
11 } inequality (3.11) leads to LMI (3.42), which implies that (3.11) and
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(3.42) are equivalent when Q = δQP11 and M = δM

[
0 (A1 + BK)T HT

1

]
P . The proof

is complete.

3.5 Comments on “Delay-dependent robust stability

for stochastic time-delay systems with polytopic

uncertainties”

Recently, [59] proposes in terms of LMIs a delay-dependent criterion for stability of

stochastic delay systems with polytopic uncertainties

dx(t) = [Aαx(t) + Bαx(t− h)]dt + [Cαx(t) + Dαx(t− h)]dw(t) (3.45)

x(θ) = φ(θ), θ ∈ [−h, 0]

where matrices Aα, Bα, Cα and Dα are subject to uncertainties satisfying real convex

polytopic model [
Aα Bα Cα Dα

]
∈ Ω

Ω =

{[
Aα Bα Cα Dα

]
=

N∑
i=1

αi

[
Ai Bi Ci Di

]
,

N∑
i=1

αi = 1, αi ≥ 0

}
(3.46)

where α = [ α1 α2 · · · αN ] denotes an uncertain vector satisfying αi ≥ 0 and
∑N

i=1 αi = 1, and Aα, Bα, Cα and Dα are constant matrices (see [59]).

However, there appears to be a technical error in the proof of Theorem 1 in [59],

which may lead to the unjustified result. Let us look at matrices Ψα and Ξ that are given

in [59] as follows

Ψα =




Φα PαBα −Mα Mα CT
α Pα µCT

α Pα µAT
αPα

∗ −Sα 0 DT
αPα µDT

αPα µBT
α Pα

∗ ∗ −Rα 0 0 0

∗ ∗ ∗ −Pα 0 0

∗ ∗ ∗ ∗ −µRα 0

∗ ∗ ∗ ∗ ∗ −µQα



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with Φα = PαAα + AT
αPα + µWα + Mα + MT

α + Sα, and

Ξ =


Ξ11 Ξ12

∗ Ξ22




with

Ξ11 = PαAα + AT
αPα + µWα + Mα + MT

α + Sα + MαR−1
α MT

α + CT
α PαCα + µCT

α RαCα

+ µAT
αQαAα,

Ξ12 = PαBα −Mα + CT
α PαDα + µCT

α RαDα + µAT
αQαBα,

Ξ22 = −Sα + DT
αPαDα + µDT

αRαDα + µBT
α QαBα.

In the proof of Theorem 1 in [59], the authors claimed that

Ψα < 0 ⇒ Ξ < 0 . (3.47)

But, unless Pα = Rα = Qα, this may not be true. Instead, by the Schur complement

lemma, one has

Πα < 0 ⇒ Ξ < 0 , (3.48)

where

Πα =




Φα PαBα −Mα Mα CT
α Pα µCT

α Rα µAT
αQα

∗ −Sα 0 DT
αPα µDT

αRα µBT
α Qα

∗ ∗ −Rα 0 0 0

∗ ∗ ∗ −Pα 0 0

∗ ∗ ∗ ∗ −µRα 0

∗ ∗ ∗ ∗ ∗ −µQα




.

Consequently, a modified version of Theorem 1 in [59] may be given as follows

Theorem 3.3 Given a constant µ > 0, uncertain stochastic delay system (3.45) is ro-

bustly stochastically stable for any h satisfying 0 ≤ h ≤ µ, if there exist matrices Pj > 0,

Qj > 0, Sj > 0, Rj > 0, Wj and Mj such that

Πii < 0 , i = 1, 2, · · · , N (3.49)

Πik + Πki < 0 , 1 ≤ i < k ≤ N (3.50)

and 
Wi Mi

∗ Qi


 ≥ 0 , i = 1, 2, · · · , N (3.51)
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where

Πij =




Ωij PjBi −Mj Mj CT
i Pj µCT

i Rj µAT
i Qj

∗ −Sj 0 DT
i Pj µDT

i Rj µBT
i Qj

∗ ∗ −Rj 0 0 0

∗ ∗ ∗ −Pj 0 0

∗ ∗ ∗ ∗ −µRj 0

∗ ∗ ∗ ∗ ∗ −µQj




.

with Ωij = PjAi + AT
i Pj + µWj + Mj + MT

j + Sj for i = 1, 2, · · · , N and j = 1, 2, · · · , N .

3.6 Examples

In this section, examples are given to verify the effectiveness of the proposed method. To

compare with the existing results, we consider the case of constant delay τ ≡ h in some

of the following examples. It should be pointed out that our results apply to the systems

with time-varying delay τ(t) ∈ [0, h].

Example 3.1 Let us consider a stochastic delay system

dx(t) = A1x(t− τ)dt + H1x(t− τ)dw(t), (3.52)

where A1 =


−c 0

0.5 −1


 with c > 0 and H1 =


 0.5 1

−0.5 0.5


.

It is noted that delay-independent results can not be applied in this case. Moreover,

many delay-dependent results (see, e.g., [17], [59] and [135]) do not work when the time-

varying delay τ(t) is not differentiable or there is θ > 0 such that τ̇(θ) ≥ 1. Criterion

(6.54), p189, [88] gives the upper bound of time delay for exponential stability

hmax <
1

2 a2
1

(√
h4

1 +
1

2
(λ1 − h2

1)
2 − h2

1

)
(3.53)

if λ1 > h2
1, where λ1 = λm(−A1 − AT

1 ), a1 = |A1| and h1 = |H1|. When c = 1.5 and

λ1 = 1.7929 > h2
1 = 1.3257, (3.53) yields hmax < 0.0076; by Theorem 3.1, it is found that

the upper bound of time delay hmax = 0.1978. When c = 0.8 and λ1 = 1.2615 < h2
1 =

1.3257, criterion (6.54), p189, [88] does not work; but Theorem 3.1 gives hmax = 0.1523.

This example shows that the result of the proposed method is an improvement.
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Example 3.2 Let us look at a scalar stochastic delay system

dx(t) = −bx(t− τ)dt + [c0x(t) + c1x(t− τ)]dw(t) (3.54)

with 2b > c2
1 > 0.

Example (6.55), p189, [88] has studied system (3.54) with c0 = 0. It is found that

Theorem 3.1 yields hmax = 0.1339 for exponential stability of system (3.54) with b =

−c1 = 1 and c0 = 0, which is better than hmax <
√

3/8−1/2 = 0.1124 given by criterion

(6.54), p187, [88]. To compare with other results, we assume τ(t) ≡ h for all t ≥ 0.

Results by different methods for stability of constant delay case with b = −c1 = 1 and

various values of c0 are listed in Table 3.1, where Thm=Theorem and na=not applicable.

Table 3.1: hmax by different methods

c0 [5] [17] Thm 3.3 Thm 3.1

0.0 0.4999 0.1715 0.1339 0.1339

0.2 0.2799 0.1454 0.1760 0.1856

0.4 0.0199 0.0818 0.1894 0.2300

0.6 na 0.0159 0.1818 0.2627

0.8 na na 0.1612 0.2927

1.0 na na 0.1339 0.3200

1.2 na na 0.1046 0.3345

1.4 na na 0.0763 0.2233

Example 3.3 Consider the following stochastic system that describes a scalar linear

stochastic oscillator (see Example 3.7, p125, [88])

dx(t) = (A0x(t) + Bu(t− τ))dt + H0x(t)dw(t) , (3.55)

where A0 =


0 1

0 2


 , H0 =


0 0

2 0.5


 , B =


0

1


.

By Theorem 3.5, p123, [88] with V (x, t) = |x(t)|2, it is easy to verify that system (3.55)

is almost surely exponentially unstable when u(t− τ) = 0 for all t ≥ 0. Since there is no

matrix X > 0 such that A0X + XAT
0 < 0, Theorems in [130] do not work when h > 0.

By Theorem 3.2 with δM = 1, δR = 10−4, δS = 27 and δQ = 3, the sufficient condition for
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stabilisability of system (3.55) is 0 ≤ h ≤ 0.1256. When h = 0.1256, solving LMIs (3.41)-

(3.42) gives K = [−10.4787 − 5.4418], which implies system (3.55) is exponentially

stabilised by delayed-state-feedback controller u(t− τ) = [−10.4787 − 5.4418] x(t− τ).

Example 3.4 Deterministic systems may be regarded a special class of stochastic sys-

tems, e.g., the following deterministic delay system is exactly system (3.6) with H0(t) =

H1(t) = 0 and τ(t) = h for all t ≥ 0 (see [66])

ẋ(t) = A0(t)x(t) + A1(t)x(t− h) + W (t)u(t− h) , (3.56)

where A0 =


1 0

1 1


 , A1 =


−2 0.1

−1 −1


 , B =


 0

1.05


 , LA = 0.1I, EA0 = EA1 = I and

EB =


 0

0.5


.

The result of [66] guarantees that system (3.56) is asymptotically stabilised by the

delayed-state-feedback control u(t − h) = [−0.0499 − 1.005] x(t − h) if 0 ≤ h < 0.1512.

However, by Theorem 3.2 with δM = 1, δR = 0.1, δS = 600 and δQ = 3, it is

found that the closed-loop system (3.56) and (3.7) with K = [−0.2237 − 0.6356] is

exponentially stable when 0 ≤ h ≤ 0.4182, which has a larger upper bound of time

delay but a smaller feedback gain. By Theorem 3.1, closed-loop system (3.56) with

u(t−h) = [−0.0499 − 1.005] x(t−h) is exponentially stable for 0 ≤ h ≤ 0.4468 while that

with u(t− h) = [−0.2237 − 0.6356] x(t− h) is exponentially stable for 0 ≤ h ≤ 0.4676.

Moreover, when h = 0.4468, the estimate of Lyapunov exponent of the former closed-loop

system is −ε = −0.0690 while that of the latter one is −ε = −0.0778.

3.7 Summary

This chapter has presented a delay-dependent criterion for exponential stability of uncer-

tain stochastic delay systems in terms of LMIs. It should be pointed out that introduction

of (3.14) and (3.15), as well as techniques such as Lemmas 1-3, helps exploit the structure

of diffusion of the system and deal with the crossing terms. This leads to a less conser-

vative result. Based on the newly established stability criterion, a robust state-feedback

controller (3.7) has been proposed to exponentially stabilise the uncertain stochastic sys-

tem with input delay (3.1). This design method involves four tuning parameters. It is
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observed that δR in LMI (3.41) may be chosen as a small positive number when δM = 1,

which is also suggested in the examples of last section. The above numerical examples

have verified the effectiveness of the proposed method.
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Chapter 4

State-feedback stabilisation of

neutral stochastic delay systems

with input delay

4.1 Introduction

Many dynamical systems are described with neutral functional differential equations that

include neutral delay differential equations. And hence these systems are called neutral-

type systems, or, neutral systems. Motivated by chemical engineering systems as well as

theory of aero elasticity, studies on deterministic neutral systems have been of research

interest over the past decades (see, e.g., [20], [26], [27], [34], [35], [61], [101] and the

references therein). As stochastic modelling has come to play an important role in many

branches of science and industry, neutral stochastic delay systems, which are described

with neutral stochastic functional equations and neutral stochastic delay equations, have

been intensively studied over recent years (see [44], [53], [67], [73], [76], [80], [129], [130]).

Mao ([73], [76] and [80]) initiated the study of exponential stability of neutral stochastic

functional equations, developed Razumikhin-type theorems further for exponential sta-

bility of neutral stochastic functional equations, and studied asymptotic properties of

neutral stochastic delay differential equations. More recently, Luo et al. ([67]) proposed

new criteria for exponential stability of neutral stochastic delay differential equations

while Xu et al. ([129] and [130]) investigated exponential dynamic output feedback
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control of neutral stochastic systems with distributed delays and robust H∞ control of

neutral stochastic systems with single time delay. Generally, for systems with small

delays, these delay-independent criteria are likely to be conservative. However, few ex-

isting works study delay-dependent stability of neutral stochastic delay systems. Neutral

stochastic delay systems with input delay have been considered in [130]. But the result

can not be applied to a significant number of cases when the non-delay system matrix

is unstable (see Example 4.3). This chapter further develops the techniques proposed in

the previous chapter to cope with problems of stability and stabilisation of linear neutral

stochastic delay systems. Delay-dependent exponential stability criteria are established

by linear matrix inequality (LMI) approach. Based on these stability results, a memo-

ryless delayed-state-feedback controller is designed to exponentially stabilise the neutral

stochastic delay systems. Moreover, our results are developed to remove an assumption

that a norm of the delayed difference operator is less than one, which is employed by

the existing results. Numerical examples are conducted to verify the effectiveness of our

proposed method.

4.2 Problem statement

Throughout this chapter, unless otherwise specified, we will employ the same notation

as Chapter 3.

Let us consider an n-dimensional neutral stochastic delay system with delayed feed-

back control

d
[
x(t)− Cx(t− h1)

]
= [A0x(t) + A1x(t− h1) + A2x(t− h2) + Bu(t− h2)] dt

+ [H0x(t) + H1x(t− h1) + H2x(t− h2)] dw(t) (4.1)

on t ≥ 0 with initial data x0 = {x(θ) : −h ≤ θ ≤ 0} = ξ ∈ L̃2
F0

([−h, 0]; Rn), where

x(t) ∈ Rn is the state vector; u(t − h2) ∈ Rm is the control input; positive scalar

constants h1, h2 are time delays of the system and h = max{h1, h2}; C, Ai, B and Hi,

i = 0, 1, 2, are known matrices.

Denote

f(t) = A0x(t) + A1x(t− h1) + A2x(t− h2) ,

g(t) = H0x(t) + H1x(t− h1) + H2x(t− h2)
(4.2)
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for all t ≥ 0. One can observe that

|f(t)|2 ≤ Kf‖xt‖2 , |g(t)|2 ≤ Kg‖xt‖2 (4.3)

for all t ≥ 0, where xt = {x(t + θ) : −h ≤ θ ≤ 0}, Kf = 3
∑2

i=0 |Ai|2 and Kg =

3
∑2

i=0 |Hi|2. This implies that both f(ϕ, t) and g(ϕ, t) satisfy the global Lipschitz con-

dition and the linear growth condition. It is easy to verify, by the way of induction

proposed in the proof of Theorem 3.1, p210, [88], that there exists a unique continuous

solution denoted by x(t; ξ) to neutral stochastic delay differential equation

d
[
x(t)− Cx(t− h1)

]
= [A0x(t) + A1x(t− h1) + A2x(t− h2)] dt

+ [H0x(t) + H1x(t− h1) + H2(t)x(t− h2)] dw(t) (4.4)

for all t ≥ 0.

The objectives of this chapter are: (i) to establish sufficient conditions for exponential

stability of system (4.1) with u(t) = 0, that is, the unforced uncertain neutral stochastic

delay system (4.4); and (ii) to design a state-feedback controller

u(t) = Kx(t) (4.5)

to exponentially stabilise system (4.1) with input delay, where K is a constant gain

matrix to be determined. The proposed method can be easily extended to those cases

with norm-bounded uncertainties in parameters Ai, B and Hi. The method can also

be applied to systems with multiple, distributed and time-varying delays. It should be

pointed out that, for simplicity only, we consider a relatively simple model (see also, e.g.,

[26] and [27]).

4.3 Delay-dependent exponential stability

Delay-dependent stability of neutral deterministic delay systems has been intensively

studied over recent years (see, e.g., [20], [26], [27], [35], [61], [101]). However, so far little

is known about delay-dependent criteria for stability of neutral stochastic delay systems.

Denote Ā0 = A0, Ā1 = A0C + A1, Ā2 = A2, H̄0 = H0, H̄1 = H0C + H1, H̄2 = H2,

Ā =
∑2

i=0 Āi and H̄ =
∑2

i=0 H̄i. Sufficient conditions for delay-dependent exponential

stability of system (4.4) are proposed as follows.
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Theorem 4.1 The neutral stochastic delay system (4.4) is mean-square exponentially

stable and is also almost surely exponentially stable provided that there exist matrices

P11 > 0, Qk > 0, Rk > 0, S > 0, Tk > 0, P21, P22, P23, P31, P32, P33 and k = 1, 2 such

that

Γ =




Γ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Γ21 Γ22 ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗
Γ31 Γ32 Γ33 ∗ ∗ ∗ ∗ 0 ∗ ∗

h1L
T
11 h1L

T
21 h1L

T
31 −h1Q1 0 0 0 0 0 0

h2L
T
12 h2L

T
22 h2L

T
32 0 −h2Q2 0 0 0 0 0

LT
11 LT

21 LT
31 0 0 −R1 0 0 0 0

LT
12 LT

22 LT
32 0 0 0 −R2 0 0 0

Γ81 0 0 0 0 0 0 Γ88 0 0

CT LT
11 CT LT

21 CT LT
31 0 0 0 0 0 −T1 0

CT LT
12 CT LT

22 CT LT
32 0 0 0 0 0 0 −T2




< 0,

(4.6)

where

Γ11 = P T
21Ā + ĀT P21 + P T

31H̄ + H̄T P31 + S + T1 + T2,

Γ21 = P T
22Ā + P T

32H̄ + P11 − P21, Γ31 = P T
23Ā + P T

33H̄ − P31,

Γ81 = CT (S + T1 + T2), Γ22 = −P T
22 − P22 + h1Q1 + h2Q2, Γ32 = −P T

23 − P32,

Γ33 = −P T
33 − P33 + P11 + h1R1 + h2R2 , Γ88 = −S + CT (S + T1 + T2)C,

L11 = P T
21Ā1 + P T

31H̄1 , L21 = P T
22Ā1 + P T

32H̄1 , L31 = P T
23Ā1 + P T

33H̄1 ,

L12 = P T
21Ā2 + P T

31H̄2 , L22 = P T
22Ā2 + P T

32H̄2 , L32 = P T
23Ā2 + P T

33H̄2 ,

and entries denoted by ∗ can be readily inferred from symmetry of the matrix.

Proof. To simplify the expression, we define

η(t) = x(t)− Cx(t− h1) (4.7)

for all t ≥ 0. With notation (4.2) and (4.7), we can rewrite the unforced system (4.4) as

dη(t) = f(t)dt + g(t)dw(t) (4.8)

on t ≥ 0 with initial data ξ.
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So we have

η(t2)− η(t1) =

∫ t2

t1

f(s)ds + g(s)dw(s) (4.9)

for all t2 ≥ t1 ≥ 0.

By (4.2) and (4.9), we can observe that

f(t) =
2∑

i=0

Āiη(t)−
2∑

i=1

Āi

[
η(t)− η(t− hi)

]
+

2∑
i=1

ĀiCx(t− h1 − hi)

= Ā η(t)−
2∑

i=1

Āi

∫ t

t−hi

f(s)ds + g(s)dw(s) +
2∑

i=1

ĀiCx(t− h1 − hi) ,

(4.10)

g(t) = H̄η(t)−
2∑

i=1

H̄i

∫ t

t−hi

f(s)ds + g(s)dw(s) +
2∑

i=1

H̄iCx(t− h1 − hi)

(4.11)

for all t ≥ h. Choose a Lyapunov-Krasovskii functional candidate for system (4.8) as

follows:

V (t) =
5∑

j=1

Vj(t) , (4.12)

where

V1(t) = ηT (t)P11η(t) , V2(t) =
2∑

i=1

∫ t

t−hi

(s− t + hi)f
T (s)Qif(s)ds ,

V3(t) =
2∑

i=1

∫ t

t−hi

(s− t + hi)g
T (s)Rig(s)ds , V4(t) =

∫ t

t−h1

xT (s)Sx(s)ds ,

V5(t) =
2∑

i=1

∫ t

t−h1−hi

xT (s)Tix(s)ds .

By Itô’s formula, we have

dV (t) = LV (t)dt + σ(t)dw(t) , (4.13)

where

LV (t) =
5∑

j=1

LVj(t) = 2ηT (t)P11f(t) + gT (t)P11g(t) +
5∑

j=2

V̇j(t) ,

σ(t) = 2ηT (t)P11g(t) .

(4.14)

Denote

y(t) =




η(t)

f(t)

g(t)


 and P =




P11 0 0

P21 P22 P23

P31 P32 P33


 . (4.15)
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By equalities (4.10) and (4.11), we have

2ηT (t)P11f(t) = 2




η(t)

f(t)

g(t)




T 


P11 P T
21 P T

31

0 P T
22 P T

32

0 P T
23 P T

33







f(t)

0

0


 = 2yT (t)P T




f(t)

0

0


 = 2yT (t)P T

·








0 I 0

Ā −I 0

H̄ 0 −I


 y(t)−

2∑
i=1




0

Āi

H̄i




(∫ t

t−hi

f(s)ds + g(s)dw(s)

)

+
2∑

i=1




0

Āi

H̄i


Cx(t− h1 − hi)





.

or

2ηT (t)P11f(t) = yT (t)(P T A + AT P )y(t)− 2yT (t)
2∑

i=1

P T
[
0 ĀT

i (t) H̄T
i (t)

]T

·
(∫ t

t−hi

f(s)ds + g(s)dw(s)− Cx(t− h1 − hi)

)
, (4.16)

where

A =




0 I 0

Ā −I 0

H̄ 0 −I


 , P T A + AT P =




PA1 PA2 PA3

P T
A2 −P T

22 − P22 −P T
32 − P23

P T
A3 −P32 − P T

23 −P T
33 − P33




with PA1 = P T
21Ā + ĀT P21 + P T

31H̄ + H̄T P31, PA2 = ĀT P22 + H̄T P32 + P11 − P T
21, PA3 =

ĀT P23 + H̄T P33 − P T
31 and P T

[
0 ĀT

i H̄T
i

]T

=
[
LT

1i LT
2i LT

3i

]T

for i = 1, 2.

Direct computations with Lemma 3.2 and equation (4.7) give

V̇2(t) ≤
2∑

i=1

[
fT (t)hiQif(t)−

∫ t

t−hi

1

hi

fT (s)ds(hiQi)

∫ t

t−hi

1

hi

f(s)ds

]
, (4.17)

V̇3(t) =
2∑

i=1

[
gT (t)hiRig(t)−

∫ t

t−hi

gT (s)Rig(s)ds

]
, (4.18)

V̇4(t) =


 η(t)

x(t− h1)




T 
 S SC

CT S −S + CT SC





 η(t)

x(t− h1)


 , (4.19)

V̇5(t) =
2∑

i=1




η(t)

x(t− h1)

x(t− h1 − hi)




T 


Ti TiC 0

CT Ti CT TiC 0

0 0 −Ti







η(t)

x(t− h1)

x(t− h1 − hi)


 . (4.20)
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By isometry property, for i = 1, 2, we have

E
[∫ t

t−hi

gT (s)Rig(s)ds

]
=

∫ t

t−hi

E
[
gT (s)Rig(s)

]
ds

= E
[∫ t

t−hi

gT (s)dw(s) Ri

∫ t

t−hi

g(s)dw(s)

]
.

Therefore, substituting inequalities (4.16)-(4.20) into (4.14) and taking expectation on

the both sides yield

ELV (t) ≤ E [
zT (t)Γz(t)

]
, (4.21)

where zT (t) =
[
ηT (t) fT (t) gT (t) − 1

h1

∫ t

t−h1
fT (s)ds − 1

h2

∫ t

t−h2
fT (s)ds −∫ t

t−h1
gT (s)dw(s)

− ∫ t

t−h2
gT (s)dw(s) xT (t− h1) xT (t− 2h1) xT (t− h1 − h2)

]T
.

By LMI (4.6), we have

ELV (t) ≤ −λΓE|z(t)|2 ≤ −λΓE
[|η(t)|2 + |x(t− h1)|2

]
(4.22)

with λΓ = λm(−Γ) and

CT SC − S < 0 . (4.23)

For any κ ∈ (0, 1), equation (4.7), inequalities (4.22)-(4.23) and Lemma (3.1) give

ELV (t) ≤ −(1− κ)λΓE|η(t)|2 − κλΓ(E|η(t)|2 +
1

κ
E|x(t− h1)|2)

≤ −(1− κ)λΓE|η(t)|2 − κλΓ

λM(S)
E

[(
x(t)− Cx(t− h1)

)T
S

· (x(t)− Cx(t− h1)
)

+
1

κ
xT (t− h1)Sx(t− h1)

]

≤ −(1− κ)λΓE|η(t)|2 − κλΓ

λM(S)
E

[
xT (t)Sx(t)

− 2xT (t)SCx(t− h1) +
1 + κ

κ
xT (t− h1)C

T SCx(t− h1)
]

≤ −(1− κ)λΓE|η(t)|2 − κλΓλm(S)

(1 + κ)λM(S)
E|x(t)|2 .

≤ −λ0E
[|η(t)|2 + |x(t)|2] ,

where λ0 = min
{
(1− κ)λΓ, κλΓλm(S)[(1 + κ)λM(S)]−1

}
> 0 .

It is obvious from the definition of V (t) that

α0|η(t)|2 ≤ V (t) ≤ α1|η(t)|2 + α2

∫ t

t−2h

|x(s)|2ds , (4.24)
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where α0 = λm(P11), α1 = λM(P11), α2 =
∑2

i=1 hi[λM(Qi)Kf + λM(Ri)Kg] + λM(S) +
∑2

i=1 λM(Ti). Choose ε > 0 such that

max{εα1, 2hεα2e
2hε} ≤ λ0 and e2hεCT SC − S < 0. (4.25)

By Itô’s lemma, we have

d
[
eεsV (s)

]
= eεs

[
εV (s) + LV (s)

]
ds + eεsσ(s)dw(s), ∀ s ≥ 0. (4.26)

Let t0 = h, then integrating from t0 to t and taking expectation on (4.26) give

eεtEV (t)− eεt0EV (t0)

= E
∫ t

t0

eεs
[
εV (s) + LV (s)

]
ds

≤ E
∫ t

t0

eεs
[
εα1|η(s)|2 + εα2

∫ s

s−2h

|x(v)|2dv − λ0(|η(s)|2 + |x(s)|2)]ds

≤ E
∫ t

t0

eεs
[
εα2

∫ s

s−2h

|x(v)|2dv − λ0|x(s)|2]ds . (4.27)

Since

∫ t

t0

eεsds

∫ s

s−2h

|x(v)|2dv ≤
∫ t

t0−2h

|x(v)|2dv

∫ v+2h

v

eεsds ≤ 2he2hε

∫ t

t0−2h

|x(s)|2eεsds

≤ 2he2hε

∫ t

t0

|x(s)|2eεsds + 2he2hε

∫ t0

t0−2h

|x(s)|2ds ,

it follows

α0e
εtE|η(t)|2 ≤ eεtEV (t) ≤ α0Ch or E|η(t)|2 ≤ Che

−εt , (4.28)

where Ch = αh sup−h≤θ≤h E|x(θ)|2 with αh = α−1
0 eεh[α1 + 2hα2(1 + 2hεe2hε)] ≥ 1. Since

neutral stochastic delay differential equation (4.4) has a unique continuous solution, Ch

is a nonnegative finite number for any 0 ≤ h < ∞.

Since e2εhCT SC < S, there exists a number µ ∈ (0, 1) such that

e2εhCT SC < µS < S . (4.29)

Note that ηT (t)Sη(t) = xT (t)Sx(t)− 2xT (t)SCx(t− h1) + xT (t− h1)C
T SCx(t− h1) for

all t ≥ 0. By Lemma 3.1, we have

eεtxT (t)Sx(t) ≤ eεt

1− µ
ηT (t)Sη(t) +

eεt

µ
xT (t− h1)C

T SCx(t− h1). (4.30)
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Let ρ be any nonnegative real number. For all 0 ≤ t ≤ ρ, we have

eεtE
[
xT (t)Sx(t)

] ≤ 1

1− µ
sup

0≤t≤ρ
E

[
eεtηT (t)Sη(t)

]
+

1

µ
sup

0≤t≤ρ
E

[
eεtxT (t− h1)C

T SCx(t− h1)
]

≤ 1

1− µ
λM(S) sup

0≤t≤ρ
E[eεt|η(t)|2] +

eεh1

µ
sup

−h1≤t≤ρ
E

[
eεtxT (t)CT SCx(t)

]

≤ 1

1− µ
λM(S)Ch + e−εh sup

−h≤t≤ρ

{
eεtE

[
xT (t)Sx(t)

]}
.

But this holds for all −h ≤ t ≤ ρ. So

sup
−h≤t≤ρ

{
eεtE

[
xT (t)Sx(t)

]} ≤ λM(S)Ch

(1− e−εh)(1− µ)
. (4.31)

Since ρ is an arbitary nonnegative number, we have

E|x(t)|2 ≤ λM(S)Che
−εt

(1− e−εh)(1− µ)λm(S)
, ∀ t ≥ −h . (4.32)

The mean-square exponential stability has been proven.

Now let us proceed to discuss the almost sure exponential stability. Let γ ∈ (0, ε)

be arbitrary. We claim that there are a finite positive number th such that for all t ≥ th

|η(t)|2 ≤ e−(ε−γ)t a.s. (4.33)

Therefore, for all t ≥ th, inequality (4.30) implies

e(ε−γ)txT (t)Sx(t) ≤ λM(S)e(ε−γ)t

1− µ
+

e(ε−γ)t

µ
xT (t− h1)C

T SCx(t− h1) a.s.

Using similar reasoning to above and letting γ → 0, we have |x(t)|2 ≤ λM(S)e−εt[(1 −
e−εh)(1− µ)λm(S)]−1 a.s. for all t ≥ th − h. This implies immediately

lim sup
t→∞

1

t
log |x(t)| ≤ −ε

2
a.s.

We complete the proof by showing that inequality (4.33) is true. Note that

E|f(t)|2 ≤ Kf sup
−h≤θ≤0

E|x(t + θ)|2 and E|g(t)|2 ≤ Kg sup
−h≤θ≤0

E|x(t + θ)|2

for all t ≥ 0. For any integer k ≥ 1, by Hölder’s inequality and the Burkholder-Davis-

Gundy inequality, one can derive that

E
[

sup
0≤θ≤h

|η(kh + θ)|2
]
≤ 3

[
E|η(kh)|2 + h

∫ (k+1)h

kh

E|f(s)|2ds

+ E

(
sup

0≤θ≤h

∣∣∣∣
∫ kh+θ

kh

g(s)dw(s)

∣∣∣∣
2
)]

≤ βhe
−khε, (4.34)
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where βh = 3Ch(1 + Kfh
2ehε + 4Kghehε). But, by Chebyshev’s inequality, this implies

P
{

ω : sup
0≤θ≤h

|η(kh + θ)|2 > e−(ε−γ)kh

}
≤ βhe

−γkh.

By the Borel-Cantelli lemma, there is a finite random variable k0 such that

sup
0≤θ≤h

|η(kh + θ)|2 ≤ e−(ε−γ)kh a.s.

for all k ≥ k0. Therefore, inequality (4.33) holds with th ≥ k0h.

From the proof of Theorem 4.1, we observe that

zT (t)Γz(t) = z̄T (t)Γ̄z̄(t) +
2∑

i=1

xT (t− h1 − hi)
(−Ti + CT WiC

)
x(t− h1 − hi),

where z̄T (t) =
[
ηT (t) fT (t) gT (t) − 1

h1

∫ t

t−h1
fT (s)ds − 1

h2

∫ t

t−h2
fT (s)ds −∫ t

t−h1
gT (s)dw(s)

− ∫ t

t−h2
gT (s)dw(s) xT (t − h1) xT (t − 2h1)C

T xT (t − h1 − h2)C
T
]
. By inequalities

(4.21) and (4.37), this implies

ELV (t) ≤ E [
z̄T (t)Γ̄z̄(t)

]
. (4.35)

Also inequality (4.36) implies (4.23). By repeating the same reasoning as that in the

proof of Theorem 4.1, one can prove

Theorem 4.2 The neutral stochastic delay system (4.4) is mean-square exponentially

stable and is also almost surely exponentially stable provided that there exist matrices

P11 > 0, Qi > 0, Ri > 0, S > 0, Ti > 0, Wi > 0, P21, P22, P23, P31, P32, P33 and i = 1, 2

such that

Γ̄ =




Γ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Γ21 Γ22 ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗
Γ31 Γ32 Γ33 ∗ ∗ ∗ ∗ 0 ∗ ∗

h1L
T
11 h1L

T
21 h1L

T
31 −h1Q1 0 0 0 0 0 0

h2L
T
12 h2L

T
22 h2L

T
32 0 −h2Q2 0 0 0 0 0

LT
11 LT

21 LT
31 0 0 −R1 0 0 0 0

LT
12 LT

22 LT
32 0 0 0 −R2 0 0 0

Γ81 0 0 0 0 0 0 Γ88 0 0

LT
11 LT

21 LT
31 0 0 0 0 0 −W1 0

LT
12 LT

22 LT
32 0 0 0 0 0 0 −W2




< 0

(4.36)
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and 
−Ti CT Wi

WiC −Wi


 ≤ 0, i = 1, 2 (4.37)

where entries Γ· · and L· · are given in (4.6).

4.4 State-feedback stabilisation

The presence of time delay in control input (4.5), if not considered in a controller de-

sign, may be the cause of serious deterioration of performance or even instability of the

resulting controlled system. Relatively few works are concerned with problem of neutral

systems with input delay. A state-feedback control for neutral deterministic delay sys-

tems with input delay was proposed in Corollary 3.3, [27] while stabilisation of neutral

stochastic delay systems with input delay was studied in [130]. However, the result in

[130] is not applicable to a significant number of cases when the non-delay system matrix

is unstable (see, e.g., Examples 4.3). In this section, the stability result obtained in the

previous section is applied to design a memoryless delayed state feedback controller (4.5),

which exponentially stabilises the neutral stochastic delay system (4.1). Let us consider

the case of P31 = P32 = 0 in (4.15), which implies

P−1 =




P−1
11 0 0

−P−1
22 P21P

−1
11 P−1

22 −P−1
22 P23P

−1
33

0 0 P−1
33


 . (4.38)

In this case, by the Schur complement lemma, condition (4.36) will be satisfied if linear

matrix inequality Λ < 0 holds, where symmetric matrix Λ is given by (4.39) on the

next page with Λ11 = P T
21Ā + ĀT P21, Λ21 = P T

22Ā + P11 − P21, Λ31 = P T
23Ā + P T

33H̄ ,

Λ22 = −P T
22 − P22, and Λ33 = −P T

33 − P33. The delayed-state-feedback controller (4.5)

that exponentially stabilises neutral stochastic delay system (4.1) can be designed as

follows.
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Λ
=

                                                 

Λ
1
1

∗
∗

∗
∗

∗
∗

0
∗

∗
0

0
0

0
∗

∗
∗

0

Λ
2
1

Λ
2
2

∗
∗

∗
∗

∗
0

∗
∗

∗
∗

0
0

0
0

0
0

Λ
3
1

−P
T 2
3

Λ
3
3

∗
∗

∗
∗

0
∗

∗
0

0
∗

∗
0

0
0

∗
h

1
Ā

T 1
P

2
1

h
1
Ā

T 1
P

2
2

h
1
(Ā

T 1
P

2
3

+
H̄

T 1
P

3
3
)
−h

1
Q

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0

h
2
Ā

T 2
P

2
1

h
2
Ā

T 2
P

2
2

h
2
(Ā

T 2
P

2
3

+
H̄

T 2
P

3
3
)

0
−h

2
Q

2
0

0
0

0
0

0
0

0
0

0
0

0
0

Ā
T 1
P

2
1

Ā
T 1
P

2
2

Ā
T 1
P

2
3

+
H̄

T 1
P

3
3

0
0

−R
1

0
0

0
0

0
0

0
0

0
0

0
0

Ā
T 2
P

2
1

Ā
T 2
P

2
2

Ā
T 2
P

2
3

+
H̄

T 2
P

3
3

0
0

0
−R

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−S

0
0

0
0

0
0

∗
∗

∗
0

Ā
T 1
P

2
1

Ā
T 2
P

2
2

Ā
T 1
P

2
3

+
H̄

T 1
P

3
3

0
0

0
0

0
−W

1
0

0
0

0
0

0
0

0
0

Ā
T 2
P

2
1

Ā
T 2
P

2
2

Ā
T 2
P

2
3

+
H̄

T 2
P

3
3

0
0

0
0

0
0

−W
2

0
0

0
0

0
0

0
0

0
√ h

1
Q

1
0

0
0

0
0

0
0

0
−Q

1
0

0
0

0
0

0
0

0
√ h

2
Q

2
0

0
0

0
0

0
0

0
0

−Q
2

0
0

0
0

0
0

0
0

√ h
1
R

1
0

0
0

0
0

0
0

0
0

−R
1

0
0

0
0

0

0
0

√ h
2
R

2
0

0
0

0
0

0
0

0
0

0
−R

2
0

0
0

0

S
0

0
0

0
0

0
S

C
0

0
0

0
0

0
−S

0
0

0

T
1

0
0

0
0

0
0

T
1
C

0
0

0
0

0
0

0
−T

1
0

0

T
2

0
0

0
0

0
0

T
2
C

0
0

0
0

0
0

0
0

−T
2

0

0
0

P
1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−P
1
1

                                                 

(4
.3

9)
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Theorem 4.3 The closed-loop neutral stochastic delay system (4.1) and (4.5) is mean-

square exponentially stable and is also almost surely exponentially stable if, for given

positive scalar numbers δQ, δR and δW , there exist matrices X1 > 0, Q̄ > 0, R̄ > 0,

S̄ > 0, W̄ > 0, U1 > 0, U2 > 0, X2, X3, Y , Z and K̄ such that

Φ < 0, (4.40)


−U1 U1C

T

CU1 −W̄


 ≤ 0 and


−U2 U2C

T

CU2 −δW X1


 ≤ 0 , (4.41)

where symmetric matrix Φ is given by (4.43) on the next page. In this case, the gain

matrix of (4.5) can be chosen as K = K̄X−1
1 .

Proof. Substitution of (4.5) into (4.1) yields dynamics of the closed-loop system

d
[
x(t)− Cx(t− h1)

]
= [A0x(t) + A1x(t− h1) + (A2 + BK)x(t− h2)] dt

+ [H0x(t) + H1x(t− h1) + H2x(t− h2)] dw(t) (4.42)

for all t ≥ 0. In order to construct an LMI problem, we consider the case of (4.38) with

Q2 = δ−1
Q P11, R2 = δ−1

R P11 and W2 = δ−1
W P11. In this case, by Theorem 4.2 and conditions

(4.36)-(4.37), it is noted that system (4.42) is exponentially stable if LMIs M < 0 and

(4.37) are satisfied, where symmetric matrix M is derived from Λ defined in (4.39) by

replacing Ā and Ā2 with Ā + BK and Ā2 + BK respectively.

Let X1 = P−1
11 > 0, Q̄ = Q−1

1 , R̄ = R−1
1 , S̄ = S−1, W̄ = W−1

1 , U1 = T−1
1 , U2 = T−1

2 ,

X2 = P−1
22 , X3 = P−1

33 , Y = P−1
22 P21P

−1
11 , Z = P−1

22 P23P
−1
33 , and K̄ = KP−1

11 , then

Q−1
2 = δQX1, R−1

2 = δRX1 and W−1
2 = δW X1. Define

G = diag{P−1, Q−1
1 , Q−1

2 , R−1
1 , R−1

2 , S−1,W−1
1 ,W−1

2 , Q−1
1 , Q−1

2 , R−1
1 , R−1

2 , S−1, T−1
1 , T−1

2 , P−1
11 }.

It is not difficult to verify that Φ = GT MG. Therefore LMI (4.40) implies M < 0.

Moreover, pre-multiplying and post-multiplying LMIs (4.37) by diag{T−1
i ,W−1

i }, i = 1, 2,

leads to (4.41), which implies that (4.37) and (4.41) are equivalent. The proof is complete.
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Φ
=

                                                

−Y
T
−

Y
∗

∗
0

0
0

0
0

0
0

∗
∗

0
0

∗
∗

∗
0

Ā
X

1
+

B
K̄

+
X

T 2
+

Y
−X

T 2
−

X
2

∗
∗

∗
∗

∗
0

∗
∗

∗
∗

0
0

0
0

0
0

−Z
T

+
H̄

1
X

1
Z

−X
T 3
−

X
3

∗
∗

∗
∗

0
∗

∗
∗

∗
∗

∗
0

0
0

∗
0

h
1
Q̄

Ā
T 1

h
1
Q̄

H̄
T 1

−h
1
Q̄

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
δ Q

h
2
(X

1
Ā

T 2
+

K̄
T

B
T

)
δ Q

h
2
X

1
H̄

T 2
0

−δ
Q

h
2
X

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
R̄

Ā
T 1

R̄
H̄

T 1
0

0
−R̄

0
0

0
0

0
0

0
0

0
0

0
0

0
δ R

(X
1
Ā

T 2
+

K̄
T

B
T

)
δ R

X
1
H̄

T 2
0

0
0

−δ
R

X
1

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
−S̄

0
0

0
0

0
0

∗
∗

∗
0

0
W̄

Ā
T 1

W̄
H̄

T 1
0

0
0

0
0

−W̄
0

0
0

0
0

0
0

0
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                                                

(4
.4

3
)
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4.5 Examples

In this section, a number of numerical examples are conducted to verify the effectiveness

of our proposed methods.

Example 4.1 Let us look at the neutral stochastic delay system (4.4) with parameters

C =


−0.2 0

1 0.2


 , A0 =


0.5 0

0 0.3


 , A1 =


−1 0

−1 −1


 , H0 =


0.2 0

0 0.2


 , H1 =


0.3 0

0 0.3


 .

(4.44)

It is easy to verify that the existing results (see [19], [53], [67], [73], [76] and [80]) do

not work. But, by Theorem 4.1 or 4.2, the upper bounds of time delay for exponential

stability of system (4.44) is hmax = 0.3585.

Example 4.2 Deterministic systems may be regarded a special class of stochastic sys-

tems, e.g., the following deterministic neutral system is exactly system (4.4) with A0 = A,

A1 = B and A2 = H0 = H1 = H2 = 0, i.e.,

ẋ(t)− Cẋ(t− h) = Ax(t) + Bx(t− h) (4.45)

for all t ≥ 0, where A =


−0.9 0.2

0.1 −0.9


 , B = −


1.1 0.2

0.1 1.1


 , C =


−0.2 γ

0.2 −0.1


 and γ is

a constant real number.

The case of γ = 0 has been studied in many works (see, e.g., [26], [35] and [61]). However,

results of [26], [61] and [101] are not applicable when |γ| ≥ 1. For γ ≥ 2, the criterion in

[27] does not work, but the upper bounds hmax for exponential stability of (4.45) by other

methods are listed in Table 4.1, which shows that the results obtained by the methods

proposed in this chapter are less conservative in these cases.

Table 4.1: hmax by different methods

γ = 2.0 γ = 2.2 γ = 2.4

[20] 0.2954 0.2552 0.2163

[35] 0.3934 0.3189 0.2526

Theorem 4.1 or 4.2 0.4602 0.3957 0.3050

The following example is devoted to applying Theorem 4.3 and designing delayed-

state-feedback controller (4.5) to exponentially stabilise the neutral system (4.1).
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Example 4.3 Consider a neutral stochastic delay system of the form (4.1) with A2 =

H2 = 0, h1 = 0.15 and other parameters as follows

C =


0.2 0

0.1 −0.1


 , A0 =


 0 0.2

0.1 −0.3


 , A1 =


−0.3 0.2

0.1 0


 ,

B =


 1.5 2.6

−2.2 1.3


 , H0 =


−0.3 0

0.2 0.1


 , H1 =


0.3 0.1

0.2 −0.1


 .

(4.46)

Problem of non-delay dynamic output-feedback stabilisation of system (4.46) with dis-

tributed delays was studied in [129]. It is noted that existing results ([129] and [130])

do not work when h2 > 0 since there is no matrix X > 0 such that A0X + XAT
0 < 0.

For convenience, in this example, we choose δQ = δR = δW = 1. By Theorem 4.3,

the sufficient condition for stabilisability of system (4.46) is 0 ≤ h2 ≤ 0.7873. For

the case of h2 = 0.7873, solving LMIs (4.40)-(4.41) gives K =


−0.0527 0.0180

−0.1001 −0.0722


,

which implies system (4.46) is exponentially stabilised by delayed-state-feedback con-

troller u(t−h2) =


−0.0456 0.0368

−0.1001 −0.0718


x(t−h2). According to Theorem 4.1 or 4.2, this

resulting closed-loop system is exponentially stable when 0 ≤ h2 ≤ 1.3015.

4.6 Summary

In this chapter, delay-dependent criteria for stability of neutral stochastic delay systems

have been presented by approach of LMIs. Based on these newly-established stability

results, a state-feedback controller design has been proposed to exponentially stabilise

neutral stochastic delay system with input delay (4.1). Numerical examples have been

given to verify the effectiveness of the methods proposed in this chapter. Example 2

shows that our results developed for stochastic systems are competitive even when they

are specialized to the deterministic cases.
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Chapter 5

SMC design for robust H∞ control

of uncertain stochastic delay systems

5.1 Introduction

Sliding mode control (SMC) has various attractive features such as fast response, good

transient performance, order reduction and, particularly, robust with matched uncertain-

ties, and is well known to be an effective way to handle many challenging problems of

robust stabilization. Over the past decades, SMC has been one of the most popular con-

trol methods among the control community and found wide applications to automotive

systems, observers design, chemical processes, electrical motor control, aero engineering

and so on (see, e.g., [21], [31], [41], [40], [47], [58], [106], [119], [120] and the references

therein). Generally speaking, SMC uses a discontinuous control law (relays) to force and

restrict the state trajectories to a predefined sliding surface on which the system has

some desired properties such as stability, disturbance rejection capability and tracking

(see [31], [58] and [119]).

In recent years, there has been a growing interest in extension of SMC to accommo-

date stochastic systems (see, e.g., [13], [14, 15], [45], [102], [103, 104] ) since stochastic

modeling has come to play an important role in many branches of science and engineer-

ing (see, e.g., [25], [53] and [88]). For example, [102] studied integral SMC for stochastic
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delay system

dx(t) = [(A + ∆A(t))x(t) + (Ad + ∆Ad(t))x(t− τ(t)) + B(u(t) + f(x(t), t))]dt

+ D[(C + ∆C(t))x(t) + (Cd + ∆Cd(t))x(t− τ(t))]dw(t) , (5.1)

where it is assumed there is matrix G ∈ Rm×n such that

det(GB) 6= 0 and GD = 0 (5.2)

with det(·) denoting the determinant of a matrix. However, these existing results employ

assumptions such as (5.2) on structure of the control system such that their controller

design does not need to deal with stochastic perturbation and hence they can use the

SMC design method for deterministic systems (see Remark 1 and 4 in [45]). These

existing results may be considered as studies of SMC with stochastic perturbation in

sliding mode. But such an assumption may be too restrictive for stochastic systems in

many practical situations.

The main purpose of this chapter is to remove this assumption and propose a practical

SMC design method for stochastic systems. Moreover, in some cases, our design method

provides a control scheme for finite-time stabilisation of stochastic delay systems (see

Remark 5.2 and the Example). Problems of finite-time stabilization of stochastic systems

([131]) are relatively seldom studied while those of deterministic systems have received

much attention (see [38], [46] and the references therein). Our proposed design method

is presented in terms of LMIs (see [12]), which can be easily implemented.

5.2 Problem statement

Throughout the chapter, unless otherwise specified, we will employ the notation as before.

Let W (t) = (W1(t), · · · ,Wrw(t))T be an rw-dimensional Brownian motion defined on the

probability space (Ω,F ,P). Let | · | and | · |1 denote the Euclidean norm and 1-norm of

a vector and their induced norms of a matrix respectively.

Let us consider an n-dimensional uncertain stochastic system with state delay

dx(t) =
[
A0(t)x(t) + A1(t)x(t− h) + B(u(t) + φ(t, xt)) + Bvv(t)

]
dt

+ g(t, x(t))dW (t) , (5.3)

z(t) = Cx(t) + Dv(t) (5.4)
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on t ≥ 0 with initial data x0 = {x(θ) : −h ≤ θ ≤ 0} = ξ ∈ L̃2
F0

([−h, 0]; Rn), where

x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the control input;z(t) ∈ Rp is the controlled

output; v(t) ∈ Rq is the exogenous disturbance input belonging to L2[0,∞); h > 0, time

delay of the system, is a known number; B, Bv, C, D are constant matrices and B is

of full column rank; Ai(t), i = 0, 1, are matrix functions with time-varying uncertainties

described as Ai(t) = Ai + ∆Ai(t), where Ai, i = 0, 1, are known constant matrices while

uncertainties ∆Ai(t) are assumed to be norm bounded, i.e.,

∆Ai(t) = LiFi(t)Ei, i = 0, 1 (5.5)

with known constant matrices Li, Ei, and unknown matrix functions Fi(t) having Lebesgue

measurable elements and satisfying F T
i (t)Fi(t) ≤ I for all t ≥ 0; matched uncertainty

φ(t, xt) satisfies

|φ(t, xt)| ≤ kφ(|x(t)|+ |x(t− h)|), ∀ t ≥ 0 (5.6)

where kφ is a nonnegative number; g(t, x(t)) may be not exactly known but there is a

constant matrix G such that

trace[gT (t, x(t))g(t, x(t))] ≤ |Gx(t)|2 (5.7)

for all t ≥ 0 (see, e.g., [17] and [135]). It is also assumed that pair (A0, B) is controllable,

that is, there exists matrix K0 ∈ Rm×n such that matrix A0 + BK0 is stable.

It is easy to verify that equation (5.3) with u(t) = 0 and v(t) = 0 has a unique

solution (see, e.g., [84] and [88]). In this chapter, we intend to design a sliding surface

and a switching control law such that the state trajectories are drawn in finite time

to the sliding surface with probability 1, on which system (5.3)-(5.4) is robustly mean-

square exponentially stable with some prescribed disturbance attenuation γ(> 0) (see

Definition 5.1 below). It should be noted that, for simplicity only, we take a relatively

simple model. The proposed method can be easily extended to many systems such as

those of large scale, with Markovian switching and time-varying and multiple delays (see

[13], [14, 15], [17], [45], [102], [103, 104] ).

At the end of this section, let us introduce the following definitions.

Definition 5.1 Uncertain stochastic delay system (5.3)-(5.4) is said to be robustly mean-

square exponentially stable with disturbance attenuation γ (> 0) if system (5.3) with
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v(t) = 0 is robustly mean-square exponentially stable and moreover, under zero initial

condition,

E
∫ ∞

0

|z(t)|2dt ≤ γ2

∫ ∞

0

|v(t)|2dt (5.8)

for all nonzero v ∈ L2[0,∞) and admissible uncertainties (5.5).

For definitions of mean-square stability with a given disturbance attenuation γ, please

see, e.g., [7], [103] and [128]. Moreover, let us present the definition of finite-time stability

of stochastic systems, which is consistent with that of deterministic systems (see, e.g.,

[8], [38] and [46])

Definition 5.2 The equilibrium x = 0 of uncertain stochastic delay system (5.3) with

u(t) = 0 and v(t) = 0 is said to be pth (p > 0) moment finite-time stable if system (5.3)

with u(t) = 0 and v(t) = 0 is pth moment stable and if for every ξ ∈ L̃p
F0

([−h, 0]; Rn),

there exists (a settling time) T = T (ξ) > 0 such that 0 < E|x(t; ξ)|p < ∞ for all

0 ≤ t < T , limt→T E|x(t; ξ)|p = 0 and E|x(t; ξ)|p = 0 for all t > T .

For definition of pth moment stability, please see, e.g., [44]. We also cite the following

well-known result that is useful for the development of this chapter (see, e.g., p44 [69]).

Lemma 5.1 For a pair of constant matrices G ∈ Rp×p and M ∈ Rp×q, if G ≥ 0, then

trace(MT GM) ≤ λM(G)trace(MT M) .

5.3 Switching surface and control scheme design

This section is devoted to designing the sliding surface and the switching control law

such that the task of this chapter is fulfilled. We present the design method as follows.

Given constant γ > 0, assume that there exist matrices X > 0, R > 0, Y0, Y1 and

positive numbers β0, β1, λg, ζg such that
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Θ =




Θ1 ∗ ∗ ∗ 0 ∗ ∗
XAT

1 + Y T
1 BT −R 0 0 ∗ 0 0

GX 0 −λgI 0 0 0 0

E0X 0 0 −β0I 0 0 0

0 E1X 0 0 −β1I 0 0

BT
v + DT CX 0 0 0 0 Θ6 0

CX 0 0 0 0 0 −I




< 0, (5.9)

λgI ≤ X , (5.10)

and 
−BBT XGT

GX −ζgI


 ≤ 0 , (5.11)

where Θ1 = A0X +XAT
0 +BY0 +Y T

0 BT +R+β0L0L
T
0 +β1L1L

T
1 , Θ6 = −γ2I +DT D and

entries denoted by ∗ can be readily inferred from symmetry of the matrix. Let P = X−1.

It is easy to find ζb > 0 such that

PBBT P ≤ ζbI . (5.12)

And then let

β =
1

2
ζbζg . (5.13)

In this work, we choose the switching surface as a linear function of the current states

s(t) = s(t, x(t)) = BT Px(t) = 0 (5.14)

for all t ≥ 0. Note that matrix B is of full column rank and matrix P > 0. It is easy to

see that

BT PB > 0 . (5.15)

Moreover, function sgn : Rm → Rm is defined by

sgn(u) =
[
sgn(u1) sgn(u2) · · · sgn(um)

]T

, (5.16)

where

sgn(ui) =





1 , ui > 0

0 , ui = 0

−1 , ui < 0
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for i = 1, 2, · · · ,m. Since time delay h > 0 is known, the past state x(t − h) can be

used in the control law (see, e.g., [31], [58], [102] and [106]). In this case, we design the

switching control law as follows

u(t) = −(BT PB)−1
[
βs(t) + u1(t) + u2(t)

]
(5.17)

for all t ≥ 0, where u1(t) = BT P (A0x(t) + A1x(t − h)) and u2(t) = [α + ρ(t)]sgn(s(t))

with α > 0 and

ρ(t) = |BT PL0| |E0x(t)|+ |BT PL1| |E1x(t− h)|
+ kφ |BT PB| (|x(t)|+ |x(t− h)|) + |BT P | |Bvv(t)| . (5.18)

5.4 Reachability analysis

In this section, we consider reachability of the sliding surface (5.14).

Theorem 5.1 The state trajectories of system (5.3) synthesized with switching control

(5.17) are drawn to sliding surface (5.14) in finite time almost surely, or say, with prob-

ability 1.

Proof. Without loss of generality, assume |s(0)| > 0. Define a stopping time

τs = inf{t ≥ 0 : s(t) = 0} . (5.19)

We need to prove that there exists 0 < tr < ∞ such that τs ≤ tr a.s., or say, P{τs ≤
tr} = 1.

Let us consider function U(t) = sT (t)s(t) for all t ≥ 0. By Itô’s formula, we have

dU(t) = LU(t)dt + 2sT (t)BT Pg(t, x(t))dW (t) , (5.20)

where

LU(t) = 2sT (t)BT P
[
A0(t)x(t) + A1(t)x(t− h) + B(u(t) + φ(t, xt)) + Bvv(t)

]

+ trace
[
gT (t, x(t))PBBT Pg(t, x(t))

]
. (5.21)
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Substitution of (5.17) into (5.21) yields

LU(t) = 2sT (t)BT P
[
∆A0(t)x(t) + ∆A1(t)x(t− h) + Bφ(t, xt) + Bvv(t)

]

− 2ρ(t)sT (t) sgn(s(t))− 2αsT (t) sgn(s(t))− 2βsT (t)s(t)

+ trace
[
gT (t, x(t))PBBT Pg(t, x(t))

]

≤ −2α|s(t)| − 2βsT (t)s(t) + trace
[
gT (t, x(t))PBBT Pg(t, x(t))

]
. (5.22)

Inequality |s(t)|1 ≥ |s(t)| is used in the last step of inequality (5.22).

But LMI (5.11) implies

GT G ≤ ζgPBBT P . (5.23)

Combination of Lemma 5.1 and inequalities (5.7), (5.12) and (5.23) gives

trace
[
gT (t, x(t))PBBT Pg(t, x(t))

] ≤ λM(PBBT P )trace
[
gT (t, x(t))g(t, x(t))

]

≤ ζbtrace
[
gT (t, x(t))g(t, x(t))

]

≤ xT (t)(ζbG
T G)x(t)

≤ xT (t)(ζbζgPBBT P )x(t)

= 2βsT (t)s(t) . (5.24)

Inequalities (5.22) and (5.24) imply

LU(t) ≤ −2α
√

U(t) , ∀ t ≥ 0. (5.25)

But, by Itô’s formula, this yields

L|s(t)| = L
√

U(t) ≤ −α , (5.26)

and hence

E|s(t)| ≤ E|s(0)| − α t , (5.27)

which implies E|s(t)| converges to zero in finite time. Specifically, there is tr = r0/α such

that E|s(t)| = 0 for all t ≥ tr, where r0 = E|s(0)| < ∞. This implies E|s(t)| = 0 and

hence |s(t)| = 0 a.s., or say, P{|s(t)| = 0} = 1 for all t ≥ tr. For any εr > 0, suppose that

P{τs > tr} ≥ εr. Then P{|s(tr)| > 0} ≥ εr, which leads to a contradiction. Therefore we

have τs ≤ tr almost surely. The proof is complete.

Remark 5.1 It is observed that we may choose β = 0 in a case when the assumption

BT Pg(t, x(t)) = 0 (see [13], [14, 15], [102], [103, 104] and [45]) holds.
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Remark 5.2 In the case when m = n, the design method (5.17) proposes a control

scheme for 1st moment finite-time stabilisation of stochastic delay system (5.3)(see Def-

inition 5.2).

5.5 Stability of sliding mode

Since it has been shown that the state trajectories of closed-loop system (5.3) and (5.17)

are drawn to sliding surface (5.14) in finite time, we proceed to discuss stability of the

sliding mode. Let us rewrite system (5.3) in the following form

dx(t) =
[
Ā0(t)x(t) + Ā1(t)x(t− h) + B(u(t) + φ̄(t, xt)) + Bvv(t)

]
dt

+g(t, x(t))dW (t) , (5.28)

where Ā0(t) = Ā0 + ∆A0(t) = (A0 + BK0) + ∆A0(t), Ā1(t) = Ā1 + ∆A1(t) = (A1 +

BK1) + ∆A1(t), φ̄(t, xt) = φ(t, xt)−K0x(t)−K1x(t− h) and matrices Ki, i = 0, 1, are

to be determined.

Remark 5.3 System (5.3) may also be rewritten in the form of (see, e.g., [58])

dx(t) =
[
Ā0(t)x(t) + Ā1(t)x(t− h) + B(ū(t) + φ(t, xt))

+Bvv(t)
]
dt + g(t, x(t))dW (t) , (5.29)

where ū(t) = u(t) −K0x(t) −K1x(t − h). But (5.29) may be somewhat misleading that

control law (5.17) is changed. In fact, control commands are always input as the scheme

(5.17). Note that control scheme (5.17) is different from that in [58] even in the case

when β = 0 (see Remark 5.1). At this point, system (5.28) is clear to show that part of the

system dynamics is treated as perturbation (but not counteracted by control input). This

may also help highlight the advantage of SMC that sliding mode dynamics is insensitive

to matched uncertainties.

Remark 5.4 It should be stressed that, unlike many cases in references, matrices K0 and

K1 are not feedback gain matrices. As a matter of fact, there is neither K0 nor K1 in

control scheme (5.17). Matrices BK0 and BK1 are introduced into the stability analysis

of sliding mode because the sliding surface and the Lyapunov-Krasovskii functional are
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chosen as (5.14) and (5.30) respectively, by which we take advantage of their relationship

on the sliding surface s(t) = BT Px(t) = 0.

In this section, we consider stability of dynamics of the sliding mode, that is, system

(5.28) restricted on sliding surface (5.14).

Theorem 5.2 Given constant γ > 0, sliding mode dynamics of system (5.28) and (5.4)

on sliding surface (5.14) is robustly mean-square exponentially stable with disturbance

attenuation γ provided that LMIs (5.9)-(5.10) are satisfied.

Proof. First, let us consider stability of system (5.28) with v(t) = 0 restricted on

sliding manifold (5.14). Choose a Lyapunov-Krasovskii functional candidate as

V (t) = xT (t)Px(t) +

∫ t

t−h

xT (τ)Qx(τ)dτ (5.30)

for all t ≥ t0 = tr + h, where P = X−1 and Q = PRP while matrices X > 0 and R > 0

are determined by LMIs (5.9) and (5.10). By Itô’s formula, we have

dV (t) = LV (t)dt + 2xT (t)Pg(t, x(t))dW (t) , (5.31)

where

LV (t) = 2xT (t)P
[
Ā0(t)x(t) + Ā1(t)x(t− h)

]
+ 2xT (t)PB

[
u(t) + φ̄(t, xt)

]

+ trace
[
gT (t, x(t))Pg(t, x(t))

]
+ xT (t)Qx(t)− xT (t− h)Qx(t− h)

= 2xT (t)P
[
Ā0(t)x(t) + Ā1(t)x(t− h)

]
+ trace

[
gT (t, x(t))Pg(t, x(t))

]

+ xT (t)Qx(t)− xT (t− h)Qx(t− h) , (5.32)

since system (5.28) is restricted on sliding surface (5.14). By Lemma 5.1, we obtain

LV (t) ≤ 2xT (t)P
[
Ā0(t)x(t) + Ā1(t)x(t− h)

]
+ λM(P )trace

[
gT (t, x(t))g(t, x(t))

]

+ xT (t)Qx(t)− xT (t− h)Qx(t− h) . (5.33)

Moreover, LMI (5.10) implies

P ≤ λ−1
g I. (5.34)
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Substitution of (5.7) and (5.34) into (5.33) yields

LV (t) ≤ 2xT (t)P
[
Ā0(t)x(t) + Ā1(t)x(t− h)

]
+ xT (t)(λ−1

g GT G)x(t)

+ xT (t)Qx(t)− xT (t− h)Qx(t− h)

= xT (t)
(
PĀ0 + ĀT

0 P + λ−1
g GT G + Q

)
x(t)

+ 2xT (t)PĀ1x(t− h)− xT (t− h)Qx(t− h)

+ 2xT (t)P∆A0(t)x(t) + 2xT (t)P∆A1(t)x(t− h) . (5.35)

But, by Lemma 3.1, we see

2xT (t)P∆A0(t)x(t) ≤ xT (t)β0PL0L
T
0 Px(t) + xT (t)β−1

0 ET
0 E0x(t) , (5.36)

2xT (t)P∆A1(t)x(t− h) ≤ xT (t)β1PL1L
T
1 Px(t)

+ xT (t− h)β−1
1 ET

1 E1x(t− h) . (5.37)

This implies

LV (t) ≤ xT (t)
(
PĀ0 + ĀT

0 P + λ−1
g GT G + Q

+ β0PL0L
T
0 P + β−1

0 ET
0 E0 + β1PL1L

T
1 P

)
x(t)

+ 2xT (t)PĀ1x(t− h)

+ xT (t− h)
(−Q + β−1

1 ET
1 E1

)
x(t− h)

=
[
xT (t) xT (t− h)

]
Ω

[
xT (t) xT (t− h)

]T

, (5.38)

where

Ω =


 Ω1 P (A1 + BK1)

(KT
1 BT + AT

1 )P −Q + β−1
1 ET

1 E1


 (5.39)

with Ω1 = P (A0 + BK0) + (A0 + BK0)
T P + λ−1

g GT G + Q + β0PL0L
T
0 P + β−1

0 ET
0 E0 +

β1PL1L
T
1 P .

Let us look at matrix Γ given as follows

Γ =




Γ1 ∗ ∗ ∗ 0

XAT
1 + Y T

1 BT −R 0 0 ∗
GX 0 −λgI 0 0

E0X 0 0 −β0I 0

0 E1X 0 0 −β1I




, (5.40)
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where Γ1 = A0X + XAT
0 + BY0 + Y T

0 BT + R + β0L0L
T
0 + β1L1L

T
1 . Observe that Γ is a

principal submatrix of matrix Θ given in (5.9). By Schur complement lemma, LMI (5.9)

implies Γ < 0. But, also by Schur complement lemma, this implies Ω̃ < 0, where Ω̃ is

given as

Ω̃ =


 Ω̃1 A1X + BY1

Y T
1 BT + XAT

1 −R + β−1
1 XET

1 E1X


 (5.41)

with Ω̃1 = A0X +XAT
0 +BY0 +Y T

0 BT P +λ−1
g XGT GX +R +β0L0L

T
0 +β−1

0 XET
0 E0X +

β1L1L
T
1 . Let Ki = YiP , i = 0, 1, then it is observed Ω = DpΩ̃Dp, where Dp =

diag{P, P}. This implies Ω < 0 and hence

LV (t) ≤ −λ0|x(t)|2 , (5.42)

where λ0 = λm(−Ω) > 0.

According to (5.30), we have

α0|x(t)|2 ≤ V (t) ≤ α1|x(t)|2 + α2

∫ t

t−h

|x(τ)|2dτ (5.43)

for all t ≥ t0, where α0 = λm(P ), α1 = λM(P ) and α2 = λM(Q). Choose ε0 > 0 such

that

ε0(α1 + α2hehε0) ≤ λ0 . (5.44)

By Itô’s formula, we have

d [eε0τV (τ)] = eε0τ [ε0V (τ) + LV (τ)] ds + 2eε0τxT (t)Pg(τ, x(τ))dW (τ) . (5.45)

Integrating from t0 to t and taking expectation on both sides of (5.45) yield

E
[
eε0tV (t)

]− E [
eε0t0V (t0)

]

= E
∫ t

t0

eε0τ [ε0V (τ) + LV (τ)] dτ

≤
∫ t

t0

eε0τ
{
E

[
ε0α1|x(τ)|2 + ε0α2

∫ τ

τ−h

|x(v)|2dv
]
− λ0E|x(τ)|2

}
dτ . (5.46)

Since

∫ t

t0

eε0τdτ

∫ τ

τ−h

|x(v)|2dv ≤
∫ t

t0−h

|x(v)|2dv

∫ v+h

v

eε0τdτ ≤ hehε0

∫ t

t0−h

|x(τ)|2eε0τdτ

≤ hehε0

∫ t

t0

|x(τ)|2eε0τdτ + hehε0

∫ t0

t0−h

|x(τ)|2dτ ,

73



it follows

eε0tEV (t) ≤ eε0t0EV (t0) +

∫ t

t0

eε0τ
[
ε0(α1 + α2hehε0)− λ0

]
E|x(τ)|2dτ

+ hε0α2e
hε0

∫ t0

t0−h

E|x(τ)|2dτ

≤ Ct0 , (5.47)

where Ct0 = [α1e
ε0t0 + α2h(eε0t0 + ε0hehε0)] suptr≤θ≤t0 E|x(θ)|2. So we have

α0|x(t)|2 ≤ EV (t) ≤ Ct0e
−ε0t, ∀ t ≥ 0 (5.48)

or

lim sup
t→∞

1

t
logE|x(t; ξ)|2 ≤ −ε0 . (5.49)

The mean-square exponential stability of the sliding mode dynamics has been proved.

In fact, by Theorem 6.2, p175, [88] or Theorem 2.2, [75], (5.49) also implies almost sure

exponential stability. We proceed to show

E
∫ ∞

t0

|z(t)|2dt ≤ γ2

∫ ∞

t0

|v(t)|2dt (5.50)

for all nonzero v ∈ L2[t0,∞) and admissible uncertainties (5.5) under zero initial condi-

tion x(θ) = 0 for all θ ∈ [t0 − h, t0].

For prescribed constant γ > 0, define the performance index function

J(t) =

∫ t

t0

[zT (τ)z(τ)− γ2vT (τ)v(τ)]dτ (5.51)

for all t > t0. Let

Y (t) = J(t) + V (t) , J̄(t) = EJ(t), Ȳ (t) = EY (t) . (5.52)

Obviously, Y (t) ≥ J(t) and Ȳ (t) ≥ J̄(t) for all t > t0. Since x(θ) = 0 for all θ ∈ [t0−h, t0],

by Dynkin’s formula, we have

EV (t) = E
∫ t

t0

LV (τ)dτ, ∀ t > t0 (5.53)

and therefore

Ȳ (t) = E
∫ t

t0

[zT (τ)z(τ)− γ2vT (τ)v(τ) + LV (τ)]dτ

= E
∫ t

t0

[
xT (τ) xT (t− h) vT (τ)

]
Ωv

[
xT (τ) xT (t− h) vT (τ)

]T

dτ ,

(5.54)
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where

Ωv =




Ωv1 P (A1 + BK1) PBv + CT D

(KT
1 BT + AT

1 )P −Q + β−1
1 ET

1 E1 0

BT
v P + DT C 0 −γ2I + DT D




with Ωv1 = P (A0 + BK0) + (A0 + BK0)
T P + λ−1

g GT G + Q + β0PL0L
T
0 P + β−1

0 ET
0 E0 +

β1PL1L
T
1 P + CT C.

Using similar techniques as above, we find

Θ < 0 ⇒ Ωv < 0 . (5.55)

But this implies

J̄(t) ≤ Ȳ (t) ≤ −λv

∫ t

t0

|v(τ)|2dτ ∀ t ≥ t0 (5.56)

with λv = λm(−Ωv) > 0, which completes the proof.

5.6 Example

Let us consider a water-quality dynamic model subject to environmental noise (see Ex-

ample 4.2, p157, [71])

dx(t) =
[
A0(t)x(t) + A1(t)x(t− h) + Bu(t) + Bvv(t)

]
dt

+g(t, x(t))dW (t) , (5.57)

z(t) = Cx(t) (5.58)

with

A0 =


−1 1

−2 −3


 , L0 =


0.6 −0.2

0 0.8


 , E0 =


 0 0.4

0.2 0.2


 ,

A1 =


 0 −0.1

0.5 1


 , L1 =


0.25 0 0 0 0 0

0 0 0 0 0 0.2


 ,

E1 =


 0 0.4

0.2 0.2


 , F0(t) =


0.7 sin(t) 0

0 0.3 sin(3t)


 ,

F1(t) =


0.5 sin(2t) 0 0 0 0 0

0 0 0 0 0 0.4 sin(t)




T

,
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and

B =


1 0

0 0.5


 , Bv =


0.1 0

0 0.1


 , G =


3 0

3 0


 , C =


0.5 0

0 0.5


 .

Obviously, in this case, we have m = n = 2 (see Remark 5.2). For γ = 1, solving

inequalities (5.9)-(5.13) yields

P =


2.2138 0.0002

0.0002 0.3918


 , β = 15.5091 .

By Theorem 5.1, closed-loop system (5.57) and (5.17) designed with the parameters above

converges to sliding surface

s(t) = BT Px(t) =


2.2138 0.0002

0.0001 0.1959


x(t) = 0 (5.59)

in finite time. Since rank(BT P ) = rank(B) = m = n = 2, s(t) = 0 ⇒ x(t) = 0.

That is, system (5.57) and (5.17) arrives at the equilibrium in finite time and stays there

afterwards. By Definition 5.2 and Remark 5.2, we see that our method provides a control

scheme for 1st moment finite-time stabilization of system (5.57). This control strategy

is more desired than the control method in [71] in a case when the states of the water

quality are required to reach the equilibrium in finite time and stay at the point.

In the following, let us consider system (5.57)-(5.58) with single input, to which

SMC strategy may be applied. To illustrate the effectiveness of the result proposed in

this chapter, we consider the case of

B =
[
2 2

]T

, (5.60)

where it is easy to see that the assumption (5.2) in the existing results (see [13], [14, 15],

[102], [103, 104] and [45]) is not satisfied and hence those results can not be applied in

this case. For prescribed γ = 1, inequalities (5.9)-(5.13) give

P =


 0.0729 −0.0726

−0.0726 0.0726


 , β = 31.6466 .

Hence, sliding surface (5.14) and control scheme (5.17) can be designed with these given

parameters. In this case, the state trajectories of system (5.57)-(5.58) converge to sliding

manifold

s(t) = BT Px(t) = 10−3 ×
[
0.4970 0

]
x(t) = 0 (5.61)
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in finite time, on which the sliding mode is robustly mean-square exponentially stable

with disturbance attenuation γ = 1. The curves given in Figure 5.1-5.5 are the result of a

simulation with diffusion g(t, x(t)) = Gx(t), design parameter α = 10−4, initial condition

x(θ) = [10 10]T , θ ∈ [−h, 0], and time delay h = 103Dt, where step sizes Dt = Rdt = 10−4

and dt = 0.5 × 10−4 (see [37]). The curve of mean square of 1000 samples are given in

Figure 5.6.
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Figure 5.1: The curve of x1(t).
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Figure 5.2: The curve of x2(t) before entering sliding mode.
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Figure 5.3: The curve of x2(t).
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Figure 5.4: The curve of u(t) before entering sliding mode.
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Figure 5.5: The curve of u(t).
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Figure 5.6: The curve of mean square of 1000 paths.

5.7 Summary

This chapter presents a SMC design for robust H∞ control for uncertain stochastic delay

systems. The proposed method removes a restriction in the existing results. The idea in

this chapter may also be applied in an alternative way to linear stochastic delay systems

with m < n. Since pair (A0, B) is controllable and matrix B is of full column rank, system

(5.3) can be transformed to a variant of canonical controller-type form (see Remark 4

[45]). This may be considered as a decomposition into two interconnected subsystems,

one of which, denoted by subsystem y2(t) ∈ Rm, includes control input u(t) and the other

denoted by subsystem y1(t) ∈ Rn−m is free of input. If the sliding mode is chosen as

s(t) = Sy2(t) = 0, where S is a nonsingular matrix, then the condition for reachability of

sliding mode can be figured out from the subsystem y2(t) while the condition for stability

of sliding mode is indeed that for stability of subsystem y1(t) with y2(t) = 0.
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Chapter 6

Razumikhin-type theorems on

stability of stochastic retarded

systems with Markovian switching

6.1 Introduction

Since Markov jump linear systems were first introduced in early 1960s (see, e.g., [92] and

[135]), hybrid systems driven by continuous-time Markov chains have been widely em-

ployed to model many practical systems that may experience abrupt changes in system

structure and parameters such as BM/C3 (battle management in command, control and

communication) systems, electric power systems, failure prone manufacturing, macroe-

conomic models of national economy, population dynamics and solar-powered systems

(see [3], [30], [68], [84], [92], [117], [132] and the references therein). An area of particular

interest has been the stability analysis of this class of hybrid systems and its applications

to automatic control (see, e.g., [10], [48] and [92]).

When time delays and environmental noise, which are often encounterd in real sys-

tems and may be the cause of poor performance and instability, are taken into account,

the hybrid systems are described by stochastic functional differential equations with

Markovian switching and called hybrid stochastic retarded systems (HSRSs). Some of

the most important HSRSs that frequently appear in engineering are those called hybrid

stochastic delay systems (HSDSs), which are also known as stochastic delay systems with
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Markovian switching (SDSwMS) and described by stochastic differential delay equations

with Markovian switching (see, e.g., [84], [86] and [133]). Recently, HSRSs and HS-

DSs have been widely used since stochastic modelling plays an important role in many

branches of science and engineering (see, e.g., [85], [132], [135] and the references therein).

Consequently, the stability analysis of HSRSs including HSDSs has been studied by many

works, see, e.g., [79], [80], [81], [85], [87], [133] and [135]. Mao et al. ([81], [82] and [85])

established a number of exponential stability criteria for stochastic differential delay

equations with Markovian switching while Yue et al. ([135]) considered delay-dependent

exponential stability of a class of stochastic systems with time delay, nonlinearity and

Markovian switching. However, these results require the time delay of the systems to be

a constant or a differentiable function that varies slowly, or say, the derivative of which

is upper bounded by a constant number less than one. To remove this restriction in the

result of [85] and allow the time delay to be a bounded variable only, Mao et al. ([79]

and [86]) proposed the Razumikhin-type theorem on exponential stability of HSRSs and

its application to linear uncertain HSDSs.

The Razumikhin method is developed to cope with the difficulty arisen from the

large, fast varying and non-differentiable time delays. However, the importance of gen-

eral asymptotic stability has not been considered. In many cases, the exponential stability

of the equilibrium of the system is not necessary and to stabilize the system exponen-

tially fast is economically, and sometimes practically, unfeasible. In fact, the criteria for

exponential stability of HSRSs implicitly require the diffusion operator associated with

the underlying HSRSs of the Lyapunov function along a solution of the system to be

negative and have the same order as that of the function itself at some instants, which

is not satisfied in many nonlinear systems. In these cases, the existing results (see [79]-

[81], [85], [86], [87] and [135]) can not be applied. For example, consider the following

scalar stochastic delay system driven by a right-continuous Markov chain r(t) that is

independent of the one-dimensional standard Brownian motion W1(t) and takes values

in S = {1, 2} with generator

Γ =


 −γ1 γ1

γ2 −γ2


 , γ1 > 0, γ2 > 0.

The HSDS is described by the following nonlinear stochastic delay equation with Marko-
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vian switching

dx(t) = −[
1

2
x(t) + ζ(x(t), r(t))]dt + σ(x(t), x(t− τ(t)), r(t))dW1(t) (6.1)

on t ≥ 0, where τ : R+ → (0, h] is Borel measurable and the nonlinear term ζ(x(t), r(t))

and the diffusion term σ(x(t), x(t− τ(t)), i) are given as follow

ζ(x(t), i) =





1
6
x3(t), i = 1

1
10

x(t)
√
|x(t)|, i = 2

and

σ(x(t), x(t− τ(t)), i) =





√
2

4
x2(t) +

√
2

2
x(t− τ(t)), i = 1

x(t− τ(t)), i = 2

for all t ≥ 0. We encounter a problem when we attempt to apply the existing results

to analyze the stability of the solution to equation (6.1). To see this problem, let us set

V (x(t), t, r(t)) = x2(t) and calculate

LV (xt, t, i) ≤



−x2(t)− 1

12
x4(t) + x2(t− τ(t)), i = 1

−x2(t)− 1
5
x2(t)

√
|x(t)|+ x2(t− τ(t)), i = 2

(6.2)

on t ≥ 0, where operator L is defined in (6.5) or (6.29) (see, e.g., [79]). It is easy to verify

that the Razumikin-type theorem on exponential stability (see Theorem 4.2 [79], Theorem

2.1 [86] or Theorem 8.9, p311, [87]) is not applicable to this case. However, the solution

to equation (6.1) can be asymptotically stable in mean-square sense though it might be

not exponentially stable (see [54] and [126]). This chapter studies the general asymptotic

stability of HSRSs with Razumikhin-type arguments, which is a generalization of the

result on exponential stability (see [79], [86] and [87]).

6.2 Notation

Throughout the chapter, unless otherwise specified, we will employ the following notation.

Let (Ω,F , {Ft}t≥0, P ) be a complete probability space with a filtration {Ft}t≥0 satisfying

the usual conditions (i.e. it is right continuous and F0 contains all P -null sets)and

E[·] be the expectation operator with respect to the probability measure. Let W (t) =

(W1(t), · · · ,Wm(t))T be an m-dimensional Brownian motion defined on the probability
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space. If x, y are real numbers, then x ∨ y denotes the maximum of x and y, and x ∧ y

stands for the minimum of x and y. Let | · | denote the Euclidean norm in Rn. Let

h ≥ 0 and C([−h, 0]; Rn) denote the family of all continuous Rn-valued functions ϕ on

[−h, 0] with the norm ‖ϕ‖ = sup{|ϕ(θ)| : −h ≤ θ ≤ 0}. Let Cb
F0

([−h, 0]; Rn) be the

family of all F0-measurable bounded C([−h, 0]; Rn)-valued random variables ξ = {ξ(θ) :

−h ≤ θ ≤ 0}. For p > 0 and t ≥ 0, denote by Lp
Ft

([−h, 0]; Rn) the family of all Ft-

measurable C([−h, 0]; Rn)-valued random processes φ = {φ(θ) : −h ≤ θ ≤ 0} such that

sup−h≤θ≤0E|φ(θ)|p < ∞. We let K denote the class of continuous strictly increasing

functions µ from R+ to R+ with µ(0) = 0. Let K∞ denote the class of functions µ ∈ K
with µ(r) →∞ as r →∞. Functions in K and K∞ are called class K and K∞ functions,

respectively.

Let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space taking

values in a finite state space S = {1, 2, · · · , N} with generator Γ = (γij)N×N given by

P {r(t + ∆) = j : r(t) = i} =





γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,
(6.3)

where ∆ > 0 and γij ≥ 0 is the transition rate from i to j if i 6= j while γii = −∑
j 6=i γij.

Assume that the Markov chain r(·) is independent of the Brownian motion W (·). It

is known that almost all sample paths of r(t) are right-continuous step functions with a

finite number of simple jumps in any finite subinterval of R+ := [0,∞).

Let us consider an n-dimensional HSRS

dx(t) = f(xt, t, r(t))dt + g(xt, t, r(t))dW (t) (6.4)

on t ≥ 0 with initial data x0 = {x(θ) : −h ≤ θ ≤ 0} = ξ ∈ Cb
F0

([−h, 0]; Rn) and

r(0) = r0 ∈ S. Moreover,

f : C([−h, 0]; Rn)×R+ × S → Rn

and

g : C([−h, 0]; Rn)×R+ × S → Rn×m

are measurable functions with f(0, t, i) ≡ 0 and g(0, t, i) ≡ 0 for all t ≥ 0. So equation

(6.4) admits a trivial solution x(t; 0) ≡ 0. Here, xt = {x(t+ θ) : −h ≤ θ ≤ 0} is regarded

as a C([−h, 0]; Rn)-valued stochastic process. We assume that f and g are sufficiently
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smooth so that equation (6.4) has a unique solution on t ≥ 0 (see, e.g., [63], [84], [112],

[133] and Appendix A), which is denoted by x(t; x0) or x(t; ξ) in this chapter.

Let C2,1(Rn×R+×S; R+) denote the family of all nonnegative functions V (x, t, i) on

Rn×R+×S that are twice continuously differentiable in x and once in t. If V ∈ C2,1(Rn×
R+ × S; R+), define an operator L associated with system (6.4) from C([−h, 0]; Rn) ×
R+ × S to R by

LV (xt, t, i) = Vt(x, t, i) + Vx(x, t, i)f(xt, t, i) +
1

2
trace

[
gT (xt, t, i)Vxx(x, t, i)g(xt, t, i)

]

+
N∑

j=1

γijV (x, t, j), (6.5)

where

Vt(x, t, i) =
∂V (x, t, i)

∂t
,

Vx(x, t, i) =

(
∂V (x, t, i)

∂x1

, · · · ,
∂V (x, t, i)

∂xn

)
,

Vxx(x, t, i) =

(
∂2V (x, t, i)

∂xj∂xk

)

n×n

.

The purpose of this chapter is to further develop Razumihkin-type theorems on

stability of HSRSs initiated by [79]. Let us begin with the following definition (see, e.g.,

[25]) and lemma.

Definition 6.1 The solution of equation (6.4), or simply, equation (6.4) is said to be

1. pth (p > 0) moment stable if for every ε > 0, there exists δ = δ(ε) > 0 such that

E|x(t; ξ)|p ≤ ε, ∀t ≥ 0

whenever E‖ξ‖p < δ0.

2. pth moment asymptotically stable if it is p-th moment stable and, moreover, for

every ε > 0, there exist δ0 = δ0(ε) and T = T (ε) such that

E|x(t; ξ)|p ≤ ε, ∀t ≥ T

whenever E‖ξ‖p < δ0.

3. globally pth moment asymptotically stable if it is pth moment stable and, moreover,

for all ξ ∈ Cb
F0

([−h, 0]; Rn),

lim
t→∞

E|x(t; ξ)|p = 0.
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6.3 Asymptotic Stability of HSRSs

As the main results of this chapter, we present Razumikhin-type theorems on general

stability of HSRSs (6.4) as follows.

Theorem 6.1 Let p > 0, u ∈ VK∞, v ∈ CK∞ and w : R × R+ × S → R be a

nonnegative continuous function with w(y, t, i) > 0 if y > 0. Assume that there exists a

function V ∈ C2,1(Rn ×R+ × S; R+) such that

u(|x|p) ≤ V (x, t, i) ≤ v(|x|p), ∀(x, t, i) ∈ Rn × [−h,∞)× S (6.6)

and, moreover,

ELV (φ, t, i) ≤ −w(E|φ(0)|p, t, i) (6.7)

for all (t, i) ∈ R+ × S and those φ ∈ Lp
Ft

([−h, 0]; Rn) satisfying

min
k∈S

EV (φ(θ), t + θ, k) < q(max
k∈S

EV (φ(0), t, k), i) (6.8)

on −h ≤ θ ≤ 0, where q : R×S → R is a continuous nondecreasing function with respect

to s ∈ R for all s ≥ 0 and i ∈ S. Moreover q(s, i) > s for all s > 0 and i ∈ S. Then the

trivial solution of HSRS (6.4) is globally pth moment asymptotically stable.

Let us first present the following lemma that is will be used to prove the main results.

Lemma 6.1 Let V (t) = V (x(t), t, r(t)) for t ≥ 0, then EV (t) is continuous on t ≥ 0.

Proof. For any initial data ξ ∈ Cb
F0

([−h, 0]; Rn), write x(t) = x(t; ξ) and extend r(t)

to [−h, 0) by setting r(t) = r(0) = r0 for all t ∈ [−h, 0). The generalized Itô’s formula

(2.23) (see p105, [114]) can be easily extended to HSRSs (6.4) (see [82] and [133])

V (x(t), t, r(t))

= V (x(0), 0, r(0)) +

∫ t

0

LV (xs, s, r(s))ds +

∫ t

0

Vx(x(s), s, r(s))g(xs, s, r(s))dW (s)

+

∫ t

0

∫

R

[
V (x(s), s, r(0) + h(r(s), l))− V (x(s), s, r(s))

]
µ(ds, dl) (6.9)

for all t ≥ 0, where function h(·, ·) and martingale measure µ(·, ·) are defined as, e.g.,

(2.18) and (2.23) (see also [30], [6] and [133]).
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Since ξ ∈ Cb
F0

([−h, 0]; Rn), we can find an integer k0 such that ‖ξ‖ < k0 a.s.. For

any integer k > k0, define the stopping time

ρk = inf{t ≥ 0 : |x(t)| ≥ k} , (6.10)

where we set inf ∅ = ∞ as usual. Note that x(t) is continuous and so are |x(t)| and

v(|x(t)|) on t ≥ −h. Clearly, ρk → ∞ almost surely as k → ∞. Moreover, since

x0 = ξ ∈ Cb
F0

([−h, 0]; Rn), EV (x(0), 0, r(0)) ≤ Ev(|ξ(0)|) ≤ v(k0). It then follows from

(6.9) that

EV (x(tk), tk, r(tk)) = EV (x(0), 0, r(0)) + E
∫ tk

0

LV (xs, s, r(s))ds (6.11)

where tk = t ∧ ρk. So, letting k →∞, by Fubini’s theorem, we have

EV (t) = EV (0) + E
∫ t

0

LV (xs, s, r(s))ds = EV (0) +

∫ t

0

ELV (xs, s, r(s))ds (6.12)

for all t ≥ 0. This implies EV (t) is continuous on t ≥ 0.

Now we proceed to prove Theorem 6.1.

Proof. By Lemma 6.1, we see that EV (x(t), t, r(t)) is continuous on t ≥ −h. Define

U(t) = sup
−h≤θ≤0

EV (x(t + θ), t + θ, r(t + θ)) ∀t ≥ 0. (6.13)

We claim that

D+U(t) := lim sup
s→0+

U(t + s)− U(t)

s
≤ 0 ∀ t ≥ 0. (6.14)

To show inequality (6.14), for each t ≥ 0 (fix t for the moment), we define

θ̄ = max{θ ∈ [−h, 0] : EV (x(t + θ), t + θ, r(t + θ)) = U(t)}. (6.15)

Obviously, θ̄ is either less than 0 or equal to 0.

If θ̄ < 0, then

EV (x(t + θ), t + θ, r(t + θ)) < EV (x(t + θ̄), t + θ̄, r(t + θ̄)) = U(t), ∀θ ∈ (θ̄, 0]. (6.16)

It follows from the continuity of EV (x(t), t, r(t)) that for every sufficiently small s > 0

EV (x(t + s), t + s, r(t + s)) ≤ U(t),
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hence

U(t + s) ≤ U(t) and D+U(t) ≤ 0.

If θ̄ = 0, then

EV (x(t + θ), t + θ, r(t + θ)) ≤ EV (x(t), t, r(t)) = U(t), ∀θ ∈ [−h, 0]. (6.17)

Note that either EV (x(t), t, r(t)) = 0 or EV (x(t), t, r(t)) > 0. In the former case, i.e.,

EV (x(t), t, r(t)) = 0, inequalities (6.17) and (6.6) yield that x(t + θ) = 0 a.s. for all

−h ≤ θ ≤ 0. Recalling that f(0, t, i) = 0 and g(0, t, i) = 0, we see x(t) = 0 a.s. for all

t > 0 hence D+U(t) = 0. In the other case when EV (x(t), t, r(t)) > 0, inequality (6.17)

implies

EV (x(t + θ), t + θ, r(t + θ))

≤ EV (x(t), t, r(t)) < q(EV (x(t), t, r(t)), r(t)), ∀θ ∈ [−h, 0]. (6.18)

Consequently inequality (6.8) holds, that is,

min
k∈S

EV (x(t + θ), t + θ, k) < q(max
k∈S

EV (x(t), t, k), r(t))

on all−τ ≤ θ ≤ 0. Moreover, by condition (6.6) and Jensen’s inequality, EV (x(t), t, r(t)) >

0 yields E|x(t)|p > 0.Thus, by condition (6.7), we have

ELV (xt, t, i) < 0 (6.19)

for all i ∈ S. By the right continuity of the processes concerned, we see that for all hs > 0

sufficiently small

ELV (xs, s, i) ≤ 0, ∀t ≤ s ≤ t + hs, i ∈ S.

By formula (6.12), we observe

E(x(t + hs), t + hs, r(t + hs))

= EV (x(t), t, r(t)) +

∫ t+hs

t

ELV (xs, s, r(s))ds ≤ EV (x(t), t, r(t)).

Hence we have

U(t + hs) = U(t) = EV (x(t), t, r(t)) and D+U(t) = 0.

Inequality (6.14) has been proved. It follows immediately that

U(t) ≤ U(0), ∀t ≥ 0. (6.20)
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Together with the definition of U(t), condition (6.6) and Jensen’s inequality, inequality

(6.20) yields

E|x(t)|p ≤ u−1(v(E‖ξ‖p)), ∀t ≥ 0. (6.21)

So, for any ε > 0, we can find δ(ε) = v−1(u(ε)) such that

E|x(t)|p ≤ ε, ∀t ≥ 0

whenever E‖ξ‖p < δ(ε). The pth moment stability is proved.

Now we proceed to show the convergence of E|x(t)|p → 0 as t → ∞. For any

initial data ξ ∈ Cb
F0

([−h, 0]; Rn), let δ > 0 and ε > 0 be such that E‖ξ‖p < δ and

U(0) < v(δ) = u(ε). So, by inequalities (6.20) and (6.21), we have EV (x(t), t, r(t)) < v(δ)

and E|x(t)|p < ε for all t ≥ 0. Suppose 0 < β ≤ ε is arbitrary. We need to show there is

a number T = T (β, δ) such that E|x(t)|p ≤ β for all t ≥ T . This will be true by condition

(6.6) and Jensen’s inequality if we show that EV (x(t), t, r(t)) ≤ u(β) for all t ≥ T .

According to the property of function q(·, ·), there is a positive real number a > 0

such that q(s, i) − s > a for all u(β) ≤ s ≤ v(δ) and i ∈ S. Let J be the minimal

nonnegative integer such that u(β) + Ja ≥ v(δ), and γ = inf{w(E|x(t)|p, t, i) : β ≤
E|x(t)|p ≤ ε, t ≥ 0, i ∈ S}. So γ > 0, since w(y, t, i) > 0 for all y > 0, t ≥ 0 and i ∈ S.

Let τ̃ = h ∨ v(δ)
γ

and Tj = jτ̃ with j = 0, 1, · · · , J .

We claim that EV (x(t), t, r(t)) ≤ u(β) for all t ≥ TJ . First we show that EV (x(t), t, r(t)) ≤
u(β) + (J − 1)a for all t ≥ T1. Let t1 = inf{t ≥ T0 : EV (x(t), t, r(t)) ≤ u(β) + (J − 1)a}.
If t1 > T1, then, ∀T0 ≤ t ≤ T1, we have

q(max
k∈S

EV (x(t), t, k), r(t))

≥ q(EV (x(t), t, r(t)), r(t)) > EV (x(t), t, r(t)) + a ≥ u(β) + Ja ≥ v(δ)

> EV (x(t + θ), t + θ, r(t + θ)) ≥ min
k∈S

EV (x(t + θ), t + θ, k), ∀θ ∈ [−h, 0].

This, by condition (6.7), implies

ELV (xt, t, r(t)) ≤ −w(E|x(t)|p, t, r(t)) ≤ −γ, ∀T0 ≤ t ≤ T1.

Consequently, by formula (6.12), we see

EV (x(T1), T1, r(T1)) ≤ EV (x(T0), T0, r(T0))− γ(T̄1 − T̄0) < v(δ)− γτ̃ ≤ 0,
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which contradicts the nonnegative property of EV (x(t), t, r(t)). So we must have

t1 ≤ T1 and ELV (x(t1), t1, r(t1)) ≤ −γ.

In fact, ∀t11 ∈ {t ≥ T0 : EV (x(t), t, r(t)) = u(β) + (J − 1)a}, we have

ELV (xt11 , t11, r(t11)) ≤ −γ

because

q(max
k∈S

EV (x(t11), t11, k), r(t)) ≥ q(EV (x(t11), t11, r(t11)), r(t)) > u(β) + Ja ≥ v(δ)

> EV (x(t11 + θ), t11 + θ, r(t11 + θ)) ≥ min
k∈S

EV (x(t11 + θ), t11 + θ, k), ∀θ ∈ [−h, 0].

So we have EV (x(t), t, r(t)) ≤ u(β) + (J − 1)a for all t ≥ T1.

Define tj = inf{t ≥ Tj−1 : EV (x(t), t, r(t)) ≤ u(β) + (J − j)a} for j = 2, 3, · · · , J .

By the same type of reasoning as above, we have

EV (x(t), t, r(t)) ≤ u(β) + (J − j)a

for all t ≥ Tj and j = 2, 3, · · · , J . In particular, EV (x(t), t, r(t)) ≤ u(β) for all t ≥ TJ .

This completes the proof.

Theorem 6.2 Let p > 0, u ∈ VK∞, v ∈ CK∞ and w : R × R+ × S → R+ be a

nonnegative continuous function with w(y, t, i) > 0 if y > 0. Assume that there exists a

function V ∈ C2,1(Rn ×R+ × S; R+) such that

u(|x|p) ≤ V (x, t, i) ≤ v(|x|p), ∀(x, t, i) ∈ Rn × [−h,∞)× S (6.22)

and, moreover,

ELV (φ, t, i) ≤ −w(E|φ(0)|p, t, i) (6.23)

for all (t, i) ∈ R+ × S and those φ ∈ Lp
Ft

([−h, 0]; Rn) satisfying

min
k∈S

EV (φ(θ), t + θ, k) < max
k∈S

Eq̄(V (φ(0), t, k), i) (6.24)

on −h ≤ θ ≤ 0, where q̄ : R×S → R is a continuous nondecreasing function with respect

to s ∈ R for all s ≥ 0 and i ∈ S. Moreover, q̄(s, i) > s for all (s, i) ∈ R+ × S and

q̄(s, i)/s > 1 as s →∞ for all i ∈ S. Then the trivial solution of HSRS (6.4) is globally

pth moment asymptotically stable.
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Proof. As above, the proof is composed of two parts. The first part to show the pth

moment stability of equation (6.4) is similar to that of Theorem 6.1. One only needs to

note that the properties of function q̄(·, ·) yield the following inequality

Eq̄(V (x(t), t, r(t)), r(t))

≥
∫

0<V <∞
q̄(V (x(t), t, r(t)), r(t))dP+

∫

V→∞
q̄(V (x(t), t, r(t)), r(t))dP

>

∫

0<V <∞
V (x(t), t, r(t)))dP+

∫

V→∞
V (x(t), t, r(t))dP

= EV (x(t), t, r(t)) (6.25)

for all t ≥ 0. Inequalities (6.17) and (6.25) imply that condition (6.24) is satisfied.

Moreover, EV (x(t), t, r(t)) > 0 implies E|x(t)|p > 0. Thus, by condition (6.23) and the

property of function w(·, ·, ·), we are led to (6.19) in the case when EV (x(t), t, r(t)) > 0.

The other part to show the convergence of E|x(t)|p → 0 as t →∞ is slightly different

and given as follows.

Numbers δ, ε , γ and τ̃ are defined as above while the positive real number ā = a1∧a2,

where a1 > 0 and a2 > 0 are such that

q̄(s, i)− s > a1 ∀u(β) ≤ s < ∞

and
q̄(s, i)− s

s
> a2 as s →∞

for all i ∈ S. Let us now consider the expectation of function V (x(t), t, r(t))

EV (x(t), t, r(t)) =

∫

V <u(β)

V (x(t), t, r(t))dP

+

∫

u(β)≤V <∞
V (x(t), t, r(t))dP+

∫

V→∞
V (x(t), t, r(t))dP.

for any t ≥ 0. Obviously there is a positive number 0 < p̄ < 1 such that

α1 ∨ α2 ≥ p̄ (6.26)

for any t ≥ 0 whenever EV (x(t), t, r(t)) ≥ u(β), where

α1 = P {u(β) ≤ V (x(t), t, r(t)) < ∞} and α2 =

∫

V→∞
V (x(t), t, r(t))dP.

Let J̄ be the minimal nonnegative integer such that u(β)+ J̄ p̄ā ≥ v(δ), and T̄j = jτ̃ with

j = 0, 1, · · · , J̄ . To prove that EV (x(t), t, r(t)) ≤ u(β) for all t ≥ T̄J̄ , we first show that
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EV (x(t), t, r(t)) ≤ u(β)+(J̄−1)p̄ā for all t ≥ T̄1. Let t̄1 = inf{t ≥ T̄0 : EV (x(t), t, r(t)) ≤
u(β) + (J̄ − 1)p̄ā}. If t̄1 > T̄1, then, ∀T̄0 ≤ t ≤ T̄1, we have

max
k∈S

Eq̄(V (x(t), t, k), r(t)) ≥ Eq̄(V (x(t), t, r(t)), r(t))

=

∫

V <u(β)

q̄(V (x(t), t, r(t)), r(t))dP+

∫

u(β)≤V <∞
q̄(V (x(t), t, r(t)), r(t))dP

+

∫

V→∞
q̄(V (x(t), t, r(t)), r(t))dP

>

∫

V <u(β)

V (x(t), t, r(t))dP+

∫

u(β)≤V <∞
[V (x(t), t, r(t)) + ā] dP

+ (1 + ā)

∫

V→∞
V (x(t), t, r(t))dP

≥ EV (x(t), t, r(t)) + p̄ā ≥ u(β) + J̄ p̄ā ≥ v(δ) > EV (x(t + θ), t + θ, r(t + θ))

≥ min
k∈S

EV (x(t + θ), t + θ, k) (6.27)

for all θ ∈ [−h, 0]. This, by condition (6.23), implies

ELV (xt, t, r(t)) ≤ −w(E|x(t)|p, t, r(t)) ≤ −γ, ∀T̄0 ≤ t ≤ T̄1.

Consequently, we see

EV (x(T̄1), T̄1, r(T̄1)) ≤ EV (x(T̄0), T̄0, r(T̄0))− γ(T̄1 − T̄0) < v(δ)− γτ̃ ≤ 0,

which contradicts the nonnegative property of EV (x(t), t, r(t)). So we have

t̄1 ≤ T̄1 and ELV (x(t̄1), t̄1, r(t̄1)) ≤ −γ.

Moreover, ∀t̄11 ∈ {t ≥ T̄0 : EV (x(t), t, r(t)) = u(β) + (J̄ − 1)p̄ā}, we have

ELV (xt̄11 , t̄11, r(t̄11)) ≤ −γ

because inequality (6.24), or say, (6.27) holds on t = t̄11. So we have EV (x(t), t) ≤
u(β) + (J̄ − 1)p̄ā for all t ≥ T̄1.

Define t̄j = inf{t ≥ T̄j−1 : EV (x(t), t, r(t)) ≤ u(β) + (J̄ − j)p̄ā} for j = 2, 3, · · · , J̄ .

By the same type of reasoning, we have

EV (x(t), t, r(t)) ≤ u(β) + (J̄ − j)p̄ā

for all t ≥ T̄j and j = 2, 3, · · · , J̄ . Therefore, EV (x(t), t, r(t)) ≤ u(β) for all t ≥ T̄J . The

proof is complete.
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Remark 6.1 By Fatou’s lemma, we note that conditions (6.8) and (6.24) are less con-

servative than the corresponding ones in the existing results (see, e.g., inequality (2.5),

Theorem 2.1 ,[87]) and are convenient for application.

6.4 Application to HSDSs

Hybrid stochastic delay systems (HSDSs) described with stochastic differential delay

equations with Markovian switching are an important class of HSRSs that are frequently

used in engineering. As an illustrative example of applications of our new results, we will

apply Theorem 6.2 to establish a criterion for stability of HSDEs in this section.

Let us consider the HSDSs of the form

dx(t) = F (x(t), x(t− τ(t)), t, r(t))dt + G(x(t), x(t− τ(t)), t, r(t))dW (t) (6.28)

on t ≥ 0 with initial data x0 = ξ ∈ Cb
F0

([−h, 0]; Rn), where τ : R+ → [0, h] is Borel

measurable while

F : Rn ×Rn ×R+ × S → Rn

and

G : Rn ×Rn ×R+ × S → Rn×m

are measurable functions with F (0, 0, t, i) ≡ 0 and g(0, 0, t, i) ≡ 0 for all t ≥ 0 and i ∈ S.

It is easy to see that this is a special case of equation (6.4) with

f(φ, t, i) = F (φ(0), φ(−τ(t)), t, i) and g(φ, t, i) = G(φ(0), φ(−τ(t)), t, i)

for (φ, t, i) ∈ C([−h, 0]; Rn)×R+×S. If V ∈ C2,1(Rn×R+×S; R+), for the special case

of (6.28) the operator L defined in (6.5) becomes from Rn ×Rn ×R+ × S to R as

LV (x, y, t, i) = Vt(x, t, i) + Vx(x, t, i)F (x, y, t, i)

+
1

2
trace

[
GT (x, y, t, i)Vxx(x, t, i)G(x, y, t, i)

]

+
N∑

j=1

γijV (x, t, j). (6.29)

To give our new result for the HSDSs (6.28), let us introduce one more notation that

Lp
Ft

([Ω; Rn) are the collection of all Ft-measurable C([−h, 0]; Rn)-valued random variables

X such that E|X|p < ∞ and state the corresponding version of Theorem 6.2 for equation

(6.28) as follows
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Theorem 6.3 Let p > 0, c2 ≥ c1 > 0 and w : R × R+ × S → R+ be a nonnegative

continuous function with w(y, t, i) > 0 for y > 0. Assume that there exists a function

V ∈ C2,1(Rn ×R+ × S; R+) such that

c1|X|p ≤ V (X, t, i) ≤ c2|X|p, ∀(x, t, i) ∈ Rn × [−h,∞)× S (6.30)

and, moreover,

ELV (X,Y, t, i) ≤ −w(E|X|p, t, i) (6.31)

for all (t, i) ∈ R+ × S and those X,Y ∈ Lp
Ft

(Ω; Rn) satisfying

min
k∈S

EV (Y, t− τ(t), k) < max
k∈S

Eq̄(V (X, t, k), i), (6.32)

where q̄ : R × S → R is a continuous nondecreasing function with respect to s ∈ R for

all s ≥ 0 and i ∈ S. Moreover, q̄(s, i) > s for all (s, i) ∈ R+ × S and q̄(s, i)/s > 1 as

s → ∞ for all i ∈ S. Then the trivial solution of HSDS (6.28) is globally pth moment

asymptotically stable.

This is a corollary from Theorem 6.2 and will be used to establish the following useful

result.

Theorem 6.4 Let p > 0, c2 ≥ c1 > 0, λ0i ≥ λ1i ≥ 0 and λ : R×S → R be a continuous

nondecreasing convex function with respect to s ∈ R for all s ≥ 0 and i ∈ S. Moreover

λ(s, i) > s for all (s, i) ∈ R+× S and λ(s, i)/s > 0 as s →∞ for all i ∈ S. Assume that

there exists a function V ∈ C2,1(Rn×R+×S; R+) such that inequality (6.30) is satisfied

and, moreover,

LV (X,Y, t, i) ≤ − λ0i max
k∈S

V (X, t, k) + λ1i min
k∈S

V (Y, t− h(t), k)− λ(max
k∈S

V (X, t, k), i)

(6.33)

for all X,Y ∈ Rn, t ≥ 0 and i ∈ S. Then the trivial solution of HSDS (6.28) is globally

pth moment asymptotically stable.

Proof. In condition (6.32), let

q̄(s, i) = s +
1

2(1 + λ1i)
λ(s, i). (6.34)

For all (t, i) ∈ R+ × S and X,Y ∈ Lp
Ft

(Ω; Rn) satisfying condition (6.32) with function

(6.34), i.e.,

min
k∈S

EV (Y, t− τ(t), k) < max
k∈S

EV (X, t, k) +
1

2(1 + λ1i)
Eλ(max

k∈S
V (X, t, k), i),
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by inequality (6.33), Fatou’s lemma and condition (6.30) we have

ELV (X,Y, t, i)

≤ − λ0i max
k∈S

EV (X, t, k) + λ1i min
k∈S

EV (Y, t− τ(t), k)− Eλ(max
k∈S

V (X, t, k), i)

≤ − (λ0i − λ1i) max
k∈S

EV (X, t, k)− 1

2
Eλ(max

k∈S
V (X, t, k), i)

≤ − 1

2
Eλ(c1|X|p, i).

According to the properties of function λ(·, ·), it is easy to verify that Eλ(c1|X|p, i) > 0 if

E|X|p > 0. Let w(E|X|p, t, i) = −1
2
λ(c1E|X|p, i) ≥ −1

2
Eλ(c1|X|p, i) in condition (6.31),

then, by Theorem 6.3, it follows the conclusion.

Remark 6.2 In many cases, this useful criterion may be applied with λ(s, i) = λ̃is
ki,

ki ≥ 1 and λ̃i > 0 for i ∈ S. In a special case when λ(s, i) = λ̃0s and λ̃0 > 0 for all

i ∈ S, the above result is exactly the Theorem 4.2 in [79]. However, our result works for

the particular cases when λ0i − λ1i = 0 for some i ∈ S, to which the existing results (see

[79]-[81], [86], [87] and [135]) do not apply.

Using the above skills, Theorem 6.4 can be developed to cope with systems with

multiple delays of the form

dx(t) = F (x(t), x(t− τ1(t)), · · · , x(t− τL(t)), t, r(t))dt

+ G(x(t), x(t− τ1(t)), · · · , x(t− τL(t)), t, r(t))dW (t) (6.35)

on t ≥ 0, where τl : R+ → [0, h] is Borel measurable, l = 1, 2, · · · , L.

Let us state the following generalized result, which can be proven in the same way

as the proof of Theorem 6.4.

Theorem 6.5 Let p > 0, c2 ≥ c1 > 0 , and λ0i ≥ 0, λ1i ≥ 0, · · ·λLi ≥ 0 such that

λ0i ≥
∑L

l=1 λli for all 1 ≤ i ≤ N . Let λ : R × S → R be a continuous nondecreasing

convex function with respect to s ∈ R for all s ≥ 0 and i ∈ S. Moreover λ(s, i) > s

for all (s, i) ∈ R+ × S and λ(s, i)/s > 0 as s → ∞ for all i ∈ S. Assume that there

exists a function V ∈ C2,1(Rn ×R+ × S; R+) such that inequality (6.30) is satisfied and,
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moreover,

LV (X,Y1, · · · , YL, t, i)

≤ − λ0i max
k∈S

V (X, t, k) + λ1i min
k∈S

V (Y1, t− τ1(t), k) + · · ·
+ λLi min

k∈S
V (YL, t− τL(t), k)− λ(max

k∈S
V (X, t, k), i) (6.36)

for all X,Y1, · · · , YL ∈ Rn, t ≥ 0 and i ∈ S. Then the trivial solution of HSDS (6.35) is

globally pth moment asymptotically stable.

6.5 Example

Example 6.1 Let us now return to the scalar HSDS (6.1). For the previous calculation

(6.2), let

λ01 = λ11 = 1, λ(s, 1) =
1

12
s2, λ02 = λ12 = 1, λ(s, 2) =

1

5
s5/4

in condition (6.33). It immediately follows from Theorem 6.4 that the trivial solution of

system (6.1) is mean-square asymptotically stable. Clearly, this is in fact an application

of Theorem 6.2. Alternatively, we can use Theorem 6.1 and have the same conclusion.

Let

q(s, i) =





s + 1
24

s2, i = 1

s + 1
10

s5/4, i = 2

in condition (6.8), then previous calculation (6.2) yields

ELV (xt, t, i) ≤




− 1

24
Ex4(t), i = 1

− 1
10
E

[
x2(t)

√
|x(t)|

]
, i = 2

when condition (6.8) is satisfied. Let

w(Ex2(t), t, i) =





1
24

(Ex2(t))2, i = 1

1
10

(Ex2(t))5/4, i = 2

in inequality (6.7), then the inequality holds. According to Theorem 6.1, this implies

that the trivial solution of system (6.1) is mean-square asymptotically stable.
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6.6 Summary

In this chapter, the general pth moment asymptotic stability of HSRSs (6.4) is studied

with Razumikhim-type arguments. Theorems on asymptotic stability are established.

Their applications to HSDSs (6.28) and (6.35) are also proposed. The Razumikhin-type

theorems work for many HSRSs including some complicated cases to which the existing

results do not apply. In a special case of the above results when w(E|x(t)|p, t, r(t)) =

α(t)EV (x(t), t, r(t)) for all t ≥ 0 with α(t) > 0, using the techniques similar to the proof

of Theorem 4.2 [79] (see also Theorem 8.9, p311, [87]), a Razumikhin-type theorem on

generalized exponential stability of HSRSs (6.4) may be obtained.

96



Chapter 7

Input-to-state stability of stochastic

retarded systems with Markovian

switching

7.1 Introduction

Recently, hybrid stochastic retarded systems (HSRSs) have been widely used since stochas-

tic modelling plays an important role in many branches of science and engineering. Con-

sequently, stability analysis of HSRSs and HSDSs has been studied by many works, see,

e.g., [81], [84], [86], [133] and [135]. Among the key results, [86] and Chapter 6 pro-

posed the Razumikhin-type theorems on stability of hybrid stochastic retarded systems

and their applications to hybrid stochastic delay systems. The Razumikhin method is

developed to cope with the difficulty arisen from the large, fast varying and nondiffer-

entiable time delays (see, e.g., [84] and [86]). Since the results for non-switched systems

cannot be simply extended to systems with jumps and switching (see, e.g., [48] and [92]),

Razumikhin-type Theorems for HSRSs and their applications are developed in [86] and

Chapter 6. However, some conditions of results in [86] and Chapter 6 may be too conser-

vative. Moreover, practical systems are often subject to disturbance input. This chapter

is to improve the Razumikhin-type theorem proposed in Chapter 6 and make it more

applicable.
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7.2 Problem formulation

Throughout this chapter, unless otherwise specified, we shall employ the same notation

as Chapter 6. Moreover, a function β : R+×R+ → R+ is said to be of class KL if for each

fixed t the mapping β(·, t) is of class K and for each fixed s β(s, t) is decreasing to zero on

t as t →∞. We also let Ll
∞ denote the class of essentially bounded functions u : R+ → Rl

with ‖u‖∞ = ess supt≥0 |u(t)| < ∞. Let r(t), t ≥ 0, be a right-continuous Markov chain

on the probability space taking values in a finite state space S = {1, 2, · · · , N} with

generator Γ = (γij)N×N given by (6.3).

Let us consider an n-dimensional HSRS

dx(t) = f(xt, t, r(t), ud(t))dt + g(xt, t, r(t), ud(t))dW (t) (7.1)

on t ≥ 0 with initial data x0 = {x(θ) : −h ≤ θ ≤ 0} = ξ ∈ Cb
F0

([−h, 0]; Rn) and

r(0) = r0 ∈ S, where xt = {x(t+ θ) : −h ≤ θ ≤ 0} is regarded as a C([−h, 0]; Rn)-valued

random variable and ud ∈ Ll
∞ the disturbance input. Moreover, f : C([−h, 0]; Rn) ×

R+ × S × Rl → Rn and g : C([−h, 0]; Rn) × R+ × S × Rl → Rn×m are measurable

functions with f(0, t, i, 0) ≡ 0 and g(0, t, i, 0) ≡ 0 for all t ≥ 0. So equation (7.1) admits

a trivial solution x(t; 0) ≡ 0. We assume that f and g are sufficiently smooth so that

equation (7.1) has a unique solution on t ≥ −h (see, e.g., [63], [84], [133] and Appendix

A), which is denoted by x(t; x0, r(0)) or x(t; ξ, r0) in this chapter. It should be noted

that equation (7.1) is a very general type of equation and includes stochastic differential

equations, stochastic delay differential equations, integro-differential equations and those

with Markovian switching. Much more equations are also included in equation (7.1) (see,

e.g., [34] and [127]).

Let C2,1(Rn×R+×S; R+) denote the family of all nonnegative functions V (x, t, i) on

Rn×R+×S that are twice continuously differentiable in x and once in t. If V ∈ C2,1(Rn×
R+ × S; R+), define an operator L associated with system (7.1) from C([−h, 0]; Rn) ×
R+ × S to R by

LV (xt, t, i) = Vt(x, t, i) + Vx(x, t, i)f(xt, t, i, ud)

+
1

2
trace

[
gT (xt, t, i, ud)Vxx(x, t, i)g(xt, t, i, ud)

]

+
N∑

j=1

γijV (x, t, j), (7.2)
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where Vt(x, t, i), Vx(x, t, i) and Vxx(x, t, i) are partial derivatives defined by (6.5).

The purpose of this chapter is to develop the Razumihkin-type theorem on pth

moment input-to-state stability (ISS) of HSRSs and its applications. For definitions of

pth moment stability of stochastic systems and input-to-state stability of deterministic

systems, readers are referred to, e.g., [25], [51], [64], [109], [115], [116] and [118]. Let

us introduce the definition of pth moment ISS of HSRSs, which is consistent with the

definition of ISS for deterministic systems (see, e.g., [51], [109], [115], [116] and [118]).

Definition 7.1 The system (7.1) is said to be pth (p > 0) moment input-to-state stable

(ISS) if there exist β ∈ KL and γ ∈ K such that the solution x(t) = x(t; ξ, r0) satisfies

E|x(t)|p ≤ β(E‖ξ‖p, t) + γ(‖ud‖∞) ∀t ≥ 0 (7.3)

for any essentially bounded input ud ∈ Ll
∞ and any initial data ξ ∈ Cb

F0
([−h, 0]; Rn),

r0 ∈ S.

Remark 7.1 It is observed that, if ‖ud‖∞ = 0, pth moment ISS of system (7.1) implies

the pth moment asymptotic stability of the system (see Chapter 6).

7.3 Razumikhin-type theorem on ISS of HSRSs

As the main result of this chapter, we present a Razumikhin-type theorem on pth moment

ISS of HSRSs (7.1) as follows.

Theorem 7.1 Let p > 0, u ∈ VK∞, v ∈ K∞ and λ ∈ K. Assume that there exists a

function V ∈ C2,1(Rn ×R+ × S; R+) such that

u(|x|p) ≤ V (x, t, i) ≤ v(|x|p), ∀(x, t, i) ∈ Rn × [−h,∞)× S (7.4)

and, moreover,

ELV (φ, t, i) ≤ λ(|ud(t)|)− Ew(φ(0), i) (7.5)

for all (t, i) ∈ R+ × S and those φ ∈ Lp
Ft

([−h, 0]; Rn) satisfying

min
k∈S

EV (φ(θ), t + θ, k) < Eq(φ(0), t, i) (7.6)
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on −h ≤ θ ≤ 0, where w : Rn × S → R+ is a nonnegative function such that there is

w̄ ∈ K∞ with w(x, i) ≥ w̄(|x|) and lim|x|→∞
w̄(|x|)
v(|x|p)

> 0 for all i ∈ S; q : Rn×R+×S → R

is a function such that q(x, t, i) − V (x, t, i) ≥ ζ(|x|) for all (x, t, i) ∈ Rn × [−τ,∞) × S

with ζ ∈ K∞ and lim|x|→∞
ζ(|x|)
v(|x|p)

> 0. Then system (7.1) is pth moment ISS.

In order to prove this theorem, let us present the following useful lemmas

Lemma 7.1 Let V (t) = V (x(t), t, r(t)) for t ≥ 0, then EV (t) is continuous on t ≥ 0.

The proof is the same as that of Lemma 6.1 and hence omitted.

Lemma 7.2 For any t ≥ 0, there is aw > 0 such that Ew(x, i) ≥ aw for all i ∈ S

whenever EV (x, t, i) ≥ av > 0.

Proof . It immediately follows the desired conclusion if we show there is µw ∈ K∞ such

that

Ew̄(|x(t)|) ≥ µw(av) (7.7)

whenever Ev(|x|p) ≥ EV (x, t, i) ≥ av > 0.

Fix t for the moment. We define a nondecreasing function b : R+ → R+ as

b(y) = inf
|x|p≥v−1(y/2)

w̄(|x|)
v(|x|p) , y ≥ 0. (7.8)

By property of function w̄(·), b(y) > 0 when y > 0. So, for any av > 0, we have

Ew̄(|x|) ≥
∫

|x|p≥v−1(av
2

)

w̄(|x|)dP

≥ b(av)

∫

v(|x|p)≥av
2

v(|x|p)dP ≥ avb(av)

2

whenever Ev(|x|p) ≥ EV (x, t, i) ≥ av. Inequality (7.7) holds with µw(av) = 1
2
avb(av).

Lemma 7.3 For any t ≥ 0, there is aq > 0 such that Eq(x, t, i) ≥ aq +EV (x, t, i) for all

i ∈ S whenever EV (x, t, i) ≥ av > 0.

Proof It is noted that Eq(x, t, i)− EV (x, t, i) ≥ Eζ(|x|) for all t ≥ 0. According to

the property of function ζ(|x|), the rest of the proof is similar to that of Lemma 7.2 and

hence omitted.
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We can now begin to prove Theorem 7.1.

Proof Denote αλ = λ(‖ud‖∞) and V̄0 = u(E‖ξ‖p). Without loss of generality,

assume 0 < µ−1
w (2αλ) < u(sup−h≤θ≤0 E|ξ(θ)|p) ≤ V̄0. For any t ≥ 0, by Lemma 7.2,

Ew(x(t), i) ≥ 2αλ whenever EV (x, t, i) ≥ µ−1
w (2αλ) for all i ∈ S. By Lemma 7.3, there is

a > 0 such that Eq(x, t, i)−EV (x, t, i) ≥ a, i ∈ S, whenever EV (x, t, i) ≥ µ−1
w (2αλ). Let

J be the minimal nonnegative integer such that M0 = µ−1
w (2αλ) + Ja > V̄0. Moreover,

let τ̃ = h ∨ M0

αλ
and tj = jτ̃ for j = 0, 1, 2, · · · , J . We claim that

EV (x(t), t, r(t)) ≤ V̄0 ∧Mj (7.9)

for all t ≥ tj, where Mj = µ−1
w (2αλ) + (J − j)a and j = 0, 1, 2, · · · , J .

First we show that

EV (x(t), t, r(t)) ≤ V̄0, ∀ t ≥ t0 . (7.10)

Suppose that ta = inf{t > t0 : EV (x(t), t, r(t)) > V̄0} < ∞. Since EV (x(t), t, r(t)) is

continuous on t ≥ 0, there exist a pair of constants tb and tc such that t0 ≤ tb ≤ ta < tc

and 


EV (x(t), t, r(t)) = V̄0, t = tb;

V̄0 < EV (x(t), t, r(t)) < V̄0 + a, tb < t ≤ tc.
(7.11)

However, by equation (6.12) and condition (7.5), we have

EV (x(t), t, r(t)) = EV (x(tb), tb, r(tb)) +

∫ t

tb

ELV (xs, s, r(s))ds

≤ V̄0 − αλ(t− tb) < V̄0

for every t ∈ (tb, tc], which contradicts (7.11). So inequality (7.10) must be true.

We further show that EV (x(t), t, r(t)) ≤ M1 for all t ≥ t1. Let τ1 = inf{t ≥ t0 :

EV (x(t), t, r(t)) ≤ M1}. If τ1 > t1, then, ∀t0 ≤ t ≤ t1, we have

Eq(x(t), t, r(t)) ≥ EV (x(t), t, r(t)) + a > M1 + a > V̄0

≥ EV (x(t + θ), t + θ, r(t + θ))

≥ min
k∈S

EV (φ(θ), t + θ, k), ∀ θ ∈ [−h, 0].

This, by condition (7.5), implies ELV (xt, t, r(t)) ≤ −αλ a.e. on [t0, t1]. Consequently, by

(6.12), we have EV (x(t1), t1, r(t1)) ≤ V̄0 − αλτ̃ < 0, which contradicts the nonnegative
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property of EV (x(t), t, r(t)) ≥ 0 for all t ≥ 0. So we must have τ1 ≤ t1. Let t1a = inf{t >

τ1 : EV (x(t), t, r(t)) > M1}. If t1a < ∞, then there are constants t1b and t1c such that

t1 ≤ t1b ≤ t1a < t1c and



EV (x(t), t, r(t)) = M1, t = t1b;

M1 < EV (x(t), t, r(t)) < M1 + a, t1b < t ≤ t1c.
(7.12)

Similarly, by (6.12) and (7.5), we find a contradiction and hence have (7.9) for j = 1.

Define τj = inf{t ≥ tj−1 : EV (x(t), t, r(t)) ≤ Mj} for j = 2, 3, · · · , J . By the same

type of reasoning, we have EV (x(t), t, r(t)) ≤ Mj for all t ≥ tj and j = 2, 3, · · · , J .

Particularly, EV (x(t), t, r(t)) ≤ MJ = µ−1
w (2αλ) for all t ≥ tJ . By Jensen’s inequality, we

have

E|x(t)|p ≤ γ(‖ud‖∞), ∀ t ≥ tJ (7.13)

where γ(·) = u−1(µ−1
w (2λ(·))).

Let k = V̄0

tJ
. Choose β̃ ∈ KL such that β̃(V̄0, t) ≥ 2V̄0 − kt for all 0 ≤ t ≤ tJ . So we

have EV (x(t), t, r(t)) ≤ β̃(V̄0, t) for all 0 ≤ t ≤ tJ , which implies

E|x(t)|p ≤ u−1(β̃(V̄0, t)) = β(E‖ξ‖p, t), ∀ 0 ≤ t ≤ tJ (7.14)

where β(·, ·) = u−1(β̃(u(·), ·)) is a KL function. This completes the proof.

Remark 7.2 Obviously, inequality (7.3) implies that system (7.1) with ud(t) ≡ 0 is

globally pth moment asymptotically stable (see Remark 7.1). Moreover, it is not difficult

to show that if |u(t)| → 0 as t → ∞, so does E|x(t)|p (see, e.g., Exercise 4.58, [51]).

Therefore, by Theorem 7.1, it is easy to find that the HSDS, considered in Example 2.1

[133] but with mode-dependent and time-varying delay τ : R+×S → [0, h], is mean-quare

asymptotically stable while the results in [133] do not work.

Remark 7.3 It is noted that, compared with Theorem 6.2, Theorem 7.1 has an additional

term with respect to the disturbance input in the condition (7.5) but, in the inequality

(7.6), removes the maximum operator on the right-hand side of corresponding conditions

in the existing results (see Theorem 2.1, [86] and Theorem 6.2, Chapter 6), which makes

Theorem 7.1 less conservative but more applicable (see Example 7.1).
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7.4 Application and Example

Hybrid stochastic delay systems (HSDSs) described with stochastic differential delay

equations with Markovian switching are an important class of HSRSs that are frequently

used in engineering. As an illustrative example of applications of our new result, we

consider the following HSDE

dx(t) = F (x(t), x(t− τ(t, r(t))), t, r(t), ud(t))dt

+ G(x(t), x(t− τ(t, r(t))), t, r(t), ud(t))dW (t) (7.15)

on t ≥ 0, where τ : R+ × S → [0, h] is Borel measurable while F : Rn × Rn × R+ ×
S × Rl → Rn and G : Rn × Rn × R+ × S × Rl → Rn×m are measurable functions

with F (0, 0, t, i, 0) ≡ 0 and g(0, 0, t, i, 0) ≡ 0 for all t ≥ 0 and i ∈ S. Actually, this

is a special case of equation (7.1) when f(φ, t, i, ud) = F (φ(0), φ(−τ(t, i)), t, i, ud) and

g(φ, t, i, ud) = G(φ(0), φ(−τ(t, i)), t, i, ud) for (φ, t, i) ∈ C([−h, 0]; Rn) × R+ × S × Rl

while the operator L defined in (7.2) becomes from Rn ×Rn ×R+ × S to R as

LV (x, y, t, i) = Vt(x, t, i) + Vx(x, t, i)F (x, y, t, i, ud)

+
1

2
trace

[
GT (x, y, t, i, ud)Vxx(x, t, i)G(x, y, t, i, ud)

]

+
N∑

j=1

γijV (x, t, j). (7.16)

Assume that both F (x, y, t, i) and G(x, y, t, i) satisfy the local Lipschitz condition.

That is, for each c > 0, there is a Kc > 0 such that

|F (x1, y1, t, i)− F (x2, y2, t, i)|+ |G(x1, y1, t, i)−G(x2, y2, t, i)| ≤ Kc(|x1 − x2|+ |y1 − y2|)
(7.17)

for all (t, i) ∈ R+ × S and x1, y1, x2, y2 ∈ Rn with max{|x1|, |y1|, |x2|, |y2|} ≤ c. Let us

use Theorem 7.1 to establish a useful criterion for system (7.15).

Theorem 7.2 Let p > 0, u ∈ VK∞, v ∈ K∞, λ ∈ K and κ0i ≥ κ1i ≥ 0, i ∈ S. Assume

that there exists a function V ∈ C2,1(Rn × R+ × S; R+) such that inequality (7.4) holds

and, moreover,

LV (x, y, t, i) ≤ λ(|ud(t)|)− ζ̂(x, i)− κ0iV (x, t, i) + κ1i min
k∈S

V (y, t− τ(t, i), k) (7.18)
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for all (x, y, t, i) ∈ Rn × Rn × R+ × S, where ζ̂ : Rn × S → R is a function such that

there is ŵ ∈ K with ζ̂(x, i) ≥ ŵ(|x|) for all i ∈ S and lim|x|→∞ ŵ(|x|)/v(|x|p) > 0. Then

system (7.15) is pth moment ISS.

Proof. According to Theorem A.1 (see Appendix A), equation (7.15) has a unique

solution. For any i ∈ S, let

w(x, i) =
1

1 + κ0i

ζ̂(x, i) and q(x, t, i) = V (x, t, i) + w(x, i) (7.19)

in inequalities (7.5) and (7.6). By inequality (7.18) and Fatou’s lemma, we have

ELV (x, y, t, i)

≤ λ(|ud(t)|)− Eζ̂(x, i)− κ0iEV (x, t, i) + κ1i E
[
min
k∈S

V (y, t− τ(t, i), k)

]

≤ λ(|ud(t)|)− κ0i

[
EV (x, t, i) + Ew(x, i)

]
+ κ1i min

k∈S
EV (y, t− δ(t, i), k)− Ew(x, i)

≤ λ(|ud(t)|)− Ew(x, i)− (κ0i − κ1i)
[
EV (x, t, i) + Ew(x, i)

]

≤ λ(|ud(t)|)− Ew(x, i)

for all t ≥ 0, i ∈ S and xt ∈ Lp
Ft

([−h, 0]; Rn) satisfying condition (7.6) with function

q(x, t, i) defined in (7.19), i.e., mink∈S EV (y, t− δ(t, i), k) < EV (x, t, i) +Ew(x, i). More-

over, w̄(·) = ζ(·) = 1
1+κ

ŵ(·) satisfy the properties required in (7.5) and (7.6). By Theorem

7.1, inequality (7.3) holds for system (7.15).

Remark 7.4 As in Chapter 6, Theorem 7.2 can be easily generalised to cope with the

case with multiple delays.

To compare with the Theorem 6.4 in Chapter 6, let us consider the following example.

Example 7.1 Let W (t) be a scalar Brownian motion. Let r(t) be a right-continuous

Markovian chain independent of W (t) and taking values in S = {1, 2} with generator

Γ = (γij)2×2 =


−1 1

2 −2


 .

Consider a scalar uncertain stochastic delay system with Markovian switching of the form

dx(t) = f(x(t), t, r(t))dt + g(x(t− τ(t, r(t))), t, r(t))dW (t) (7.20)
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on t ≥ 0, where τ : R+×S → [−h, 0] is a continuous but non-differentiable function with

respect to t and

f(x, t, 1) =
1

4
x− 1

8
|x| 3
√

x, f(x, t, 2) = −bx− 1

10
x3,

g(y, t, 1) =
1

4
y cos t, g(y, t, 2) =

√
2y sin t.

with x = x(t), y = x(t− τ(t, r(t))) and positive constant b.

It is noted that the existing results ([84], [86], [133], [135]) can not be applied to

system (7.20), which has mode-dependent and time-varying delay τ(t, r(t)). Observe

that 



2xf(x, t, 1) ≤ 1
2
x2 − 1

4
|x| 73 ,

g2(y, t, 1) ≤ 1
16

y2;

and 



2xf(x, t, 2) ≤ −2bx2 − 1
5
x4,

g2(y, t, 2) ≤ 2y2.

To examine the stability of system (7.20), we construct a Lyapunov function candidate

V : R × S → R+ as V (x, i) = αix
2 with α2 = 1 and α1 > 0 to be determined. By

computation, we have

LV (x, y, t, 1) ≤ −α1

4
|x| 73 − (

α1

2
− 1)x2 +

α1

16
y2, (7.21)

LV (x, y, t, 2) ≤ −1

5
x4 − (2 + 2b− 2α1)x

2 + 2y2. (7.22)

According to Theorem 6.4, inequalities (7.21) and (7.22) give

λ01 =
1

2
− 1

α1

, λ11 =
α1

16
, λ(s, 1) =

1

4 7
√

α1

s
7
6 ;

λ02 =
2(1 + b)

α1

− 2, λ12 = 2, λ(s, 2) =
1

5α2
1

s2.

Inequalities λ01 ≥ λ11 and λ02 ≥ λ12 yield α1 = 4 and b ≥ 7. Then, by Theorem 6.4,

system (7.20) is mean-square asymptotically stable if b ≥ 7. However, for inequalities

(7.21) and (7.22), we have

κ01 =
1

2
− 1

α1

, κ11 =
α1

16
, ζ̂(x, 1) =

α1

4
|x| 73 ;

κ02 = 2(1 + b− α1), κ12 = 2, ζ̂(x, 2) =
1

5
x4.

Inequalities κ01 ≥ κ11 and κ02 ≥ κ12 imply α1 = 4 and b ≥ 4. By Theorem 7.2, the

sufficient condition for mean-square asymptotical stability of system (7.20) is b ≥ 4.
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Note that, when 4 ≤ b < 7, Theorem 6.4 does not work while Theorem 7.2 is still

applicable to system (7.20). This shows Theorem 7.2 is more applicable.

7.5 Summary

This chapter improves the existing result in Chapter 6 and develops a Razumikhin-type

theorem on input-to-state stability of HSRSs in pth (p > 0) moment sense. It is seen that

this improved result is less conservative but more applicable (see Remark 7.1, Remark

7.2 and Example 7.1).
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Chapter 8

Almost sure stability of hybrid

stochastic systems with

mode-dependent interval delays

8.1 Introduction

Recently, hybrid stochastic delay systems (HSDSs) have received considerable attention

(see, e.g., [90], [111] and [132]). The presence of the Markovian switching is quite involved

in stability analysis of the hybrid systems (see, e.g., [6], [30], [48], [92] and [89]). Even if

all the subsystems are stable, the hybrid system may not be stable; on the other hand,

the hybrid system may be stable even if all the subsystems are unstable (see, e.g., [6],

[30] and [92]).

The classical stochastic analysis theory studies stability not only in moment sense

but also in almost sure sense (see, e.g., [36], [84], [133], [135] and the references therein).

Among the existing results, [133] studied almost sure stability of HSDSs with the tech-

niques proposed in [84] while most of the others dealt with moment stability. However,

the results in [133] require the time delays of all subsystems to be equal to a constant.

This may be too restrictive to apply to hybrid systems in many situations. This chapter

studies almost sure stability of hybrid stochastic systems (HSSs) with mode-dependent

interval time delays by extending the results in [133] to hybrid stochastic systems (HSSs)

with mode-dependent interval delays, which reveals an important role that the Marko-
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vian jumps play in the stability analysis of hybrid stochastic delay systems. It is found

that the upper bounds of derivatives of time delays of some subsystems may be equal to

or larger than one, which are required to be less than one in the case without jumps (see

Example 8.2). This shows that the presence of Markovian switching is quite involved in

stability analysis of the delay systems.

8.2 System description

Throughout this chapter, unless otherwise specified, we shall employ the same notation

as Chapter 6. If A is a subset of Rn and x ∈ Rn, denote by d(x,A) = infa∈A |x− a| the

distance from x to A. We also denote by L1(R+; R+) the family of functions λ : R+ → R+

such that
∫∞

0
λ(t)dt < ∞. Let r(t), t ≥ 0, be a right-continuous Markov chain on the

probability space taking values in a finite state space S = {1, 2, · · · , N} with generator

Γ = (γij)N×N given by (6.3).

Let us consider an n-dimensional HSSs with mode-dependent interval time delays

dx(t) = f(x(t), x(t− τ(t, r(t))), t, r(t))dt + g(x(t), x(t− τ(t, r(t))), t, r(t))dW (t) (8.1)

on t ≥ 0 with initial data x0 = {x(θ) : −h ≤ θ ≤ 0} = ξ ∈ Cb
F0

([−h, 0]; Rn) and

r(0) = r0 ∈ S, where f : Rn × Rn × R+ × S → Rn and g : Rn × Rn × R+ × S → Rn×m

satisfy the local Lipschitz condition in (x, y), that is, for any K > 0, there is LK > 0

such that

|f(x, y, t, i)− f(x̄, ȳ, t, i)| ∨ |g(x, y, t, i)− g(x̄, ȳ, t, i)| ≤ LK(|x− x̄|+ |y − ȳ|) (8.2)

for all |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ K, t ≥ 0 and i ∈ S, and moreover, supt≥0,i∈S{|f(0, 0, t, i)| ∨
|g(0, 0, t, i)| : t ≥ 0, i ∈ S} ≤ K0 with some nonnegative number K0 (see [133]); time

delay of the system τ : R+ × S → R+, also written as τ or τ(t) where there is no

ambiguity, is differentiable in t for all i ∈ S and there are a pair of nonnegative numbers

l and h such that l ≤ τ(t, i) ≤ h for all t ≥ 0 and i ∈ S.

Let C2,1(Rn × R+ × S; R+) denote the family of all nonnegative functions V (x, t, i)

on Rn × R+ × S that are twice continuously differentiable in x and once in t. If V ∈
C2,1(Rn×R+×S; R+), define an operator L associated with (8.1) from Rn×Rn×R+×S
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to R by

LV (x, y, t, i) = Vt(x, t, i) + Vx(x, t, i)f(x, y, t, i)

+
1

2
trace

[
gT (x, y, t, i)Vxx(x, t, i)g(x, y, t, i)

]
+

N∑
j=1

γijV (x, t, j), (8.3)

where where Vt(x, t, i), Vx(x, t, i) and Vxx(x, t, i) are partial derivatives defined by (6.5).

The purpose of this chapter is to propose a criterion for almost sure stability of the

HSS with mode-dependent delays (8.1). For definition of almost sure stability, please

refer to Section 2.6 in Chapter 2.

8.3 Almost sure stability of HSSs with mode-dependent

interval delays

As the main result of this chapter, we present a criterion for almost sure stability of

HSDSs (8.1) as follows.

Theorem 8.1 Suppose that there are nonnegative numbers li, hi, δi and δ̄ such that

li ≤ τ(t, i) ≤ hi, τt(t, i) =
∂τ(t, i)

∂t
≤ δi, δ̄i = δi + γiili +

∑

j 6=i

γijhj ≤ δ̄ < 1 (8.4)

for all t ≥ 0 and i ∈ S with l = mini∈S li and h = maxi∈S hi. Assume that there

exist nonnegative functions V ∈ C2,1(Rn × R+ × S; R+), λ ∈ L1(R+; R+), and w1, w2 ∈
C(Rn; R+) such that

LV (x, y, t, i) ≤ λ(t)− k1w1(x) + k2w2(y), ∀ (x, y, t, i) ∈ Rn ×Rn ×R+ × S (8.5)

w1(x) > w2(x), ∀x 6= 0 (8.6)

and

lim
|x|→∞

inf
t≥0,i∈S

V (x, t, i) = ∞ , (8.7)

where k1 and k2 are positive numbers such that k1 ≥ k2/(1 − δ̄). Then the solution of

HSDS (8.1)

lim
t→∞

x(t; ξ, r0) = 0 a.s..

In order to prove this theorem, let us present the following useful lemmas
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Lemma 8.1 (p105 [114]) For V ∈ C2,1(Rn×R+×S; R+), the generalized Itô’s formula

is given as

dV (x(t), t, r(t)) = LV (x(t), x(t− τ), t, r(t))dt + Vx(x(t), t, r(t))g(x(t), x(t− τ), r(t))dW (t)

+

∫

R

[V (x(t), t, r(t) + h(r(t), α))− V (x(t), t, r(t))]µ(dt, dα)

for all t ≥ 0, where function h(·, ·) and martingale measure µ(·, ·) are defined as, e.g.,

(2.18) and (2.23) (see also [30], [6] and [133]).

Lemma 8.2 The following inequality holds for t ≥ 0

(1− δ̄)

∫ t

0

w2(x(s− τ(s, r(s))))ds ≤
∫ t

−h

w2(x(s))ds

+

∫ t

0

∫

R

w2(x(s− τ(s, r(s))))[τ(s, r0 + h(r(s), α))− τ(s, r(s))]µ(ds, dα) .

Proof. Let s = u + τ(s, r(s)) and r(s) = i ∈ S. Then

ds = du + dτ(s, i) . (8.8)

By Lemma 8.1 and inequalities (8.4), we have

dτ(s, i) =
[
τs(s, i) +

N∑
i=1

γijτ(s, j)
]
ds +

∫

R

[τ(s, i + h(i, α))− τ(s, i)]µ(ds, dα)

≤
[
δi + γiili +

∑

j 6=i

γijhj

]
ds +

∫

R

[τ(s, i + h(i, α))− τ(s, i)]µ(ds, dα)

= δ̄ids +

∫

R

[τ(s, i + h(i, α))− τ(s, i)]µ(ds, dα)

≤ δ̄ds +

∫

R

[τ(s, i + h(i, α))− τ(s, i)]µ(ds, dα) . (8.9)

Substitution of (8.9) into (8.8) yields

(1− δ̄)ds ≤ du +

∫

R

[τ(s, i + h(i, α))− τ(s, i)]µ(ds, dα) . (8.10)

This implies

(1− δ̄)

∫ t

0

w2(x(s− τ(s, r(s))))ds

≤
∫ t−τ(t,r(t))

−τ(0,r0)

w2(x(u))du

+

∫ t

0

w2(x(s− τ(s, r(s))))

∫

R

[τ(s, r0 + h(r(s), α))− τ(s, r(s))]µ(ds, dα)

≤
∫ t

−h

w2(x(s))ds

+

∫ t

0

∫

R

w2(x(s− τ(s, r(s))))[τ(s, r0 + h(r(s), α))− τ(s, r(s))]µ(ds, dα)
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for all t ≥ 0.

Lemma 8.3 For any initial data x0 = {x(θ) : −h ≤ θ ≤ 0} = ξ ∈ Cb
F0

([−h, 0]; Rn) and

r(0) = r0 ∈ S, equation (8.1) has a unique global solution.

This lemma is proved with the standard truncated technique in Appendix B, which

is similar to the proof of Lemma 2.1 in [133].

We can now begin to prove Theorem 8.1.

Proof. Let η(x) = w1(x) − w2(x) for all x ∈ Rn. Inequality (8.6) implies η(x) > 0

whenever x 6= 0. We decompose the sample space into three mutually exclusive events

as follows

E1 =

{
ω : lim sup

t→∞
η(x(t)) ≥ lim inf

t→∞
η(x(t)) > 0

}
,

E2 =

{
ω : lim sup

t→∞
η(x(t)) > 0 and lim inf

t→∞
η(x(t)) = 0

}
,

E3 =
{

ω : lim
t→∞

η(x(t)) = 0
}

.

Obviously, it follows the desired result P(E3) = 1 if we show P(E1) = P(E2) = 0. By

inequality (8.5), Lemma 8.1 and Lemma 8.2, we have

V (x(t), t, r(t))

= V (x(0), 0, r0) +

∫ t

0

LV (x(s), x(t− τ(s, r(s))), s, r(s))ds

+

∫ t

0

Vx(x(s), s, r(s))g(x(s), x(s− τ(s, r(s))), s, r(s))dW (s)

+

∫ t

0

∫

R

[
V (x(s), s, r0 + h(r(s), α))− V (x(s), s, r(s))

]
µ(ds, dα)

≤ V (x(0), 0, r0) +

∫ t

0

λ(s)ds− k1

∫ t

0

w1(x(s))ds + k2

∫ t

0

w2(x(s− τ(s, r(s))))ds

+

∫ t

0

Vx(x(s), s, r(s))g(x(s), x(s− τ(s, r(s))), s, r(s))dW (s)

+

∫ t

0

∫

R

[
V (x(s), s, r0 + h(r(s), α))− V (x(s), s, r(s))

]
µ(ds, dα)

≤ V (x(0), 0, r0) +

∫ t

0

λ(s)ds + k1

∫ 0

−h

w2(x(s))ds− k1

∫ t

0

η(x(s))ds

+

∫ t

0

Vx(x(s), s, r(s))g(x(s), x(s− τ(s, r(s))), s, r(s))dW (s)

+

∫ t

0

∫

R

{
V (x(s), s, r0 + h(r(s), α))− V (x(s), s, r(s)) + k1w2(x(s− τ(s, r(s))))

· [τ(s, r0 + h(r(s), α))− τ(s, r(s))
]}

µ(ds, dα) . (8.11)

111



But according to Lemma 2.4, this implies

lim
t→∞

∫ t

0

η(x(s))ds =

∫ ∞

0

η(x(s))ds < ∞ and lim sup
t→∞

V (x(t), t, r(t)) < ∞ (8.12)

hold almost surely. It immediately follows that P(E1) = 0 and

sup
−h≤t<∞

V (x(t), t, r(t)) < ∞ a.s. .

Define β : R+ → R+ by

β(r) = inf
|x|≥r,t≥0,i∈S

V (x, t, i). (8.13)

Then inequality

sup
0≤t<∞

β(|x(t)|) ≤ sup
0≤t<∞

V (x(t), t, r(t)) < ∞ a.s.

and condition (8.7) imply that

sup
0≤t<∞

|x(t)| < ∞ a.s. .

Since initial data ξ ∈ Cb
F0

([−h, 0]; Rn), we can find an integer k0 such that ‖ξ‖ < k0 a.s..

For any integer k ≥ k0, define the stopping time

ρk = inf{t ≥ 0 : |x(t)| ≥ k} , (8.14)

where we set inf ∅ = ∞ as usual. Clearly, ρk → ∞ almost surely as k → ∞. Moreover,

for any given ε > 0, there is kε ≥ k0 such that P{ρk < ∞} ≤ ε for any k ≥ kε.

Now we proceed to prove P(E2) = 0 by contradiction. Suppose that P(E2) > 0.

There exist ε0 > 0 and ε1 > 0 such that

P {ω : there are infinitely many j such that σj < ∞} = P(σj < ∞ : j ∈ Z) ≥ ε0 , (8.15)

where {σj}j≥1 are a sequence of stopping times defined as

σ1 = inf{t ≥ 0 : η(x(t)) ≥ 2ε1} ,

σ2j = inf{t ≥ σ2j−1 : η(x(t)) ≤ ε1} ,

σ2j+1 = inf{t ≥ σ2j : η(x(t)) ≥ 2ε1} , j = 1, 2, 3, · · · ;

and Z is a set of natural numbers that includes infinitely many elements. Since x(t) and

hence η(x(t)) are continuous on t ≥ 0, we see that σj → ∞ a.s. as j → ∞. By local

Lipschitz condition (8.2), for any given k > 0, there exists Kk > 0 such that

|f(x, y, t, i)| ∨ |g(x, y, t, i)| ≤ Kk (8.16)
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for all |x| ∨ |y| ≤ k, t ≥ 0 and i ∈ S. Let τ j
k(t) = (σj + t) ∧ ρk for t ≥ 0 and IA be

the indicator of set A. For any j ∈ Z, by Hölder’s inequality and Doob’s martingale

inequality, we compute

E
{
I{σj<ρk} sup

0≤t≤T
|x(τ j

k(t))− x(σj)|2
}

= E

{
I{σj<ρk} sup

0≤t≤T

∣∣∣∣∣
∫ τj

k(t)

σj

f(x(s), x(s− τ), s, r(s))ds

+

∫ τj
k(t)

σj

g(x(s), x(s− τ), s, r(s))dW (s)

∣∣∣∣∣

2




≤ 2E



I{σj<ρk} sup

0≤t≤T

∣∣∣∣∣
∫ τj

k(t)

σj

f(x(s), x(s− τ), s, r(s))ds

∣∣∣∣∣

2




+ 2E



I{σj<ρk} sup

0≤t≤T

∣∣∣∣∣
∫ τj

k(t)

σj

g(x(s), x(s− τ), s, r(s))dW (s)

∣∣∣∣∣

2




≤ 2E

{
I{σj<ρk}

∫ τj
k(T )

σj

|f(x(s), x(s− τ), s, r(s))|2 ds

}

+ 8E

{
I{σj<ρk}

∫ τj
k(T )

σj

|g(x(s), x(s− τ), s, r(s))|2 ds

}

≤ 2K2
kT (T + 4) , (8.17)

where T is some positive constant. Since η(·) is continuous in Rn, it must be uniformly

continuous in the closed ball S̄k = {x ∈ Rn : |x| ≤ k}. For any given b > 0, we can

choose cb > 0 such that |η(x) − η(y)| < b whenever x, y ∈ S̄k and |x − y| < cb. Let us

choose

ε =
ε0

3
, k ≥ kε and b = ε1.

By inequality (8.17) and Chebyshev’s inequality, we have

P
{

ω : σj < ρk and sup
0≤t≤T

|η(x(σj + t))− η(x(σj))| ≥ ε1

}
+ P

{
ω : ρk ≤ σj

}

≤ P
{

ω : σj + T < ρk and sup
0≤t≤T

|η(x(σj + t))− η(x(σj))| ≥ ε1

}

+ P
{

ω : σj < ρk ≤ σj + T
}

+ P
{

ω : ρk ≤ σj

}

≤ P
{

ω : σj + T < ρk and sup
0≤t≤T

|x(σj + t)− x(σj)| ≥ cε1

}
+ P

{
ω : ρk ≤ σj + T

}

≤ 2K2
kT (T + 4)

c2
ε1

+ (1− 2ε) . (8.18)
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We furthermore choose T = T (ε, ε1, k) > 0 sufficiently small for

2K2
kT (T + 4)

c2
ε1

≤ ε . (8.19)

Inequalities (8.18) and (8.19) yield

P
{

ω : σj < ρk and sup
0≤t≤T

|η(x(σj + t))− η(x(σj))| < ε1

}
≥ ε . (8.20)

According to (8.15), j − 1 ∈ Z whenever j ∈ Z and j ≥ 2, which implies there are

infinitely many even numbers in Z. By inequalities (8.11), (8.12) and (8.20), we have

∞ > E
∫ ∞

0

η(x(t))dt ≥
∑
2j∈Z

E
[
I{σ2j−1<ρk}

∫ σ2j

σ2j−1

η(x(t))dt
]

≥
∑
2j∈Z

ε1E
[
I{σ2j−1<ρk}(σ2j − σ2j−1)

]

≥
∑
2j∈Z

Tε1 P
{

ω : σ2j−1 < ρk and sup
0≤t≤T

|η(x(σ2j−1 + t))− η(x(σ2j−1))| < ε1

}

≥
∑
2j∈Z

Tε1ε =
1

3

∑
2j∈Z

Tε0ε1 = ∞ , (8.21)

which is a contradiction. So we must have P(E2) = 0 and hence P(E3) = 1. This implies

there is an Ω0 ⊂ Ω with P(Ω0) = 1 such that

lim
t→∞

η(x(t, ω)) = 0 and sup
0≤t<∞

|x(t, ω)| < ∞ , ∀ω ∈ Ω0 .

Fix any ω ∈ Ω0. Then {x(t, ω)}t≥0 is bounded in Rn. By Bolzano-Weierstrass theorem,

there is an increasing sequence {ti}i≥1 such that {x(t, ω)}i≥1 converges to some y ∈ Rn

with |y| < ∞. Since η(x) > 0 whenever x 6= 0, we must have η(x) = 0 if and only if

x = 0. Then P(E3) = 1 implies the solution

lim
t→∞

x(t; ξ, r0) = 0 a.s. .

This completes the proof.

Similarly, Theorem 2.2 in [133] can be generalized to system (8.1) as a LaSalle-type

theorem (see [84]) for hybrid stochastic systems with mode-dependent interval delays

while other results in [133] can be extended to system (8.1) as well. The LaSalle-type

theorem for HSDS (8.1) is given as follows.
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Theorem 8.2 Suppose inequalities (8.4) hold. Assume that there exist nonnegative func-

tions V ∈ C2,1(Rn ×R+ × S; R+), λ ∈ L1(R+; R+), and w1, w2 ∈ C(Rn; R+) such that

LV (x, y, t, i) ≤ λ(t)− k1w1(x) + k2w2(y), ∀ (x, y, t, i) ∈ Rn ×Rn ×R+ × S (8.22)

w1(x) ≥ w2(x), ∀x ∈ Rn (8.23)

and

lim
|x|→∞

inf
t≥0,i∈S

V (x, t, i) = ∞ , (8.24)

where k1 and k2 are positive numbers such that k1 ≥ k2/(1− δ̄). Then Ker(w1−w2) 6= ∅
and

lim
t→∞

d(x(t; ξ, r0), Ker(w1 − w2)) = 0 a.s.

for all ξ ∈ Cb
F0

([−h, 0]; Rn) and r0 ∈ S.

Remark 8.1 Theorem 8.1 is a generalization of Theorem 2.1 in [133]. In a very special

case when τ(t, i) = h for all t ≥ 0 and i ∈ S, it is easy to see that li = hi = l = h, δi = 0,

δ̄i = 0, δ̄ = 0 for all i ∈ S, and Theorem 8.1 is exactly Theorem 2.1 in [133].

Remark 8.2 Theorem 8.1 can be specialized to the case of N = 1, which is a modified

version of Corollary 3.1 in [84] for stochastic delay systems (8.1) with N = 1 and δN ≤
δ̄ < 1.

Remark 8.3 Unlike the existing results that assume δi ≤ δ̄ < 1 for all i ∈ S (see [84],

[111], [135] and the references therein), we propose an alternative assumption (8.4) on

the time delays, which reveals an important role the Markovian jumps play in the stability

analysis of delay systems. That is, we do not need to require the derivative of time delay

δi ≤ δ̄ < 1 for all i ∈ S. Instead, we assume the upper bound of the average variation

rate of time delay δ̄i ≤ δ̄ < 1 for each subsystem i ∈ S.

Remark 8.4 It is noted that, compared with δi for i ∈ S, δ̄i in assumption (8.4) is

calculated by making use of much more information of the jump delay system (8.1) in-

cluding the generator of the Markovian jumps and the bounds of the mode-dependent time

delays. Let us look at inequality (8.9). The drift of the differential of time delay dτ(s, i)

is composed of two parts, that is, τs(s, i) contributed by the change of time delay τ(s, i)

in mode i and
∑N

j=1 γijτ(s, j) caused by the Markovian jumps. In fact, δ̄i is the estimate
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of the upper bound of the drift of dτ(s, i) in mode i while δi is the upper bound of τs(s, i)

that is only part of the drift. Taking expectation on both sides of inequality (8.9), we see

Edτ(s, i) ≤ δ̄ids ⇒ E
dτ(s, i)

ds
≤ δ̄i

for all i ∈ S, which is exactly the upper bound of the average variation rate of time delay

in mode i. This shows that assumption (8.4) may be more sensible for the Markovian

jump delay systems than the assumption δi ≤ δ̄ < 1 in the existing literatures.

Remark 8.5 The techniques in Lemma 8.2 can be adjusted to deal with nonlinear sys-

tems with stochastically varying delays of the sawtooth form recently presented in [121],

particularly, those with the same minimum delay and the slope of the sawtooth less than

one for all subsystems and hence inequality (8.9) still satisfied. Obviously, the existing

results ([84], [111], [133], [135] and the references therein) are not applicable to system

(1) in [121] even when the slope of the sawtooth is less than one.

8.4 Examples

In this section, two numerical examples are given to verify the effectiveness of the im-

proved result.

Example 8.1 As a practical example, let us consider Example 3.2 in [133]. The charge

Q(t) at time t in an electrical circuit satisfies the second-order differential equation

HQ̈(t) + (R + q)Q̇(t) +
1

C
Q(t) = F (t) , (8.25)

where H is the inductance, R and q the resistance, C the capacitance, and F (t) the

potential source (see, e.g., p52, [88]). In practice, if the voltage across q is applied to

an amplifier and the output is provided with a special phase-shifting network, it will

introduce a constant time delay between the input and the output. In this case, we have

HQ̈(t) + RQ̇(t) + qQ̇(t− τ) +
1

C
Q(t) = F (t) . (8.26)

Suppose that the potential source is subject to the environmental noise and is described

by F (t) = G(t)+α(t)Ẇ (t), where Ẇ (t) is a scalar white noise, that is, W (t) is a Brownian

motion, and α(t) is the intensity of the noise. Then equation (8.26) becomes

HQ̈(t) + RQ̇(t) + qQ̇(t− τ) +
1

C
Q(t) = G(t) + α(t)Ẇ (t) . (8.27)
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Assume that the electric circuit experiences abrupt changes in their structure in the sense

that the parameters will switch from one to the other as described by

H = H(r(t)) , R = R(r(t)) , q = q(r(t)) , τ = τ(r(t))

C = C(r(t)) , G(t) = G(t, r(t)) , α = α(t, r(t)) ,

where r(t) is a Markov chain taking values in S = {1, 2} with generator

Γ = (γij)2×2 =


−1 1

1 −1


 .

Let x1(t) = Q(t) and x2(t) = Q̇(t), then equation (8.27) can be rewritten as an Itô

equation with Markovian switching

dx1(t) = x2(t)dt (8.28)

dx2(t) =
1

H(r(t))

[
−R(r(t))x2(t)− q(r(t))x2(t− τ(r(t)))− 1

C(r(t))
x1(t) + G(t, r(t))

]
dt

+
α(t, r(t))

H(r(t))
dW (t) . (8.29)

To stabilise the fluctuation of the current, a state-feedback controller is introduced and

the controlled system is described by

dx1(t) = [x2(t) + u(r(t))x1(t)] dt (8.30)

dx2(t) =
1

H(r(t))

[
−R(r(t))x2(t)− q(r(t))x2(t− τ(r(t)))− 1

C(r(t))
x1(t) + G(t, r(t))

]
dt

+
α(t, r(t))

H(r(t))
dW (t) . (8.31)

For simplicity, we also write H(i) = Hi, α(t, i) = αi(t) etc. for i ∈ S. Example 3.2

in [133] has considered the case when the parameters are given as

H1 = H2 = 1, C1 = C2 = 1, R1 = 6, R2 =
11

2
, q1 = 3, q2 =

4

3
, τ1 = τ2 = h,

Assume that β̄ = 4/3, Ḡ(t) = [β̄G2
1(t) + 2α2

1(t)] ∨ [G2
2(t) + 2α2

2(t)] and
∫∞

0
Ḡ(t)dt < ∞.

By Theorem 2.1 in [133], the closed-loop system (8.30)-(8.31) with u1 = −2 and u2 = −3

is almost surely stable for any h > 0.

To compare with the result in [133], we do not change any other condition but assume

that the time delays of the subsystems τ1 = h1 and τ2 = h2 may be two different posi-

tive numbers, which is more reasonable in practice. We employ the Lyapunov function

candidate

V (x, 1) = β̄(x2
1 + x2

2) and V (x, 2) = x2
1 + x2

2 (8.32)
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and the control strategy u1 = −2 and u2 = −3, which are proposed in Example 3.2 of

[133]. It is easy to show that

LV (x, y, t, 1) ≤ (2β̄u1 + 1− β̄)x2
1 − (9β̄ − 1)x2

2 + 3β̄y2
2 + β̄G2

1(t) + 2α2
1(t), (8.33)

LV (x, y, t, 2) ≤ (2u2 − 1 + β̄)x2
1 − (

29

3
− β̄)x2

2 +
4

3
y2

2 + G2
2(t) + 2α2

2(t). (8.34)

Inequalities (8.33) and (8.34) imply

LV (x, y, t, i) ≤ G̃(t)− 17

3
|x|2 + 4y2

2 ≤ G̃(t)− 17

3
|x|2 + 4|y|2 (8.35)

for t ≥ 0 and i = 1, 2. Theorem 2.1 in [133] works in the special case when h1 = h2 but

fails when h1 6= h2. However, by Theorem 8.1, the closed-loop system is almost surely

stable if |h1 − h2| < 5/17, which shows our result is an improvement.

Example 8.2 Let W (t) be a scalar Brownian motion. Let r(t) be a right-continuous

Markovian chain independent of W (t) and taking values in S = {1, 2} with generator

Γ = (γij)2×2 =


−0.5 0.5

0.1 −0.1


 .

Consider a scalar nonlinear stochastic delay system with Markovian switching of the form

dx(t) = f(x(t), t, r(t))dt + g(x(t− τ(t, r(t))), t, r(t))dW (t) (8.36)

on t ≥ 0, where

f(x, t, 1) = −5

2
3
√

x, g(y, t, 1) = 2 3
√

y2, τ(t, 1) = τ1(t), (8.37)

f(x, t, 2) =
2√

1 + t
− 21

8
3
√

x, g(y, t, 2) =
9

5
3
√

y2 sin t, τ(t, 2) = h2; (8.38)

h2 > 0 is a constant and τ1 : R+ → [0, h] is continuously differentiable function.

It is observed that the existing results on stability in moment sense (see [86], [135],

Chapter 7 and the references therein) do not apply to system (8.36). To examine the

stability of system (8.36), we consider a Lyapunov function candidate V : R × S → R+

as V (x, i) = x2 for i = 1, 2. By computation, we have

LV (x, y, t, 1) = −5x
4
3 + 4y

4
3 , (8.39)

LV (x, y, t, 2) ≤ 4x√
1 + t

− 21

4
x

4
3 +

81

25
y

4
3 . (8.40)
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By the elementary inequality

αcβ1−c ≤ cα + (1− c)β, ∀ α ≥ 0, β ≥ 0, 0 ≤ c ≤ 1

we see that inequality
4x√
1 + t

≤ κx
4
3 +

κ1

(1 + t)2
(8.41)

holds for any κ > 0, where κ1 = (κ/3)−3.

From inequalities (8.39), (8.40) and (8.41), we have

LV (x, y, t, i) ≤ κ1

(1 + t)2
− (5− κ)x

4
3 + 4y

4
3 (8.42)

for all t ≥ 0 and i ∈ S. In a special case when τ1(t) ≡ h2 for all t ≥ 0, by Theorem

2.1 in [133] (see also Remark 8.1), inequality (8.42) with 0 < κ < 1 implies that system

(8.36) is almost surely asymptotically stable for any h2 > 0. But Theorem 2.1 in [133]

does not apply to the case with time-varying delay τ1(t). Let us turn to Theorem 8.1

above. For any δ̄ < 1/5, we choose constant κ such that 0 < κ < (1 − 5δ̄)/(1 − δ̄) and

hence condition (8.5) is satisfied. For h2 = 1, various bounds of interval time delay τ1(t)

for almost sure asymptotic stability are listed in Table 8.1, where it should be pointed

out that δ1 = 0 refers to the case of constant delay τ1(t) ≡ τ1, in which system (8.36) is

almost surely asymptotically stable if 0.6001 = l1 ≤ τ1 ≤ h1 = 2.9999. It is also noted

that δ1 may be equal to or larger than 1, which is required to be less than 1/5 in the case

of subsystem (8.37) without jumps (see Remark 8.2).

Table 8.1: bounds of τ1(t) for stability

δ1 0.0 0.2 0.4 0.6 0.8 1.0

l1 0.6001 1.0001 1.4001 1.8001 2.2001 2.6001

h1 2.9999 2.9999 2.9999 2.9999 2.9999 2.9999

8.5 Summary

This chapter extends the results in [133] to hybrid stochastic systems with mode-dependent

interval time delays (8.1) by exploiting the information of the jump delay systems in-

cluding the generator of the Makovian jumps and the bounds of the mode-dependent

time delays. The proposed techniques may not only be applied to generalize the results
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in [91] to neutral hybrid stochastic systems with mode-dependent interval time delays

but also be extended to Lyapunov-Krasovskii functional method, particularly, for delay-

range-dependent stability and stabilization of hybrid stochastic delay systems (see, e.g.,

[111] and [135]).
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Chapter 9

Conclusion and future work

In this thesis, we have developed stability criteria and their applications to stabilisation

problems of stochastic delay systems.

In Chapters 3 and 4, we have studied state-feedback stabilisation of linear stochas-

tic systems with input delay by using the newly established delay-dependent stability

criteria. It is noted that few results are concerned with this important issue for non-

linear systems (see [90] and [95]). Clearly, the development of delay-dependent stability

criteria for nonlinear delay systems plays an important role in the study of such issue

(see, e.g., [22] and [95]). However, due to the difficulties in system analysis, there are

few results even for nonlinear deterministic delay systems (see [22]). The topic of delay-

dependent stability criteria and their applications such as delayed-feedback stabilisation

is an important issue in the study of stochastic delay systems.

Chapter 5 has presented a SMC design for robust H∞ control for uncertain stochastic

delay systems, which has removed a restriction in the existing results. But it is noted

that the case when state delay appears in diffusion has not been considered. In that

case, inequality (5.22) would involve a positive definite function with respect to the delay

states such that control law (5.17) could not guarantee that the state trajectories would

be drawn onto sliding surface (5.14) in finite time. This is one of the problems of SMC

for stochastic delay systems that are to be studied.

Razumikhin-type theorems on stability of stochastic retarded systems with Marko-

vian switching have been proposed in Chapters 6 and 7. It is noted that these results all

deal with pth moment stability of stochastic retarded systems with Markovian switching.
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The classical stochastic analysis theory studies stability not only in moment sense but

also in almost sure sense. Although almost sure stability has been studied in Chapter 8,

those improved results can apply to systems with differentiable delays only. The Razu-

mikhin method is developed to cope with the difficulty arisen from the large, fast varying

and nondifferentiable time delays and plays an important role in stability theory of delay

systems. It is very desirable to have a Razumikhin-type theorem on almost sure stability

of stochastic retarded systems with Markovian switching that is applicable to some cases

when the pth moment versions do not work. This may be a challenging problem.

Let us cite the well-known quotation (see [105]) as the end of this thesis

“We have not succeeded in answering all of our problems. The answers

we have found only serve to raise a whole set of new questions. In some

ways we feel we are as confused as ever, but we believe we are confused

on a higher level and about more important things.”
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Appendix A

Existence and uniqueness of

solutions to HSDSs

In this appendix, we shall establish a useful criterion for the existence and uniqueness of

the solution to equation (7.15). Let us introduce one of the well-known Gronwall-type

inequalities that have been widely applied in the theory of ordinary differential equations

and stochastic differential equations to prove the results on existence, uniqueness and

boundedness of solutions.

Lemma A.1 (Gronwall inequality) Let α : R+ → R+ be a continuous function, u :

R+ → R+ be a Borel measurable bounded function and κ : R+ → R+ be a integrable

function. If

u(t) ≤ α(t) +

∫ t

0

κ(s)u(s)ds

for all t ≥ 0, then

u(t) ≤ α(t) +

∫ t

0

α(s)κ(s)e
∫ t

s κ(r)drds

for all t ≥ 0.

Theorem A.1 Assume that there are a function V ∈ C2,1(Rn × R+ × S; R+) and a

constant K > 0 such that

LV (x, y, t, i) ≤ K
[
1 + V (x, t, i) + V (y, t− τ(t, i), i)

]
(A.1)

and

lim
|x|→∞

inf
0≤t≤∞,i∈S

V (x, t, i) = ∞ (A.2)
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for all (x, y, t, i) ∈ Rn×Rn×R+×S. Then equation (7.15) has a unique (global) solution

for any initial data x0 = ξ ∈ Cb
F0

([−h, 0]; Rn) and r(0) = r0 ∈ S.

Proof. Since both F (x, y, t, i) and G(x, y, t, i) satisfy the local Lipschitz condition (7.17),

equation (7.15) has a unique maximal solution x(t) on [−h, σ∞) for any initial data

ξ ∈ Cb
F0

([−h, 0]; Rn) and r0 ∈ S, where σ∞ is the explosion time (see [72] and [84]).

Therefore, we only need to show that σ∞ = ∞ a.s. . Let k0 be an integer such that

‖ξ‖ ≤ k0 a.s. . For any integer k ≥ k0, define the stopping time

ρk = σ∞ ∧ inf{t ∈ [0, σ∞) : |x(t)| ≥ k}, (A.3)

where, as usual, we set inf ∅ = ∞. Clearly, {ρk}k≥k0 are an increasing sequence and they

have the limit ρ∞ = limk→∞ ρk. Obviously, ρ∞ ≤ σ∞ a.s. . For any k ≥ k0 and t ≥ 0,

formula (6.11) gives

EV (x(t ∧ ρk), t ∧ ρk, r(t ∧ ρk))

= EV (x(0), 0, r(0)) + E
∫ t∧ρk

0

LV (x(s), x(s− τ(s, r(s))), s, r(s))ds.

Let tk = t ∧ ρk for any k ≥ k0 and t ≥ 0. By condition (A.1), we have

EV (x(tk), tk, r(tk))

≤ EV (x(0), 0, r(0)) + E
∫ tk

0

K
[
1 + V (x(s), s, r(s))

+ V (x(s− τ(s, r(s))), s− τ(s, r(s)), r(s))
]
ds

≤ EV (x(0), 0, r(0)) + Kt + E
∫ t

0

K
[
V (x(sk), sk, r(sk))

+ V (x((s− τ(s, r(s)))k), (s− τ(s, r(s)))k, r(sk))
]
ds

= EV (x(0), 0, r(0)) + Kt + K

∫ t

0

[
EV (x(sk), sk, r(sk)) +

+ EV (x((s− τ(s, r(s)))k), (s− τ(s, r(s)))k, r(sk))
]
ds

= C + Kt + 2K

∫ t

0

sup
0≤δ≤s,i∈S

EV (x(δk), δk, i)ds , (A.4)

where C = EV (x(0), 0, r(0)) + K
∫ h

0
EV (x(s − τ(s, r(s))), s − τ(s, r(s)), r(s))ds < ∞.

Since inequality (A.4) holds for r(tk) = i for all i ∈ S and the right-hand side of (A.4) is

increasing in t, we must have

sup
0≤δ≤t,i∈S

EV (x(δk), δk, i) ≤ C + Kt +

∫ t

0

2K

[
sup

0≤δ≤s,i∈S
EV (x(δk), δk, i)

]
ds, ∀ t ≥ 0.

(A.5)
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But, by Lemma A.1, this yields

sup
0≤δ≤t,i∈S

EV (x(δk), δk, i) ≤ C + Kt +

∫ t

0

2K(C + Ks)e2K(t−s)ds, ∀ t ≥ 0. (A.6)

This implies there are positive constants C1 and C2 such that

EV (x(tk), tk, r(tk)) ≤ C1 + C2e
2Kt, ∀ t ≥ 0 (A.7)

where C1 = 1
2

and C2 = C + 1
2
.

On the other hand, define µ : R+ → R+ by

µ(r) = inf
|x|≥r,t∈R+,i∈S

V (x, t, i) .

Obviously, µ(|x(t)|) ≤ V (x(t), t, r(t)) for all t ≥ 0 and, by condition (A.2),

lim
r→∞

µ(r) = ∞.

But inequality (A.7) implies

C1 + C2e
2Kt ≥ Eµ(|x(tk)|) ≥ µ(k)P(ρk ≥ t) .

Letting k →∞ and then t →∞, we obtain

P(ρ∞ < ∞) = 0 .

That is, ρ∞ = ∞ a.s., which implies σ∞ = ∞ a.s.. This completes the proof.
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Appendix B

Existence and uniqueness of

solutions to HSSs with

mode-dependent delays

Proof of Lemma 8.3: We use the standard truncated technique (see, e.g., [67], [88]

and [133]) and therefore only outline the proof. Suppose that k0 is an integer such that

‖ξ‖ < k0 a.s.. For any integer k ≥ k0, define

fk(x, y, t, i) = f

( |x| ∧ k

|x| x,
|y| ∧ k

|y| y, t, i

)
(B.1)

and

gk(x, y, t, i) = g

( |x| ∧ k

|x| x,
|y| ∧ k

|y| y, t, i

)
(B.2)

for all (x, y, t, i) ∈ Rn × Rn × R+ × S. It is easy to see that fk and gk satisfy the

global Lipschitz condition and the linear growth condition. Let us consider the following

equation

dxk(t) = fk(xk(t), xk(t− τ(t, r(t))), t, r(t))dt + g(xk(t), xk(t− τ(t, r(t))), t, r(t))dW (t)

(B.3)

on t ≥ 0 with initial data xk0 = {xk(θ) : −h ≤ θ ≤ 0} = ξ ∈ Cb
F0

([−h, 0]; Rn) and

r(0) = r0 ∈ S. By Theorem 7.10, p277, [87], equation (B.3) has a unique global solution

on t ≥ −h. Define the stopping time

ρ̄k = inf{t ≥ 0 : |xk(t)| ≥ k}, (B.4)

where we set inf ∅ = ∞ as usual. It is straightforward to show that

xk(t) = xk+1(t) if − h ≤ t ≤ ρ̄k and k ≥ k0 . (B.5)
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This implies that {ρ̄k}k≥k0 are an increasing sequence. Let ρ̄∞ = limk→∞ ρ̄k. In view of

(B.5), we can define x(t) for t ∈ [−h, ρ̄∞) uniquely by

x(t) = xk(t) if − h ≤ t ≤ ρ̄k (B.6)

for k ≥ k0.

Now, for any stopping time ρ̄ < ρ̄∞, we set ρ̂k = ρ̄ ∧ ρ̄k and derive that

x(ρ̂k)− x(0) = xk(ρ̂k)− xk(0)

=

∫ ρ̂k

0

fk(xk(s), xk(s− τ(s, r(s))), s, r(s))ds

+

∫ ρ̂k

0

gk(xk(s), xk(s− τ(s, r(s))), s, r(s))dW (s)

=

∫ ρ̂k

0

f(x(s), x(s− τ(s, r(s))), s, r(s))ds

+

∫ ρ̂k

0

g(x(s), x(s− τ(s, r(s))), s, r(s))dW (s) . (B.7)

Letting k →∞ in (B.7) gives

x(ρ)− x(0) =

∫ ρ

0

f(x(s), x(s− τ(s, r(s))), s, r(s))ds

+

∫ ρ

0

g(x(s), x(s− τ(s, r(s))), s, r(s))dW (s) . (B.8)

This means that x(t) is a unique solution to equation (8.1) on t ∈ [−h, ρ̄∞). To complete

the proof, we need to show that ρ̄∞ = ∞ a.s. . Let t̄k = t ∧ ρ̄k for any t ≥ 0 and k ≥ k0.

By inequality (8.5), Lemma 8.1 and Lemma 8.2, we have

EV (x(t̄k), t̄k, r(t̄k))

= EV (x(0), 0, r(0)) + E
∫ t̄k

0

LV (x(s), x(t− τ(s, r(s))), s, r(s))ds

≤ EV (x(0), 0, r(0)) +

∫ t̄k

0

λ(s)ds

− k1E
∫ t̄k

0

w1(x(s))ds + k2E
∫ t̄k

0

w2(x(s− τ(s, r(s))))ds

≤ EV (x(0), 0, r(0)) +

∫ t̄k

0

λ(s)ds + k1E
∫ 0

−h

w2(x(s))ds− k1E
∫ t̄k

0

η(x(s))ds

≤ EV (x(0), 0, r(0)) +

∫ t̄k

0

λ(s)ds + k1E
∫ 0

−h

w2(x(s))ds := C0. (B.9)

Clearly, C0 is a positive constant independent of t and k. This yields

P {ρ̄k ≤ t} ≤ C0

β(k)
, (B.10)
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where function β(·) is defined by (8.13).

Letting k →∞ in (B.10), we see

P{ρ̄∞ ≤ t} = 0.

Since t ≥ 0 is arbitrary, we must have ρ̄∞ = ∞ a.s., which completes the proof.
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[23] H. Deng, M. Krstić and R.J. Williams, Stabilization of stochastic nonlinear systems driven by

noise of unkown vovariance, IEEE Trans. Automatic Control, 46 (2001) 1237-1253.

[24] C. Edwards, A. Akoachere and S.K. Spurgeon, Sliding-mode output feedback controller design

using linear matrix inequalities, IEEE Trans. Automatic Control, 46 (2001) 115-119.

[25] Z. Feng and Y. Liu, Stability analysis and stabilisation synthesis of stochastic large scale systems.

Beijing: Science Press; 1995.

[26] E. Fridman, New Lyapunov-Krasovskii functionals for stability of linear redarded and neutral

type systems, Systems and Control Letters, 43 (2001) 309-319.

130



[27] E. Fridman and U. Shaked, A Descriptor system approach to H∞ control of linear time-delay

systems, IEEE Trans. Automatic Control, 47 (2002) 253-270.

[28] E. Fridman and U. Shaked, Delay-dependent stability and H∞ control: constant and time-varying

delays, International Journal of Control, 76 (2003) 48-60.

[29] A. Friedman, Stochastic Differential Equations and Applications, Vol. I. New York, USA: Aca-

demic Press; 1976.

[30] M.K. Ghosh, A. Arapostathis, & S.I. Marcus, Optimal control of switching diffusions with applica-

tion to flexible manufacturing systems, SIAM J. Control and Optimization , 31 (1993) 1183-1204.

[31] F. Gouaisbaut, M. Dambrine and J.R. Richard, Robust control of delay systems: a sliding mode

control design via LMI, Systems & Control Letters, 46 (2002) 219-230.

[32] K. Gu, An integral inequality in the stability problem of time-delay systems, Proceedings of the

39th IEEE conference on decision and control, Sydney, Australia, December 2000 (pp. 2850-2810).

[33] K. Gu, V.L. Kharitonov and J. Chen, Stability of time-delay systems. Boston, USA: Birkhäuser;

2003.

[34] J.K. Hale, Theory of functional differential equations. New York, USA: Springer-Verlag; 1977.

[35] Q.-L. Han, A descriptor system approach to robust stability of uncertain neutral systems with

discrete and distributed delays, Automatica, 40 (2004) 1791-1796.

[36] R.Z. Has’minskii, Stochastic stability of differential equations. Alphen aan den Rijn, Netherland:

Sithoff & Noordhoff; 1980.

[37] D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equa-

tions, SIAM Review, 43 (2001) 525-546.

[38] Y. Hong, J. Wang and D. Cheng, Adaptive finite-time control of nonlinear systems with para-

metric uncertainty, IEEE Trans. Automatic Control, 51 (2006) 858-862.

[39] J. Hu, W. Wu and S. Sastry, “Modeling subtilin production in Bacillus subtilis using stochastic

hybrid systems” in Hybrid Systems: Computation and Control, Seventh International Work-

shop, HSCC 2004, Lecture Notes in Computer Science, vol. 2993, Ed., R. Alur and G. Pappas,

pp.417C431. Berlin, Germany: Springer-Verlag; 2004.

[40] Q. Hu, G. Ma and L. Xie, Robust and adaptive variable structure output feedback control of

uncertain systems with input nonlinearity, Automatica, 44 (2008) 552-559.

[41] Y. Hu, S.S. Ge and C.-Y. Su, Stabilisation of uncertain nonholonomic systems via time-varying

sliding mode control, IEEE Trans. Automatic Control, 49 (2004) 757-763.

131



[42] L. Huang and F. Deng, Robust stability of perturbed large-scale multi-delay stochastic systems,

Dynamics of Continuous, Discreet, Impulsive Systems-Series B, 9 (2002) 525-537.

[43] L. Huang and F. Deng, Robust exponential stabilisation of stochastic large-scale delay systems,

Proceedings of 2007 IEEE International Conference on Control and Automation, Guangzhou,

China, May 2007 (pp. 107-112).

[44] L. Huang and F. Deng, Razumikhin-type theorems on stability of neutral stochastic functional

differential equations, IEEE Trans. Automatic Control, 53 (2008) 1718-1723.

[45] L. Huang and F. Deng, Exponential stabilisation of stochastic delay systems using sliding mode

controllers, Dynamics of Continuous, Discreet, Impulsive Systems-Series B, 15 (2008) 873-890.

[46] X. Huang, W. Lin and B. Yang, Global finite-time stabilization of a class of uncertain nonlinear

systems, Automatica, 41 (2005) 881-888.

[47] E.M. Jafarov, Robust sliding mode controllers design techniques for stabilisation of multivari-

able time-delay systems with parameter perturbations and external disturbances, Int. J. Systems

Science, 36 (2005) 433-444.

[48] Y. Ji and H.J. Chizeck, Controllability, stabilisability and continuous-time Markovian jump linear

quadratic control, IEEE Trans. Automatic Control, 35 (1990) 777-788.

[49] T. Kazangey and D.D. Sworder, Effective federal policies for regulating residential housing, Pro-

ceedings of the Summer Computer Simulation Conference, San Diego, USA, 1971 (pp. 1120-1128).

[50] F.C. Klebaner, Introduction to stochastic calculus and applications (second edition). London, UK:

Imperial College Press; 2005.

[51] H.K. Khalil, Nonlinear systems (third edition). New Jersey, USA: Prentice Hall ; 2002.

[52] D.S. Kim, Y.S. Lee, W.H. Kwon and P.G. Park, Maximum allowable delay bounds of networked

control systems, Control Engineering Practice , 11 (2003) 1301-1313.

[53] V.B. Kolmanovskii and A. Myshkis, Introduction to the theory and applications of functional

differential equations. Dordrecht, Netherland: Kluwer Academic Publishers; 1999.

[54] G.S. Ladde, Differential inequalities and stochastic functional differential equations, J. Math.

Phys., 15 (1974) 738-743.

[55] V. Lakshmikantham, V.M. Matrosov and S. Sivasundaram, Vector Lyapunov functions and sta-

bility analysis of nonlinear systems. Dordrecht, Netherlands: Kluwer Academic Publishers; 1991.

[56] M. Lax, W. Cai and M. Xue, Random processes in physics and finance. Oxford, UK: Oxford

University Press; 2006.

132



[57] Y.S. Lee, Y.S. Moon, W.H. Kwon and P.G. Park, Delay-dependent robust H∞ control for uncer-

tain systems with a state-delay, Automatica , 40 (2004) 65-72.

[58] X. Li and R.A. Decarlo, Robust sliding mode control of uncertain time delay systems, Int. J.

Control, 76 (2003) 1296-1305.

[59] H. Li, B. Chen, Q. Zhou and C. Lin, Delay-dependent robust stability for stochastic time-delay

systems with polytopic uncertainties, Int. J. Robust Nonlinear Control, 18 (2008) 1482-1492.

[60] X.X. Liao and X. Mao, Exponential stability of stochastic delay interval systems, Systems and

Control Letters, 40 (2000) 171-181.

[61] C.-H. Lien, K.-W. Wu and J.-G. Hsieh, Stability conditions for a class of neutral systems with

multiple time delays, J. Math. Anal. and Appl., 245 (2000) 20-27.

[62] R.Sh. Lipster and A.N. Shiryayev, Theory of Martingales. Dordrecht, Netherland: Kluwer Aca-

demic; 1989.

[63] S.-J. Liu, S.S. Ge and J.-F. Zhang, Adaptive output-feedback control for a class of uncertain

stochastic non-linear systems with time delays, International Journal of Control, 81 (2008) 1210-

1220.

[64] S.-J. Liu, Z.-P. Jiang and J.-F. Zhang, Global output-feedback stabilisation for a class of stochastic

non-minimum-phase nonlinear systems, Automatica, 44 (2008) 1944-1957.

[65] X. Liu and J. Shen, Stability theory of hybrid dynamical systems with time delay, IEEE Trans.

Automatic Control, 51 (2006) 620-625.

[66] R.C. Luo and L.-Y. Chung, Stabilisation for linear uncertain system with time latency, IEEE

Trans. Industrial Electronics , 49 (2002) 905-910.

[67] Q. Luo, X. Mao and Y. Shen, New criteria on exponential stability of neutral stochastic differential

delay equations, Systems & Control Letters, 55 (2006) 826-834.

[68] Q. Luo and X. Mao, Stochastic population dynamics under regime switching II, J. Math. Anal.

Appl., 355 (2009) 577-593.

[69] H. Lütkepohl, Handbook of matrices. Chichester, UK: John Wiley & Sons; 1996.

[70] D.K.C. MacDonald, Noise and fluctuations: an introduction. New York, USA: Wiley; 1962.

[71] M.S. Mahmoud, Robust control and filtering for time-delay systems. New York, USA: Marcel

Dekker, Inc; 2000.

[72] X. Mao. Exponential stability of stochastic differential equations. New York, USA: Marcel Dekker;

1994.

133



[73] X. Mao, Exponential stability in mean square of neutral stochastic differential functional equa-

tions, Systems and Control Letters, 26 (1995) 245-251.

[74] X. Mao, Robustness of exponential stability of stochastic differential delay equations, IEEE Trans.

Automatic Control, 41 (1996) 442-447.

[75] X. Mao, Razumikhin-type theorems on exponential stability of stochastic functional differential

equations, Stochastic Processes and Their Applications, 65 (1996) 233-250.

[76] X. Mao, Razumikhin-type theorems on exponential stability of neutral stochastic functional dif-

ferential equations, SIAM J. Math. Anal., 28 (1997) 389-401.

[77] X. Mao, N. Koroleva and A. Rodkina, Robust stability of uncertain stochastic differential delay

equations, Systems and Control Letters, 35 (1998) 325-336.

[78] X. Mao, LaSalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl.,

236 (1999) 350-369.

[79] X. Mao, Stochastic functional differential equations with Markovian switching, Functional Dif-

ferential Equations, 6 (1999) 375-396.

[80] X. Mao and L. Shaikhet, Delay-dependent stability criteria for stochastic differential delay equa-

tions with Markovian switching. SACTA, 3 (2000) 87-101.

[81] X. Mao, A. Matasov and A.B. Piunovskiy, Stochastic differential delay equations with Markovian

switching, Bernoulli, 6 (2000) 73-90.

[82] X. Mao, The LaSalle-type theorems for stochastic functional differential equations, Nonlinear

Studies, 7 (2000) 307-328.

[83] X. Mao, Asymptotic properties of neutral stochastic differential delay equations, Stochastics and

Stochastics Rep., 68 (2000) 273-295.

[84] X. Mao, A note on the LaSalle-type theorems for stochastic differential delay equations, J. Math.

Anal. Appl., 268 (2002) 125-142.

[85] X. Mao, Exponential stability of stochastic delay interval systems with Markovian switching,

IEEE Trans. Automatic Control, 47 (2002) 1604-1612.

[86] X. Mao, J. Lam, S. Xu and H. Gao, Razumikhin method and exponential stability of hybrid

stochastic delay interval systems, J. Math. Anal. Appl., 314 (2006) 45-66.

[87] X. Mao and C. Yuan. Stochastic differential equations with Markovian switching. London, UK:

Imperial College Press; 2006.

134



[88] X. Mao, Stochastic differential equations and applications (second edition). Chichester, UK: Hor-

wood Publishing; 2007.

[89] X. Mao, G.G. Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic

differential equations, Automatica, 43 (2007) 264-273.

[90] X. Mao, J. Lam and L. Huang, Stabilisation of hybrid stochastic differential equations by delay

feedback control, Systems & Control Letters, 57 (2008) 927-935.

[91] X. Mao, Y. Shen and C. Yuan, Almost surely asymptotic stability of neutral stochastic differential

delay equations with Markovian switching, Stochastic Processes and their Applications, 118 (2008)

1385-1406.

[92] M. Mariton, Jump linear systems in automatic control. New York, US: Marcel Dekker; 1990.
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