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ITHACA 

When you start on your journey to Ithaca, 
then pray that the road is long, 
full of adventure, full of knowledge. 
Do not fear the Lestrygonians 

and the Cyclopes and the angry Poseidon. 
You will never meet such as these on your path, 
if your thoughts remain lofty, if a fine 

emotion touches your body and your spirit. 
You will never meet the Lestrygonians, 
the Cyclopes and the fierce Poseidon, 
if you do not carry them within your soul, 
if your soul does not raise them up before you. 

Then pray that the road is long. 
That the summer mornings are many, 
that you will enter ports seen for the first time 
with such pleasure, with such joy! 
Stop at Phoenician markets, 
and purchase fine merchandise, 
mother-of-pearl and corals, amber and ebony, 
and pleasurable perfumes of all kinds, 
buy as many pleasurable perfumes as you can; 
visit hosts of Egyptian cities, 
to learn and learn from those who have knowledge. 

Always keep Ithaca fixed in your mind. 
To arrive there is your ultimate goal. 
But do not hurry the voyage at all. 
It is better to let it last for long years; 
and even to anchor at the isle when you are old, 
rich with all that you have gained on the way, 
not expecting that Ithaca will offer you riches. 

Ithaca has given you the beautiful voyage. 
Without her you would never have taken the road. 
But she has nothing more to give you. 

And if you find it poor, Ithaca has not defrauded you. 
With all the great wisdom you have gained, with so much experience, 
you must surely have understood by then what Ithacas mean. 

C. Cavafy 

Rae Dawen (1971). The Complete Poems of Cavafy. The IIoggarth Press 
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ABSTRACT 

This thesis is concerned with the optimal scheduling of hydro-thermal power 

generation systems. This problem, usually referred to as the unit commitment 

and economic dispatch problem, manifests itself as a large scale mixed integer 

programming problem. In the first instance a linear model is built and solved 

using branch-and-bound. This approach is, however, very expensive in terms of 

computational time. Using Lagrangian relaxation the original primal problem 

may be written in a dual formulation: the problem then admits decomposi- 

tion into more tractable subproblems. Furthermore, the primal solution can be 

approximated closely from the dual solution using the duality gap as a termi- 

nation criterion. A heuristic is used to construct nearly optimal solutions to 

the primal problem based on the information provided by the dual problem. 

The decomposition is such as to allow an implementation on a transputer array 

with significant reductions in the computational time. An investigation into the 

application of genetic algorithms to power scheduling shows that this approach 

is feasible although expensive in terms of computational time. Lagrangian re- 

laxation is next used to solve a nonlinear model incorporating the purchasing 

and selling of electricity. The information provided by the Lagrange multipliers 

which can be interpreted as shadow prices, is used to determine the best strat- 

egy for the purchasing and selling of energy. Nonconvex programming problems 

such as this may exhibit a duality gap, that is a difference between the optimal 

solution of the primal and dual problems. An investigation of this problem for 

power scheduling linked the existence of this gap to the operating constraints 

of the system. 
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CHAPTER 1 

POWER SYSTEMS SCHEDULING 

1.1. Introduction 

Electric power generation is a key factor in the economy of every nation. 

Indeed, decisions concerning energy production can affect the future prosperity 

of a country. Since the 70's there has been a growing concern about the efficient 

use of energy as a result of the increasing costs of resources, fuel, labour, capital 

expenditure, etc: see, for example, Wood and Wollenberg (1984). For the 

generating companies the aim is to produce electricity at minimum cost; this has 

been achieved not only by more efficient conversions (e. g. heat into electricity), 

but also by better management of the scheduling of the units to be operated. A 

power system can comprise hundreds of different power stations (e. g. thermal, 

nuclear and hydro) with different running costs, and thousands of transmission 

lines; this system operates under continuous fluctuations of consumer demand. 

There have been many management strategies. Indeed, the increase in the 

complexity of these strategies can be seen as a measure of the important role 

that power scheduling plays in reducing the overall cost. 

The two main decision-making processes [Wood and Wollenberg (1984), 

Cohen and Sherkat (1987), Tong and Shahidehpour (1989)] in power scheduling 

are: 

- Unit commitment - that is which of the generating units are committed 

(on or off) in every time interval of the scheduling horizon; this decision must 

take into account system capacity requirements and the economic implications 

of starting up or shutting down various units. 
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- Economic dispatch - that is the allocation of the demand of power 

(system load) to the generating units; such an allocation is determined according 

to the characteristics of the constituent units. 

The objective of a least cost solution requires the simultaneous consider- 

ation of these two decisions. Of course, this is one large problem, manifest- 

ing itself mathematically as a mixed integer programming problem. However, 

historically it was regarded as two separate problems, largely because early 

engineers, prior to Carver (1963), did not know how to solve the combined 

problem. Throughout this thesis this problem will be referred to as the unit 

commitment and economic dispatch problems or more correctly as the unit 

commitment/economic dispatch problem. Although attempts will be made to 

use the former when referring to early works and the latter when discussing 

more modern papers it will be necessary on occasions to use these ideas inter- 

changeably. 

1.2. General remarks on power systems operation 

One of the major difficulties in operating a power system arises from the 

number of random processes involved. The demand varies considerably over a 

24 hour period, but there are also differences over one week, or one year (see 

Figure 1.1). 

Additionally, other stochastic inputs include: the inflows to the hydro units 

reservoirs, precipitation and more generally weather conditions. 

The usual short term horizon ranges from one day to one week. The sched- 

ule produced is based on a forecasted demand. However, some reserve must 

be carried in order to meet discrepancies between real and forecasted demand 

and the possibility of unit outages or any other difficulties that might arise. In 

operating the system a short time reserve, referred to as spinning reserve, is 

2 



DEMAND -- WEEK PERIOD 
1.3 

12 

1.1 

0.9 C 
C" 

oe 

0.7 

04 

05 

0.4 

usually modelled as a deterministic constraint and includes the units already 

on-line. This spinning reserve must be available to come on-line in a matter of 

minutes, and in systems with a large hydro component is usually provided by 

hydro energy. It is sometimes defined as a percentage of the load, or it may be 

chosen to be just enough to cover the loss of the largest unit in operation. Many 

systems operate a supplemental reserve requirement specifying the amount of 

additional reserve that the system must be able to provide in a longer time 

interval, typically from 1/2 to 1 hour. 

The operation of a power system must also take into consideration the 

maintenance programme of the various units, and this can be a very impor- 

tant constraint on the operation of the system. Some utilities, or power pools 

(interconnected groups of generating boards), have limits on the power flow 

between different regions of their system. These limits are usually referred to 

as transmission or multi-area constraints. In Scotland, the main transmission 

constraint comes from the interconnector to the south of the border. Associated 

with transmission there are losses which are related to the distance from the 

3 

24 b 72 96 120 144 16S 

TwC(HOURS) 

Fig. 1.1. Demand vs time 



load center. Usually, these loss terms are included in the economic dispatch 

models through penalty terms. 

Recent privatization of the generating boards introduced another important 

input to the management of power systems, i. e. the possibility of purchases 

from and sales to the pool system. Many utilities also establish contracts with 

industries or other utilities, guaranteeing a certain level of power supply at a 

pre-contracted price. 

The size and the complexity of the constraints affecting the operation of 

the system can make the unit commitment/economic dispatch problem an ex- 

tremely difficult one to solve. The scheduling of power systems requires fast 

solution methods, since errors between the forecast and actual data may lead 

to several re-runs of the scheduling program in one day. 

1.3. The generating units 

In order to achieve an optimal schedule, the operating characteristics of the 

different generating units must be taken into account. In short, the generating 

units may be classified as follows: 

- Nuclear - based on nuclear technology and usually run continuously at 

maximum output. 

- Thermal - operating with oil, coal, or gas, with unlimited fuel supply, 

and classified as follows: must-run units that are required to be on-line due to 

operating characteristics and/or economic considerations; cycling units which 

can be turned on or off, subject to the minimum up and down time constraints; 

peakers, usually gas turbines, which can be started almost immediately and 

with no restrictions concerning minimum up and down times. 

- Fuel constrained - essentially thermal units, where there are, due to 

contracts, legislation, or scarcity of resources, limited fuel supply in certain time 

4 



periods. 

- Hydro - where potential energy is converted into electricity: they can 

either be of running type (rivers which do not dry up), pondage (water is stored 

in a reservoir for reasonably long periods of time), or pump-storage (water can 

be pumped up to fill a reservoir); it should be noted that the modelling of these 

units requires a forecast of the influxes. 

In addition the scheduling problem is further constrained by other operating 

conditions imposed on each generating unit, such as: 

generating limits - each unit is designed to operate within a feasible region 

defined by its minimum and maximum capacity; 

minimum up time - once a thermal unit is committed, it must be operated 

for a specified minimum period; 

minimum down time - once a thermal unit is decommitted, it cannot be 

started up until a minimum time interval has elapsed; 

ramping limits - the rate of change in power output in any time period is 

constrained by the characteristics of the particular generating unit. 

The thermal units have start-up costs, since fuel is required to heat up the 

boiler to the appropriate temperature before generation can take place (these 

costs depend on the number of hours the unit has been down); fixed costs, 

which include labour and maintenance costs; variable costs, which are the run- 

ning costs (the main component being essentially fuel consumption); and finally 

shut-down costs, which result from the fact that decommitment is a gradual pro- 

cess. The running costs are usually modelled by a linear, or piecewise linear 

function. Some models have also used a polynomial curve (usually second or- 

der). The start-up costs are modelled as a fixed cost incurred when the unit 

is started up, or by a linear or nonlinear function of the number of hours the 
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unit has been shut-down. The shut-down costs are considered fixed and some- 

times are, for simplicity, included in the start-up costs. In the case of hydro 

units the associated costs are very low when compared with thermal units, and 

are sometimes neglected; indeed, one of the policies is to produce the maxi- 

mum hydro energy possible in order to minimize the thermal cost. It should 

be noted that in certain plants with several thermal units there might also be 

plant crew constraints affecting the number of units that can start-up in a given 

time period. 

Finally, power systems differ so much, that it could be said there are no 

two alike; they differ not only in the type of generating units available, but also 

in the different components of hydro, nuclear, or thermal energy generation. 

1.4. Overview of solution methods 

Earlier attempts to solve the scheduling of power generating units involved 

dividing the problem up into the unit commitment problem and the economic 

dispatch problem. The first methods for solving the unit commitment problem 

were based on heuristic approaches such as "brute force" enumeration or the 

less inefficient priority listing. 

Priority listing involves the ordering of the possible commitment combina" 

tions of the available units, based either on the maximum power output just 

sufficient to meet the load, or by minimizing the marginal cost. For a system 

with 10 units a priority ordering would reduce the search space in every time 

period to 11 states which is much more manageable than the possible 210 states 

required to be examined by enumeration. Having selected those units which 

should be switched on, the economic dispatch, in the case of thermal units at 

least, was determined using optimization techniques such as the lambda itera- 

tion method, the gradient method or linear programming [Wood and Wollenberg 
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(1984)]. As a result of the commitment heuristic used, the solutions were often 

far away from the optimum, not only because of limited search range, but also 

because factors like start-up and shut-down costs were not considered. More- 

over this heuristic method of solving the unit commitment problem was not 

appropriate for hydro units since it was both difficult to cost the water and to 

include the constraints affecting the reservoir head. 

During the 60's, several methods were developed to solve the unit com- 

mitment and economic dispatch problems at one and the same time. Carver 

(1963) presented a mixed integer model in which binary variables were associ- 

ated with the commitment states and continuous variables with the economic 

dispatch. Despite the difficulties arising from excessive computational times 

and large memory requirements this model opened the way to different and 

more accurate formulations. 

During the same period, a dynamic programming (DP) approach [Bellman 

and Dreyfus (1962)] was developed by Lowery (1966), possibly the first reported 

application of DP to power scheduling. In his approach Lowery considered a 

state as being the power output and the stages as the number of units in the 

system, the maximum number of stages being equal to the number of units 

available. There were some shortcomings in this particular application regard- 

ing the time dependent start-up costs and minimum up and down times, since 

each time period was regarded as independent from the previous and the suc- 

ceeding ones. However, this work showed the applicability of DP in solving the 

unit commitment/economic dispatch problem, and acted as a catalyst for more 

sophisticated applications. 

Pang and Clien (1976) presented an innovative application of DP to power 

scheduling by assigning a time period to each stage, and in each stage, the state 

space consists of all possible combinations of the committed units (Figure 1.2). 
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Fig. 1.2. Dynamic programming in power scheduling 

This forward approach can incorporate time dependent start-up costs and 

minimum up and down time restrictions. Notice that as the number of units 

grows, the number of combinations to be examined rapidly exhausts the com- 

puter resources available (for 10 units the number of combinations that may 

potentially need to be examined in every time period is 210). Consequently, 

most of the proposed solutions have opted for methods which try to reduce the 

search space according to some criteria. Indeed, Pang and Chen (1976) used a 

priority list of the available units (based on marginal costs, type of units and 

forced outages) in order to limit the search of the units to be committed. 

Pang, Sheble and Albuyeh (1981) compared four unit commitment methods, 
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one based on priority listing and the other three based on DP. Acknowledging 

that the application of full DP, i. e. considering all the possible combinations, is 

impracticable due to computer resources, they proposed three DP approaches 

with limited search range based on heuristics. Dynamic Programming - Sequen- 

tial Combinations (DP-SC) generates a subset of all the possible combinations 

by using a priority list sequence to decide the order in which units should be 

switched on. Dynamic Programming - Truncated Combinations (DP-TO) gen- 

erates a subset of the possible combinations by selecting a fixed number of the 

schedulable units to be searched. In Dynamic Programming - Sequential Trun- 

cated Combinations (DP-STC) the two previous methods are combined, by first 

generating some sequential combinations and then a subset of possible units are 

used to produce the truncated combinations. The results obtained consistently 

show that the solutions with the best economic dispatches were the ones gener- 

ated by (DP-TC), which was also the most expensive in terms of computational 

time. However, as many combinations are neglected in all these three methods, 

the optimal path may not be found. 

Snyder, Powell and Rayburn (1987) presented a DP approach where con- 

siderable effort is used to reduce the number of combinations required to be 

evaluated. This approach for controlling problem size involves the subdivision 

of the generating units into 'classes', which have similar characteristics with 

respect to costs, run/down times and capacity. The units within a class are 

ordered in a priority list. For each class a 'threshold' is defined as the highest 

priority units which should be committed for a given demand level. Also a 

'window' is defined as the next highest priority units below the threshold level 

which may or may not be committed. As a result the definition of threshold and 

window are linked to demand levels and, for a given system, this definition has 

to be tuned. The economic dispatch is solved by a set of linearized economic 
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dispatch routines using piecewise linear cost functions. However, the execution 

times grow exponentially with the number of units evaluated. 

Solution techniques for power scheduling involving specific implementations 

of DP abound in the literature, e. g. Cohen and Wan (1985), Sherkat et at. 

(1985), Yang and Chen (1989) and Harliammer and Infanger (1990). 

Commercial packages for DP do exist which are very efficient in terms of 

computational time, e. g. Wescougar. However, these are based on limited 

search approaches which lead to a loss of optimality. Furthermore, there is no 

measure of how far the solution may be from the optimum. 

In systems which involve hydro and thermal units the scheduling problem is 

usually referred to as hydro-thermal coordination: this is clearly more complex 

than a pure thermal system. Additional factors come into play such as the 

coupling of hydro units both electrically and hydraulically. Furthermore, the 

short-term hydro scheduling has to be consistent with the long-term schedule. 

This may involve, apart from the consideration of seasonal cycles, some form 

of evaluating the hydro energy. Ilowever, the most frequent approach has been 

simply to minimize the thermal production cost; the hydro units which are the 

least expensive to operate are committed first, with the thermal units used to 

cover the remaining load. 

Engles et al. (1976) and Larson and Casti (1082) suggested an implenicnta- 

tion of DP, decomposing the hydro-thermal coordination problem over different 

time periods: yearly, weekly and daily optimization. These programs form an 

hierarchical optimization procedure, in which the optimal long term costs of 

a higher ordered program are transferred as an input to the next lower time 

duration program. 

For seasonal production planning Sjelvgren et al. (1983) used a network 

flow model of the hydro component, in which the state variables and the control 

10 



variables are network flows in the arcs; each node represents a unit at a given 

time period. In McKinnon and Buchanan (1988) stochastic dynamic program. 

ming is used to schedule the hydro generation over the long-term period of a 

year. The results from the long-term schedule (the expected future value of 

the water as a function of the reservoir levels) are the inputs to the short-term 

schedule, the objective of which is, to minimize the generation cost over the 

schedule period. 

Some formulations consider hydro generation only and are based on a non- 

linear objective function incorporating head losses [Dauer et al. (1987), Gangl 

(1989) and Gutenberger (1989)]. 

Alternative solution techniques for solving the unit commitment/economic 

dispatch problem have been based on ' branch-and-bound [Beale (1988), Fletcher 

(1987)]. This approach involves solving a sequence of simpler problems derived 

from the original problem. The search is conducted on a tree of problems, the 

branch-and-bound tree. Muckstadt and Koenig (1977) developed a pioneer. 

ing approach to the unit commitment/economic dispatch problem. Based on 

a mixed integer linear model they implemented a branch-and-bound approach, 

using a Lagrangian reformulation which permits the problem to be decomposed 

into single generator problems. The dual problem is created by the inclusion 

of the demand and reserve constraints into the objective function via two La- 

grange multipliers. This function is additive separable and this fact became 

the cornerstone of many subsequent approaches. The single generation prob- 

lems are solved very efficiently by DP since the number of states is limited by 

the minimum up and down times. Each node in the tree is characterized by 

a set of fixed binary variables denoting the commitment states of the different 

units. The Lagrangian relaxation of the problem at each node is solved to ob- 

tain a lower bound on the optimal solution for that problem. If the Lagrangian 
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solution satisfies the reserve requirement, the economic dispatch solution can 

easily be found by considering the marginal costs of the committed units, thus 

providing an upper bound. The subgradient method is used to determine the 

multipliers in the maximization of the dual function, providing a lower bound 

to the original primal problem. If the difference of the incumbent solution (up. 

per bound) and its lower bound is below a certain value, the node is fathomed. 

The next variable to branch to is chosen so as to minimize the violation of the 

reserve constraint. 

Lauer et al. (1982) formulate the scheduling problem as a mixed inte- 

ger nonlinear model, and follow the branch-and-bound approach of Muckstad 

and Koenig (1977). Since the dual function is not differentiable, a sequence 

of smooth functions are generated which provide increasingly more accurate 

approximations to the non-differentiable dual function. The resulting smooth 

functions are then maximized by standard optimization techniques. The solu" 

tions of the approximate problems converge to the solution of the exact problem. 

An upper bound is generated by modification of the dual solution to feasibil- 

ity, i. e. schedules that satisfy unit, demand, reserve and branch-and-bound 

constraints. 

Cohen and Yoshimura (1983) formulate the problem as a nonlinear mixed 

integer programming problem. In order to reduce the search of feasible states, a 

restriction is imposed that each cycling unit can only be started or stopped once 

a day. Defining start and stop intervals for each unit, with the top node the 

entire period of 24 hours. The successors are disjoint partitions of these intervals 

till, at the bottom, each interval consists of a single hour. An economic dispatch 

algorithm provides the lower bounds to each node. Each day is considered 

separately, and so a heuristic has to be used to couple schedules of several days. 

One of the main obstacles in power systems scheduling is the size of the 
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problem. Some decomposition approaches have successfully been implemented. 

Benders' decomposition approach [Benders (1962), Geoffrion (1972), Lasdon 

(1970)] decomposes the problem into a master problem coordinating a sub- 

problem. In power scheduling the master problem involves only the discrete 

variables of the unit commitment problem, and the subproblem involves only 

the continuous generation variables of the economic dispatch problem. Bender's 

'cut' is generated from the dual values of the subproblem, constraining the al- 

lowed commitments in the master problem. These dual values are associated 

with the coupling constraints between the continuous and integer variables. 

Muckstad and Wilson (1968), Turgeon (1978), van den Bosch and Honderd 

(1985) present implementations for the thermal case only. Habibollahzadeh 

and Bubenko (1986) tackle the hydro-thermal coordination problem using a 

linear model. Baptistella and Geromel (1980) also solve a hydro-thermal prob- 

lem but use a mixed integer nonlinear model. Benders' approach produces an 

upper and lower bound estimate of the optimal value, and at each iteration a 

feasible solution to the original problem. 

The most frequent approach to decomposition in power scheduling is the use 

of Lagrangian relaxation. The unit commitment/economic dispatch problem 

possesses special features which are particularly suitable for decomposition: 

- the cost function is a sum of terms involving the operational cost of each 

generating unit, 

-the coupling constraints, the demand and reserve constraints, are also a 

sum of terms related to the power outputs of all units in each time period. 

The introduction of these constraints in the objective function via two sets 

of Lagrange multipliers creates a dual problem that is additive separable. There- 

fore, the dual problem is the maximization of a dual function with respect to 

the multipliers. The separability of the dual function reduces the dual problem 
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to a series of subproblems, one for each unit subject to their local operating 

constraints, all of them controlled by a master problem via the Lagrange mul. 

tipliers. For the solution of the dual problem the following three points need to 

be addressed: 

- the method of solution of the subproblems, 

- the generation of the Lagrange multipliers, 

- the termination criteria. 

The solution methods for the subproblems include DP, the gradient method, 
linear programming, the choice of method depending on the particular charac- 

teristics of the subproblem under examination. In each iteration a new set 

of multipliers has to be computed, and the most widely used approach is the 

subgradient method. Other approaches utilise second derivative information 

[Bertsekas et a!. (1983) and Aoki ef a!. (1987)]. For nonconvex programming, 

duality theory shows that a duality gap can exist, i. e. the difference between 

the cost of the optimal primal and dual solutions. Bertsekas and Sandell (1982) 

showed that the duality gap will tend to zero as the problem size increases. 

A considerable number of applications based on Lagrangian relaxation have 

been reported: for thermal systems Bertsekas et al. (1983), Merlin and Sandrin 

(1983), Zhuang and Galiana (1988), Virmani, Imhof and Mukherjee (1989); for 

hydro-thermal coordination Sandell et al. (1982), Shaw and Bersekas (1985), 

Aoki et al. (1987,1989), Tong and Shahidehpour (1990); Bard (1988), Ruzic 

and Rajakovic (1991) and Cohen (1991) include ramping constraints in their 

models. The main advantages of Lagrangian relaxation are that it makes possi- 

ble the solution of very large problems and allows the bracketing of the optimal 

primal value between the primal and dual solutions obtained in the iteration 

process. 

There are also reported some semi-rigorous approaches, e. g. Khodaverdian, 
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Brameller and Dunnett (1986), which use heuristics combined with rigorous 

methods. The main strength of these approaches lies in the consideration of all 

real world operational constraints, generating suboptimal but feasible schedules. 

Mokhtari, Singh and Wollenberg (1988) noted that some constraints affecting 

the unit commitment problem are difficult to formulate mathematically, and 

when formulated, frequently lead to substantial increases in computational time. 

Furthermore, the experience of the control operator is critical to the generation 

of a good schedule. From this background, Mokhtari, Singh and Wollenberg 

(1988) developed a rule-based expert system for the unit commitment problem, 

where some of the more complex constraints were not included in the unit com- 

mitment solver (based on DP) but were dealt with externally by adjusting the 

input data. Zhuang and Galiana (1990) use simulated annealing [Kirkpatrick, 

Gelatt and Vecchi (1983)] to solve the thermal unit commitment/economic dis- 

patch problem. A random unit commitment heuristic generates an initial feasi- 

ble commitment, on which the Metropolis optimization algorithm (Metropolis 

et at. (1953)] proceeds by generating feasible trial commitment solutions; these 

are points in the search space which will either be rejected or accepted with 

probability (Boltzmann distribution) depending on the annealing temperature. 

The algorithm generates near optimal solutions, coping with plant crew con- 

straints, but it is quite slow. 

This overview of solution methods displays both a steady increase in the 

complexity of the models and the size of the problems which can be tackled: 

nowadays this can involve several hundred generating units. 
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CHAPTER 2 

THE MATHEMATICAL MODEL 

The first model developed was based on the problem presented by Scottish 

Hydro-Electric (see Appendix 1). The nuclear component of the must-run type 

need not be considered within the optimal schedule, since it produces a con- 

stant output. Therefore, the system contained three main components: thermal 

units, hydro units and pumped-storage units. As the main operating character- 

istics of these three components arc very different the problem was partitioned 

accordingly. The following notation is used: 

Notation 

Subscripts 

iA thermal unit. There are I thermal units, i. e. i= 

1,2,..., I. 

kA hydro unit. There are K hydro units, i. e. k= 112,..., K. 

1A pump-storage unit. There are L pump-storage units, i. e. 

I =1,2,..., L. 

Superscripts 

tA time interval. There are T time intervals, i. e. t= 

1,2,..., T. 
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Sets 

X; The power output of the ith thermal unit belongs to this set, 

[x;, x; ], i. e. the operating lower and upper limits of the ig1 

unit. 

Vk The volume of the kth hydro reservoir belongs to this set 

[vk, vk], i. e. the lower and upper volume (operating) limits 

of the kih reservoir. 

Yk The discharge from the kth hydro unit 'belongs to this set 

[yk, y'kl, i. e. the lower and upper discharge limits of the Wh 

unit. 

RI The volume of the 1°' pump-storage reservoir belongs to this 

set [rt, r: ], i. e. the lower and upper volume (operating) limits 

of the lth pump-storage reservoir, where zj is equal to rlr for 

1, and Z2/fort=T. 

Q1 The discharge from the loh pump-storage reservoir belongs 

to this set [q 
, q11, i. e. the lower and upper discharge limits 

of the 11h unit. 

Pt The pumping to the I1h pump-storage belongs to this set 

[pes, pj, i. e. the lower and upper pumping limits of the 11h 

unit. 
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Constants 

F; The fixed cost for the i° thermal unit (. e). 

V; The cost per megawatt for the iith thermal unit (. C/MW). 

Ui The start-up cost for the its' thermal unit (L). 

Di The shut-down cost for the iah thermal unit (. C). 

W. The minimum down time for the ith thermal unit (h). 

Ti The minimum up time for the igl' thermal unit (h). 

Hk The value of the equivalent quantity of water used for gen- 

erating one unit of power in the kph hydro unit (. C/MW). 

Sk The value of spillage in terms of the equivalent quantity of 

water used for generating one unit of power in the Wh hydro 

unit (. C/MW). 

G10 The value of the equivalent quantity of water in the loh 

pump-storage unit used for generating one unit of power 

(. C/MW). 

PI The value of the water pumped to the 1°' pump-storage 

reservoir, in terms of its equivalence for generating one unit 

of power (. CI*NIW). 

0, The inverse of the thermodynamic efficiency of the pumping 

process in the lth pump-storage unit. 

d' The demand which the system has to meet in every time 

period (MW). 

R The constant reserve in every time period (MW). 
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Variables 

x! 

ßit 
7it 

, fi t 

Yk 
fk 

t sk 

Ti l 

9i 

Pi 

91 

The power produced by the ith thermal unit (MW). 

The commitment (integer) variable of the ith thermal unit. 

The start up (integer) variable of the ith thermal unit. 

The shut down (integer) variable of the ith thermal unit. 

The volume of the kth reservoir (MWh). 

The discharge from the k1h hydro unit (MW). 

The inflow to the kth hydro unit (MW). 

The spillage from the k1h hydro unit (MW). 

The volume of the 1«' pump-storage reservoir (MWh). 

The discharge from the Its` pump-storage unit (MW). 

The pumped water to the 11h pump-storage unit (MW). 

The inflow to the loh pump-storage unit (MW). 

The commitment (integer) variable associated with genera- 

tion of the 1P" pump-storage unit. 

vit The commitment (integer) variable associated with pumping 

of the l°hpump-storage unit. 
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2.1. The thermal system 

Suppose there are I thermal units, and let the power (MW) produced by 

unit i during period t be x;. The capacity constraint on the unit i results in 

x; E X; U {0}, (2.1.1) 

where 

X. = (x;, oil) (2.1.2) 

for i=1,2,..., I, and for t=1,2,..., T. 

Each unit has an associated integer variable a; which denotes whether the unit 

is committed (on) or not (off) 

_ 
1, if unit i is on during period t, 

a' - 0, otherwise; 
2.1.3 

so 

0, if a; = 0, 
ý' 

xiEX1, if a; =1. 
(2.1.4) 

Note that this implies [Glover (1975)], 

A<x; i; a; (2.1.5) 

for i=1,2,..., I, and fort=1,2,..., T. 

The costs are: 

(a) Running costs per unit 

F; a; + ix;, (2.1.6) 

for i=1,2,..., I, and for t=1,2, ... , T, 

where F; is the fixed cost, and V; is a linear approximation to the fuel cost over 

the range (x;, x; ). 
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(b) Start-up cost per unit 

U; ß;, (2.1.7) 

for i=1,2,..., I, and for t=1,2, ... , T, 

where U; is the start-up cost for uniti, and ß; is an integer variable defined as, 

1, if unit i is started in period t, (2.1.8) 
' 0, otherwise. 

Hence 

Q; > a; aI-1, (2.1.9) 

for i= 1121. .., I, and for t=1,2,..., T. 

(c) Shut-down cost per unit 

Di-ti, (2.1.10) 

for i=1,2,..., I, and for t=1,2,..., T, 

where D; is the shut-down cost for unit i, and 7; is an integer variable defined 

as, 
1, if unit i is shut-down in period t, 

ry` ý' 0, otherwise. 

So 

?; >a; '1 - a;, (2.1.12) 

for i=1,2,..., I, and for t=1,2,..., T. 

(d) If the minimum down time is E; for unit i, then necessarily the following 

restriction holds, 

9+E -1 

"+Q; 5 1,2.1.1 3) 
i=t+1 
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for i=1,2,..., I, and for t=1,2, ... ,T-;, 

where E; is an integer greater than 1. 

(e) If the minimum up time is 'Y; for unit i, then necessarily the following 

restriction holds, 

t+'wr-1 

ß! +i<1, (2.1.14) 
j=t+1 

for i=112, ... '1, and for t=1,21..., T-Tit 

where Ti is an integer greater than 1. 

2.2. The hydro system 

Suppose there are K conventional hydro units of the "must-run" type, i. e. 

there must always exist a minimum flow in order to prevent the river from 

running dry. 

If -ý 
I dk 

Fig. 2.1. Schematic diagram of a hydro unit 

The continuity equation gives the following relation, 

vk-vk 1'+'fk-Vk-'9k, (2.2.1) 

fork=1,2,..., K, and fort=1,2,..., T, 
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where 

vk is the volume of the kt! 4reservoir at the end of period t, 

yk is the discharge of the kt" hydro plant during period t, 

fk is the influx to the Wh hydro unit reservoir during period t, and fk > 0, 

sk is the spillage from k0hreservoir during period t, and sk > 0. 

The operation of the hydro units must be within the reservoir limits and 

the operating limits of the turbines; thus 

Vk = 
(vkIVklo (2.2.2) 

Zk E Vk, (2.2.3) 

Yk = fyk, Vkl, (2.2.4) 

yk E Yk, (2.2.5) 

fork=1,2,..., K, and for t=1,2, ... , T. 

The operating costs of the hydro units are taken to be linear, 

Ilkyk + Sk, k) (2.2.6) 

for k=1,2,..., K, and for t=1,2,..., T, 

where 110 and Sk are, respectively, the value of the discharge and spillage. k 
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2.3. The pump-storage system 

Suppose there are L pump-storage plants. 

9i 

rt 

91 
t 

PI 

Fig. 2.2. Schematic diagram of a pump-storage unit 

From continuity, we get 

ri=*i-1+9i-9i+p, (2.3.1) 

for !=1,2, ... , L, and for t 

where 

ri is the lgh reservoir storage at the end of period t, 

q, is the discharge from the lth unit during period 2, 

pj is the pumped water to the l"h reservoir during period t, 

gig is the influx to the ! th reservoir during period t, and g, > 0. 

The operation of the pumped-storage units must be within the operating 

limits of the reservoir, turbines and pumps. We introduce the following sets: 

7t = IF41 fill (2.3.2) 

Qj = [4_l, 911, (2.3.3) 
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?I= [p, 
IPd. 

(2.3.4) 

So that 

rý E 7Z, (2.3.5) 

ql E Qi U {0}, (2.3.6) 

pl E P1 U {O}, (2.3.7) 

for 1=1,2,..., L, and for t=1,2,..., T. 

Due to the design of the plant there cannot be generation and pumping at one 

and the same time. This can be expressed as 

9ipi = 0. (2.3.8) 

Intuitively, it may be thought that (2.3.8) is unnecessary since one might argue 

that any economic optimization would select one or the other. However, for 

particular values of the demand and reserve it is easy to construct examples 

where pumping and generation can occur simultaneously [see Appendix 2]. In 

order to overcome this nonlinearity, two integer variables are introduced, one 

associated with generating and the other with pumping. 

µt = 
1, if unit I is generating in period t, 
0, otherwise. 

(2.3.9) 

V_. 
1, if unit 1 is pumping in period t, 

2,3.10 l 0, otherwise. 

Thus 

tr0, if µl = 0, (2.3.11) 
µ4=1. 4r=t9rEQt, if 

t 0, if vt = 0, (2.3.12) pt = Pt E 'Pr, if v; = 1. 

for l=1,2, ... , L, and for t=1,2,..., T. 
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The constraint that there cannot be generation and pumping at the same time 

may therefore be expressed as, 

0<µý+v4 <1, (2.3.13) 

for 1= 1,2,..., L, and fort = 1,2,..., T. 

The cost of operating the 11h pump-storage unit is 

G1°1 - Pi Pi 9 (2.3.14) 

for !=1,2,. .., L, and for t=1,2,..., T, 

where GO, is the value of the equivalent quantity of water used for generating 

each unit of power while P10 is the value of the water pumped to the reservoir. 

2.4. The demand and reserve constraints 

Clearly, the power output has to satisfy a stochastic demand. Also, if 

one unit breaks down it is not possible to start an uncommitted thermal unit 

immediately and so a certain amount of reserve, known as spinning reserve, 

should be available. There are several reserve policies that have been adopted: a 

constant reserve in every time period [Muckstadt and Wilson (1968)]; a variable 

reserve [Muckstadt and Koenig (1977), Merlin and Sandrin (1983)]; a reserve 

large enough to cover the loss of the largest thermal unit [Turgeon (1978), 

Baptistella and Geromel (1980)]; or a reserve assessed on the basis of a risk 

analysis [Muckstadt and Wilson (1968), Turgeon (1978)]. In this study we shall 

consider satisfying the demand d', while allowing just sufficient excess capacity 

to cover the constant reserve R imposed upon the Scottish Hydro-Electric plc, 

by the pool system operating in the United Kingdom. 
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Therefore, 

IKG 
Z 

xi -ý- 
Eyk + E(4i 

- OIP)> d', 

IKL 

xta; -ý- yk + E(41µ1 
- O, Pt) d'+ 1?, (2.4.2 

i=1 k=1 1=1 

fort=1,..., T 

where 01 is the inverse of the thermodynamic efficiency of the pumping process. 

2.5. The mixed integer linear model 

The mixed integer linear programming problem takes the form 

TI 

min E{E(Ujß: +F; a; +V1x; +Dili) +>(Ilkyk +Sksk) 
Q'osl'aM. Hj""I ffl ovi opt t=1 =1 k=1 

L 

+ (G141 - P1p) }, 

r_ý 

subject to 

0, if a; = of 
x` 

x; E X;, if a; = 1, 

xi = [xis xi], 

at _ 
1, if unit i is on during period t, 

1 0, otherwise, 

ýý > a! - a! -1ý 

iii! c , 

WEi-1 

7i ß' Qi ý 1, 

k=t+1 

far t=1,2, ... ,T-.;, where E; is an integer greater than 1, 

(2.5.1) 
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t+`Yr-I 
t 

1=t+1 

and for t=1,2,... ,T-I;, where I; is an integer greater than 1, 

Yk E Yk, 

Yk = 
IyktykI) 

t t-i ttt Vk = Vk + fk - yk - Sk, 

v, ýý. E Vk, 

Vk 
- 

[i 
k, Vk], 

JRs4k - 
°9 

t 0, if µ1=0, 
91 = qt E Qt, if µi = 1, 

Qt ° (9tj 4t]j 

t_f0, if v, = 0, 
pt pt E Pt, if VI = 1, 

P1=h4lb 

µ` _ 
1, if unit 1 is generating in period t, 

1 0, otherwise, 

1, if unit I is pumping in period t, 
vi _-0, otherwise, 

r= ri-1 + gig - 41t + pi 

9;? 0, 

0< 
jU4 

+ vj < 1, 
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KL 

O> dt, 

k=l 
KL 

x; a; +E yk + E(41PIt 
- O, Pi) ? d` + R, 

k=l 1=1 

where d', fk, gigs vk, rý , a4, ß°, Si, ý;, 01 and R are known. 
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CHAPTER 3 

BRANCH-AND-BOUND 

In the introduction several techniques were discussed for solving a mixed 

integer linear programming problem (MILD). In this chapter, the branch-and- 

bound method [Beale (1988), Fletcher (1987)] is considered. This approach, 

examines a sequence of simpler linear programming problems derived from the 

original problem. These constitute the nodes of a tree. 

P 

Fig. 3.1. Enumeration tree 

The top node in the tree is a relaxation of the original problem (i. e. all 

integer constraints are replaced by interval constraints) which is relatively easy 

to solve. The successors of the top node are a set of problems (also relaxations 

of the original problem) each having a disjoint solution space; the union of the 

solution spaces of these successors being the solution space of the top node 
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[Cohen and Sherkat (1987)]. 

3.1. The branch-and-bound method 

To illustrate this technique consider a pure integer programming problem. 

The aim is to find the solution x* of the problem 

PI : min f (x) 

subject to xEE, x; integer Vi E Z, (3.1.1) 

where x is a vector (xl, x2) ... , xn), I is the set of non-negative integer variables 

and E is the (closed) feasible region of the continuous problem 

P: min f (x) 

subject to xEE. (3.1.2) 

Let the minimizer x' of P exist: if it is feasible in Pj then it solves P1. If not, 

then there exists an iEI for which z is not integer. In this case two problems 

can be defined by branching on variable xi in problem P, giving 

P- : min f (x) 

subject to xEE, -Ti <_ [x; ], (3.1.3) 

sometimes defined as the down problem, and 

P+ : min f(x) 

subject to xEE, x; > [x; ) + 1, (3.1.4 

sometimes referred to as the up problem, where [x] denotes the largest integer 

not greater than x. With each of the continuous problems defined above, it 

is possible to define PT and P+, respectively, with the integrality constraints 

xi, i E Z. 
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It is important to note that x* is feasible in either P- or P+ but not both, 

in which case it solves PI or PI . Also any feasible point in PT or P! is feasible 

in Pl. 

It is usually possible to repeat the branching process by branching on 

and P+, and again on the resulting problems, so as to generate a tree structure. 

Each node corresponds to a continuous optimization problem, the root is 

problem P, and the nodes are connected by branches defined above. As can be 

seen from Figure 3.1, there are two cases in which no branching is possible at 

any given node: 

- when the solution is integer feasible (a square in the tree in Figure 3.1), 

- and when the problem has no feasible point (a dark circle in the tree in 

Figure 3.1). 

Otherwise each node is a parent problem (a circle in a tree in Figure 3.1) 

and gives rise to two branched problems. 

If the feasible region is bounded then the tree is finite and each path through 

the tree terminates in either a square or a circle. Assuming that the solution 

x* of PI exists, then it is feasible among just one path through the tree. The 

solution of every problem (square in the tree in Figure 3.1) is feasible in PI and 

so the required solution vector x* is that solution of a problem (square in the 

tree in Figure 3.1) whose objective function takes the least value. Often in the 

tree there are nodes (circle in the tree in Figure 3.1) whose solution violates 

more than one integrality constraint, so in fact the tree is not uniquely defined 

until the branching variable is defined. The number of nodes grow exponentially 

with the number of variables. 

The branch-and-bound method attempts to find the solution of Pt by mak- 

ing only a partial search of the tree. This is achieved by calculating upper and 

lower bounds on the objective function in order to accelerate the fathoming 
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process and thereby curtail the enumeration. If, for instance, at any point in 

the tree, one solution is obtained for which the objective function value fj as- 

sociated with that particular node j is greater than a known feasible solution 

to the original problem, i. e. fj>f;, (where f; is a solution at node i), then all 

possible solutions corresponding to descendants of node j cannot reduce f, and 

therefore are non optimal. Hence, these branches need not be examined. 

Trees can grow very large, and so to produce an effective partial search of 

the tree requires defining 

a) the problems in the tree, 

b) which to solve next, 

c) which variable to branch. 

The branch-and-bound tree is completely described by the definition of 

the parent node problem and the method of obtaining the successors of any 

node. The choice of problem to solve next determines the next active node. 

Basically there are two strategies: depth-first search, or last in, first out, where 

a path is followed deep in the tree till a feasible solution is found. Then the 

algorithm works back rejecting problems or creating subtrees and/or updating 

the best integer solution. In breadth-first search, whenever two new branches 

are considered, each one is assigned an estimate of the decrease in the value of 

the objective function; the next problem to be solved is the one with the lowest 

assigned value. 

Choosing which variable to branch is decided through the use of penalties; 

these are estimates, et, , e7 , of the increase in the objective function which result 
from consideration of the newly added constraints, the up problem x; > [x; ] +1 

and the down problem x; < [x; ], respectively. The rule is to choose the variable 

which minimizes the increase in the value of the objective function and place 
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the one corresponding to the other branch in the 'stack of unsolved problems. 

By following this approach, the worst case is stored with the anticipation that 

it will be rejected at a later stage. 

3.2. Sciconic/VM package 

The Sciconic/VM package was used to solve the problem by the branch- 

and-bound method. The package demands, in the first stage, the formulation of 

the mathematical programming problem in a specific language - MGG. This is 

a program generator which produces a FORTRAN matrix generator from a for- 

mulation written in a mathematical programming language [Beale (1984), Van 

Roy and Wolsey (1987)] and from the data of the problem. Also a report writer 

program is generated to produce the output reports enabling an interpretation 

of the solution obtained. 

In the second stage, the Sciconic/VM package is run, and an optimal solu- 

tion is eventually obtained. This package [Sciconic/VM (1081)]can be used for 

linear, integer and certain non-linear problems. With regard to the branch-and- 

bound method, the package allows the user to define the strategy of searching 

the tree. It is possible to specify the kind of search, whether depth-first or 

breadth-first, the priorities associated with vectors, and the criteria by which 

the direction of branching is decided. 

3.3. Results 

The model has been tested under several different operating conditions in 

order to evaluate its performance. From the beginning the aim was to reduce to 

a minimum the use of "rules of thumb" (e. g. minimum up time, pumping during 

weekends, etc. ) and to determine from the mathematics which conclusions 

should be inferred, so that these "rules of thumb" may be discarded or, possibly, 

validated. 
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The results obtained are summarized in Tables 3-1 and 3-2. Table 3-1 

presents the data for two to seven days of forward planning; the integer solution 

in £; the number of solutions (N. S. ) found in the branch-and-bound tree; the 

corresponding number of branches; the continuous solution in C (Primal, which 

in this case is a lower bound to the problem); the percentage difference between 

the integer and continuous solution and the CPU time used. Table 3-2 presents 

the data for seven days of forward planning for different operating conditions 

under the restriction that the reservoir at the beginning and end of the planning 

period must be at a specified level (i. e. 3500 MW of equivalent water): 

(1) Refilling each day up to a constant intermediate level (i. e. 3500 MW of 

equivalent water); 

(2) Pumping during the weckend only; 
(3) Pumping whenever required at any time during the week; 

(4) Continuous pumping at 200 MW with generation restricted to the limits 

80-300 MW. 

Table 3-1 
Numerical Results -2 to 7 days 

Days Integert N. S. Branches Prinnalt %Diff. CPU 
2 3.386E5 1 137 3.386E5 0.0 0: 09: 48 
3 4.938E5 1 205 4.938E5 0.0 0: 07 : 32 
4 6.486E5 1 224 6.486E5 0.0 0: 17: 18 
5 8.002E5 3 728 7.992E5 0.1 42800 
6 9.282E5 1 726 9.255E5 0.3 25000 
7 1.059E6 1 783 1.050E6 0.8 4: 40 : 00 

j oiuiion in L) 

35 



Table 3-2 
Numerical Results -7 day period 

Integert N. S. Branches Primalt %Diff. CPU 
- (1) 1.059E6 1 1417 1.050E6 0.8 4 : 40: 05 

(2) 1.059E6 1 1223 1.050E6 0.8 4 40 00 
(3) 1.059E6 1 783 1.050E6 0.8 4 40 : 00 
(4) 1.063E6 1 946 1.050E6 1.2 4: 40 : 00 

t(Solution in x) 

Figures 3.2,3.3,3.4,3.5 present a summary in graphical form of the unit 

commitment (U. C. ) and economic dispatch (E. D. ) for the different operating 

conditions that have been tested. The top graph displays the U. C. for the 

several generating units, and the bottom one the E. D. with the demand on the 

system. 
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3.4. Summary 

Extensive runs have been made under various demands, different climatic 

conditions and a variety of operating conditions from which we are able to draw 

a number of conclusions. 

Several runs have been made for higher levels of the demand and for higher 

oil prices as well as for drier conditions, when it was observed that the coal 

unit needs to be switched on. The level of the pump-storage unit reservoir may 

vary between the lower and upper acceptable limits, but at the beginning of the 

next planning period it has to be greater than or equal to a given level. Figures 

3.2,3.3 and 3.4 present different policies for the operation of the pump-storage 

unit. From the resulting costs obtained, which do not differ significantly, the 

most economic operation occurs when we impose pumping at any time during 

the week which allows the level to vary between the operating limits of the 

reservoir. It was found that there was a markedly different cost between the 

three operating policies for higher levels of the demand. Figure 3.5 presents 

the weekly operation with the pump-storage unit generating between the limits 

80-300 MW and constant pumping at 200 MW, which is close to the actual 

policy of the Scottish Hydro-Electric plc. As a result, the solution space is 

greatly reduced, and so it is much more difficult to find a solution close to the 

optimum. Thus, the operating cost is significantly increased. 

The results that have been derived show that it is not possible to carry out 

a full search of the branch-and-bound trees in reasonable time. However, for a 

seven day schedule, a solution within 2% of the optimum can be obtained in less 

than 1 to 2 hours of CPU time on a VAX 11/785. Nevertheless, the underlying 

matrix (Figure 3.6) points to a suitable structure for the implementation of 

Benders' decomposition technique [Benders (1962)] and Lagrangian relaxation 

[Muckstadt and Koenig (1977)] which should reduce greatly the computation 
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times [Habibollahzadeh and Bubenko (1986), Merlin and Sandrin (1983). 
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Fig. 3.6. Matrix structure 
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CHAPTER 4 

DUALITY IN MATHEMATICAL PROGRAMMING 

4.1. Introduction 

The solution of large linear and nonlinear mathematical programming prob- 

lems by decomposition relies on duality theory. The fundamental results of 

optimality and duality are presented, based on the concept of a perturbation 

function [Geoifrion (1971)]. For proofs of theorems and results reference can be 

made to Lasdon (1968,1970) and Geoffrion (1971,1974). 

4.2. The primal and dual problems 

Consider the following primal problem (P) 

min f (x) 

s. t. g(x) <0 

where g(x) = (gl (x), g2 (x), 
... ,g.. (x)) ' 

and f and g; are real valued functions 

defined on XCR. X is a nonempty convex set on which all functions are 

convex. 

The dual (D) of the primal problem (P) with respect to the g-constraints 

is defined by 

max[inf {f(x) +a's(x)}] 
a>o xEX 
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where .\ 
is an m-vector of dual variables. The Lagrangian function is defined 

as f+ J1 g. The maximand of (D) is a concave function of A alone for it is the 

pointwise infimum of a collection of functions linear in A. 

4.3. Definitions and fundamental theorems 

Optimality 

A pair (x, A) is said to satisfy the optimality conditions for (P) if 

i) x minimizes f+ arg over X, 

ii) A'g(x) = 0, 

iii) A>0, 

iv) g(x) < 0. 

A vector A is said to be an optimal multiplier vector for (P) if (x, A) satisfies 

the optimality conditions for some x. 

Constrained Saddle Point 

A pair (x*,. X*) is a constrained saddle point of the Lagrangian function f+ i1 g 

satisfying the optimality conditions if, and only if, A* > 0, x* EX and 

f(X*)+ýg(X*) 5 f(x*)+a*, g(x*) <_ f (x) + A*, g(x). 

Since x* solves the primal problem, one way to find multipliers which cause 

a solution of the Lagrangian function to solve the primal problem is to locate a 

saddle point for the Lagrangian function. Another way of stating the optimality 

conditions is: (x*, a*) satisfies the optimality conditions if and only if x* is 

optimal in (P) and A* is optimal in (D), and the optimal values of (P) and (D) 

are equal. 
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Perturbation function 

The perturbation function --I(y) associated with (P) is defined on R"' as 

(y) 
Xnf 

{f (x) subject to g(x) < y} 

where y is called a perturbation vector. 

It is possible to show that 4ý(y) is a convex function [Geoffrion (1971)]. The 

perturbation function defines a family of problems. Clearly, '(O) is the optimal 

value of (P), but the study of this function at points other than the origin may 

be of interest in terms of sensitivity analysis. 

Subgradient 

Let y be a point at which is finite. An m-vcctor 7 is said to be a subgradient 

of 4 at y if 

4(Y)? -4ý(Y)+'YJ(Y-Y) for all y. 

The inequality sign is reversed in the case of concave functions. A subgra- 

dient can be seen as a generalization of the gradient at nondifferentiable points 

of nonsmooth functions. 

Stability 

The problem (P) is said to be stable if 4ý(O) is finite and there exists a scalar 

M>0 such that 
T(0) - tk(y) <M for all y 96 0. IIyII 

The stability property requires that the perturbation function -P does not 

decrease infinitely steeply in any direction. 
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Weak Duality Theorem 

If x is feasible in (P) and X is feasible in (D), then the objective function of (P) 

evaluated at x is not less than the objective function of (D) evaluated at X. 

-i -i inf {f (x) +A g(x)1 5f (X) +A g(X) <f (X). 
xEX 

Any feasible solution of (D) provides a lower bound on the value of (P), 

v(P); and any feasible solution of (P) provides an upper bound on the optimal 

value of (D), v(D); thus, for given feasible primal and dual points, the associated 

values bracket the primal optimum, and this can be used as a termination 

criteria in an iterative algorithm. The equality can only be achieved [Lasdon 

(1968) if and only if there exists a saddle point for 

f (x) + a's(X). 

This is also a result from the strong duality theorem (Geoffrion (1974)] and 

precludes the existence of a duality gap, i. e. a difference between the optimal 

values of the primal and dual problems. 

Strong Duality Theorem 

If (P) is stable, then 

(a) (D) has an optimal solution, 

(b) the optimal values of (P) and (D) are equal, 

(c) A* is an optimal solution of (D) if and only if -A* is a subgradient of P 

at y=0, 

(d) every optimal solution A* of (D) characterizes the set of all optimal so- 

lutions (if any) of (P) as the minimizers of f+ i1 g over X which also satisfy 

the feasibility condition g(x) <0 and the complementary slackness condition 

A*'g(x) = 0. 
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It should be pointed out that this theorem defines the criteria for equality 

of v(P) and v(D), the optimal values of (P) and (D), in terms of the existence 

of a subgradient at the origin. 

4.4. Related problems 

In 1963, Everett studied the relation between the perturbed and unper- 

turbed problems. Let a unique finite optimal solution for any value of A>0 be 

denoted by x(A). 

Theorem [Everett (1963)] 

If x(A) solves the Lagrangian problem 

min{f(x)+ X#g(x)} 

s. t. xEX 

with A>0, then x(A) solves the modified primal problem 

inin f (x) 

s. t. g; (x) < y; i=1,2,..., m 

xEX 

where 

vi =g (x(A)) if )i >0 

yi ? 9t(x(\)) if a; = 0. 

Let the constraints g; <0 be regarded as expensive resource limitors and 

a; be viewed as prices for these resources. Then the theorem says that any 

vector which minimizes f+ a'g solves a primal problem which uses no more 
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of the valuable resources then the vector itself. In other words, it specifics 

how much the right hand side may be perturbed without affecting the optimal 

solution. Thus the multipliers A convert a constrained to an unconstrained 

problem (except for the restrictions xE X). 

Theorem [Everett (1963) 

Let Al, A2 be nonnegative m-vectors with 

Ak>J1k aý 
it . 

996k. 

If x(. 1') solves the Lagrangian problem with A= A', then 

< 9x(X(-\1))" 

Since Ak has an interpretation as the price of the resource k, if . 1k is increased 

while all other prices are held fixed, the amount of the kth resource used will 

decrease. 

Theorem [Everett (1963)] 

Let x* come within e>0 of solving the Lagrangian problem; 

(x*) + %'g(x*) 5 f(x) + X'g(x) +E for all xEX 

then x* comes within e of solving the modified primal problem. 

A "good" solution to the Lagrangian problem is thus a "good" solution to 

the modified primal problem. 
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4.5. Geometric interpretation of the dual problem 

Lasdon (1968,1970) and Geoffrion (1971) show that the minimization of 

the Lagrangian problem is equivalent to finding a supporting hyperplane. Some 

insight is gained from the geometric interpretation, and for simplicity, consider 

the case with only one inequality, e. g. Bazaraa and Shetty (1979), i. e. 9(x) < 0. 

In the (zl, z2) plane, consider the set 

G={ (zl, z2) : zl = 9(x), z2 =f (x) for some xEX} 

in Figure 4.1. G is the image of X under the map (g(x), f (x)). 

X\ (gn 

r, 

" 
(ý' ý, 

ý. 
" ,w 

PRLMAL AND DUAL 
OPTIMAL VALUES 

DUAL SOLUTION FOR 7- 

z2(value of 0 

G 

te(x)d(x)1 

''--- zV 

SLOPE -A" 
ziX zra 

SLOPE - 

z 1(value of 2) 

Fig. 4.1. Supporting hyperplanes for the set G. 
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The value of the dual function is the intercept of the supporting plane with 

the z2 . axis, and the slope of the plane is -A. The value of the primal is the 

one that minimizes z2 subject to zl < 0. The optimal solution is then the point 

(zl, z2)- 

For a given .1 >- 0, to evaluate the dual function v(D), the minimization of 

f+ Ag over X is required. Setting zl = g(x) and z2 =f (x) for all xEX, this 

is equivalent to minimizing Z2 +Xz1 over points in G, subject to (zl, Z2) E G. 

However, z2 + , ßz1 =ä is an equation of a straight line with slope -A and 

intercept cx on the z2 axis. From Figure 4.1 it can be seen that minimizing 

z2 + Xzl over G corresponds to finding a line with maximum intercept which 

supports G, i. e. the line tangent to (11,12). Therefore, the dual problem is 

that of finding the support plane with nonpositive slopes having a maximal z2 

intercept, while the primal problem is that of finding a point in G with minimal 

z2 intercept, the value of D(O). 

If G is convex (Figure 4.1) there exists a supporting hyperplane at all bound. 

ary points, and in particular at z1 = 0, i. e. 41(0). However, if G is not convex, 

(the primal is not a convex program), there might not exist a supporting hy- 

perplane at the origin (Figure 4.2). In this case, the values of the primal and 

dual objective functions are not equal and a duality gap is said to exist. 
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CHAPTER 5 

LAGRANGIAN RELAXATION AND THE UNIT COMMITMENT 

AND ECONOMIC DISPATCH PROBLEM 

5.1. Introduction 

The highly combinatorial nature of the Unit Commitment/Economic Dis- 

patch problem has led to a search for more and more efficient methods. 

Large Scale Programming is not determined simply by the size of the prob- 

lem, 'but rather size in conjunction with structure' [GeofCrion (1970a)]. Dif- 

ferent structures, for example, multi divisional, combinatorial, dynamic and/or 

stochastic appear in many problems. The exploitation of these various special 

structures is one of the main objectives of Large Scale Programming. 

An essentially equivalent reformulation of some problems can sometimes 

make them more tractable. This is done so that the problem can be solved by 

an existing optimization algorithm taking advantage of the special structure of 

the original problem. Considered from a hierarchical point of view, the original 

problem is partitioned into a number of subproblems, sometimes referred to as 

infimal subproblems, with a master or supremal subproblem at the top level. 

This partition is dependent upon some parameter specified by the master prob- 

lem which coordinates the infimal subproblems. The fundamental assumption 

underlying this multilevel approach [Dirickx and Jennergren (1979)) is that the 

solution to the original problem can be obtained, or closely approximated by 

the solutions of the subproblems. Certain problems have a separable structure 

[e. g. Geofrion (1970a, 1970b), Luenberger (1989) 

min fi(x ) 
i=1 
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s. t. Iii(xi) =0 

ý. "g; (xj) <0 
i=l 

where the components of the n-vector x are partitioned into q disjoint sets 

x= (xl, X2) ... , x9) not necessarily with the same number of components. As 

Luenberger notes, 'separable problems arc ideally suited to dual methods, be. 

cause the required unconstrained minimization problem decomposes into small 

subproblems'. Associating the dual variables ) with the equality constraints 

and it >0 with the inequality constraints, the dual function becomes 

4 

min {fº(x; ) + a'h; (x; ) + 1t'g; (x; )} 

which decomposes into q separable problems 

min{ f; (x, ) +a Iii(xi) +µ gi(xj)} 

which in principle can be solved more efficiently than the original problem. 

The Unit Commitment and Economic Dispatch problems have special fea- 

tures which can be exploited in order to construct separable problems. These 

features [Tong and Shahidiehpour (1989) can be stated as follows: 

1) the commitment variables are the only ones to be restricted to intcgcr 

values, and from the moment these are fixed, the problem becomes a continuous 

optimization problem, 

2) the constraints can be classified as global or local; the global constraints 

involve both the demand and reserve coupling all the generating units, while 

the local constraints state the different operating characteristics of each unit. 

53 



The exploitation of the first feature is based on Benders' decomposition 

[e. g. Benders (1962), Geoifrion (1972)] which allows the mixed integer problem 

to be partitioned into two subproblems: an integer programming problem and 

a continuous programming problem. The idea is that, by fixing the integer 

variables, the problem is reduced to solving a continuous programming problem 

parameterized by the vector of integer variables. 

In Lagrangian relaxation the second feature is used to create a separable 

problem by relaxing the coupling constraints so that each subproblem involves 

only one individual unit subject to its own local (operating) restrictions. The 

local subproblems are parameterized by the Lagrange multipliers and the master 

problem maximizes a dual function, producing new estimates of the Lagrange 

multipliers and assuring that the two global constraints are met. 

5.2. Lagrangian relaxation in mixed integer linear Programs 

A minimizing problem (Q) is said to be a relaxation of a minimizing problem 

(P) if 

f(Q) ? . F(P) 
(. 1(. ) is the set of feasible solutions) and the objective function of (Q), v(Q), is 

less than or equal to that of (P), v(P), on F(P). That is, 

v(Q)<v(P) 

Consider the minimizing problem (P) 

min cx 
x 

s. t. Ax >b 

x>0 

xj integer, jE2 
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where x is nx1, c is 1xn, bis (m+k) x 1, A has conformable dimensions and 

I denotes the index set of the variables required to be integer. The minimizing 

problem (P) is equivalent to 

with 

min cx 
x 

s. t. Al x> bl 

A2x > b2 

x>0 

xj integer, jEI 

i A= [Al : A2]', b_ 
[1)21 

where Alx > bl is the set of 'complicating' constraints, bi is in x1 and b2 is 

kx1. 

To construct the Lagrangian relaxation formulation, the set of 'complicat- 

ing' constraints is included in the objective function premultiplied by a nonneg- 

ative mx1 vector A: 

min{cx + A'(bl -Aix)) 

s. t. Aix > bl 

A2x > b2 

X> Of 

xi integer, jE2, 

.>0. 

Each component of Alx > bl is an inequality; if some of these constraints were 

prescribed as equalities, then the corresponding components of A would not be 

required to be nonnegative. The inclusion of the nonpositivc term bl - Aix 
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creates a lower bound to the original problem (P). Clearly the optimal value 

of this problem, for A fixed at a nonnegative value, is a lower bound on v(P) 

because only a nonpositive term has been added. 

The Lagrangian problem is created by removing the 'difficult/complicating' 

constraints Alx > bl. Then the Lagrangian relaxation (PEA) takes the form 

min{cx + A'(bl - Aix)} 

s. t. A2x > b2 

x>0 

xj integer, jEZ 

A>0. 

Since removing the constraint cannot increase the optimal value, v(PRA) is 

also a lower bound on v(P). In principle, for the Lagrangian relaxation to 

be justified, it must be much simpler to solve than the original problem (P). 

The potential usefulness of any relaxation of (P), and of (PR, ) in particular, 

is largely determined by how near its optimal value is to that of (P). This 

therefore provides a criterion by which to measure the 'quality' of a particular 

choice of A. The ideal choice would be to take A as an optimal solution to the 

concave problem (D) 

maox v(PRA) 

which coincides with the Lagrangian dual of (P) with respect to A1x > b1. 

Geofrion (1974) stresses the fact that the interest in Lagrangian relaxation 

comes not only from the lower bounds it can provide, but most importantly from 

the real possibility that it can yield an optimal or near optimal solution to (P). 

Indeed, Lagrangian relaxation for which the integrality requirement is dropped, 

produces a tighter lower bound than the linear programming relaxation [e. g. 
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Geofrion (1974), Fisher (1981)]. Defining the linear programming relaxation 

(P) as 

then 

This follows from 

min cx 
x 

s. t. Aix > bi 

A2x > b2 

x>0 

v(D) > v(Y). 

v(D) = max{min{cx +a (bl - Aix)) 

s. t. A2x > b2 

x>0 

xi integer, jEI 

a>0 

> max{min{cx +, \'(bl - Aix)} } 

s. t. A2x > b2 

x>0 

A>0. 

The equality holds when the integrality property [Geofrion (1970a)] is satisfied, 

in which case Lagrangian relaxation can do no better than linear programming 

relaxation. A problem is said to possess the integrality property when the 
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optimal value of (PR, ) is not altered by dropping the integrality conditions on 

its variables, i. e. v(PRA) = v(PRa) for all A>0. 

Introducing a nonnegative vector it and using linear programming duality 

results in 

max{min{cx +ä (bl -Aix))) = max max{µb2 +\'b1} 
XAµ 

s. t. A2x > b2 s. t. 14'A2 <c- VA, 

x>0 x>0 

a>0 µ>0 

max (I'l b, +, \, b, ) 

s. t. jiA2+ÄAl <- 

A 

µ>0 

= min cx 
x 

s. t. Aix >_ b1 

A2X > b2 

X>0 

=v(1) 

using linear programming duality once again. 

The implementation of a Lagrangian relaxation to a particular problem 

must answer certain questions [Fisher (1981,1985)] and these questions con. 
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dition the implementation itself. For instance, which restrictions should be 

relaxed from all those constraining the problem? Clearly the answer to this 

question is problem specific and the answer must be such as to create a much 

simpler problem to solve. 

The maximization of v(D) with respect to A implies the successive compu- 

tation of the multipliers i1 and this begs the question as to which method should 

be chosen to compute those multipliers. There are several methods available 

like the subgradient method, versions of the simplex method and multiplier ad- 

justment methods. It should be noted that the concave function v(PRA) is not 

differentiable. Fisher (1981,1985) notes the success of the Subgradient method 

on a large number of different applications, pointing out not only its case of 

programming but also its robustness. field, Wolfe and Crowder (1974) describe 

the method, assessing its computational performance and presenting theoretical 

convergence properties. Recently, Aoki et al. (1987,1989) proposed a variable 

metric method for updating the multipliers in the context of power scheduling 

optimization. 

Given the solution to problem (D), the question arises as to how to con- 

struct a feasible solution to the original problem (P). Usually the solution 

obtained from the optimization of (D) will be nearly feasible for (P), and it 

is possible to construct some kind of heuristic to obtain feasibility. Again the 

answer to this question is problem specific, and Fisher (1981) reports on several 

heuristics for different kinds of problems. 

In conclusion, a solution to problem (D) provides a lower bound on problem 

(P), v(D) < v(P). Equality holds only when the conditions of the Strong 

Duality Theorem are satisfied. The difference v(P) - v(D) is referred to as the 

duality gap, and this may be used to define an interval in which the optimal 

solution lies. For power scheduling this duality gap has been shown to be 
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strictly positive, and the relative duality gap [v(P) -- v(D)]/v(P) decreases as 

the problem size increases with the number of generating units [Bcrtsekas et at. 

(1983)]. 

5.3. Lagrangian relaxation in power scheduling 

In applying Lagrangian relaxation the first question to be answered is which 

constraints should be relaxed. In power scheduling the most suitable constraints 

are the global constraints, i. e., the demand and reserve constraints. So, the 

objective function to be minimized is 

TI 

min 1 [>(Uß ;+F, a; + Vjx; + D, 'y 
'p, t=1 i=1 

K 
+ E(IIkyk + Sk4k) 5.3,1) 

k=1 

L 
+ Dom 

- P1Pi)J 
1-1 

subject to all the local constraints (Chapter 2, Section 2.1., 2.2. and 2.3. ) and 

to the following global constraints 

IKL 

X; +> yk +E (4i - O, p) > di 
i=l k=1 1=1 

tKL 
(5.3.2) 

Vjk+E(glµi -O, P») ? d'+ R 
i=l k=l ! =1 

fort=l,..., T 

where 0: is the inverse of the thermodynamic efficiency of the pumping process. 
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The inclusion of these two constraints gives the following Lagrangian prob- 

1em 

4ý(a,, a2) = 

TI 

min {E[Euß: + Fiai + vixi + Di-j! ) 
µI'Q)&,, 'p, t=1 i=1 

KL 
1: (Ilkyk'+'Sk, k)+ E(G19, 

-PIp/)J 
k=1 1=1 

+ 
[AI (d 

- x& -E Yk - 
E(4i 

- OiP») 

t =l i=1 k=1 1=1 
T! 1 

-}' 
E [, \2(d' -{- R-E pia; -> Vk 
t=1 1=1 k=1 

L 

º=1 
(5.3.3) 

In a more condensed form which emphasizes the problem decomposition, the 

Lagrangian formulation can be written as 

IKL 
+ ýklPi s 

as) +i ll(a1 
iz 

i=1 k=1 1=t 
T 

+E[A, dt+? 4(dt+R)] 
t=l 

(5.3.4) 

where T 

4Di(A1ýA2) = min 
E(Üißi + 1'iati + Viii +Di7i 

535 

- '\'I it' - Al X'i a; ) 

for i=1,..., I 

represents the thermal units subproblems, 

T 

ýkl(Al i az) = min E(IlkY + Sk4 - )lYk - At (5.3.6) 
b""°lb g_i 

fork=11... tK 
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the conventional hydro units subproblems and, 

T 
II(Al9 

#12) _ min 
[Gr9º 

- Pipi 
l""4l'vj , Pl t=1 

- Ai (9i - O, Pi) - az (9lµi - OiPi), 

for 1-=1,..., L 

(5.3.7) 

the pumped-storage units subproblems. Each one of these subproblems is locally 

constrained by the operating characteristics of the individual units. The final 

term 
T 

E [Aidt +. 2' (dt + RAJ 
e=1 

represents the overall demand and reserve. 

MASTER PROBLEM 

Demand and Reserve Constraints 

Power /I Power %I Power 

Al, u 11, u x2 

SUBPROBLEM SUB ROBLEM SUB RC 

LorA Local "i 
Constraints Constraints Cons 

Fig. 5.1. Lagrangian relaxation 

Power 

SUBPROBLEM 

"I 
Constrainu 

Xi, 

(5.3.8) 

Figure 5.1 shows the information exchange between the master and the 

local subproblems. Clearly, given the values of the Lagrange multipliers, the 

subproblems can be solved independently of each other. Consequently an algo- 

rithmic parallelisation can be implemented such that all subproblems are solved 
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simultaneously; so the subproblems may be regarded as one stage in a two-stage 

sequential program consisting of this stage and the master problem. This will 

be efficient provided that the master program is not too time consuming com- 

pared with the subproblems and there are not great imbalances between the 

computational times of the subproblems. 

So, the dual problem can be stated as 

ma. x'D(Ai) a2) (5.3.9) 

subject to 

Al>0, A2>0. 

5.4. Computation of the Lagrange multipliers 

The subgradient technique [field, Wolfe and Crowder (1974)) is used to 

compute the multipliers. The dual function v(PRA) is concave but not differen- 

tiable at points where the Lagrangian problem has multiple optimal values. The 

subgradient method can be regarded as an application of the gradient method 

in which gradients are replaced by subgradients. Given an initial value A(% the 

sequence {a'j is generated by the rule 

Am+1 = am + 3m(b1 - A1x') 

where xm is an optimal solution to (PR,. ) and 3'" is a positive scalar step size 

(m is the iteration number), with 

m 

v(PRam) -º v(D) if am -º 0 and Ed 
-º oo as m -+ oo, 

j=I 

In the particular problem under consideration, and only for the demand con- 

straint, the application of the subgradient technique will produce the following 
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new estimate for the Lagrange multiplier al, 

IKL 

max 0,4I'm +. im [dt -- xi -' yk - 
E(41 

- erpli)J (5.4.1) 
i=1 k=1 1=1 

for t=1,..., T 

where 
h�s 

(V(P) 
-'D (A1 v\2) 

(5.4.2) s'" =\W 

with 

TrIKL 
W =E{ [dt-ýx; -Eyk-1: (91t -OiPi)]2+ 

t=l k=i 1=1 

[dt +R-x; a; -E yk - (Rrµt - 0lpt )] z 
i=1 k=1 1=1 

and h�, E (0,2] and v(P') is an upper bound on v(D). Similarly, the same kind 

of estimate can be produced for "2. Held, Wolfe and Crowder (1974) provide a 

description of the subgradient method as well as a justification for the formulae 

used above. 

In order to reduce the oscillatory character of the method, another approach 

[Merlin and Sandrin (1983)] was implemented for the sequence a'", with a"' _ 

al/(1 + a2m), where al, a2 are two fixed parameters defining the sequence of 

steplengths. Some information regarding the marginal costs is used to update 

the multipliers from a feasible solution. 

ý1m+1 p J1j'm + (1 - p)71 
*t m (5.4.4) 

where pE (0,1) is a predetermined scalar and Tff"m is the weighted average 

marginal cost over all committed units in time period t. 
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5.5. Dynamic programming 

The solution of the subproblems is accomplished by Dynamic Programming. 

By considering each individual unit as a subproblem within the system, the 

number of states that require to be considered is limited. Furthermore, dynamic 

programming can handle the discrete nature of these subproblems. 

Dynamic programming (DP) is an optimization technique developed in the 

late fifties by R. Bellman who enunciated the Principle of Optimality: 

"An optimal policy has the property that whatever the initial state and deci- 

sion are, the remaining decisions must constitute an optimal policy with regard 

to the state resulting from the first decision"(Bcllman and Drcyfus (1062)]. 

Dynamic programming is a very effective method for solving optimization 

problems involving a sequence of interrelated decisions, often also referred to as 

multistage decision processes. The DP approach consists of decomposing the 

interrelated decisions into a sequence of decisions. Because a low cost decision 

may trigger future high costs, a decision is taken at each stage which optimizes 

the current stage and the optimum that may arise from future stages. In other 

words, the DP approach gives the optimal rule for choosing, at each stage, the 

optimal sequence of decisions. 

Though variational techniques are used for deterministic problems, DP has 

wider applicability since it can handle difficult constraint sets such as integer or 

discrete sets. Also DP leads to a globally optimal solution whereas this cannot 

in general be guaranteed using variational techniques. 

Computationally, DP is very efficient when compared, for instance, with 

'brute force' enumeration. The efficiency is a direct result of the Principle of 

Optimality because, having chosen some initial decision, there is no need to 
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examine all policies involving that particular choice, but rather only those poli- 

cies which are optimal for the remaining states [Bellman and Dreyfus (1962)]. 

However, as additional variables are incorporated into the definition of a state, 

the optimization problem grows exponentially in the number of state variables. 

This disadvantage has, long since been coined by Bellman as the 'curse of di- 

mensionality'. 

Definitions 

Dynamic Programming involves the use of some technical terms which are 

defined below: 

States -A state is a description of a particular configuration of the system. 

Thus, a system can be seen as the set of all possible states over which it can 

evolve. Therefore, the state space is a noneiripty set and an element of this set 

sES describes the particular condition of the system. States are represented 

by variables which can be single or vector, continuous or discrete. 

Stages -A stage corresponds to the transition from one state to the next. 

So, an integer N exists such that the state space can be partitioned into N+1 

sets, Sl, S2, ... , 
SN+1, which enumerates the stages. 

Decisions -A decision causes a transition from one state to the next. 

A state must contain all the information that is relevant to characterize the 

decision set D(s) associated with this state s, i. e., all the possible choices that 

can be made from state s. A particular decision dE D(s) involves a cost and 

causes a transition from state s to state t(s, d). 

Transitions - The system under study evolves from one state to another 

state in the next stage, and so a transition i(s, d) occurs from a state . in S 
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to another state in S as a result of a decision d. The set of states T(s, d,, (s)) 

which result from decision 4(s) is the set to which the system can evolve to 

as a result of decision d�(s). The set function, sometimes referred to as the 

transformation or transition function, determines the evolution of the process 

from state to state; at the last stage the set is empty. 

Policies -A policy p is an ordered set of decisions, one for each state. The 

set of all possible policies P is defined as the cartesian product of the decision 

sets P=x D(s). 
SCS 

Returns - The system being optimized generates a return at every stage 

for a given policy. The return function r(s, d) is associated with policy p and 

state s. Then re(s) is the return which would be obtained if the process were 

initiated in state s and if policy p were followed. The total return is no more 

than the accumulation of all returns generated by the particular policy. The DP 

approach aims to find the optimal return for any state and most importantly 

the value of the state variable for the original problem. 

Functional equations - The functional equation specifies the optimality 

criterion in the sequential decision process [Hastings (1973) and can be under- 

stood as the value assigned to a state by taking the optimum over all relevant 

actions of the generated returns from the transition to the next state. 

For a multistage problem with N stages f�(a�) is defined as the optimal 

value of the objective function when there are n states and the state variable is 

s,,. Once s� and d� are selected the vector of the remaining n -1 state variables 

is given by t(sn, d�). An example of a functional equation is 

fn(sn) = 
dnE 

ax {rn(sn, dn) + fn-l(t(sntdn))} 
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fi(s, ) = o. 

Bellman's Principle of Optimality 

An optimal policy (di, d2, ... , 
dN) has the property that whatever the initial 

state so and the initial decision dl are, the remaining decisions (d2, d3, ... , dN) 

must constitute an optimal policy for the N-1 stage process starting in the 

state sl, which results from the first decision dl. 

The application of the principle of optimality (e. g. Hastings (1973), Cooper 

and Cooper (1981)] requires two conditions to be met: 

1) Separability of the objective function 

The objective function must be separable, otherwise the value of a state 

cannot be calculated by a recursive algorithm for a given policy. This condition 

implies that for all k, the effect of the final k stages on the objective function of 

an n stage problem depends only on state an_k and upon the final k decisions 

do-kß-1, do-k+2, " -- t 
dN" 

2) State separation condition 

It might appear that policies depending upon the knowledge of the entire 

history of the system would be superior to those using simply the current state 

an. However, once decision dk+l is made, the resulting state sk+l depends only 

on sk and dk+l and does not depend upon the previous states 30,31,32, '.. 3k... 1 

[Bertsekas (1987)). This very important condition means that the only relevant 

information available regarding past states is contained in sR. 
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5.6. Thermal unit 

A thermal unit can either be generating power, in which case its commit. 

ment variable takes the value, a; = 1, or can be switched off in which case 

all = 0. Thus the state of a particular unit is the number of hours r; the unit 

has been on or off. Figure 5.2 diagrammatically portrays the different states 

for a thermal unit with fj =2 hours of minimum up time and £; =3 hours of 

minimum down time. Expressed recursively this is 

r; +i, if r, >1, t+l=1 
if r; 

r; -1, if 

-i, if r; > 1, aý+l = 0. 

I 

-1 

.2 

-3 

Fig. 5.2. State transition matrix 

s 
up 

1 

"1 

-2 down 

"3 

The different transition costs are a function of the state in the previous 

time step. These transition costs can be classified in three groups: 

- normal operational costs, state variable greater than or equal to r;, 

- start up costs plus operational costs, state variable changing from =; to 1, 

- shut down costs, state variable changing from 'P; to -1. 

All other transitions have zero costs. 
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The functional equation then takes the following form, 

ft(T: x: ) _n 
rvipt+t + Fiat+1 + Vixt+t Dt, -it+' 

- 
Ai+Y+l -ý1Z+l xi(ký+l 'i' fi ýTi +l 

t xý+1)ý 

for i=1,.... Iandfort=0,..., T-1, 

with boundary conditions 

T{ -Tit xi = xgr fi (T: rI xT) °0 

and subject to the local constraints given in Chapter 2, Section 2.1. 

5.7. Hydro unit 

The solution of the hydro subproblem by DP involves continuous variables 

and consequently for its solution by DP a discretization of the search space is 

necessary. Figure 5.3 shows an example of such a discretization, the fineness of 

which conditions the computation time. Figure 5.3 also shows the limits on the 

search space and consequently the accuracy of the solution. The minimum and 

maximum level of the reservoir are imposed by the operating characteristics of 

the unit. The other restrictions on the search space result from extreme modes 

of operation. The broken line from V; n to Vmas is the result of considering the 

natural inflows and minimum discharge; the line from V"� to Vmin is constructed 

considering the natural inflows and maximum discharges. It should be pointed 

out that large natural inflows may result in spillage at the end of the planning 

period. 

The use of DP for this subproblem, due to the large search space, can be 

expensive in terms of computational time. For the particular case studied, and 

for a discretization of the order of the minimum discharge, the computation 
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ýý,., 

times are very large when compared to the other subproblems. The reduction 

of those times can be accomplished by using a coarse grid, which then results 

in less accurate solutions. 

V max /. 
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."1'' vmin 

t=O T 

Fig. 5.3. Hydro unit search space 

The functional equation is of the form 

kl 
(Vk) = min 

{HkY4+skskt+l 
_ At+lyk +1 AZt +1&7k +f l/ 

1v1 
J +i +1 -Jl 

fork=1,..., K and fort=0,..., T-1. 

This can be expressed in terms of vk, noting that, 

yk = vi-1 - vk + fk, 

and 

t e-i t: 8k='vk -vk+fk- Vk, 

Then, for yk < yk < yk 

if yk <_ YkI S yk (5.7.2) 

if yk = fjk " (5.7.3) 

fkl ývk) = min{ (Hk 
- ai+iýývk _ vk+i . ý. fk+iý - ýZ+lyk 

'i' fkf 
lvk+lý} 

(5.7.4) 
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and for A>0 

fkl (vk) = min< (Sk - J1i+1)yk -ý Sk(vk -vk+l ,ý fk+l - yk) -. 12+lYk + fk I (vk+i ) 

l 
(5.7.5) 

with boundary conditions 

Vk Vk fk1(Vk) = k=ý 

and subject to the local constraints given in Chapter 2, Section 2.2. 

5.8. Pump-Storage unit 

The model of the pump-storage unit includes two integer variables, one as. 

sociated with pumping, the other with generation. These two variables account 

for the nonlinearity since there cannot be generation and pumping at the same 

time. Also in this model, a given daily inflow is prescribed and the operation 

of the unit must avoid spillage. 

11/. 

R 
mall 

1/1/111//1/1/ 
111.... 11//. 11 

1.1111/111.11 
//1/111/1//11 
///111111111 
r... 1. y... 1... Y..... .. y... T... M.. y... y... l... .. y 
11/1/1/1111/ 
111111.11t1 
1... 111/1.1/p 

ýn 1... 1... 

/ 

T... '... 1. .. 1... T. -. '.. . 1. .. 1... T"""r" In 

111/11t.. 1// 

/111//1/11/11 
1.1//111/1 
11/11/1/111.1 

11.11/1/1/11/ 
11111111111/ 

1/. /1/. 11 min 

Fig. 5.4. Pump-storage unit search space 

For the implementation of the DP algorithm, a discretization of the search 

space is considered. Figure 5.4 depicts this discretization; clearly the compu- 
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tational effort is closely related to the fineness of the grid. Also in Figure 5.4, 

limits are imposed on the search space as a result of extreme modes of opera- 

tion; the line from the initial reservoir level to the maximum level represents an 

operation where pumping would be at maximum power from the very begin- 

ning until the maximum level was reached. Conversely, the line from the origin 

to the minimum level represents a situation where generation would be used 

at maximum power until the minimum reservoir level was attained. Similar 

considerations can be made to determine the other limits. 

Bearing in mind that throughout all the planning period the reservoir level 

has to be within the permissible limits, the functional equation is constructed 

with the level of the reservoir as the state variable. By continuity arguments 

the flows, either during generation or pumping, may be expressed as a function 

of the reservoir level. The number of stages will be the number of time periods 

of the planning horizon. 

The functional equation describing this unit takes the following form 

III rt) _ min 
{GHQ*+I pýPt+l fl 

i +1'Pl 11 

olpt+l 

-az+l (9tµß+i _ O, pi+i) + f! I1(rl+l) } 

(5.8.1) 

fort=1,..., L and for t=0,..., T-1 

which can be expressed in terms of ri, since 

4i =rý-1 -rj +gi (5.8.2) 

Pi = rif - ri-1 _ 9i" (5.8.3) 
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Then, if generation takes place, vj+1 = 0, µt+1 =1 

Al II(ri) = min{(Gi - Al+1)(rl - r'+1 + 9j+i) - 4Z+141 +f JJ(rt+')) (5.8.4) 

or in the case of pumping, yr+l = 1, µ1t+1 =0 

fi II (rt) = min{ [F, -I- (A1+1 +Az+s)0l1(ri+i _ t_ 91+') 'i- f' II(r1+i )} (5.8.5) 
r, 

or when the unit is off, v4 = µi =0 

fl "(rf) = fl fI(r, ) (5.8.6) 

with initial and final conditions, 

ri =rIt rl =r1 I 
flflýrj)=0 

subject to the local constraints given in Chapter 2, Section 2.3. The inclusion 

of a natural inflow, for reasonably small quantities (less than 10% of maximum 

discharge) does not affect significantly the limits of the search space. The 

computational time required seems not to be excessive for a mesh spacing of 

the order of the minimum permissable level of generation. 

5.9. A heuristic for the feasible solution 

Given the solution to the dual problem, the question arises as to how to 

construct a feasible solution to the original primal problem. Usually the solution 

obtained from the optimization of the dual will be nearly feasible for the primal, 

and it is possible to construct some kind of heuristic to obtain feasibility. Again 

the answer to this question is problem specific: Fisher (1081) reports on several 

heuristics for different kinds of problems. 

The heuristic used to generate a feasible solution takes into account, the 

information provided by the dual solution. At each time step, the dual solution 
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will either be in the regime of overproduction or underproduction, that is, the 

power output of all the committed units will either be above or below the 

demand, while satisfying the reserve constraint. In each case, the marginal 

costs (the gradient of the cost function) of the different committed units are 

taken into consideration, and the power output is adjusted accordingly. So, 

for instance, in the case of overproduction, the power output of the unit or 

units with greater marginal costs will be reduced until the demand restriction 

is satisfied as an equality. Conversely, the power output of the unit or units 

with smaller marginal costs will be increased for the case of underproduction. 

It is perhaps worth pointing out that the Lagrange multipliers may be regarded 

as shadow prices, that is the cost of the additional power nceded to satisfy the 

demand and reserve constraints. The model also considers the possibility of 

spillage. In this case the commitment of the dual solution may be clanged 

since the optimal policy is to reduce spillage to a minimum. 

5.10. Results 

The results obtained are listed in Table 5-1: the primal solution, the dual 

solution, the percentage difference between the dual and primal solutions, the 

number of iterations, and the CPU time used (min: sec). 

Table 5-1 
Numerical Results -1 to 7 days 

Days Primal t Dual t % Diff. Iterations cillu 
1 1.656E5 1.649E5 0.4 0 00: 07 
2 3.392E5 3.385E5 0.2 11 00: 10 
3 4.940E5 4.928E5 0.2 16 00: 49 
4 6.488E5 6.481E5 0.1 23 01: 41 
5 8.009E5 7.976E5 0.4 20 02 : 01 
6 9.281E5 9.237E5 0.5 42 06 : 00 
7 1.056E6 1.049E6 0.7 150 20: 55 

j(Solution in 1: ) 
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5.11. Summary 

The implementation of Lagrangian relaxation using dynamic programming 

to optimize the individual units has considerably reduced the computational 

times over those taken by the branch-and-bound implementation of Oliveira, 

McKee and Coles (1991). From CPU times in excess of 4 hours on a VAX 

11/785, this implementation has reduced the computational time to less than 

1/2 hour in the worst case of scheduling for a whole week. Furthermore, the 

Lagrange multipliers can be perceived as shadow prices in the sense that they 

represent the costs required to satisfy the demand and reserve constraints. This 

feature, in the context of the recent privatization of the generating boards in the 

UK, makes this implementation a valuable tool as it effectively costs the energy, 

whether from thermal, hydro or pump-storage. Finally, the special structure 

which results from this implementation, with a master problem coordinating 

several subproblems, is suitable for a parallel implementation which as is shown 

in the next chapter leads to further reduction in computational time. 
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CHAPTER6 

PARALLEL LAGRANGIAN IMPLEMENTATION 

6.1. Introduction 

The advent of high performance computing has had an enormous impact 

on scientific computing and numerical analysis mostly because problems that, 

a few years ago, were thought to be unsolvable in a reasonable time are today 

within reach. 

Power system scheduling involves decisions concerning which units should 

be run and what their level of output should be. Together these manifest 

themselves as a large scale mixed integer programming problem as has been 

shown in the previous chapters. Power systems can vary from a small number 

of units to several hundred; and the planning period can vary from short term 

(one to seven days) to long term (several weeks up to a year). This highly 

combinatorial problem is further complicated by two main stochastic inputs: 

the demand which the system must satisfy and, in the case of hydro systems, 

the inflows to the reservoirs. The full extent of this problem is such that it 

is essential to employ the most efficient algorithm and the most appropriate 

computer architecture configuration. To this end, a dual formulation has been 

obtained through Lagrangian relaxation of the original primal problem. This 

admitted decomposition into more tractable subproblems which has allowed the 

implementation of the algorithm on the Edinburgh Concurrent Supercomputer 

(ECS). 
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6.2. Parallel Lagrangian relaxation 

The system considered here is a small part of the total set of generating units 

of Scottish Hydro-Electric plc, consisting of two thermal units, one conventional 

hydro unit and a pump-storage unit. This subsystem may be regarded as a 

paradigm for the real problem: the approach described here can in principle be 

used to solve the full system. Mathematically, the objective is to minimize the 

following mixed integer linear programming problem 

TIK 

min fi(a!, x! ) +LIkf (Jkr'S) 
cri'xý'yksk'jjj'Qj'yj'pJ t=1 1=1 A =1 

+ ýfl f jliýf+4/vV, 
IPI) 

r=1 

where f; refers to the costs of starting, running and closing down the ist' thermal 

unit, fkl to the running costs of the kph hydro unit and fi 1f to the running 

costs of the Ith pump-storage unit (Oliveira, McKee and Coles (1991)], subject 

to the demand and reserve constraints, which arc global in the sense that they 

couple all the committed generating units 

IKL 

xt + yk + E(qi 
- OiPi) dtv (6.2.2) 

i=1 k=1 r-1 

IKL 
Zti«; +Eyk+ý(9lµj-Ojp)? dt+R, (6.2.3) 
iii k=i =i 

and the local constraints h;, hkl, hý 11 representing the operating restrictions of 

each unit 

hi(ai, x'i) 50 for i=1,2,..., ), (6.2.4) 

hÄl (yk, 44) 0 for k=1,2,..., K, (6.2.5) 

hif"(Eii, gi, vi, pit) S0 for l= 112, ... , L, (6.2.6) 

for t=1,2,..., T. 
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Lagrangian relaxation is used to create a separable problem by relaxing the 

coupling constraints so that each subproblem involves only one individual unit 

subject to its local (operating) restrictions. The problem is then decomposed 

into a number of local subproblems which are parameterized by the Lagrange 

multipliers, and a master problem which coordinates the subproblems producing 

new estimates of the multipliers while ensuring that the two global constraints 

are met. The inclusion of the two global constraints through the multipliers 

Al9 \2 gives the following Lagrangian problem 

'1ý(a,, az) _ TI 

nein 
E [E 

fi (aiIxi) 

a! s'xt, 'yk'$kµt'Ql"i'Pf t=1 1=1 

KL 
+LfkI(VI 1k)+f1l"(1t, 

$ q, Ivi pl), 
k=1 lI 

TI IC L 
[A, (d' -E xil -Eyk->:: (q -0i 1)) ] 

1=1 i=l k=I 1=1 

[A2' (d' +R- 2jail 9k 
=1 1=1 k=l 

L 

- Oipt))} 
r=1 

(6.2.7) 

In a more condensed form which emphazises the problem decomposition, the 

Lagrangian formulation can be written as 

IKL 
A2) fi (Ai 

i'4) + ýkl011, -2) + 1101 
t 
ýZ 

1=1 k=1 1=1 

T 

+E[Aldt+)2(dt+R)] 

(6.2.8) 

where 'l; (A1, a2) represents the thermal units subproblems, INII(A1,. 12) the con- 

ventional hydro units subproblems and ff II (al, A2) the pumpcd"storagc units 
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subproblems. Each one of these subproblems is locally constrained by the Oper. 

ating characteristics of the individual units h,!, hkl, hi JI. Thus, the dual prob- 

1em can be stated as 

V= max 4 (a1, A2) (6.2.10) 

subject to 

Al >0, A2>0. 

MASTER PROBLEM 
MASTER PROCESSOR 

Power II Power %1 Power \\ Power 

X1, u/ /Uu. 1.1 ) I. u 1.1 )LI. 

PROCESSOR III PROCESSOR 211 PROCESSOR 31 1 PROCESSOR 4 

Fig. 6.1. Parallel Lagranglan relaxation 

Figure 6.1 shows the information exchange between the master problem and 

the local subproblems. Clearly, given the values of the Lagrange multipliers, 

the subproblems can be solved independently of each other. Consequently an 

algorithmic parallelisation can be implemented such that all subproblems are 

solved simultaneously. This will be efficient provided that the master problem is 

not too time consuming compared with the subproblems and there are not great 

imbalances between the computational times of the individual subproblems. 

80 



6.3. Approaches to parallelisation 

The main idea behind parallelism is that there are problems where it is 

possible to perform several independent tasks concurrently and, by executing 

them on different processors running in parallel, so attain significant reductions 

in overall computational time compared with sequential execution. 

The Edinburgh Concurrent Supercomputer is a Meiko Computing Surface 

built as a single processor in a MIMD concurrent system. This is a very large 

transputer array, currently with 300 T800 transputers and 100 T414 transput. 

ers. In order to provide multiuser service the surface is organized in domains 

with a variable number of transputers, the biggest of which has 131 transput- 

ers. A transputer can support nine concurrent activities: the processor itself 

and transferring data through four links in both directions simultaneously. The 

system runs under Meikos, a UNIX-like operating system. For further infor- 

mation on ECS see Wexler and Prior (1989), Wallace (1991) and Thornton, 

Blair-Fish and Wilson (1991). 

The conversion of sequential algorithms to parallel algorithms is loosely dc- 

fined as parallelisation. There are several approaches [Wexler and Prior (1089), 

Thornton, Blair-Fish and Wilson (1991)]: event parallelism, geometric paral- 

lelism and algorithmic parallelism. Event parallelism can be used when the 

global problem consists of many independent but similar problems; these prob- 

lems do not share any data, and can take different solution times; a master 

processor controls the worker processors, sending new work as soon as an in- 

dividual processor has completed its task. Geometric parallelism is particu- 

larly suited for cases where there is inter-processor communication, between a 

problem and its neighbours, as in the case of image processing. Algorithmic 

parallelism describes the situation where it is possible to divide the algorithm 

into different component parts which are each allocated to a separate processor; 
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the algorithm is now distributed and efficiency is obtained when the different 

component parts are closely balanced in terms of computational time. 

In the present study an algorithmic parallelism approach was implemented. 

Each processor was allocated a subproblem corresponding to an individual gen- 

erating unit and the master problem allocated to a master processor which 

controlled the iterative process by exchanging information between the differ- 

ent processors (see Figure 6.1). No information exchange takes place between 

the subproblems. 

Message passing, that is information exchange, was accomplished using 

CS-tools, a communication 'harness' which is Meiko's environment for multi- 

processor programming. This is a toolset for program development for mul- 

tiprocessor computer systems, and it supports the programming of single and 

multiprocessor applications using familiar development environments and stan- 

dard languages [Blair-Fish et al. (1990), Meiko (1988) 

0.4. Implementation and results 

The conversion from serial to parallel involved the division of the original 

code into five programs, one for each generating unit plus a controlling master 

program. Each of these five programs was allocated to an individual processor. 

Changes in the original code mainly concerned provision for message passing 

and termination. 

Routines were used to communicate between processors using the FOR. 

TRAN version of CS-tools and the CS-tools utility 'mrun'. The interface al- 

lowed the user to specify the number of processors and prescribe the data to 

be sent and received in bytes. Termination was accomplished by a flag which 

signals to the subprograms that the master problem has stopped. 

The results obtained for planning periods ranging from one day up to seven 
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days are listed in Tables 6-1 and 6-2. These give the number of iterations, the 

CPU time (min: sec) for a serial and parallel execution and the speed-up (SU). 

The last is defined as the ratio of the serial cpu time to the parallel cpu time 

on 4+1 transputers. Also a measure of the attainable speed-up (ASU) is listed. 

This is defined as the ratio of the total computation time of the subproblems to 

the most time consuming subproblem for a serial execution. Table 6-1 displays 

the results obtained using dynamic programming to solve all the subproblems. 

Table 6-1 
Time Comparisons -1 to 7 days 

Days Iterations Serial Parallel SU ASU 
1 9 0007 00: 21 0.33 1.81 
2 11 00 : 19 00 : 31 0.61 1.70 
3 16 0049 0047 1.01 1.89 
4 23 01 : 41 01 : 24 1.20 1.75 
5 20 0201 0138 1.23 1.72 
6 42 0600 0341 1.36 1.72 
7 150 20 : 55 14 : 19 1.46 1.72 

The hydro subproblem is by far and large the most time consuming. In 

order to achieve a greater speed-up a heuristic was implemented for this sub. 

problem. The hydro problem considers a constant value for the water energy 

in the reservoir. Spillage, considered as a waste of energy, is an uneconomical 

operation. Therefore, a useful heuristic is to require that spillage be always 

kept to its minimum. The dual solution will select a minimum or maximum 

discharge depending on the value of the Lagrange multipliers. Thus, if the re- 

strictions on the level of the reservoir are ignored, three outcomes are possible: 

the end level is above the maximum, below the minimum, or between these 

limits that define the feasible region. In the latter case, and for the operating 

conditions tested, these limits were never exceeded. If the end level is above 
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the maximum limit, then the discharges on the previous time steps have to be 

increased till the excess volume is distributed. A time period is selected for 

which the difference between the hydro energy cost and the value of the La- 

grange multipliers is minimum. The corresponding discharge is increased to the 

maximum. This procedure is then repeated till all the excess volume has been 

distributed. Conversely, similar considerations can be made for the case where 

the end level is below the minimum level. Table 6-2 presents the results using 

the heuristic to solve the hydro unit subproblem. Figures 6.2 and 6.3 display 

the computational times and the iteration timcs for both imnplcmcntations (a 

linear regression was superimposed on the data concerning the iteration tunes). 

Table ß-2 
Time Comparisons -l to 7 days 

Days Iterations Serial Parallel SU ASU 
1 9 00 : 05 0019 0.26 1.05 
2 21 00: 19 0034 0.56 1.04 
3 10 0017 0034 0.50 1.03 
4 31 01 : 05 01 : 10 0.82 1.0.1 
5 23 01: 04 0120 0.80 1.01 
6 40 0209 0224 0.00 1.04 
7 42 02: 40 02: 55 0.91 1.05 

0.5. Summary 

In the present system, with four generating units, each one allocated to one 

transputer, the theoretical maximum speed-up is 4. The actual specd-up falls 

well short of this value and this is due to an unbalanced workload. However, 

Table 6-1 shows that the difference between SU and ASU is small for large 

planning periods. For small planning periods the speed-up can fall below unity 

due to the excessive communication burden. 

84 



COMPUTATION TIME 
1.3 

1.2 

1,1 

1.0 

0.9 

0.8 
w 

o o. ý vr 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

0 

4 

20 23 
16 

11 

24 48 72 96 120 14$ tae 

Time (hours) 
0 SERIAL + PARALLEL 

ITERATION TIME 

ý. V 
S 
" 

V 

E 
K 

ýý +o 72 ýS 120 144 

Time (Hours) 
a SERIAL 0 PARALLEL 

Fig. 6.2. Serial vs parallel - Table 6.1 

9.0 

8.0 

7.0 

6.0 

50 

4.0 

3.0 

2.0 

1.0 

0.0 

0 

0 

1e; 

85 



COMPUTATION TIME 
180.0 

170.0 

160.0 

150.0 

140.0 

130.0 

120.0 

110.0 

100.0 
w 

fi 80.0 
70.0 
60.0 
50.0 
40.0 
30.0 
20.0 
10.0 
0.0 

.4 

Zt 

1 

3t ý 

ýo 

24 4a 72 9s t23 144 

time (hours) 
0 SERIAL tP$ ALLFT. 

ITERATION TIME 
4.6 

4.0 

3.5 

30 

ä 2.3 

Z. 0 

1.5 

1.0 

0.5 

0.0 

166 

0 
0 0 

0 

o Q 

0 

24 M 72 94 120 144 t603 

Tim. (Hours) 
0 sV? iu. 0 PW . ZL 

Fig. 6.3. Serial vs parallel - Table 6.2 

86 



The fact that the hydro unit was the most time consuming subproblem has 

lead to the development of an heuristic to solve this subproblem. It should be 

pointed out that the heuristic used can only be applied to the hydro subproblem 

because of the linear nature of the restrictions involved. The pump-storage sub- 

problem is, however, nonlinear and so the same heuristic cannot be applied. As 

a result the hydro and thermal subproblems can therefore be mutually balanced 

and it is the pump-storage subproblem which now takes the most computing 

time. 

Some tests were also made on a shared memory Sequent system in order to 

identify and exploit loop level parallelism. However, the nature of the algorithm 

discourages this approach since there are recurrence relations where a value 

computed in some previous iteration is needed to compute the value of the 

current iteration [Edinburgh Portable Compilers (1991)J. This was particularly 

crucial in the subroutines involving the hydro and pump-storage units as the 

actual level of the reservoir depends on the previous iteration. 

The maximum speed-up is dictated either by the hydro unit or the pump. 

storage unit. In certain cases when there are more thermal units than hydro 

units it is possible to construct a well balanced system by assigning several 

thermal units to one processor. Certainly this is a more efficient use of the 

transputer array but it does not lead to greater speed-up. Nevertheless, this 

approach has established that a transputer array can be used to solve very large 

power systems with a corresponding decrease in the computational times. 
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CHAPTER T 

GENETIC ALGORITHMS 

7.1. Introduction 

Genetic algorithms (GAs) are search and optimization algorithms; they 

were first developed by John Holland (1975). In his work Holland drew at- 

tention to the process of natural selection and genetic evolution as an analogy 

for search and optimization. Different species have been able to survive despite 

dramatically changing environments; the knowledge to cope with these new con- 

ditions has been embodied in their genetic make-up. The analogy exists because 

complex structures can be represented by a simple code of bit strings, which 

mimic the genes in a chromosome. In nature, chromosomes are a means of "stor- 

age" of information [Dawkins (1989)] containing the instructions governing the 

make up of the organisms; this information is modified and exchanged through 

a series of simple processes (reproduction, crossover, mutation and inversion), 

whose main functions are to pass on the fundamental bits of this information to 

future generations. Dawkins (1989) argues that the "fundamental unit of selec- 

tion, and therefore of self-interest, is not the species, nor the group, nor even, 

strictly the individual", but the gene as the unit of heredity. So the gene can be 

seen as the fundamental unit of information that lasts for enough generations 

to serve as a unit of natural selection. In this sense, evolution is the process by 

which some units of information, that is certain genes, become more numerous 

while others become less numerous [Dawkins (1989)). 

Genetic algorithms may be considered part of the field of Artificial Intel- 

ligence (AI). There are many applications mostly on classifier systems [Smith 
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(1984)]. The main feature that makes GAs close to Al is that information 

is passed through generations. Moreover, in domain independent algorithms 

like GAs, the learning process can be viewed as a search [Smith (1984) whose 

main function is to exploit the knowledge embodied in the good structures so 

far created and the exploration of new regions in the solution space through 

the combining operators. All this process is performed in parallel, based on a 

pool of strings; this prevents the algorithm from being trapped in a local mini. 

mum and, perhaps most importantly, by allowing for movements in the search 

space which are nonoptimal, to reach regions which could not be reached by a 

conventional descent algorithm. 

7.2. Genetic algorithm implementation 

In order to apply a genetic algorithm to a particular problem, there arc two 

main requirements: a (possibly) binary string representation of the solution 

space and an objective function which evaluates the fitness of the different 

point solutions. Most of the works on GAs use a binary representation [Davis 

(1989)], but other codes of higher cardinality have been used (Goldberg (1000)]. 

The fitness function can be seen as the bridge connecting the genetic algorithm 

to the real world problem under study. Care must be taken in order to ensure 

that strings with higher fitness values do correspond to good performances of 

the real world process. Unlike most common algorithms, GAs do not start 

from one individual point in the search space, but from a population of strings, 

usually referred to as the gene pool. 

The search of the solution space in a simple genetic algorithm is performed 

by means of the following operators: 

1. Reproduction, 

2. Crossover, 
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3. Mutation, 

4. Inversion. 

In the reproduction process, strings are copied into the next generation 

mating pool with a probability associated with their fitness value. By assigning 

to the next generation a higher proportion of the highly fit strings, reproduction 

mimics the survival of the fittest in the natural world. 

The search of the solution space is done by creating new chromosomes 

from old ones. The most important search process is crossover. Firstly two 

parents are randomly selected from the mating pool. Secondly, a point along 

their common length is randomly selected, and the characters of the two parent 

strings are swapped, thus creating two new children. Figure 7.1 presents an 

example of crossover in two chromosomes A1, BI of length 8 with a crossover 

point between the third and fourth position. 

Parents 

Al = al a2 a3 a4 a5 a6 aT ne 

B' = bi b2 b3 b4 ba bo br ba 

Children 

A2 = al a2 a3 b4 bs bs at b8 

B2 = b1 b2 b3 a4 aS a6 Q7 as 

Fig. 7.1. The crossover operator 

As can be seen, crossover does not involve any change in the actual values 

of the chromosome. In fact only an exchange of bits of a string takes place. 

This exchange of information together with reproduction is the most powerful 

process by which GAs perform the search of the solution space. This search 

is not just a simple random search because through reproduction the most 
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promising regions of the solution space are explored. 

The mutation operator randomly selects a position in the chromosome and 

changes the corresponding gene value, thereby destroying information. The 

need for mutation comes from the fact that as the less fit members of successive 

generations are discarded, some aspects of the genetic material could be lost 

forever. By performing occasional random changes in the chromosomes, GAs 

ensure that new parts of the search space are reached, which reproduction and 

crossover alone could not fully guarantee. In doing so, mutation ensures that 

no important features are prematurely lost, thus maintaining the mating pool 

diversity. 

The inversion operator allows for information exchange within the chronzo- 

some. Two points are randomly selected and the elements between these two 

points are inverted. Figure 7.2 shows the result of the inversion operator when 

applied to a string of length 8, between two points corresponding respectively 

to the second and third, and the sixth and seven positions. 

C1 = Cl C2 C3 C4 CS C6 C7 C$ 

C2 = C1 C2 C6 C5 C4 C3 C7 Cg 

Fig. 7.2. The inversion operator 

Inversion provides a means of shifting information within the chromosome 

and in this way reinforcing and altering the linkage between different features 

of the chromosome. The frequency of mutation and inversion is ususally chosen 

to be considerably less than the frequency of crossover. In this sense, these two 

operators play a secondary role in the genetic algorithm search. 

Having discussed the mechanics of GAs, the question arises as to what is 

their strength? To answer this the concept of a schema or similarity template 

has to be introduced. As an example consider the schema consisting of a binary 
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string of length 8 

II =1**10***. 

This represents all the strings with 1 in the first position and 1 and 0 in the 

fourth and fifth positions respectively (* stands for a "don't care symbol"). GAs 

operate on these schemata in a very efficient way. For strings of length 1 and 

a binary alphabet {0,1}, there are 21 defined strings but 31 schemata. Also for 

each string there are 21 schemata, and in a population of size n, at most 7121 

schemata. The different schemata can be distinguished according to their order 

o(II) (the number of fixed positions in a schema) and to their size 5(II) (the 

distance between the first and last specific string position). Figure 7.3 presents 

some examples of schemata with their respective length and order. 

Chromosome string bo 

0110100178 

***01***12 

011*****23 

01*****173 

********00 

0*******01 

Fig. 7.3. Examples of schemata 

Schemata can also be understood as hyperplanes on a hypcrcube of dunen. 

sion 1 Goldberg (1989)]. 

In the gene pool the fittest chromosomes share some common features, the 

genes which make them successful chromosomes. Schemata define these shared 

features, and can be regarded as the building blocks of the difFerent ehromo. 
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somes. In fact, the average time span of a chromosome can be a generation, 

but the time span of a successful gene can be measured in many generations 

[Dawkins (1989)]. The fundamental role of crossover is to shuffle the different 

building blocks. As a result, short schemata will be more likely to survive as 

opposed to long schemata, which will be more prone to being interrupted. The 

combined action of reproduction and crossover defines the corner-stone of the 

theory of schemata: short, low-order, above average schemata receive exponen. 

tially increasing trials in subsequent generations. 

7.3. Genetic algorithms applied to power scheduling 

Power scheduling is a highly constrained problem. There are local con- 

straints affecting the individual power units and global constraints coupling all 

the units. The main restrictions affecting the thermal units are minimum up 

and down times (once a unit is started up or closed down, it has to remain in 

that state for a minimum period); start up costs are dependent on the time a 

unit has been off and its minimum and maximum outputs. The operation of 

the conventional hydro units has to consider minimum and maximum reservoir 

levels, the natural inflows, minimum and maximum discharges, the possibility 

of spillage, plus the effect of the reservoir's head on the power- output. The 

pump-storage units have the same restrictions as any conventional hydro unit, 

but since pumping to refill the reservoir is allowed, restrictions concerning the 

pumping level and the fact that there cannot be generation and pumping at 

the same time have to be considered. It is clear that in general this results in 

a mixed integer nonlinear programming problem. 

The power scheduling problem is further restricted by the consideration of 

two global constraints concerning the demand and reserve requirements which 

couple all the units within the system. The total powcr output of all the coin- 
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mitted units has to satisfy a given demand, and the operation of the system 

has to be carried out in such a way that a reserve will always be available to 

cope with sudden increases in the demand or the case of a unit failure. The 

desired aim is to minimize the operational cost of the system while satisfying 

the constraints [Oliveira, McKee and Coles (1991)). This can be stated as the 

minimizing problem (P) 

min f (x) 
x 

s. t. g(x) >0 

x>0 

xj integer, jE2 

(7.3.1) 

where x is an nx1 vector, and I denotes the index set of the variables required 

to be integer. 

The implementation of a fitness function has to take account of the con- 

straints on the solution. There are two basic approaches to constraints in GA's. 

Either penalty terms involving the constraints are included within the objec- 

tive function, or a decoding mechanism is incorporated to avoid the creation 

of individuals which violate the constraints. Both these approaches have an 

associated cost in terms of efficiency'and computation time. In this work, a 

decoder is incorporated into the algorithm to guarantee that no illegal strings 

are generated from the different genetic operators. The two global constraints 

are considered by transforming the original constrained problem (P) into an 

unconstrained minimization problem of the form, 

min{ f (x) + ri'b1 [91(X)] + r2 e2 [92(x)] } 

s. t. x >_ 0 

x, integer, jEI 
__ _..., _ . _�(7.3.2). 
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with all local constraints incorporated into the genetic operators, and where 

, k1 and ý2 are penalty functions of the squares of the constraint violations 

with rl, r2 penalty parameters for the two global constraints gi (x) and g2(x) 

respectively. 

7.4. Genetic operators 

The implementation of the four genetic operators requires special consid- 

eration of the different characteristics imposed by the various generating units. 

The hydro unit presents no special problems in the string representation as its 

values are fairly independent of each other, except for the case where spillage 

occurs. The pump-storage unit and the thermal unit representations are context 

sensitive in the sense that a particular value may depend on the values chosen 

for other positions. In the pump-storage case this results from the imposition of 

minimum and maximum reservoir levels as well as a final value for the reservoir 

level. The thermal unit values are context insensitive except for minimum up 

and down times. A decoder, specially designed for each particular type of unit 

has been implemented thus ensuring that the genetic operators produce feasible 

strings. 

Figure 7.4 presents the structure of the program developed for this particu. 
lar application. Each string, chromosome, for a period of 24 hours had a length 

of (n x 24), i. e. each position denoting the state of each unit for the planning 

period and n the number of units. A real representation of the variables was 

implemented, implying a discretization of the continuous variables. The fitness 

function considered the contribution of each unit. 

Due to the different nature of the power units, genetic operators were specif. 

ically designed for each unit. The mutation operator did not present special 

difficulties, save for the fact that in the thermal unit provision had to be made 
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to ensure that the minimum up and down times were respected. In the case of 

the pump-storage unit this operator interchanged two randomly selected points, 

thus always generating feasible solutions in terms of the initial and final volumes 

of the reservoir. An inversion operator was designed for the thermal unit in or- 

der to cope with the restrictions affecting this unit. Similarly, the crossover 

operator had to take into account the particular restrictions concerning each 

unit. In the case of the pump-storage unit, an order based crossover operator 

was constructed [Goldberg (1989)]. 
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7.5. Results 

Several runs were executed with different settings of the parameters. These 

runs allowed the tuning of the parameters, i. e. the initial population number, 

the probabilities of crossover, mutation and inversion, the number of generations 

and finally the penalty terms. Figure 7.5 shows the evolution of a run with the 

following parameter settings: initial population 1000, number of generations 

500, probability of crossover 0.65, probability of mutation 0.01, probability of 

inversion 0.001. The penalty terms were increased by a factor of 10 every 50 

generations. The graph presents the absolute and mean deviation from the 

optimal solution which has been obtained from solving the problem using a 

branch-and-bound approach [Oliveira, McKee and Coles (1991)]. The solution 

is within 2% of the optimum. 
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Fig. 7.5. Results for a 24 hour period 
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7.6. Summary 

The application of genetic algorithms to a relatively simple power schedul- 

ing problem has provided some insight into their feasibility. The results show 

that it is possible to use a genetic search successfully on a constrained problem 

such as power scheduling. The strength of this algorithm lies in the fact that, 

unlike other algorithms, GAs search from a population of strings; the fitness 

function only requires an evaluation of the objective function and no other aux- 

iliary information such as derivatives. The use of reproduction rules gives this 

approach a distinct advantage over straightforward random search. The main 

disadvantage of GAs is the computational time which, at the present state of 

development, is considerably more expensive than other methods. Though GAs 

show a very efficient behaviour in "circling" the optimal region, they are quite 

slow at hillclimbing. 

It is envisaged that a GA dealing exclusively with the integer commitment 

variables coupled with an efficient linear programming solver for the continuous 

problem could improve on the results obtained; the consideration of simple 

rules to decide on the rejection of strings could further improve the algorithm 

since it would imply a reduced number of calls to the linear solver. One crucial 

point is that there is a static domain (hydro systems do not change much in 

50 years) which must be solved many times. Thus, a knowledge base could be 

progressively built up and this could be used to deselect poor off-spring; in other 

words, there is the possibility for the development of genetically engineered 

algorithms. Furthermore, there is great scope for parallelisation. 

Further work however is required to establish this approach as it efficient 

method for optimizing large linear and nonlinear scheduling systems. 
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CHAPTER 8 

PURCHASING AND SELLING ELECTRICITY 

IN THE PRIVATE MARKET 

8.1. Introduction 

The Electricity Supply Industry in the U. K. has recently been restructured 

resulting in the introduction of competition to both energy generation and sup- 

ply. Twelve private electricity companies have been set up in competition and 

this is likely to have a significant impact on the price of electricity to the con- 

sumer, on power station building programmes, on the environment and indeed 

on industry in general, through customised contracts. 

Profit management rather than cost minimization is now in vogue. Fur- 

thermore, operational planning is subject to the market, or pool system as it is 

called. Under this system each company has the opportunity to submit bids of 

the prices they are prepared to sell electricity at for the next 24 hours. Those 

bids are currently for each half-hourly interval. Thus the pressing problem ex- 

ercising the minds of the 12 Electricity Companies on a daily basis is at what 

price should they buy or sell their electricity. 

8.2. The system 

The system considered here is an example set created by Scottish Power, 

which emulates their own real system on a smaller scale. In this system there are 

three thermal stations, with two units each, including two peakers; a pondage 

hydro unit and a pump-storage unit. The natural inflow to the hydro unit 

is given as a constant value over each 24 hour period with the possibility of 

spillage. For convenience the water level in the reservoir and the water flow 

to and from the reservoir are given in units of energy and power respectively; 
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this is reasonable provided there are no great variations in the reservoir heads. 

The cost functions for the hydro and pump-storage units are dependent on the 

reservoir levels. Lower limits are prescribed for both generation and pumping. 

The demand is assumed to be known and constant over each 1 hour period, 

that is, it is assumed it has been obtained by time-series or other forecasting 

techniques. 

Purchases from and sales to the pool system arc restricted by the capacity 

of the interconnector to the south of the border. 

8.3. The thermal system 

The thermal system has been modelled in a similar manner to that in 

Chapter 2. New formulations of some of the restrictions are presented here for 

the sake of generality. 

(a) Start-up cost per unit 

U; (1 - ai-1)a., (8.3.1) 

for i=1,2,..., Iandfort= 1,2,..., T, 

where U; is the start-up cost for unit i. 

(b) Shut-down cost per unit 

Di(1 - (8.3.2) 

for i= 1', 2,..., I and for t=1,2,..., T, 

where D; is the shut-down cost for unit i. 

100 



(c) Minimum up time 

(aj - aj-1)(Qj-' - F, ) <_ 0, (8.3.3) 

0'! = (Qa-i . ý. 1)a8ý (8.3.4 

for i=1,2,..., Iandfort=112,... 1T, 

where Ti is the minimum up time and o; is the number of time periods the unit 

has been on-line. 

(d) Minimum down time 

(8.3.5) 

e! = (el-' + 1)(1 - ai)º (8.3.6) 

for i=1,2,..., I and for t= 192,... 1T, 

where -r; is the minimum down time and e; is the number of time periods the 

unit has been off-line. 

8.4. The hydro system 

The main difference from the model of Chapter 2 arises from the inclusion of 

costs associated with the level of the reservoir. Figure 8.1 presents an example of 

this relation: when the level of the reservoir is quite high, there is the possibility 

of running into spillage. Therefore, the cost of this hydro energy is decreased; 

on the other hand, if the level is too low, the cost of energy is increased since 

the risk of drying up the reservoir is more likely. 
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Thus, the running costs are 

Hk(vk) 4+ Sk-qk, 8.4.1) 

fork=1,2,..., KandforI=1,2,..., T, 

where Hk(vk) and Sk are respectively the values of the discharge and spillage 

per MW. 

COST 

Fig. 8.1. Cost vs level for hydro unit 

8.5. The pump-storage system 

The pump-storage unit can operate one or more turbines/pumps at the 

same time. In this particular system there are J turbines/pumps. When genet. 

ating, the power output is a continuous function between the lower and upper 

limits; the power output 

4i if µi =1 (8.5.1) 

for I=1,2,..., L, and for t=1,2,..., T. 
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where j=1,2,..., J is the number of available turbines for the scheduling 

period. In pumping mode, the water flow is only allowed to vary in discrete 

steps p= pl, depending on the number of pumps in operation, 

Pi E {p, , ... 2 jp, } if v4 =1 (8.5.2) 

for 1=1,2,..., L, and for t=1,2,..., T. 

The operating costs of the pump-storage unit are also a function of the level of 

the reservoir. Similar considerations to the ones made for the hydro unit can be 

made for the cost associated with the level of the reservoir. Figure 8.2 depicts 

this relation. 

COST 

Fig. 8.2. Cost vs level for pump-storage unit 

The operating costs are 

Gi(ri)9i - PI(*i)Pi+ 

for 1=1,2,..., Landfort= 112,..., T, 

(8.5.3) 

103 



where Gj(rj) is the value of the equivalent quantity of water used for generating 

each unit of power while P'(rj) is the value of the water pumped per MW to 

the storage reservoir. 

8.6. Purchase and sale 

In every time period t there is the possibility of either purchasing from, or 

selling power to, the market or pool system. The pool system does not permit 

the simultaneous purchase and sale of electricity. 

Let z be the power purchased for period t. The amount purchased has to 

be within the permissible limits (0, zp], where zy is the maximum amount that 

is allowed to be purchased in any one time period. The cost associated with 

purchasing is 

mg zp (8.6.1) 

fort=1,2,..., T, 

where mp is the purchase price during period t dictated by the pool system. 

Let z; denote the amount of power sold during period t. The selling limits 

are [0, x, ], where z, is the maximum amount that is allowed to be sold in time 

period t. Since selling implies a revenue it is convenient to treat it as a negative 

cost, viz 

- m; z; (8.6.2) 

fort=112,..., T, 

where m, is the selling price during period !. 

It could be argued that mp and m, should be one and the same, the pool 

price. However, to sell energy during a low demand period does not have the 
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same risk as for a period of high demand. This difference can thus be perceived 

as a security, and may therefore not be constant in every time period. 

8.7. The demand and reserve constraints 

Clearly, in reality the power output has to satisfy a stochastic demand. 

Also, if one unit breaks down it is not possible to start an uncommitted thermal 

unit immediately and so a certain amount of reserve, known as spinning reserve, 

should be available. Therefore, 

IKL 

ze -f- 
Z yk+E(4i-GrP)`F'zy-z; >dr 

i=1 k=1 r=1 

IKL 
(8.7.1) 

+zpdr+R 
i=1 k=1 1=1 

fort=1,..., T 

where 191 is the inverse of the thermodynamic efficiency of the pumping process, 

dt is the demand and R the required reserve. 

8.8. The mixed integer model 

In summary the scheduling task can be modelled as the mixed integer non. 

linear programming problem (P) 

TI 

min 
E [(u(1 

- a'-')a! + Fjaý 
p9 

sot 
1=1 t=i 

+ V; z + D; (1 - 

+ >(JIk(Vk)yk + Sk$k) 8.8.1) 
k=1 

+ ýGºýri )9r - Pj(*i )Pi 
º=1 

-ý. m' zp m,, z, 
1 
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subject to the demand and reserve constraints and the constraints affecting the 

individual units. 

8.9. Lagrangian relaxation in power systems 

In power scheduling the most suitable restrictions to be relaxed are the 

global ones, that is, the demand and reserve constraints. The inclusion of these 

two constraints gives the following Lagrangian problem 

"P(al, az) _ 
T [ui 

I 

min - a; '1)ai + F; ai 
vi r, 

z�yj, 
rd; rvh , p, q, v, pj frj rsp fsi t-1 i=i 

+ VVzi + Di(1 - ai)ai 1) 

K 
+ ý(Ilk(vL)yk+ Skdk) 

kýl 
L 

+L (Gl (ri )9i - P: (ri )Pi 
1=1 

+ mpzp -mz; )] 

TIK 
ýA, (dt - x! - Yk 

tal 1m1 k-1 
L 

Ja I 
T1 h' 

[A2'(d+R-ýria! ýbk 
t=1 isl k-1 

L 

-O, p)-=ö+z)] . 
t=i 

(8.9.1) 
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In a more condensed form which emphazises the problem decomposition, 

the Lagrangian formulation can be written as 

IKL 

4(Ai, A2) =I"; ('4 '4) +E qplI(A A2 + `ýi rl(ai+ as) 

;. l k=i 
T 

1=1 (8.9.2) 

+ ßp'()4, )z) + ý: (A , a2) +L [al v+ a2 (dt + B)] 
e-l 

where f; (Al, A2) represents the thermal units subproblems; ''(A1,. \2) the 

conventional hydro units subproblems; '1111011 ) 2) the pumped-storage units 

subproblems; ýPpV(Al, A2) the purchase subproblem, and 4; (A1,1\z) the sell- 

ing subproblem. Each one of these subproblems is locally constrained by the 

operating characteristics of the individual units. Clearly, given the values of 

the Lagrange multipliers, the subproblems can be solved independently of each 

other. Thus, the dual problem (D) can be stated concisely as 

4P* = maX P(al, A2) (8.9.3) 

subject to 

Al>0, A2>0. 

8.10. The subproblems and the master problem 

The subproblems are solved using dynamic programming and the subgradi- 

ent method is used to generate new multipliers (see Chapter 5). The heuristic 

developed for the problem of Scottish Hydro-Electric (sec Chapter 5, Section 

5.9) had to be changed in order to incorporate purchases and sales. The logic 

behind the heuristic remains the same in what regards the adjustment of the 

dual solution to construct a primal feasible solution. However, since the global 

cost function exhibits discontinuities at points where another unit is brought 
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on-line, at every time period a test was made to verify if the sale revenue was 

greater than the cost to supply the market. 

8.11. Results 

The results obtained are listed in Table 8-1: the total cost (L), the per. 

centage difference between the dual and primal solutions, the thermal, pump- 

storage, hydro, purchase and sale costs (. e) for the different problems tested: 

(1) is the solution for the given demand and reserve, using only thermal units; 
in (2) a pump-storage unit is added; (3) depicts the previous set up plus a hydro 

unit; in (4) the possibility of purchasing and selling is considered for the system 

comprising all the thermal and hydro units. 

Table 8-1 
Numerical Results 

Set Cost % Dif Ther Pump Ilyd Purc SnIc 
(1) 1.82E5 1.3 1.82E5 - - - 
(2) 1.81E5 1.6 1.78E5 2.30E3 
(3) 1.80E5 1.8 1.71E5 0.0 8.70E3 - - 
(4) 1.58E5 0.8 2.33E5 0.0 8.06E3 0.0 -8.24E4 

8.12. Summary 

The special structure which results from this implementation, with a master 

problem coordinating several subproblems, is suitable for a parallel impleinenta- 

tion; however, if the problems are not well balanced in terms of computational 

time (the hydro and pump-storage subproblems are the most time consum. 

ing), the maximum speed-up that can be obtained is conditioned by the slowest 

subproblem. As it can be seen from the results presented in Table 8-1, the pos- 

sibility of purchasing and selling significantly improves the economic operation 

of the system. 
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The Lagrange multipliers can be perceived as shadow costs in the sense that 

they represent the costs required to satisfy the demand and reserve constraints. 

This feature, given the recent privatization of the generating boards in the UK, 

makes this implementation a valuable tool as it effectively associates a cost to 

the energy, whether from thermal, hydro or pump-storage units. 
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CHAPTER 9 

THE DUALITY GAP IN POWER SCHEDULING 

9.1. Introduction 

The occurrence of a duality gap was referred to in Chapter 4, and this was 

related to the convexity of the primal problem. In power scheduling problems, 

the likely existence of a duality gap is used to terminate the iterative optimiza- 

tion process when the relative duality gap (Chapter 5, Section 5.2) is below a 

given bound. Bertsekas and Sandell (1982), Lauer et at. (1982) and Bertsekas 

et al. (1983) showed that, for thermal systems, as the number of thermal units 

i goes to infinity, the relative duality gap decreases to zero, 

lim v(Pi) -! L(Di) 
i -"oo v(P; ) 

where v(Pi) and v(D; ) are, respectively, the optimal values of the primal and 

dual problems. However, this measure is only true in the limit and might not 

be verified for small systems. A survey of other contributions to the power 

scheduling problem [Merlin and Sandrin (1983), Shaw and Bertsekas (1985), 

Zhuang and Galiana (1988), Bard (1988) Aoki et al. (1989)] indicates that 

these authors have relied on this result as a termination criterion, and on the 

experimental observation of very small gaps, typically less than 1%. 

The results from the Scottish Power model (Chapter 8) indicate a relative 

duality gap which is always above 1%. This fact seems to contradict previous 

results. However, some results based on the work of Geoifrion (1974) are pre- 

sented for the case of thermal systems which explain the larger than expected 

gaps obtained for the Scottish Power model. 
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Consider the following minimization problem 

min cx 
x 

s. t. Ax >b 

x>0 

xj integer, jEI 

where x is nx1, b is (m + k) x 1, c is 1xn, A has conformable dimensions and 

Z denotes the index set of the variables required to be integer. This problem is 

equivalent to the following one, where the constraints have been partitioned in 

some convenient form, 

(F) 

min cx 
x 

s. t. Aix > bi 

A2x>b2 

x>0 

xj integer, jEI 

with 

A=[A,: A2], b= [: 1" 
Isere Alx > bi is identified as the set of m 'complicating' constraints, with bl 

mx1andb2kx1. 

The Lagrangian relaxation of (P) with respect to Aix >_ bi and a con- 

formable nonnegative vector A is 
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(PRa) 

min{cx +ä (bl - Aix)) 
X 

s. t. A2x > b2 

x>0 

xj integer, jEI 

A>0. 

The optimal choice for A is given by the optimal solution to the concave problem, 

(D) m ö(PRA) 

which coincides with the Lagrangian dual of (P) with respect to Aix > b1. 

The following relaxation of (P) 

(P`) 
min cx 

x 

s. t. Aix > bi 

XE Co{x > 0: A2x > bz, 

xi integer, jE I) 

where Co denotes the convex hull of a set, is related to the problem (D) since 

they are linear programming duals. An optimal multiplier vector corresponding 

to Alx > bi will be denoted by A" when (P`) has a finite optimal value. Let 

(P) be the linear programming relaxation of (P), where the integer variables 

are treated as continuous. 
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Theorem [Geoffrion (1974)] 

a) The following inclusions and inequalities hold 

, F(P) D, r(P*) Q F(P) F(PR, ) Q F(P) 

v(P) < v(P*) < v(P) v(PRA) < v(P). 

b) If, for a given A, a vector x satisfies the three conditions 

i) x is optimal in (PR, ), 

ii) Aix > b1, 

ii)A(bl-Aix) =0, 

then x is an optimal solution of (P). If x satisfies i) and ii) but not iii), then x 

is an c-optimal solution of (P) with c= A'(Aix - b1). 

c) If (P`) is feasible, then 

v(D) = mýö v(PRa) = v(PRA. ) = v(P`). 

The last statement of the theorem can be proved by noticing that, 

v(PRA) =[ min{cx + X'(bi - A, x)1 

s. t. xE Co{x > 0: A2x > b29 

xj integer, jE Z}] 

because the minimum value of a linear function over any compact set is not 

changed if the set is replaced by its convex hull. 
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Integrality Property 

The optimal value of (PRA) is not altered by dropping the integrality conditions 

on its variables, 

v(PR. x) = v(PRa) for all A>0. 

In other words, if every corner of a convex polyhedron in an n-space has all 

integral coordinates, then this polyhedron has the integrality property. 

Theorem [Geoffrion (1974)] 

Let (P) be feasible and (PRA) have the Integrality Property. Then (P') is 

feasible and 

v(P) = v(PRA) = v(D) = v(PRA") = v(P`). 

Proof 

v(P) =mö v(PRA) 

= max v(PRA) 
a>o 

(by duality) 

(by the Integrality Property) 

= max[min{cx + a'(bl - Aix)} 
A>0 x 

s. t. xE Co{x > 0: A2x > b2, 

= v(P*) 

x1 integer, jE 2}) 

(by duality). 
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9.2. The matrix structure in power scheduling 

Consider the following problems, for the thermal case, 

(pi) 
TI 

min F (F; a; -}- V; x; ý 
al'yi t=1 i=1 

s. t. E x; > dt, t=1, ... ,T 
i. l 

d'+ R, t=1,..., T 
i=1 

x; a! < x; < x; a; i=1,..., I, t=1,..., T 

0<a; < 1, integer, 

i=19.0.111 t=1,..., T 

and 

(PRäl 
, A2 ) 

TI 

min 
E 1: (Fiai + Vixi 

ai'Zo t=1 i=1 
TI 

+E ai(dt-ýx! 
t=1 ý=1 
T 

+ az(dt+R-Exiai) 
t=1 i=l 

s. t. xia; < x; < xia; i=1,..., I, t=1,..., T 

0<a; < 1, integer, 

i= 1,..., I, t=1,..., T 

Hoffman and Kruskal(1956) showed that for the polyhedron, 
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Q(b, c) = {xIAx > b, x> c} 

to have the integrality property, where A, b, and c are integral and A is fixed, 

the matrix A has to be unimodular [A matrix A is said to have the unimodular 

property if every minor determinant of A equals 0, +1, or -1]. This is a 

very strong condition which is not satisfied in the problem (PRäsince a 

necessary condition for unimodularity is that the entries can only be 0, +1, or 

-1, while 

xl -1 0 0 ... 0 
-AI 1 0 0 ... 0 
-1 0 0 0 ... 0 
1 0 0 0 ... 0 
0 

A - 
0 xZ -1 ... 0 

PR1 0 0 -aeg 1 ... 0 
0 0 -1 0 ... 0 
0 0 1 0 ... 0 

0 0 0 0 ... 0 

However, a reformulation of the problem by scaling x; produces a unimodular 

matrix. Setting 

xý = xiaý + (xi - xi)y! 

then 

(p2) 
TI 

min 
E[(Fi +V xi)a; + V(2i 

- xi)31; J v; 

I 
s. t. MY! 

] 
? dt, t=1... T 

i=1 

d'+ R, t=1,..., T 
i. l 
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0<_yl ýai 

0< all 5 1, integer, 

and 

(PRat, as ) 

i=t=1,..., T 

i=1,..., I, t=1,..., T 

TI 

min 
E [(Fs + Vi )a; + Vj(x j- xi)ys] 

a;, Y; s=1 
1t=1 

T 
+ Nt (dt 

- 
E(xtai + (xi - MA 

1=1 1=1 

T 

-}- a2(dt+R-xia; ý } 

s. t. 0<y! 

0<a; < 1, integer, 

and the underlying matrix has now the form 

APR2 _ 

i 1 -i o o ... o 
-i i o o ... o 
-1 0 0 0 ... o 
i 0 0 0 ... o 
0 o i -i ... o 
0 0 -i i ... o 
0 0 -i o ... o 
D o i o .., o 

. . . . . . 

. 0 0 0 0 ... 0 
However, for the polyhedron 

P(b) = {xIAx >_ b} 

to have the integrality property, Hoffman and Kruskal (1956) show that a weaker 

condition is required. For any set S of rows of A, let 
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0, if each minor determinant in S, which has as many rows 
as S, equals 0; 

gcd(S) = gcd, greatest common divisor of all those minor determinants 
in S which have as many rows as S. 

If r is the rank of A, then for every set S of r linearly independent rows of 

A, gcd(S) = 1, and the polyhedron has the integrality property. Thus, it can 

be seen that the matrix associated with (PRät,, \, ) has the integrality property, 

and 

v(P1) = v(D') = v(P'*). 

This last condition associated with the polyhedron can be depicted for a single 

thermal unit as, 

Power 
t 

x 

.x 

"" 
0.0 

" 

0 Ccmmitmcnt 
a it 

Fig. 9.1. Thermal unit solution space 
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9.3. The duality gap in power scheduling 

The perturbation function associated with (P) is defined by 

-t(y) = inf cx 
x 

s. t. Aix > bi -y 

A2x > b2 

xi0 

xi integer, jE2 

Theorem [Geofirion (1974)] 

The perturbation function -4ý* associated with (P') is precisely the lower convex 

envelope of the perturbation function associated with (P) (, D* is the convex 

hull of the epigraph of 'p). 

Epi[P] = Co{Epi[k]}. 

For the power scheduling problem, 

TI 
«y = inf L(F, a; + Viz; ) 

a+'sr 
I 

S. t. > dt- yi, t=1,..., T 

I 
d' +R- yz, t= 1,..., T 

< x; a; < x; Fia; I=1,..., T 

0<a; < 1, integer, 

i=1,..., I, t=1,..., T 
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and 
TI 

ý`ýY) = inf E E(F; ai + vizi 
+'=r t=i 11=i 

I 
s. t. z> d` - yi, t=1, ... ,T 

I 

E Co x; «; < x; < z; as! 

i=1,..., I, t= 

0<a; < 1, integer, 

i=1,..., I, i=1,..., T . 

The duality gap v(P) - v(D) is precisely equal to the difference between the 

perturbation function of (P) and its lower convex envelope, both evaluated at 

the origin. 

9.4. Summary 

Intuitively, it is possible to relate the duality gap to the reserve constraint, 

since this constraint is seldom strictly satisfied. Figure 9.2 presents the per- 

turbation function for a single thermal unit (unit Al from the Scottish Power 

model, Appendix 4) and its lower convex envelope. The demand is fixed at 300 

MW and only the reserve constraint is perturbed, in the range yz E [-200,200]. 

Clearly, it can be seen that for values of the reserve requirement less than 200 

MW, a duality gap will always exist. When the reserve is such as to be equal to 

the difference x; - di, i. e. the maximum output minus the actual demand, no 

duality gap is present and a global subgradient [Geoffrion (1974)] exists. Figure 

9.3 presents similar results for a system comprising three thermal units (units 

Al, A2 and B1 from the Scottish Power model, Appendix 4), and it shows the 
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presence of the duality gaps associated with the plateaux on the perturbation 

function, signalling the commitment of an extra unit if the reserve requirement 

is to be satisfied. 

These two examples show an important characteristic of the duality gap in 

power scheduling: the gap is data dependent. This dependence is directly linked 

to the level at which the reserve is operated. It also shows that the biggest gaps 

occur when there is no reserve requirement, or when an extra unit is required 

to be started up. 

Units with no associated load costs, such as peakers, hydro units and pump- 

storage units do not individualy exhibit any duality gap with respect to the 

perturbation on the reserve constraint; however, duality gaps may be present 

for perturbations on the demand constraint, e. g. for loads below the minimum 

power output. For mixed systems it is possible to see a reduction in the duality 

gap, and in fact this was observed with the introduction of extra units and 

selling. The last case is clear since it corresponds to the sale of the extra 

available power. 

Although the literature suggests that the duality gap is less than 1% for 

large systems, the arguments of this chapter have demonstrated that for small 

systems, illustrated by the Scottish Power model, a duality gap greater than 

1% can be observed. 
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CHAPTER 10 

CONCLUSIONS AND FUTURE WORK 

This thesis has been concerned with two power systems which are closely 

related to the real systems of the companies Scottish Ilydro-Electric plc and 

Scottish Power plc, respectively. Both systems included thermal, hydro and 

pump-storage units. In addition, one of the models included the possibility 

of purchasing from, and selling electricity to the pool system. Few systems 

that consist of a combination of all types of units have been considered in the 

literature, and such systems have rarely been solved by Lagrangian relaxation 

techniques. 

The unit commitment/economic dispatch problem has been investigated 

through three different approaches: branch-and-bound, Lagrangian relaxation 

and genetic algorithms. 

Branch-and-bound is the most rigorous approach in that it does not depend 

on any heuristic. However, as the problem size grows, the computational time 

increased exponentially, thus preventing the use of this approach on a real time 

basis. 

In Lagrangian relaxation a trade-off between execution time and the use of 

a heuristic is made. The dual problem was not solved exactly and a primal fea- 

sible solution was constructed by means of a heuristic. With this compromise 

Lagrangian relaxation proved to be of practical value since it produced better 

solutions in much shorter computational time despite the fact that multiple so- 

lutions are known to exist near the optimum due to non-convexity. A rapid near 

approximation in the dual is attractive because the dual is itself a good approx. 

imation to the primal problem. The weakness of this method was that both the 
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parameters of the subgradient method and the heuristic had to be tuned for dif- 

ferent systems. Nevertheless, once tuned Lagrangian relaxation was by far and 

away the fastest algorithm. Furthermore, the decomposition permitted by this 

approach also offered the possibility for a parallel implementation resulting in 

significant reductions in the computational time. This parallel implementation 

would permit very large problems indeed to be solved in real time. 

Genetic algorithms are reasonably effective methods for highly combina- 

torial problems. In power scheduling problems genetic algorithms proved to 

be efficient for getting from an infeasible region to a feasible region, but were 

comparatively slow in their search for the optimum. 

The inclusion of the cost of hydro energy revealed a close link between 

fixing the reservoir level at the end of the planning period and the pricing 

of that energy. This, incidently is also an effective means of pricing water 

supplies for other uses such as irrigation, domestic and/or industrial. The 

various simulations revealed that the pump-storage unit cost is a relative one, 

that is it is dependent on the cost of the energy used to pump up the water to 

the reservoir, and therefore on the system as a whole. 

Purchases from and sales to the pool system were also modelled. The results 

showed that the market system could have an enormous impact on the man. 

agement of the generating boards. The Lagrange multipliers can be perceived 

as shadow prices and used to define the best strategy towards the market. A 

generating company often has to make a decision as to whether to sell electricity 

or simply to store it using their hydro units. This decision necessarily requires 

that hydro energy be priced. 

A large structured code using some features of FORTRAN 90 was devel. 

oped for the Lagrangian relaxation approach. This code was tested under very 

different conditions. The heuristic accounted for a large part of the code, though 
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the number of calls to this section were relatively few. 

An investigation of the nature of the duality gap was carried out. The 

results showed that the duality gap could be greater than 1% for small systems. 

Further, the duality gap can be shown to be dependent on the operating reserve 

constraint. Thus, generally the gap proved to be problem dependent. 

Future work should tackle the inclusion of different constraints like ramping, 

transmission, plant crew constraints and the head effect of the reservoirs. The 

inclusion of ramping constraints and the head effects is likely to increase signifi. 

cantly the computational time, and thus efficient modelling of these constraints 

should be an important line of research. A more heuristic independent approach 

to the primal solution from the dual needs to be pursued. The method of setting 

up new multipliers deserves further study since problems of convergence would 

appear to be dependent on the particular method employed. The study of the 

duality gap in the nonlinear case is still essentially an open problem. 
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APPENDIX 1 

SCOTTISH-HYDRO ELECTRIC DATA 

The system under consideration is a small part of the total system of the 

North of Scotland Hydro-Electric Board, now called Scottish Hydro-Electric 

p1c. This system consists of five generating units. Some information concerning 

demand and inflows to the hydro schemes is also provided. 

This information is summarized in the following tables. 

Table Al-1 
Nuclear and Thermal Units 

load cost min down 
Unit min max up run down time 

Nuclear 510 510 - f - - 
Oil 70 325 1000 450 +l Or 100 3 
Coal 90 290 3000 600 + 15z 300 4 

(load - MW, cost - E, time - n, x; - power output) 
t(must run continuously) 

The inflows to the hydro units are assumed constant over a 24 hour period. 

This information has been given in energy units [Cohen and Wan (1985)], as- 

suming that there are no great variations in reservoir heads. The inflow to the 

pump-storage unit is very small, and in the present study it has been assumed 

to be 1% of the hydro unit inflow; also lower limits are prescribed for both 

generation and pumping. 

Table A 1-2 
Daily Run Off (GWh) 

MON TUE WED THU FRI SAT SUN 
12.4 9.6 19.2 10.4 14.4 10.1 7.8 
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Table A 1-3 
Hydro Units 

load level of reservoir run 
Unit min max min max start cost 

Hydro 25 500 180 280 240 12 
Pump storage - - 0 6t 3.5 12 

- generation 25 300 - - - - 
- pumping $ 18 225 - - - 

(load - MW, level -GWh, cost - C) 
t(At the end of planning period level of the reservoir > 3.5 103MWh) 
t(The turn-round efficiency of 75%) 

The demand has been assumed constant over an 1 hour period. 

Table Al-4 
Demand (M%V) 

h MON TUE WED TIIU FRI SAT SUN 

1 1088 1141 1092 1112 1089 1128 1125 
2 1027 1084 1011 1043 1028 1057 1097 
3 971 1031 953 960 957 940 960 
4 879 956 877 888 865 837 830 
5 809 869 798 808 794 759 745 
6 779 846 775 782 771 721 708 
7 880 930 859 879 858 737 705 
8 1069 1098 1013 1049 1040 768 683 
9 1199 1207 1173 1157 1154 857 707 
10 1238 1242 1161 1162 1158 1001 859 
11 1193 1223 1135 1117 1117 1034 951 
12 1136 1192 1106 1095 1080 1002 969 
13 1129 1205 1118 1097 1087 977 995 
14 1096 1161 1076 1059 1046 928 955 
15 1092 1155 1065 1045 1054 895 920 
16 1135 1174 1094 1074 1064 888 931 
17 1331 1326 1273 1258 1226 1054 1078 
18 1393 1368 1313 1318 1275 1176 1153 
19 1278 1270 1220 1220 1186 1099 1106 
20 1221 1210 1158 1156 1141 1043 1076 
21 1187 1169 1136 1130 1186 1004 1051 
22 1140 1133 1100 1091 1038 970 1042 
23 1055 1027 996 993 955 914 964 
24 1075 1052 1050 1024 1030 1022 1021 
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APPENDIX 2 

THE NONLINEARITY IN THE PUMP-STORAGE UNIT 

Usually pumping and generation do not occur at the same time when con. 

straint (2.3.8) is not imposed. However, it is possible to create situations in 

which pumping and generation do occur simultaneously: for instance, in sys. 

tems where the final level of the reservoir has to be the same as that at the 

beginning of the planning period. As an example a situation based on the data 

provided by Scottish Hydro-Electric was created, for a reserve of 50 MW, where 

the constraint (2.3.8) was included in the model (Table A2-1) (all units in MW). 

The constraint has then been removed and the same computation performed 

(Table A2-2). It can be seen that the constraint can be active. Table A2-3 

presents the levels (in MWh) of the reservoir for the two situations created. As 

a final remark, pumping and generation occurring at the same time has also 

been observed by Wacker in a very different model (private communication). 

Table A2-1 

Time Oil Coal Hydro Genl Total I'umpl Dein 
1 325.0 0.0 450.0 25.0 800.0 0.0 800.0 
2 325.0 0.0 450.0 25.0 800.0 0.0 800.0 
3 325.0 0.0 450.0 25.0 800.0 0.0 800.0 
4 325.0 0.0 450.0 25.0 800.0 0.0 800.0 
5 325.0 0.0 450.0 25.0 800.0 0.0 800.0 
6 325.0 0.0 450.0 25.0 800.0 0.0 800.0 
7 325.0 0.0 450.0 25.0 800.0 0.0 800.0 
8 325.0 0.0 450.0 25.0 800.0 0.0 800.0 
9 325.0 126.6 500.0 0.0 951.6 151.6 800.0 
10 325.0 90.0 500.0 0.0 915.0 115.0 800.0 

("lötal cost i'99649. U) 
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Table A2-2 
Time Oil Coal Hydro Gent Total Pump2 Dem 

1 325.0 0.0 475.0 25.0 825.0 25.0 800.0 
2 325.0 0.0 475.0 25.0 825.0 25.0 800.0 
3 325.0 0.0 475.0 25.0 825.0 25.0 800.0 
4 325.0 0.0 475.0 25.0 825.0 25.0 800.0 
5 325.0 0.0 475.0 25.0 825.0 25.0 800.0 
6 325.0 0.0 475.0 25.0 825.0 25.0 800.0 
7 325.0 0.0 483.3 25.0 833.3 33.3 800.0 
8 325.0 0.0 500.0 25.0 850.0 50.0 800.0 
9 325.0 0.0 500.0 25.0 850.0 50.0 800.0 
10 325.0 0.0 500.0 25.0 850.0 50.0 800.0 

(Total cost 194999.0) 

Table A2-3 
Pump-storage unit 

Time Genl Pump1 Levell Gent Puzn 2 Leva12 
1 25.0 0.0 3475.0 25.0 18.8 3493.8 
2 25.0 0.0 3450.0 25.0 18.8 3487.5 
3 25.0 0.0 3425.0 25.0 18.8 3481.3 
4 25.0 0.0 3400.0 25.0 18.8 3475.0 
5 25.0 0.0 3375.0 25.0 18.8 3468.8 
6 25.0 0.0 3350.0 25.0 18.8 3462.5 
7 25.0 0.0 3325.0 25.0 25.0 34675 
8 25.0 0.0 3300.0 25.0 37.5 3475.0 
9 0.0 113.7 3413.7 25.0 37.5 3487.5 
10 0.0 86.3 3500.0 25.0 37.5 3500.0 

(Initial volume 3500.0 MWh, pump elticiency 3/4) 
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APPENDIX 3 

SCOTTISH POWER DATA 

The system considered here is an example set created by Scottish Power, 

which emulates their own real system. There are three thermal stations, with 

two units each, including two peakers; a pondage hydro unit and a pump-storage 

unit. Some information concerning demand and inflows to the hydro schemes 

is also provided. 

This information is summarized in the following tables. 

Table A3-1 
Thermal Units 

load cost mm/up min down 
Unit min max up run time time 

Al 150 500 10000 750+ 10x 4 4 
A2 150 500 10000 750+ lOr 4 4 
BI 50 300 3000 300+ 12x 2 2 
B2 50 300 3000 300 + 12x! 2 2 
Cl 10 100 0 20x! 1 1 
C2 10 100 0 20x 1 1 

(load - MW, COSL - . c, time - n, x; - power output) 

The inflows to the hydro unit is assumed constant over a 24 hour period. 
There are no inflows to the pump-storage unit. The operating characteristics 

are the following ones: 

Hydro unit 

Max Load (MW) 100 

Run-off (MWh) 500 

Start Level (MWh) 2500 
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Pump-storage unit 

Number of sets 2 

Pumping per set (MW) 100 

Max Generation per set (MW) 100 

Min Generation per set (MW) 10 

Efficiency 0.75 

Start Level (MWh) 5000 

Table A3-2 
Hydro Unit Price Levels 

Level of reservoir 
From To Price 
1000 1500 21.0 
1500 2500 12.0 
2500 3000 10.5 
3000 4000 9.5 

(Level - MWh, Frice - t'/MWh) 

Table A3-3 
Pump-storage Unit Price Levels 

Level of reservoir 
From To Price 
4000 5000 15.3 
5000 6000 12.3 
6000 7000 10.3 

(Level - Mwh, Price - i/nzvvn) 

The demand has been assumed constant over an 1 hour period. Three sets 

of demand data were given (D1, D2, D3). The sale price is the pool price 

(purchase price) reduced from a certain amount (. 0.5). The maximum amount 

of purchase and sale in any time period is, respectively, 200 MW and 300 MW. 
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Table A34 
Demand (MW) and Pool Price (. C/MW) 

h Dl D2 D3 Pool Prico 

1 500 500 600 15.0 

2 
3 

400 
300 

400 
300 

500 
400 

12.5 
10.0 

4 300 300 400 10.0 

5 300 300 400 10.0 

6 300 300 400 10.0 

7 300 300 400 10.0 

8 400 400 500 12.5 

9 500 500 600 15.0 

10 600 600 700 17.5 

11 750 700 800 20.0 

12 800 700 800 20.0 

13 800 600 600 15.0 

14 800 600 600 15.0 

15 800 600 600 15.0 

16 900 700 700 17,5 

17 900 800 800 20.0 

18 1000 900 900 22.5 

19 1000 900 900 22.5 

20 900 800 800 20.0 

21 800 700 700 17.5 

22 750 600 600 15.0 

23 700 600 600 15.0 

24 500 500 500 12.5 

133 



REFERENCES 

Aoki, K., Satoh, T. and Itoh, M. (1987). Unit commitment in a large-scale 

power system including fuel constrained and pumped-storage hydro. IEEE 
Trans. Power Syat., Vol. PWRS-2,4,1077-1084. 

Aoki, K., Itoh, M., Satoh, T., Nara, K. and Kanezashi, M. (1989). Optimal 
long-term unit commitment in large scale systems including fuel constrained 
thermal and pumped-storage hydro. IEEE Trans. Power Syst., Vol. PWRS-4, 

3,1065-1073. 

Baptistella, L. and Geromel, J. (1980). Decomposition approach to problem of 

unit commitment schedule for hydrothermal systems. IEE Proc., Vol. 127,6, 

250-258. 

Bard, J. (1988). Short-term scheduling of thermal-electric generators using 
lagrangian relaxation. Oper. Res., Vol. 36,5,756-766. 

Bauer, W., Gfrerer, H., Lindner, E., Schwarz, A. and Wacker, 1Ij. (1087). 
Optimization of the Gosau hydro energy power plant system. Math. Eng. 
Industry, Vol. 1,3,169-190. 

Bazaraa, M. and Shetty, C. (1979). Nonlinear Programming - Theory and 
Algorithms. New York: John Wiley. 

Beale, E. M. (1984). Mathematical programming. In R. Eglese and G. Rand 
(eds. ) Developments in Operational Research, Oxford: Pergamon, 1-10. 

Beale, -E. M. (1988). Introduction to Optimization. Chichester: John Wiley. 

Bellman, R. and Dreyfus, S. (1962). Applied Dynamic Programming. Prince. 
ton: Princeton University Press. 

Benders, J. (1962). Partitioning procedures for solving mixed-variables pro" 

gramming problems. Nume. Math., Vol. 4,238-252. 

Bertsekas, D. (1987). Dynamic Programming: Deterministic and Stochastic 
Models. Englewood Cliffs, N. J.: Prentice-Hall. 

Bertsekas, D., Lauer, G., Sandell, N. and Posbergh, T. (1983). Optimal short- 
term scheduling of large-scale power systems. IEEE Trans. Aug. Control, Vol. 
AC-28,1,1-11. 

134 



Bertsekas, D. and Sandell, N. (1982). Estimates of the duality gap for large- 

scale separable nonconvex optimization problems. Proc. IEEE Conf. Decision 

and Control, 782-785. 

Blair-Fish, J., Brown, S., MacDonald, N., Smith N. and Stroud, N. (1990). Us- 

ing CS tools on the Edinburgh Concurrent Supercomputer, Edinburgh Parallel 

Concurrent Centre UG91-02, Edinburgh: Edinburgh University. 

Cohen, A. (199 ). Modelling unit ramp limitations in unit commitment. Proc. 
101ß` Power Systems Computation Conf., London: Butterworths, 1107-1114. 

Cohen, A. and Sherkat, V. (1987). Optimization-based methods for operations 
scheduling. IEEE Proc., Vol. 75,12,1574-1591. 

Cohen, A. and Yoshimura, M. (1985). A branch-and-bound algorithm for unit 
commitment. IEEE Trans. Power App. Syst., Vol. PAS-102,2,444-450. 

Cohen, A. and Wan, S. (1985). An algorithm for scheduling a large pumped 

storage plant. IEEE Trans. Power App. Syst., Vol. PAS-104,8,2099.2104. 

Cooper, L. and Cooper, M. (1981). Introduction to Dynamic Programming. 
Oxford: Pergammon Press. 

Davis, L. (1987). Genetic Algorithms and Simulated Annealing. London: Pit- 

man. 

Dawkins, R. (1989). The Selfish Gene. (2"d ed. ) Oxford: Oxford University 
Press. 

Dirickx, Y. and Jennergren, L. (1979). System Analysis by Multilevel Methods. 
Chichester: John Wiley. 

Edinburgh Portable Compilers (1991). Parallel Fortran 77 - User's reference 
manual - version 2.4. Edinburgh: Edinburgh Portable Compilers Ltd. 

Efthymoglou, P. (1987). Optimal use and the value of water resources in elec- 
tricity generation. Management Sci., Vol. 33,12,1622-1634. 

Engles, L., Larson, R., Peschow, J. and Stanton, N. (1976). Dynamic pro. 
gramming applied to hydro and thermal generation scheduling. IEEE Tutorial 
Course Test - Application of optimization methods in power system engineering, 
52-68. 

Fletcher, R. (1987). Practical Methods of Optimization. (2"d ed. ) Chichester: 
John Wiley. 

135 



Fisher, M. (1981). The lagrangian relaxation method for solving integer pro- 
gramming problems. Management Sei., Vol. 27,1,1-18. 

Fisher, M. (1985). An applications oriented guide to lagrangian relaxation. 
Interfaces, Vol. 15,2,10-21. 

Gangl, A. (1989). Short term optimization of an extension of a storage power 
plant system. Diplomarbeit. Linz, Austria: Johannes Kepler Universitat. 

Carey, M. and Johnson, D. (1979). Computers and Intractability: a guide to 
the theory of NP-Completeness. New York: Freeman. 

Garver, L. (1963). Power generation scheduling by integer programming - de- 

velopment of theory. AIEE Trans., Vol. 81,3,1212-1218. 

Geoffrion, A. (1970a). Elements of large scale mathematical programming - 
Part I: concepts. Management Sei., Vol. 16,11,652-675. 

Geoffrion, A. (1970b). Elements of large scale mathematical programming - 
Part II: synthesis of algorithms and bibliography. Management Sei., Vol. 16, 
11,676-691. 

Geoffrion, A. (1971). Duality in nonlinear programming: a simplified applica- 
tions oriented development. SIAM Review, Vol. 13,1,1-37. 

Geoffrion, A. (1972). Generalized Benders decomposition. J. Optimiz. Theory 

and Appl., Vol. 10,4,237-260. 

Geoffrion, A. (1974). Lagrangian relaxation for integer programming. Math. 
Programming Stud., Vol. 2,82-114. 

Glover, F. (1975). Improved linear integer programming formulations of non- 
linear integer problems. Management Sci., Vol. 22,4,455-460. 

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine 
Learning. Reading, Mass.: Addison Wesley. 

Grefenstette J. J. (1988). Incorporating problem specific knowledge into genetic 
algorithms. In L. Davis (ed. ) Genetic Algorithms and Simulated Annealing, 
London: Pitman, 42-60. 

Gutenberger, J. (1989). Yearly optimization and comparison of two extensions 
of a storage power plant system. Diplomarbeit. Linz, Austria: Johannes Kepler 
Universitat. 

Habibollahzadeh, H. and Bubenko, J. (1986). Application of decomposition 

136 



techniques to short-term operation planning of hydrothermal power system. 
IEEE Trans. Power Syst., Vol. PWRS-1,1,41-47. 

Harhammer, P. G. and Infanger, G. M. (1990). Energy operation planning. 
Proc. 10th Power Systems Computation Conf., London: Butterworths, 631- 

637. 

Hastings, N. (1973). Dynamic Programming with Management Applications. 

London: Butterworth. 

Held, M., Wolfe, P. and Crowder, H. (1974). Validation of subgradient opti- 
mization. Math. Program., Vol. 6,62-88. 

Hoffman, A. and Kruskal, J. (1956). Integral boundary points of convex polyhe- 
dra. In H. Kuhn and A. Tucker (Eds. ) Linear Inequalities and Related Systems, 
Princeton: Princeton University Press, 233-246. 

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann 

Arbor: University of Michigan Press. 

Kirkpatrick, S., Gelatt, C. and Vecchi, M. (1983). Optimization by simulated 

annealing. Science, Vol. 220,4598,671-680. 

Khodervarian, E., Brameller, A. and Dunnet, R. M. (1986). Semi-rigorous 

thermal unit commitment for large scale electrical power systems. IEE Proc., 
Vol. 133,4,157-164. 

Larson, R. and Casti, J. (1982). Principles of Dynamic Programming-Part II 
Advanced Theory and Applications. New York: Marcell Dekker, 403-421. 

Lasdon, L. (1968). Duality and decomposition in mathematical programming. 
IEEE Trans. Syst. Science Cyb., Vol. SSC-4,2,86-100. 

Lasdon, L. (1970). Optimization Theory for Large Systems. London: Macmil- 
lan. 

Lauer, G., Bersekas, D., Sandell, N. and Posbergh, T. (1982). Solution of large. 

scale optimal unit commitment. IEEE Trans. Power App. Syst., Vol. PAS-101, 
1,79-86. 

Lowery, P. (1966). Generating unit commitment by dynamic progranuning. 
IEEE Trans. Power App. Syst., Vol. PAS-85,5,422-426. 

Luenberger, D. (1989). Linear and Nonlinear Programming. (2"d ed. ) Reading, 
Mass.: Addison-Wesley. 

137 



Meiko (1988). FORTRAN on the computing surface. Almondsbury, Bristol: 

Meiko Ltd. 

Merlin, A. and Sandrin, P. (1983). A new method for unit commitment at 
Electricite de France. IEEE Trans. Power App. Syst., Vol. PAS-102,5,1218- 

1225. 

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E. (1953). 

Equation of state calculations by fast computing machines. J. Chem. Phys., 

Vol. 21,6,1087-1092. 

McKinnon, K. and Buchanan, J. (1988). The short term scheduling of a hydro- 

thermal electricity generating system. In A. Osiadacz (ed. ) Simulation and 
Optimisation of Large Systems, Oxford: Clarendon Press, 229-244. 

Mokhtari, S., Singh, J. and Wollenberg, B. (1988). A unit commitment expert 

system. IEEE Trans. Power Syst., Vol. PWRS-3,1,272-277. 

Muckstadt, J. and Wilson, R. (1968). An application of mixed-integer program. 

ming duality to scheduling thermal generating systems. IEEE Trans. Power 

App. Syst., Vol. PAS-87,12,1968-1978. 

Muckstadt, J. and Koenig, S. (1977). An application of lagrangian relaxation 
to scheduling in power-generation systems. Oper. Res., Vol. 25,3,387-403. 

Oliveira, P., McKee, S. and Coles, C. (1991). The optimal scheduling of hydro 

electric power generation. In M. Hellio (ed. ) Proc. 5" ECMI Conf., Dordrecht: 
Kluwer Academic, 109-114. 

Oliveira, P., McKee, S. and Coles, C. (1992). Optimal scheduling of a hydro 

thermal power generation system. Europ. J. Oper. Res., (to appear). 

Oliveira, P., McKee, S. and Coles, C. (1992). Lagrangian relaxation and its 

application to the unit commitment/economic dispatch problem. IMA J. Math. 
Appl. Bus. Industry, (submitted for publication). 

Oliveira, P., Blair-Fish, J., McKee, S. and Coles, C. (1992). Parallel Lagrangian 

relaxation in power scheduling. Software Pract. Exper., (submitted for publi" 
cation). 

Oliveira, P., McKee, S., Coles, C. and Blair-Fish, J. (1992). Optimal scheduling 

of hydro thermal power systems. In F. Iiodnett (ed. ) Proc. of the G°h ECMI 

Conf., (to appear). 

Pang, C. and Chen, H. (1976). Optimal short-term thermal unit commitment. 

138 



IEEE Trans. Power App. Syst., Vol. PAS-95,4,1336-1346. 

Pang, C., Sheble, F. and Albuyeh, F. (1981). Evaluation of dynamic pro- 
gramming based methods and multiple area representation for thermal unit 
commitments. IEEE Trans. Power App. Syst., Vol. PAS-100,3,1212-1218. 

Ruzic, S. and Rajakovic, N. (1991). A new approach for solving extended unit 

commitment problem. IEEE Trans. Power Syst., Vol. PWRS-6,1,269.277. 

Sandell, N., Bertsekas, D., Shaw, J., Gully, S. and Gendron, R. (1982). Proc. 
IEEE Conf. Large Scale Systems, 141-147. 

Scicon (1981). SCICONIC/VM User Guide. Milton Keynes: Scicon Computer 
Services Ltd. 

Shaw, J. and Bersekas, D. (1985). Optimal scheduling of large hydrothermal 

power systems. IEEE Trans. Power App. Syst., Vol. PAS-104,2,286-293. 

Sherkat, V., Campo, R., Moslehi, K. and Lo, E. (1985). Stochastic long-term 

hydrothermal optimization for a multireservoir system. IEEE Trans. Power 
App. Syst., Vol. PAS-104,8,2040-2049 . 

Sjelvgren, D., Anderssson, S., Andersson, T., Nyberg, U. and Dillon, T. S. 
(1983). Optimal operations planning in a large hydro-thermal power system. 
IEEE Trans. Power App. Syst., Vol. PAS-102,11,3644-3651. 

Smith, S. F. (1984). Adaptive learning systems. In R. Forsyth (ed. ) Ezpert 
Systems - Principles and Case Studies, London: Chapman and Hall, 168-189. 

Snyder, W., Powell, D. and Rayburn, J. (1987). Dynamic programming ap- 
proach to unit commitment. IEEE Trans. Power Syst., Vol. PWRS-2,2, 
339-349. 

Thornton, P., Blair-Fish, J. and Wilson, W. (1991). Crop simulation modelling 
using a transputer-based parallel computer. Agricul. Syst., Vol. 35,321-337. 

Tong, S. and Shahidehpour, S. (1989). An overview of power generation schedul- 
ing in the optimal operation of a large scale power system. Proc. Power Industry 
Computer Applications. 

Tong, S. and Shahidehpour, S. (1990). An innovative approach to generation 
scheduling in large-scale hydro-thermal power systems with fuel constrained 
units. IEEE Trans. Power Syst., Vol. PWRS-5,2,665-673. 

Turgeon, A. (1978). Optimal scheduling of thermal generating units. IEEE 
Trans. Automat. Contr. Vol. AC-23,6,1000-1005. 

139 



Van den Bosch, P. and Honderd, G. (1985). A solution of the unit commitment 
problem via decomposition and dynamic programming. IEEE Trans. Power 
App. Syst., Vol. PAS-104,7,1684-1690. 

Van Roy, T. and Wolsey, L. (1987). Solving mixed integer programming prob- 
lems using automatic reformulation. Oper. Res., Vol. 35,1,45-57. 

Virmani, S., Imhof, K. and Mukherjee, S. (1989). Implementation of a La- 

grangian relaxation based unit commitment problem. IEEE Trans. Power 
Syst., Vol. PWRS-4,4,1373-1379. 

Yang, J. and Chen, N. (1989). Short term hydrothermal coordination using 
multi-pass dynamic programming. IEEE Trans. Power Syst., Vol. PWRS-4,3, 
1050-1056. 

Zhuang, F. and Galiana, F. (1988). Towards a more rigorous and pratical 
unit commitment by Lagrangian relaxation. IEEE Trans. Power Syat., Vol. 
PWRS-3,2,763-773. 

Zhuang, F. and Caliana, F. (1990). Unit commitment by simulated annealing. 
IEEE Trans. Power Syst., Vol. PWRS-5,1,311-318. 

Wallace, D. (1991). Supercomputing with transputers. Comput. System. Eny., 
Vol. 1,1,131-141. 

Wells, D. (1976). Power system scheduling using integer programming. In L. 
Dixon (ed. ) Optimisation in Action, Oxford: Academic Press, 467.477. 

Wexler, J. and Prior, D. (1989). Solving problems with transputers: background 

and experience. Microprocess. and Microsyst., Vol. 13,67-78. 

Wood, A. and Wollenberg, B. (1984). Power generation and control. New York: 
John Wiley. 

140 


