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Abstract

Outbreaks of widely spread infectious diseases, such as Human Immunodeficiency Virus

(HIV), Severe Acute Respiratory Syndrome (SARS) and Swine flu (H1N1) and hospital

acquired infections, such as Meticillin-resistant Staphylococcus Aureus (MRSA) and

Clostridium Difficile, are serious health problems which have been tackled by the World

Health Organization and international health protection agencies. Various statistical

analyses have contributed a remarkable effect on providing scientific evidence on which to

base political decisions and infection control strategies. In this project, we focused on two

infectious diseases: HIV and MRSA and the research project is divided into two separate

parts. One is the quantification of replication in HIV anonymous test reports and the

other is the effect of patient movement between wards on the acquisition of MRSA.

The first research project is concerned with the analysis of an anonymous HIV test

dataset. The data is collected as a set of birthdays and it is possible that there is repeated

sampling of the same person. The aim is to quantify the amount of replication in the HIV

data using a maximum likelihood technique and then give the confidence intervals for the

estimated amount of replication using the bootstrap method.

The data were provided by the Public Health Laboratory Service (PHLS), Colindale,

London in 1994, who were interested in a statistical method to estimate multiple counting

that possibly existed in the database. The data consists of individual records of the

number of AIDS cases diagnosed, with birthdates from 1901 to 1973. There were two

datasets provided by the PHLS, one of which contained 1,134 records and was provided in

1991. The other dataset was provided in 1994 with the sample size 17,137. An estimate

xviii



of the true number of distinct individuals as well as the percentage of replication was

obtained by programming the maximum likelihood calculation in the languages R and

C. This technique is based upon evaluation of the probability that two records with the

same birthdate represent two separate individuals as opposed to the same person reported

twice.

The results for the 1991 dataset showed that there were five out of sixteen birth

years (i.e. 31.25% of the observed records in the 1991 dataset) with replication in the

true number of distinct individuals. In the results of the 1994 dataset, the majority of the

birth years (57/73) recorded the correct number of distinct individuals in the observations.

The 95% confidence intervals for the estimated amount of replication were calculated

by applying a parametric bootstrap method. The results show that the birth years in

the 1991 dataset with non-zero estimated amount of replication (the birth years of 1931,

1934, 1935, 1943 and 1944) have comparatively wide 95% bootstrap confidence intervals,

which implies higher uncertainty of the true amount of replication. A similar conclusion

was obtained from the results of 95% bootstrap confidence intervals for the 1994 dataset.

Comparing the results within the same birth years recorded in the 1991 dataset and the

1994 dataset, the data indicate that the confidence intervals for the 1994 dataset are

mainly narrower than the corresponding ones in the 1991 dataset. The conclusion of

this study illustrates the drawback of recording the HIV patients only with date of birth,

which has now been improved by combining with ‘Soundex’ codes for the surname and

gender.

The second part of the project aims to estimate the impact of patient movement

within a hospital on the risk of MRSA acquisition by using data from the MRSA screening

admission and discharge studies in Scotland which took place in two hospitals in 2010.

The data consist of an admission-only database (7,181 patients), a discharge-only

database (2,432 patients) and a combined admission-discharge cohort (2,792 patients).

The third database has complete information on MRSA status on admission, on discharge,

as well as data on the wards the patient was in while in hospital. In order to understand
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the effect of potential risk factors on MRSA acquisition, a multivariate logistic regression

model was constructed to analyse the effects of the number of wards a patient was in on

MRSA acquisition as well as other risk factors. Receiver Operating Characteristic (ROC)

curves were plotted and the individual area under the curve (AUC) was also calculated

for indicating the reliability and the accuracy of the prediction of the models.

Furthermore, we modelled the dynamic patient movement and assessed the effect of

being in a ward with MRSA by imputing the unknown date of transfer, simulating the

missing length of stay (along with the simulation envelope). The timelines of MRSA

infection and carriage pressure in each ward of the two hospitals were then mapped for

all patients in the three databases, imputing where necessary. Patient movement was

measured as a volume indicator in terms of the frequency of ward to ward transfer and as

cohabiting in the same ward. By using logistic regression within a bootstrap simulation,

we estimated the odds ratio of acquisition of MRSA association with being in a ward

with MRSA present, which was given by averaging the estimated effects from the fitted

models, and generating the 95% confidence intervals.

The results indicate that the number of wards that patients had moved through and

patients being in a ward with MRSA present do not affect the risk of acquiring MRSA

significantly over and above the patient level risk factors such as age and the presence of

open wounds or catheters. Some further work which can be done in an MRSA screening

programme is suggested as an implementation study.
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Chapter 1

Overview of Thesis

In this thesis, we describe modelling and imputation applications in the analysis of

epidemiological data. Specifically, we want to understand how to make inference in

the presence of unknown data using various methods. We briefly introduce two main

techniques for accounting for the unknown data, namely the maximum likelihood method

and imputation. For the material of this thesis, we focus on two widespread infectious

diseases, which are Human Immunodeficiency Virus (HIV) and Methicillin-Resistant

Staphylococcus Aureus (MRSA). The thesis consists of two parts, which are (i) estimation

of the replication present in HIV reports, Chapters 2-4, and (ii) to estimate the impact of

patient movement between wards within a hospital on MRSA acquisition, Chapters 5-7.

Unknown data can cause many statistical challenges and distort the inference about

the population. In the dataset of HIV reports, there are individuals who have repeated

positive HIV tests for reasons such as they do not believe the first HIV test result and

want to check it, or they have moved area and the test has been repeated. Although

the techniques for recording HIV infected individuals have now been improved, it is

impossible to completely eliminate the replication problem. Inaccurate information on

the number of unique HIV infections can affect the surveillance analysis, improvements

on the cost-effective treatment of HIV infections and so on. Hence it is important to

estimate the number of HIV infections reliably and to estimate the amount of replication.
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In the first part of the thesis, our goal is to estimate the amount of replication in the

anonymous HIV reporting provided by the Public Health Laboratory Service in London.

The datasets presented the distribution of birthdates of HIV infected individuals and there

were multiple records with the same birthdate. However, it is not known if they are the

same person or not. Chapter 3 covers the methodology used to investigate the amount

of replication. The method we develop in the first part is based upon the maximum

likelihood technique. We also discuss the confidence interval for the estimated replication

based upon the bootstrap method. The analysis is carried out using the statistical software

package ‘R’ and programming language C. The language C is used since the algorithm is

complicated and it considerably cuts the running time of the calculation. There are three

chapters regarding to the first part of this thesis, namely (i) the introduction and literature

review chapter including the background of HIV, the replication problem present in HIV

datasets, the previous studies on replication work and the available data used for the

following analysis (Chapter 2), (ii) the methodology to quantify the amount of replication

(Chapter 3) and (iii) the results of the replication present in HIV reports (Chapter 4).

In the second part of this thesis, we use a different method to account for the unknown

data - namely imputation. The main aim of the second part is to estimate the effect of

patient movement within a hospital on MRSA acquisition. The patient movement can be

characterised in two ways. One is measured as a volume indicator in terms of frequency

of ward to ward transfer (i.e. the number of wards that a patient had stayed at during

their hospital stay) and the other is measured as cohabitation did a patient stay in wards

which are known to have MRSA present. Few studies have been published on MRSA

acquisition in the general hospital population and there is limited information on the

effect of patient movement on the risk of acquiring MRSA. The original intention was

to study this as a prelude to estimation of parameters in a dynamic MRSA transmission

model. However, some of the data that we need is missing namely the movement dates

of patients between wards so we need to impute the missing data. Evidence on factors

associated with the MRSA acquisition in the general hospital population is necessary. One
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especially important factor is whether being in a ward simultaneously in the presence of

another patient with MRSA affects the chances of a patient acquiring MRSA. This is

highly relevant for decision making on implementation of the Universal MRSA Screening

Programme which was launched in 2007 in Scotland to prevent the transmission of MRSA

in hospital.

The MRSA Screening Programme and literature on MRSA acquisition are reviewed

in Chapter 5. We analyse the data taken from a one-year MRSA Screening Pathfinder

Programme. In Chapter 6, we introduce the statistical techniques to investigate the

association between risk factors and MRSA acquisition, taking into account missing

data. It also covers the logistic regression models. However, the dates of movements

are unavailable and collecting the data might be difficult and expensive. Hence we use

imputation and simulation to make inference in the presence of missing data. Chapter 7

gives the details on the imputation and simulation for the unknown data. Then descriptive

statistical analysis using tables and time line charts are used to summarise the MRSA

infection pressure during the study period by ward. The acquisition of MRSA while in

hospital can be linked to patient movement by the logistic regression method, which is

also mentioned in Chapter 7. We use the statistical software package ‘R’ for the statistical

analysis in the second part of the thesis since this is better for the manipulation of the

relatively complex patient movement data.

Finally in Chapter 8, we briefly summarise the results of this thesis and discuss the

limits and weaknesses of the study. In addition, we propose some further work that can

be done with regard to both parts of the thesis.
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Chapter 2

HIV introduction and literature

review

In epidemiological research, modelling and imputation are common techniques. In this

PhD thesis, different modelling and imputation methods are demonstrated and used for

the analysis of two different infectious diseases, which are Human Immunodeficiency Virus

(HIV) and meticllin-resistant Staphylococcus aureus (MRSA). Both infectious diseases are

widely spread and are considered as serious public health problems all over the world.

Disease intervention is an important mechanism to prevent the onset and development of

diseases in populations [62]. Statistical analysis, which is based upon epidemiological data,

can provide scientific evidence to help the governments on making decisions of disease

intervention policies. Particularly, the prevalence of a disease, mortality and relationships

between the occurrence of diseases and various descriptive characteristics of individuals in

a population are commonly highlighted in the statistical analysis. However, it is common

that some information is missing in the corresponding epidemiological dataset, causing

difficulties in yielding valid results. Thus imputation and modelling are usually applied

to estimate or predict the unknown data.

This PhD thesis is divided into two parts, which are (i) quantification of replication

present in HIV reports and (ii) effect of patient movement between wards and MRSA
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acquisition. The main techniques of statistical analysis in both parts are modelling and

imputation for estimating the unknown information. In the first three chapters, we will

focus on the first part of the thesis, which is quantification of replication present in HIV

reports. Then the analysis for the second part of this thesis will be demonstrated in the

latter three chapters. Now the literature review of HIV background and the replication

problem in the datasets of HIV reports will be introduced.

Sexual and reproductive health and HIV are major public health issues. These can

cause severe impact on societal and economic well-being and thus there will be benefits

from reliable information being available on the relevant quantities such as number of

HIV infections and HIV incidence to improve public health. In the first part of this

PhD thesis, we will focus on the replication problem present in HIV reports and study

the methodology of quantifying the overcounting of HIV datasets. There will be three

chapters for the first part of this thesis, which are a literature review, methodology to

quantify the amount of replication and results of the replication present in HIV reports.

In this literature review chapter, we will introduce the background of HIV, the replication

problem of HIV, previous work and the available data which will be used for the further

analysis of the HIV replication problem in the next two chapters in this PhD thesis.

2.1 Background.

First of all, in this section we will give a brief introduction on HIV, including the medical,

biological and economic aspects.

HIV is a genus lentivirus (i.e. slowly replicating retrovirus) that causes Acquired

Immune Deficiency Syndrome (AIDS) which is a life-threatening clinical condition in

humans. AIDS was first clinically recognised in 1981 in the United States [11], which

leads to progressive failure of the immune system that allows opportunistic infections and

cancers to thrive. In 1983, two separate research groups led by R Gallo and L Montagnier

respectively declared at the same time that a novel retrovirus which was successfully
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isolated from an AIDS patient may have been infecting AIDS patients and this virus was

named HIV in 1986 [5], [9], [42]. Infection with HIV commonly occurs by the transfer

of HIV contained in body fluids such as blood, semen, vaginal fluid, pre-ejaculate and

breast milk as a media associated with sexual contact, injecting drug use, mother-to-child

transmission and blood transfusion. On the other hand casual contact does not cause

HIV infections. Especially, sexual intercourse is a major mode of transmission. The

largest proportion of all HIV infections happen through unprotected sexual contact [26].

According to statistics from the Health Protection Agency, 95% of HIV colonisations and

infections in the UK in 2010 were acquired by sexual contact [115]. The risk of HIV

infection is higher for those who have multiple sex partners and unsafe sexual practices.

Thus AIDS is also considered as a sexually transmitted disease (STD).

Globally, 34.0 million people were living with HIV at the end of 2011, where 2.5

million people were new HIV infections [127]. The report of the Joint United Nations

Programme on HIV and AIDS (UNAIDS) in 2011 also showed that 1.8 million people died

from AIDS-related death in 2010. The majority of HIV infected people are in Sub-Saharan

Africa which continues to bear the brunt of the global epidemic. In the UK, an estimated

96,000 people were living with HIV, where 30,800 African born heterosexuals were living

with HIV [124]. The prevalence of HIV infection has been declining in recent years

in global efforts to address the AIDS epidemic. Compared to the number of new HIV

infections across the world in 2001, there were 700,000 fewer in 2011 [127]. However, the

treatment and prevention of HIV is still a primary issue in global public health and HIV

infection in humans is considered as a pandemic disease by the World Health Organisation.

Understanding of HIV pathogenesis can benefit the development of HIV treatments.

2.1.1 The virology of HIV.

The unique gene structure of HIV has been studied and two types of HIV have been

characterized which are HIV-1 and HIV-2. The majority of HIV infection is caused by
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HIV-1 globally, which is more virulent and infective [44]. HIV is typically responsible

for long duration illnesses with a long incubation period [70]. A study reported that the

mean of the incubation period is around ten years with a 95% confidence interval of 8.4

to 11.2 years [6], which indicated that the incubation period is also variable. Gigli et.

al. [43] also pointed out that the effect of age in infection time enhances the uncertainty

of the incubation period. For young people under 25, the incubation time shows rather

large variability.

HIV infects vital cells in the human immune system such as CD4 T cells, macrophages,

and dendritic cells [24], which protect the body against various bacteria, viruses and other

germs. After HIV enters into the cells, it makes copies of itself by cellular transcription

and in the meantime it attacks and kills the CD4 T cells, leading to a low level of CD4 T

cells. Eventually, when the number of CD4 T cells declines to a critical level, the human

cell-mediated immunity is lost and the body becomes progressively more susceptible to

opportunistic infections. This process may take a long time, during which time it is

asymptomatic. Most people usually experience a short, flu-like illness such as fever,

rash and a severe sore throat two to six weeks after HIV infection, which is known as

seroconversion illness [115]. There are two classic symptoms of AIDS, which are swelling

of the lymph nodes of the neck and physical weakness [115].

2.1.2 The diagnosis and treatment of HIV.

HIV infection is identified either by the detection of HIV-specific antibodies in serum

or plasma using antibody testing or by the presence of virus using polymerase chain

reaction, p24 antigen testing [34]. Antibody testing based on blood and other body fluids

is a common method used to detect HIV infection. In addition, the enzyme immunoassay

screen test which is a highly sensitive and specific test and shortens the time from exposure

to detection of HIV infection (i.e. the window period) to within two to three weeks,

combined with the Western blot test, which is a confirmatory test are currently on the
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market for the diagnosis of HIV infection [88].

Although it is impossible to eradicate HIV yet, early pharmacological intervention

gives the best chance at preserving the integrity of the immune system [92]. Since the

mid 1990s there have been combinations of antiretroviral drugs which is highly active

antiretroviral therapy (HAART) for HIV infection will delay the onset of AIDS and

increase the lifespan of HIV infected individuals. Because of the access to HAART which

reduces the viral load (i.e. a measure of the amount of HIV) in blood, AIDS-related

mortality and morbidity has dropped dramatically, especially in affluent countries where

the facilities and sources are relatively sufficient [79], [80], [90]. A report by Rochstroh

et al. [101] also suggested that management of underlying hepatitis B and/or hepatitis

C in patients with HIV infection under HAART is important in preventing morbidity

and mortality. In addition, prevention strategies are suggested to reduce the risk of

acquiring HIV, consisting of promotion in education and condom distribution to prevent

HIV transmission. A routine antenatal HIV screening test for pregnant women is

also recommended in order to reduce the risk of mother-to-child transmission by early

interventions such as taking HAART and avoiding breastfeeding. In the UK, 96% of

pregnant women accepted the routine antenatal HIV screening test in 2010 [3]. In 2011,

the National Institute for Health and Clinical Excellence in the UK suggested a further

implementation of HIV testing in the two high-risk groups which are men who have sex

with men and black African communities [37].

The introduction of HIV testing improves the understanding of the high risk groups

and identifies the number of HIV colonised patients who are likely to be AIDS patients

in future, giving a better idea of the spread of the AIDS disease.

2.1.3 The economic cost of HIV infection.

The economic burden associated with prevention and treatment of HIV-related disease is

a considerable problem of global concern. The treatments of HIV infection usually require
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a high financial cost either for individuals or for nations. In addition, HIV infections also

affect economic growth by reducing the availability of human capital. In some heavily

infected areas, the AIDS epidemic has led to an increased mortality which results in

reduced productivity by a smaller skilled population and labour force [50]. Hutchinson

et al. [58] reported that the cost of new HIV infections in the United States in 2002

was estimated at 36.4 billion dollars, including 6.7 billion dollars in direct medical costs

and 29.7 billion in productivity losses. The UK has the fastest growing HIV epidemic in

Europe and the cost of treatment and care increased from 104 million pounds in 1997 to

483 million pounds in 2006, which has risen 4.6 fold between 1997 and 2006 [117]. The

projected annual cost for the treatments for people living with HIV in UK is between 721

million pounds and 758 million pounds by 2013 [74].

Due to the serious economic consequences of HIV and AIDS to both individuals and

nations, it is imperative to have as accurate information as possible on the number of

HIV infections so that improvements on cost-effective treatment and care strategies can

be made [31].

As we discussed above, AIDS is an STD and especially homosexual activities between

men are considered as having high risk in spreading HIV. The common routes of HIV

infections also include injecting drug use. Hence there is a social stigma attached to

a diagnosis of HIV or AIDS. In addition, the long and variable incubation period for

HIV means that patients usually carry HIV asymptomatically for several years, which

may cause individuals to be ignorant of their HIV infection and thus spread the HIV

virus. It is difficult to obtain reliable estimates of the scale of the epidemic or data which

contributes valuable information to surveillance analysis [26]. Therefore the replication

problem in the available data of the number of HIV infections has attracted considerable

research attention. In the next section, we will present the replication problem existing

in the data of HIV infections.
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2.2 The replication problem of HIV.

In the UK, the first death of AIDS was reported in 1982 [12] and then the reporting

system was based on voluntary HIV reports in Scotland made to the Scottish Centre

for Infection and Environmental Health (which is now Health Protection Scotland in

Glasgow) and voluntary HIV reports in England and Wales made to the Public Health

Laboratory Service (PHLS) (which is in Colindale, London) [51]. In this section, we will

introduce the replication problem in the HIV data recording system in the 1990s.

Due to the known common routes of HIV infections including injecting drug use and

unprotected promiscuity (especially homosexuality), HIV infection carries a stigma of

personal irresponsibility or moral fault. The negative social implications imply that the

confidentiality of reporting for patients is important. In many countries, laws establishing

the confidentiality of AIDS information were established. In the UK, in order to ensure

the confidentiality of AIDS reporting, patient names are not held on the databases, but

a simple coding of the surname to a four-digit alphanumeric code (i.e. ‘Soundex’ code) is

usually recorded instead [82].

In the early 1990’s the PHLS were concerned about the accuracy of their database.

Because of confidentiality, patient names were not recorded on the database but a short

report accompanied an HIV positive diagnosis which generally contained the date of birth

of the patient. There was no way to know whether or not two or more birth records with

the same date of birth correspond to individuals multiply recorded in the database. Some

individuals may have had more than one HIV test. There is a known example of an

individual having had five HIV tests.

In the early 1990’s whilst some reports had associated ‘Soundex’ codes the ‘Soundex’

codes were missing for a substantial proportion of the database. Thus the PHLS was

interested to know whether statistical information on potential replication in the database

was contained in the distribution of birth dates in the database. A cross-sectional sample

of the database as it stood in 1991 was sent to Strathclyde University for statistical
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analysis.

In the period between 1991 and 1994 the PHLS made strenuous attempts to reduce

the amount of replication in the database including eliminating known duplication and

trying to ensure that as much as possible of the existing database had ‘Soundex’ codes.

In 1994 the distribution of birth dates in the entire dataset was again sent to Strathclyde

University for statistical analysis to see whether the level of replication had reduced.

There were multiple reasons why a HIV positive individual was being repeatedly

recorded in the database which led to the replication problem. First, because of the

serious lethal and incurable condition of HIV infection, an individual diagnosed as HIV

positive might not believe the test result or might want to double check by being retested

elsewhere. As a result, all the multiple test results for the same person were forwarded

to the database and recorded. The second reason is that it was National Health Service

(NHS) policy that an individual who reported to a new clinic or general practitioner

as HIV positive was usually required to get another test before receiving HIV-related

treatment. Additionally, individuals when taking HIV tests might sometimes use false

names because of the social stigma associated with an AIDS diagnosis.

As it is impossible to completely eliminate replication in the anonymous reporting

of the PHLS dataset in the 1990s, statistical methods can be used to estimate multiple

counting in the dataset.

Recently, an advanced HIV surveillance system has been used including the new

diagnoses system and the cross-sectional annual survey of prevalent HIV infections

diagnoses (SOPHID) for collecting number of patients in a calendar year who attend

for HIV-related care at an NHS site in England, Wales and Northern Ireland [77], [96].

Furthermore, the Health Protection Agency has developed a new database for collecting

HIV reports recently (i.e. the HIV and AIDS Reporting System), which includes the

data on site code where an individual received HIV-related treatments, the date that the

patient was first diagnosed as HIV positive in the UK, the country of birth as well as

‘Soundex’ code and so on [30].
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Considering the replication problems which was impossible to be completely

eliminated in the anonymous reporting of the PHLS dataset in the 1990’s, statistical

methods can be used to estimate multiple counting in the database.

2.3 Previous work on the replication problem.

In this section, we focus on the previous work on the observed statistical methods

associated with the problem of replicated birth dates.

Larsen estimated the number of individuals in a register from the number of distinct

birth dates based on the classical occupancy theory, where the assumption was that the

only information available was the birth date of each person [68]. In other words, based

on the register which consisted of distinct birth dates records, the estimation of the true

number of registered people can be obtained. The basic theory of the classical occupancy

problem was addressed by Feller, which provided the probability of exactly m empty cells

in a total of n cells where r balls were occupied randomly in these n cells [35]. Larsen

defined n to be the number of consecutive days in a sequence of possible birth dates

(for example 365 days); r was the true number of registered individuals born in this

sequence of observed birth dates, which was aimed to be estimated in this problem; b

was the observed number of distinct birth dates recorded in the register (i.e. occupied

birth dates in n possible birth dates); and m = n − b was the number of empty birth

dates in the sequence of n possible birth dates. Thus r can be estimated using the

approximate maximum likelihood method. Barabesi et al. [8] systematically introduced

various approximations of the maximum likelihood estimate in the classical occupancy

model. Larsen [68] proposed an approximate maximum likelihood estimate r̂0 for r on a

basis of a Poisson asymptotic framework when n is large, which is

r̂0 = n log(n/m),
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with the corresponding approximate variance

V (r̂0) ≈ ne−r/n.

The numerical calculations for approximate maximum likelihood estimate showed that

the point estimator r̂0 with the corresponding 95% confidence interval was quite near to

the point estimator of r calculated from the exact maximum likelihood method with the

corresponding 95% confidence interval when n was large.

Larsen also pointed out an alternative approach to estimate the true number of

individuals in a birth date register, where the number of individuals was taken to be a

random variable reflecting the stochastic nature of registration. Specifically, he supposed

that the new individuals were registered with a certain intensity and the number of

observed birth dates reflected both the nature of arrival of new individuals and the

overlapping of their birth dates [68]. Then the estimated true number of individuals

can be obtained by

r̂1 = n log(n/m),

with the corresponding approximate variance

V (r̂1) ≈ n(n−m)/m.

As an example he used the number of registrations of Chlamydia infections occurring in

1989 in a Danish country. Larsen applied his approach introduced above to estimate

the true number of individuals in the register as well as the corresponding variance

of the estimate. In addition, Larsen [68] and Song et al. [120] also applied a classical

occupancy model to an United States national AIDS surveillance data which contained

partial individual identifiers such as sex, birth date and ‘Soundex’ code but reported

duplications to estimate the population size of AIDS cases. They proposed considering

individuals as balls and various combinations of sex, birth date and ‘Soundex’ code as
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cells. However, the estimate of the true number of individuals proposed by Larsen is only

suitable when r̂ < n [8]. An assumption underlying the classical occupancy method is

that the partial personal identifiers such as birth of date do not vary over time for each

individual [120]. On the other hand, if the partial personal identifiers change or entry

errors are made, the classical occupancy method would underestimate the number of true

replications. For example, a woman’s ‘Soundex’ code could be changed after marriage.

Moreover, the replication problem can also be considered as related to a record linkage

problem [1], [84]. Record linkage is the process of determining that two or more records

probably refer to the same individual [118]. For example, suppose that there are two

files: file A and file B with records pertaining to individual cases [60]. Both files contain

identifiers with the same information to be matched such as date of birth and sex and

each of the files is assumed to contain no duplicate records. Further suppose that n is

the number of records on file A and m is the number of records on file B, then there are

n ×m pairs of records in total required to be analysed in order to classify each pair as

matched record pair or unmatched record pair. Consequently, both records from each

matched pair are considered as essentially one record but each record from an unmatched

pair is considered as essentially a distinct record.

There are two basic methods for record linkage, which are deterministic linkage and

the more complex probabilistic linkage. Particularly, the deterministic linkage is the

simplest record linkage, which generates links based on the number of individual identifiers

such as date of birth and sex that match among the available dataset [102]. It is effected

only when there is an exact match on all linking variables. Note that a linking variable

is a single criterion (i.e. identifier) utilized to establish or partially establish record

linkage [118]. Deterministic linkage is suitable when the records in the dataset have

a common identifier or when there are several representative identifiers. For example,

Muse et al. discussed the evaluation of the quality of anonymous record linkage with

the New York State AIDS Registry and a hospital discharge file using multiple computer

algorithm deterministic linkage [83]. In this study, the records from two population based
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files including hospital identification codes, dates of hospitalisation, sex and date of birth

were linked using a deterministic procedure. Using the number of true links between

the two files which were identified by using manual verification of additional information

(not contained in the two files) such as the address of the patient and the phone number

of the patient, the sensitivity (i.e. the proportion of the true links which are correctly

identified by the computer algorithm) and positive predictive value (i.e. the percentage

of computerised links which are true links verified manually) were calculated.

The probabilistic record linkage takes into account weights of each identifier based on

its ability to correctly identify a match or a non-match and then evaluates the probability

of two given records referring to the same individual. This approach is normally used

when there is more than one linkage variable and it is suitable for information-poor

situations [83]. The weight for each identifier can be estimated by a log2 of the odds

ratio that the two records in this identifier refer to the same individual against those two

records refer to different individuals. From a mathematical point of view, the weight for

each identifier can be expressed as

log2(m/n),

where m is the probability that an identifier agrees given that the records being examined

are a matched pair and n is the probability that an identifier agrees given that the

records being examined are an unmatched pair. Note that m would be 1.0 in the

case of perfect data, but this is rarely true in practice because, for example, records

are prone to miscoding. Thus the estimation of the m probability is usually required.

In particular, if prior knowledge of the datasets is available, a bootstrap method is

proposed. By using the standard agreement rate for each identifier (i.e. the standard

m known from other independent datasets) as an initial estimate, the m probability can

be iteratively recalculated according to a bootstrap method [57], [131]. Howe et al. [57]

and Arellano et al. [7] pointed out that commonly used identifiers demonstrate similar
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agreement rates across independent datasets. Hence a bootstrap method is appropriate to

be used for estimating the probability parameters for common identifiers in a probabilistic

record linkage. However this approach requires manually reviewing indeterminate record

pairs [48]. Another common approach for the estimation of the probability parameter

m is Naive Bayes based on a training dataset (i.e. a suitable amount of representative

data) [85]. The Naive Bayes approach guaranteed the conditional independence (i.e. the

density function for each comparison pair is different within the match or non-match

classes) which is used as an assumption within the Naive Bayesian network and is useful

by making the computation much more tractable [85], [135]. However, the training

dataset can be expensive to be obtained and hence the Expectation-Maximisation (EM)

algorithm can be applied to derive them probability based on a presumed initial value [48].

Considering the estimation for the probability parameter n in the probabilistic record

linkage, it is usually easy and straightforward. Take the month of birth as an example,

the probability parameter n is 1
12

when assuming that the month of birth is approximately

uniformly distributed. However, the estimation approaches introduced above are also

suitable for estimating the n probability.

In general, by comparing the total weight which combines all the weights for each

identifier calculated above to the two threshold values, there are three different kinds

of linkage defined for the records: (i) the ‘definite links’ with a total weight above the

upper threshold; (ii) the ‘non-links’ with a total weight below the lower threshold and (iii)

the ‘possible links’ with a total weight between two thresholds, which can be addressed

by human review [57]. However, Grannis et al. [48] pointed out that a single true-link

threshold can be established to avoid human review. In other words, a single threshold

can be picked, above which a link is declared and below which a non-link is declared,

so that human review can be removed. They demonstrated the calculation of a match

likelihood score for each record pair in the probabilistic linkage model which summarised

the component weights of each identifier and was used to compare with the single threshold

to determine a link or a non-link. The algorithm of a match likelihood score was based on

16



the EM algorithm for the estimation of probability parameters. This study also showed

that the EM algorithm estimated linkage probability parameters (i.e. the corresponding

m and n probabilities) with acceptable accuracy.

Generally speaking, the probabilistic record linkage method is useful for linking a

new set of records which is added to the database with the old one, which can rank

agreement between different matching linking variables and incorporate effects such as

data transcription errors [51], [60]. Probabilistic linkage software has been developed,

which utilizes a mathematical algorithm to determine whether two records should be

linked or not based on the information in the datasets. A study addressed by Clark and

Hahn [21] suggested that the probabilistic record linkage is more adaptable for general

use compared to the deterministic record linkage, especially for linking large amounts of

data. In addition, Elmagarid et al. [29] pointed out that probabilistic data linkage can be

regarded as a Bayesian inference problem and they also described the Bayes decision rules

based on a likelihood ratio with minimum error for the purpose of detecting the duplicate

records with multiple identifiers in the dataset.

The efficiency of probabilistic record linkage can be measured by the positive

predictive value which is the proportion of records linked by the algorithm that truly

do match. A ‘duplicate method’ described by Blakely et al. [13] can be used to calculate

the positive predictive value within the probabilistic linkage procedure when there is only

one match for each record which is quite common in epidemiology (e.g. linking between

a mortality file and a population file). They also pointed about that the ‘duplicate

method’ is appropriate for the linkage using anonymous data since it does not require

a validation subset with detailed personal information such as name and address. The

positive predictive value estimated by the ‘duplicate method’ was proven to be robust to

sensitivity analyses.

Considering the application of data linkage on the HIV database, Ades et al. [2]

pointed out that data linkage in anonymous surveys can be used to investigate the local

prevalence and incidence of the worldwide epidemic. They used an unlinked anonymous
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neonatal seroprevalence survey with electronic record linkage of data from child health

computers (including mother’s age, ethnic status and both parents’ country of birth) and

samples prior to anonymous HIV tagging and testing to assess the HIV prevalence in the

UK. The electronically linked data were also sent to the Office for National Statistics.

Recently, Rice et al. [96] established a cohort of HIV-diagnosed adults using deterministic

record linkage on the data in the 1998 to 2007 SOPHID database, new diagnoses database

and Office for National Statistics death records to assess the situation of attendance at

HIV-related services for HIV diagnosed adults in England, Wales and Northern Ireland.

Apart from using record linkage approaches to estimate the HIV prevalence in the

dataset, Goubar et al. [47] developed a Bayesian framework for synthesis of different

sources of surveillance information, implemented through Markov chain Monte Carlo

methods, in order to estimate HIV prevalence and proportion of HIV diagnosed people

within the SOPHID database in England and Wales. They also pointed out that the

data were found to be inconsistent but can be resolved by introducing ‘bias adjustment’

parameters. Moreover, Presanis et al. also applied the evidence synthesis approach based

on the Bayesian framework on multiple data sources to create a transmission dynamic

model and estimate the HIV prevalence among men who have sex with men in England

and Wales [94].

In this thesis, we are interested in assessing the duplication in the PHLS dataset. In

particular, only one linkage variable (i.e. the date of birth) is available for analysis. Thus

the classical data linkage techniques are not appropriate here. We shall use maximum

likelihood methods to estimate the percentage overcounting present in the PHLS dataset.

2.3.1 Previous work on the replication problem in the PHLS

dataset.

The majority of the researches on the replication problem in the PHLS dataset were done

by Greenhalgh, Doyle and Mortimer. In this subsection, we will briefly demonstrates the
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results obtained by Greenhalgh et al. that have been published.

Firstly, Doyle et al. [27] applied three statistical methods to detect whether there was

a greater number of replication of individuals than expected by chance alone in the 1991

PHLS dataset of HIV diagnoses where only the birth dates were held. They proposed the

theoretical distribution of the number of birth date replicates, which will be particularly

demonstrated in the next chapter. By using a simple χ2 test, they detected five out of

eleven records with large sample sizes in the 1991 PHLS dataset having more replication

than would have been expected by chance alone (at a 5% significance level). For the other

five records with small sample sizes, an incomplete ranking scheme was applied, which

revealed that one out of five records in the 1991 PHLS dataset have more replication than

expected by chance alone. In addition, they also applied a ranking scheme of pairs to test

whether there is replication in the 1991 PHLS dataset. In general, this study pointed out

that the replication existed in the 1991 PHLS dataset of HIV diagnoses.

Then Greenhalgh and Doyle [51] developed the pairs test which is suitable for both

small and large sample sizes for detecting replication in the 1991 PHLS dataset of HIV

diagnoses and took into account the effect of seasonality of birth dates (i.e. birth dates

are not randomly distributed). They showed that the effect of seasonality is negligible.

Similarly, five out of 16 records in the 1991 PHLS dataset showed evidence of having

more replication than expected by chance alone. However, those two studies did not

quantify the amount of replication in the data which is worthwhile to be acknowledged

when using this dataset. In addition, Greenhalgh et al. [52] also proposed a maximum

likelihood method to estimate the probability of overcounting of individuals in a given

record. However, the maximum likelihood method was only applied for the five records

with small sample sizes in the 1991 PHLS dataset, where the conclusion that one out of

five records in the dataset showed evidence of overcounting of individuals was the same

as the results obtained by the partial ranking method which is suitable only for small

sample sizes.

In our thesis, we focus on quantifying the amount of replicated individuals in the HIV

19



diagnoses dataset based on the maximum likelihood method addressed by Greenhalgh et

al. in 1999 [52] (which was introduced above) since previous work has already shown

a considerable amount of replicated individuals. We will extend the application of the

maximum likelihood method to the target datasets sent to us by the PHLS in 1991

and 1994. The datasets that we will use for the further analysis in this thesis will be

demonstrated in the next section.

2.4 The available data.

The PHLS was interested in a statistical method to test whether individuals were being

repeatedly counted in the database. The reported HIV positive individuals were divided

according to their year of birth in the PHLS database. In 1991, the PHLS sent Strathclyde

University a database of HIV diagnoses which only contained the distribution of birth

dates of individuals. Particularly, for each birth year, the number of birth dates in that

year for which there was at least one record in the database and the corresponding number

of individuals observed in that year were recorded in the database. No information on

‘Soundex’ codes was included in the 1991 PHLS dataset. The information in the 1991

PHLS database which was sent to us for the replication analysis is displayed in Table A.1

in Appendix A. In the 1991 dataset, the birth year of the recorded individuals ranged

from 1929 to 1944. For a given birth year, the number of individuals who were born in

this year was included in the dataset and the record of the number of birth dates for those

individuals was presented as a vector, consisting of the singletons, doubletons, tripletons

and so on. For a given birth year, the distribution of the number of birth records can be

expressed as

S = (S1, S2, S3, · · · , Sn),

where S1 denotes singleton birth records, S2 denotes doubleton birth records, S3 denotes

tripleton birth records, up to Sn which denotes n-tuple birth records. A singleton

represents a single birthdate (i.e. the birth records in the singletons had distinct birth
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dates). A doubleton represents that two birth records having the same birth date (i.e.

each pair of birth records in the doubletons had the same birth dates). Similarly, an

n-tuple is a birth date which appears in exactly n records in the dataset (i.e. n birth

records in one n-tuple had the same birth dates). Therefore, the observed number of

birth records in this given birth year can be calculated by
∑n

i=1 iSi which can also be

considered as the observed number of individuals. Note that only non-zero birth year

record tuples were recorded. All non-recorded birth year tuples are zeros. For example,

for a given birth year of 1939 in the 1991 PHLS dataset, the total number of individuals

reported as HIV positive was 99 and the record of number of birth dates can be expressed

as (69, 13, 2) i.e. the s1 = 69, s2 = 13, s3 = 2, s4 = s5 = · · · = 0. Thus this represents

that there are 69 birth records which have 69 distinct birth dates and 13 pairs of birth

records where each pair of birth records had one distinct birth date and 2 tripletons where

each triple means a birth date repeated three times. Hence the observed number of birth

records in this birth year of 1939 is 69+2×13+3×2 = 101. However it is difficult to tell

from this information whether the multiple recording (such as doubletons, tripletons and

so on) corresponds to one individual recorded repeatedly or multiple distinct individuals

with the same birth date.

The 1994 dataset ranged from the 1901 birth year to the 1973 birth year, and has

a larger population size compared to the 1991 dataset. The 1994 PHLS dataset of HIV

diagnoses was also sent to us for the further analysis, which is displayed in Table A.2 in

Appendix A. The same notation of birth dates records as used in the 1991 dataset was

applied to the 1994 dataset.

In this thesis, the replication problem in both 1991 and 1994 PHLS datasets will be

highlighted. Although the replication analysis cannot identify whether a particular pair of

records is a pair of true replications or non-replications, it helps to estimate the magnitude

of true number of distinct individuals reported as AIDS in a surveillance system [120].

As we mentioned in this literature chapter, the maximum likelihood method is the basic

technique that will be introduced specifically in the next chapter. Moreover, we will also
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develop the bootstrap method for the purpose of generating the 95% confidence interval

for the estimate of replicated records of birth dates. In Chapter 4, the results obtained by

the methods introduced in Chapter 3 for both 1991 and 1994 datasets will be illustrated.
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Chapter 3

Methodology to quantify the amount

of replication

According to the study presented by Greenhalgh, Doyle and Mortimer [27], replication

is present in the AIDS dataset sent from the PHLS in 1991. Our main target is that

of developing an algorithm to estimate the amount of replication existing in the two

datasets provided by the PHLS AIDS center. This chapter presents a general approach

to iterative computation for the maximum likelihood estimate of the true number of

distinct individuals as well as the estimated replication percentage based on the maximum

likelihood technique. In general, the majority of the birth years in the dataset have several

potential true numbers of distinct individuals, which can be derived from the observed

sample. In order to obtain the maximum likelihood estimator of the true number of

distinct individuals, we have to construct the likelihood function for each possible true

number of distinct individuals and the true probability distribution of the number of HIV

tests taken by an individual which is the probability of obtaining the observed replication

vector given this true number of distinct individuals and probability distribution. For

most of the birth years in the dataset, there is more than one likelihood function and

therefore the maximum likelihood estimate can be obtained by maximising over all the

results of the likelihood functions using the statistical software package R or the scientific
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programming language C.

For a given birth year, from observed replication vector s = (s1, s2, · · · , sn) with the

corresponding sample size r =
∑n

i=1 isi we can derive a series of potential true numbers

of distinct individuals rj. Under each potential true individual record, the corresponding

replication vectors can be generated based on the observed one so that a likelihood function

can be constructed. We develop an iterative method to do the calculation.

3.1 The method of deriving the potential replication

vectors.

Based on the observed replication vector s = (s1, s2, · · · , sn), the observed number of

distinct individuals (i.e. the observed sample size) is robs =
∑n

i=1 isi. However it is

possible that one or even several persons were recorded repeatedly. One of the possibilities

is that the records in each of the s2 doubletons is actually the same individual and so

are the records in each of the s3 tripletons, · · · , and sn n-tuples, which leads to the

minimum possible true number of distinct individuals r̄min =
∑n

i=1 si. Obviously, the

maximum possible true number of distinct individuals is just the observed sample size

r̄max = robs. Moreover, the rest of the possible true records are able to be calculated as

r̄i = r̄max − i where i is the number of repeated records that are assumed to exist in the

observed sample and also 0 ≤ i ≤ r̄max − r̄min. Specifically i = 1 means that there is one

person recorded repeatedly and thus the sample size becomes one less than the observed

sample size, i.e. r̄1 = robs− 1. Similarly i = 2 means there are two persons recorded twice

or one person recorded three times and the corresponding sample size is r̄2 = robs − 2

and so on. Therefore, the potential numbers of true total distinct individual records is

r̄max − r̄min + 1.

Take the birth year 1931 with the observed replication vector (s1, s2, s3) = (37, 6, 1) as

an example. The observed sample size (i.e. the maximum possible true number of distinct
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individuals) is 52 (37+2×6+3×1) since there are 37 individuals having a different birth

date throughout the year, 6 pairs of persons where each two have the same birth date and

a trio of persons where the three persons have the same birth date. Also the minimum

possible true number of distinct individuals can be calculated by considering the six pairs

of persons as six distinct individuals and the trio of persons as a single individual that

were recorded repeatedly, which means that r̄min = 37 + 6 + 1 = 44. According to the

algorithm introduced above, the other possible true numbers of distinct individuals are

r̄1 = 51, r̄2 = 50, · · · , and r̄7 = 45 respectively. Therefore, there are 9 possible potential

numbers of true distinct individual records.

With a given potential true number of distinct individuals that is derived above, we

are interested in the corresponding replication vectors. An iterative method has been

developed to generate the sets of the replication vectors based on the observed one. The

following graph (Figure 3.1) demonstrates the idea of the algorithm clearly. Considering

moving one tuple only one step every time from the right to the left, the new replication

vectors are able to be derived. For the purpose of illustrating the methodology of deriving

the potential replication vectors by the Figure 3.1 we assume that it is always true that

at least one record exists in sk (1 ≤ k ≤ n) i.e. sk ≥ 1 where 1 ≤ k ≤ n. Otherwise we

skip this step and move on to the next one. In other words, if sk = 0 (2 ≤ k ≤ n) we do

nothing about it and proceed to sk−1 to check whether it is larger than 0.

Firstly, based on the observed replication vector (s1, s2, s3, · · · , sn−2, sn−1, sn) with

sample size robs we move one tuple from the last element sn to the left element sn−1 which

is only step from sn, giving us the first new replication vector (s1, s2, s3, · · · , sn−2, sn−1 +

1, sn − 1). Here we assume that sn ≥ 1. This new replication vector implies that there

is one replication in an n-tuple, i.e. there is a person that was recorded twice. In other

words, the true number of distinct individuals for the new replication vector becomes

robs − 1. We denote this first new replication vector as (t
(1)
1 , t

(1)
2 , t

(1)
3 , · · · , t(1)

n−2, t
(1)
n−1, t

(1)
n ).

Then returning to the observed replication vector we move one tuple from sn−1 (sn−1 ≥ 1)

one place to the left to sn−2, getting the second new replication vector (s1, s2, s3, · · · , sn−2+
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The observed replication vector:                                                  
                                                            (1):one tuple 

                                                                   (2): one tuple 

                                                            

                                         (n-2): one tuple 

                              (n-1): one tuple 

 

The new replication vectors:   (1):    (                            ); 

   (2):    (                            ); 

                                          

   (n-2):   (                            ); 

   (n-1):   (                            ); 

 

Figure 3.1: The method of deriving the true potential replication vectors.

1, sn−1 − 1, sn) denoting this as (t
(2)
1 , t

(2)
2 , · · · , t(2)

n−1, t
(2)
n ). It also suggests that one of the

n−2 persons who have the same birth date was recorded twice, leading to an overcount in

(n−1)-tuples and an undercount in (n−2)-tuples. Similarly, another n−3 new replication

vectors can be generated in the same way shown above. Note that the entire set of the new

replication vectors obtained at this stage have the same sample size r̄1 = robs−1 and they

will be treated as the potential true ones. This procedure is illustrated diagrammatically

by Figure 3.1.

In the second stage, we carry out the same procedure presented above with regard to

each of the replication vectors we obtained before. For the replication vector (t
(1)
1 , t

(1)
2 , t

(1)
3 ,

· · · , t(1)
n−2, t

(1)
n−1, t

(1)
n ) with sample size r̄1 as a base replication vector, up to another n−1 new

replication vectors can be derived by moving tuples one step to the left, from t
(1)
k to t

(1)
k−1

where 1 < k ≤ n. Note that it might not be possible to obtain the full n−1 new replication

vectors since it is possible that t
(1)
k = 0 was obtained in the first stage. In this procedure

moving one individual to the left in replication vector (t
(1)
1 , t

(1)
2 , t

(1)
3 , · · · , t(1)

n−2, t
(1)
n−1, t

(1)
n )

corresponds to needing to add one additional repeated record to the proposed new true

replication vector to obtain the observed replication vector. As a result, the proposed true

number of distinct individuals decreases to r̄2 = r̄1 − 1. Applying the same procedure to

the rest of the replication vectors obtained in the first stage, we can get up to (n−1)2 new
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replication vectors in total treated as the potential true replication vectors with the sample

size r̄2. However, it is possible that some of the new replication vectors derived in this

stage appear several times. In other words, the same outcome is likely to be derived from

different base replication vectors. In each stage, it has to be checked that whether the new

replication vector already exists in the set of potential true replication vectors and if so the

repeated one has to be eliminated. As a matter of fact, the total number of the potential

replication vectors with sample size r̄2 is less than (n − 1)2. In order to find an upper

bound for the amount of potential replication vectors in the second stage, we consider that

there are n−1 base replication vectors obtained in the first stage and we also assume that

all the elements ti (1 ≤ i ≤ n) in the vector are strictly positive integers. Comparing the

first group of potential replication vectors derived from the first base replication vector

(s1, s2, · · · , sn−1 + 1, sn − 1) obtained in the first stage to the second group of replication

vectors derived from the second base replication vector (s1, s2, · · · , sn−2 + 1, sn−1 − 1, sn)

obtained in the first stage we notice that there is one repeated replication vector existing

in the second group which needs to be eliminated. Thus the amount of new replication

vectors in the first group is still n − 1 while the number of new replication vectors in

the second group becomes n − 1 − 1. Similarly, by checking the third group of the

new potential replication vector we could find two repeated ones. Consequently, we can

calculate the upper bound for the number of potential replication vectors in the second

stage is (n− 1) + (n− 1− 1) + (n− 1− 2) + · · ·+ (n− (n− 1)) = (n−1)×n
2

.

An iterative route is able to be constructed by repeating the procedure introduced

above for each of the replication vectors we obtained before and so on. The calculation

can be complicated for a large sample size, so we use the statistical software R. In general,

except for the observed replication vector (i = 0) the upper bound for the amount of the

potential true replication vectors with the corresponding sample size r̄i is
(
n+i−2

i

)
if n ≥ 2.

If n = 1 (i.e. only singletons are observed) or i = 0 (i.e. there is no replication) then

there is at most one potential replication vector corresponding to the observed one. It

can be detected from the pattern of deriving the potential replication vectors based on
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the observed one. The general conclusion is demonstrated in Theorem 3.1 which is proved

below.

Generally speaking, considering an observed replication vector (s1, s2, · · · , sn) (n ≥ 1

and s1, s2, s3, · · · , sn are all strictly positive integers) with observed sample size robs, we

aim to find an upper bound for the number of potential replication vectors with sample

size r̄i = robs − i (i ≥ 0). It is clear that if n = 1 there are only singletons contained

in the observed replication vector, i.e. we must have all individuals distinct. Hence for

i = 0 there is just one potential replication vector corresponding to the observed one (i.e.

the observed one itself) and for i ≥ 1 there are no potential replication vectors with true

sample size r̄i = robs − i corresponding to the observed one. Theorem 3.1 in relation to

the calculation of an upper bound for the number of potential replication vectors can be

proved, which are given as follows.

Theorem 3.1 (i) If n = 1, i = 0 then there is just one potential replication vector

corresponding to the observed one with r̄i = robs − i.

(ii) If n = 1, i ≥ 1 then there are no potential replication vectors corresponding to the

observed one with r̄i = robs − i.

(iii) If n ≥ 2 then there are at most
(
n+i−2

i

)
potential replication vectors corresponding

to the observed one with sample size r̄i = robs − i.

Proof. We shall prove the result by mathematical induction on the size n of the observed

replication vector (s1, s2, · · · , sn). The results for n = 1 have already been shown.

For n = 2, consider the observed replication vector is (s1, s2) with sample size robs.

There is at most one potential true replication vector with r̄i = robs − i, namely

(s1 + i, s2 − i)

i.e. i true singletons are observed as doubletons. Note that we need s2 ≥ i here for this

true replication vector to be feasible, but even if s2 < i, one is still an upper bound for the
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number of true replication vectors with r̄i = robs − i. Therefore the result demonstrated

in Theorem 3.1 is true for n = 2.

As an induction hypothesis we assume that the result is true for n ≤ n0, where

n0 ≥ 2. This implies that the upper bound for the number of potential replication vectors

corresponding to an observed replication vector (s1, s2, · · · , sn0) with the true sample size

r̄i = robs − i is
(
n0+i−2

i

)
. Now suppose that n = n0 + 1 ≥ 3, and the observed replication

vector is (s1, s2, · · · , sn0+1). For any potential true replication vector corresponding to

the observed one (s1, s2, · · · , sn0+1) with the true sample size r̄i = robs − i, we consider

the number of observed (n0 + 1)-tuples, which is denoted by j, that are not actually

true (n0 + 1)-tuples in the potential true replication vector. It is obvious that j must be

between 0 and i inclusive. The upper bound for the number of potential true replication

vectors can be derived by considering all of the respective possible values for j.

If j = i then this means that i observed (n0 + 1)-tuples are actually true singletons,

doubletons, · · · , (n0−1) or n0-tuples. (Actually in this case all the observed (n0+1)-tuples

must be n0-tuples since the true sample size for the potential true replication vector is

robs − i, i.e. the i records in the (n0 + 1)-tuples are only able to move one step to the

left so that each of them gives an unit decrement in the observed sample size. However

in order to develop an argument that will work for all j the general statements are given

here.) Hence any potential replication vector could be written as

(s
′

1, s
′

2, s
′

3, · · · , s
′

n0
, sn0+1 − i).

Moreover, with regard to the corresponding sample size r̄i = robs − i for the potential

replication vector we have

n0∑
i=1

is
′

i + (n0 + 1)(sn0+1 − i) = robs − i.
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Since

robs =

n0∑
i=1

isi + (n0 + 1)sn0+1,

it is straightforward that

n0∑
i=1

is
′

i + (n0 + 1)(sn0+1 − i) =

n0∑
i=1

isi + (n0 + 1)sn0+1 − i.

n0∑
i=1

is
′

i =

n0∑
i=1

isi + n0i.

(3.1.1)

If sn0+1 < i then clearly there are no potential replication vectors corresponding to the

observed one with j = i. On the other hand, suppose that sn0+1 ≥ i and i observed

(n0 + 1)-tuples in the observed replication vector (s1, s2, · · · , sn0+1) are true n0-tuples

giving the new replication vector

(s1, s2, · · · , sn0−1, sn0 + i, sn0+1 − i).

This leads to another new replication problem where n = n0 and the new observed

replication vector is considered as

(s1, s2, · · · , sn0−1, sn0 + i) (3.1.2)

with the observed sample size denoted by r
(1)
obs. In this new replication problem, we look

for the number of potential true replication vectors (s
′
1, s

′
2, s

′
3, · · · , s

′
n0

) corresponding to

the observed one (3.1.2) with true number of distinct individuals r
(1)
obs − i(1) where all the

elements in these potential replication vectors here are the same as the ones contained in

the first n0 elements of the potential replication vectors (s
′
1, s

′
2, s

′
3, · · · , s

′
n0
, sn0+1 − i) in

the previous replication problem. Here r
(1)
obs is the number of individuals in the observed

replication vector (3.1.2). Hence we can establish a map

(s
′

1, s
′

2, s
′

3, · · · , s
′

n0
) −→ (s

′

1, s
′

2, s
′

3, · · · , s
′

n0
, sn0+1 − i)
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which is a one-to-one correspondence between potential true replication vectors in the

new problem and potential true replication vectors in the original problem with j = i and

furthermore the upper bound for the number of potential true replication vectors in the

new problem is also an upper bound for the number of potential replication vectors in the

original problem. According to the result in (3.1.1), we can derive that

n0∑
i=1

is
′

i =

n0∑
i=1

isi + n0i = r
(1)
obs − i

(1).

Hence i(1) = 0.

By the induction hypothesis, the upper bound for the number of potential replication

vectors in the new problem (n = n0) with i(1) = 0 is

(
n0 − 2

0

)
= 1.

Hence we can conclude that there is at most one potential true replication vector in our

original problem (n = n0 + 1) with j = i.

Next we consider the case j = i−1 so that exactly i−1 of the observed (n0+1)-tuples in

the original problem (where the observed replication vector is (s1, s2, · · · , sn0 , sn0+1) with

sample size robs) are actually singletons, doubletons, tripletons, · · · , n0 − 1 or n0-tuples.

Hence the potential true replication vectors with sample size r̄i = robs− i can be expressed

as

(s
′

1, s
′

2, s
′

3, · · · , s
′

n0
, sn0+1 − (i− 1)).

Arguing as before, concerning the corresponding true sample size for the potential

replication vectors we can deduce that

n0∑
i=1

is
′

i + (n0 + 1)(sn0+1 − (i− 1)) = robs − i,

=

n0∑
i=1

isi + (n0 + 1)sn0+1 − i.
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Hence
n0∑
i=1

is
′

i =

n0∑
i=1

isi + n0(i− 1)− 1. (3.1.3)

Now again suppose that all the i − 1 observed (n0 + 1)-tuples are actually n0-tuples,

which leads to another new replication problem to be considered where the new observed

replication vector becomes

(s1, s2, · · · , sn0−1, sn0 + i− 1) (3.1.4)

and the corresponding observed sample size is denoted by r
(2)
obs. Thus we focus on the

number of potential true replication vectors (s
′
1, s

′
2, s

′
3, · · · , s

′
n0

) with the true sample

size r
(2)
obs − i(2), (whose elements here are also consistent with the ones in the potential

true replication vectors (s
′
1, s

′
2, s

′
3, · · · , s

′
n0
, sn0+1 − (i − 1)) in the original problem),

corresponding to the new observed replication vector (3.1.4). For sn0+1 ≥ i − 1 the

map

(s
′

1, s
′

2, s
′

3, · · · , s
′

n0
) −→ (s

′

1, s
′

2, s
′

3, · · · , s
′

n0
, sn0+1 − (i− 1))

establishes a one-to-one correspondence between potential true replication vectors in the

new problem and potential replication true replication vectors in the original problem

with j = i− 1. Note that for sn0+1 < i− 1 in the original problem, there are no potential

replication vectors with j = i − 1. Therefore in any case the number of potential true

replication vectors in the new problem is an upper bound for the number of potential

replication vectors in the original problem with j = i− 1. Similarly as before, according

to the result in (3.1.3) it can be inferred that

n0∑
i=1

is
′

i =

n0∑
i=1

isi + n0(i− 1)− 1

= r
(2)
obs − i

(2).

Hence we deduce that i(2) = 1 since r
(2)
obs =

∑n0−1
i=1 isi+n0(sn0 +i−1) =

∑n0

i=1 isi+n0(i−1).
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By the induction hypothesis, it is known that the number of potential replication

vectors in the new problem with i(2) = 1 is at most

(
n0 + 1− 2

1

)
=

(
n0 − 1

1

)
.

Hence we can conclude that there are at most
(
n0−1

1

)
potential replication vectors in our

original problem with j = i− 1.

In general consider j = p where 0 ≤ p ≤ i which means that exactly p of the observed

(n0 + 1)-tuples in the original observed replication vector (s1, s2, s3, · · · , sn0 , sn0+1) must

actually be singletons, doubletons, tripletons, · · · or n0-tuples. The corresponding

potential true replication vectors can be obtained as

(s
′

1, s
′

2, s
′

3, · · · , s
′

n0
, sn0+1 − p)

with the same true number of distinct individuals robs − i. Applying the same argument

as before we deduce that

n0∑
i=1

is
′

i + (n0 + 1)(sn0+1 − p) = robs − i

=

n0∑
i=1

isi + (n0 + 1)sn0+1 − i,

which gives
n0∑
i=1

is
′

i =

n0∑
i=1

isi + n0p− (i− p). (3.1.5)

Now consider a new replication problem where the observed replication vector is

(s1, s2, · · · , sn0−1, sn0 + p) (3.1.6)

with the sample size r
′

obs. In this new replication problem we look for potential true

replication vectors (s
′
1, s

′
2, s

′
3, · · · , s

′
n0

) corresponding to the observed replication vector
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(3.1.6) with true number of individuals r
′

obs − i
′
. Based on the result in (3.1.5),

n0∑
i=1

is
′

i =

n0∑
i=1

isi + n0p− (i− p)

= r
′

obs − i
′
.

Thus we have i
′

= i− p, i.e. the true sample size for the potential replication vectors in

this new replication problem is r
′

obs − i
′
= r

′

obs − (i− p).

For sn0+1 ≥ i− p, the map (s
′
1, s

′
2, s

′
3, · · · , s

′
n0

) −→ (s
′
1, s

′
2, s

′
3, · · · , s

′
n0
, sn0+1 − (i− p))

establishes a one-to-one correspondence between potential replication vectors in the new

problem and potential replication vectors in the original problem with j = i− p. By the

induction hypothesis an upper bound for the number of potential replication vectors in

the new problem with the corresponding sample size r
′

obs − (i− p) is

(
n0 + i− p− 2

i− p

)
.

Hence an upper bound for the total number of potential replication vectors over all

values of j (0 ≤ j ≤ i) is

(
n0 − 2

0

)
+

(
n0 − 1

1

)
+

(
n0

2

)
+ · · ·+

(
n0 + i− 2

i

)
=

(
n0 + i+ 1− 2

i

)
,

which can be proved by Lemma 3.2. This completes the proof of Theorem 3.1. �

Lemma 3.2 For i ≥ 0,
(
n0−2

0

)
+
(
n0−1

1

)
+
(
n0

2

)
+ · · ·+

(
n0+i−2

i

)
=
(
n0+i+1−2

i

)
.

Proof. Using mathematical induction on i, for i = 0, it is obvious that

(
n0 − 2

0

)
=

(
n0 − 1

0

)
= 1.
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Hence the result is true. For i = 1, we also have the true result that

(
n0 − 2

0

)
+

(
n0 − 1

1

)
= 1 + n0 − 1 = n0 =

(
n0

1

)
.

Assume that it is true for i0, i.e.

(
n0 − 2

0

)
+

(
n0 − 1

1

)
+

(
n0

2

)
+ · · ·+

(
n0 + i0 − 2

i0

)
=

(
n0 + i0 + 1− 2

i0

)
.

Then for i0 + 1, we have

(
n0 − 2

0

)
+

(
n0 − 1

1

)
+

(
n0

2

)
+ · · ·+

(
n0 + (i0 + 1)− 2

i0 + 1

)
,

=

(
n0 − 2

0

)
+

(
n0 − 1

1

)
+

(
n0

2

)
+ · · ·+

(
n0 + i0 − 2

i0

)
+

(
n0 + i0 + 1− 2

i0 + 1

)
,

=

(
n0 + i0 + 1− 2

i0

)
+

(
n0 + i0 + 1− 2

i0 + 1

)
, (using the induction hypothesis here)

=

(
n0 + i0 − 1

i0

)
+

(
n0 + i0 − 1

i0 + 1

)
,

=
(n0 + i0 − 1)!

i0!(n0 − 1)!
+

(n0 + i0 − 1)!

(i0 + 1)!(n0 − 2)!
,

=
(n0 + i0 − 1)!

(i0 + 1)!(n0 − 1)!
(i0 + 1 + n0 − 1),

=
(n0 + i0)!

(i0 + 1)!(n0 − 1)!
,

=

(
n0 + i0
i0 + 1

)
,

=

(
(n0 + 1) + (i0 + 1)− 2

i0 + 1

)
.

Therefore the result is true for i0 + 1. In conclusion, Lemma 3.2 follows by induction. �

For example consider the observed replication vector (s1, s2, · · · , s8). We can generate

the upper bounds for the number of potential replication vectors at each stage. Clearly

according to the method of generating the potential replication vectors we introduced
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above, the upper bound for the number of potential replication vectors at the first stage is

7 (which is also equal to
(

8+1−2
1

)
for i = 1). Taking the situation that repeated replication

vectors possibly occur at each stage into account, the upper bound for the amount of

potential replication vectors at the second stage (i = 2) equals 7×1+6×1+ · · ·+1×1 =

(7+1)×7
2

= 28 after getting rid of the repeat vectors in the set of new potential replication

vectors. It can also be proved by Theorem 3.1 where for i = 2,
(

8+2−2
2

)
=
(

8
2

)
= 28. With

regard to the general formula for the upper bound of the potential replication vectors at

the second stage we mentioned before (n−1)×n
2

, the result in this example is consistent

with this since n = 8 here. Recall that the result was derived according to (n−1)×n
2

by

considering the number of potential true replication vectors which can be obtained from

the stage above (i = 1) after taking each base replication vector, considering moving one

tuple from each element one stage to the left and then eliminating duplicate replication

vectors. Based on a similar procedure, we are able to obtain the upper bounds for the

number of potential replication vectors at the third, fourth stage etc. which are as follows:

Stage 3 :7× 1 + 6× 2 + 5× 3 + 4× 4 + 3× 5 + 2× 6 + 1× 7,

= 7× 1!

1!0!
+ 6× 2!

1!1!
+ 5× 3!

1!2!
+ 4× 4!

1!3!
+ · · ·+ 1× 7!

1!6!
= 84,

Stage 4 :7× 1 + 6(2 + 1) + 5(3 + 2 + 1) + 4(4 + 3 + 2 + 1) + · · ·

+ 1(7 + 6 + 5 + 4 + 3 + 2 + 1),

= 7× 2!

2!0!
+ 6× 3!

2!1!
+ 5× 4!

2!2!
+ 4× 5!

2!3!
+ · · ·+ 1× 8!

2!6!
= 210,

Stage 5 :7× 3!

3!0!
+ 6× 4!

1!3!
+ 5× 5!

2!3!
+ 4× 6!

3!3!
+ · · ·+ 1× 9!

3!6!

· · · · · ·

Therefore we can deduce that an upper bound for the amount of potential replication

vectors with the true sample size r̄i (i ≥ 2) at the ith stage is
∑7

j=1(8 − j) (i−3+j)!
(i−2)!(j−1)!

=(
8+i−2
i

)
.

Proof. As we introduced before, the potential replication vectors are derived by moving

one tuple only one step every time from the right to the left. We denote ap as one tuple
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moving from (p+1)-tuples to p-tuples. Here 1 ≤ p ≤ 7 since n = 8. For example, a1 means

one tuple moving from a doubleton to a singleton. Therefore two ap’s (denoted as ap1 ,

ap2) mean that there are two tuples moving one space from the right to the left, leading

to the true sample size for the potential replication vectors equal to r̄i (i.e. the ith stage).

Thus we can obtain all the possible movement patterns of the tuples at each stage after

removing all the repeated ones, which will give a set of corresponding potential replication

vectors. For example, at the second stage (i = 2), we can generate the movement patterns

of the tuples which are expressed by ap1 , ap2 and this can be used to derive the potential

replication vectors based upon the observed one (shown in Table 3.1). Note that the

movement pattern a1, a2 is equivalent to the movement pattern a2, a1, which gives the

same replication vector at the second stage. In other words, the order of the movements

does not affect the derived new replication vectors.

Table 3.1: Movement patterns of tuples in the second stage.

Movement patterns of tuples
Number of distinct
possible patterns

a1, a1 a1, a2 a1, a3 a1, a4 a1, a5 a1, a6 a1, a7 7
a2, a2 a2, a3 a2, a4 a2, a5 a2, a6 a2, a7 6
a3, a3 a3, a4 a3, a5 a3, a6 a3, a7 5
a4, a4 a4, a5 a4, a6 a4, a7 4
a5, a5 a5, a6 a5, a7 3
a6, a6 a6, a7 2
a7, a7 1

Hence the upper bound of the amount of potential replication vectors with the true

sample size r̄2 at the second stage is 7 + 6 + 5 + · · · + 1. Based on the movement

patterns for the potential replication vectors at the second stage, we are able to derive

the corresponding movement patterns at the third stage (i.e. i = 3). For example, based

on the movement pattern a1, a1 in Table 3.1, there are seven possibilities of a new tuple

moving one place from the right to the left, which give seven potential replication vectors

with the true sample size r̄3. The corresponding movement patterns are (i) a1, a1, a1; (ii)

a1, a1, a2; (iii) a1, a1, a3; (iv) a1, a1, a4; (v) a1, a1, a5; (vi) a1, a1, a6; (vii) a1, a1, a7.

According to the movement pattern a1, a2 at the second stage, there are six new distinct
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possibilities of a new tuple moving one place from the right to the left, after considering

removing the same movement pattern a1, a2, a1 as we derived above. Similarly, the upper

bound for the number of distinct potential replication vectors with the true sample size

r̄3 at the third stage is

(7 + 6 + 5 + · · ·+ 1) + (6 + 5 + · · ·+ 1) + (5 + 4 + · · ·+ 1) + (4 + 3 + 2 + 1) + · · ·+ 1,

=7 + 6× 2 + 5× 3 + 4× 4 + 3× 5 + 2× 6 + 1× 7,

=7× 1!

1!0!
+ 6× 2!

1!1!
+ 5× 3!

1!2!
+ 4× 4!

1!3!
+ · · ·+ 1× 7!

1!6!
,

=
7∑
j=1

(8− j) j!

1!(j − 1)!
,

=

(
8 + 1

3

)
,

as stated previously.

According to the procedure of generating the movement patterns of the tuples we

used above at the i0’th stage, we have an upper bound from the (i0 − 1)’th stage of

(7 + 6 + 5 + · · ·+ 1) + (6 + 5 + · · ·+ 1)× (i0 − 2)!

(i0 − 3)!1!
+ (5 + 4 + · · ·+ 1)× (i0 − 1)!

(i0 − 3)!2!
+

(4 + 3 + 2 + 1)× i0!

(i0 − 3)!3!
+ (3 + 2 + 1)× (i0 + 1)!

(i0 − 3)!4!
+ (2 + 1)× (i0 + 2)!

(i0 − 3)!5!
+

1× (i0 + 3)!

(i0 − 3)!6!
,

=7 + 6×
(

1 +
(i0 − 2)!

(i0 − 3)!1!

)
+ 5×

(
1 +

(i0 − 2)!

(i0 − 3)!1!
+

(i0 − 1)!

(i0 − 3)!2!

)
+

4×
(

1 +
(i0 − 2)!

(i0 − 3)!1!
+

(i0 − 1)!

(i0 − 3)!2!
+

i0!

(i0 − 3)!3!

)
+

3×
(

1 +
(i0 − 2)!

(i0 − 3)!1!
+

(i0 − 1)!

(i0 − 3)!2!
+

i0!

(i0 − 3)!3!
+

(i0 + 1)!

(i0 − 3)!4!

)
+

2×
(

1 +
(i0 − 2)!

(i0 − 3)!1!
+

(i0 − 1)!

(i0 − 3)!2!
+

i0!

(i0 − 3)!3!
+

(i0 + 1)!

(i0 − 3)!4!
+

(i0 + 2)!

(i0 − 3)!5!

)
+

1×
(

1 +
(i0 − 2)!

(i0 − 3)!1!
+

(i0 − 1)!

(i0 − 3)!2!
+

i0!

(i0 − 3)!3!
+

(i0 + 1)!

(i0 − 3)!4!
+

(i0 + 2)!

(i0 − 3)!5!
+

(i0 + 3)!

(i0 − 3)!6!

)
,
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=7 + 6×
((

i0 − 3

i0 − 3

)
+

(
i0 − 2

i0 − 3

))
+ 5×

((
i0 − 3

i0 − 3

)
+

(
i0 − 2

i0 − 3

)
+

(
i0 − 1

i0 − 3

))
+

4×
((

i0 − 3

i0 − 3

)
+

(
i0 − 2

i0 − 3

)
+

(
i0 − 1

i0 − 3

)
+

(
i0

i0 − 3

))
+

3×
((

i0 − 3

i0 − 3

)
+

(
i0 − 2

i0 − 3

)
+

(
i0 − 1

i0 − 3

)
+

(
i0

i0 − 3

)
+

(
i0 + 1

i0 − 3

))
+

2×
((

i0 − 3

i0 − 3

)
+

(
i0 − 2

i0 − 3

)
+

(
i0 − 1

i0 − 3

)
+

(
i0

i0 − 3

)
+

(
i0 + 1

i0 − 3

)
+

(
i0 + 2

i0 − 3

))
+

1×
((

i0 − 3

i0 − 3

)
+

(
i0 − 2

i0 − 3

)
+

(
i0 − 1

i0 − 3

)
+

(
i0

i0 − 3

)
+

(
i0 + 1

i0 − 3

)
+

(
i0 + 2

i0 − 3

)
+

(
i0 + 3

i0 − 3

))
,

=7 + 6×
(
i0 − 1

i0 − 2

)
+ 5×

(
i0

i0 − 2

)
+ 4×

(
i0 + 1

i0 − 2

)
+ 3×

(
i0 + 2

i0 − 2

)
+ 2×

(
i0 + 3

i0 − 2

)
+

1×
(
i0 + 4

i0 − 2

)
,

=7× (i0 − 2)!

(i0 − 2)!0!
+ 6× (i0 − 1)!

(i0 − 2)!1!
+ 5× i0!

(i0 − 2)!2!
+ 4× (i0 + 1)!

(i0 − 2)!3!
+

3× (i0 + 2)!

(i0 − 2)!4!
+ 2× (i0 + 3)!

(i0 − 2)!5!
+ 1× (i0 + 4)!

(i0 − 2)!6!
,

=
7∑
j=1

(8− j) (i0 − 3 + j)!

(i0 − 2)!(j − 1)!
.

However

7∑
j=1

(8− j) (i0 − 3 + j)!

(i0 − 2)!(j − 1)!
= 7

(
i0 − 2

0

)
+ 6

(
i0 − 1

1

)
+ 5

(
i0
2

)
+ · · ·+

(
i0 + 4

6

)
.

But note that by Lemma 3.2,

(
i0 − 2

0

)
+

(
i0 − 1

1

)
+ · · ·+

(
i0 + 4

6

)
=

(
i0 + 5

6

)
,

(
i0 − 2

0

)
+

(
i0 − 1

1

)
+ · · ·+

(
i0 + 3

5

)
=

(
i0 + 4

5

)
,

· · ·(
i0 − 2

0

)
+

(
i0 − 1

1

)
=

(
i0
1

)
,
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(
i0 − 2

0

)
=

(
i0 − 1

0

)
.

Hence

7∑
j=1

(8− j) (i0 − 3 + j)!

(i0 − 2)!(j − 1)!
=

(
i0 + 5

6

)
+

(
i0 + 4

5

)
+

(
i0 + 3

4

)
+ · · ·+

(
i0 − 1

0

)
,

=

(
i0 + 6

6

)
,

which is the same upper bound as derived previously. �

This upper bound is also valid for i = 1, where there are at most seven replication

vectors, and i = 0, where there is at most one, replication vector.

To illustrate the method of deriving the potential replication vectors from an given

observed one, we take the replication vector (37, 6, 1) with the birth year 1931 and

observed sample size 52 as an example. Figure 3.2 presents the results of an algorithm

for deriving the potential replication vectors based on the observed one.

                              
           (37, 7, 0)                                 

(37, 6, 1)                (38, 6, 0)                      

           (38, 5, 1)                 (39, 5, 0)                     

                       (39, 4, 1)                  (40, 4, 0)                    

                                 (40, 3, 1)                   (41, 3, 0) 

                                               (41, 2, 1)                 (42, 2, 0)      

                                                            (42, 1, 1)                (43, 1, 0)     (44, 0, 0) 

                                                                        (43, 0, 1)      

                                                                                                      

 

Figure 3.2: The results of potential replication vectors for the observed vector (37,6,1) for
the birth year 1931.

Assuming that there is one person recorded twice in the birth year 1931, we consider

moving one tuple from the tripletons to the doubletons giving us the potential replication

vector (37, 7, 0) with the sample size 51. That is the tripleton actually means two
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unique individuals instead of three distinct persons having the same birth date. Another

outcome with the postulated true sample size 51 is (38, 5, 1) which can be obtained by

moving one tuple from the doubletons to the singletons. It indicates that exactly one

of the six doubletons is a single individual that was doubly counted. Based on those

two potential replication vectors, we can then derive new replication vectors by applying

the same algorithm to them. Given that there are two replication vectors present at the

current stage, three new replication vectors can be obtained: (38, 6, 0), (38, 6, 0) and

(39, 4, 1) where the first result is derived from the potential replication vector (37, 7, 0)

and the other two are derived based on the replication vector (36, 5, 1). We notice that

the first and the second outcomes are exactly the same although they are derived from

different vectors. Therefore, we have to eliminate one of them and the set of the potential

replication vectors with the true sample size 50 consists of two vectors: (38, 6, 0) and

(39, 4, 1). By means of repeating the same procedure and getting rid of the replication

vector that already exists in the set of the potential replication vectors at each stage, all

the potential replication vectors can be generated as shown in Figure 3.2.

To complete the calculation for deriving all the potential replication vectors with the

corresponding true sample size based on the observed one, we mainly use ‘for’ loops in

R and at each stage if the new replication vector is the same as one of the potential

replication vectors it has to be eliminated.

As the set of potential replication vectors is obtained associated with the

corresponding true number of distinct individuals, the probabilities of the replication

vectors are able to be deduced so that the likelihood functions for each potential true

sample size can be constructed.

3.2 The construction of the likelihood functions.

The main target of this project is to accurately estimate the amount of replication present

in the dataset which will be produced by the maximum likelihood method. We suppose
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that individuals in a given birth year are independently and randomly sampled. Moreover,

the individuals are chosen without replacement from the population consisting of all people

born in that birth year. In order to calculate the likelihood function of a replication vector

given the corresponding true number of distinct individuals, the probability of occurrence

for all the potential replication vectors has to be estimated. Therefore, the probability

distribution of the replication vectors should be known at first.

According to Theorem 1 of Greenhalgh, Doyle and Mortimer [52], the probability

distribution of the replication vector can be expressed as follows:

P (S1 = s1, S2 = s2, · · · , Sn = sn) =
d!

s1!s2! · · · sn!(d− t)!
r!

(1!)s1(2!)s2 · · · (n!)sn
1

dr
(3.2.1)

where t = s1 + s2 + · · · + sn is the total observed number of tuples in a given year; d is

the number of days throughout a year which is chosen as 365 in this project and r is the

sample size (i.e. r =
∑n

i=1(isi)). As a matter of fact, it is the probability of the individuals

having the same birth date which was recoded as the given true replication vector. By

applying this theorem, the probability of obtaining a particular replication vector can

be calculated for each of the potential replication vectors including the observed one.

Using the example we took above, the observed replication vector (37, 6, 1) with the

corresponding true number of distinct individuals (i.e. the observed sample size) 52 leads

to the probability of obtaining this replication vector being

365!

37!6!1!(365− 37− 6− 1)!

52!

(1!)37(2!)6(3!)1

1

36552
= 0.004515.

When using R to do the calculation for the distribution of the replication vector,

the large factorial argument (for example 365) usually causes difficulties in obtaining the

results. Hence we take the logarithm on both sides of the distribution formula, which
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gives us the log-probability

logP (S1 = s1, S2 = s2, · · · , Sn = sn)

= log(d!) + log(r!)− (log(s1!) + log(s2!) + · · ·+ log(sn!) + log((d− t)!)

+ s2 log(2!) + s3 log(3!) + · · ·+ sn log(n!) + r log(d)).

(3.2.2)

Once we get the log-probability of a certain replication vector, the corresponding

probability can be calculated as exp(logP (S1 = s1, S2 = s2, · · · , Sn = sn)). Then we

focus on the probability of the occurrence of the potential replication vectors, including

the observed one. A general approach has been developed for calculating it by considering

the number of tuples moving from large tuples on the right to the small tuples on the left.

We have already described how to calculate the potential true replication vectors

T = (T1, T2, · · · , Tn). Given the observed replication vector s = (s1, s2, · · · , sn−1, sn) and

one of the potential replication vectors t = (t1, t2, · · · , tn−1, tn), we can define a unique

nonnegative integer vector x = (x1, x2, · · · , xn−2, xn−1) giving the number of tuples which

have been moved from the different positions on the right of the observed replication

vector to the left to get the potential true replication vector t . Specifically, xi can be

uniquely determined as follows:



x1 = t1 − s1,

x2 = t2 − s2 + x1,

x3 = t3 − s3 + x2,

· · ·

xn−2 = tn−2 − sn−2 + xn−3,

xn−1 = tn−1 − sn−1 + xn−2,

xn−1 = sn − tn.

(3.2.3)

Clearly, x1 is the difference between the new singletons t1 and the observed singletons

s1, indicating the number of tuples that have been moved from doubletons S2, tripletons
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S3, · · · and n-tuples Sn to the original singletons S1 which gives rise to the new singletons

T1. Similarly, x2 denotes the number of tuples moved from S3, S4, · · · and Sn to both

doubletons S2 and singletons S1. Likewise x3 represents the number of tuples moved from

S4, S5, · · · and Sn to the S1, S2 and S3 categories. Since it is impossible that any tuples

will be moved into the last element of the vector Sn, xn−1 represents the number of tuples

moved out of the n-tuples. As the total number of tuples, which is the total number of

distinct birth dates in the sample, must remain constant we must have

s1 + s2 + · · ·+ sn = t1 + t2 + · · ·+ tn

and given the first n−2 equations in (3.2.3) the last two equations in (3.2.3) are equivalent.

However, we are not only interested in the number of tuples moving from the right to the

left but also in the particular number of the tuples ending up in a p-tuple tp that come

from a certain element sq (here q > p).

Suppose that the non-negative integer xi,j is defined as the number of tuples moving

from the observed replication vector element sj+i to the proposed true replication vector

ti, for 1 ≤ i ≤ n, 1 ≤ j ≤ n − i. For example, x1,1 means the number of the singletons

t1 that come from the doubletons s2 and x2,2 means the number of tuples moving from

the four-tuples s4 to the doubletons t2 in the potential true replication vector. Figure 3.3

demonstrates the idea of the algorithm clearly.

The next stage is to derive the equations expressing x1, x2, · · · , xn−1 in terms of the

xi,j. Remember that x1 is the number of tuples that have been moved from doubletons

s2, tripletons s3 · · · and n-tuples sn to the potential true singletons t1. Therefore, the

equation expressing x1 in terms of x1,j (1 ≤ j ≤ n− 1) is
∑n−1

j=1 x1,j = x1 (see Figure 3.3).

Similarly x2 is the total number of the doubletons t2 coming from the right-hand side s3,

s4, · · · , sn is
∑n−2

j=1 x2,j, plus the number of the singletons t1 coming from s3, s4, · · · , sn,
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The potential replication vector:                                                  

 

Figure 3.3: The moving pattern of the observed replication vector.

∑n−1
j=2 x1,j. As a result, we deduce that

x2 =
n−2∑
j=1

x2,j +
n−1∑
j=2

x1,j.

In general, the set of the equations expressing x1, x2, · · · , xn−1 in terms of xi,j’s are as

follows:
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x1 =
∑n−1

j=1 x1,j,

x2 =
∑n−2

j=1 x2,j +
∑n−1

j=2 x1,j,

x3 =
∑n−3

j=1 x3,j +
∑n−2

j=2 x2,j +
∑n−1

j=3 x1,j,

x4 =
∑n−4

j=1 x4,j +
∑n−3

j=2 x3,j +
∑n−2

j=3 x2,j +
∑n−1

j=4 x1,j,

· · · · · ·

xn−2 =
∑2

j=1 xn−2,j +
∑3

j=2 xn−3,j + · · ·+
∑n−2

j=n−3 x2,j +
∑n−1

j=n−2 x1,j,

xn−1 = xn−1,1 + xn−2,2 + · · ·+ x2,n−2 + x1,n−1.

(3.2.4)

It is obvious that given x1, x2, · · · , xn−1 the solution of equations (3.2.4) for the set xi,j

is unlikely to be unique. For each possible solution set xi,j, the corresponding probability

of obtaining the given potential true replication vector can be calculated. Note that for a

feasible set of xi,j we must always have



t1 ≥ x1 = x1,1 + x1,2 + x1,3 + · · ·+ x1,n−1,

t2 ≥ x2,1 + x2,2 + · · ·+ x2,n−2,

t3 ≥ x3,1 + x3,2 + · · ·+ x3,n−3,

· · ·

tn−2 ≥ xn−2,1 + xn−2,2,

tn−1 ≥ xn−1,1.

(3.2.5)

The first of these inequalities is obvious from equation (3.2.3). It also follows from

looking at Figure 3.3 as for any feasible set of xi,j the final number of singletons in the

proposed true replication vector (t1) must be at least the sum of all the tuples from s

that have moved to t1 (i.e. x1,1 from s2, x1,2 from s3, x1,3 from s4, · · · , x1,n−1 from sn).

Thus

t1 ≥ x1,1 + x1,2 + x1,3 + · · ·+ x1,n−1.
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Similarly considering the final number of doubletons in the proposed true replication

vector, Figure 3.3 shows that

t2 ≥ x2,1 + x2,2 + x2,3 + · · ·+ x2,n−2.

The remaining inequalities in (3.2.5) follow similarly. Note also that by considering the

number of k-tuples in the observed replication vector s we see that for k = 2, 3, · · · , r,

sk ≥
k−1∑
l=1

xl,k−l. (3.2.6)

Considering the general observed replication vector s = (s1, s2, · · · , sn), we assume

that the probability distribution for a randomly chosen individual having a given number

of positive HIV tests recorded in the dataset is defined as an unknown probability vector

p = (p1, p2, · · · , pn). In particular, pi (1 ≤ i ≤ n) is the probability that an individual

has had exactly i positive HIV tests. It is certain that 0 ≤ pi ≤ 1 and
∑n

i=1 pi = 1.

Based on a given observed replication vector s = (s1, s2, · · · , sn) and one of the derived

potential replication vectors t = (t1, t2, · · · , tn) associated with the non-negative values

xi,j, the probability that for j = 1, 2, · · ·n − i exactly xi,j i-tuples (in t) are observed as

(i+ j)-tuples (in s) and everyone else has had exactly one positive HIV test is

ti!

(ti −
∑n−i

j=1 xi,j)!
∏n−i

j=1 xi,j!
f
ti−

∑n−i
j=1 xi,j

i,0

n−i∏
j=1

f
xi,j
i,j .

Here fi,j is the probability of the replication needed so that a true i-tuple is observed as an

(i + j)-tuple in s . Note that ti ≥
∑n−i

j=1 xi,j by inequalities (3.2.5). For example consider

the singletons (t1) and suppose that x1,3 = x1,4 = x1,5 = · · · = x1,n−1 = 0 but x1,1 and x1,2

are non-zero. Then the probability that exactly x1,1 out of t1 single individuals have had

two positive HIV tests and x1,2 distinct individuals in the singletons are also overcounted
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as a tripleton (i.e. x1,2 distinct individuals have had exactly three positive HIV tests) is

t1!

x1,1!(t1 − x1,1)!

(t1 − x1,1)!

x1,2!(t1 − x1,1 − x1,2)!
f
t1−x1,1−x1,2
1,0 f

x1,1
1,1 f

x1,2
1,2

=
t1!

x1,1!x1,2!(t1 − x1,1 − x1,2)!
f
t1−x1,1−x1,2
1,0 f

x1,1
1,1 f

x1,2
1,2 .

Here f1,0 is the probability that a proposed true singleton been tested once (i.e. f1,0 = p1)

and f1,1, f1,2 are the probabilities that a true singleton is treated by mistake as a doubleton

(i.e. f1,1 = p2) and a tripleton respectively (i.e. f1,2 = p3). As for f2,0 which is the

probability that a true doubleton corresponds to two single persons having the same birth

date and both of them had exactly one positive HIV test, the formula can be written as

f2,0 = p1× p1. Concerning the definition of f2,1 (the probability that a observed tripleton

is actually a true doubleton), it represents that exactly one of the two single persons in

the doubleton has had a positive HIV test twice. Thus f2,1 = p1p2 + p2p1 = 2p1p2. f2,2 is

the probability that a true doubleton is observed as a four-tuple which means that either

one of the two distinct individuals in the doubleton took an HIV positive test three times

or both two persons in the doubleton took an HIV test exactly twice each. Hence, it leads

to the formula of f2,2 that is f2,2 = p1p3 + p3p1 + p2p2 = 2p1p3 + p2
2. Similar arguments

show that

f1,0 = p1, f1,1 = p2, f1,2 = p3, f1,3 = p4,

f2,0 = p2
1, f2,1 = (p1p2 + p2p1), f2,2 = (p1p3 + p3p1 + p2p2),

f3,0 = p3
1, f3,1 = (p1p1p2 + p1p2p1 + p2p1p1),

and

f4,0 = p4
1.

Note that fi,j =
∑

ξ pξ1pξ2 · · · pξi where the sum is over all ξ = (ξ1, ξ2, · · · , ξi) such
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that ξ1 +ξ2 +ξ3 + · · ·+ξi = i+j. So fi,j is the sum of all products of i p’s whose subscripts

sum to i+ j.

In practice we can use the following lemma to calculate the fi,j by the mathematical

induction.

Lemma 3.3 For i ≥ 2,

fi,j = p1fi−1,j + p2fi−1,j−1 + p3fi−1,j−2 + · · ·+ pj+1fi−1,0.

Proof. The result is clearly true for i = 2. Assume that it is true for i− 1 then consider

fi,j =
∑
ξ

pξ1pξ2 · · · pξi

where the sum is over all ξ = (ξ1, ξ2, · · · , ξi) such that ξ1 + ξ2 + ξ3 + · · ·+ ξi = i+ j. Thus

fi,j = p1

∑
ξ1∈Ω1

pξ1,1pξ1,2 · · · pξ1,i−1

+ p2

∑
ξ2∈Ω2

pξ2,1pξ2,2 · · · pξ2,i−1

+ p3

∑
ξ3∈Ω3

pξ3,1pξ3,2 · · · pξ3,i−1

+ · · ·

+ pj+1

∑
ξj+1∈Ωj+1

pξj+1,1
pξj+1,2

· · · pξj+1,i−1

where Ω1 = {ξ1 = (ξ1,1, ξ1,2, · · · , ξ1,i−1) such that ξ1,1 + ξ1,2 + · · ·+ ξ1,i−1 = i+ j − 1}, the

second sum is over all Ω2 = {ξ2 = (ξ2,1, ξ2,2, · · · , ξ2,i−1) such that ξ2,1 + ξ2,2 + · · ·+ ξ2,i−1 =

i+ j− 2}, the third sum is over all Ω3 = {ξ3 = (ξ3,1, ξ3,2, · · · , ξ3,i−1) such that ξ3,1 + ξ3,2 +

· · ·+ξ3,i−1 = i+j−3}, · · · and the last one over Ωj+1 = {ξj+1 = (ξj+1,1, ξj+1,2, · · · , ξj+1,i−1)

such that ξj+1,1 + ξj+1,2 + · · ·+ ξj+1,i−1 = i− 1}. Hence we can get

fi,j = p1fi−1,j + p2fi−1,j−1 + p3fi−1,j−2 + · · ·+ pj+1fi−1,0.
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The result of Lemma 3.3 follows. �

According to these quantities, the likelihood function for a true replication vector t

given the true number of distinct individuals r̄ and the unknown probability distribution

p can be constructed.

L(t|r̄,p) =
∑
x

t1!

x1,1!x1,2! · · · x1,n−1!(t1 − x1,1 − x1,2 − · · · − x1,n−1)!

× t2!

x2,1!x2,2! · · ·x2,n−2!(t2 − x2,1 − x2,2 − · · · − x2,n−2)!

× · · · × tn!

xn−1,1!(tn − xn−1,1)!

× f t1−x1,1−x1,2−···−x1,n−1

1,0 f
x1,1
1,1 f

x1,2
1,2 · · · f

x1,n−1

1,n−1

× f t2−x2,1−x2,2−···−x2,n−2

2,0 f
x2,1
2,1 f

x2,2
2,2 · · · f

x2,n−2

2,n−2

× f t3−x3,1−x3,2−···−x3,n−3

3,0 f
x3,1
3,1 f

x3,2
3,2 · · · f

x3,n−3

3,n−3

× · · · × f tn−1−xn−1,1

n−1,0 f
xn−1,1

n−1,1 × f tnn,0 × P

(3.2.7)

where

f1,j = pj+1, 0 ≤ j ≤ n− 1,

fi,j = p1fi−1,j + p2fi−1,j−1 + p3fi−1,j−2 + · · ·+ pj+1fi−1,0,

and

P = Pr(S1 = t1, S2 = t2, · · · , Sn = tn).

Note that given the observed replication vector s and the proposed replication vector

t we can calculate the integer vector (x1, x2, · · · , xn−2, xn−1) from equations (3.2.3). Then

in equation (3.2.7) the sum is taken over the set of values xi,j where 1 ≤ i ≤ n−1, 1 ≤ j ≤

n− i. The xi,j’s can be calculated from equations (3.2.4) constrained by the inequalities
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(3.2.6). Note that t then automatically satisfies the equations (3.2.5). Furthermore,

remember that xi,j is the number of tuples moving from (i + j)-tuples to i-tuples and

fi,j is the probability of the replication needed so that a true i-tuple is observed as an

(i + j)-tuple. Hence assuming that individuals taking the HIV tests are independent, it

is obvious that f
xi,j
i,j is the probability of the replication needed so that xi,j true i-tuples

are observed as (i+ j)-tuples. Note that for the ti postulated true i-tuples, ti−
∑n−i

j=1 xi,j

of them must correspond to i-tuples in the observed replication vector s which have no

repeated records, i.e. each of these i-tuples consists of i distinct individuals who have had

exactly one HIV test. There are i× (ti −
∑n−i

j=1 xi,j) of these individuals who had exactly

one HIV test in total. Thus, f
ti−

∑n−i
j=1 xi,j

i,0 is the probability that these i× (ti −
∑n−i

j=1 xi,j)

individuals have each had exactly one HIV test (since fi,0 = pi1, clearly f
ti−

∑n−i
j=1 xi,j

i,0 =

p
i×(ti−

∑n−i
j=1 xi,j)

1 ). From (3.2.7) we can see that the likelihood function can be expressed as

a sum of terms where each term is a product of powers pi for 1 ≤ i ≤ n and the sum of

the powers of pi is always equal to the true sample size r̄. In other words, we can assume

that after simplification the likelihood function L(t|r̄,p) is a sum of terms such as

Cpτ11 p
τ2
2 · · · p

τk
k

where C is a constant, p = (p1, p2, · · · , pn) and 1 ≤ k ≤ n and it is always true that∑k
i=1 τi = r̄.

It should be pointed out that the likelihood function (3.2.7) is also suitable for the

observed replication vector s = (s1, s2, · · · , sn). Because there is no movement of the

tuples, the values of xi,j are all zeros, which makes the likelihood function for s become

L(s|robs,p) = f s11,0f
s2
2,0 · · · f snn,0P = p

∑n
i=1 si

1 P = probs1 Pr(S1 = s1, · · · , Sn = sn). (3.2.8)

As we mentioned before, it is likely that a given postulated true sample size may

correspond to more than one potential true replication vector. Since the objective is to

estimate the amount of replication accurately in a given birth year, the likelihood functions
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should include the probabilities of obtaining all the potential replication vectors for each

of the true postulated sample sizes. From a mathematical point of view, the likelihood

function for a given postulated true sample size r̄ associated with the corresponding

potential true replication vectors t (1), t (2), · · · , t (k) is

L(t birthyear|r̄,p) = L(t (1)|r̄,p) + L(t (2)|r̄,p) + · · ·+ L(t (k)|r̄,p).

3.3 An example of calculating the likelihood

function.

Take the observed replication vector (28, 1, 1) with the birth year 1925 in the 1994 dataset

as an example to construct the likelihood functions. Firstly, we calculate the potential

true number of distinct individuals as well as the observed sample size.

robs = 28 + 2× 1 + 3× 1 = 33; r̄min = 28 + 1 + 1 = 30.

Hence there are four potential true number of distinct individual records. In other words,

except for the observed sample size 33 and minimum potential sample size 30 there are

two other potential true sample sizes which are r̄1 = robs− 1 = 32 and r̄2 = robs− 2 = 31.

Next, the corresponding potential true replication vectors should be derived. Based on

the original data (28, 1, 1), there are two outcomes with the postulated sample size 32.

If the tripleton is actually a doubleton indicating one replication exists in the observed

sample, the new replication vector becomes (28, 2, 0). The other result is (29, 0, 1)

showing that one of the twenty-nine distinct individuals in the singleton is observed as

a doubleton. After getting rid of the repeated replication vectors derived from (28, 2, 0)

and (29, 0, 1), there is only one potential replication vector with sample size 31 which

is (29, 1, 0). Finally, it is straightforward to obtain the last potential replication vector

for the minimal possible true sample size 30 (i.e. moving the doubleton to the singleton,
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giving the vector (30, 0, 0)). The results are shown clearly in table 3.2:

Table 3.2: The result for the data in the birth year 1931.

Potential Sample Size r̄i Potential Replication Vectors

33 (28, 1, 1)
32 (28, 2, 0); (29, 0, 1)
31 (29, 1, 0)
30 (30, 0, 0)

Next we are going to calculate the probabilities of the potential replication vectors

respectively:

P (S = (28, 1, 1)) = exp(log(365!) + log(33!)− (log(28!) + log((365− 28− 1− 1)!)

+ log(2!) + log(3!) + 33 ∗ log(365))) = exp(−4.245127) = 0.01433391;

P (S = (28, 2, 0)) = exp(−1.436272) = 0.2378128;

P (S = (29, 0, 1)) = exp(−4.515885) = 0.01093392;

P (S = (29, 1, 0)) = exp(−0.9831117) = 0.3741451;

P (S = (30, 0, 0)) = exp(−1.225252) = 0.2936838.

For each potential true sample size, a likelihood function containing the probability

of getting all the potential replication vectors with that sample size given the unknown

parameter p is able to be derived. Define the non-negative integer vectors x = (x1, x2)

and x̃ = (x1,1, x1,2, x2,1). The equation sets with regard to x and x̃ can be derived

according to the methods introduced in Section 3.2. For the replication vector (28, 2, 0)

denoted as t(1), we can build the equations of xi and xi,j (1 ≤ i ≤ 2, 1 ≤ j ≤ 2) as follows:



x
(1)
1 = t

(1)
1 − s1 = 28− 28,

x
(1)
2 = t

(1)
2 − s2 + x

(1)
1 = 2− 1 + x

(1)
1 ,

x
(1)
1,1 + x

(1)
1,2 = x

(1)
1 ,

x
(1)
1,2 + x

(1)
2,1 = x

(1)
2 .

The results can be obtained as
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x

(1)
1 = 0,

x
(1)
2 = 1,

x
(1)
1,1 = x

(1)
1,2 = 0;x

(1)
2,1 = 1.

Due to the non-negativity of the integers x
(1)
1,1, x

(1)
1,2 and x

(1)
2,1, there is only one set of solutions

valid for the equation set. That is one doubleton in the potential true replication vector

(28, 2, 0) is observed as a tripleton in the original database. Consequently, the likelihood

function for the potential replication vector (28, 2, 0) given the true sample size r̄ and

unknown parameter p is

L(t (1) = (28, 2, 0)|r̄ = 32,p) =
28!

0!0!(28− 0)!

2!

1!(2− 1)!
p28

1 (p2
1)(2−1)(2p1p2)(p3

1)0Pr(S = t (2))

= 4p31
1 p20.2378128 = 0.9512512p31

1 p2.

Specifically, the coefficient 28!
0!0!(28−0)!

2!
1!(2−1)!

indicates the possible number of ways that one

doubleton can be observed as a tripleton. The probability of the repeated HIV tests

needed so that a true doubleton is observed as a tripleton is f 1
2,1 = (2p1p2)1. Thus, the

corresponding probability of one repeated HIV test for an individual whose birth date is in

a doubleton (i.e. there are 31 persons having exactly one positive HIV test and one person

in a doubleton being tested twice) is 28!
0!0!(28−0)!

2!
1!(2−1)!

2p31
1 p2. Moreover, it is obvious that

sum of the powers of p1, p2 and p3 equals the true sample size of this potential replication

vector (here 31 + 1 + 0 = r̄ = 32).

For another potential replication vector t (2) = (29, 0, 1) with the same true sample

size 32, we use the same method to generate the likelihood function.



x
(2)
1 = t

(2)
1 − s1 = 29− 28,

x
(2)
2 = t

(2)
2 − s2 + x

(2)
1 = 0− 1 + x

(2)
1 ,

x
(2)
1,1 + x

(2)
1,2 = x

(2)
1 ,

x
(2)
1,2 + x

(2)
2,1 = x

(2)
2 .
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It gives the results that 
x

(2)
1 = 1,

x
(2)
2 = 0,

x
(2)
1,1 = 1;x

(1)
1,2 = x

(1)
2,1 = 0.

As a result, the likelihood function for the potential replication vector t (2) is

L(t (2) = (29, 0, 1)|r̄ = 32,p)

=
29!

1!0!(29− 1)!

0!

0!(0− 0)!
× p(29−1)

1 p2(p2
1)0(2p1p2)0(p3

1)1Pr(S = t(2)),

=29p31
1 p20.01093392 = 0.3170837p31

1 p2.

Now we are able to generate the likelihood function of obtaining the potential replication

vectors with the true sample size r̄ = 32 which is

L(t
(2)
1931|r̄ = 32,p) = L(t (1)|r̄ = 32,p) + L(t (2)|r̄ = 32,p),

= 0.9512512p31
1 p2 + 0.3170837p31

1 p2 = 1.268335p31
1 p2.

Clearly, the sum of the powers of p1 and p2 is 32 which is exactly the same as the true

sample size r̄.

Similarly, we can obtain the likelihood function for the true sample size 31 by applying

the same procedure as before. Table 3.2 shows that only one potential replication vector

(29,1,0), was derived with the true sample size 31. Define the non-negative integers ẋ1,

ẋ2 and ẋ1,1, ẋ1,2, ẋ2,1. We have



ẋ1 = 29− 28,

ẋ2 = 1− 1 + ẋ1,

ẋ1,1 + ẋ1,2 = ẋ1,

ẋ1,2 + ẋ2,1 = ẋ2,

with the two possible sets of answers
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ẋ1 = 1,

ẋ2 = 1,

ẋ1,1 = 1, ẋ1,2 = 0, ẋ2,1 = 1,

or 
ẋ1 = 1,

ẋ2 = 1,

ẋ1,1 = 0, ẋ1,2 = 1, ẋ2,1 = 0.

Therefore, for the replication vector (29,1,0), the likelihood function is

L(t
(3)
1931|r̄ = 31,p) =

[
29!

1!0!(29− 1− 0)!

1!

1!(1− 1)!
p

(29−1−0)
1 p2(p2

1)1−1(2p1p2)1

+
29!

0!1!(29− 0− 1)!

1!

0!(1− 0)!
p

(29−0−1)
1 p0

2p3(p2
1)1−0(2p1p2)0

]
× Pr(S = (29, 1, 0)),

= [29× 2p
(28+1)
1 p

(1+1)
2 + 29p

(28+2)
1 p3]× 0.3741451,

= 21.7004158p29
1 p

2
2 + 10.8502079p30

1 p3.

Considering the sums of the powers of the parameters pi, we detect that in both

terms the sums are equal to 31 which is the postulated true sample size here. Specifically

in the first term, the power of p1 is 29 and the power of p2 is 2 giving a total of 31.

Similarly in the second term of the likelihood function, the powers of p1 and p3 are 30

and 1 respectively whose sum is 31 as well.

In order to get the likelihood function for the minimal possible true sample size

r̄ = 30 with the corresponding potential replication vector (30,0,0), the non-negative

integers defined as ẍ1, ẍ2 and ẍ1,1, ẍ1,2, ẍ2,1 have to be calculated. According to the
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equation sets (3.2.3) and (3.2.4), we have



ẍ1 = 30− 28,

ẍ2 = 0− 1 + ẍ1,

ẍ1,1 + ẍ1,2 = ẍ1,

ẍ1,2 + ẍ2,1 = ẍ2,

we can get 
ẍ1 = 2,

ẍ2 = 1,

ẍ1,1 = ẍ1,2 = 1, ẋ2,1 = 0,

(3.3.1)

or 
ẍ1 = 2,

ẍ2 = 1,

ẍ1,1 = 2, ẍ1,2 = 0, ẋ2,1 = 1.

(3.3.2)

However, the answer set (3.3.2) does not satisfy the condition that sk ≥
∑k−1

l=1 xl,k−l (see

(3.2.6)) Therefore it should be deleted so the corresponding likelihood function is

L(t
(4)
1931|r̄ = 30,p) =

30!

1!1!(30− 1− 1)!

0!

0!(0− 0)!
p

(30−1−1)
1 p2p3Pr(S = (30, 0, 0)),

= 30× 29p28
1 p2p3 × 0.2936838 = 255.504906p28

1 p2p3.

As for the observed replication vector (28,1,1) with the sample size 33, it is straightforward

to get the likelihood function based on the formula (3.2.8) which is L(t
(1)
1931|r̄ = 33,p) =

p33
1 Pr(S = (28, 1, 1)) = 0.01433391p33

1 .

In these simple examples it was straightforward to calculate the likelihood function

by hand. However in real data the number of observed birth records and individuals in

a birth year becomes very large. Also the number of distinct records which correspond

to the same birth date may be as high as eleven. Consequently the combinations of

the possibilities for non-negative integers xi and xi,j that must be taken into account
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during the construction of the likelihood function will increase dramatically. It is then

impossible to calculate the likelihood function by hand so we have devised a computer

algorithm written in R (and C) that can calculate the likelihood functions based on the

method introduced in Section 3.2.

3.4 Maximum likelihood estimates.

Based on the likelihood function of the replication vectors given the true number of

distinct individuals r̄ and unknown parameter vector p, we aim to calculate the maximum

likelihood estimate p̂ which is the estimated probability vector that an individual has a

given number of HIV tests. Furthermore, the corresponding true sample size r̄ denoted

by r̂ is considered as the maximum likelihood estimate for the true number of distinct

individuals. As we know, with a given birth year there is usually more than one likelihood

function corresponding to different possible true sample sizes. Since each likelihood

function with the corresponding postulated true sample size r̄ leads to its own maximum

likelihood estimate, the overall maximum likelihood estimate for the given birth year

should be chosen as the one making the corresponding likelihood function be the largest

among all the maximum values of different likelihood functions given the relative possible

true sample sizes. From a mathematical point of view, the maximum likelihood estimate

for a given birth year can be presented as MLE = (p̂, r̂) such that the corresponding

likelihood function LMLE = max{Li(p̂ i, r̄i), 0 ≤ i ≤ r̄max−r̄min}, where Li is the likelihood

function for the derived true sample size r̄i (r̄0 is the observed sample size) and p̂ i is the

maximum likelihood estimate derived from Li.

Commonly, the likelihood function is a nonlinear polynomial function with the

constraint of the known parameter p that
∑n

j=1 pj = 1 and 0 ≤ pj ≤ 1. Lemma

3.4 which is taken from a study addressed by Greenhalgh, Doyle and Mortimer [52]

explains a method to calculate the maximum likelihood function in a comparatively simple

circumstance.
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Lemma 3.4 Suppose that m ≥ 1 and k1, k2, · · · , km are strictly positive real numbers.

Then pk11 p
k2
2 · · · pkmm is maximised over pi ≥ 0, 1 ≤ i ≤ m, p1 + p2 + · · · + pm = 1 at

p̂i = ki∑m
j=1 kj

when its value is
k
k1
1 k

k2
2 ···k

km
m

(
∑m

j=1 kj)
(
∑m

j=1
kj)

.

For example, based on the likelihood functions we have obtained in Section 3.3 (shown in

Table 3.3) the maximum likelihood estimate for the birth year 1925 can be calculated by

applying Lemma 3.4.

Table 3.3: Likelihood functions for the birth year 1925.

True Sample Size r̄i Likelihood Function Li

33 0.01433391p33
1

32 1.268335p31
1 p2

31 21.7004158p29
1 p

2
2 + 10.8502079p30

1 p3

30 255.504906p28
1 p2p3

Case (i). When r̄0 = 33 and the likelihood function is L0 = 0.01433391p33
1 , the maximum

likelihood estimate p̂0 is

p1 = 1, p2 = 0, p3 = 0

i.e. p̂0 = (1, 0, 0) and the likelihood function with the observed sample size 33 becomes

L0 = 0.01433391× 133 = 0.01433391.

Case (ii). Based on Lemma 3.4, for r̄1 = 32 the likelihood function L1 = 1.268335p31
1 p2

can be maximised at

p1 =
31

31 + 1
=

31

32
= 0.96875, p2 =

1

31 + 1
=

1

32
= 0.03125.

Equivalently, the maximum likelihood estimate p̂1 = (0.96875, 0.03125, 0) with r̂1 = 32

gives the maximum value for L1 which is 0.014813 (=1.268335× 0.9687531 × 0.03125).

Case (iii). With r̄2 = 31, the likelihood function is L2 = 21.7004158p29
1 p

2
2 +

10.8502079p30
1 p3. Since p1 + p2 + p3 = 1, clearly p2 can be expressed in terms of
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p1 and p3 (p2 = 1 − p1 − p3). Thus the likelihood function in this case becomes

L2 = 21.7004158p29
1 (1−p1−p3)2 +10.8502079p30

1 p3 with the constraints of 0 ≤ p1 +p3 ≤ 1

and p1, p3 ∈ [0, 1]. In order to maximise L2 subject to 0 ≤ p1 + p3 ≤ 1, we define a

Lagrangian L = L2−λ(p1 +p3−1) where complementary slackness gives λ(p1 +p3−1) = 0

and λ ≥ 0. By differentiating the Lagrangian with respect to p1 and p3 respectively, we

can get

Lp1 = 21.7004158 ∗ 29 ∗ p28
1 (1− p1 − p3)2 − 21.7004158 ∗ 2 ∗ p29

1 (1− p1 − p3)

+ 10.8502079 ∗ 30 ∗ p29
1 p3 − λ,

and

Lp3 = −21.7004158 ∗ 2 ∗ p29
1 (1− p1 − p3) + 10.8502079 ∗ p30

1 − λ.

Then we can neatly capture the results by writing

Lp1 = 0, Lp3 = 0 and λ(p1 + p3 − 1) = 0.

From the equality λ(p1 + p3 − 1) = 0 it is clear that either (i) p1 + p3 = 1 or (ii) λ = 0.

In case (i) if p1 + p3 = 1 then the solution satisfying these constraints and inequalities is

λ = 10.8502079× (30/31)30, p1 = 30/31 and p3 = 1/31. In this solution, the constraint is

binding because λ 6= 0, and so the constraint p1 + p3 = 1. By using the bordered Hessian

method (since the constraint is binding), the solution gives a local maximum. In case (ii)

if λ = 0 and p1 = 0 then the corresponding likelihood function L2 becomes zero which is

not a maximum. Hence p1 = 0 is not part of a maximum likelihood estimate. If λ = 0

and p1 6= 0 then the solution of the equalities becomes p1 = 0.8602 and p3 = −0.0753

which is not a feasible solution. Hence, the maximum likelihood estimate for L2 subject

to the constraint p1 + p2 + p3 = 1 (0 ≤ p1, p2, p3 ≤ 1) is p̂2 = (0.96774, 0, 0.03226).

Case (iv). Similarly, the likelihood function with the proposed true sample size r̄3 = 30
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has a maximum value of 0.04112 at

p1 =
28

28 + 1 + 1
= 0.93333,

p2 =
1

28 + 1 + 1
= 0.03333,

p3 = 1− p1 − p2 =
1

28 + 1 + 1
= 0.03334.

The results are summarised in Table 3.4 shown below.

Table 3.4: Maximum likelihood estimates for the birth year 1925.

True Sample Size r̄i Maximum Likelihood Estimates p̂i
Maximum Values of Likelihood

Function Li

33 (1, 0, 0) 0.014334
32 (0.96875, 0.03125, 0) 0.014813
31 (0.96774, 0, 0.03226) 0.13088
30 (0.93333, 0.03333, 0.03334) 0.04112

Comparing the maximum values of the likelihood functions in the four cases (see

Table 3.4, we find that the likelihood function for the true sample size 31 has the largest

maximum value, which implies that the maximum likelihood estimate for the birth year

1925 is p̂ = (0.96774, 0, 0.03226) with the estimated true sample size 31. In other words,

we can conclude that for the birth year 1925 it is most likely that there were thirty-one

individuals one of whom was recorded three times due to having had three HIV tests.

However, in practice the likelihood function could be much more complicated due to

the large number of observations. Under these circumstances, Lemma 3.4 is no longer

suitable for maximising the likelihood function. As a matter of fact, we can obtain the

maximum likelihood estimates r̂ and p̂ by using the constrained nonlinear optimisation

package ‘alabama’ in R written by Varadhan and Grothendieck [129]. The principle of

the package ‘alabama’ is the Augmented Lagrangian and Adaptive Barrier Minimisation

Algorithm for optimising smooth nonlinear objective functions with constraints. The

optimisation procedure begins with a starting point that is defined in a feasible region

and a barrier is added to enforce the constraints by specifying the parameters. The
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algorithm proceeds by minimising the objective function over all the values of r̂ and p̂.

During the application of the ‘alabama’ package, a simple mathematical transformation

of the likelihood function is used to increase the precision of the maximum calculation

because of two reasons. One of the reasons is that by default the package will minimise

a constrained nonlinear function. However we aim to maxmise the likelihood function

subject to constraints, so we can do this by minimising the negative of this function. The

second problem is that the likelihood function is usually quite small in practice which

may cause the problem of obtaining accurate answers from the calculation in R due to

numerical approximation difficulties. Therefore, we aim to minimise a new function when

applying ‘alabama’ to do the analysis of the real dataset, which is L̃ = −log(L) where

L is the original likelihood function we obtained by using the procedure introduced in

Section 3.2. The results obtained from the calculations of the ‘alabama’ package are

extremely close to the theoretical ones. For example, with the birth year 1925 the

estimated parameter p̂ in R is (0.96777, 0, 0.03223) with r̂ = 31 and the likelihood

function 0.13088. Compared with the theoretical estimates, we can conclude that the R

estimation procedure is very accurate.

3.5 The calculation of the amount of replication.

Once the maximum likelihood estimates are obtained, we are able to calculate the amount

of replication presented in the HIV dataset so that statistical inferences can be made on

the amount of the replication of individuals. The amount of replication denoted as ˆrep is

presented as a percentage. It can be estimated as

r − r̂
r̂

(3.5.1)

where r is the observed sample size and r̂ is the estimated true sample size. Therefore,

the estimated amount of replication is guaranteed to be non-negative since the observed
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sample size r is the maximum potential true sample size and r̂ ≤ r is always true.

Take the replication vector with the birth year 1925 as an example, the estimated true

sample size is 31 with the estimated associated probability vector (0.96777, 0, 0.03223)

according to the R calculation in Section 3.4. Hence based on the observed number of

distinct individuals 33 the estimated amount of replication for the birth year 1925 is

ˆrep1925 =
33− 31

31
=

2

31
= 6.45%.

Furthermore, there is an alternative method to calculate the amount of replication.

According to the definition of the probability parameter pi (i.e. pi is the probability that

an individual has had exactly i positive HIV tests), it is clear that this individual has

had i HIV tests and i− 1 of these are repeat tests. Hence the contribution to the overall

amount of replication in the dataset from the ith value pi of the probability vector p is

(i − 1)pi. For example, p2 is the probability that an individual had two HIV tests. It

illustrates that there is one replication recorded in the dataset since an individual was

actually considered as two distinct ones due to the repeated report. Hence the amount

of replication from the second component p2 of the probability vector p is (2 − 1)p2

expressed as a percentage. Similarly, the definition of p3 which is the probability that

an individual had HIV test three times means that one individual was reported as three

distinct persons. Thus there are two overcounted records in three postulated persons

giving that the amount of replication from the third component p3 of the probability

vector p is (3− 1)p3. Therefore, the amount of the replication for a birth year is

(2− 1)p2 + (3− 1)p3 + (4− 1)p4 + · · ·+ (n− 1)pn =
n∑
i=2

(i− 1)pi.

Here n denotes the last non-zero element of p (so n is guaranteed to be not larger than the

highest number of the repeated birth dates which individuals were having in the observed

replication vector).
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For the birth year 1925, we can obtain the amount of replication by using this

alternative method, which is shown as follows:

ˆrepalternative1925 = (2− 1)× 0 + (3− 1)× 0.03223 = 6.446%.

Clearly, it is quite close to the result we obtained by using the previous method to estimate

the amount of replication.

3.6 The parametric bootstrap method.

From statistical point of view, a point estimate of the amount of replication is of

limited use. Hence we calculate the 95% confidence intervals for the estimated amount

of replication by applying the parametric bootstrap method. Based on the estimated

probability distribution for the replication, we can generate a large number of samples to

do the simulation so that a confidence interval is able to be generated. The simulation of

the bootstrap method is used as a measurement of the estimated amount of replication

proposed before.

For a given birth year the sample size estimate r̂ and corresponding replication

probability vector estimate p̂ have been obtained by using the algorithm introduced

in Section 3.4, then we can generate a large number of random bootstrap samples of

r̂ individuals with each individual having probability distribution of number of records p̂.

Specifically, based on the replication probability vector estimate p̂ = (p̂1, p̂2, p̂3, · · · , p̂n)

we generate a set of random values di (1 ≤ i ≤ r̂) for the ith of the r̂ distinct individuals

in our bootstrap sample. Each di takes a value between 1 and n inclusive according

to the probability distribution p̂. In other words, di = 1 with probability p̂1, di = 2

with probability p̂2, di = 3 with probability p̂3, · · · and di = n with probability p̂n. di

corresponds to the number of times that the ith individual out of r̂ distinct individuals

in our bootstrap sample has had a HIV test. This is done by generating a corresponding
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random variable Ui with value ui from U(0, 1), a uniform distribution on [0, 1]. The Ui

are independent for each individual and each bootstrap sample.

Then

(i) If 0 ≤ ui ≤ p̂1, then di = 1.

(ii) If p̂1 < ui ≤ p̂1 + p̂2, then di = 2.

(iii) If p̂1 + p̂2 < ui ≤ p̂1 + p̂2 + p̂3, then di = 3.

(iv) If p̂1 + p̂2 + p̂3 < ui ≤ p̂1 + p̂2 + p̂3 + p̂4, then di = 4.

· · · · · ·

(n) If p̂1 + p̂2 + · · ·+ p̂n−1 < ui ≤ p̂1 + p̂2 + · · ·+ p̂n−1 + p̂n, then di = n.

(3.6.1)

If the random value ui is less than or equal to p̂1, then the ith individual in the

bootstrap sample has had exactly one HIV test. We treat it as a singleton (i.e. di = 1).

If ui is chosen greater than p̂1 and less than or equal to p̂1 + p̂2, this implies that the

ith individual in the bootstrap sample has had exactly two HIV tests. Equivalently di is

considered to be a doubleton which is denoted as di = 2. Similarly, if the random value

ui is greater than p̂1 + p̂2 and less than or equal to p̂1 + p̂2 + p̂3 it shows that the ith

individual has had exactly three HIV tests (where the random value di is treated as a

tripleton, i.e. di = 3) and so on.

This can be illustrated clearly by the pie chart shown in Figure 3.4. Suppose that

the whole area of the pie chart is one. Then the blue area (angle at the centre 360× p̂1
◦)

corresponds to the probability that ith individual in the bootstrap sample has had exactly

one HIV test (0 ≤ ui ≤ p̂1). The red area (angle at the centre 360× p̂2
◦) corresponds to

the probability that ith individual in the bootstrap sample has had exactly two HIV tests

(p̂1 < ui ≤ p̂1 + p̂2). The green area (angle at the centre 360 × p̂3
◦) corresponds to the

probability that the ith individual in the bootstrap sample has had exactly three HIV tests

(p̂1 + p̂2 < ui ≤ p̂1 + p̂2 + p̂3). The purple area (angle at the centre 360×(1− p̂1− p̂2− p̂3) ◦)

corresponds to the probability that the ith individual in the bootstrap sample has had
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Figure 3.4: The probability distribution of the number of HIV tests of an individual in
the bootstrap sample.
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some other number of HIV tests (p̂1 + p̂2 + p̂3 < ui ≤ 1).

For example, given the birth year 1925 with the estimated probability vector (0.96777,

0, 0.03223) and estimated sample size 31, we simulate 31 random samples from the uniform

distribution U (0, 1) using computer software R which gives the results as follows:

u1 = 0.30403607, u2 = 0.09584217, u3 = 0.11918258, u4 = 0.46913120, u5 = 0.96680645,

u6 = 0.31099250, u7 = 0.12851647, u8 = 0.36017595, u9 = 0.18566244, u10 = 0.58873800,

u11 = 0.38195380, u12 = 0.84997603, u13 = 0.68574188, u14 = 0.14658660, u15 = 0.87304620,

u16 = 0.92822543, u17 = 0.86302061, u18 = 0.98687901, u19 = 0.05818043, u20 = 0.48908429,
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u21 = 0.39215760, u22 = 0.33279110, u23 = 0.79075260, u24 = 0.12705525, u25 = 0.86916528,

u26 = 0.23403299, u27 = 0.16330792, u28 = 0.37997295, u29 = 0.27511547, u30 = 0.28733935,

u31 = 0.43947281.

To assign the random values di for 1 ≤ i ≤ 31, we define that

(i) If 0 ≤ ui ≤ 0.96777, then di = 1.

(ii) If 0.96777 < ui ≤ 0.96777 + 0, then di = 2.

(iii) If 0.96777 < ui ≤ 1, then di = 3.

Hence we have

d1 = 1, d2 = 1, d3 = 1, d4 = 1, d5 = 1, d6 = 1, d7 = 1, d8 = 1, d9 = 1, d10 = 1,

d11 = 1, d12 = 1, d13 = 1, d14 = 1, d15 = 1, d16 = 1, d17 = 1, d18 = 3, d19 = 1, d20 = 1,

d21 = 1, d22 = 1, d23 = 1, d24 = 1, d25 = 1, d26 = 1, d27 = 1, d28 = 1, d29 = 1, d30 = 1,

d31 = 1.

From the simulation results, it is clear that there are 30 individuals with exactly one

HIV positive test report and one individual with exactly three HIV test reports since d18

is a tripleton.

In order to give a better illustration for the method of generating bootstrap samples,

we are also going to use a more general case as an example. That is for the above example

of the birth year 1925 we build an artificial MLE probability vector p̂ with non-zero

elements instead, which is assumed as p̂ = (0.95, 0.03, 0.02) here. Thus the criteria which

are:

(i) If 0 ≤ ui ≤ 0.95, then di = 1,

(ii) If 0.95 < ui ≤ 0.95 + 0.03 (i.e. 0.95 < ui ≤ 0.98), then di = 2,

(iii) If 0.95 + 0.03 < ui ≤ 1 (i.e. 0.98 < ui ≤ 1), then di = 3,
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should be followed. Consequently based on the ui’s we obtained before, the values of di’s

become

d1 = 1, d2 = 1, d3 = 1, d4 = 1, d5 = 2, d6 = 1, d7 = 1, d8 = 1, d9 = 1, d10 = 1,

d11 = 1, d12 = 1, d13 = 1, d14 = 1, d15 = 1, d16 = 1, d17 = 1, d18 = 3, d19 = 1, d20 = 1,

d21 = 1, d22 = 1, d23 = 1, d24 = 1, d25 = 1, d26 = 1, d27 = 1, d28 = 1, d29 = 1, d30 = 1,

d31 = 1.

(3.6.2)

In this case, the simulation results shows that there are 29 individuals having had exactly

one HIV test, one individual with two HIV test reports and the other individual with

three HIV test reports.

In the next stage, birth dates of individuals are required to be randomly assigned to

dates throughout the year in order to generate the simulated replication vectors. For the

ith individual the di value gives the number of records corresponding to that individual.

We now also need to simulate the birth date of that individual within the given birth

year. Since we assume that there are 365 days in a year, the birth date can be expressed

as the kth day out of 365 (1 ≤ k ≤ 365) which corresponds to a specific date. Then r̂

integers B1, B2, · · · , Br̂ are randomly selected with replacement from the set

{Ω : 1, 2, 3, · · · , 365}

which can be done directly in R. Next we combine the birth dates and number of distinct

records of individuals in the bootstrap sample to get the observed replication vector for

each bootstrap sample. Note that it is possible that some of these integers B1, B2, · · · ,

Br̂ could be the same. Hence when we combine the birth dates and number of recorded

HIV tests of individuals in the bootstrap sample we must take this into account. For

example if a birth date b occurs exactly three times in a bootstrap sample as individual

1 who has had exactly one HIV test (i.e. B1 = b, d1 = 1), individual 10 who has had

68



exactly three HIV tests (B10 = b, d10 = 3) and individual 26 who has had exactly two

HIV tests (B26 = b, d26 = 2) then in the corresponding observed replication vector the

birth date b gives rise to a six-tuple. In the first above example with the given birth

year 1925, based on the simulation we have done before, 31 random numbers (di) are

obtained from which thirty records are treated as singletons and the other one is treated

as a tripleton. We choose 31 integers as birth date at random from 1 to 365 and assign

them to Bi respectively. The birth dates which are chosen randomly with replacement

are shown as follows:

B1 = 32, B2 = 148, B3 = 100, B4 = 245, B5 = 215, B6 = 193, B7 = 191, B8 = 28, B9 = 62,

B10 = 166, B11 = 158, B12 = 223, B13 = 71, B14 = 285, B15 = 324, B16 = 326, B17 = 276,

B18 = 63, B19 = 360, B20 = 100, B21 = 189, B22 = 143, B23 = 48, B24 = 126, B25 = 316,

B26 = 344, B27 = 254, B28 = 301, B29 = 202, B30 = 139, B31 = 59.

B1 = 32 means that it is the 32nd date in a year and B2 = 148 represents the 148th

date in a year, etc. Since the birth dates are randomly selected, we can simply assign Bi

to di such that each individual corresponds to a particular birth date. As we mentioned

before, it is possible that the same birth date is chosen repeatedly due to the sampling

with replacement. In this example, the 100th date was chosen twice (B3 = 100 and

B20 = 100) at random. Consequently, two distinct individuals (d3 = 1 and d20 = 1) who

are assigned the birth dates B3 and B20 respectively had the same birth date, leading to

a doubleton in the new replication vector. Besides, the rest of the 28 singletons (di = 1,

where 1 ≤ i ≤ 31) are assigned different birth dates giving 28 singletons in the new

replication vector. The three individuals in the tripleton (d18 = 3) had another distinct

birth date which is the 301st day of the year (B28 = 301). Thus we can get a new bootstrap

replication vector (28, 1, 1). On the other hand, if we consider the second example with

the artificial MLE probability vector p̂ = (0.95, 0.03, 0.02) in the 1925 birth year there

are two doubletons in the bootstrap sample since according to the explanation above the
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same birth dates from the simulation of Bi’s give rive to one doubleton in the observed

replication vector of the bootstrap sample and also we already had one individual with

two HIV tests (d5 = 2) before in the set of the number of times that an individual took

HIV tests (see 3.6.2) which is a doubleton as well. Further the same birth dates B3 and

B20 make the number of the singletons decrease from 29 to 27. Therefore in this case the

new observed replication vector in the bootstrap sample is (27, 2, 1).

Another example we intend to give is that considering a different set of birth dates

Bi which has been selected for the example we used above for the birth year 1925 with

the artificial MLE probability vector p̂ = (0.95, 0.03, 0.02). The Bi’s are enumerated as

follows:

B1 = 32, B2 = 148, B3 = 100, B4 = 245, B5 = 100, B6 = 215, B7 = 191, B8 = 28, B9 = 62,

B10 = 166, B11 = 158, B12 = 223, B13 = 71, B14 = 285, B15 = 324, B16 = 326, B17 = 276,

B18 = 63, B19 = 360, B20 = 100, B21 = 189, B22 = 143, B23 = 48, B24 = 126, B25 = 316,

B26 = 344, B27 = 254, B28 = 301, B29 = 202, B30 = 139, B31 = 59.

Therefore, there are three same birth dates (B3, B5 and B20) assigned to the third, fifth

and twentieth individuals out of the 31 persons respectively. Then we combine the number

of records of individuals with those three same birth dates together. Note that both the

third and twentieth individuals have had exactly one HIV test (since d3 = d20 = 1)

respectively while the fifth individual is treated as a doubleton who has had the HIV tests

twice (since d5 = 2) according to the results in (3.6.2). Thus, one doubleton and two

singletons (i.e four records) have the same birth dates, which leads to a four-tuple in the

observed bootstrap replication vector. The eighteenth individual has a unique birth date

but has had exactly three HIV tests giving rise to a tripleton in the observed replication

vector. The other 27 distinct individuals, each of whom had an unique birth date, give rise

to 27 singletons in the observed replication vector. As a result, the bootstrap replication

vector becomes (27,0,1,1).
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By regarding the new bootstrap replication vector as the observed one, the estimated

true sample size associated with the corresponding HIV test probability vector can be

obtained by applying the maximum likelihood estimation method. Consequently, the

estimated amount of replication is able to be generated as well. According to the

calculation in Section 3.3, the estimated true number of distinct individuals is 31 for

the bootstrap replication vector (28, 1, 1) which is regarded as an observed one here

in the first example. Compared with the observed sample size 33 in this example, the

estimated amount of replication is 6.45%.

In order to generate the 95% confidence interval for the estimated amount of

replication, we normally generate 100 samples of ‘observed bootstrap’ replication vectors

with each of the simulated vectors calculated by the method shown above. Once we

obtain the bootstrap replication vector samples, the corresponding estimated amount of

replication for each bootstrap replication vector can be obtained based on the maximum

likelihood method. In other words, using the bootstrap method we can generate 100

estimated sample sizes r̂j with the corresponding probability vectors p̂j (where 1 ≤ j ≤

100), giving the 100 estimated amounts of replication based on the observed sample

size in the bootstrap samples robs,j. From the mathematical point of view, the estimated

amount of replication for the new bootstrap replication vector can be presented as
robs,j−r̂j

r̂j

according to the definition given in Section 3.5. Recall that we proposed another method

of estimating the amount of replication in Section 3.5 as
∑n

j=2(j−1)p̂j, which can also be

used for bootstrap replication. In this thesis, we use the former method to estimate the

amount of bootstrap replication since as we demonstrated in Section 3.5, both methods

give virtually the same answer. Thus we can obtain the 95% confidence interval for the

estimated amount of replication by using R to get the 2.5% and 97.5% sample quartiles.

Particularly, as the distribution of the amount of replication in the bootstrap samples is

not necessarily symmetric, we use a technique that involves finding the quantiles from a

reversed empirical bootstrap distribution [59]. Suppose that η denotes the true percentage

replication in our sample, For each bootstrap sample we calculate η∗ − η̂ where η∗ is the
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estimated percentage replication in the bootstrap sample and η̂ is the estimated percentage

replication. From these we find the empirical values δL and δU such that 2.5% of the

adjusted observations lie below δL and 2.5% lie above δU . Hence we deduce the 95%

bootstrap confidence interval for the true percentage replication η as

(η̂ − δU , η̂ − δL).

According to the algorithm for constructing the 95% confidence interval based

on the parametric bootstrap method, a computer program written in R was devised

which can efficiently generate the results by running the program. This program was

comprehensively verified using detailed output from a large number of runs.

3.7 The validation of the method.

In order to validate the algorithms of the estimated amount of replication written in R

and C, we compare the theoretical results with the computational ones by constructing

a simple artificial replication vector due to the computability of the maximum likelihood

function based on Lemma 3.4. Here we use the artificial replication vector (0, 0, 1) for

illustration. According to the likelihood estimation method we have introduced before, the

theoretical answer could be obtained. Considering the replication that possibly exists in

this observed replication vector, there are three possible true sample sizes can be derived

from the observed one which are 1, 2 and 3 with the corresponding replication vectors

(1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively. Thus the probabilities of the postulated

replication vectors can be calculated, which are

P (s = (0, 0, 1), r = 3) =
365!

0!0!1!(365− 1)!

3!

(1!)0(2!)0(3!)1

1

3653
= 7.506099× 10−6,

P (s = (0, 1, 0), r = 2) =
365!

0!1!0!(365− 1)!

2!

(1!)0(2!)1(3!)0

1

3652
= 2.739726× 10−3,

P (s = (1, 0, 0), r = 1) =
365!

1!0!0!(365− 1)!

1!

(1!)1(2!)0(3!)0

1

3651
= 1
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respectively with the likelihood functions of obtaining the potential replication vector

given the corresponding true sample size following as:

L(s = (0, 0, 1)|r̄ = 3,p) = 7.506099× 10−6p3
1,

L(s = (0, 1, 0)|r̄ = 2,p) = 2× 2.739726× 10−3p1p2 = 5.479452× 10−3p1p2,

L(s = (1, 0, 0)|r̄ = 1,p) = p3.

By applying Lemma 3.4, the maximum likelihood estimate θ̂ = (r̂, p̂) for each individual

likelihood function is straightforward to be obtained. The results are shown in the table

below (Table 3.5) compared with the computational results obtained by R.

Table 3.5: The theoretical and computational maximum likelihood estimates for the
artificial replication vector (0,0,1).

r̂ p̂ L(r̂, p̂)

Theoretical results
3 (1, 0, 0) 7.506099× 10−6

2 (0.5, 0.5, 0) 1.369863× 10−3

1 (0, 0, 1) 1

Computational results
3 (1, 0, 0) 7.505834× 10−6

2 (0.5009, 0.4991, 0) 0.001369858
1 (0, 0, 1) 1

Table 3.5 shows that the computational results are approximately equal to the

theoretical ones which verifies to some extent the precision of the algorithm written in

R. This is a simple illustration to check the accuracy of the R algorithm. We ran many

similar checks and in each case the numerical results of the R program were very close to

the theoretical results. Some examples of the maximum likelihood estimates for simple

likelihood functions obtained from the theoretical and numerical algorithm (using Lemma

3.4 and software R respectively) are demonstrated in the Table 3.6, which shows that the

maximisation routine in R works satisfactorily. It should be pointed out that the result

of parameter estimated by using the optimisation routine in R is usually considered as

zero when it is small enough (less than 10−14).

Furthermore, the validation of the parametric bootstrap method can also be
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Table 3.6: The theoretical and computational maximisation results for some example
functions.

Likelihood
Function

Theoretical Results Computational Results

p28
1 p

3
2p3p4

p̂
(0.84848,0.09091,
0.03030,0.03031)

(0.84851,0.09087,
0.03026,0.03036)

L(p̂) 6.931522× 10−9 6.931502× 10−9

p35
1 p

4
2p

2
3p5

p̂
(0.83333,0.09524,
0.04762,0,0.02381)

(0.83333,0.09522,
0.04760,0,0.02385)

L(p̂) 7.519887× 10−12 7.519887× 10−12

p40
1 p

5
2p

2
4

p̂
(0.85106,0.10638,

0,0.04255)
(0.85107,0.10634,

0,0.04259)
L(p̂) 3.89682× 10−11 3.896801× 10−11

performed by constructing simple artificial replication vectors with given known amounts

of replication and generating the estimated amount of replication with associated

bootstrap 95% confidence intervals. By means of the comparison between the estimated

amount of replication with the 95% bootstrap confidence interval and the true ones, we

are able to assess the performance of the bootstrap method. We take the simple artificial

replication vector (9,1) with the given known true sample size 10 as the test example. In

other words we assume that there are nine individuals with exactly one recorded HIV test

and one individual with exactly two recorded HIV tests. When we apply the maximum

likelihood estimation method demonstrated above, the estimated true sample size turns

out to be 10 with corresponding estimated probability vector (0.9, 0.1). Therefore there

is only one replicated record in the observed sample size 11. In other words the estimated

amount of replication for the observed replication vector (9, 1) can be calculated as 1
10

which is exactly the same as the given known true one. Based on the parametric bootstrap

method outlined above, we can get the 95% bootstrap confidence interval for the estimated

amount of replication which is (0, 31.75%). Clearly, the true amount of replication 10%

lies in the bootstrap confidence interval.

However, this validation method has some disadvantages. The major issue is that

the amount of replication that we arbitrarily chose as the given known true amount

of replication existing in the observed replication vector could possibly rarely happen
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in reality. For example suppose that we constructed the artificial replication vector as

(9,8) (i.e we observe nine birth dates with exactly one HIV test and exactly eight birth

dates with exactly two HIV tests) and selected one as the given known true amount of

replication. In other words there were really ten birth dates corresponding to just one

individual and seven birth dates corresponding to two individuals. That is one of the ten

individuals with a singleton birth date has actually had two HIV tests. However usually

in this situation if we have a relatively small number of birth dates, true doubleton

birth dates will be relatively rare compared with singleton birth dates. Hence for this

replication vector (9,8) with a high number of doubletons it is very likely that more than

one doubleton arises from an individual with a single birth date having had two HIV tests.

Thus the example which we have constructed is unlikely to happen in practice. This may

lead to a potential problem that when we construct the bootstrap samples using the

parametric bootstrap method the observed bootstrap replication vectors are likely to be

quite different from the one which we started with. Consequently it is likely that the

corresponding 95% confidence interval for the estimated amount of replication excludes

the true amount of replication in the original sample (constructed artificially), which is

the potential problem here.

Nonetheless this does not necessarily mean that our algorithm of the bootstrap

method is invalid. Instead the key issue is rather the selection of a test artificial replication

vector which was unlikely to arise in practice. In order to overcome the drawback of the

previous validation method, an alternative approach has been developed for the validation.

We first assign the number of HIV tests that each individual has had. Then we allocate the

birth dates at random to each individual in the artificially constructed sample. By doing

this repeatedly at random, a set of observed replication vectors can be given. For each of

these observed replication vectors, we can use the maximum likelihood method to derive

the estimated true number of individuals and associated probability vector. Then a 95%

bootstrap confidence interval for the amount of replication in that observed replication

can be constructed as described in Section 3.6. In addition, the empirically simulated
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probability distribution of the observed replication vectors can be constructed and hence

we can test whether the true amount of replication lies in the bootstrap confidence interval

(it should be 95% of the time).

Using the same artificial replication vector (9, 1) as an example, we assume that nine

individuals have had exactly one HIV test respectively and one individual has had two

HIV tests. Hence it is obvious that there were actually ten distinct individuals giving

rise to the true amount of replication which is 1
10

. In order to construct the bootstrap

samples, first we choose 10 birth dates at random throughout a year and also assign them

to each of the 10 individuals, one of whom has had two HIV tests. A set of 10 random

numbers selected as the birth date from 365 days (denoted as Bi where 1 ≤ i ≤ 10) were

B1 = 323, B2 = 171, B3 = 193, B4 = 188, B5 = 333,

B6 = 317, B7 = 261, B8 = 191, B9 = 15, B10 = 80

which are distinct in this case.

Table 3.7: The pattern of birth dates assignment.

Individual I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

HIV tests 1 1 1 1 1 1 1 1 1 2

Birthdate 323 171 193 188 333 317 261 191 15 80

Suppose that the first nine individuals I1, I2, · · · , I9 are singletons and the tenth one

I10 is a doubleton (i.e. one birth date with two HIV tests). Table 3.7 demonstrates the

pattern of the birth dates Bi being allocated to the individuals. It implies that the ten

individuals have had different respective birth dates, giving the new replication vector

(9,1) associated with the estimated true sample size 10. Based on the observed number

of individuals which is 11, the estimated amount of replication becomes 0.1 for the new

replication vector constructed here.

Afterwards, we repeat the same procedure to generate additional ‘observed’
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replication vectors. One set of the results we obtained for the random selection of the

birth dates is shown as follows:

B1 = 225, B2 = 59, B3 = 240, B4 = 212, B5 = 110,

B6 = 252, B7 = 32, B8 = 8, B9 = 8, B10 = 80.

Obviously, there are two same birth dates (B8 = B9 = 8) in the 10 random numbers

which are assigned to the eighth and ninth individuals (both of whom have had exactly

one HIV test) respectively and the other eight birth dates are assigned to the rest of the

persons. In other words the two singletons (I8, I9) in the original sample had the same

birth date. By combining the birth dates and number of recorded HIV tests of individuals

together, this gives 7 singletons and 2 doubletons (i.e. the observed ‘bootstrap’ vector is

(7,2)).

Consider another case for the selection of birth dates which is

B1 = 342, B2 = 365, B3 = 256, B4 = 84, B5 = 273,

B6 = 252, B7 = 14, B8 = 259, B9 = 35, B10 = 252.

Both the sixth and tenth individual had the 252th date in a year as a birth date while

the other eight individuals had a distinct birth date. That is the individual (I10) who

has had two HIV tests and the individual (I6) who has had exactly one HIV test had the

same birth date. Hence there was one birth date with exactly three corresponding HIV

tests and the ‘observed’ replication vector in this case is (8,0,1).

By applying the maximum likelihood method, we can generate the estimated true

sample sizes for the observed bootstrap replication vectors (7,2) and (8,0,1) which are

both 9. Hence, the amounts of replication for both observed replication vectors in the

bootstrap samples are estimated as 2
9
.

Generally speaking, we run the procedure introduced above repetitively to generate

10,000 ‘observed’ replication vectors. By combining the same ‘observed’ replication
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vectors in the samples together, we are able to calculate the corresponding frequencies

for the contribution to the probability distribution of ‘observed’ replication vectors.

Specifically, the simulation results for this example (i.e. nine individuals have taken

exactly one HIV test and one individual has taken exactly two HIV tests with given

known true amount of replication 1
10

) are shown in Table 3.8.

Table 3.8: The ‘observed’ replication vectors associated with the frequencies and estimated
sample sizes for the validation example.

‘Observed’ Bootstrap
Replication Vector

Estimated Sample Size
Estimated Probability

Vector
Frequency

(9,1) 10 (0.9,0.1) 8,779
(8,0,1) 9 (0.88887,0,0.11113) 238
(7,2) 9 (0.77776,0.22224) 937

(6,1,1) 8 (0.75,0.12499,0.12501) 21
(5,3) 8 (0.62382,0.37618) 25

It illustrates that the ‘observed’ replication vector (9,1) occurs 8,779 times out

of 10,000 in the ‘observed’ samples which takes the highest frequency among the five

simulated ‘observed’ replication vectors, followed by (7,2) which arises 937 times. Clearly,

the last two ‘observed’ replication vectors (6,1,1) and (5,3) in the simulated samples get

the comparatively lower frequencies (21 out of 10,000 and 25 out of 10,000 respectively).

For each ‘observed’ replication vector, we also calculated the estimated sample size and

the associated corresponding probability vector by using the maximum likelihood method

(shown in Table 3.8) so that the relative 95% bootstrap confidence interval for the amount

of replication can be generated. Table 3.9 shows the results.

Table 3.9: The 95% confidence intervals for the ‘observed’ bootstrap replication vectors.

‘Observed’
Replication Vector

Frequency 95% CI

(9,1) 87.7% (0,31.75%)
(8,0,1) 2.38% (0,66.67%)
(7,2) 9.37% (0,55.56%)

(6,1,1) 0.21% (0,80.63%)
(5,3) 0.25% (0,75.0%)
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Considering to control the computing time for simulating the observed birth record

replication vector, we chose a small true number of individuals (10) as an example for

the validation method. The assumed small true number of individuals result in relatively

wide confidence intervals. Nonetheless the algorithm of generating the estimated true

sample sizes as well as the corresponding probability vector performs satisfactorily. In

the 87.8% of cases the sample size is estimated correctly and in another 11.7% of cases

the sample size was estimated just one out. In 87.8% of cases where the sample size

was estimated correctly the probability vector was also estimated correctly. Note that

the simulations to calculate the observed bootstrap replication vector were conditional on

there being exactly one individual in the dataset who had had exactly two reported HIV

tests and that the simulations to calculate the 95% bootstrap confidence intervals were

conditional on both the estimated sample size and the number of reported HIV tests that

an individual had had following the estimated probability distribution.

3.8 Conclusion.

In this chapter, we discussed the method of generating the potential replication vectors

and constructing the likelihood function given the true sample size and unknown HIV

test distribution parameter p. Based on the maximum likelihood method, two methods

of the calculation for the amount of replication were illustrated. These methods gave very

similar results. Besides, we mentioned the package ‘alabama’ in software R which is used

performing the optimisation routine to obtain the maximum likelihood estimate. Due to

the limitation of the point estimation, we introduced the parametric bootstrap method

so that the 95% confidence intervals can be derived. Finally we did the validation of the

methods including checking the accuracy of the algorithm written in R and assessing the

performance of the bootstrap method constructing the artificial replication vector with

the given known true amount of replication.

Although the algorithm written as the program in R has been comprehensively
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checked by the validation method and it is proved that the program works well for all

the dataset, the times R takes to run for the large observed replication vector is currently

much too long due to the large amount of for-loops contained in the program. We must use

different software for the large dataset to conquer the problem. Preliminary investigation

showed that the program will run much faster in C (roughly 2,000 times faster than the

running speed of R). Therefore, we use C associated with the NAG library to rewrite the

program greatly reducing the running time.

An alternative possible approach is an approximate method which allows individuals

to have at most two HIV tests as most of the dataset provides comparatively large

probabilities of an individual having one or two HIV tests and the other probabilities (the

ones of an individual having had more than two HIV tests) being very small. Consequently,

we treat the probabilities of an individual having more than three HIV positive tests to be

zero (i.e. p3 = p4 = · · · = p11 = 0). The method gives an approximate answer in the case

that the probabilities of an individual having a large number of (three or more) HIV tests

are very small but the computation program runs more quickly especially in R. However

for the cases that the theoretical answer actually gives slightly larger probabilities of an

individual having more than three HIV tests, the approximate method failed to generate

correct answers, so we did not pursue this further.

This concludes our description of the theoretical methods that we used to obtain

the maximum likelihood estimates for the amount of replication in the PHLS HIV test

datasets and associated bootstrap confidence intervals. In the next chapter we shall give

our results of the analysis of these datasets.
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Chapter 4

Results of the replication present in

HIV reports

4.1 Introduction.

Previously in Chapter 3 we have introduced the methods for estimating the amount

of replication as well as constructing the 95% bootstrap confidence interval based on

the maximum likelihood technique and parametric bootstrap method. We were given

two datasets by the PHLS AIDS Center (the 1991 dataset and the 1994 dataset),

containing numbers of repeated birthdates for individuals whose HIV positive tests had

been reported. In this chapter we aim to present our results of the analysis of the amount

of replication for both HIV datasets with the associated 95% bootstrap confidence intervals

by applying the different programs written in R and C respectively.

For the 1991 dataset where the observed records show a fairly small sample size within

each birth year (the maximum observed sample size in the 1991 dataset was 176 in the

birth year 1944 with the highest number of repeated birthdates for individuals being 6), we

are able to use the program written in R to calculate the amounts of replication within each

birth year recorded in the 1991 dataset since the R program runs efficiently and accurately

for the cases with relatively small observed sample sizes. The program basically has three
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parts. Given the observed replication vector S along with the observed sample size robs, the

first part of the program calculated all the potential true numbers of distinct individuals

{r̄i} and for each of the possible true sample sizes r̄i the corresponding potential replication

vectors {Ti} also can be derived by running the first program. It is obvious that for a

given observed replication vector within a birth year, the upper bound of the number

of potential replication vectors increases significantly as the corresponding true potential

sample size decreases, especially for the cases with a high number of repeated birthdates

for individuals. In other words, for a given observed replication vector (s1, s2, · · · , sn)

which has the observed sample size robs, the upper bound of the number of potential

replication vectors having the same derived potential true sample size r̄i is the largest

when r̄i is the smallest in the set of potential true sample sizes (i.e. r̄i = s1 +s2 + · · ·+sn).

This may not only lead to the difficulty of constructing the likelihood function for a set of

potential replication vectors given the derived potential true sample size r̄ but also cause

the problem of taking an extremely long running time in R since the likelihood function

becomes very complicated for the cases with large observed sample sizes. In Chapter 3, we

managed to find the upper bound for the total number of replication vectors successfully,

which was used to define the size of the potential replication vectors in R. As we know,

the new set of potential replication vectors with the same true sample size r̄i, which were

derived at each stage using a straightforward procedure, probably contained repeated

vectors due to the procedure we used to generate the potential replication vectors. Hence,

when deriving the potential replication vectors in the first part of program, there is a

checking procedure at each stage which runs every time that a new replication vector is

generated. That is for a given true sample size r̄i we compared the new derived vector

with the ones in the set of potential replication vectors which were obtained before in this

stage and if the new derived vector is the same as one that already existed it would be

eliminated immediately. As a result, we were able to get the distinct potential replication

vectors with the given possible true sample sizes.

Based on both the potential sample size r̄i and the corresponding replication vector
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Ti derived from the first part of the program, we can move forward to the second part

which is used to calculate the probabilities for each potential replication vector obtained

before. Theoretically, we should apply the Theorem 1 of Greenhalgh, Doyle and Mortimer

[52] who proposed a mathematical formula to calculate the probability distribution of the

replication vector (see (3.2.1) in Chapter 3). Hence the distribution of each potential

replication vector Ti can be generated. However, in order to overcome the difficulty of

evaluating the probabilities of obtaining a given potential replication vector by using the

formula of Theorem 1 directly which was mentioned in Chapter 3, we used the logarithm

of the probability formula (see (3.2.2) in Chapter 3) and applied this one instead of the

formula in Theorem 1 in the second part of the R program to calculate the probabilities

for all potential replication vectors.

Additionally, we initially created a look-up table in the form of a vector v which

consists of the values of logarithm of the factorial of non-negative integers (i.e. log(k!),

where k ≥ 0 is a integer) so that the running time of the second part of program can be

considerably reduced which is one of the main purposes when we are programming the R

code. In other words, the vector v was set up before applying the formula of the logarithm

of the probability, where the values {log(ci!), 0 ≤ ci ≤ 365} were assigned to the elements

of the vector v in order (i.e. vi = log(ci!) =
∑ci

j=1 log(j)). In that way, when running

the program to calculate the probabilities for the given potential replication vectors, the

created vector v can be called directly to substitute into the logarithm probability formula

(refer to (3.2.2) in Chapter 3) so that the program would be more efficient.

The third part of the program aims to construct the likelihood function and then

obtain the maximum likelihood estimate for the true number of distinct individuals within

each birth year. According to the method introduced in Chapter 3 and based on the

quantities calculated from the first two parts of the program, the third part of the program

generated the likelihood function for each potential true sample size r̄i by summing up

the probabilities of all the true potential replication vectors T i corresponding to the same

given true sample size r̄i weighted by the probability factors which are the probabilities of
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the number of positive HIV tests that individuals in the true potential replication vectors

had, which leads to the overcounting of the number of distinct individuals and gives rise to

the observed replication vector within the given birth year. As illustrated in the previous

chapter, for a potential replication vector, there probably are different combinations of

probability factors, which are treated as the coefficients in the formula of the likelihood

function (see 3.2.7). We used the nested for-loops to generate all the possible factors and

then for each given true sample size we produced the likelihood function which possibly

involves a large number of the probabilities of obtaining the potential replication vectors.

However the large number of loop statements (say 15 nested for-loops) in an R program

causes the running time to be extremely long. In the 1991 dataset provided by the

PHLS centre, the observed sample sizes were quite small which means that the likelihood

functions for a given true sample size are, relatively speaking, easy to calculate. Hence,

using the R program to construct the likelihood function for the 1991 dataset is sensible.

We constructed a likelihood function for each of the derived potential true number of

distinct individuals. Generally speaking, several likelihood functions can be constructed

as user-defined functions in R for a given birth year since there is usually more than one

potential true sample size. Then for each fixed true potential sample size r̄i within a

birth year the program maximises the likelihood function with respect to the probability

parameters p which are the probabilities of the number of times an individual has had a

positive HIV test. A package in R called ‘alabama’ was used to maximise the likelihood

function over p under constraints since the parameters pi lie between zero and one and

also follow the condition that
∑n

i=1 pi = 1, where n is the dimension of the observed

replication vector.

4.2 The application of the R package ‘alabama’.

It is obvious that the likelihood function of the potential replication vectors given the true

sample size is basically nonlinear. For the purpose of optimising a constrained nonlinear
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function, the package ‘alabama’ is suitable to be applied in R. In principle, it is based on

the augmented Lagrangian adaptive barrier minimisation algorithm for optimising smooth

nonlinear objective functions with linear or nonlinear equality and inequality constraints.

As we mentioned in Section 3.4 of Chapter 3, the transformed new log-likelihood function

L̃ = −log(L) is used as the objective function to be optimised in the ‘alabama’ package so

that the minimum value of the negative log-likelihood function L̃ can be obtained which

is equivalently the maximum value of the original likelihood function L constructed before

in the third part of the R program. With regard to the parameters pi (i = 1, 2, · · · , n)

in the log-likelihood function L̃ for the replication vector (S1, S2, · · · , Sn), the constraints

for the parameters are that
∑n

i=1 pi = 1 and 0 ≤ pi ≤ 1. The equality constraint can

be treated as pn = 1−
∑n−1

i=1 pi which is applied in the log-likelihood function L̃, making

the optimisation problem a nonlinear minimisation with linear inequality constraints. In

other words, we aim to minimise the nonlinear objective function L̃ = f(p1, p2, · · · , pn−1)

with the constraints that 0 ≤ pi ≤ 1 (i = 1, 2, · · · , n − 1) and
∑n−1

i=1 pi ≤ 1. Hence, the

feasible region for the parameters pi is

 pi ≥ 0, i = 1, 2, · · · , n− 1,

1−
∑n−1

i=1 pi ≥ 0
(4.2.1)

where pi ≤ 1 (i = 1, 2, · · · , n − 1) can be guaranteed from the the second inequality in

(4.2.1) and thus we have in total n constraints in the minimisation algorithm. To start

the algorithm of optimisation in R, an arbitrary and feasible initial point should be chosen

in the interior of the feasible region. From this initial point the algorithm proceeds to a

neighbouring point, then a point near this neighbouring point and so on. This procedure

continues so that a sequence of solutions can be obtained. Eventually it gives the optimum

solution. However it is not allowed to choose the boundary of the feasible region as the

initial point.

The program uses the augmented Lagrangian algorithm. The procedure consists

of an inner loop augmented by a sequence of outer iterations. At each outer iteration a
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minimisation problem with constraints is approximately solved where Lagrange multipliers

and penalty parameters which are augmented to the Lagrangian are updated in the

master routine. A logarithmic barrier is added to enforce the constraints followed by

the unconstrained optimisation algorithm in the inner loop. The barrier function is

chosen so that the objective function should decrease at each outer iteration. We can

specify the tolerance for convergence of outer iterations of the barrier and augmented

Lagrangian algorithm as well as the maximum number of outer iterations to improve the

precision of the algorithm. Referring to the inner loop of the algorithm, general-purpose

optimisation based on the BFGS (i.e. the Broyden-Fletcher-Goldfarb-Shanno method

which is a quasi-Newton method for solving nonlinear optimisation problems without

constraints) is applied.

The ‘alabama’ package provides the estimated parameters p̂j for 1 ≤ j ≤ n− 1 with

the minimum value of the negative log-likelihood function L̃(p̂) for each potential true

sample size r̄i of a given observed replication vector (s1, s2, · · · , sn). With the comparison

of the estimated log-likelihood functions L̃(p̂) among all potential true sample sizes, the

minimum one corresponds to the maximum likelihood estimate p̂ for the given observed

replication vector. From a mathematical point of view, given the set of potential true

sample sizes {r̄i} (assuming 0 ≤ i ≤ k) for an observed replication vector (s1, s2, · · · , sn),

we managed to minimise the negative log-likelihood function L̃i for each potential true

sample size r̄i respectively giving the estimated parameters p̂i,j (1 ≤ j ≤ n−1). Then the

maximum likelihood estimate of pj’s for the observed replication vector (s1, s2, · · · , sn)

are the ones giving

min{L̃i(p̂i,j), 0 ≤ i ≤ k and 1 ≤ j ≤ n− 1}

in the way of comparing all the minimum values of L̃ provided by the R package. Thus

the corresponding potential true sample size r̄i is considered as the estimated true sample

size. Based on those quantities, we are able to obtain the maximum likelihood estimate
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of the probabilities that an individual had a certain number of positive HIV tests given

p̂n = 1 −
∑n−1

j=1 p̂j, along with the maximum value of the likelihood function L which

equals exp(−L̃(p̂)) and the estimated amount of replication that can be calculated in a

straightforward manner from formula (3.5.1) in Chapter 3.

4.2.1 The amount of replication results for the 1991 dataset.

By applying the R program introduced before, we are able to estimate the true number

of distinct individuals for every birth year in the 1991 dataset so that the corresponding

amount of replication can be derived. The results of the maximum likelihood estimation

for the true sample size in the 1991 dataset are presented in Table 4.1.

From the results in Table 4.1, we can see that there are five out of sixteen birth years

(i.e. 31.25% of the birth years in the 1991 dataset) having some estimated replication in

the true number of distinct individuals, which are the 1931, 1934, 1935, 1943 and 1944

birth years respectively. For example, it is estimated that within the birth year 1943 there

are 102 distinct individuals instead of the observed 113 records, where 90.21% out of 102

persons have had exactly one positive HIV test while 9.29% of them have had exactly

two HIV tests and the number of individuals having had three HIV tests respectively is

estimated to be 0.5% of the 102 distinct individuals. Similarly, the estimated true number

of distinct individuals for the birth year 1934 is 36 with the probability that an individual

has had exactly one positive HIV test is 0.6112 and the probability that an individual has

had exactly two positive HIV tests is 0.3888. In the 1934 birth year, the probability that

an individual has had more than three HIV tests can be considered as zero since only

singletons and doubletons (i.e. the number of records having a distinct birthdate and the

number of birthdates where there are exactly two records corresponding to that birthdate)

have been recorded. Based on the observed sample size 50, we estimated that 14 out of

36 distinct individuals were overcounted by being recorded twice. The corresponding

maximum value of the likelihood function demonstrates that the true sample size is 36
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distinct individuals and that each individual has had either exactly one or exactly two

positive HIV tests with probabilities 0.6112 and 0.3888 respectively. Additionally the

probability of obtaining the true replication vector is 0.0227.

According to the quantities in Table 4.1, we are able to obtain the amount of

replication by the two methods described in Chapter 3. The results are illustrated in

Table 4.2.

Table 4.2: The results of amount of replication for the 1991 dataset.

Year of
Birth

Amount of replication using r−r̂
r̂

Amount of replication using
∑n

i=2(i− 1)p̂i

1929 0 0
1930 0 0
1931 0.1818 0.1817
1932 0 0
1933 0 0
1934 0.3889 0.3888
1935 0.0588 0.0588
1936 0 0
1937 0 0
1938 0 0
1939 0 0
1940 0 0
1941 0 0
1942 0 0
1943 0.1078 0.1029
1944 0.02092 0.02095

This shows that the birth year 1934 has the highest amount of the replication among

the records of the 1991 dataset which is 38.89%, followed by the amount of replication

in the birth year 1931 where 18.17% of the 22 distinct individuals have been recorded

repeatedly. Additionally, the birth years 1935 and 1944 show relatively lower amounts

of replication which are 5.88% and 2.095% respectively. For the observed records in

birth years 1931, 1934, 1935, 1943 and 1944, the results in Table 4.2 show no replication

occurring in the observed records.

Comparing the results of the amount of replication calculated in different two ways,

we can conclude that both algorithms give similar results. Hence it is sensible to use
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either formula for the calculation of the amount of replication.

To briefly summarise the evidence points to a significant amount of replication in the

1991 dataset. 31.25% of the birth years showed evidence of some replication. There were

37 records out of 1,097 in total estimated to be replicated in the 1991 dataset, which is

equivalent to 3.37%. The estimated amount of replication looked highly skewed. One

birth year had around 40% estimated replication but most had no estimated replication.

Overall, the estimated amount of replication present in 1991 dataset was 37 records out

of 1,097. i.e. the percentage of replication was estimated as 3.37%. Our results confirmed

the results of Greenhalgh, Doyle and Mortimer [51], [27] in that there appears to be some

replication present in this dataset. Moreover we have additionally quantified the amount

of replication present.

4.3 The parametric bootstrap method in R.

We obtained the point estimates for the amount of replication in the dataset. Whilst

point estimates are sometimes useful, their use is limited since they can be mean values

with high associated variabilities. Confidence intervals are a standard way to quantify the

variability in the amount of replication in our estimates. In this section, we shall apply the

parametric bootstrap method to generate the 95% confidence intervals for the estimated

amount of replication within each birth year so that the reliability of the estimated amount

of replication can be indicated. As we discussed in Chapter 3, based on the estimated

true sample size r̂ for a given birth year and the estimated probability distribution for

the number of HIV tests taken by an individual, we simulate the number of HIV tests

taken by each of the estimated r̂ individuals in the dataset using the R software (i.e. we

choose r̂ independent values from the estimated probability distribution using a uniform

random variable in the R software) and then we categorise these random values into the

corresponding tuples by following the criteria (3.6.1) in Chapter 3. Then we assigned

the birthdates, which were sampled throughout a year (365 days) with replacement by
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applying the R base package ‘sample’, into each of the randomly simulated tuples in

sequence. After combining the tuples (i.e. the values randomly simulated from the

replication probability distribution and treated as the tuples) with the same birthdates,

we generate an observed bootstrap replication vector. Hence the set of observed bootstrap

samples of replication vectors can be derived by applying the same procedure repeatedly.

For every observed bootstrap replication vector denoted by C j (where j =

1, 2, · · · , 100 and C j is the jth bootstrap sample in the set of observed bootstrap

replication vectors), we apply the maximum likelihood method to estimate the

corresponding true number of distinct individuals r̂j. This can be done by individually

calling the R program of maximum likelihood estimation which we wrote before and

applying it separately to each of the observed replication vectors. Consequently, we are

able to calculate the amount of replication based on the jth observed bootstrap sample

size robs,j for the given observed bootstrap replication vector C j according to the formula

robs,j − r̂j
r̂j

.

Here r̂j is the estimated true sample size from the output of the maximum likelihood

estimation algorithm applied to the jth observed bootstrap replication vector and robs,j

is the corresponding observed sample size for the jth bootstrap replication vector. An

alternative approach to calculate the amount of replication for each observed bootstrap

replication vector is
∑n

k=2(k − 1)p̂k,j, where p̂k,j (k = 2, 3, · · · , n) is the estimated

probability parameter of an individual having had exactly k positive HIV tests for the

observed bootstrap replication vector C j. The results in Table 4.2 show clearly that the

estimated amounts of replication are quite similar by using these two methods, which

implies that both approaches are reasonable to calculate the amount of replication for the

observed bootstrap samples. In this thesis, we use

robs,j − r̂j
r̂j
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as the formula of estimated amount of replication for the observed bootstrap samples

so that the 95% bootstrap confidence intervals for the amount of replication can be

constructed. After estimating the amount of replication for all the observed bootstrap

samples individually, the bootstrap confidence interval within the birth year can be

generated by calculating the adjusted 2.5% and 97.5% quantiles of the estimated amounts

of replication for the observed bootstrap samples. Here the bootstrap percentile method

was introduced in Section 3.6 in Chapter 3. Additionally, we can also construct the 99%

bootstrap confidence intervals for the estimated amount of replication by applying the

same procedure.

4.3.1 The 95% and 99% confidence intervals for the estimated

amount of replication in the 1991 dataset.

According to the approach outlined above, we obtained the 95% bootstrap confidence

intervals as well as 99% bootstrap confidence intervals for every birth year in the 1991

dataset which are shown in the following table (Table 4.3):

The results in Table 4.3 show that the birth years in the 1991 dataset with non-zero

estimated amount of replication (the birth year of 1931, 1934, 1935 and 1943) have

comparatively wide 95% and 99% bootstrap confidence intervals, which implies higher

uncertainty of the true amount of replication compared to the other cases with zero

estimated amount of replication in different birth years, whereas the birth year 1944

from which the estimated amount of replication is also positive and the corresponding

probability parameter contains quite a large value of p1 has a small 95% (or 99%)

confidence interval. It is believed that the wide confidence intervals are caused by the low

value of the probability p̂1 (which is the probability that an individual took exactly one

postive HIV test) and relatively small estimated true number of distinct individuals r̂ in

the dataset. However, although for the birth year 1944 there is a positive estimated

amount of replication (2.092%), the large estimated true sample size (171) and the
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Table 4.3: Amount of replication with confidence intervals for the 1991 dataset.

Year of
Birth

Observed
replication vector

Estimated amount
of replication

95% Confidence Interval 99% Confidence Interval

1929 (26,1) 0 (0,12.00%) (0,16%)
1930 (23,1) 0 (0,8.69%) (0,13.64%)
1931 (19,2,1) 18.18% (0,46.38%) (0,52.10%)
1932 (23,2) 0 (0,12.50%) (0,12.55%)
1933 (38,3) 0 (0,7.32%) (0,12.85%)
1934 (22,14) 38.89% (28.57%,61.76%) (25.66%,96.23%)
1935 (40,5,0,1) 5.88% (0,23.02%) (0,29.62%)
1936 (48,2) 0 (0,4.00%) (0,10.64%)
1937 (57,4,1) 0 (0,6.25%) (0,7.95%)
1938 (66,6) 0 (0,6.94%) (0,9.89%)
1939 (67,13,2) 0 (0,8.23%) (0,8.80%)
1940 (71,8) 0 (0,10.21%) (0,13.02%)
1941 (63,10) 0 (0,5.06%) (0,7.82%)
1942 (86,13,4) 0 (0,5.08%) (0,6.91%)
1943 (69,17,2,1) 10.78% (0,20.44%) (0,22.82%)
1944 (104,24,6,0,0,1) 2.092% (0,10.06%) (0,12.50%)

relatively high estimated probability of an individual having had exactly one HIV test

make the corresponding 95% bootstrap confidence interval quite narrow, which implies

the increased precision of the estimation of replication amount compared to the other four

birth years with non-zero estimated amount of replication. Similarly, the 99% bootstrap

confidence interval for the amount of replication within the 1944 birth year is narrower

compared to the other four birth years 1931, 1934, 1935 and 1943, which can also be

explained by the large estimated true sample size r̂ and high estimated probability of

exactly one HIV test taken by an individual p̂1.

Moreover, it is clear that the estimated amount of replication for each birth year

in the 1991 dataset, which was obtained above (outlined in Table 4.2), lies in both

the corresponding 95% bootstrap confidence interval and the 99% bootstrap confidence

interval respectively. For those birth years in the 1991 dataset which had a zero

estimated amount of replication, zero was also the lower bound of these 95% bootstrap

confidence intervals. Although the distribution of the bootstrap estimates of the amount

of replication for those birth years shows a little bit of skewness, a perfectly symmetric
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distribution would not be realistic since the amount of replication is constrained to be

non-negative. In general, we conclude that the bootstrap percentile method is valid.

From Table 4.3, we can see that we are 95% confident the true amount of replication

within the birth year 1929 lies between 0 and 12% and the corresponding 99% confidence

interval is between 0 and 16% which obviously has a higher upper bound compared to the

95% confidence interval. Similarly, in the birth year 1930, we are 95% confident that the

true amount of replication lies between 0 and 8.69% while there is 95% confidence that the

true number of replication for the birth year 1934 lies between 28.57% and 61.57% which

are quite high and demonstrates that there are a large true number of individuals who

took HIV tests repeatedly. This can be explained by the fairly relatively small probability

of an individual having exactly one HIV test (p̂1 = 0.6112) and also the small estimated

true sample size (r̂ = 36) for the birth year 1934. As to the relative 99% confidence

intervals for both the birth year 1930 and 1934, we are 99% sure that the true amount

of replication lies in the intervals (0, 13.64%) and (25.69%, 96.23%) respectively. In the

birth year 1936, we are 95% confident that the true percentage of amount of replication is

in the interval of 0 to 4%, which is the most narrow one. It demonstrates a high precision

of the distinct individual records within the birth year 1936 among all the observations by

comparing the 95% confidence intervals for each birth year in the 1991 dataset. However

the corresponding 99% confidence interval with the birth year 1936 becomes (0, 10.64%)

which is significantly wider compared to the 95% confidence interval.

In general, although the 99% bootstrap confidence interval for each birth year is

normally wider than the corresponding 95% bootstrap confidence interval as expected it

reflects relatively similar results in confidence intervals with different significance levels.

The exception to this is just one birth year (1934) with quite small estimated probability

of an individual taking exactly one HIV test showing a remarkably increased upper bound

in the 99% confidence interval.
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4.4 The results for the 1994 dataset.

By applying the programs we described above, the estimated amount of replication with

the associated 95% bootstrap confidence interval for the 1994 dataset can also be obtained.

However, the observed replication vectors recorded in the 1994 dataset had in general

larger sample sizes compared to the ones in the 1991 dataset which we analysed in the

previous sections. Also the number of repeated birthdates could be large in the observed

replication vectors for the 1991 dataset. For example, in the birth year 1962 the observed

sample size was 929 with the highest record of repeated birthdates eleven for the birth year

1960. This causes difficulties in obtaining the results by running the R programs written

above due to the extremely long running time. Therefore, we applied the programs written

in the C language instead since it is much faster and much more efficient. A preliminary

study showed that the running time of the C program is round 2,000 times faster than

that of the corresponding R program to achieve the same target.

Basically, the idea of programming in C is the same as we introduced above for R. The

first part of the program in C is used to derive all the potential replication vectors along

with the corresponding potential true sample sizes. Then the second part of the program

was built to generate the probability distribution for each potential replication vector

derived before. The third part of program is used to construct the likelihood function

and also to obtain the maximum likelihood estimate for the true sample sizes within each

birth year so that the estimated amount of replication can be calculated afterward. In

the C language, we applied the optimisation package ‘e04ucc’ in the NAG library for the

purpose of maximising the likelihood functions.

4.4.1 The introduction of the optimisation program in the C

language.

Generally speaking, we aim to optimise a nonlinear likelihood function with constraints

on the parameters pi (i = 1, 2, · · · , n). The optimisation package nag opt nlp (e04ucc)
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is suitable to be applied here. It is designed to minimise an arbitrary smooth function

subject to constraints which allows to include simple bounds on the variables (here the

parameters pi (i = 1, 2, · · · , n−1) are required to be greater than zero and less than one),

linear constraints (specifically pn = 1 −
∑n−1

i=1 pi in this project which also guarantees a

constraint that 0 ≤ pn ≤ 1) and smooth nonlinear constraints (in our case we do not have

any nonlinear constraint for the parameters pi in the likelihood function so the number of

nonlinear constraints are set to be zero here) using a sequential quadratic programming

(SQP) method. It is obvious that the negative log-likelihood function L̃ which has also

been applied in our optimisation program in R illustrated previously is considered as the

objective function to be optimised in C by applying e04ucc. Mathematically, e04ucc solves

the nonlinear programming problem which can be stated as follows:

minimise
x∈Rn

˜L(p) = −log(L(p))

subject to 0 ≤


p

ALp

 ≤ 1.

Here the vector p consists of the parameters pi (i = 1, 2, · · · , n− 1) and pn is substituted

by 1−
∑n−1

i=1 pi in the objective function L̃(p), AL is a 1 by n− 1 constant matrix, here

(1, 1, · · · , 1) (i.e. the coefficient matrix for the linear constraints) since there is only one

linear constraint 0 ≤
∑n−1

i=1 pi ≤ 1. Clearly, the objective function and the constraint

functions are smooth (i.e. at least twice-continuously differentiable) which guarantees the

assumptions of the SQP method.

nag opt nlp is based on the same algorithm as used in subroutine Nonlinear

Programming and Systems Optimisation Laboratory (NPSOL) described Gill et al. [45],

which is a software package that performs numerical optimisation. It solves nonlinear

constrained problems using the sequential quadratic programming algorithm. Note that

the upper and lower bounds specified for all the variables and for the constraint are

always zero and one respectively. Hence we define the upper bounds as an n-dimensional
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vector U with all the elements being zeros. Similarly, the lower bounds vector L is also

n-dimensional with all the elements being ones. The initial values for the parameters

should be provided in the beginning which requires the variable bounds and linear

constraint to be satisfied. Also the unspecified first partial derivatives of the objective

function are approximated by finite differences.

The intermediate and final results can be obtained and printed out by default. The

final results consist of the values of the parameters at the final iteration which are

controlled according to the feasibility tolerances specified by the optimal parameters so

that the values of the optimised parameters are expected to lie no more than the feasibility

tolerances outside the upper or lower bounds, and the value of the Lagrange multiplier for

the associated bound constraint which demonstrates the optimisation of the parameters

based on the state of the variable that are also listed in the final results (e.g. if the

parameter is optimal, the multiplier should be non-negative if the corresponding state is

that the variable is on its lower bound, and non-positive if the state is that the variable

is on the upper bound), and the numerical results of the likelihood function. The level of

printed output can also be controlled by the optional parameters.

4.4.2 The estimated true number of distinct individuals for the

birth years in the 1994 dataset.

The 1994 dataset contains the observed replication records from 1901 to 1973, where only

non-zero birth year record tuples were recorded. In other words, all the non-recorded birth

year tuples were zero in the dataset. For example, within the birth year 1916 the observed

replication vector is (2,1) which that means s1 = 2, s2 = 1, and si = 0 (i ≥ 3). Based

on the programs written in C, we are able to generate the estimated true sample sizes

for each birth year in the 1994 dataset, followed by the associated amount of replication.

The results of the likelihood estimation for the true number of distinct individuals within

a given birth year are demonstrated in the following table (Table 4.4). Note that in Table
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4.4, column four, we show only non-zero estimated values of p̂. Those elements of p̂ which

are not shown are estimated as zero.

As shown in Table 4.4, we can see that in general the number of distinct individuals

who had positive HIV tests increases from birth year 1901 to birth year the beginning

of the 1960s while after that there is a gradual declining reduction in the number of

HIV positive records. Table 4.4 shows that the figure peaked in the birth year of 1962.

These individuals would have been thirty two years old in 1994. It is plausible that these

individuals were most sexually active in the years in which HIV has been widespread. The

results of maximum likelihood estimation implied that there was some replication due to

the repeated HIV tests taken by individuals in sixteen out of seventy three birth years

in the 1994 dataset. For example, within the birth year 1916 the estimated true number

of distinct individuals is three rather than four which is the observed number of distinct

records in the dataset. The corresponding estimated probability parameters indicate that

66.67% of individuals have had exactly one HIV test while the other 33.33% have had

exactly two HIV tests leading to the estimated replication in the 1916 birth year. The

probability that an individual has had more than three HIV tests in the birth year 1916

was estimated as zero since there is no evidence of more than three records with the same

birthdate.

Similarly, for the birth year 1925 with the observed number of distinct individuals 33,

the maximum likelihood estimate for the true number of distinct individuals turns out to

be 31 and the corresponding probabilities that an individual has had exactly one, two and

three HIV tests are estimated to be 0.9678, 0 and 0.0322 respectively. In other words, no

individuals have exactly two HIV tests and 3.22% of individuals have exactly three HIV

tests and are thus recorded as at least tripletons whereas the true amount of replication

is actually less. With respect to the observed replication vector (28, 1, 1) for the birth

year 1925, according to the results of maximum likelihood estimation it is clear that one

of the 31 single individuals was observed as a tripleton (i.e. the observed tripleton record

is in fact a single individual who took exactly three positive HIV tests) and all other birth
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records correspond to unique individuals. Moreover, given the estimated true sample size

as well as the estimated probability parameters, we can also obtain the corresponding

maximum likelihood function 0.1309.

For the birth year 1962, the estimated probability that an individual has had exactly

one HIV test is 0.9978 which is quite close to one and we also obtained that the

small estimated probabilities that an individual has had seven and eleven HIV tests are

2.181×10−3 and 1.9×10−5 respectively. This reveals that there is a high probability that

an individual has had exactly one HIV test whereas a singleton individual is recorded

repeatedly as a seven-tuple with probability 2.181 × 10−3 and also it extremely rarely

happens that a single individual is recorded repeatedly as an eleven-tuple since the

corresponding probability is trivial (1.9 × 10−5). Apart from this, the probabilities that

an individual had exactly two, three, four, five, six, eight, nine or ten HIV tests in the

1962 observed birth year are all estimated to be zero, which means that no distinct

individuals are recorded repeatedly as doubletons, tripletons, four-tuples, five-tuples,

six-tuples, eight-tuples, nine-tuple and ten-tuples. Hence we can derive the corresponding

estimated true number of distinct individuals which is 917 and the maximum likelihood

function becomes fairly small (7.9214× 10−12).

On the other hand, for the birth year 1952, the observed sample size 515 is considered

as the true one with the estimated probability replication vector (1, 0, 0, 0, 0, 0) which

clearly illustrates that no one is estimated to have taken two or more HIV positive tests

in 1952. In other words, it is believed that all the 515 individuals are distinct.

Table 4.4 presents that the majority of the birth years in the 1994 dataset recorded

the correct number of distinct individuals in the observations, i.e. except for the birth

years 1916, 1917, 1919, 1922, 1925, 1926, 1931, 1934, 1951, 1953, 1956, 1957, 1960,

1962, 1969 and 1970, the observed sample sizes within the birth years from 1901 to 1973

of the 1994 dataset are considered as the true number of distinct individuals with the

probability that an individual took exactly one HIV test being equal to one. In general,

the amount of replication present in the 1994 dataset was 100 records out of a sample
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of 17,272 which is the actual total number of individuals. It gives us a replication of

0.58% of the total number of distinct individuals present. However for the birth years

containing replication, the estimated probability that an individual took exactly one HIV

test is always significantly large and the estimated probability that an individual took

more than two HIV tests is very small, especially for the birth years with large observed

sample sizes. Furthermore, it is clear that the maximum value of the likelihood function

given the corresponding estimated probability parameters and true number of distinct

individuals becomes extremely small for the large observed sample sizes.

4.4.3 The estimated amount of replication for the birth years in

the 1994 dataset.

Based on the quantities we have obtained before, the amount of replication for each

birth year can also be calculated by using the formula (3.5.1) in Chapter 3 which are

demonstrated in the following table (Table 4.5). Note that in Chapter 3 we introduced

two methods to calculate the amount of replication and the results show that basically

both methods give the same estimates of true amount of replication. In this thesis we are

consistent with one of the methods to generate the amount of replication for birth years

where the formula is expressed as

robs − r̂
r̂

.

Here r̂ is the estimate true sample size and robs is the observed sample size for a given

birth year.
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Table 4.5: The amount of replication for the birth years in the 1994 dataset.

Year of birth Observed sample size Estimated amount of replication (%)

1901 0 -

1902 0 -

1903 1 0

1904 0 -

1905 2 0

1906 0 -

1907 0 -

1908 1 0

1909 0 -

1910 0 -

1911 2 0

1912 4 0

1913 5 0

1914 10 0

1915 5 0

1916 4 33.33%

1917 7 16.67%

1918 6 0

1919 10 11.11%

1920 6 0

1921 3 0

1922 11 22.22%

1923 13 0

1924 19 0

Continued on next page
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Table 4.5 – continued from previous page

Year of birth Observed sample size Estimated amount of replication (%)

1925 33 6.45%

1926 20 11.11%

1927 24 0

1928 30 0

1929 41 0

1930 43 0

1931 52 10.64%

1932 59 0

1933 74 0

1934 82 5.13%

1935 78 0

1936 95 0

1937 118 0

1938 129 0

1939 156 0

1940 143 0

1941 149 0

1942 212 0

1943 202 0

1944 280 0

1945 279 0

1946 320 0

1947 411 0

1948 392 0

1949 418 0

Continued on next page
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Table 4.5 – continued from previous page

Year of birth Observed sample size Estimated amount of replication (%)

1950 430 0

1951 444 1.14%

1952 515 0

1953 485 3.41%

1954 591 0

1955 624 0

1956 648 2.53%

1957 724 1.40%

1958 770 0

1959 798 0

1960 890 1.48%

1961 858 0

1962 929 1.31%

1963 880 0

1964 856 0

1965 703 0

1966 639 0

1967 508 0

1968 380 0

1969 294 2.08%

1970 221 1.84%

1971 125 0

1972 76 0

1973 35 0
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Table 4.5 shows clearly that the birth years with positive replication consist of 21.92%

among all the birth year records in the 1994 dataset. As we can see from Table 4.4, for the

birth year 1916 where there were four observed birth year records the maximum likelihood

estimation indicates that there are in fact only three distinct individuals where one of them

was recorded twice, giving the estimated amount of replication to be 33.33%. Similarly

from Table 4.4, we can see that for the birth year 1925, there is exactly one individual

in the estimated true sample size 31 recorded exactly three times leading to the observed

number of birth year records being 33. Thus there are 31 distinct individuals and two

of the birth year records correspond to repeat recordings (i.e. the estimated amount of

replication for the birth year 1925 is 6.45%). For the birth year 1962 it was estimated

that there were 917 true distinct individuals and the estimated amount of replication was

1.33%. Generally speaking, the positive estimated amounts of replication for the birth

years 1916, 1917, 1919, 1922, 1925, 1926, 1931, 1934, 1951, 1953, 1956, 1957, 1960, 1962,

1969 and 1970 show quite small proportions, especially for those birth years with large

sample sizes. On the other hand, the estimated amount of replication within the birth

years which had the same estimated true sample size as the observed sample size such

as 1952, 1967 etc. are estimated as zero. It makes sense that for the birth years only

consisting of the singletons there is always no replication being estimated. Moreover, the

figures in Table 4.5 show that when replication is estimated to be present in a birth year

there is a downward trend in the amount of replication throughout the birth years. One

possible explanation for this could be that the earlier birth years in the dataset correspond

to older individuals who have been sexually active for longer and are likely to have had

more HIV tests than the younger individuals in the later birth years in the dataset.

Compared to the replication results for the 1991 dataset illustrated in Table 4.2, it is

obvious that the estimated amount of replication shows a significant decrease. Focusing

on the birth years from 1929 to 1944, there are two birth years (1931 and 1934) in the

1994 dataset revealing replication estimated to be 10.64% and 5.13% respectively while in

the 1991 dataset, five out of 16 birth years recorded repeated individuals. i.e. the number
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of birth years with positive replication is found to be half of the one found in the 1991

dataset. Also the corresponding positive estimated amounts of replication in the 1991

dataset are considerably larger than those in the 1994 dataset. This can be attributed

to the fact that the PHLS took considerable trouble to clean the dataset and eliminate

duplicate reports between 1991 and 1994. Another reason for the result of less estimated

amount of replication in 1994 dataset compared to the 1991 dataset is that new cases

identified between 1991 and 1994 were consequently more likely to correspond to unique

individuals as the PHLS were now alert to the problem of potential replication in the

database and could consequently improve the methods of identifying repeated individuals

between 1991 and 1994.

4.4.4 The parametric bootstrap confidence intervals for the

amount of replication in the 1994 dataset.

By applying the same method illustrated in the previous Section 4.3 to the 1994 dataset,

we are able to construct the corresponding 95% bootstrap confidence intervals for the

amount of replication so that the variability of the estimated amount of replication we

have obtained before can be quantified.

Based on the random variables of size r̂ (where r̂ is the estimated sample size for a

given birth year using the maximum likelihood method) simulated by the ‘unifRand()’

package in the C library, which presents the number of HIV tests taken by the estimated

r̂ individuals, and the birthdates which are randomly sampled throughout a year with

replacement by using ‘rand()’ in the C library, the bootstrap replication vectors which

are treated as observed bootstrap replication vectors can be generated by combining the

tupletons assigned with the same birthdate. For each observed bootstrap replication

vector, the maximum likelihood method programmed in the C language is applied

to estimate the corresponding true sample size r̂bootstrap and the associated estimated

probability vector p̂bootstrap of taking a certain number of HIV tests. According to the
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formula of estimating the amount of replication mentioned in the previous chapter, the

amount of replication for each bootstrap replication vector can be estimated by

robs,bootstrap − r̂bootstrap
r̂bootstrap

based on the quantities before. Here robs,bootstrap is the observed sample size for the given

bootstrap replication vector. Therefore, both the 95% bootstrap confidence interval and

the 99% bootstrap confidence interval for the amount of replication can be constructed

based on the bootstrap samples of estimated amount of replication. It is possible that the

distribution of the estimated amount of replication for the bootstrap replication vectors

shows slight skewness, since the estimated amount of replication is zero in the majority

of cases, giving the mean of the bootstrap samples of amount of replication equal to

zero whereas there usually are a few positive results of estimated amount of replication

arising when estimating the true sample size for observed bootstrap samples. Thus we

use the adjusted quantiles method introduced in Section 3.6, which involves the empirical

distribution of the bootstrap samples in the previous chapter, to calculate the 95% and

the 99% bootstrap confidence intervals. The results for the 1994 dataset are illustrated

in the following table (Table 4.6).

Table 4.6: The 95% and 99% bootstrap confidence intervals for the amount of replication
in the 1994 dataset.

Year of birth 95% Confidence Interval 99% Confidence Interval

1901 - -

1902 - -

1903 (0%,0%) (0%,0%)

1904 (0%,0%) (0%,0%)

1905 (0%,0%) (0%,0%)

1906 (0%,0%) (0%,0%)

Continued on next page
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Table 4.6 – continued from previous page

Year of birth 95% Confidence Interval 99% Confidence Interval

1907 (0%,0%) (0%,0%)

1908 (0%,0%) (0%,0%)

1909 (0%,0%) (0%,0%)

1910 (0%,0%) (0%,0%)

1911 (0%,0%) (0%,0%)

1912 (0%,0%) (0%,0%)

1913 (0%,0%) (0%,0%)

1914 (0%,0%) (0%,0%)

1915 (0%,0%) (0%,0%)

1916 (0,66.67%) (0,66.67%)

1917 (0,50.00%) (0,60.07%)

1918 (0%,0%) (0%,0%)

1919 (0,25.00%) (0,33.33%)

1920 (0%,0%) (0%,0%)

1921 (0%,0%) (0%,0%)

1922 (0,55.56%) (0,55.67%)

1923 (0%,0%) (0%,0%)

1924 (0,11.76%) (0,11.76%)

1925 (0,19.35%) (0,19.37%)

1926 (0,33.33%) (0,37.54%)

1927 (0,17.29%) (0,17.29%)

1928 (0,7.14%) (0,7.14%)

1929 (0,10.81%) (0,10.81%)

1930 (0,10.47%) (0,13.19%)

1931 (0,28.26%) (0,30.27%)

Continued on next page
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Table 4.6 – continued from previous page

Year of birth 95% Confidence Interval 99% Confidence Interval

1932 (0,7.27%) (0,7.27%)

1933 (0,7.35%) (0,10.45%)

1934 (0,17.81%) (0,20.00%)

1935 (0,9.95%) (0,11.43%)

1936 (0,6.74%) (0,7.97%)

1937 (0,4.48%) (0,7.30%)

1938 (0,2.38%) (0,6.64%)

1939 (0,4,73%) (0,7.32%)

1940 (0,9.60%) (0,11.73%)

1941 (0,4.20%) (0,5.12%)

1942 (0,2.91%) (0,4.56%)

1943 (0,3.64%) (0,5.07%)

1944 (0,2.19%) (0,2.98%)

1945 (0,5.20%) (0,9.93%)

1946 (0,2.18%) (0.3.82%)

1947 (0,1.46%) (0.2.25%)

1948 (0,1.82%) (0,2.91%)

1949 (0,1.56%) (0,2.82%)

1950 (0,1.86%) (0,3.72%)

1951 (0,3.54%) (0,5.92%)

1952 (0,1.55%) (0,3.88%)

1953 (0,4.84%) (0,6.18%)

1954 (0,1.69%) (0,3.38%)

1955 (0,1.28%) (0,2.56%)

1956 (0,4.04%) (0,4.09%)

Continued on next page
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Table 4.6 – continued from previous page

Year of birth 95% Confidence Interval 99% Confidence Interval

1957 (0,2.17%) (0,4.20%)

1958 (0,1.17%) (0,2.59%)

1959 (0,0.75%) (0,2.05%)

1960 (0,2.43%) (0,3.54%)

1961 (0,0.70%) (0,2.26%)

1962 (0,1.91%) (0,3.27%)

1963 (0,1.48%) (0,2.27%)

1964 (0,1.52%) (0,2.69%)

1965 (0,1.85%) (0,3.27%)

1966 (0,2.22%) (0,2.41%)

1967 (0,1.52%) (0,3.74%)

1968 (0,2.12%) (0,4.34%)

1969 (0,4.00%) (0,9.56%)

1970 (0,7.96%) (0,11.32%)

1971 (0,5.04%) (0,5.17%)

1972 (0,5.56%) (0,8.57%)

1973 (0,9.38%) (0,9.41%)

From Table 4.6, it is clear that for the birth years with large sample sizes the

corresponding 95% confidence intervals for the estimated amount of replication are much

narrower. Based on the results in Table 4.4, we can see that from the birth year 1937

(except the last two years 1972 and 1973), the estimated true sample size becomes

fairly large. Considering the corresponding 95% bootstrap confidence intervals, Table 4.6

demonstrates that the confidence intervals are relatively narrower compared to the ones

with small sample sizes in the birth years before 1936. Moreover, the narrow confidence
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intervals imply high accuracy of the estimation of the amount of replication. For example,

within the birth year 1938 associated with the estimated sample size 129 and the estimated

amount of replication 0, the corresponding confidence interval presents that we are 95%

sure that the true amount of replication lies between 0 and 2.38%. It is obvious that

the maximum likelihood estimate of the amount of replication for the birth year 1938 is

included in this 95% confidence interval and moreover it is necessarily the lower bound

of the confidence interval, which is sensible since the amount of replication is always

non-negative. For the birth year 1966, there is 95% confidence that the true amount of

replication lies between 0 and 2.22%, which means that from a statistical point of view

the true amount of individuals in birth year 1966 who had repeated HIV tests is less

than 15 among all the 639 individuals recorded in the 1994 dataset. The narrow 95%

confidence interval for the birth year 1966 also implies low variability. Similarly, for the

birth year 1959 the corresponding 95% confidence interval shows that the true amount

of replication lies between 0 and 0.75% with the probability 0.95. Especially, the birth

years containing only singletons (from 1901 to 1915, 1918, 1920, 1921 and 1923) have the

95% confidence intervals (0%,0%) which have the upper and lower bounds are both zero.

This is because there are no individuals sharing the same birthdate (i.e no one had more

than one HIV test) in the observed replication vector, giving that the probability of an

individual having had exactly one HIV test is one. Moreover, the small observed sample

sizes in those birth years also means that it is very likely to simulate distinct birth dates

in the bootstrap samples. Hence the simulated bootstrap replication vectors were the

same as the observed one in the original dataset, which gives no replication.

On the other hand, we are 95% confident that the true amount of replication within

the birth year 1917 lies between 0 and 50.00%, which shows large variability (i.e poor

accuracy) because of the fairly small estimated sample size. For the birth year 1916, the

results in Table 4.6 show that we are 95% confident that the true amount of replication lies

between 0 and 66.67% which clearly contains the estimated amount of replication 33.33%.

It is believed that the wide confidence interval is caused by the small estimated sample
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size as well as the associated relatively low probability of an individual taking exactly

one HIV test. Comparing the 95% confidence interval corresponding to the birth year

1960 and the one corresponding to the birth year 1922, although the estimated amount of

replication for both cases are both non-zero the birth year 1960 with the larger estimated

sample sizes shows a considerably narrower confidence interval. In general the birth years

with the larger estimated sample sizes have narrower confidence intervals.

As for the 99% confidence intervals although the width of the majority of 99%

confidence intervals are wider than corresponding 95% confidence intervals, which is

sensible as the significance level decreases, the upper bound of the individual 99%

confidence intervals are quite close to those of the corresponding 95% confidence intervals.

For example within the birth year 1933, the upper bound of the 95% confidence interval is

7.35% while the upper bound of the corresponding 99% confidence interval is 10.45% which

is fairly close. Moreover, the same conclusions as for the 95% confidence intervals which we

obtained above can also be drawn from the results of the 99% confidence intervals. That

is the cases with large estimated true sample size and high probability of an individual

having had exactly one HIV test have narrower confidence interval (which also means

lower variability of the true amount of replication for a given birth year) compared to

those with small sample sizes and lower probability of an individual taking exactly one

HIV test.

Generally speaking, we can see from Table 4.6 that the accuracy of the estimation of

the amount of replication increases with the birth year due to the growing true number

of distinct individuals.

Comparing the results within the same birth year recorded in the 1991 dataset and

the 1994 dataset (shown in Table 4.3 and Table 4.6 respectively), the data indicates that

the confidence intervals for the 1994 dataset are mainly narrower than the corresponding

ones in the 1991 dataset.
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4.5 Discussion.

In this chapter we briefly introduced the computer programs written in both the statistical

software R and the C language, including the packages for optimisation in R and C

respectively. Within a given birth year, the programs were used to derive all the

potential replication vectors, where for each potential replication vector the corresponding

probability of obtaining this potential replication vector can also be calculated by using

the program. Eventually the maximum likelihood estimate for the true number of distinct

individuals for the given birth year can be obtained based on the optimisation packages

in the numerical library of either software R or the C language. Despite the fact that

the program written in R has a problem of a long running time for the birth years with

extremely large sample sizes, it gives highly accurate estimation for the true number

of distinct individuals. With regard to those birth years with relatively large observed

sample sizes, we used the program written in the C language instead which applied the

same programming techniques as in R so that the running time could be cut down. This

was in accordance with the preliminary investigation about the comparison of running

times between R and C. For the data of observed replication vectors associated with the

corresponding observed sample size given by the PHLS in 1991 and 1994, we obtained

the results consisting of the estimated true number of distinct individuals, estimated

probabilities of an individual having a certain number of HIV tests and the corresponding

maximum value of the likelihood function. Hence according to these quantities, the

estimated amount of replication was calculated.

The results show that generally the amount of replication declines as the birth year

increases in both datasets. Comparing the results for the 1991 dataset (shown in Table

4.2) and the 1994 dataset (shown in Table 4.5), we found that there were 31.25% of birth

years in the 1991 dataset presenting replication whereas only 21.92% of the birth years

in the 1994 dataset showed replication. We also estimated that the replication present

in the 1991 dataset was 3.37% and it was 0.58% for the 1994 dataset. Moreover, for
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those birth years which appeared in both datasets the amount of replication for birth

years in the 1994 dataset appears smaller than in the 1991 dataset as expected, which

indicates improved precision. The precision of the 1994 dataset has been improved both

by eliminating existing repeated records which were in the 1991 dataset and adopting

a more stringent approach to eliminate replication in new records entering the database

between 1991 and 1994. It is believed that in the more recent years the establishment

of the surname Soundex code used in recording the data provides better identification of

duplicate reporting of the same individual. We also found that the years where replication

were estimated to be present by the method used here were the same as the ones identified

by the matching pairs method [51]. The same conclusion reinforces our confidence in the

results.

We also constructed the 95% confidence intervals for the amount of replication using

the parametric bootstrap method. This quantifies the variability of the estimation of the

amount of replication. The greater proportion of the birth years with large estimated

sample sizes and relatively high estimated probability of an individual having had exactly

one HIV test in the 1994 dataset corresponds to narrower 95% and 99% bootstrap

confidence intervals, compared to the ones in 1991 dataset. This concludes our statistical

analysis of the amount of replication in the anonymous PHLS HIV test data.

In the next chapter we shall move on to discussing a new problem related to

a infectious disease of MRSA. We shall discuss statistical modelling and imputation

techniques for accessing the effect of patient movements within a hospital associated with

acquiring MRSA while in hospital.
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Chapter 5

MRSA introduction and literature

review

Public health, especially hospital-acquired infectious disease, is a global problem of

concern. In the second part of our thesis, we focus on one particular hospital-acquired

infection caused by methicillin-resistant Staphylococcus aureus (MRSA). The infection of

MRSA is difficult to be treated in humans and the increase in the number of cases of

MRSA has triggered the attention of governments all over the world. A large number

of studies on MRSA have been published and several scientific prevention and control

strategies have also been proposed. In Scotland, universal MRSA screening for preventing

the wide spread of MRSA infection in hospitals has been implemented [107]. The main

aim of the second part of this thesis is to analyse the effects of patient movement and

exposure to MRSA in hospital on acquisition of MRSA using the data from an one-year

MRSA screening pilot study [111].

There will be three chapters (Chapter 5-7) in this study. In this chapter which is

the literature review, four main topics are covered, namely (i) the medical, biological and

economic background of MRSA, (ii) the published studies on MRSA, (iii) the introduction

of the MRSA Screening Programme launched in Scotland and (iv) the method of collecting

data within the MRSA Screening Programme that we will use for further analysis in this
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Phd thesis. The aim of this literature review is to look at the evidence for the effect of

patient movement on the risk of acquiring MRSA. Currently cohorting of MRSA patients

in a small ward or isolation of MRSA patients in a single bedded ward is one of the

strategies for reducing transmission. The effect of patient movement has not previously

been investigated using these data.

Risk factor analysis is an important technique to identify and understand relevant

factors which affect the behaviour and risk of acquiring a disease. In Chapter 6, we will

apply risk factor analysis to identify potential risk factors which are associated with the

risk of acquiring MRSA in hospital. Specifically, we focus on assessing the effect of patient

movement, which is measured in our data by the number of wards a patient stayed in, on

MRSA acquisition using the logistic regression method.

In Chapter 7, we aim to construct the variables on MRSA exposure based upon

the patient movement throughout the hospital and analyse the effects of those exposure

variables on the risk of MRSA acquisition using bootstrapped logistic regression. The

pattern of patient movement within a hospital can be mapped based on the dates of

admission, dates of discharge, dates of transfer between wards in the same hospital, length

of stay in hospital and information on the wards that patients had been to. However there

were missing data on dates of admission, dates of discharge and dates of transfer to another

wards in the same hospital. Thus a multiple imputation procedure is developed to try and

overcome the effects of the missing data. On the other hand, if the complete data on dates

of admission, dates of discharge and dates of transfer to other wards in the same hospital

are available, the analysis for the effects of exposure to MRSA variables in Chapter 7

would have been much better and much more informative. In addition, because of the

poor quality of the data in this study, the dynamic modelling for transmission of MRSA

in hospital cannot be implemented here.

A thread running through this PhD thesis is the modelling and imputation of unknown

quantities using different statistical methods. Recall that in the first part of this thesis, we

investigated the replication problem in the PHLS HIV datasets and imputed the amount
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of replication present in those HIV reports based on the maximum likelihood technique,

while in the second part, the imputation of unknown movement dates between wards is

used to construct the variables of exposure to MRSA and analyse the effects of exposure

to MRSA variables associated with MRSA acquisition.

5.1 Background.

S. aureus is the most common cause of hospital-acquired infection [86], which can

be a severe detriment to the welfare of patients, leading to patient morbidity and

mortality and places a large burden on health-care resources [46], [49], [71], [93]. S.

aureus involving MRSA, and methicillin-susceptible Staphyloccus aureus (MSSA), is a

Gram positive bacterium able to cause localised skin infections, cellulitis, pneumonias

and bacteraemias [65], [81]. S. aureus causes 25% to 35% of endocarditis cases [40].

In the 1960s, MRSA was identified from clinical specimens obtained from hospitalized

patients [61]. MRSA is reported as the most frequently isolated organism in skin and

soft tissue Healthcare Associated Infections (HAIs) [28] and it also causes bone, joint and

surgical HAIs [72]. MRSA infections, which are resistant to antibiotic methicillin, have a

higher in-hospital mortality than MSSA infections which are sensitive to methicillin [97].

The majority of patients habouring nosocomial pathogens such as MRSA typically carry

asymptomatically, with overt infections developing in only a proportion of patients [22].

The spread of MRSA has generated much attention over the world. Although the

incidence of MRSA has declined recently in several European countries, infection with

MRSA remains a major cause of morbidity and mortality in patients admitted to hospital,

particularly those in intensive care units (ICUs) [100]. Findings of the questionnaire

survey undertaken in English ICUs in 2000, for the investigation of MRSA prevalence

and variation in infection control policy across ICUs in England, showed that one in six

patients in English ICUs were colonised, infected, or both [53]. The proportion of MRSA

isolates in ICUs in the United States was 59.5% in 2003 according to the results from a
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large surveillance study [122]. Generally speaking, ICUs are considered as ‘high risk’ wards

where patients are more likely to have MRSA compared to patients admitted into general

wards in hospital. In addition, a number of investigations of MRSA prevalence in general

hospitals have been carried out recently. During 1999 to 2001, the European antimicrobial

resistance surveillance survey showed a wide variation in MRSA rates across Europe. For

example 37% of blood isolates in UK were MRSA positive but only 3% of those taken in

the Netherlands, Sweden, Denmark and Iceland were MRSA positive [17]. In England,

the number of MRSA infections has risen since 2002 and peaked in 2005-2006 [104] whilst

the number of cases for MRSA infection reduced by 30% from 2007 to 2010 according to

a report by UK National Health Service (NHS) [38]. MRSA still continues to be a threat

in public health nowadays and consequently infection prevention and control measures

are important health protection priorities.

5.1.1 The treatments and pharmacology of MRSA.

In addition to studying the epidemiology of MRSA, the microbiological mechanism

of MRSA and effective treatments for MRSA have also been developed. MRSA is

resistant to multiple antibiotics such as tetracyclines, which have been widely used in

humans as broad-spectrum antibiotics, aminoglycosides, macrolides, lincosamides and

others [32], [75], [132]. A study by Trzcinski and Cooper [126] analysed the mechanisms

of resistance of MRSA to tetracyclines, which showed that diverse genotypes of MRSA

isolates determined the corresponding resistances to different antibiotics. In addition,

this study established a method (i.e. a double disc diffusion method) which was the

phenotypic identification of resistance to tetracyclines in MRSA. In the 1970s and

1980s, small outbreaks of infection caused by epidemic MRSA strains (EMRSA-1 and

EMRSA-3) occurred in the UK and before the mid-1990s MRSA was typically resistant

to tetracyclines. Several years later, a new epidemic strain of MRSA (emergence of

EMRSA-15 and EMRSA-16) became endemic in most British hospitals [121]. This strain

was believed to be susceptible to tetracycline and a decrease in resistance to tetracycline
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has been observed [126]. Based on the known property of a certain antibiotic restriction

of MRSA, an effective treatment recommended by Cunha [23] was using the new drug

of daptomycin, combined with other drugs such as linezolid and vancomycin if it was

necessary. Recently, a decolonisation therapy which uses topical antimicrobials such as

chlorhexidine and intranasal mupirocin has been applied [100]. In Scotland, a five day

standard decolonisation course has been implemented, which consists of mupirocin nasal

treatment (three times daily) in conjunction with an antiseptic body wash [130].

5.1.2 The economic cost of MRSA.

The incidence of patients infected or colonised with MRSA is a considerable

socio-economic burden in the UK. HAIs are estimated to cost the UK NHS one billion

pounds per year and a fifth of HAIs are caused by MRSA [89]. The mortality and

morbidity of MRSA influence the cost of healthcare and resource utilisation, leading to the

impact of the economic burden of MRSA. MRSA infection is associated with an increase

in the length of stay in hospital and the costs of hospitalisation such as drugs, professional

staff, medical records, admission services, isolation and so on. A survey undertaken in

United States hospitals from 1998 to 2003 showed that the total economic burden of S.

aureus increased significantly [119]. In 2003, the estimate for total economic burden of S.

aureus was approximately $14.5 million for all inpatient stays, where the majority of the

costs were associated with patient surgical stays [87]. A news report by ‘The Telegraph’

newspaper in June 2008 indicated that every MRSA infection case cost the UK NHS an

extra £9,000 [25]. Therefore, cost-effectiveness prevention and infection control measures

are pressingly needed and a few studies have been focused on modelling cost-effectiveness

intervention strategies. In the next subsection, we will introduce some common prevention

and infection control measures that have been implemented in hospitals recently.
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5.1.3 The recent common infection control measures and

prevention of MRSA.

MRSA is thought to be mainly spread through patient-to-patient transmission, which may

be mediated by contacts from transiently-colonised health-care workers [22]. Infection

with MRSA can increase the length of hospital stay, risk of death, and treatment

cost for an inpatient [100]. Patients may be colonised by MRSA asymptomatically

and this increases the risk of developing a clinical MRSA infection and is a source of

cross-infection [100]. Thus the infection control measures, and prevention of MRSA,

have become the priority for concern for the governments. National guidelines for

preventing the spread of MRSA recommend contact precautions such as (i) hand

hygiene, (ii) wearing of disposable gloves, aprons and gowns by health-care workers,

and (iii) isolation (i.e. the placement of patients in single rooms, or in cohort wards)

which may interrupt cross-infection through physical or behavioural barriers. Moreover,

decolonisation treatment is also used for eliminating or suppressing MRSA by topical

antimicrobials such as chlorhexidine and intranasal mupirocin [100].

In the UK the ‘Clean your hands’ campaign was launched and has been ongoing since

September 2004 [104]. This was supported by the Department of Health (DH) and the

National Patient Safety Agency and was first introduced to NHS hospitals in England

and Wales. The aim of the ‘Clean your hands’ campaign was to ensure healthcare staff

in NHS hospitals perform hand hygiene correctly at the right time in the right place to

prevent cross-infection caused by healthcare workers. The campaign involved the provision

of alcohol hand rub at the bedside of every patient, distribution of posters reminding

healthcare workers to clean their hands, regular audit and feedback of compliance and

the provision of materials empowering patients to remind healthcare workers to clean their

hands.

In addition, early and effective detection of colonised (infected) patients by screening

patients for MRSA colonisation or infection on admission allows timely implementation
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of targeted infection control measures to prevent transmission or infection. A recent

review pointed out that many screening methods exist such as conventional culture,

chromogenic agars and polymerase chain reaction tests [100]. In order to guarantee

timely identification and intervention to reduce the risk of infection to both colonised and

non-colonised patients, a sensitive, accurate and economic screening method is required.

In order to prevent the spread of MRSA and decrease the risk of cross-infections

of MRSA in hospital, multiple infection prevention and control measures have

been implemented in the last five years. These include a national hand hygiene

campaign, dissemination of infection prevention and control guidance and implementation

of care bundles [108]. However, the control strategies vary from hospital to

hospital [14], [18], [55], [63]. One of the reasons is that only a few of the possible

combinations of interventions have been examined in clinical trials, which are required

to establish well-designed infection control strategies. An MRSA Screening Programme

has been implemented since 2007 in Scottish NHS hospitals and continues to be

improved with the aim of establishing an efficient and economic prevention strategy.

The Scottish Government Health Directorate commissioned NHS Quality Improvement

Scotland (NHSQIS) to develop a Health Technology Assessment (HTA) on the clinical

effectiveness and cost effectiveness of MRSA screening [111].

The spread of MRSA infections has been of considerable concern to governments and

clinical and academic epidemiologists. Recently, a large number of studies have been

published on MRSA. In the next section, we will briefly review the published works on

MRSA acquisition in hospitals.
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5.2 Published studies on MRSA acquisition in

hospitals.

Most research has focused on the investigation of MRSA acquisition in presumed ‘high

risk’ wards such as ICUs, renal specialties, and cardiological specialties [110]. The rate

of MRSA acquisition in general wards was 1.7%-3.2% per stay [36], [63], [98], whilst

the MRSA acquisition rate in an ICU was much higher (17%) [114]. The prevalence of

MRSA colonisation or infection on admission to ICUs in the UK was higher than that of

many other countries [19], [64]. Published rates of MRSA colonised patients on admission

showed 6.8% for an Australian ICU [76], 6.9% among 14 French ICUs [73] and 10% for an

English ICU [123]. Due to the relatively high prevalence of MRSA in ICUs, the majority of

studies which have been published concentrate on analysing MRSA acquisition in ICUs.

These studies involve testing the proposed infection control measures and intervention

strategies in ICUs and constructing dynamic transmission models of MRSA in ICUs.

5.2.1 Published studies on MRSA in ICUs.

Isolation of MRSA positive patients usually is considered as a common infection control

method to reduce the spread, and its benefit above other contact precautions, such as

hand hygiene, and wearing disposable gloves and aprons, was investigated. In particular,

the effectiveness of isolating MRSA positive patients in ICUs to prevent transmission of

MRSA was assessed by Cepeda et al. [18] based on a prospective one year two-centre

study. Findings in this study suggested that isolation of ICU patients who were colonised

or infected with MRSA into single rooms or cohorted bays does not reduce cross-infection,

over and above the use of standard precautions, in an environment where MRSA is

endemic. Therefore, reduction in the number of bed moves was recommended in ICUs,

where MRSA is endemic, thus allowing better resource use in ICUs and minimising the

risks from both the transfer and isolation itself. The value of source isolation during a
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confirmed point source outbreak of MRSA involving a single strain was not addressed by

Cepeda et al. This is discussed by Christensen et al., who focused on a reported outbreak

in Norwegian hospitals and showed that contact precautions proved to be sufficient to

prevent transmission of MRSA [20]. The isolation of MRSA positive patients may not

be directly associated with the interruption of MRSA spread when the other contact

precautions have been taken into account. However, isolation was still recommended as a

part of comprehensive control measures in general hospitals since it was possible that the

major benefit for isolation came predominantly from the skilled practices of nursing staff

such as relatively high compliance with contact precautions rather than the reduction of

airborne transmission which is not a major factor in MRSA spread [33]. Further work can

be undertaken within the MRSA Screening Pathfinder Project to estimate the effect of

isolation of MRSA positive patients when the other contact precautions have been taken

into account.

Robotham et al. [100] proposed cost-effective MRSA control strategies in ICUs

according to the economic evaluation based on a dynamic transmission model in England

and Wales. This study indicated that a strategy of universal topical decolonisation was

optimal in the short term and that combining universal screening on admission using

polymerase chain reaction with targeted decolonisation was likely to represent good value

for money. Compared to the studies on the MRSA Screening Pathfinder Project, this

study took parameter uncertainty such as the distribution of length of stay into account

although it limited the focus to ICUs.

Routine time series data can usually be collected and may be analysed for a number

of purposes. For example, Batra et al. [10] reported that a chlorhexidine-based surface

antiseptic protocol can interrupt transmission of MRSA in ICUs except for MRSA strains

carrying qacA/B genes which may be unaffected or potentially spread more rapidly, using

segmented regression models on interrupted time series data collected from ICUs in St.

Thomas’ Hospital site of London. On the other hand, one of the main topics for MRSA

acquisition from an academic perspective is modelling the dynamic MRSA transmission
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process which is also based on time series data. However, the published studies of MRSA

transmission models mostly described the situation in ICUs.

Since the epidemic transmission process of MRSA is partially observed and nosocomial

pathogens are typically carried asymptomatically, the acquisition times are difficult

to observe and the evaluation of the important epidemiological parameters such as

transmission rate (i.e. the rate of transmission to each susceptible patient from

each colonised or infected patient) is also complicated. Understanding the route of

transmission can be important for the design of optimal infection control strategies.

Several rudimentary studies have modelled the underlying transmission process and

estimated the transmission parameter in ICUs using various methods, which took the

communicable nature of MRSA (i.e. patient-to-patient transmission) into account, and

a number of transmission models for MRSA have been proposed. As pointed out by

Bonten et al. [15], significant fluctuations in the incidence and prevalence of colonisation

and infection is possible in small populations for example an ICU and it is suggested that

a stochastic model is analysed.

Recently stochastic modelling has been applied to studies of transmission of hospital

pathogens especially MRSA in ICUs. Pelupessy et al. [91] proposed a Markov model

for routine hospital surveillance data in ICUs to estimate the transmission rate using

maximum likelihood techniques. However, this Markov model assumed that a sequence

of surveillance swabs can detect carriage with certainty, which is almost impossible

in practice. In addition, a model based on a different stochastic modelling approach

was proposed by Cooper et al. [22], which was a susceptible-infection-susceptible

hidden Markov model (SIS HMM) to explicitly describe the unobserved epidemic

process of transmission. This was the first application of a hidden Markov model to

analyse the epidemic data. Some available extensive priori information for important

parameters in this proposed structured HMM can provide lower and upper bounds for

the parameters, which can overcome the problems with collinearity. However, there were

some shortcomings in this study. For example, such a hidden Markov model may be
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appropriate for a single ward or unit but for a larger hospital population the application is

limited as the algorithm becomes slow, numerical problems may occur and the assumption

that all patients are equivalent may not be valid in practice. Markov chain Monte Carlo

(MCMC) methods are recently well-designed techniques, which can be applied to infer

colonisation times for partially observed infectious diseases. This approach can be used

to fit a HMM when the state space is large (i.e. the number of beds is large), so that the

numerical difficulties can be overcome.

Forrester et al. [39] developed methodology to estimate the transmission rate

parameters of a transmissible nosocomial pathogen which allowed for imperfect sensitivity

of swab and conform to the susceptible-colonised-removed paradigm based on reversible

jump Markov chain Monte Carlo (RJMCMC) methods within a Bayesian framework.

This model was applied to MRSA data of the ICUs of the Princess Alexandra Hospital in

Australia. Findings in this study showed that the transmission rate from isolated patients

was lower than from non-isolated patients.

The quantitative effects of interventions can also be analysed by applying similar

methods for the purpose of improving the design of effective infection control measures in

ICUs. For example, the efficacy of isolation measures in reducing transmission of MRSA

using routine surveillance data from ICUs in Boston, Massachusetts, US was assessed

by Kypraios et al. [67] based on a stochastic model using MCMC within a Bayesian

framework. This study indicated that nares (i.e. nose) surveillance identifies a large

majority of carriers and the effectiveness of barrier precautions showed an overall benefit

but this benefit is inconsistent within different types of ICUs.

However, the application of the proposed stochastic models are limited to a small

population and their value for a large hospital population is not clear yet. In addition,

all these studies did not account for variations in host risk factors for acquisition (such

as as comorbidities, age, severity of illness, wounds and so on). In our study, we aim

to investigate potential risk factors for MRSA acquisition and this may indicate suitable

parameters to use in a stochastic dynamic transmission model.
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5.2.2 Published studies on MRSA in general hospitals.

To our knowledge, only a relatively small number of studies currently published focused on

MRSA acquisition in a hospital population. The majority of these suggested that MRSA

acquisition in hospital was associated with the healthcare workers or the contaminated

environment especially the overload of work for healthcare staff and insufficient nursing

practice. A number of other studies in general hospitals identified the risk factors

associated with the risk of MRSA acquisition. For example, a one year study undertaken in

an acute hospital in Hong Kong indicated that having age above 60, being in a residential

care home for the elderly, prolonged hospitalisation and being in a residential care home

for the elderly with patients with open wounds were identified as the risk factors for

hospital-acquired MRSA [69]. The prevalence of MRSA infection regarding mortality and

morbidity as well as the strain types of MRSA have also been investigated in general

hospitals. Melzer et al. [78] undertook a study at Guy’s and St. Thomas’ Hospitals in

South London from 1995-2000 to compare the incidence of mortality as well as to compare

the rates of infection directly attributable to MRSA and MSSA. The findings of this study

showed that there was a higher statistical proportion of death due to MRSA infection,

compared with MSSA infection, but no significant difference was found between rates of

disseminated MRSA and MSSA infection. A large-scale study took place in one primary

care trust (PCT) in the Leeds Teaching Hospitals NHS Trust. This study determined the

molecular epidemiology of MRSA colonising a large sample of elderly residents of care

homes in the Leeds PCT over a four-year period [56].

To date, there is limited research focusing on the association between patient

movement such as number of wards where the patient resided per hospital stay, and

the risk of MRSA acquisition. The paper written by Velzen et al. [130] within the MRSA

Screening Pathfinder Project in Scotland suggested that the number of wards was not a

significant risk factor associated with MRSA acquisition, though a detailed analysis was

not presented. This study estimated the proportion of patients who acquired MRSA in
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hospital and identified the main risk factors associated with MRSA acquisition as age

above 64 years, self-reported renal failure and self-reported presence of open wounds.

It also suggested that cross-transmission remained as an important issue in hospital.

However, the association between the number of wards with other risk factors and the

trend of MRSA acquisition associated with number of wards were not systematically

analysed in this study. In the next chapter of this thesis, we will focus on not only the

association between number of wards a patient resides in during their hospital stay and

MRSA acquisition but also the association between the number of wards and the other

risk factors.

5.3 MRSA Screening Pathfinder Project in Scotland.

As we mentioned in Section 5.1, a MRSA Screening Programme was launched in Scotland

in order to help prevent the spread of MRSA in hospitals. Also a Health Technology

Assessment, published by NHSQIS in 2007, was developed in Scotland to assess the clinical

effectiveness and cost effectiveness of MRSA screening.

This report indicated that universal screening of patients on admission to hospital

and efficient isolation of those MRSA colonised patients will reduce the prevalence of

MRSA colonisation or infection within the patient population. It also recommended

that laboratory nasal screening of all in-patient admissions using chromogenic agar was

likely to be the most clinically and cost effective strategy for MRSA screening in NHS

Scotland [99]. A one-year MRSA Screening Pathfinder Project was established in NHS

Scotland commissioned by the Scottish Government Healthcare Associated Infection

Task Force. The aims of this project were to (i) investigate the proposed model, (ii)

test HTA findings and (iii) examine the feasibility and implications of the proposed

screening strategies for health boards, in order to provide scientific evidence for further

national policy decision making [110], [111]. This study protocol (AREC reference

number 09/MRE00/50, R&D reference NRS09BA01) was approved by the Scotland A
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Research Ethics Committee, Edinburgh in June 2009 [106]. A large intervention study

was undertaken in two Scottish acute hospitals for the Pathfinder Project [105]. The

Pathfinder study has addressed many organisational issues in healthcare regarding the

underlying assumptions within the HTA model on MRSA screening [111].

5.3.1 Previous conclusions for the MRSA Screening Pathfinder

Project.

Initially the HTA did not recommend a Clinical Risk Assessment (CRA) which is a

questionnaire to identify patients at higher risk of MRSA carriage, involving demographics

of patients and risk factors for MRSA colonisation such as medical history of MRSA

colonisation or infection, having wounds or ulcers, on admission within the MRSA

Screening Programme due to the cost-ineffectiveness. However, the findings of the MRSA

Screening Pathfinder indicated that the use of CRA could successfully identify 80.7% of

colonised patients and is economically efficient [110]. Moreover, a simple CRA involving

three questions: (i) Has the patient any previous history of MRSA colonisation or MRSA

infection at any time in the past? (ii) has the patient been admitted from somewhere other

than their own home? (iii) does the patient have a wound, ulcer or implanted medical

device which was present before admission to hospital?, was shown to be adequately

effective to identify MRSA carriers. Thus future implementation of CRA for all admissions

was recommended.

A literature survey showed that S. aureus colonises the nasal cavity of about 30%

of the healthy population [113]. Direct nasal swab screening combined with culture

on chromogenic agar, which was also recommended by HTA, has been the routine

methodology for detecting MRSA carriage in Scotland and in many other countries [107].

However, the efficacy of universal nasal swabbing for MRSA was only 66% of the ‘gold

standard’ diagnoses detected within the MRSA Screening Pathfinder [107], [112]. The

‘gold standard’ combined results from nasal, axillary, throat and perineal swabs plus
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swabs from wound or indwelling medical device sites, with broth culture on chromogenic

agar and nutrient broth enrichment and sub culture on chromogenic agar. The report

for the MRSA Screening Pathfinder by NHS Scotland recommended using nasal plus

perineal swabbing for detecting MRSA carriage (for patients who felt that it was difficult

or unacceptable to do perineal swabbing, throat swabbing was used instead), which gave

82.2% of ‘gold standard’ diagnoses detected, combined with the CRA for all admissions

for pre-emptive management (i.e. isolation or decolonisation for patients at high risk of

MRSA colonisation when awaiting laboratory confirmation) [107].

According to further analysis from the MRSA Screening Pathfinder project, screening

taking the form of CRA and laboratory testing for MRSA colonisation is highly clinically

effective and cost-effective as a first stage screening process. The Pathfinder study also

indicated that universal MRSA screening involving applying CRA for all admissions to

identified high-risk patients as a first line screening tool and using swabbing and culture

to those identified high-risk patients as the second line screening tool may be associated

with a reduction in MRSA prevalence and infection incidence. Furthermore, it is highly

acceptable to patients and the public [111]. However the debate on optimal MRSA

screening continues regarding (i) the clinical and cost effectiveness, (ii) the feasibility

and potential for rollout of the MRSA screening programme, and (iii) the acceptability

of MRSA screening for all acute in-patient admissions [111].

Evidence was also found in the MRSA Screening Pathfinder Programme that 3.9% of

patients were MRSA colonised on admission and 2.9% of patients were MRSA colonised on

discharge and 0.8% of patients were MRSA positive on admission but MRSA negative on

discharge whilst the majority of patients remained MRSA negative both on admission

and on discharge [106], [109]. There were cases of patients who were not MRSA

positive on admission and acquired MRSA during hospital stay, 1.3% of all patients

who were screened both on admission and discharge in the MRSA Screening Programme

acquired MRSA whilst in hospital [106]. A large Swiss study also reported half of the

patients who developed an infection during hospital stay were not MRSA positive on
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admission [54]. Both studies suggested that a number of patients acquired MRSA through

cross-transmission (including transmission within the ward and transmission outside the

ward such as underlying transmission by health-care workers) whilst in hospital. The

evidence suggests that there is MRSA acquisition through cross-transmission for patients

who are MRSA negative on admission to hospital.

However, few studies have been published on MRSA acquisition in the general hospital

population and there is limited information on the effect of colonisation pressure on the

risk of acquiring MRSA [133]. Evidence on its potential effects on MRSA acquisition

in the general hospital population is highly relevant for decision making about further

guidance of MRSA presentation and control strategy and implementation of universal

screening for MRSA.

5.3.2 The aims of this study.

Our study is further work on analysing the effect of potential risk factors, especially patient

movement, on the risk of MRSA acquisition within the MRSA Screening Pathfinder

Project. The primary objective for our study is to assess the role of patient movement

within a hospital, which can be treated as an indicator of potential for cross-transmission

within the ward, on the propensity of patients to acquire MRSA in hospital. Specifically,

we aim to investigate three main questions:

(i) Is there any evidence that the probability of acquisition of MRSA in hospitals

is greater among patients who are transferred among wards within the hospital

compared to patients who remain in the one ward throughout their stay?

(ii) is there any evidence that the probability of acquisition of MRSA in hospitals is

greater among patients who are transferred to wards within the hospital where

there are known patients who are colonised or infected with MRSA compared to

patients who are in wards with no known MRSA colonisation or infection?
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(iii) is there any evidence that the probability of acquisition of MRSA in hospitals is

affected by length of stay only among those patients who spend some of their time

in hospital in wards where MRSA is known to be present?

If the patient movement is not significantly related to the risk of MRSA acquisition, then

this may suggest that underlying transmission may be by the route of health-care workers

or by the existence of improper disinfection for the beds used by MRSA colonised or

infected patients. The hand hygiene compliance may be a considerable issue in general

hospitals, where improvement is recommended. Moreover, it is possible that hand hygiene

was less carefully adhered to for patients not known to be MRSA positive while a delay

between collection of screening cultures and results becoming available is always present

in practice. Thus MRSA colonised patients might be a potential source of spread during

this time unless carriage had been reported previously. Therefore additional intervention

policies on controlling MRSA will be recommended.

The second objective in our study is to identify the potential risk factors for MRSA

acquisition to improve pre-emptive management of these high risk patients. The previous

report within the MRSA Screening Pathfinder Project identified three risk factors for

acquisition of MRSA, which were: (i) age above 64, (ii) self reported renal failure, and

(iii) self reported presence of open wounds [106]. However, in this study the number of

wards which gives information about patient movements were not fully included for the

analysis. In our study, the association between the risk of MRSA acquisition and the

potential risk factors including the number of wards will be reworked in Chapter 6 with

the addition of an in depth evaluation of the role of the number of wards a patient is

resident in.

In summary, we briefly introduced the medical, biological and economic background

of MRSA and reviewed some published works on MRSA acquisition in this chapter.

Generally speaking, infection with MRSA is difficult to treat in humans. MRSA causes

severe morbidity and mortality, which leads to a large impact and economic burden. The
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spread of MRSA is a focus of global public health concern. The risk of acquiring MRSA

is especially high for patients admitted to ICUs in hospitals. A large number of published

studies were focused on MRSA acquisition in ICUs. Among these were studies on dynamic

modelling of MRSA transmission and the assessments on MRSA control strategies in

ICUs. In addition, studies on MRSA acquisition in general wards in hospitals were also

illustrated in Section 5.2.2.

In order to reduce the incidence of MRSA-related mortality and the rate of MRSA

infections, the most effective treatments and prevention and control strategies, such as

hand hygiene, isolation and decolonisation, have been proposed. In Scotland, a universal

MRSA Screening Programme was launched in general hospitals in 2007, so that patients

admitted in hospital are routinely screened for MRSA. Simultaneously, the assessments

of the clinical effectiveness and cost effectiveness of MRSA Screening Programme were

developed.

In this chapter, the one-year MRSA Screening Pathfinder Project for investigating

the proposed MRSA screening was also described. In addition, most of the main findings

within the MRSA Screening Pathfinder Project were also reviewed. The primary objective

of the second part of this thesis is to investigate the effects of patient movements and

exposure to MRSA in hospitals on MRSA acquisition based upon the data from the

MRSA Screening Pathfinder Project. The method of collecting the data which will be

used for the analysis in this second part of the thesis will be described in the next section.

5.4 Data collection for the MRSA Screening

Pathfinder Project.

We will assess the role of patient movement on MRSA acquisition within the MRSA

Screening Pathfinder Project in Scotland. As the data collected from this project will be

used for the analysis, we describe the data collection in this section.
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Universal screening for MRSA took place in two acute care hospitals in two NHS

Boards from February to August 2010 (seven months) [106]. Dedicated administrative

staff were employed to assist in data collection whilst the clinical tasks were done by ward

staff, additional ancillary staff, dedicated nursing staff and dedicated screeners depending

on the workload [107]. Patients who were willing to take part in the MRSA Screening

Programme were required to sign a consent form. For those patients, the CRA which is a

questionnaire described in Section 5.3.1, asking whether patients had received antibiotics

in the year before admission and whether they suffered from specified co-morbidity

(diabetes, renal failure, chronic obstructive pulmonary disease), open wounds, sores, or

ulcers, was administered on admission. Patient admission information on the patient data

form was collected from the hospital Patient Administration System (PAS) and nursing

notes. CRA and consent form were scanned into a holding database using TELEformr

scanning software [107].

All consenting patients were swabbed on admission at four body sites: anterior nares,

perineum, axillae and throat, which was undertaken within 48 hours of admission. Note

that swabs also were taken from wounds and devices if applicable. Discharge screening

was also undertaken within 24 hours before discharge. The samples were taken by trained

nurses and screening assistants and then were sent to the laboratory. Those samples taken

from one patient were inoculated onto Oxoid’s Brilliance MRSA Agar medium. Then they

were pooled and inoculated into Oxoid selective manitol enrichment broth and incubated

at 37◦C for 18-24 hours before being plated on Oxoid Brilliance MRSA agar [107]. The

MRSA colonised results were confirmed by Vitek 2 AST/ID testing and genotyped in an

MRSA reference laboratory to allow identification of the acquisition of new MRSA strains

in hospital. Two molecular methods were applied to identify the MRSA genotype: the

pulse-field gel electrophoresis method and multilocus Variable-Number Tandem-Repeat

analysis.

A patient was considered MRSA positive if one or more of the corresponding

individual swab samples enriched in broth were MRSA positive. Patients who were
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MRSA positive on admission were isolated or cohorted immediately. The decolonisation

treatment (i.e. the standardised intervention protocol consisting of mupirocin nasal

treatment three times a day for five days in conjuction with five days of use of antiseptic

wash) was applied to all MRSA positive patients [106]. After the decolonisation treatment,

a re-test for MRSA was required, followed by a second decolonisation course if applicable.

However, the results of the re-test for MRSA were not included in our analysis. Patients

who were discharged before finishing decolonisation were advised to finish the full

decolonisation course after discharge.

Briefly, in our study, data on demographics and risk factors for MRSA acquisition

were collected for the analysis: patient identity number, gender, age, admission/discharge

specialty, length of stay, number of wards, number of days in isolation facilities, date

of admission/discharge, unit admitted to (high risk unit such as General Surgery ward

and Orthopaedics Elective ward or low risk such as General Medicine ward and Medical

Receiving ward), co-morbidity and being on decolonisation treatment at discharge,

negative/positive results on admission and discharge and date of swab. Note that

information on co-morbidity was obtained from the CRA which was completed on

admission. The collected data which were visually and automatically validated were

imported into a Structured-Query-Language database at Health Protection Scotland.

The data which will be used in our study consists of (i) an admission only database

(7,181 patients) where the information for patients on discharge is incomplete (i.e. date

of discharge and MRSA measure on discharge are missing), (ii) a discharge only database

(2,432 patients) where the information for patients on admission is incomplete (i.e. date of

admission and MRSA measure on admission are missing) and (iii) a combined admission-

discharge cohort (2,792 patients). The latter database has complete information on MRSA

status on admission, on discharge, as well as data on the wards the patient was in while in

hospital. The admission only and discharge only databases also include the information

on wards the patient was in while in hospital. These different databases are because of the

way patients gave consent. Patients had to consent separately for admission and discharge
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data collection. For patients who consented to take part at admission, only data collected

at admission was available and date of discharge was not collected. Similarly for patients

who did not consent at admission but did consent on discharge their date of admission

was not available to the researchers.

In this study, we are particularly interested in estimating the impact of patient

movement within general hospitals on the risk of MRSA acquisition using the data from

the Universal MRSA Screening Program in Scotland. In Chapter 6, we aim to understand

the effect of potential risk factors on MRSA acquisition (i.e. question (i) in Section

5.3.2) using the admission-discharge cohort only. In Chapter 7 the dynamics of patient

movement will be modelled using all three databases. Then the effect of being in a ward

in which there is a patient or patients with MRSA (i.e. questions (ii) and (iii) in Section

5.3.2) will be assessed based on multiple imputation using the admission-discharge cohort.

As the data on the dates of transfer to another ward in the same hospital were missing in

all three databases and dates of admission, and discharge were missing from the discharge

only and admission only cohorts respectively, the pattern of patient movement and the

variables of exposure to MRSA cannot be constructed directly. Hence multiple imputation

must be used. The analysis in Chapter 7 for the effects of exposure to MRSA associated

with MRSA acquisition would be more informative if all these dates were available.

139



Chapter 6

MRSA Screening Pathfinder

Programme: Risk factors for

acquisition for MRSA in the hospital

6.1 Introduction.

Methicillin-resistant Staphylococcus Aureus (MRSA) is a common health problem for

concern across the UK [16]. In order to reduce the transmission of MRSA within

healthcare settings in the UK, a policy of Universal MRSA Screening Program was

implemented for all the elective patients admitted into hospital [125]. However, the

effectiveness of universal MRSA screening for patients on admission is controversial [95].

One of the report of the Universal MRSA Screening Program Pilot Study published

by National Health Service for Scotland (NHS Scotland) identified three risk factors

associated with MRSA acquisition. These were age over 64, self reported renal failure

and self reported open wounds [106]. However, the assessment of the effect of patient

movement (i.e. the number of wards that patients stayed in per hospital stay) on MRSA

acquisition was not analysed in detail in the previous NHS Scotland report.
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In this chapter, the effect of the number of wards that patients had moved through

while in hospital on the acquisition of MRSA is analysed as a primary objective, assuming

that the admission screening was reasonably sensitive to detect MRSA on admission [107].

There are four main aims in this chapter: (i) investigate whether the risk of MRSA

acquisition is higher among patients who were in a relatively large number of wards;

(ii) investigate the association between the number of wards and other risk factors

which are identified as having significant effects on MRSA acquisition and are possible

confounding factors; (iii) investigate the trend in risk of MRSA acquisition associated

with increasing levels of number of wards and other related risk factors; (iv) derive an

updated multivariable logistic regression model for MRSA acquisition.

The data used in this chapter come from the multicentre prospective cohort study

within the Universal MRSA Screening Program. The MRSA screening results were taken

from the patients both on admission and at discharge in two acute care hospitals in two

NHS boards. One of the hospitals is a large district general hospital called Crosshouse

hospital, which is situated in Ayrshire and Arran NHS board (i.e. south-west Scotland)

and contains 590 beds. The other one is Aberdeen Royal Infirmary which is a large

teaching hospital within NHS Grampian and contains 893 beds. The patients in the

elective orthopaedic ward of the Aberdeen Royal Infirmary, which is located in the

adjacent Woodend hospital, were also included in the study population of the Aberdeen

Royal Infirmary [106].

We focus on assessing the odds ratios of acquiring MRSA among patients in the

admission-discharge cohort who were MRSA negative on admission. All patients aged 16

and older who were admitted to any ward in the two acute hospitals, and also stayed at

least one night in hospital, were eligible for inclusion in the study. Patients who had not

been screened on admission or at discharge were excluded from the acquisition analysis.

Therefore in this chapter, we are concerned about the admission-discharge cohort, which

has complete information on MRSA status on admission, at discharge, as well as data on

the wards the patient was in while in hospital. The details of the data collection were
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reported in the previous chapter.

6.2 Methods.

The main aim of this chapter is to analyse the effect of the number of wards a patient

resided in while in hospital as a potential risk factor on MRSA acquisition. In this

section, we will introduce the definition of MRSA acquisition cases, the potential risk

factors involved in the analysis and the statistical methods.

6.2.1 Case definitions for MRSA acquisition.

A patient was considered MRSA positive i.e. colonised with MRSA if the lab results

for any of the swabs on either admission or discharge showed MRSA positive. On the

contrary, a patient was considered MRSA negative i.e. not colonised with MRSA, if all

of the swabs on admission or discharge were tested to be MRSA negative. A patient was

considered to acquire MRSA during the stay in hospital i.e. a patient was colonised by a

new strain of MRSA if one of the following three cases was met [106]:

• The patient was MRSA negative on admission and MRSA positive on discharge.

• The patient was MRSA positive on both admission and discharge but acquired a

new strain of MRSA during hospital stay (as shown by genotyping).

• The patient was MRSA negative on both admission and discharge, but developed

an MRSA infection during the hospital stay.

In this study, we find that there were 34 patients who were MRSA negative on admission

and MRSA positive on discharge in the admission-discharge cohort but no patient

developed an MRSA infection or acquired a new strain of MRSA during the hospital

stay in this cohort. Note that the patients who died during the period of this study are

excluded.
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6.2.2 Potential risk factors.

The putative risk factors for MRSA acquisition on the basis of a plausible prior hypothesis

consisting of reported association with MRSA acquisition were available for the entire

admission-discharge cohort of the study. Overall, there are 12 potential risk factors:

gender, age, discharge specialty, length of stay, the situation of isolation (i.e. whether the

patient had been isolated during hospital stay), patient movement through the hospital

(i.e. the number of wards that the patient had been in during hospital stay), being on

decolonisation treatment at discharge, and a further five potential risk factors relating to

co-morbidity which include diabetes, Chronic Obstructive Pulmonary Disease (COPD),

open wounds or ulcers, renal failure and antibiotic use during the past year. As introduced

in the previous chapter, the data on co-morbidity were collected from an admission risk

assessment questionnaire administered on admission using a standardised data form.

6.2.3 Statistical analysis.

Before analysing the potential risk factors associated with MRSA acquisition, we cleaned

the records of ward code and number of wards in the dataset. Specially, we modified

any mistyping of ward codes in Aberdeen Royal Infirmary within Grampian NHS board

by comparing the observed records of ward code in the dataset with the corresponding

true ward codes in the hospital. Hence, the number of wards that a patient had moved

through were also amended according to the modified ward codes in the dataset (i.e.

totalling the non-empty modified records of ward codes). For example, in the Aberdeen

Royal Infirmary dataset, a patient was in Ward 10, I1, 10. The ward code record ‘I1’

can be considered as a computer identified mistake, which should be ‘11’ instead. After

reasonably correcting the ward codes, we adjust the total number of wards by adding up

the number of ward codes recorded for an individual patient. In this case, a patient was

in Wards 10, 11 and then moved back to 10 this is recorded as 3 wards.

We used two modelling approaches to estimate the odds ratios of the risk factors
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associated with the risk of acquiring MRSA while in hospital, which are categorical logistic

regression and linear logistic regression. In epidemiological researches, it is common to use

the categorical variables in the analysis, allowing easy interpretation and presentation of

results but this represents a loss of information by comparison with using the numerical

values of the measured or counted variables. In order to understand the associations

between the risk factors, such as the associations between the number of wards and

the age of patient, the length of stay, we also investigated the patterns of the pairwise

categorical risk factors in tables.

Firstly, we carried out the categorical analysis for MRSA acquisition using a binary

logistic regression model in R software to estimate the odds ratios for the potential risk

factors. As MRSA acquisition in the hospital is rare, the odds ratio which is obtained

from the logistic regression can also be interpreted as a relative risk. Univariate analysis

was used to detect the potential risk factors which have the significant effects on MRSA

acquisition. The number of wards is always retained as this is the principal variable in

this analysis. Other variables with low p-values (p < 0.10) were considered for inclusion

in the multivariable logistic regression model. Variables with multiple levels (i.e. more

than three categories) were tested for the corresponding overall p-values with the Wald

test. For those significant risk factors associated with MRSA acquisition, the mutual

association between pairwise risk factors was assessed using a χ2 test.

In order to investigate a multiplicative interaction between the risk factors and the

potential confounding effects associated with the risk of MRSA acquisition, a stratified

analysis was applied and the stratified-specific odds ratios were calculated for assessing

the effects of the risk factors after controlling for the possible confounding effects.

Since the sample sizes for some of the strata can be slightly small, exact logistic

regression was applied to estimate the stratum-specific odds ratio and the corresponding

p-value, which were compared with the results obtained from the binary logistic regression.

The exact logistic regression is based on a Markov Chain Monte Carlo approach, which

uses uniform sampling within the Markov chain for generating the Monte Carlo samples, so
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that the parameters for the exposure variables within the logistic model can be simulated.

We use the R library of ‘elrm’ package to do the analysis.

The consistency of the stratum-specific odds ratios across strata refers to the absence

of multiplicative interaction. So we used the Woolf method to test the null hypothesis

which is that all the stratum-specific odds ratios are the same (i.e. OR1 = OR2 =

· · · = ORi where i is the number of strata) against the alternative hypothesis which is

that at least one of the stratum-specific odds ratios differs from another one using a 5%

significance level. In this study, we also used an alternative approach for investigating

the multiplicative interaction, which is the likelihood ratio test based upon the nested

logistic regression models to identify the significance of multiplicative association. Here

the Bonferroni method was used to adjust the p-value for the multiple interaction testing.

We assessed the possible confounding effects between the potential risk factors

using stratified analysis. In the multivariable analysis, a confounding effect causes a

distortion of the underlying association between the exposure of interest and MRSA

acquisition. In order to investigate the association between the exposure of interest

and the risk of MRSA acquisition by controlling for the possible confounding effect, the

Cochran-Mantel-Haenszel (CMH) test was employed under the stratified-specific analysis

using a 5% significance level. This assumes that there is no interaction. The CMH

test is powerful since it specifies the alternative hypothesis and excludes the presence of

interaction. Specifically, the data are stratified into a series of strata, each of which

contains individuals that share common values of all the relevant confounders. For

each strata, the data on MRSA acquisition and exposure of interest are displayed as

a two-by-two table and thus the association between MRSA acquisition and the exposure

of interest can be measured by the stratum-specific odds ratio. In this test, we assumed

that there is no interaction effect. By applying the CMH test on the stratified data, the

null hypothesis which states that the MRSA acquisition and the exposure of interest are

independent, controlling for the possible confounding effects (i.e. the stratum-specific

odds ratios OR1 = OR2 = · · · = ORi = 1) against the alternative hypothesis which is

145



that the OR1 = OR2 = · · · = ORi 6= 1 can be tested.

Under the assumption that there is no striking interaction associated with the strata

variables, the adjusted odds ratio for MRSA acquisition associated with the individual

exposure of interest can also be estimated by using the Mantel-Haenszel (MH) method

which provides the average odds ratio estimates across strata [62]. Comparing the adjusted

odds ratio with the corresponding crude odds ratio means that we are able to investigate

the significance of any potential confounding bias.

Furthermore, we were interested in investigating the causal link between the exposure

of interest and MRSA acquisition by using the trend test with 5% significance level. A

significant result suggests a linear trend in the risk of MRSA acquisition as the exposure

of interest increases or decreases. Moreover, we also used ordered variables in the logistic

regression to investigate possible nonlinear trends for the potential risk factors.

Backward variable selection for all potential risk factors was applied to construct the

multivariable logistic regression using a 5% significance level.

However, the logistic regression based upon the categorical variables may have

disadvantages of an inevitable loss of information and power. Using categorisation in

the analysis causes underestimation of the extent of the variation in risk [103]. Hence

we also used a linear logistic regression model based upon the numeric variables. A

generalised additive model was also used based upon penalised regression smoothers

for the purpose of investigating any nonlinear association between MRSA acquisition

and potential quantitative risk factors. This model allows a rather flexible specification

of the dependence of the MRSA acquisition and numeric exposure variables [136]. A

final numeric multivariable numeric logistic model was constructed based upon backward

selection.

In the end, the categorical logistic model was compared with the corresponding

numeric logistic model. We divided the population in the admission-discharge cohort

into two groups. One is a control group, including two thirds of the population which
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were selected at random and the other one is a test group, which has one third of the

population and was also randomly selected. Then we fitted the categorical logistic model

to the control group and applied this model to the data of the test group, yielding predicted

responses. The sensitivity and specificity of the fitted categorical model was calculated

by comparing the predicted responses to the observed ones. In this way, a Receiver

Operating Characteristic (ROC) curve was plotted for the model. The accuracy of the

model was then determined from the area under the curve (AUC). Similarly, we fitted

the linear logistic model to the data of the control group and predicted the responses

of MRSA acquisition in the test group. A ROC curve was also plotted based upon the

corresponding sensitivity and specificity. Thus the AUC was obtained to investigate the

accuracy of the model. Eventually, a more reliable model can be detected by comparing

the AUCs. The greater the AUC the better the model is for prediction. In this chapter,

we used a bootstrap test to compare the AUCs from the categorical and linear models

statistically. This test investigated the null hypothesis that there is no difference between

those two AUCs.

6.3 Univariate risk factor analysis.

In total, 2,724 patients in the admission-discharge cohort were included in the MRSA

acquisition analysis. The measurements for the MRSA results on admission and on

discharge show that there were 34 patients (1.25%), who were MRSA negative on

admission but MRSA positive on discharge. In this section, we aim to not only assess the

association between the number of wards and MRSA acquisition but also to identify the

other significant risk factors associated with MRSA acquisition.
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6.3.1 The univariate analysis of the categorised variable of

number of wards associated with MRSA acquisition.

The histogram of the number of wards (shown in Figure 6.1) shows that the number of

patients decreases exponentially as the number of wards that the patients had moved

through increases. The majority of patients stayed only in one ward while in hospital.

The frequency of patients who had stayed in more than three wards is low.
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Figure 6.1: The barchart of number of wards patients had stayed in during their stay in
hospital.

In order to understand the trends associated with the number of wards, we categorise

the variable into three levels: one ward, two wards and three or more wards for application

of the univariate analysis as well as the multivariable risk factor analysis in latter sections.

Table 6.1 illustrates the number of patients who acquired MRSA while in hospital for

each category of number of wards. It shows that the percentage of the patients acquiring

MRSA increases as the number of wards increases from one ward to three or more wards.
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Table 6.1: Table of MRSA acquisition for patients with different number of wards.

Number of wards MRSA acquisition
0 1 Total

1 ward 1,518 (99.09%) 14 (0.91%) 1532
2 wards 812 (98.54%) 12 (1.46%) 824
≥3 wards 358 (97.81%) 8 (2.19%) 366

Total 2,686 34

In addition, for each category of the number of wards, the vast majority of the patients

did not acquire MRSA while in hospital.

Table 6.2: Univariate risk analysis for the categorised number of wards.

Risk factor Categories OR p-value 95% CI
Combined
p-value
(Wald test)

Number of wards

1 ward 1
2 wards 1.60 0.23 (0.74,3.48)
≥ 3 wards 2.42 0.05 (1.00,5.82) 0.13

Applying the univariate risk analysis shows that a patient who moved between more

wards has an increased risk of acquiring MRSA while in hospital in Table 6.2. Specifically,

a patient who had moved through three or more wards has about two and a half times as

high a risk of acquiring MRSA compared to a patient who remained in one ward during

their stay in hospital. The odds ratio for MRSA acquisition for the patients staying in

two wards is 1.60 in comparison with the patients staying in one ward with p-value 0.23

which indicates that the risk of MRSA acquisition for the patients staying in two wards

is not significantly different from the risk of MRSA acquisition for the patients staying

only in one ward in hospital. The overall effect of the categorised number of wards is not

strongly associated with MRSA acquisition due to the slightly large p-value (0.13 using

the Wald test). However, the trend test with p-value=0.039 suggests that the risk of

MRSA acquisition increases as the number of wards increases.
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6.3.2 The univariate analysis of other categorised variables

associated with MRSA acquisition.

The results of the other potential risk factors for MRSA acquisition based on the univariate

logistic regression are shown in Table 6.3.

Table 6.3: Univariate risk factor analysis for MRSA acquisition (N = 2, 724).

Variables Categories OR p-value 95% CI
Combined
p-value
(Wald test)

Gender
Male 1 na

Female 1.18 0.75 (0.57,2.20) na

Age (years)

≤ 49 1
50− 64 2.35 0.30 (0.47,11.68)
65− 79 4.83 0.04 (1.10,21.18)
≥ 80 9.99 0.003 (2.20,45.34) 0.003

Discharge specialty

Medicine 1
A&E 1.52 0.70 (0.19,12.13)

Cardiology 0.53 0.41 (0.11,2.42)
Care of the elderly 2.42 0.26 (0.52,11.37)

Oncology 1.06 0.95 (0.13,8.46)
Orthopedics 0.41 0.11 (0.14,1.22)
Nephrology 1.73 0.48 (0.37,8.06)

Surgery 0.75 0.51 (0.32,1.77) 0.46

Length of stay

1 night 1
2-3 nights 0.61 0.52 (0.14,2.73)
4-7 nights 1.92 0.31 (0.55,6.73)
≥ 8 nights 2.34 0.19 (0.66,8.26) 0.088

Patient has
been isolated

No 1
Yes 0.51 0.53 (0.06,4.16) na

Co-morbidity:
diabetes

No 1
Yes 0.85 0.76 (0.30,2.43) na

Co-morbidity:
COPD

No 1
Yes 1.80 0.22 (0.69,4.70) na

Co-morbidity:
wounds/ulcers

No 1
Yes 3.04 0.01 (1.31,7.08) na

Co-morbidity:
renal failure

No 1
Yes 4.58 0.006 (1.57,13.33) na

Antibiotic use in
year prior to discharge

No 1
Yes 1.62 0.17 (0.81,3.25) na

Decolonisation treatment
on discharge

No 1
Yes 4.04 0.18 (0.53,31.05) na
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There are four out of eleven potential risk factors showing potentially significant

association with MRSA acquisition in hospital (i.e. age, length of stay, open wounds or

ulcers and renal failure) with the corresponding p-values not larger than the significance

level 0.1. The results in Table 6.3 imply that age has a strong association with MRSA

acquisition due to a low overall p-value (i.e p = 0.003 using a Wald test). Clearly, elderly

patients have a higher risk of MRSA acquisition compared to younger patients. The

crude odds ratios increase as age group increases. Patients aged over 64 years old have

significantly higher risk of acquiring MRSA compared to the patients aged 49 or under

with the corresponding p-values less than 0.05. For example, patients 80 years old and over

were around 10 times as likely to acquire MRSA during their stay in hospital compared to

the younger patients aged 49 or under. On the other hand for the patients between 50-64

years old, the risk of acquiring MRSA is 2.35 times as high as the patients aged 49 years

or under. From a statistical point of view, the risk of MRSA acquisition for the patients

aged 50-64 years old is not significantly different from the risk of MRSA acquisition for

the patients aged 49 years old or under due to the relatively high p-value.

The risk of MRSA acquisition changes as the length of stay changes and the

corresponding overall p-value=0.088 from the Wald test. The unadjusted odds ratios

for the length of stay indicate that patients staying for over 8 nights have 2.34 times as

high a risk of MRSA acquisition compared to the patients staying only for one night.

On the other hand, the risk of acquiring MRSA for the patients staying for two to three

nights is 0.61 times the risk of MRSA acquisition for the patients staying for one night,

though the confidence interval is wide.

We can see from Table 6.3 that the patients with self-reported open wounds or ulcers

were almost three times more likely to acquire MRSA than the patients with intact skin

(p = 0.01). Furthermore, the risk of MRSA acquisition for a patient with renal failure

is more than four times that of a patient without renal failure. Thus, the potential risk

factor of renal failure is also considered as a highly significant risk factor associated with

MRSA acquisition (with p-value=0.009).
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6.4 Association between potential risk factors.

In this section, we aim to investigate all the pairwise associations between the number of

wards and the important risk factors from Table 6.3 which are age, length of stay, open

wounds or ulcers and renal failure. The results are illustrated by two-way tables in Table

6.4.

Table 6.4: Two-way tables of association between potential risk factors.1

Age
p-value

(χ2-test)
≤ 49 50-64 65-79 ≥ 80

Number
of

wards

1 ward
398

(64.61%)
475

(60.13%)
513

(53.05%)
146

(41.83%)

2 wards
162

(26.30%)
207

(26.20%)
315

(32.57%)
140

(40.12%)
< 0.001

≥ 3 wards
56

(9.09%)
108

(13.67%)
139

(14.38%)
63

(18.05%)

Length
of

stay

1 night
127

(20.62%)
104

(13.16%)
101

(10.42%)
31

(8.88%)

2-3 nights
229

(37.17%)
252

(31.90%)
247

(25.49%)
65

(18.62%)
< 0.001

4-7 nights
165

(26.79%)
260

(32.91%)
344

(35.50%)
119

(34.10%)

≥ 8 nights
95

(15.42%)
174

(22.03%)
277

(28.59%)
134

(38.40%)

Wounds/
ulcers

Yes
70

(11.76%)
53

(6.94%)
66

(7.03%)
22

(6.55%)
0.002

No 525(88.24%)
711

(93.06%)
873

(92.97%)
314

(93.45%)

Renal
failure

Yes
14

(2.36%)
21

(2.78%)
27

(2.90%)
15

(4.52%)
0.300

No
580

(97.64%)
734

(97.22%)
903

(97.10%)
317

(95.48%)
Continued on the next page

1Note that the percentage in the table is the percentage of total in the column.
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Table 6.4-continued from previous page

Length of stay
p-value

(χ2-test)

1 night 2-3 nights 4-7 nights ≥ 8 nights

Number

of wards

1 ward
317

(87.57%)

540

(68.09%)

461

(51.97%)

214

(31.47%)

2 wards
44

(12.15%)

237

(29.89%)

315

(35.51%)

228

(33.51%)
< 0.001

≥ 3 wards
1

(0.28%)

16

(2.02%)

111

(12.52%)

238

(35.00%)

Wounds/

ulcers

Yes
30

(8.57%)

53

(6.94%)

67

(7.78%)

61

(9.26%)
0.425

No
320

(91.43%)

711

(93.06%)

794

(92.22%)

598

(90.74%)

Renal

failure

Yes
8

(2.30%)

21

(2.76%)

22

(2.58%)

26

(4.01%)
0.314

No
340

(97.70%)

739

(97.24%)

832

(97.42%)

623

(95.99%)

Number of wards

1 ward 2 wards ≥ 3 wards

Wounds/

ulcers

Yes
131

(8.82%)

47

(5.92%)

33

(9.30%)
0.033

No
1,354

(91.18%)

747

(94.08%)

322

(90.70%)

Continued on the next page
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Table 6.4-continued from previous page

Number of wards
p-value

(χ2-test)

1 ward 2 wards ≥ 3 wards

Renal

failure

Yes
36

(2.43%)

22

(2.81%)

19

(5.44%)
0.011

No
1,444

(97.57%)

760

(97.19%)

330

(94.56%)

Wounds/ulcers

Yes No

Renal

failure

Yes
17

(8.10%)

193

(2.51%)
< 0.001

No
193

(91.90%)

2,333

(97.49%)

The two-way tables of the potential risk factors (in Table 6.4) show that age is strongly

associated with length of stay, number of wards and open wounds or ulcers whereas the

association between age and renal failure is not significant. It is clear that the elderly

patients visited a larger number of wards in hospital. The percentage of the patients

80 years or over moving through three or more wards (18.05%) is almost double the

percentage for the patients 49 years or under who had moved through three or more

wards (9.09%). Thus the elderly patients tend to move through a relatively large number

of wards. A similar conclusion is reached using length of stay. 38.40% of patients aged

over 80 are in hospital for eight days or more, compared to 15.42% of those under 50.

Considering the association between open wound or ulcers and age of patients, the results

in Table 6.4 demonstrate that a higher percentage of patients aged 49 years or under have

open wounds or ulcers compared to the patients 50 years or over. Although compared

to the young patients, elderly patients have a slightly higher proportion who have renal
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failure on admission to hospital, there is no statistical association between age and renal

failure due to the high p-value of the χ2-test.

As expected, the results show that the length of stay is highly associated with the

number of wards. To be more specific, a patient who had stayed in hospital for a long

time had usually moved through a relatively large number of wards. It is clear in the

two-way table that the percentage of the patients staying for eight nights or more and

moving through three or more wards is significantly higher than the percentage of the

patients staying for only one night and moving through three or more wards. Note that

one patient is reported as being in three wards yet spending only one night in hospital.

This is possible but very unusual. On the other hand, with respect to both co-morbidity

risk factors: open wounds or ulcers and renal failure, the tests have high p-values which

means that from a statistical point of view there is no significant association between

length of stay and open wounds or ulcers or renal failure.

The association between the number of wards and the risk factors of open wounds or

ulcers and renal failure have small p-values in Table 6.4, which implies that the number

of wards is strongly associated with open wounds or ulcers and it is also significantly

associated with renal failure. The majority of the patients did not have renal failure when

they were admitted into the hospitals, but the percentage of patients who had renal failure

increases as the number of wards increases. Although the proportion of patients with open

wounds or ulcers does not show a straightforward increasing trend as the number of wards

that the patients had moved through increases, the p-value for the χ2-test gives evidence

that the number of wards is associated with open wounds or ulcers.

The analysis also indicates that there is convincing evidence of a high association

between renal failure and open wounds or ulcers due to the corresponding low p-value.

Generally speaking, a patient with renal failure has a high probability of also having open

wounds or ulcers since the percentage of patients with a wound or ulcer who also have

renal failure (8.10%) is much higher than the percentage of patients without open wounds

having renal failure (2.51%).
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In this section, we analysed the pairwise association between the potential risk factors.

The strong associations between some of the risk factors suggest potential confounding

issues in the multivariable analysis. In the next section, we will investigate this problem.

6.5 Analysis of potential confounding effects and

interactions.

There is a strong association between the age of patients and MRSA acquisition (based

on the results of the univariate risk factor analysis in Section 6.3) and high correlations

between age and the number of wards, length of stay and open wounds or ulcers

respectively according to the small p-values (<0.05) in the two-way tables (shown in Table

6.4). Consequently we investigate age as a potential confounder in the multivariable risk

factor analysis.

In this section, we go through the steps of the analysis of the possible confounding

effect of age associated with the number of wards on MRSA acquisition as an example.

The details of the analysis for the other risk factors are shown in Appendix B.

Table 6.5: Stratified risk analysis of number of wards by different age groups.

MRSA acquisition
Age No. of wards No Yes OR p-value

≥80 years old
1 ward 143 (97.95%) 3 (2.05%) 0.24 0.058
2 ward 137 (97.86%) 3 (2.14%) 0.25 0.067
≥3 wards 58 (92.06%) 5 (7.94%) 1

65-79 years old
1 ward 504 (98.25%) 9 (1.75%) 2.46 0.394
2 ward 310 (98.41%) 5 (1.59%) 2.23 0.467
≥3 wards 138 (99.28%) 1 (0.72%) 1

50-64 years old
1 ward 473 (99.58%) 2 (0.42%) 0.45 0.519
2 ward 204 (98.55%) 3 (1.45%) 1.57 0.696
≥3 wards 107 (99.07%) 1 (0.93%) 1

≤49 years old
1 ward 398 (100%) 0 (0%) 0 0.994
2 ward 161 (99.38%) 1 (0.62%) 0.34 0.450
≥3 wards 55 (98.21%) 1 (1.79%) 1

To investigate the possible confounding effect of age, we stratify the association
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between MRSA acquisition and the number of wards according to the age groups and

assess the stratified-specific associations. However a small number of patients in a stratum

will make the interpretation difficult. In Table 6.5, there is no patient recorded in the

dataset who was 49 years old or under and who had stayed in one ward and acquired

MRSA. Hence we use three or more wards as the baseline in each age group stratum to

estimate the stratified-specific odds ratios for MRSA acquisition. The results show that

the elderly patients (80 years or over) are more likely to acquire MRSA if they moved

through a large number of wards. The strata-specific odds ratio for one ward is 0.24 with

p-value 0.058 where three or more wards is treated as a baseline in the stratum of age of

80 years old or older and the stratum-specific odds ratio for two wards in the stratum of

age of 80 years old or older is 0.25 with p-value 0.067. The p-value (0.08) using the Wald

test, which exceeds the significance level 0.05, implies that the effect of the number of

wards among the patients 80 years old or over is not significantly associated with MRSA

acquisition.

For the patients aged between 65 and 79, the number of wards is not associated with

MRSA acquisition since the p-value of the Wald test is high (0.7). The stratum-specific

odds ratio for two wards is 2.23 with p-value 0.467 while the stratum-specific odds ratio

for one ward is 2.46 with the p-value 0.467, both of which imply that although the risk

of MRSA acquisition for the patients aged 65-79 who stayed in two wards or less is more

than two times as high as the risk of MRSA acquisition for patients aged 65-79 staying

in three wards or more, there is no statistically significant difference between the effect

of patients staying in two or less wards and the effect of patients staying three or more

wards associated with MRSA acquisition.

For the patients whose age is 50-64 years, the combined p-value 0.40 (Wald test)

indicates that the effect of number of wards is not significant on MRSA acquisition.

Since there is no record of a patient aged 49 years old or under who stayed only in

one ward and acquired MRSA in hospital in the dataset, the stratum-specific odds ratio

for MRSA acquisition associated with one ward in the stratum of age of 49 or under has

157



no meaningful assessment.

In Table 6.5, we can see that the application of the stratified analysis makes the

sample size in each stratum of age become relatively small. In particular, the number of

patients who acquired MRSA in hospital within each stratum of age is quite small. In this

situation, the exact logistic regression is capable of giving more reliable estimates of the

stratum-specific odds ratios as well as the corresponding p-values. The results obtained

from exact logistic regression under the stratified analysis are shown in Table 6.6.

Table 6.6: Stratified risk analysis of number of wards by different age groups using exact
logistic regression.

MRSA acquisition

Age No. of wards No Yes ORLogXact
p-value

(LogXact)

≥80 years old
1 ward 143 (97.95%) 3 (2.05%) 0.25 0.052
2 ward 137 (97.86%) 3 (2.14%) 0.26 0.099
≥3 wards 58 (92.06%) 5 (7.94%) 1

65-79 years old
1 ward 504 (98.25%) 9 (1.75%) 2.51 0.329
2 ward 310 (98.41%) 5 (1.59%) 2.27 0.240
≥3 wards 138 (99.28%) 1 (0.72%) 1

50-64 years old
1 ward 473 (99.58%) 2 (0.42%) 0.47 0.484
2 ward 204 (98.55%) 3 (1.45%) 1.58 1.00
≥3 wards 107 (99.07%) 1 (0.93%) 1

≤49 years old
1 ward 398 (100%) 0 (0%) 0.14 0.12
2 ward 161 (99.38%) 1 (0.62%) 0.32 0.463
≥3 wards 55 (98.21%) 1 (1.79%) 1

Compared to the results in Table 6.5, the stratum-specific odds ratios obtained by

exact logistic regression are approximately the same as the stratum-specific odds ratios

obtained by the logistic regression. Generally speaking, the exact logistic regression can

generate more reliable estimates of stratum-specific odds ratios in stratified analysis but

the conclusions are not different compared to the ones obtained by the logistic regression.

Now we investigate the multiplicative interactions between age and number of wards

associated with MRSA acquisition based upon the stratified analysis shown in Table 6.5.

In order to use Woolf’s method to detect the homogeneity of the stratum-specified odds

ratio across the strata, we dichotomise the number of wards into two groups which are one
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ward and two or more wards. The high p-value (0.176) suggests that the stratum-specific

odds ratios for MRSA acquisition associated with number of wards are consistent across

the strata, i.e. age does not modify the effect of number of wards on MRSA acquisition.

This conclusion validates the assumption of the CMH test which will be used later. An

alternative test, which is the likelihood ratio test, for investigating the multiplicative

interactions will also be used in Section 6.6.1.

We use the CMH method to assess the independence between the number of wards

and MRSA acquisition, controlling for the potential confounding effect of age. Then based

on the MH method we are able to estimate the adjusted odds ratio for MRSA acquisition

across the strata of age. The results are shown in Table 6.7, where the category of one

ward is treated as the baseline in the analysis.

Table 6.7: The estimation of average odds ratio for the number of wards, stratified by
age.

p-value (CMH method) ORMH 95% CI
2 wards vs. 1 ward 0.43 1.36 (0.63,2.94)
≥3 wards vs. 1 ward 0.16 1.89 (0.78,4.62)

The results in Table 6.7 show that the stratum-specific odds ratios for MRSA

acquisition in patients staying in two wards relative to the patients staying in one ward

are equal to one in a consistent manner across the different age groups due to the high

p-value which is 0.43. By controlling for the possible confounding effect of age, the risk

of MRSA acquisition for the patients staying in two wards is 1.36 times as high as the

risk of MRSA acquisition for the patients staying in one ward. Compared to the crude

odds ratio in the univariate analysis which is 1.60 shown in Table 6.2, this adjusted odds

ratio decreases by 15%. The adjusted odds ratio for MRSA acquisition associated with

three or more wards in the comparison with one ward indicates that the risk of MRSA

acquisition for patients staying in three or more wards is 1.89 times as high as the risk

of MRSA acquisition for the patients staying in one ward but the corresponding p-value

0.16 indicates that the effect is not statistically related to MRSA acquisition. Compared
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to the corresponding crude odds ratio shown in Table 6.2 (2.42), the adjusted odds ratio

decreases by 21.9%. This indicates that there is a confounding effect of age associated

with number of wards, influencing MRSA acquisition.

In this subsection, we analysed the multiplicative interaction between age and the

number of wards associated with MRSA acquisition. We also investigated the potential

confounding effect of age associated with the number of wards on MRSA acquisition. The

results showed that there is no multiplicative interaction between age and the number

of wards, and the confounder, age, is significantly associated with the number of wards

and also influences MRSA acquisition. The analysis of the other potential confounding

variables, such as number of wards, length of stay, open wounds or ulcers and renal failure,

and their possible interaction effects are demonstrated in Appendix B.

Briefly, the results in Appendix B show that there is no multiplicative interaction

between the pairwise potential risk factors of age, number of wards, length of stay, open

wounds or ulcers and renal failure. Those risk factors can be considered as potential

confounders since they are potentially causally related to MRSA acquisition. Although

age is not likely to be causal, it is associated with an impaired immune system among

older patients. Similarly for renal failure. Length of stay and number of wards both

have positive correlation with the risk of acquiring MRSA. Open wounds or ulcers might

also be causal. The analysis of the potential confounders implies that age is an actual

confounder which has impact on the effect of length of stay and open wounds or ulcers.

Furthermore, the number of wards also has a confounding effect associated with age and

the length of stay. The length of stay has a confounding effect associated with age and

the number of wards. The risk factors of open wounds or ulcers and renal failure are

mutually confounded.
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6.5.1 The analysis of the trend test for the risk of MRSA

acquisition adjusting for confounding factors.

In the previous subsection, we did not develop a detailed understanding of how the risk

of MRSA acquisition changes over the exposure levels. In epidemiological studies, it is

common that an exposure variable has a natural ordering. In this subsection, we aim to

investigate whether the risk of MRSA acquisition increases or decreases as the level of

exposure of interest increases.

In order to detect a trend in the risk of MRSA acquisition with respect to the

categorical risk factors which have natural orders, we use the trend test under the

assumption that there is no interaction between age and the number of wards. The

trend test is adjusted by taking the possible confounding effects of another variable into

account. The previous subsection shows that there is no interaction, which indicates

that if the trend in risk exists, it is considered to be consistent across all strata. In this

subsection, we use the investigation of an increase or a decrease in the risk of MRSA

acquisition as the number of wards increases as an example. Obviously, in order to avoid

the confounding effect of age associated with the number of wards, the trend test is based

on the stratified analysis. We assign the values of 0, 1 and 2 to the ordered categories

of the qualitative variable of number of wards (i.e. ‘1 ward’, ‘2 wards’ and ‘≥ 3 wards’).

According to the quantities in Table 6.5, the trend test based upon the logistic regression

with age as a categorical variable and number of wards using 0, 1, 2 yields a p-value

of 0.13, indicating that there is no evidence that the risk of MRSA acquisition has an

increasing risk as the number of wards increases adjusted for age.

The details of the trend tests for the other potential exposure variables, which take

the corresponding confounding effects into account, are demonstrated in Appendix B.

The results show that the risk of MRSA acquisition increases as the level of age increases.
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6.6 Multivariable logistic regression model.

Based on the results of the previous univariate analysis, we now aim to construct a

multivariable model to describe the pattern of how the risk of MRSA acquisition changes

when accommodating all the potential risk factors. Firstly, we investigate the potential

interactions between potential risk factors for inclusion using the likelihood ratio test

and compare the results with the ones obtained above by the Woolf method. Then two

multivariable logistic models, one of which involves the categorical exposure variables and

the other involves the numeric variables respectively, are constructed to relate the risk

factors to MRSA acquisition. From mathematical point of view, the multivariable logistic

regression model can be expressed as log( p
1−p) = a + bx, where p denotes the risk of

acquiring MRSA in hospital and x denotes the risk factors related to MRSA acquisition.

In this section, we focus on the analysis of the categorical multivariable model, in which

the association between risk factors and MRSA acquisition is easy and straightforward to

interpret.

6.6.1 Testing for interactions using likelihood ratio test.

We use the likelihood ratio test to test all the plausible interactions between the potential

risk factors based upon the multivariable logistic model. The Bonferroni method is

used to adjust the p-value for multiple testing. Equivalently, in this study, the adjusted

significance level becomes 0.05
10

= 0.005 since there are five potential risk factors involved

in the multivariable analysis and thus there are ten possible interaction terms. The results

in Table 6.8 show that there is no pairwise interaction between the potential risk factors

though the interaction between age and length of stay has a small p-value.

For example, the likelihood ratio test for the interaction between the length of stay

and age (i.e. the product of length of stay and age) gives a p-value (0.013) which is

larger than the adjusted significance level 0.005, indicating that the combined effect of

age and length of stay does not have a significant association with MRSA acquisition in
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Table 6.8: The likelihood ratio tests for plausible interactions.

Interaction p-value
age×length of stay 0.013

age×number of wards 0.414
age×wounds/ulcers 0.438
age×renal failure 0.385

length of stay×number of wards 0.546
length of stay×wounds/ulcers 0.837
length of stay×renal failure 0.962

number of wards×wounds/ulcers 0.974
number of wards×renal failure 0.637
renal failure×wounds/ulcers 0.996

the multivariable logistic model, with Bonferroni adjustment. Similarly, the p-values of

the likelihood ratio tests for the interactions between the number of wards and age, the

length of stay, open wounds or ulcers and renal failure are 0.414, 0.546, 0.837 and 0.962

respectively, meaning that none of the p-values for the interactions reach the adjusted

significance level (0.005). Hence this illustrates that there is no significant effect of the

interactions between the number of wards and other potential risk factors associated with

the MRSA acquisition. The conclusion of non-significant interactions is the same as the

result we obtained by the Woolf method in the previous sections.

6.6.2 Multivariable analysis for the categorical model.

Now we construct the categorical multivariable model, taking all the significant categorical

exposure variables into account. According to the analysis of the univariate logistic

regression illustrated in Table 6.3 in Section 6.3, five potential risk factors with significant

results are considered to be included into the multivariable logistic model, which are age,

length of stay, number of wards, open wounds or ulcers and renal failure. Note that the

number of wards is included in the multivariable analysis since one of the main objectives

of the analysis presented in this chapter is to assess the association between number of

wards and MRSA acquisition adjusting for the other risk effects.
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Table 6.9: Multivariable analysis of risk factors for MRSA acquisition.

Risk factor Categories Adjusted OR2 p-value 95% CI

Combined

p-value

(Wald test)

Age

≤49 years 1

50-64 years 2.30 0.31 (0.46,11.51)

65-79 years 4.47 0.05 (1.01,19.88)

≥ 80 years 8.39 0.01 (1.80,39.18) 0.013

Length of stay

1 night 1

2-3 nights 0.58 0.48 (0.13,2.63)

4-7 nights 1.41 0.61 (0.38,5.22)

≥ 8 nights 1.34 0.68 (0.34,5.27) 0.47

Number of wards

1 ward 1

2 wards 1.26 0.58 (0.56,2.86)

≥3 wards 1.44 0.47 (0.53,3.87) 0.75

Wounds/ulcers
No 1

Yes 2.89 0.02 (1.18,7.10)

Renal failure
No 1

Yes 2.98 0.06 (0.94,9.47)

As we can see from Table 6.9, there are three risk factors: length of stay, number of

wards and renal failure becoming nonsignificant in the multivariable logistic model. This

may be caused by the confounding effects. Taking the effect of length of stay, number of

wards, open wounds or ulcers and renal failure into account, the adjusted odds ratio for

MRSA acquisition increases significantly as age increases from 49 or under to 80 years or

over. The adjusted effect of age remains significant (since the adjusted p-value< 0.05).

2the odds ratio by taking the other risk factors into account
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However, the adjusted odds ratio for the patients aged 80 years old or over declined to 8.39

whereas the crude odds ratio for the patients aged 80 years old or over is 9.99. This can be

explained by the confounding effect of length of stay which was demonstrated in Section

6.5. Compared to the results in the univariate analysis (shown in Table 6.3), the adjusted

odds ratios for the length of stay change dramatically as well. Specifically, the adjusted

odds ratio for the patients staying for eight nights or over becomes much lower than

the corresponding crude odds ratio in the univariate analysis. Moreover, the adjusted

p-value of the Wald test for the length of stay increases from 0.088 in the univariate

analysis to 0.47 in the multivariable analysis, implying that the positive effect of the

length of stay on MRSA acquisition disappears with the inclusion of the effects of the

other risk factors, principally age. The adjusted risk of MRSA acquisition increases when

the number of wards that the patients stayed in increases. The corresponding adjusted

p-value for number of wards in the multivariable logistic model means that the adjusted

effect of number of wards is non-significant. Compared to the unadjusted odds ratios for

MRSA acquisition associated with the number of wards in Table 6.2, the adjusted one

decreases significantly. This indicates that some of the other exposure variables affect

the association between number of wards and MRSA acquisition. Similarly, the adjusted

p-values (< 0.05) for open wounds or ulcers and renal failures indicate that there remain

strong associations between open wounds or ulcers/renal failure and MRSA acquisition

adjusting for the effects of other risk factors. Taking all putative risk factors into account,

the effect of renal failure on the acquisition of MRSA becomes weaker. This can be seen

from the significant decreases in the adjusted odds ratio (2.98) compared to the unadjusted

odds ratio for renal failure (4.58 shown in Table 6.3).

Then we derive a new model where length of stay is excluded since this variable is

not significant in the multivariable model. Number of wards is retained at this time as it

is the primary research question in this chapter.

Comparing the adjusted odds ratios for the remaining risk factors in the new fitted

model in Table 6.10 to the corresponding adjusted odds ratios in the full model in Tables
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Table 6.10: Multivariable analysis of nested model without length of stay.

Risk factor Categories Adjusted OR p-value 95% CI
Combined
p-value
(Wald test)

Age

≤49 years 1
50-64 years 2.43 0.28 (0.49,12.61)
65-79 years 4.93 0.03 (1.12,21.77)
≥ 80 years 9.50 0.004 (2.05,43.95) 0.0069

Number of wards
1 ward 1
2 wards 1.39 0.41 (0.63,3.08)
≥3 wards 1.82 0.19 (0.74,4.51) 0.41

Wounds/ulcers
No 1
Yes 3.04 0.01 (1.25,7.38)

Renal failure
No 1
Yes 2.85 0.07 (0.90,8.97)

6.9, we can see that both adjusted odds ratios for age and number of wards in the new

model become larger when length of stay is excluded. This indicates that there is a possible

confounding effect of length of stay on age and the number of wards (the details of the

analysis are illustrated in Appendix B). However based on the Wald test, the adjusted

effect of the number of wards in this multivariable model is not significant. We perform

the χ2 difference test to investigate the hypothesis of whether the coefficient of number

of wards is zero in this model and it produces a high p-value (0.415) which indicates that

it is reasonable to exclude the number of wards from this model.

Hence we generate a second new model which involves three only risk factors: age,

open wounds or ulcers and renal failure. The results are presented in Table 6.11, which

shows that the risk of MRSA acquisition increases significantly as age increases, by

adjusting for the effects of open wounds or ulcers and renal failure. The risk of acquiring

MRSA is more than five times higher for a patient above 64, compared to a patient who

was younger than 50 years old. For a patient aged 80 years old or over, the risk of MRSA

acquisition is more than ten times higher compared to the patients aged 49 years or under.

In addition, patients with open wounds or ulcers are 3.02 times as likely to acquire MRSA

compared to the patients without open wounds or ulcers and patients with renal failure
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have 3.17 times as high risk of MRSA acquisition compared to the patients without renal

failure. Note that this is the same model as the one in the paper written by Velzen et

al. [130].

Table 6.11: Multivariable analysis of nested model without length of stay and number of
wards.

Risk factor Categories Adjusted OR p-value 95% CI
Combined
p-value
(Wald test)

Age

≤49 years 1
50-64 years 2.53 0.26 (0.51,12.63)
65-79 years 5.16 0.03 (1.17,22.76)
≥ 80 years 10.57 0.002 (2.31,48.39) 0.0034

Wounds/ulcers
No 1
Yes 3.02 0.01 (1.25,7.26)

Renal failure
No 1
Yes 3.17 0.04 (1.04,9.71)

In this section, we constructed a categorical multivariable model to describe the

pattern of MRSA acquisition related to the potential risk factors. Only age, open wounds

or ulcers and renal failure remain significantly associated with MRSA acquisition. Age is

a primary risk factor related to the risk of MRSA acquisition. Taking the other exposure

variables into account, the older a patient is the higher the risk of acquiring MRSA while

in hospital. There are no significant multivariable interactions between the potential risk

factors based on the Bonferroni method. Now we are interested in investigating whether

there is nonlinearity of the categorical variables associated with MRSA acquisition in the

multivariable analysis, which will be assessed in the next section.

6.7 The analysis of trend of risk factors.

In order to investigate the nonlinear trend of the potential categorised risk factors, we

use ordered variables in the logistic regression. Section 6.7.1 has the results from the

analysis for the logistic regression model which involves linear, quadratic and cubic terms

of the ordered exposure variables. Although the categorical logistic regression is easy and
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straightforward to interpret the relationship between the potential risk factors and the

risk of MRSA acquisition, this may lead to an inevitable loss of information and power.

Therefore, we use the numeric variables in the multivariable model to enhance the power

of the analysis (i.e. increase the degrees of freedom in the full model) [41]. In addition,

we will investigate the potential nonlinearity of the numeric variables related to the risk of

MRSA acquisition, using the generalised additive models. The results of the investigation

for the generalised additive model will be presented in Section 6.7.2.

6.7.1 The analysis of the logistic regression with ordered factors.

Table 6.12 has the univariate p-values of significance tests for the ordered risk factors.

Generally speaking, the large p-values for the quadratic and cubic terms in the model of

MRSA acquisition depending on the age illustrate that neither of the quadratic or cubic

terms of age require to be included in the model. The p-value for the linear trend of the

effect of age associated with MRSA acquisition is 0.0013, revealing that there is strong

evidence that the linear trend of age is significant in the model of MRSA acquisition with

regard to the effect of age.

Similarly, the linear trend of the length of stay is significant for the risk of MRSA

acquisition but there is no evidence that quadratic or cubic terms of length of stay would

be included in the model with respect to MRSA acquisition.

Moreover, by investigating the nonlinear trend for the number of wards in the model

of MRSA acquisition, similar conclusions can be drawn. That is the linear trend of the

number of wards as a p-value of 0.048 which is close to 0.05, whereas the quadratic term

has a large p-value. Note that in Table 6.12, the results of nonlinear trend tests for open

wounds or ulcers and renal failure are excluded since open wounds or ulcers and renal

failure are binary variables ([0,1]).

The estimates from the multivariable logistic model including all the potential

categorised risk factors which are ordered are presented in Table 6.13. There is convincing
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Table 6.12: Univariate ordered risk factor analysis.

Risk factor Tested trend Coefficient Standard error p-value

Age (categorised)
Linear 1.705 0.529 0.0013

Quadratic -0.063 0.456 0.888
Cubic 0.032 0.369 0.935

Length of stay
(categorised)

Linear 0.827 0.450 0.067
Quadratic 0.347 0.430 0.419

Cubic -0.582 0.408 0.153
Number of wards

(categorised)
Linear 0.626 0.316 0.048

Quadratic -0.024 0.299 0.937

evidence that age shows a linear association with MRSA acquisition and the corresponding

p-value is 0.0035. The p-values (>0.1) of the linear trend for both length of stay and

number of wards suggest that neither are associated with MRSA acquisition adjusting

for age, open wounds or ulcers and renal failure. There is not evidence that nonlinear

terms in age are required and the linear logistic regression is adequate to model MRSA

acquisition.

Table 6.13: Multivariable ordered risk factor analysis.

Risk factor Tested trend Coefficient Standard error p-value
Age Linear 1.576 0.540 0.0035

Length of stay Linear 0.395 0.495 0.425
Number of wards Linear 0.256 0.358 0.474
Wounds/ulcers Linear 1.063 0.456 0.02
Renal failure Linear 1.092 0.590 0.06

In this subsection, we investigated the nonlinearity of the categorical variables

associated with the risk of MRSA acquisition and the results showed that the effect of

categorical variables with higher orders is not significant on the risk of MRSA acquisition.

As we mentioned before, the numeric logistic regression model will increase the power

of the analysis compared to the categorical model. Thus in the next subsection, we will

investigate the nonlinearity of the numeric variables associated with the risk of MRSA

acquisition and then construct the corresponding multivariable logistic model including

the numeric exposure variables.
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6.7.2 The analysis for the generalised additive model.

In the previous section, nonlinearity in terms of ordered categorical variables and quadratic

or cubic effects was investigated. In order to investigate the nonlinearity of the numeric

risk factors in more detail, generalised additive models were applied in this section.

From mathematical point of view, the generalised additive model can be expressed as

log(E(Y )) = β+f(X), where Y is the response (i.e. MRSA acquisition), f is the smoothed

functions and X is the risk factors related to the response.

Using the numeric age rather than the categorised age for each patient as a risk factor

in the generalised additive model, the plot is displayed in Figure 6.2, where the solid line

represents the estimated effects and the dashed lines are 95% confidence limits which is

estimated by the Bayesian approach (i.e. strictly Bayesian credible intervals).
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Figure 6.2: The smooth function of age in the generalised additive model.

Clearly, the effect of age is estimated as a smoothed curve with the corresponding

effective degrees of freedom of 1.70 which reflects the flexibility of the fitted model and is

determined by the smoothing parameter (i.e. the degree of smoothness) for the penalized

regression spline of age. The 95% Bayesian confidence limits are wide on the tails since

the number of relatively young and old patients is small. The penalised age is slightly
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curved.

Furthermore, we also investigated the adjusted effects of age, number of wards that the

patients had moved through and the length of stay by applying a multivariable generalised

additive model, where those three risk factors are all treated as numeric variables. The

plots of the corresponding smooth functions of the three risk factors are presented in

Figure 6.3.
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Figure 6.3: The smooth functions of age, number of wards, length of stay in the full
multivariable generalised additive model, with associated 95% confidence limits.

According to the estimated results of the multivariable generalised additive model

involving the five potential risk factors of age (as a numeric variable), number of wards

(as a numeric variable), length of stay (as a numeric variable), open wounds or ulcers

and renal failure, the adjusted effect of age on the risk of MRSA acquisition is estimated

as a smooth curve with the effective degrees of freedom of 1.59. The adjusted effect of

length of stay is estimated as a straight line related to the risk of MRSA acquisition,

corresponding to one degree of freedom. In other words, length of stay shows a linear

effect on MRSA acquisition, controlling for the effects of age, number of wards, open

wounds or ulcers and renal failure. On the other hand, the adjusted effect of number of
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wards is estimated as a smooth curve, corresponding to 1.89 effective degrees of freedom,

which indicates that the linearity of number of wards might not be adequate to model the

risk of MRSA acquisition. The 95% confidence interval for the number of wards becomes

wider when the number of wards increases. This is because the number of the patients

who had stayed in a large number of wards is relatively small. The same phenomenon

of the wide confidence interval in the right tail can be found in the plot of the length of

stay due to the similar reason that the number of the patients who had stayed for a long

period is small.

Then we use the likelihood ratio tests to investigate if the smoothed terms of age and

the number of wards are necessary. For example, we compare the multivariable model

including the penalized regression of the number of wards to the model including a linear

term of the number of wards and a high p-value (0.326) for the χ2 test means that there

is no need to include a smoothed term of the number of wards in the multivariable model.

Similarly, the test for the penalized regression of age has a p-value 0.21 for the nonlinear

terms which suggests that there is no significant nonlinear effect of age on the risk of

MRSA acquisition.

In this section, we used the logistic regression model with the ordered exposure

variables to investigate the nonlinearity of the categorical variables and the results showed

that the effects of the categorical variables of age, open wounds or ulcers and renal

failure are significant on the risk of MRSA acquisition. Since using the categorical

variables in the multivariable logistic model weaken the power of the analysis, we are

interested in investigating the multivariable model including the numeric variables instead.

The generalised additive model was used to investigate the nonlinearity of the numeric

exposure variables in this section. We can conclude that a linear model is adequate

to interpret the relationship between the potential risk factors and the risk of MRSA

acquisition. Thus in the next section, we will construct a linear model including the

numeric variables and assess the effects of those variables on the risk of MRSA acquisition.
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6.8 The multivariable logistic analysis with the

numeric risk factors.

Now we build the model which includes the linear terms of the numeric variables of age,

number of wards and length of stay. According to the results in the previous section, a

linear model is adequate to clearly demonstrate the effects of age, number of wards and

length of stay associated with the risk of MRSA acquisition (shown in Table 6.14).

Table 6.14: Multivariable model with all numeric risk factors.

Risk factor Adjusted OR p-value 95% CI
Age (numeric) 1.05 0.00022 (1.02,1.08)

Number of wards
(numeric)

0.87 0.507 (0.59,1.30)

Length of stay
(numeric)

1.05 0.0062 (1.01,1.08)

Wounds/ulcers 2.49 0.054 (0.98,6.32)
Renal failure 2.51 0.128 (0.77,8.20)

Table 6.14 shows that age as a numeric variable is linearly related with MRSA

acquisition and the risk of MRSA acquisition increases by a factor of 1.05 as the age

of patients increases by one, controlling for the potential risk factors of number of wards,

length of stay, open wounds or ulcers and renal failure. The adjusted odds ratio of the

length of stay shows that the risk of MRSA acquisition increases by a factor of 1.05 as

the length of stay increases by one. And the corresponding small p-value (0.0062) implies

that the effect of the numeric length of stay is significant on the risk of MRSA acquisition.

On the other hand, the adjusted effect of number of wards is not significant on the risk

of MRSA acquisition due to the relatively high p-value (0.507).

In both the multivariable full model involving all the categorised ordered risk factors

(shown in Table 6.13 in Section 6.7.1) with the corresponding multivariable full model with

the numeric ones (which is shown in Table 6.14), the adjusted effect of age is significantly

associated with MRSA acquisition. Furthermore there is no significant association with

the number of wards adjusted for the other risk factors. The numeric multivariable full
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model shows significant effect of length of stay on the risk of MRSA acquisition whereas

the adjusted effect of the length of stay is not significant in the corresponding categorical

multivariable full model. One of the reasons is that the categorical variables lose some

variability and conceal a certain information about the details of the data since this model

assumes that the relation between MRSA acquisition and length of stay is constant within

each category (i.e. any change in effect within a category will be lost) [41]. Generally

speaking, it is adequate to use linearity of the risk factors to model the risk of MRSA

acquisition. One of the disadvantages of the numeric multivariable logistic regression

model is that the interpretation of the effects of the risk factors associated with MRSA

acquisition is not quite as simple as it is for the categorical models.

By applying the backward selection using the 5% significant level, the results for the

final numeric multivariable model which involves three risk factors of age, length of stay

and open wounds or ulcers are shown in Table 6.15.

Table 6.15: Multivariable analysis of risk factors for MRSA acquisition involving numeric
age and length of stay.

Risk factor Categories Adjusted OR p-value 95% CI
Combined
p-value
(Wald test)

Age (numeric) 1.06 0.00015 (1.03,1.08)
Length of stay 1.04 0.001 (1.02,1.06)

Wounds/ulcers
No 1
Yes 3.07 0.012 (1.08,7.39)

In Table 6.15, we can see that the effects of age, length of stay and open wounds or

ulcers are all strongly associated with MRSA acquisition. Particularly, the risk of MRSA

acquisition increases by a factor of 1.06 as each increment of age, after controlling for the

effects of length of stay and open wounds or ulcers. The adjusted odds ratio for length of

stay also demonstrates that the risk of MRSA acquisition increases by a factor of 1.04 as

each increment of length of stay. For the patients with open wounds or ulcers, the risk of

MRSA acquisition is 3.07 times as high as the risk of MRSA acquisition for the patients

without open wounds or ulcers.
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In this section, we constructed a numeric multivariable logistic regression model which

included three numeric exposure variables of age, length of stay and open wounds or

ulcers. The results showed that the risk of MRSA acquisition increases as the age and/or

length of stay increases. The patients with open wounds or ulcers have higher risk of

acquiring MRSA. Recall that the categorical multivariable model showed that three out

of five potential risk factors, which are age, open wounds or ulcers and renal failure, are

significant on the risk of MRSA acquisition. Now we are interested in assessing that which

model is more reliable and predictive.

6.8.1 The comparison of the numeric model and the categorical

model.

In this subsection, we compare the final categorical model shown in Table 6.11 and the

final numeric model shown in Table 6.15. The sensitivity and specificity of each model is

established using the model predictions and observations. Then the ROC curve can be

plotted for each model, with the corresponding AUC calculated (shown in Figure 6.4).

The AUC for the numeric model which is 0.812 is slightly greater than the AUC for the

categorical model which is 0.788. However, comparing those two AUCs based upon a

bootstrap test, the p-value (0.198) indicates that the AUC for the numeric model is not

statistically greater than the AUC for the categorical model. This means that there is

no convincing evidence that the numeric model is more reliable and predictive than the

categorical one.

6.9 Conclusion.

In this chapter, we investigated the effects of the potential risk factors associated with

MRSA acquisition in the admission-discharge cohort (N = 2, 724) where 1.26% of the

patients acquired MRSA while in hospital. The plausible interactions as well as the
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Figure 6.4: The ROC curves for categorical and numeric models with the corresponding
AUCs.

possible confounders were analysed. As a result, three categorical risk factors for acquiring

MRSA are identified: age group, self reported open wounds or ulcers and self reported

renal failure. Age group is strongly related to MRSA acquisition which is considered as

the predominant risk factor. Elderly patients (65 years old or older) are more likely to

acquire MRSA compared with the younger patients aged 49 years old or under. Patients

with open wounds or ulcers are more likely to acquire MRSA than the patients without

open wounds or ulcers when admitted into the hospital. Similarly, patients with renal

failure are 4.58 times as likely to acquire MRSA in comparison with the patients without

renal failure.

Generally speaking, the number of wards when treated as a grouped variable is not

significantly associated with MRSA acquisition in the univariate analysis. However, the

risk of MRSA acquisition is slightly higher for patients staying in three or more wards

compared to the patients staying in one ward. By taking the effects of other risk factors

into account, the grouped number of wards does not have a significant effect on MRSA

acquisition.

The number of wards has strong associations with other four risk factors involving age,

length of stay, open wounds and renal failure. Age as a dominant risk factor associated
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with MRSA acquisition is a confounder with respect to the other risk factors of length

of stay, number of wards and open wounds or ulcers. The risk factors of open wounds or

ulcers and renal failure are mutually confounding. By applying Woolf’s test to investigate

the consistency of the odds ratios across strata, the results showed that there was no

multiplicative interaction among the pairwise potential risk factors. In addition, there is

no obvious trend in the risk of MRSA acquisition as the number of wards increases.

Generalised additive regression models were also applied to generate the estimated

effects of the risk factors which were modelled as a smooth line by penalized regression

spline. The conclusion drawn from this analysis is that there are linear trends of exposure

variables in the risk of MRSA acquisition. Hence, we used the linear numeric variables

in constructing the logistic model for the risk of MRSA acquisition. In this model length

of stay is associated with MRSA acquisition in contrast to the use of the corresponding

categorical variable which may be easier to interpret. This illustrates the loss of the

information in the data by the use of categorisation.

We constructed linear numeric multivariable model which included two numeric

variables of age, length of stay and a binary variable, open wounds or ulcers. The results

showed that the risk of MRSA acquisition increases as the age of a patient increases. The

long length of stay may also increase the risk of MRSA acquisition and the patients with

open wounds or ulcers have higher risk of acquiring MRSA. We compared this numeric

model with the categorical multivariable model obtained before, the results showed that

from a statistical point of view there is no obvious evidence that one of those two models

is more reliable or predictive though the linear model had a higher area under the ROC

curve.

Although the screening program is important to identify MRSA positive patients,

the findings in this chapter provide evidence that the cross-transmission of MRSA

still takes place in Scottish hospitals and hence implementing contact precaution and

infection control in the hospital is also important to prevent the cross-transmission.

This study can be considered to be representative of the general Scottish in-patient
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population but selection bias towards relatively healthier patients exists, which may lead

to underestimation of the proportion of patients acquiring MRSA. For example, patients

who died in hospital cannot be included in the admission-discharge cohort as they could

not consent on discharge.

This study has some limitations. A prospective cohort study was undertaken to help

determine risk factors for acquiring MRSA in hospital since the longitudinal observations

were collected in a defined period. In this chapter, only the data in the admission-discharge

cohort were used for the analysis since we needed both the MRSA measurements on

admission and on discharge. This may lead to an underestimation of the proportion of

patients acquiring MRSA. In this chapter, the multiple testing was addressed by adjusting

the significance level using the Bonferroni method. A large number of multiple null

hypotheses, for example, in the test of the potential pairwise interactions, means that

this procedure will have little power.

Since there were only a small number of patients acquiring MRSA while in hospital

(only 34 patients) compared to the study population, data have little power to identify

which model is a better fit to the data and the power of the study is low.

Patient movement can be characterised by both the frequency of the movement and

also by cohabiting where a patient is in a ward at the same time as there are MRSA

patients in the same ward. In the next chapter, we focus on modelling the dynamic

patient movements and assess the effect of being in a ward with other MRSA patients on

the MRSA acquisition. Specifically, two main questions are assessed in the next chapter:

(i) is there any evidence that the probability of acquisition of MRSA in hospitals is greater

among patients who are transferred to or admitted to wards within the hospital where

there are known patients who are MRSA positive (i.e. patients with MRSA colonisation

or infection) compared to patients who are in wards with no known MRSA colonisation

or infection; (ii) Is there any evidence that the probability of acquisition of MRSA in

hospitals is affected by the duration of stay only in wards where MRSA is known to be

present.
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Chapter 7

Effect of Patient Movement between

Wards on the Acquisition of MRSA.

7.1 Introduction.

In this chapter, we focus on the methodology of assessing the effect of patient movement

in general hospitals on MRSA acquisition. The movement of patients with MRSA to other

wards in the hospital and the movement of patients into wards where MRSA patients are

already resident may bring hospital patients who do not have MRSA into closer proximity

to patients who carry MRSA. In other words, we aim to investigate the effect of patient

movement on the risk of a patient acquiring MRSA in hospital by using the movement

data to generate other variables which measure the close proximity of patients without

MRSA to patients with positive MRSA.

Ideally, if the ward of a patient on each day in the study is known, we would be able to

map the dynamic patient movement. Therefore, a data matrix could be generated, which

presents the number of patients and their relative MRSA status in each ward on each

day in the study. We consider as an example five patients (denoted as patient A, B, C,

D, E) each with their associated dates of admission, dates of discharge, dates of transfer

to another ward, the wards that they have stayed in and the MRSA status on each day.
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Note that the information for those five patients are established artificially as examples to

demonstrate. For simplification, we assume that those five patients only moved through

two wards while in hospital. Table 7.1 clearly illustrates the available data for those five

patients.

Table 7.1: The example of the ideally available data.

Patient Admission
Transfer to

another ward
Discharge date

A
Date 1-2-2013 3-2-2013 4-2-2013

Ward code W1 W2 W2
MRSA status Negative Negative Negative

B
Date 3-2-2013 4-2-2013

Ward code W2 W2
MRSA status Positive Positive

C
Date 1-2-2013 2-2-2013 3-2-2013

Ward code W1 W2 W2
MRSA status Negative Negative Negative

D
Date 2-2-2013 3-2-2013 4-2-2013

Ward code W1 W2 W2
MRSA status Negative Negative Positive

E
Date 2-2-2013 4-2-2013 4-2-2013

Ward code W2 W1 W1
MRSA status Negative Negative Negative

Patient A was admitted into ‘W1’ ward in the hospital on first of February, 2013 and

then moved to ‘W2’ ward on third of February, 2013. This patient was discharged from

‘W2’ ward on fourth of February, 2013. Moreover, Table 7.1 also shows that patient A

remained as MRSA negative while in hospital. Patient B was admitted into ‘W2’ ward

and was negative for MRSA on third of February, 2013 but discharged, positive for MRSA,

on fourth of February, 2013. Patient B stayed in the same ward all the time he or she

was in hospital. The data for patients C, D, E can be interpreted similarly.

Based on those quantities, the data matrix presenting the number of patients in each

ward on each day can be derived, where the columns correspond to the dates and the rows

correspond to the ward codes. For example, on first of February, 2013, both patient A

and patient C were staying in the ‘W1’ ward. Hence, if there are only these five patients
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in the population of patients,we can conclude that there are two patients in the ‘W1’ ward

on first of February, 2013. Similarly, on second of February, 2013, patient C and patient E

were staying in the same ward (‘W2’). i.e. there are two patients in ‘W2’ ward on second

of February, 2013. The full data matrix for these five patients is shown in Table 7.2.

Table 7.2: The example of data matrix presenting the number of patients in each ward
on each day.

Date
Ward code 1-2-2013 2-2-2013 3-2-2013 4-2-2013

W1 2 2 0 1
W2 0 2 5 3

Since the MRSA status on each day for each patient was known, the data matrix

corresponding to the number of positive MRSA patients in each ward on each day can

also be generated (shown in Table 7.3). Clearly, patient B was MRSA positive on the third

of February, 2013 and this patient was in ‘W2’ at that time whereas all the other patients

who were staying in the same ward on the same day were MRSA negative. Therefore,

there is only one positive MRSA patient in ‘W2’ ward on the third of February, 2013.

Similarly, according to Table 7.1, there are three patients staying in ‘W2’ ward on the

fourth of February, 2013, but only patient A was MRSA negative. In other words, there

are two positive MRSA patients in ‘W2’ ward on the fourth of February, 2013

Table 7.3: The example of data matrix presenting the number of positive MRSA patients
in each ward on each day.

Date
Ward code 1-2-2013 2-2-2013 3-2-2013 4-2-2013

W1 0 0 0 0
W2 0 0 1 2

Thus whether a patient was exposed to MRSA in a ward (referred to in this chapter

as ‘exposed to MRSA’) can be calculated based on the data matrix. Furthermore, if a

patient was potentially exposed to MRSA in a ward, then the corresponding number of

days as well as the number of patient days which this patient had spent staying with
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other positive MRSA patient(s) in the same ward simultaneously can also be derived.

The number of days that a patient is exposed to MRSA (referred to in this chapter as

‘days exposed to MRSA’) is the sum of the days that this patient was staying with other

positive MRSA patients at the same ward. The number of patient days that a patient

exposed to MRSA (referred to in this chapter as ‘patient days exposed to MRSA’) can

be calculated by summing the number of other positive MRSA patients that this patient

was staying with at the same ward for each day in hospital. Note that the number of

patient days is a measure, derived from patient movement date, which is interpreted as a

patient staying with two or more positive MRSA patients in the same ward at the same

time has a higher risk of MRSA acquisition than staying with just one positive MRSA

patient in the same ward. Taking the data illustrated in Table 7.1 as the examples, we

are able to generate three variables of exposure to MRSA for each patient based on the

data matrix derived above, which are: (1) exposed to MRSA, (2) days exposed to MRSA,

and (3) patient days exposed to MRSA. The results are shown in Table 7.4.

Table 7.4: The example of the variables of exposure to MRSA.

Patient
MRSA status
on admission

MRSA status
on discharge

Exposed
to MRSA

Days exposed
to MRSA

Patient days
exposed to

MRSA
A Negative Negative Y 2 3
B Positive Positive Y 1 1
C Negative Negative Y 1 1
D Negative Positive Y 2 2
E Negative Negative Y 1 1

Note that ‘Y’ means that the patient was exposed to MRSA while in hospital and on

the other hand, ‘N’ means that the patient was not exposed to MRSA while in hospital.

Note that patient B who is positive on admission is excluded in the analysis. Since there

was no MRSA positive patient in ‘W1’ ward (shown in Table 7.3), patient A was not

exposed to MRSA for the first two days after the admission. Then patient A moved to

‘W2’ ward on the third of February, 2013 (shown in Table 7.1) and was MRSA negative

on that day. According to the data matrix in Table 7.3, there was one positive MRSA
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patient in ‘W2’ ward on the third of February, 2013. Hence we can conclude that patient

A was exposed to MRSA while in hospital, i.e. the variable of exposed to MRSA for

patient A is ‘Y’. Table 7.1 shows that patient A was discharged from ‘W2’ ward on the

fourth of February, 2013 and remained MRSA negative. Table 7.3 shows that there are

two positive MRSA patients in ‘W2’ ward on the fourth of February, 2013. Hence patient

A was staying with two other positive MRSA patients on the discharge date. In summary,

patient A was exposed to MRSA for two days while in hospital (i.e. third and fourth of

February, 2013), i.e. the variable of days exposed to MRSA is two. Moreover, patient

A was staying with one other positive MRSA patient on the third of February, 2013 and

was staying with two positive MRSA patients on the fourth of February, 2013. Therefore,

the patient days that patient A was exposed to MRSA (i.e. the variable of patient days

exposed to MRSA) is three.

Based on the quantities derived from the data matrix, the effect of patient movements

on MRSA acquisition can be assessed using logistic regression methods in three main

aspects: (i) whether a patient exposed to MRSA while in hospital has higher risk of

acquiring MRSA compared to an ‘unexposed’ patient, (ii) whether a patient exposed

to MRSA for a longer time has a higher risk in acquiring MRSA compared to a patient

exposed for a shorter duration, and (iii) whether a patient more heavily exposed to MRSA

patients in the same ward at the same time has a higher risk of acquiring MRSA than a

patient less heavily exposed to MRSA.

7.1.1 Available data.

In this chapter, the dataset that will be used for the analysis is from Aberdeen Royal

Infirmary only. Compared to the other hospital, Crosshouse, which was also recruited

in the MRSA Screening Project, the information collected from the Aberdeen Royal

Infirmary showed more accuracy and integrity. In the preliminary analysis, we found out

that there were only 1.4% of records suspected to have missing information or transcription
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errors in the number of wards or the ward codes in the Aberdeen Royal Infirmary dataset.

On the other hand about 23.5% of the patient records were suspected to have mistakes

in the ward data in Crosshouse hospital.

Before evaluating if an MRSA patient is in a specific ward, we check and correct the

records of ward codes for each patient who was included in the study. One of the reasons

causing the errors in the information on wards in the dataset involves the total number

of wards that patients had moved through during their stay in hospital and the specific

ward codes they had been to. For example, we found instances where a patient had been

in three wards but only two codes were recorded and a patient with three ward codes but

a total of two wards. This was due to data transcription and reading errors. Therefore,

by comparing the number of non-empty ward code records for each patient in the dataset

with the corresponding record of total number of wards that patient had been to, we

adjusted the total number of wards on the basis of the corresponding amount of amended

ward codes record in the study which were collated with the true ward codes listed in

Aberdeen Royal Infirmary. For example, in the Aberdeen Royal Infirmary dataset, the

ward code record ‘I1’ can be considered as a mistake in computer data entry, which should

be ‘11’ instead. After reasonably correcting the ward codes, we adjust the total number

of wards by adding up the number of ward codes recorded for an individual patient. Two

or more separate stays in a ward are considered separately, For example, if a patient was

in Wards 10, 11 and then back to 10 this is recorded as three wards.

In the Aberdeen Royal Infirmary dataset, neither the individual length of stay that

a patient had stayed for in each ward nor the duration of a patient carrying MRSA while

in hospital were recorded. There are three cohorts involved in the dataset, which are

the admission-discharge cohort, the admission only cohort and the discharge only cohort.

These are serious drawbacks but ones which could not be addressed by going back to

the original data. The admission-discharge cohort includes the information on date of

admission, date of discharge, MRSA status on admission and on discharge, number of

wards and length of stay. On the other hand, the admission only cohort includes the
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data on date of admission, MRSA status on admission and number of wards but there

are missing records on length of stay, date of discharge and MRSA status on discharge.

Similarly, the discharge only cohort includes the data on date of discharge, MRSA status

on discharge and number of wards but there are missing records on length of stay, date

of admission and MRSA status on admission. Table 7.5 shows clearly the availability of

the data.

Table 7.5: The available data in the Aberdeen Royal Infirmary dataset.

Cohort
Date

of
admission

MRSA status
on

admission

Date
of

discharge

MRSA status
on

discharge

Number
of

wards
and
ward
codes

Length
of

stay

Admission-
discharge

cohort
(1,580)

Y Y Y Y Y Y

Admission
only

cohort
(4,748)

Y Y N N Y N

Discharge
only

cohort
(1,483)

N N Y Y Y N

Note that in this table ‘Y’ means that the data are available in the dataset, ‘N’ means

that the data are not available in the dataset. We assume that the duration of stay in

each ward is positive and hence the records, where the number of wards is larger than the

corresponding length of stay, would not be included in the study. There are 1,580, 4,748

and 1,483 patients in the admission-discharge cohort, admission only cohort and discharge

only cohort of the Aberdeen Royal Infirmary respectively, giving the data shown in Table

7.5.
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7.1.2 Method.

In order to investigate the dynamic situation of the patient movement, we construct the

two-dimensional matrix of ward by date giving the total number of patients in a ward on

a given study day (e.g. see in Table 7.2). The rows of this matrix correspond to ward

codes and the columns correspond to the study day. For each patient we will impute the

duration of stay for each corresponding ward he or she had been to (i.e simulate the days

of moving wards) from his or her admission date to the discharge date according to the

quantities in the dataset: length of stay, ward codes and the total number of wards. For

example, for a patient who had stayed in hospital for three nights from the admission

date 2010-06-01 and had been to two wards whose ward codes were, in order, ‘49’ and

‘50’, we aim to assign the three nights into two wards and hence obtain the duration of

stay in ward ‘49’ and ‘50’ respectively. This patient could have had one day in ‘49’ and

two days in ‘50’ or two days in ‘49’ and one day in ‘50’ as we assume that the duration

for each ward is larger than zero. Based on this two-dimensional matrix, the timelines of

MRSA infection and carriage pressure in each ward can be mapped for all patients under

a further assumption of the duration of MRSA colonisation while in hospital.

For the admission-discharge cohort, once the individual length of stay in each ward

is imputed, we are able to assess the dynamic patient movements by constructing the

two-dimensional matrix and evaluate the effect of patient movements associated with

MRSA acquisition by applying logistic regression. However, the exposure variables related

to patient movement which are generated only for the admission-discharge cohort would

be biased since the situations of all the other patients in the hospital are not included.

Hence the data for the admission only and discharge only cohorts are also included for the

calculation of the exposure variables in the analysis of dynamic patient movements. For

the admission only cohort, we impute the missing length of stay based upon the number

of wards patients had been in and then impute the individual length of stay for each ward.

Similarly, for the discharge only cohort, we impute the missing length of stay that the
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patients had stayed for in hospital and then derive the corresponding date of admission

and individual length of stay for each ward based on the imputation. Simultaneously, the

MRSA status on admission is imputed for all the patients in the discharge only cohort

and then the MRSA status for each patient in a given ward can be imputed. As a result,

the dynamic patient movement data and the corresponding MRSA colonisation pressure

can be mapped each day.

The problem of imputing the individual length of stay for each ward (i.e. moving

days) can be addressed by starting to analyse the distribution of the length of stay and

hence establish a reasonable distribution for this by testing hypotheses, which will be

introduced in the next section. In Section 7.3, the imputation of the length of stay,

MRSA status on admission and movement dates will be demonstrated. Moreover, the

map of patients with positive MRSA in hospital can be derived and the calculation of

the exposure variables of patient movements associated with MRSA acquisition will also

be introduced in Section 7.3. Finally, the logistic regression for the exposure variables of

patient movements will be demonstrated in Section 7.4, which will be bootstrapped to

take into account the imputation.

7.2 The analysis of the distribution of length of stay.

First of all, we will analyse the distribution of observed length of stay which is the total

time in hospital in the admission-discharge cohort only and investigate four different

assumptions for the individual length of stay for each ward (i.e. moving days).

Obviously, the length of stay for a patient who had stayed in a ward is positive. For

the cases that the length of stay equals zero, it implies that the patient moved into a ward

and then moved out from there on the same day. For example, if the admission date for a

patient was the same as his or her discharge date then the length of stay for that patient

in hospital is treated as zero. On the other hand for the case that the discharge date for

a patient was the day after the admission date, the length of stay becomes one. As we
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mentioned in the previous chapter, in this study, the patients with positive length of stay

(i.e. the patients had stayed over one night) are included for the analysis. We first assess

the distribution of length of stay. There is only one record with zero length of stay in

the Aberdeen Royal Infirmary dataset, which is excluded from the analysis. According

to the analysis in Section 6.4 of the previous chapter, we detected that the length of stay

has a positive, approximately linear, relationship with the number of wards. Hence, we

investigate the distribution of length of stay stratified by the number of wards.

The distribution of the length of stay for patients who had only been in one ward is

shown in Figure 7.1.
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Figure 7.1: The distribution of length of stay (nights) for patients who had been in exactly
one ward (N = 904).

The distribution in Figure 7.1 is strongly skewed to the right, indicating that the

proportion of patients who had stayed five nights or under and only been to one ward

during their stay in hospital is the highest, followed by the proportion of patients staying

between six to ten nights. Only a few patients who had been to only one ward during

hospitalisation had stayed over 15 nights.

The length of stay distribution for patients who had moved through two wards during

their stay in hospital, is shown in Figure 7.2. This histogram shows a similar shape to
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Figure 7.2: The distribution of length of stay (nights) among patients who had been to
exactly two wards (N = 405).

the length of stay distribution for one ward cases, and is also highly skewed to the left.

Similarly, according to the distribution illustrated in Figure 7.3 patients who had

moved through exactly three wards had relatively higher frequencies for shorter lengths

of stay (i.e. the proportion of patients staying ten days or under was higher compared to

those staying over 15 nights). Specifically, the relative frequency for the length of stay

between one and five inclusive was slightly lower than the frequency for the length of stay

between six and ten inclusive, which is reasonable since the total number of wards that

patients had been to is three. From Figure 7.3, we can see that the majority of patients

(approximately (0.058 + 0.075) × 5 = 67%) who had moved through three wards stayed

in hospital for about ten days or less.

In comparison of Figure 7.1, 7.2 and 7.3, the density for 0 to 5 (i.e. (0,5]) is greater

for exactly one ward and lower for exactly two wards and still lower for exactly three

wards. The density for 5 to 10 (i.e. (5,10]) increases with increasing number of wards.

This reflects that increasing length of stay is associated with increasing number of wards.

Analysis of the histogram of the length of stay for the cases with more than three

wards reveals similar shapes to the distribution of the length of stay for patients moving
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Figure 7.3: The distribution of length of stay (nights) for the cases that number of wards
was three (N = 175).

through three wards. There are fewer patients and the histograms are not presented.

We need to impute the individual length of stay for each ward that a patient had

moved through when patients had stayed in two or more wards. For each patient, we divide

the total length of stay of that patient into several intervals so that the length of stay for

each ward can be allocated. In the following subsections, four different assumptions of the

distribution of the individual length of stay are proposed and the validity of assumptions

are also investigated.

7.2.1 Assumption 1: the distribution of length of stay in

multiple wards is the sum of lengths of stay in one ward.

Among patients where the total number of wards is larger than one, it is assumed that the

distribution of the individual length of stay in each ward is the same as the distribution

of length of stay for one ward only (displayed previously in Figure 7.1). We are able to

compare the duration of stay calculated under this assumption to the true records. This

was done by imputing the length of stay for each ward by simulating randomly from the

observed distribution of length of stay in only one ward and then combining the lengths
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of stay for the two wards together so that the comparison of the imputation with the

observed data (in Figure 7.1) can be made.

Another potential factor, which is also likely to have an effect on the length of stay

is age. The corresponding two-way table (Table 7.6) shows that the relative frequencies

of the length of stay are different in the four age groups. Especially, comparing the first

column in Table 7.6 to the fourth column, the proportion of each length of stay for the

age group 49 years or under is remarkably different from the corresponding proportions

for the age group 80 years or over. For example, the proportions of patients staying for

one night in the age group 49 years old or under (0.119) is relatively larger compared to

the age groups 80 years or over (0.037).

Table 7.6: The two-way table of length of stay against age (one ward cases).

Length of stay Age
≤49 years 50-64 years 65-79 years ≥80 years

1 night 0.119 0.064 0.069 0.037
2-3 nights 0.433 0.380 0.336 0.293
4-7 nights 0.320 0.410 0.390 0.367
≥ 8 nights 0.128 0.146 0.205 0.303
Number of

patients
194 295 333 82

Investigating the two-way tables of length of stay against the other potentially related

factors, gender and admission specialty, we find out that there is no strong evidence that

the length of stay differs between gender or admission specialty. The two-way table

regarding to gender, which is shown below in Table 7.7 as an example demonstrates that

the length of stay does not differ substantially.

Table 7.7: The two-way table of length of stay against gender (one ward cases).

Length of stay Gender
Male Female

1 night 0.067 0.082
2-3 nights 0.385 0.351
4-7 nights 0.350 0.406
≥ 8 nights 0.198 0.161

Number of patients 431 473
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Note that the ward codes listed in the one ward only case do not contain all the

possible ward codes that patients had moved through for the two wards or more cases.

This occurs as there are wards which no ‘one ward only’ patient stayed in but ‘two

wards only’ patients did stay in; for example the ‘24’ ward. Hence for the purpose of

investigating the current hypothesis that the distribution of individual lengths of stay for

each ward is the same as that for the one ward case, we exclude the patients involving

any different ward code compared to the ward codes contained in the one ward only case.

For the exactly two wards case, we add up the imputed lengths of stay for the first and

second wards to generate the corresponding distribution for total length of stay. Each

imputed length of stay is sampled from the empirical distribution in the one ward only

case with the ward code and age group corresponding to the ones recorded in the two

wards case. For a patient aged 49 or under who had moved through two wards (where the

ward codes were ‘HDU’ and ‘20’), we are able to simulate the individual length of stay

for ward ‘HDU’ and ‘20’ respectively. Considering the simulated length of stay for ward

‘HDU’, it is sampled from the empirical distribution of length of stay for the patients

aged 49 years old or under and also staying in ward ‘HDU’ in the one ward case. Note

that ‘HDU’ is available as a one ward code. Similarly, we randomly sampled from the

empirical distribution of length of stay for the patients aged 49 years old or under and

also staying in ward ‘20’ in the one ward case to obtain the imputed length of stay for

ward ‘20’.

The results (in Figure 7.4) show that the imputed distribution of total length of stay

has a similar shape compared to the true distribution, which appears to support the

assumption that the distribution of length of stay for each ward in the two wards case

is the same as the corresponding distribution in the one ward only case. However, the

relative frequency for the short length of stay (five nights or under) is lower than the true

frequency. On the other hand, the relative frequencies for the longer lengths of stay (ten

nights or over) are slightly higher than the true ones. One of the limits for this imputation

approach is that there are only a limited number of observations for each combination
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Figure 7.4: The comparison of length of stay (nights) between the imputed one (red
histogram) and the observed one (blue histogram) for the case that number of wards
was two. Both age and ward are used to select the appropriate empirical distribution.
(N = 1, 600)

of ward codes and age to generate the empirical distribution. For example, there is only

one observation for a patient aged 49 years old or under and staying in ward ‘2’ in the

one ward only case. This leads to problems in the imputation process in that there is not

sufficient variability.

We attempted to apply this method to the exactly three wards case. In this case we

are unable to simulate the length of stay due to the limited number of records in the one

ward only case. The main problem is that we are unable to find some matched records

in the one ward only case with the particular ward code and particular age group which

are the same as those in the three wards case. Consequently, the corresponding empirical

distribution for the total length of stay cannot be established.

Therefore, we consider constructing the empirical distribution of length of stay in

each ward taking into account only one of the potential risk factors, namely ward code.

We retain the same assumption that the distribution of length of stay for each ward is

the same as the distribution of length of stay in the one ward only cases. The individual

length of stay for a particular ward code is imputed from the corresponding empirical
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distribution of the length of stay associated with that ward code in the one ward only

case.

The plot illustrating the distribution of the imputed total length of stay for the exactly

two wards case together with the observed distribution is shown in Figure 7.5. The results

show that the imputed distribution is clearly distinguished from the observed distribution,

indicating that there is no evidence that the distribution of length of stay for each ward

in two wards case is the same as the distribution of length of stay in the one ward only

case. In Figure 7.5, the relative frequencies for the longer lengths of stay (over ten nights)

in the red histogram (i.e. the imputed distribution for the exactly two wards case) appear

much higher than the corresponding observed frequencies which are marked in colourless

bars. Moreover, the density for the short length of stay (five nights or under) is clearly

lower than the observed one.
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Figure 7.5: The comparison of length of stay (nights) between the imputed distribution
(red histogram) and the observed distribution (colourless bars) for using patients who
were in exactly two wards. Only ward code is used to select the empirical distribution.
(N = 2, 014)

We also compare the empirical distribution of the length of stay with the imputed one

for patients who had been in exactly three wards. A similar conclusion can be drawn from

Figure 7.6, which shows that the imputed distribution (i.e. the red histogram) does not
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coincide with the observed one (i.e. the colourless histogram). Therefore the assumption

that the distribution of the length of stay in each ward within two and three ward stays

is the same as that for one ward only is not valid. This is especially true when only ward

code is used as a matching variable.

Length of stay

D
en

si
ty

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

Figure 7.6: The comparison of length of stay (nights) between the imputed one (red
histogram) and the observed one (colourless bars) for the case that where patients were in
exactly three wards during their stay. Ward code used to select the empirical distribution
(N = 523).

We also investigate the assumption that for the patients who had moved through two

or more wards, the distribution of length of stay, stratified by the age groups, is the same

as the distribution of length of stay in the one ward only case. However, the results also

suggest that this assumption is invalid as the distribution of the imputed length of stay is

quite different from the observed length of stay in the two wards case. The histogram of

the imputed total lengths of stay is centred between 20-30 nights and the corresponding

distribution tends to be much more symmetric (see the red histogram in Figure 7.7) than

the observed distribution (colourless bars).

In this subsection, we investigated the imputation approach for lengths of stay per

ward for patients who had been in multiple wards based on the empirical distribution of

the observed length of stay for patients who had been in one ward only. However, when
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Figure 7.7: The comparison of length of stay (nights) between the imputed distribution
(red histogram), where the empirical distribution is selected by the stratification on age,
and the observed distribution (colourless bars) for patients who had been in exactly two
wards (N = 1, 621).

using these empirical distributions, the imputed total length of stay was not constructed

to be the same as the observed one. This can be overcome by calculating the length of

stay for the last ward by subtraction. For example, for two wards case, the length of stay

for the first ward can be imputed based upon the corresponding empirical distribution

whereas the length of stay for the second ward can be derived by subtracting the imputed

length of stay for the first ward from the corresponding observed length of stay.

7.2.2 Assumption 2: Uniform distribution.

We do not have access to prior data about the distribution of length of stay in each ward

when a patient is in two or more wards. As a first approximation we assume that the day

a patient moves from one ward to another during the period from admission to discharge

is equally likely for all days a patient is in hospital. Hence the assumption is made that

the date of movement between wards for a patient follows a Uniform distribution. In

other words, we assumed that the movement dates for each patient can be randomly

sampled from the corresponding discrete Uniform distribution U[1,los-1] according to the
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quantities of the total number of wards (here los is the length of stay). For example, for a

patient who had moved through two wards and stayed four days, we simulate the length

of stay for the first ward which follows the discrete Uniform distribution with the domain

Ω = {1, 2, 3} since the length of stay for each ward is a positive integer. If the result for

the imputed length of stay for the patient staying in the first ward is two, it means that

the date of movement for the patient moving from the first ward into the second one is

two days after his or her admission. Hence the length of stay for the second ward in this

example is now calculated to be two (i.e. the observed length of stay - the imputed length

of stay for the first ward). Note that this investigation includes only the records which

satisfy the criterion that the length of stay is larger than or equal to the corresponding

number of wards since the length of stay for each ward is assumed to be positive. Thus

there are 16 records excluded here as the recorded length of stay was smaller than the

recorded number of wards that the patient was in. Those 16 patients had stayed for only

one night but moved through two wards. Based on the above approach, the corresponding

distribution of the length of stay for the first wards as well as for the second wards can

be obtained individually for patients who had stayed in exactly two wards. The results

are shown in Figure 7.8.

Comparing those two histograms with the one for the one ward only case in Figure

7.1, both histograms in Figure 7.8 show a similar shape to the distribution of length

of stay for patients staying in only one ward. The proportion of patients staying in a

ward for a smaller number of days is always relatively larger and the frequency declines

dramatically as the length of stay increases.

For patients who had moved through exactly three wards, we impute two movements

between the wards where the length of stay in each ward follows is imputed from the

Uniform distribution U[1,los-1], where los is the observed length of stay recorded in the

dataset. Two integers randomly sampled from U[1,los-1] without replacement are sorted

into an increasing order (i.e. the random integers are denoted as d1, d2 and d1 < d2). Also

d1 and d2 are treated as the cumulative total length of stay that the patient had stayed

197



Length of stay

D
en

si
ty

0 5 10 15 20 25 30 35

0.
00

0.
15

0.
30

Length of stay

D
en

si
ty

0 5 10 15 20 25 30 35

0.
00

0.
15

0.
30

Figure 7.8: The distributions of length of stay (nights) for the first wards (the upper plot)
and second wards (the bottom plot) under the hypothesis that the date of movement
follows a Uniform distribution for the patients who were in exactly two wards.

in the different wards from the admission date. Namely d1 is the length of stay for the

patient in the first ward and d2 is the duration of stay since the patient was admitted into

the hospital until he or she was about to leave the second ward. The smaller value of the

simulated results d1 is regarded as the length of stay for the first ward and the length of

stay for the second ward can be calculated by the subtraction of the length of stay for the

first ward from the larger simulated integer (i.e d2-d1). Hence the length of stay for the

third ward can also be generated by subtracting d2 from the observed length of stay (i.e

los - d2).

For example, the dates of movements between wards for a patient who had moved

through three wards and stayed for five nights are simulated without replacement from

the Uniform distribution with the domain {1, 2, 3, 4} in view of the necessity that the

length of stay for a ward is guaranteed to be a non-negative integer. If the results of the

simulation are three and one, we sort them in increasing order and then one is treated as

the length of stay for the first ward that patient had been to and three is treated as the

duration of stay in the first two wards that the patient had moved through since the date

of admission (i.e the total length of stay for both the first and second wards). Thus the
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length of stay for the second ward is obviously two nights and the patient had moved into

the third ward staying for another two nights before the discharge date.

From the individual histograms of length of stay for the first, second and third wards

in the three wards cases (shown in Figure 7.9), we can see that the shape of all the

simulated distributions are similar to the observed distribution for the one ward case in

Figure 7.1. It is clear that those three histograms in Figure 7.9 are all strongly skewed to

the right and decrease rapidly as the length of stay increases.
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Figure 7.9: The distributions of length of stay (nights) for the first (plotted in the upper
left), second (plotted in the upper right) and third wards (plotted in the bottom left) under
the hypothesis that the dates of movement between wards follow a Uniform distribution
for the case that the total number of wards was three.

Using the approach introduced above to impute the length of stay for each ward for

the three wards case, the distribution of the imputed length of stay in the first ward is

likely to be shorter because the length of stay for the first ward is imputed by a minimum

of two random values sampled from the Uniform distribution without replacement. This

can be seen in Figure 7.9 where the histogram for the length of stay in the first ward is

more skewed to the right compared to the other two histogram. This imputation approach

is appropriate since the anecdotal evidence is that patients who stayed in three wards in

hospital were in the first ward for a relatively shorter time [116]. An alternative approach
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to impute the individual length of stay for three wards case is that the length of stay in

the first ward (denoted as d1) is sampled from U [1, los − 2], where los is the observed

length of stay, and then the length of stay in the second ward (denoted as d2) is sampled

from U [1, los − d1 − 1]. Hence the length of stay in the third ward can be calculated by

los− d1 − d2.

7.2.3 Assumption 3: Triangular distribution.

An alternative assumption which would appear quite reasonable is that patients are

assigned into an initial ward for a short period when recently admitted into hospital.

After making several examinations in a receiving ward, a patient might be moved into

a specialist ward according to the diagnosis. Hence, there are good reasons to believe

that the length of stay for the patients staying in the initial ward in hospital is highly

likely to be short. This can be approximated by assuming that the length of stay for

each ward follows a Triangular distribution, which means that for the ward into which

the patient is initially admitted there is a high probability of a short length of stay. The

Triangular distribution for the date of movement of a patient can be constructed based

on the corresponding observed length of stay in the dataset which is denoted as los here.

Note that the length of stay for each ward is assumed to be positive, hence only the records

where the length of stay is larger than or equal to the corresponding number of wards

are recruited for the analysis. As we mentioned in the previous subsection, there are 16

observations excluded in the analysis. The density function for the triangular distribution

can be expressed as

f(x) =
2× (los− x)

(los− 1)2
for 1 ≤ x ≤ los.

Thus the probability of a patient staying for t nights in hospital can be calculated by

P (X = t) =

∫ t+1

t

2× (los− x)

(los− 1)2
dx,
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t = {1, 2, · · · , los − 1}. Here P (X = los) = 0 which means that the domain in the

simulation remains to be Ω = {1, 2, · · · , los−1} and P (X = 1)+P (X = 2)+ · · ·+P (X =

los− 1) = 1 is guaranteed.

As long as we simulate the length of stay for the first ward, the length of stay for the

second ward can be calculated based on the rest of nights that patients had stayed for.

Using this procedure, we can simulate the length of stay, ward by ward, according to the

relevant Triangular distributions which are constructed on the basis of the imputation for

the previous wards. It is straightforward to assume that the length of stay for each ward

always follows the Triangular distribution since the distribution of the length of stay for

the latter wards that a patient had moved through can be assumed to be the same as the

distribution for the initial ward that the patient had been admitted into (see Assumption

1). For example, regarding the two wards case we take as an example a patient who had

moved through two wards and stayed for four nights, we use the Triangular distribution

to simulate the date of moving where the density function can be expressed as 2×(4−x)
32

. In

order to simulate the length of stay for the first ward, we sample a random value from the

domain {1, 2, 3} with the probabilities for every point between 1 and 3 equalling 0.5556,

0.3333 and 0.1111 respectively (which can be calculated by P (X = t) =
∫ t+1

t
2×(4−x)

32
dx

where t = 1, 2 and 3). If the simulation result for the length of stay in the first ward is

one, this indicates that the patient had moved into the second ward after one night stay

in the first ward, and then left the hospital after another three nights stay in the second

ward.

We are able to plot the histograms of the individual imputed lengths of stay for the

first and second wards for the two wards only case and also compare those two imputed

distributions with the distribution of the observed length of stay for the one ward cases.

In Figure 7.10, the shape for both distributions appear similar to the one in Figure 7.1.

Both distributions for imputed length of stay in the first and second wards show strong

skewness to the right (i.e. the small length of stay in each ward has relatively high

frequency). Moveover, the results show that the imputed length of stay in the first ward
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is shorter than the imputed length of stay in the second ward, which satisfies the anecdotal

evidence.
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Figure 7.10: The distributions of length of stay (nights) for the first ward (in the upper
plot) and second wards (in the bottom plot) under the hypothesis that the date of
movement between wards follows a Triangular distribution for the case that the number
of wards was two.

If a patient had stayed for five nights in total in three wards, we have to impute

two movement dates from the Triangular distribution. The procedure of the simulation

is similar to the two wards case that we introduced above. Obviously, the length of

stay for the first ward is bounded above by three here since we need to guarantee the

positive length of stay for the other two wards. Firstly, the length of stay for the first

ward follows the Triangular distribution with the discrete density function expressed as

2×(4−x)
32

(x = 1, 2, 3). Thus the probability that length of stay for the first ward is four

or five equals zero (i.e. we ensure that the maximum length of stay for the first ward is

three). Suppose that the randomly simulated result for the length of stay in the first ward

is two, which yields the conclusion that the patient had stayed in the other two wards

for three nights. Hence we construct a Triangular distribution for the date of movement

when the patient left the second ward based on the first simulated date of movement we

have obtained before. The corresponding density function for the length of stay in the
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second ward can be written as 2×(3−x)
22

(x = 1, 2). This results in a random number from

{1, 2} where the corresponding probabilities are 0.75 and 0.25 when the simulation gave

a random value of one. This corresponds to the length of stay in the second ward being

one night and the patient being discharged from the hospital after staying in the third

ward for another two nights. Using this method, we were able to yield the histograms of

the simulated length of stay for the first, second and third wards respectively, which are

shown in Figure 7.11.
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Figure 7.11: The distribution of length of stay (nights) for the first (plotted in upper
left), second (plotted in upper right) and third wards (plotted in bottom left) under the
assumption that the movement date follows a Triangular distribution for the case where
the total number of wards was three.

All those three histograms are skewed to the right and decrease dramatically as the

length of stay increases, showing a similar shape to the distribution of the observed length

of stay for the one ward cases. The imputed length of stay in the third ward is relatively

longer than the imputed lengths of stay in the first and second ward. This is because

that we use the Triangular distribution to impute the length of stay for the first two

wards respectively, which has a high probability of sampling a small random number.

Thus the length of stay in the third ward, which is calculated by subtracting the imputed

length of stay in the first two wards from the observed length of stay, is likely to be large.

203



Nonetheless, this satisfies the anecdotal evidence introduced above.

7.2.4 Assumption 4: Mixed distribution of Uniform and

Triangular distributions.

Considering the case of patients who had moved through three or more wards, another

possible assumption for the distribution for the movement date which is reasonable to

consider is based on the idea that the length of stay for the first ward is usually short

whereas afterwards the length of stay for the rest of wards that patients had been to

follow the Uniform distribution. Specifically, we assume that the length of stay for the

first ward is based on a Triangular distribution while the dates of movement for the rest

of the wards follows a Uniform distribution. Taking the previous three ward case with

length of stay equal to five as an example, the length of stay for the first ward can be still

simulated by the Triangular distribution with density 2×(4−x)
32

. Let x denote the length of

stay in days. We obtain the simulated length of stay by using the calculated probabilities

which are P (X = 1) = 0.5556, P (X = 2) = 0.3333 and P (X = 3) = 0.1111 based on

the Triangular distribution, P (X = t) =
∫ t+1

t
2×(4−x)

32
dx (t = 1, 2, 3). We performed the

simulation and found that the length of stay for the first ward was two nights. Based on

this quantity, we are able to construct the Uniform distribution for simulating the date

of movement between the remaining two wards with the corresponding domain {1, 2}.

Randomly choosing an integer gives the result two, indicating that the length of stay for

the second ward is two while as a result the length of stay for the third ward is one day.

Comparing the relative histograms of the simulated length of stay under this

assumption for the first, second and third wards with the distribution of the observed

length of stay for the one ward cases, we can conclude that the shape of all those three

histograms in Figure 7.12 are similar to the one in Figure 7.1. In comparison of Figure

7.11 and Figure 7.12, the distribution for the first ward (i.e. the upper left histogram) is

pretty identical but the last ward stay (shown in the bottom left histogram) is shorter in
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Figure 7.12.
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Figure 7.12: The distribution of length of stay (nights) for the first (plotted in upper
left), second (plotted in upper right) and third wards (plotted in bottom left) under the
hypothesis that the length of stay in the first ward follows a Triangular distribution and
the length of stay in the second ward follows a Uniform distribution for the cases that
number of wards was three.

7.2.5 Summary.

The first assumption (i) which assumes that the distribution of length of stay for each

ward is the same as the distribution of observed length of stay for one ward only case is

not valid because the imputed distribution of total length of stay is quite different from

the observed one. The latter three assumptions provide results which are conditional on

the observed total length of stay but there is no evidence from the data to select one

assumption over the others. These are (ii) the assumption that the distribution of length

of stay for each ward is based on the Uniform distribution; (iii) the assumption that the

distribution of length of stay for each ward (apart from the last one) follows the Triangular

distribution; (iv) the assumption that the distribution of length of stay for the first ward

follows the Triangular distribution but the distribution of individual length of stay for

the other wards is based on the Uniform distribution. It is impossible to validate those
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assumptions since there is no real data. In this thesis, we apply the Assumption 2 that the

individual length of stay for each ward follows a Uniform distribution as an example for

the analysis of patient movements as we have no reason to pick one method over another.

Based on the above analysis, we now aim to construct the two-dimensional matrix

giving the number of patients staying in a ward on a particular study day. This will allow

us to analyse the effect of patient movement based on the quantities derived from the

length of stay and number of wards a patient has been in. Furthermore, using the MRSA

status for each patient on admission and on discharge, we are also able to construct the

data matrix giving the number of MRSA positive patients in a specific ward on each

date in the study under an assumption about the duration of MRSA colonisation among

hospital patients. As noted in Section 7.1.1, before the construction of the data matrix,

the missing length of stay and MRSA status on admission and on discharge have to be

imputed for the admission only and discharge only cohorts. Then the exposure variables

based on patient movement can be calculated and the timeline of the patient movement

as well as the MRSA colonisation pressure can be mapped. In the next section, we will

demonstrate the methodology of this imputation.

7.3 Imputation of unknowns in admission only and

discharge only cohorts.

According to the data which were provided by HPS (Health Protection Scotland) and

collected from the Aberdeen Royal Infirmary, 1,598 out of 7,881 patients were recorded

from the admission-discharge cohort where the complete information was collected

including the length of stay, dates of admission and discharge, the measurement results of

positive MRSA status both on admission and on discharge and other information. On the

other hand, 4,800 out of 7,881 patients were from the admission only cohort, where the

corresponding dates of discharge and the measurement results of positive MRSA status
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for patients on discharge were not collected. In the admission only cohort the majority

of patients (3,956 out of 4,800) did not have any record on the length of stay. Similarly,

there were 1,483 out of 7,881 patients recorded in the discharge only cohort without the

dates of admission and the results of MRSA status for patients on admission. Moreover,

the length of stay for 1,477 out of 1,483 patients in the discharge cohort was also missing.

This lack of data was due to consent issues and if a patient did not give consent then

admission or discharge data could not be collected. This incompleteness of the records

in the dataset causes severe difficulty in trying to assess the effects of patient movement.

Therefore, we aim to impute the missing length of stay as well as the dates of admission

and the MRSA status results for patients on admission in the discharge only cohort and

the dates of discharge for the patients in the admission only cohort.

7.3.1 The simulation of the length of stay.

In this subsection, we will introduce the methodology of imputing the length of stay for

the admission only and discharge only cohorts. Two main simulation methods will be

demonstrated here, which are (i) imputation based on the empirical density of the length

of stay and (ii) imputation based on Negative Binomial regression.

7.3.1.1 Kernel smoothing empirical density of length of stay.

An investigation of the two-way table of the number of wards against the length of stay

in the admission-discharge cohort, suggests that for the patients who had moved through

a small number of wards, the corresponding length of stay that patient had stayed for

tends to be short while for the patients who had moved through a large number of wards,

the length of stay tends to be relatively long (shown in Section 6.4 of Chapter 6). Thus,

there is evidence that the number of wards that patients had moved through is related

to the length of stay. Hence for the purpose of imputing length of stay, we construct

the empirical density function of the length of stay stratified by the different number
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of wards. Specifically, the patients in the admission-discharge cohort are divided into six

groups according to the corresponding number of wards that patients had moved through,

which are the ‘one ward’ only group, the ‘two wards’ group, the ‘three wards’ group, the

‘four wards’ group, the ‘five wards’ group and the ‘greater than or equal to six wards’

group. Then we estimate the the empirical density using kernel smoothing to generate the

continuous density function for the stratified length of stay which was constructed using

the observations of length of stay in each group. If we imputed the length of stay only by

sampling from the observations, then lengths of stay which were not observed could not

be imputed and this limits the range of possible lengths of stay in the imputation.

The six smoothed continuous empirical density functions stratified by the six

categorised groups of number of wards are displayed in Figure 7.13. The results show
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Figure 7.13: The distribution of length of stay for the different number of wards. (N = 905
for one ward; N = 405 for two wards; N = 175 for three wards; N = 87 for four wards;
N = 15 for five wards; N = 10 for six or more wards.)

that roughly speaking, the peak of the distribution of length of stay moves to the right

hand side slowly as the number of wards increases, which means that when the number of

wards increases, the average length of stay generally increases. However for the patients
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who had moved through five and six or more wards, the empirical density function shows

two peaks perhaps because this group contains a fairly small amount of observations on

length of stay. For example, there are only ten patients in the group staying in six wards

or more and for two of these in the patients stayed in ten wards. Those observations

have relatively large length of stay. Also, there are only ten observations in this group.

Hence a second peak is shown in the empirical distribution of length of stay for six or

more wards. A slight peak showing around 65 days in the empirical distribution of length

of stay for five wards can also be explained by the similar reasons that there is a small

amount of observations (N = 15) and the length of stay for the patients who had stayed

in five wards is likely to be long.

For all n patients with missing length of stay, we impute L1, L2, · · · , Ln. From this we

estimate the empirical density f(xj), indicating the proportion of patients with a length of

stay of xj. Repeat this whole process 100 times and we can get 100 empirical distributions.

which are denoted as f 1(xj), f
2(xj), · · · , f 100(xj). For each xj, the corresponding densities

of f 1(xj), f
2(xj), · · · , f 100(xj) are assigned in order (i.e. f (1)(xj), f

(2)(xj), · · · , f (100)(xj)).

This then gives the 2.5% and 97.5% percentiles, which is the simulation envelope for f̂(xj).

The plot shown in Figure 7.14 is the histogram of the simulated length of stay. Also, the

observations of length of stay recorded in the admission and discharge cohort are plotted

as a histogram in Figure 7.15 combined with the simulation envelope.

The histogram of one simulation of length of stay lies within the simulation envelope

as we expected. The histogram of the simulated length of stay in Figure 7.14 indicates

that the peak is around three days. The number of patients who had stayed over four

nights decreases significantly as the length of stay increases. In addition, the simulation

envelope represents the potential histograms of the length of stay that might be observed

if the proposed simulation method is valid. Compared to the observations of length of stay

recorded in the dataset (shown in Figure 7.15), we can also conclude that the relatively

small observations of the length of stay (i.e. under two nights) lie above the upper bounds

of the simulation envelope whereas the relatively large observations of the length of stay
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Figure 7.14: The distribution of simulated length of stay for the different number of
wards in the admission only and discharge only cohorts, where the blue points are the
upper bounds of the simulation envelope and the red points are the lower bounds for the
simulated length of stay.

Figure 7.15: The histogram of the observed length of stay in the admission-discharge
cohort with the simulation envelope. The blue points are the upper bounds of the
simulation envelope and the red points are the lower bounds for the simulated length
of stay. The simulation is based upon a stratification by number of wards.

(i.e. four to eight nights) lie under the lower bounds of the simulation envelope. This

indicates that the simulation approach for the length of stay based on the kernel smoothed

empirical density of observed length of stay stratified by number of wards does not work

perfectly well. On the other hand, the simulated length of stay (in Figure 7.14) shows

approximately the same distribution in shape and location as the observed length of stay

in the admission and discharge cohort (in Figure 7.15), where the highest frequency is

two nights.
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7.3.1.2 Negative Binomial regression.

Since the method of simulation we introduced in 7.3.1.1 yields an imperfect prediction,

specifically for the cases with length of stay under eight nights, it is worth applying and

analysing a different simulation approach. By taking the potential risk factors such as

age, ward code and gender into account, we attempt to build a model to fit the observed

length of stay. The observed histograms of the length of stay for different ‘wards’ groups

(in Figure 7.13) show heavy tails, which means that the variance of the length of stay in

each wards group is relatively larger compared to the corresponding mean. Specifically,

for the observed length of stay in the ‘one ward’ group with the mean 5.06 and variance

19.78 whose histogram shows an obvious heavy tail, it suggests an overdispersion in the

observed length of stay. Hence the Negative Binomial regression model is proposed to be

constructed individually for each different number of wards groups which are ‘one ward’,

‘two wards’, ‘three wards’, ‘four wards’ and ‘five or more wards’. Note that we combine

the categories of ‘five wards’ and ‘six or more wards’ together as a new group of ‘five or

more wards’ here to avoid the limited sample size.

Considering the ‘one ward’ group, the trend test is used to detect the association

between the observed length of stay and age. The low p-value (0.0116) implies a significant

linear trend in the relative probability of having length of stay under two nights against

having length of stay larger than three nights associated with age group.

We investigate the use of the fractional polynomial regression as a smoothing

technique to investigate the nonlinear function between the length of stay and age. We

build the one degree functions of length of stay associated with age with different powers

(-2,-1,-0.5,0,0.5,1,2) as well as the corresponding two degree functions. Comparing the

linear function (i.e the power of age is one) with the one degree function which involves

a cubic age term and gives the smallest deviance among the other one degree functions

with different powers, the Chi-square test generates a large p-value (0.66) and implies that

there is no significant difference between the linear trend and the cubic trend in length
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of stay. Similarly, the two degree function with powers of age (-2,1) giving the model

expressed as E(los) = β0 + β1 × age−2 + β2 × age is also not statistically significantly

different from the linear function. Hence, this indicates that more complex trends over

the linear trend of age do not adequately describe the variation in length of stay better.

Moveover, this conclusion can be confirmed by treating age group as an ordered variable

in the model. Hence generally speaking, it is unnecessary to include any nonlinear trend

in age to describe the change in length of stay.

In order to simulate the length of stay for the ‘one ward’ group, first of all we test the

full Negative Binomial model consisting of the three potential risk factors: age, ward code

and gender. Note that the dependent variable in the regression model is treated as los−1

to avoid the influence of the truncated Negative Binomial distribution for the observed

length of stay. The results give the p-value for gender (0.876) which is nonsignificant.

Therefore, there is no evidence for an the effect of gender on the length of stay. Next, the

nested model which involves two potential risk factors: age and ward code is fitted since

according to the previous analysis in Section 7.2.1, age and ward code are related to the

length of stay. The results show significance of both age and ward code. The Chi-square

test with a large p-value (0.876) suggests that there is no obvious difference between the

full model and the nested one. Hence we can conclude that the nested model is more

appropriate than the full model for goodness of fit since the nested model is more simple

and also adequate enough for the modelling. Using this nested model, we are able to

predict the missing length of stay for the ‘one ward’ group based on the corresponding

records of ward code and age. Note that the missing length of stay in some cases where

the ward codes are used as predictors in the simulations such as ‘AMAU’ and ‘HDU’ need

to be simulated depending only on age since these ward codes are not involved in the set of

only one ward code observations (i.e. the ward codes for the first wards) which were used

to fit the model. This can be explained by the reason that a patient admitted into a high

dependency unit (HDU) or an acute medical assessment unit (AMAU) is highly likely to

move from the HDU or AMAU to another ward before discharge. Those cases lead to the
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problem of predicting the corresponding length of stay using the nested model due to the

appearance of the new levels for the first ward code variable. In this circumstance, we

use the model only involving age to simulate the length of stay. The new model here can

be expressed as

log(E(los− 1)) = β0 + β1age.

Note that for the cases with missing age record on admission, we use the age recorded at

discharge instead.

Under the assumption that the length of stay follows a Negative Binomial distribution,

the mean of the response (i.e. length of stay -1) which is denoted as µ can be estimated

for each case in the ‘one ward’ group according to the Negative Binomial model which is

E(los− 1) = µ, log(µ) = β0 + β1age+ β2ward code 1.

Note that ward code 1 represents the ward code for the first ward that a patient had

been in. Based on the estimated mean µi for each case, we can randomly simulate the

ξi = losi−1 from the Negative Binomial distribution with the corresponding mean µi and

variance µi+µ
2
i /θ where θ is the overdispersion parameter (here θ is estimated to be 2.633

in the fitted model). Clearly, the simulated length of stay for each case can be generated

by ξi+1. The estimates and the corresponding standard errors for this Negative Binomial

regression model are shown in Table C.1 in Appendix C

The histogram of the imputed length of stay for the ‘one ward’ group and the

histogram of the observed length of stay are compared in Figure 7.16. We can see that the

simulated length of stay has a large proportion on one night. Specifically, the simulation

approach which we applied gives lots of ones as the simulated length of stay and the

corresponding frequency is overestimated. The simulated results show an approximately

double proportion of patients staying for one night compared to the observed length of

stay. On the other hand, the simulated length of stay for two nights or more is slightly

underestimated.
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Figure 7.16: The blue histogram represents simulated length of stay and the pink one
represents observed length of stay in the admission-discharge cohort. The overlap for
those two histograms is marked as purple.

Using the same procedure to construct the Negative Binomial model for the two wards

cases, three potential variables: ‘age’, ‘ward code 1’, ‘ward code 2’ show significant effect

on length of stay with low p-values (which are 0.0004, 0.06 and 2.4×10−7 respectively) and

hence they are considered to be involved into the final model. On the other hand, gender

does not shows significant effect on length of stay with a high p-value (0.386). From a

mathematical point of view, the Negative Binomial model in the ‘two wards’ group can

be expressed as

E(los− 1) = µ, log(µ) = β0 + β1age+ β2ward code 1 + β3ward code 2.

Note that the parameter estimates and the corresponding standard errors for this Negative

Binomial model are shown in Table C.2 in Appendix C. For those patients with different

ward codes from the set of observed ward codes, it is required to use a simple model which

depends only on the age to simulate the corresponding missing length of stay. Moveover,

for the prediction for patients with missing age on admission, we use age recorded at

discharge instead. The estimated mean of the length of stay can be obtained from the
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fitted model using the records of age, ‘ward code 1’ and ‘ward code 2’. Using the estimated

overdispersion parameter in the fitted model (2.775), the imputed length of stay can be

randomly generated from the fitted Negative Binomial distribution. By extending this

approach for the other ward groups (three, four or five and more wards), we can obtain

the imputed length of stay for the whole dataset where the original records did not have

length of stay recorded.

In the groups of patients with a large number of wards (i.e. three or more wards), our

investigation suggests that only the first three wards that patients had moved through

are significant variables in the Negative Binomial model as well as age which also has

significant effect on length of stay. The relatively small number of observations on the

patients with a large number of wards (‘four wards’ and ‘five or more wards’ groups) causes

difficulty in fitting a good model. One of the reasons is that the ward code variables as the

predictors in the model have multiple levels, leading to relatively few observations in each

combination of levels between the ward codes variables. Therefore, we re-categorised

the ward codes into three levels according to the relative ward specialties, which are:

‘surgical ward’, ‘medical ward’ and ‘mixed ward’ and then the new categorised ward

codes group variables are applied into the Negative Binomial regression model. Model

selection is based on Chi-square tests and we only use the significant variables in the

Negative Binomial regression models. Taking the ‘four wards’ group as an example, the

Chi-square tests show that age and ‘ward code group 1’ are the significant factors with

respect to length of stay due to the low p-values (< 0.05). The model can be expressed as

E(los− 1) = µ, log(µ) = β0 + β1age+ β2ward code group 1

and the estimated overdispersion parameter in this fitted model is 4.80. As to the ‘larger

than or equal to five wards’ group, ‘age’, ‘ward code group 1’, ‘ward code group 2’ and

‘ward code group 3’ display the significant effects on length of stay since the corresponding

p-values are less than 0.05. Hence those three potential risk factors are included into the
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fitted model. The model for patients with five or more wards is

E(los− 1) =µ,

log(µ) =β0 + β1age+ β2ward code group 1+

β3ward code group 2 + β4ward code group 3

and the estimated overdispersion parameter is 6.25 in the fitted model. Using the fitted

models, we can obtain the estimated mean of length of stay according to the records of age

and recategorised ward codes. Hence the length of stay can be simply imputed from the

Negative Binomial distribution with the estimated means and overdispersion parameters.

The histogram of the observed length of stay is compared to the histogram for the

simulated length of stay in Figure 7.17 which shows that the simulated length of stay has a

similar distribution to the observed one. Clearly, an overestimate occurs in the simulated

length of stay of one night. The histogram in Figure 7.17 is truncated at 30 days for the

purpose of demonstrating the comparison between imputed length of stay and observed

length of stay clearly. This truncation is reasonable since the preliminary analysis shows

that a small length of stay has relatively high frequency.

We use the bootstrap method to generate the simulation envelope which is displayed

in Figure 7.18 combined with the observed length of stay. This figure shows clearly that

the simulation approach using the Negative Binomial regression model overestimates the

length of stay of one night but underestimates slightly the length of stay of two to four

nights. Comparing the simulation envelope plot with the previous simulation approach

(shown in Figure 7.15), there is no strong evidence that the simulation method using the

Negative Binomial regression improves the results and the simulation results using the

empirical density and the Negative Binomial regression show bias in different directions.

In this subsection, we used two different methods to impute the length of

stay in admission only and discharge only cohorts using the observed data in the

admission-discharge cohort. The results of imputation obtained by the empirical density
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Figure 7.17: The blue histogram represents simulated length of stay and the pink one
represents the observed length of stay. The overlap is marked as purple. This histogram
is truncated at 30 days in order to demonstrate the comparison clearly.
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Figure 7.18: The histogram of observed length of stay in the admission-discharge cohort
with the simulation envelope.

of observed length of stay show the underestimation in the length of stay of one to two

days and the overestimation in the length of stay of three to five days. On the other

hand, the imputed results obtained by the Negative Binomial regression show a bias in a

different direction. However, there is no strong evidence that one imputation method is
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better than the other between the empirical density and the Negative Binomial regression

and we have not been able to find a better fit.

Using the length of stay and the available data on the wards that a patient had

been in, we now move on to impute the movement dates in order to construct the data

matrix introduced in Section 7.1. The methodology of imputing the movement dates in

the admission only and discharge only cohorts will be investigated in the next subsection.

7.3.2 The imputation of the date of movement between wards

in the admission only and discharge only cohorts.

In the previous sections, we have investigated imputation of the dates of moving between

wards in the admission-discharge cohort and length of stay in the admission only and

discharge only cohorts. In this section, we use the imputed lengths of stay in the admission

only and discharge only cohorts to impute dates of transferring between wards in those

two cohorts. In order to include all the cases in the study, we pick a date which is long

before the earliest admission date from the study in the admission-discharge cohort, or

the admission only cohort. This date (here we choose 1st Dec, 2009) is treated as the

very first day of the study (i.e. the baseline for evaluating the date of movement for

each patient in a specific ward). This is just for convenience to avoid using dates. The

admission date for each patient is considered as the ith day in the study where i is the

time span between the baseline and the admission date of the patient. Take the patient

in the admission-discharge cohort who was admitted into the hospital on 9th of February,

2010 as an example, we can generate the time lag between 09-02-2010 and the baseline

date 01-12-2009. Therefore, the admission date for the patient is regarded as the 71st day

in the study.

Since the discharge only cohort where the admission dates for the patients were

unknown is also taken into account in the study, the corresponding admission date for

each patient is calculated based on the recorded discharge date and imputed length of
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stay. Afterwards, a map of the admission dates can be derived by calculating the exact

day in study based on the baseline (1st Dec, 2009) for the patients included in all the

admission-discharge, admission only and discharge only cohorts.

After imputation each patient in all three cohorts now has an admission date and a

length of stay (and consequently a discharge date). The movement dates (i.e. the period

that the patient stayed in each ward he or she had moved through) can now be imputed

under some reasonable assumptions. Recall that in this thesis, we apply the Uniform

distribution as the assumption (introduced in Section 7.2) on estimating the length of

stay in each ward; hence we can derive the movement dates from one ward to another.

As we mentioned before, the admission date for the patient can be converted into the

ith day in the timeline of the study. Hence, the corresponding movement dates for that

patient moving through n wards during his or her stay in hospital (denoted as d1, d2, · · · ,

dn−1), which are imputed based on the method we introduced above, can also be generated

as the new movement dates d1 +i−1, d2 +i−1, · · · , dn−1 +i−1 for the study. Then we are

able to build the pattern of the movement, admission and discharge times where for each

patient the allocation of the relative admission date and movement dates in the study can

be decided with regard to the specific wards he or she had moved through. Therefore,

the matrix showing the number of patients in a specific ward on a specific study day in

hospital can be constructed. For example, we generated the data matrix of the number of

patients in a specific ward on a specific study day for the admission-discharge cohort and

plot the corresponding total number of patients on each study day. Generally speaking,

the number of patients increases as the time goes by since the beginning of the study in the

admission-discharge cohort (shown in Figure 7.19). This might be because some patients

who were admitted into the hospital early in this study had stayed for a relatively long

period and at the same time new patients were included constantly. Figure 7.19 shows

that in the end of this one-year study, the number of patients drops dramatically. One

of the reasons might be that a large number of patients who were admitted and included

before the end of this study were not discharged yet and hence they were not included in
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the admission-discharge cohort.
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Figure 7.19: The plot of number of patients on each study day in the admission-discharge
cohorts.

7.3.3 Imputation of the missing MRSA positive test results for

the admission only and discharge only cohorts.

In order to investigate the effect of patient movement on MRSA acquisition in this

subsection we focus on the number of MRSA positive patients in a ward on a given day.

Knowledge of the number of MRSA positive patients in a ward enables us to estimate the

probability that a patient who moves into that ward acquires MRSA.

By constructing the two-way table which reflects the MRSA measurement results on

admission and on discharge in the admission-discharge cohort, we can see from Table 7.8

that 1,542 (98.78%) patients with negative MRSA on admission remained in the same

negative condition on discharge. The proportion of patients with positive MRSA on

admission but negative MRSA on discharge is 44.44%. Among the patients with positive

MRSA on discharge almost half (48.72%) of the patients were measured as negative on

admission.

In Table 7.8, 0 means MRSA negative and 1 means MRSA positive. Considering the
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Table 7.8: Two-way table of MRSA on admission and on discharge for the
admission-discharge cohort.

MRSA on discharge
0 1

MRSA on admission
0 1542 19
1 16 20

admission cohort and the lack of MRSA measurement results on discharge in this cohort,

we randomly sample the value from {0,1} corresponding to the probabilities obtained

by the two-way table of MRSA measurements which is shown in Table 7.8 as the result

of MRSA on discharge. For patients who were MRSA negative on admission in the

admission only cohort, we randomly sample the MRSA result on discharge from {0,1}

with the corresponding probabilities being 98.78% and 1.22% respectively.

Similarly, considering the patients in the discharge only cohort, we sample the MRSA

results on admission from {0,1} with the corresponding probabilities equalling 98.97% and

1.03% respectively for the patients who were MRSA negative on discharge whereas for

patients who were MRSA positive on discharge we sample the MRSA results on admission

from {0,1} with the corresponding probabilities equalling 48.72% and 51.28% respectively.

The results from one simulation show that roughly 2.92% of patients were MRSA positive

at discharge in the admission only cohort, which is similar to the observed percentage of

patients who were MRSA positive on discharge in the admission-discharge cohort dataset

(2.31%). With respect to the simulated MRSA results on admission in the discharge only

cohort, there are about 2.10% of patients who were MRSA positive which is close to the

observed proportion of MRSA positive patients at discharge in the admission-discharge

cohort (2.25%).

Alternatively, a logistic regression model can be used to predict the MRSA status on

admission and on discharge in the discharge only and admission only cohorts. However,

we find no significant factors related to MRSA status on admission and on discharge here.
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7.3.4 The total number of MRSA positive patients in each ward

on each study day.

At this stage we know the admission and discharge dates and ward movement dates

for all patients as well as MRSA status on admission and discharge, we do not know

duration of MRSA carriage and this is the last piece of information needed to be able to

construct the matrix representing the MRSA status for each patient on each individual

study day. The duration of MRSA carriage varies and it could be persistent from

days to years [4], [66], [128]. In this study, we assume that the duration of MRSA

carriage depends on the observed length of stay in the admission-discharge cohort. In

the admission-discharge cohort, a patient who is MRSA positive on admission but MRSA

negative on discharge is most likely to stay in ten days whereas a patient who is MRSA

negative on admission but MRSA positive on discharge is most likely to stay in hospital

for seven days. Thus we assume that for patients who were MRSA positive on admission

but MRSA negative on discharge, the MRSA bacteria persist for a maximum of ten days

and for patients who were MRSA negative on admission but MRSA positive on discharge,

the maximum time for being MRSA free is seven days. In other words, for patients who

were confirmed as MRSA positive on admission but tested as negative on discharge, the

carriage period for MRSA can be expressed as

t =

 10 if los > 10,

los− 1 if los ≤ 10,

where los represents the length of stay. Similarly, for patients who were MRSA negative

on admission but MRSA positive on discharge, the time before being colonising MRSA

(i.e. the time for being MRSA free) is

t =

 7 if los > 7,

los− 1 if los ≤ 7.

222



This means that most patients with a short length of stay who are colonised are

regarded as colonised the day before discharge. Afterward, it is straightforward to build

the pattern of the total number of MRSA positive patients in each ward on a specific

study day. However, note that there is little justification for this assumption of duration

of MRSA carriage due to the lack of preliminary information.

7.3.4.1 The analysis of the number of MRSA positive patients per day based

on the length of stay obtained from Simulation Method 1: empirical

density.

We display the plot of the simulated number of MRSA positive patients against the

timeline of the study (shown in Figure 7.20) to highlight the fluctuation of the number

of MRSA positive patients during the study, where the simulated lengths of stay were

generated from the empirical density.
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Figure 7.20: The plot of simulated number of MRSA positive patients as the time
increases. The vertical lines are the start and the end of the study.

We focus on the period of the study of the Screening Pathfinder Programme, which

began from the 69th study day (i.e the admission date of the first patient who had been

recruited for the study is the 8th of February, 2010 and was in the admission only cohort)
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and ended on the 248th study day (i.e the last discharge date for the recruited patient is

the 6th of August, 2010 and was in the discharge only cohort). Note that the last date

of admission in the admission only cohort recorded in the dataset is 26th of July, 2010.

Generally speaking, there are around 6-11 MRSA positive patients per day in the early

period and 11-15 MRSA positive patients per day in the peak period. The number of

MRSA positive patients increases with time until roughly the 200th day of the study (i.e.

the peak of the number of MRSA positive patients), from when on the number of MRSA

positive patients decreases significantly. The decline of the number of MRSA positive

patients starting from the 200th day continues until the end of the study. One of the

reasons is that the patients discharged after the 248th day did not give the information

of MRSA status on admission. The recruitment to the study is also tailing off in the end.

However, there are oscillations appearing during the increasing period. i.e. two valleys

are displayed in the plot on around the 130th study day and the 175th study day.

We use the bootstrap method to construct the simulation envelope for the imputed

number of positive MRSA patients in the admission-discharge, admission only and

discharge only cohorts. Figure 7.21 shows that the width of simulation envelope becomes

relatively large in the middle of the study (roughly between 100th day and 220th day).

This indicates the large variances in the simulations for the length of stay, MRSA status

and movement dates.

In order to validate the tenability of the simulation approach for the length of stay

using the empirical density functions and the MRSA measurement results, we generate

the simulation envelope of the percentage of MRSA positive patients in all three cohorts.

Then we compare the simulation envelope to the simulated percentage of MRSA positive

patients in the admission-discharge cohort which contains the complete information of

length of stay and MRSA status. We assume that there is no selection bias in this

study [106]. In other words, the percentage of MRSA positive patients in three cohorts

would not be statistically different. The plot is shown in Figure 7.22 focusing on the

period that patients were recruited in the admission-discharge cohort.
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Figure 7.21: The plot of simulated number of MRSA positive patients with the simulation
envelope. Here the red line is the lower bound of the simulation envelope while the blue
one is the upper bound of the simulation envelope. The simulated number of MRSA
positive patients are marked as black points.
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Figure 7.22: The plot of the percentage of simulated number of MRSA positive patients
in the admission-discharge cohort with simulation envelope. Here the red points are the
lower bounds of the simulation envelope while the blue ones are the upper bounds of the
simulation envelope. The simulated percentage of number of MRSA positive patients are
marked as black points.

Generally speaking, a large number of the imputed percentage of MRSA positive

patients on a particular study day in the admission-discharge cohort lie outside the

simulation envelope. Specifically, the imputed percentages of positive MRSA patients in

225



the neighbourhood of the 200th study day, which is the peak of the distribution, exceed the

simulated upper bounds slightly. This indicates that the theoretical distributions which

we assumed previously and are used for the imputation of length of stay and MRSA status

in the admission only and discharge only cohort might be biased.

Since the sample size of the discharge only cohort (1,452) is similar to the size of the

admission-discharge cohort (1,580), we generate the simulation envelope for the number

of MRSA positive patients in the discharge only cohort based upon the imputed length of

stay and MRSA status on admission, and compare it with the simulated number of MRSA

positive patients in the admission-discharge cohort. The results are displayed in Figure

7.23, where a large amount of the simulated number of MRSA positive patients in the

admission-discharge cohort lie within the simulation envelope. However, the peak of the

number of MRSA positive patients in the discharge only cohort occurs slightly earlier in

the study compared to the peak in the admission-discharge cohort. On around the 200th

study day, the simulated number of MRSA positive patients in the admission-discharge

cohort is much larger than the simulated number of MRSA positive patients in the

discharge only cohort. Comparing Figure 7.21 with Figure 7.23, we can see that the

fluctuation of the number of MRSA positive patients is slightly more moderate in the

discharge only cohort and the peak of the number of MRSA positive patients in the

discharge only cohort is on about the 190th study day, which arises earlier than the peak

in the admission-discharge cohort. As there is no real data of the dates of transfer between

wards, it is difficult to validate the imputation approach for the movement dates.

Furthermore, according to the matrix of the number of MRSA positive patients in

each ward on a specific study day, we are able to plot the pattern of MRSA positivity

by ward displayed in Figure 7.24. This shows that the points concentrate in the middle

of the timeline, implying that number of MRSA positive patients generally increases over

the study whereas towards the end of the study, the number of MRSA positive patients

decreased. Considering each single study day, a relatively large number of MRSA positive

patients stayed in ward ‘49’. This can be explained by the fact that a reasonable number
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Figure 7.23: The plot of simulated number of MRSA positive patients in the
admission-discharge cohort with simulation envelope based on the discharge only cohort.
The blue points are the upper bound of the simulation envelope and the red points are
the bottom bound.

Figure 7.24: The plot of imputed number of MRSA positive patients (ward codes against
timeline). Here the black points represent that there is one MRSA patient that day and
the red, green, blue, yellow points represent two, three, four and five patients who are
MRSA positive.

of patients were admitted or transferred into ward ‘49’ which is a mixed specialty ward

involving various types of treatment (i.e. types of specialty) such as ‘Cardiac Surgery’,

‘Care of Elderly’, ‘Infectious Diseases’, ‘General Medicine’, ‘General Surgery’ and other

types of treatment. It is also evident that there are MRSA positive patients in virtually
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all wards though there are wards with larger exposure to MRSA than others.

7.3.4.2 The analysis of the number of MRSA positive patients based on the

simulated length of stay obtained from the Simulation Method 2:

Negative Binomial regression.

In order to investigate the sensitivity of using a different simulation approach for the

length of stay, we build the matrix presenting the number of MRSA positive patients for

each ward code on a given study day based on the simulated length of stay given by the

fitted Negative Binomial regression. Also we apply the bootstrap method to generate the

corresponding simulation envelope of the frequency of the population of MRSA positive

patients.

Figure 7.25: The plot of simulated number of MRSA positive patients based on the
Negative Binomial simulation method.

The plot (Figure 7.25) of the total number of MRSA positive patients against the

study day shows a similar pattern as the plot in Figure 7.20 where the imputed lengths

of stay were obtained from the empirical density. This indicates that those two different

imputation approaches for the length of stay do not markedly affect the imputation of

the number of positive MRSA patients on a given study day.

The percentage of MRSA positive patients on a given study day in the

228



100 150 200 250

0.
00

0.
05

0.
10

0.
15

timeline

pe
rc

en
ta

ge
 o

f n
um

be
r 

of
 M

R
S

A
 p

at
ie

nt
s

Figure 7.26: The plot of percentage of MRSA positive patients with the simulation
envelope based on the Negative Binomial simulation method. The blue points are the
upper bounds of the simulation envelope and the red points are the bottom bounds of
the simulation envelope which is generated in the three cohorts. The black points are the
imputed percentage of MRSA positive patients in the admission-discharge cohort.

admission-discharge cohort with the simulation envelope is shown in Figure 7.26. We

can conclude that the observed percentage of positive MRSA patients exceeds the upper

bound of the simulation envelope on a few occasions at the beginning of the study, which

reflects an underestimation of the percentage of MRSA positive patients. The same

situation occurs around the 200th study day where the percentage of positive MRSA

patients in the admission-discharge cohort is also slightly higher than the upper bound

of the simulation. Note that we set the beginning day of the study as 1st of October

2009 in order to guarantee to involve all the imputed admission dates for every patient

in the discharge only cohort. Compared to the plot in Figure 7.23 where the empirical

density was used when simulating the length of stay, there is no obvious evidence that the

Negative Binomial regression for the simulation of the length of stay gives vastly different

results for the total number of MRSA positive patients in a given ward on a given study

day.

One of the aims of this study is to assess the effect of patient movement on the risk

of MRSA acquisition. The matrix shown above in Figure 7.24 presents the location of
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the MRSA patients in the wards in hospital. Three indicators associated with patient

movement which might be associated with the risk of acquiring MRSA are: (i) whether

or not the patient is staying in a ward with MRSA present, (ii) the number of days

that patient had been exposed to at least one MRSA positive patient and (iii) the total

patient days of MRSA exposure. These indicators are considered as potential risk factors

for MRSA acquisition and all can be generated from combining the matrix with the

journey of each individual patient through the hospital. In the following section, we aim

to analyse the effects of these three factors on the risk of MRSA acquisition based on

imputation and logistic regression.

7.4 The logistic regression for exposure variables

based on patient movements.

In Section 7.2 and Section 7.3, we investigated a methodology of using imputation to fill

in the gaps in data availability brought about by consent and recording issues. This

methodology was also investigated as an attempt to see if data which are relatively

routinely recorded could be used to provide information on the effect of patient movement

on the risk of acquiring MRSA. Firstly, we imputed the date of transfer from one ward

to another in the admission-discharge cohort, and then imputed the length of stay (using

empirical distribution approach in this study), and the date of transfer between wards

in the admission only cohort, and also imputed the length of stay, the MRSA status on

admission and then the date of transfer between wards in the discharge only cohort. After

that, we derived the data matrix of the number of MRSA positive patients per ward per

day. In this way three explanatory variables could be calculated for each person, namely

(i) exposure to MRSA, (ii) days exposed to MRSA and (iii) patient days exposed to

MRSA. As only the admission-discharge cohort has complete data on MRSA acquisition,

the estimation of the effects of those three explanatory variables on MRSA acquisition can

only be done in the admission-discharge cohort. A bootstrap method is applied to estimate
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the variability of the parameter estimates in the logistic regression model by repeating

the whole process 100 times. Note that the repeated process includes the imputation of

the length of stay, the dates of transfer between wards, the MRSA status and then the

construction of data matrix and logistic regression analysis.

Logistic regression will be used in this section to estimate the effect of patient

movement on MRSA acquisition. Particularly, three hypotheses are tested. These are

(i) a patient exposed to MRSA has a higher risk of MRSA acquisition than a patient who

was not exposed to MRSA (i.e. the variable exposure to MRSA). (ii) a patient exposed

to MRSA for a longer length of stay has a higher risk of MRSA acquisition compared to a

patient unexposed or exposed for a shorter duration (i.e. days exposed to MRSA). (iii) a

patient exposed to MRSA for a larger number of patient days has a higher risk of MRSA

acquisition than a patient with less exposure (i.e. the variable patient days exposed to

MRSA). The analysis will only be carried out for the subset of the admission-discharge

cohort who were MRSA negative on admission. The admission-discharge cohort contains

the information on MRSA acquisition for each patient which is treated as the response

variable in the logistic regression. Data from both the admission only and discharge

only cohorts were only used to impute the data on MRSA carriage which contains the

uncertainty. We take the variability induced by the imputation into account by using

a bootstrap method within the logistic regression to provide the appropriate standard

errors for the parameters associated with the imputed exposure variables. As we mention

in Section 6.2 of the previous chapter, we use a 10% significance level for the univariate

analysis to include the significant variables for the multivariable analysis.

Only the data for Aberdeen Royal Infirmary is used for analysis in this chapter.

Hence it is a subset of the analysis in the previous chapter. The estimates from some

of the models in Chapter 6 are repeated in this chapter so that they can be directly

compared with the estimates from extended models which also included the exposure to

MRSA variables.
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7.4.1 The influence of being with MRSA positive patients in the

same ward on MRSA acquisition.

Cohabitation, where a patient is in a ward at the same time as there are MRSA patients

in the same ward, is treated as one of the important statistics inferred from the patient

movement within the hospital. In the admission-discharge cohort, the point estimates

show that there were 273 patients (17.28%) who had stayed in a ward with one or more

than one MRSA positive patients whereas 1,307 patients had not been with any MRSA

positive patient in hospital.

Univariate analysis

In order to investigate the statistical association between the risk of MRSA acquisition

for a patient and the presence of MRSA positive patients in the same ward that patient

had stayed for the admission-discharge cohort, we construct a logistic regression model.

Firstly, univariate analysis is used to identify the important variables with respect to the

risk of MRSA acquisition. Apart from the main risk factor in focus: whether or not

patients are in wards with MRSA present, there are eight other potential risk factors

involved in the univariate risk factor analysis for the MRSA acquisition. The results are

shown in Table 7.9.

Table 7.9 illustrates that age has a significant effect on the risk of MRSA acquisition in

this subset analysis. As the age increases the odds ratio increases significantly. Although

the p-value (0.16) from the Wald test for age as a categorised potential risk factor does

not demonstrate a significant difference between different age groups with respect to

MRSA acquisition, the risk of acquiring MRSA for the patients 80 years old or over is

approximately eight times as high as for the younger patients 49 years old or under. In

addition, the results also show that the admission speciality as well as the length of stay

are also significant potential risk factors. For patients admitted into renal or orthopedic

speciality wards, the risk of acquiring MRSA is obviously different from that for the

patient admitted into a ward in the ‘Medicine group’ since the corresponding odds ratios
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Table 7.9: Univariate risk factor analysis for MRSA acquisition (N=1,580).

Variables Categories OR p-value 95% CI
Combined
p-value
(Wald test)

Gender
Male 1

Female 1.46 0.418 (0.58,3.65) na

Age (years)

≤ 49 1
50− 64 2.83 0.35 (0.32,25.49)
65− 79 5.48 0.11 (0.69,43.41)
≥ 80 8.21 0.056 (0.95,70.74) 0.16

Age (numeric) 1.05 0.0085 (1.01,1.09) na

Admission specialty

Medicine 1
Renal 5.41 0.043 (1.06,27.76)

Cardiology 0.56 0.58 (0.07,4.59)
Oncology 1.23 0.85 (0.15,10.23)

Orthopedics 0.26 0.095 (0.05,1.26)
Surgery 0.45 0.18 (0.14,1.44) 0.044

Length of stay 1.04 0.0049 (1.01,1.07) na

Patient
admission type

Emergence 1
Elective 0.46 0.12 (0.18,1.23) na

Number of wards 1.20 0.32 (0.84,1.70) na

Number of
wards (categorised)

1 ward 1
2 wards 1.46 0.51 (0.47,4.49)
≥ 3 wards 2.39 0.11 (0.82,6.95) 0.28

Co-morbidity:
wounds/ulcers

No 1
Yes 3.06 0.05 (1.00,9.35) na

Co-morbidity:
renal failure

No 1
Yes 4.31 0.06 (0.96,19.29) na

MRSA existence
No 1
Yes 1.72 0.3 (0.62,4.82) na

for renal special wards and orthopaedic special wards are 5.41 and 0.26 with the p-values

0.043 and 0.095 respectively. The appearance of open wounds and renal failure also have

potentially significant effects on the risk of MRSA acquisition. The admission speciality

is a significant variable associated with MRSA acquisition in the analysis of a subset of

Aberdeen Royal Infirmary dataset whereas it was insignificant in the univariate analysis

of the previous chapter, which includes the data on both Aberdeen Royal Infirmary and

Crosshouse. This indicates that the data on admission specialty in Crosshouse hospital

weakens the effect on MRSA acquisition.
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For the major potential risk factor under investigation in this chapter of whether or

not the patient stayed in a ward with an MRSA patient, the risk of MRSA acquisition

for a patient being in a ward with MRSA present is 1.72 times the risk for the patient

who had never been exposed to MRSA while in hospital, with the corresponding 95%

confidence interval (0.62, 4.82). However, there is no evidence that being in a ward with

MRSA positive patients has a significant effect on the risk of MRSA acquisition due to

the high p-value (0.30).

Multivariable analysis

A multivariable model is constructed using MRSA existence (as this is the main

factor under investigation in this section) and the other significant univariate variables.

The results are shown in Table 7.10.

Table 7.10: Multivariable analysis for MRSA existence (N=1,580).

Variables Categories Adjusted OR p-value 95% CI
Combined
p-value
(Wald test)

Age (numeric) 1.05 0.015 (1.01,1.09) na

MRSA existence
No 1
Yes 0.82 0.72 (0.26,2.54) na

Admission
specialty

Medicine 1
Renal 7.00 0.053 (0.98,50.31)

Cardiology 0.52 0.55 (0.06,4.38)
Oncology 1.40 0.76 (0.16,12.03)

Orthopedics 0.35 0.21 (0.07,1.80)
Surgery 0.57 0.35 (0.17,1.88) 0.12

Length of stay 1.04 0.041 (1.00,1.07) na

Co-morbidity:
wounds/ulcers

No 1
Yes 2.15 0.23 (0.61,7.60) na

Co-morbidity:
renal failure

No 1
Yes 1.12 0.90 (0.16,7.99) na

The adjusted odds ratio for the MRSA existence displayed in Table 7.10 means

that by taking the effect of age, admission specialty, length of stay, open wounds and

renal failure into account, the risk of MRSA acquisition for patients staying in wards

with MRSA present is 0.82 times the risk for patients who had never been exposed
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to MRSA before while in hospital. The corresponding p-value (0.72) implies that the

effect of being in a ward with MRSA is not statistically significant on the risk of MRSA

acquisition. Additionally, the adjusted effect of open wounds or ulcers and renal failure

are non-significant on the risk of MRSA acquisition although the corresponding adjusted

odds ratios still show that the patients with open wounds or renal failure are more likely

to acquire MRSA. Compared to the results in the previous chapter, the higher p-values

for these variables are possibly associated with the smaller sample size.

The two way interactions between the potential risk factors were investigated using

the Chi-square test to compare the nested models where one of them consists of an

interaction item. No interaction effects were significant.

7.4.2 The effect of the number of days exposed to MRSA on

MRSA acquisition.

From one simulation for the admission-discharge cohort, the result shows that the majority

of the patients (82.72%) had never been exposed to MRSA directly. Additionally, 103

out of 1,580 patients had been exposed to MRSA for exactly one day during their stay in

hospital and 49 patients had exactly two days being exposed to MRSA. The histogram

of the total number of days that patients had been exposed to MRSA is shown in Figure

7.27, indicating that the relative frequency of the number of days exposed to MRSA drops

dramatically when the number of days exposed to MRSA becomes larger.

We can see from the histogram that the frequency of patients being exposed to MRSA

for more than five days is relatively low. Hence it is reasonable to combine all the patients

who had been exposed to MRSA for more than five days together and categorise the total

number of days exposed to MRSA positive patients into six groups for the analysis: zero

days, one day, two days, three days, four days and five or more days.

Univariate analysis

The results in Table 7.11 show that compared to patients who had not been exposed
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Figure 7.27: The histogram of the total number of days exposed to MRSA for one
imputation in the admission-discharge cohort.

to MRSA, the risk of acquiring MRSA increases as the number of days exposed to MRSA

increases but patients exposed to MRSA for more than five days have a relatively low

odds ratio. A patient exposed to MRSA for four days in hospital is 4.20 times as likely to

acquire MRSA as a patient never exposed to MRSA in hospital whilst a patient exposed

to MRSA for one day in hospital is 0.91 times as likely to acquire MRSA as a patient never

exposed to MRSA. However, the high overall p-value provides no evidence of a significant

difference in the risk of MRSA acquisition between patients exposed to MRSA for a long

time and a patient never exposed to MRSA while in hospital. The total number of days

exposed to MRSA does not have significant effect on MRSA acquisition due to the high

p-value (0.72) from the Wald test. The trend test also gives a high p-value (0.913), which

shows that there is no linear trend in the odds ratio for the days exposed to MRSA.

Multivariable analysis

The results of the multivariable analysis are shown in Table 7.12. The adjusted odds

ratio generally increases as the number of days exposed to MRSA increases but when the

number of days exposed to MRSA is larger than three, the adjusted odds ratio does not

increase further. For a patient who was exposed to MRSA for three days, the risk of
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Table 7.11: The univariate analysis for total number of days exposed to MRSA positive
patients (N = 1, 580).

Variables Categories OR p-value 95% CI
Combined
p-value
(Wald test)

The total number of
days exposed to MRSA

0 days 1
1 day 0.91 0.92 (0.11,6.95)
2 days 1.92 0.53 (0.25,14.93)
3 days 2.50 0.38 (0.32,19.49)
4 days 4.20 0.18 (0.52,33.34)
≥ 5 days 1.57 0.67 (0.20,12.11) 0.72

Table 7.12: Multivariable analysis for total number of days exposed to MRSA positive
patients (N = 1, 580).

Variables Categories Adjusted OR p-value 95% CI
Combined
p-value
(Wald test)

Age (numeric) 1.05 0.012 (1.01,1.09) na

The total number
of days exposed

to MRSA

0 days 1
1 day 0.49 0.52 (0.06,4.20)
2 days 1.81 0.58 (0.22,15.00)
3 days 1.58 0.67 (0.19,13.35)
4 days 1.09 0.94 (0.09,13.36)
≥ 5 days 0.46 0.48 (0.05,3.94) 0.91

Admission
specialty

Medicine 1
Renal 8.04 0.043 (1.07,60.64)

Cardiology 0.54 0.57 (0.06,4.58)
Oncology 1.55 0.69 (0.18,13.61)

Orthopedics 0.36 0.23 (0.07,1.88)
Surgery 0.58 0.38 (0.18,1.94) 0.11

Length of stay 1.04 0.037 (1.00,1.08) na

Co-morbidity:
wounds/ulcers

No 1
Yes 2.19 0.24 (0.60,8.00) na

Co-morbidity:
renal failure

No 1
Yes 1.13 0.91 (0.14,9.45) na

MRSA acquisition is 1.58 times as high as the risk of MRSA acquisition for a patient who

was never exposed to MRSA while in hospital by taking the other risk factors into account.

On the other hand, for a patient who was exposed to MRSA for five days or more, the risk

of MRSA acquisition is 0.46 times as high as a patient who was never exposed to MRSA

while in hospital, after controlling for the effects of other risk factors. The corresponding

237



high p-values for the adjusted odds ratios indicate that by adjusting for the effects of other

risk factors of age, admission speciality, length of stay, wounds or ulcers and renal failure,

the risk of MRSA acquisition between a patient exposed to MRSA for a larger number of

days and a patient never exposed to MRSA is not statistically different. The combined

p-value for the Wald test also provides the evidence that the adjusted effect of number

of days exposed to MRSA has no significant effect on MRSA acquisition. Compared to

the univariate analysis, there is a big change in the adjusted odds ratio for each category

of the total number of days exposed to MRSA. Especially for the patients being exposed

to MRSA for exactly four days, the adjusted odds ratio becomes 1.09 in the multiple

logistic model while the crude odds ratio is 4.20 in Table 7.11. Besides, the adjusted odds

ratios for the admission speciality, open wounds or ulcers and renal failure are different

from the relative crude odds ratios in Table 7.9 respectively. Hence, it is possible that

a confounding effect exists between those potential risk factors. The interaction tests

revealed that there is no significant interaction term according to likelihood ratio tests for

the nested models.

7.4.3 The effect of the total number of patient days exposed to

MRSA.

Exposure can also be measured by the number of patient days that patient had been

exposed to MRSA. Each patient day represents a unit of time during which the patient

was in a ward at the same time as there was an MRSA patient in the same ward, counted

according to the number of MRSA patients. Thus the patient staying in a ward with two

MRSA positive patients for one day would represent two patient days. In other words, the

number of patient days exposed to MRSA for each patient can be calculated by totalling

the number of MRSA positive patients that the patient had stayed with on individual

days while in hospital.

In one imputation, there are 1,307 out of 1,580 patients who had zero patient days
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being exposed to MRSA which comprises 82.72% of patients, followed by 5.63% of patients

having exactly one patient day exposed to MRSA and 3.16% of patients having exactly

two patient days exposed to MRSA. The histogram is displayed in Figure 7.28.
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Figure 7.28: The histogram of the total patient days exposed to MRSA in one imputation.

Clearly, the histogram of the number of patient days exposed to MRSA shows a

dramatic decrease, which has a similar distribution as the histogram for the number of

days exposed to MRSA in Figure 7.27. The frequencies of patients exposed to MRSA for

more than five patient days are relatively small compared to the frequency of the patients

with zero patient days exposed to MRSA. Hence we build the new categorised variable

involving four categories: zero days, one to two days, three to four days and five or more

days.

Univariate analysis

The univariate analysis results are listed in Table 7.13. Compared to the zero patient

days exposed to MRSA, the odds ratio for three to four patient days is the highest (3.42),

followed by the odds ratio for five or more patient days (2.43). For the patients with one

to two patient days, the risk of acquiring MRSA is only 0.67 times the risk of MRSA

acquisition for the patients with zero patient days exposed to MRSA. The high p-value

for the Wald test (>0.10) suggests that the effect of patient days exposed to MRSA is
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Table 7.13: The univariate analysis for patient days exposed to MRSA (N = 1, 580).

Variables Categories OR p-value 95% CI
Combined
p-value
(Wald test)

The patient days
exposed to MRSA

0 days 1
1-2 days 0.67 0.70 (0.08,5.13)
3-4 days 3.42 0.11 (0.76,15.43)
≥ 5 days 2.43 0.25 (0.54,10.88) 0.27

not significantly associated with the risk of MRSA acquisition. In other words, there is

no evidence that a patient staying with two or more positive MRSA patients in a ward

at the same time has a higher risk of MRSA acquisition compared to a patient who stays

with only one positive MRSA patient, or none.

Multivariable analysis

Table 7.14: Multivariable analysis for total number of days exposed to MRSA (N =
1, 580).

Variables Categories Adjusted OR p-value 95% CI
Combined
p-value
(Wald test)

Age (numeric) 1.05 0.010 (1.01,1.10) na

The patient days
exposed to MRSA

0 day 1
1-2 days 0.38 0.38 (0.05,3.21)
3-4 days 2.88 0.19 (0.59,14.02)
≥ 5 days 0.59 0.55 (0.11,3.24) 0.38

Admission
specialty

Medicine 1
Renal 7.72 0.042 (1.07,55.54)

Cardiology 0.55 0.58 (0.06,4.67)
Oncology 1.57 0.68 (0.18,13.71)

Orthopedics 0.35 0.21 (0.07,1.80)
Surgery 0.56 0.35 (0.17,1.86) 0.12

Length of stay 1.04 0.038 (1.00,1.07) na

Co-morbidity:
wounds/ulcers

No 1
Yes 2.20 0.23 (0.61,7.97) na

Co-morbidity:
renal failure

No 1
Yes 1.37 0.75 (0.19,9.79) na

Table 7.14 shows that the risk of MRSA acquisition for a patient exposed to MRSA

for three to four patient days is 2.88 times as high as the risk of MRSA acquisition for a

240



patient never exposed to MRSA after adjusting for the other risk factors of age, length of

stay, wounds or ulcers and renal failure. On the other hand, by taking other risk factors

into account, a patient exposed to MRSA for five or more patient days is 0.59 times as

likely to acquire MRSA as a patient never exposed to MRSA and a patient exposed to

MRSA for one to two patient days is 0.38 times as likely to acquire MRSA as a patient

never exposed to MRSA. The p-value for the Wald test suggests that from a statistical

point of view there is no significant adjusted effect of the number of patient days exposed

to MRSA associated with the risk of MRSA acquisition in Table 7.13. Generally speaking,

the adjusted odds ratio for each category of the patient days decreases compared to the

corresponding crude odds ratio. Especially, for greater than or equal to five patient days,

the adjusted odds ratio (0.59) is remarkably different from the corresponding crude odds

ratio (2.43). Similarly, the adjusted odds ratios for the admission specificity, open wounds

or ulcers and renal failure are obviously different from the corresponding crude ratios in

Table 7.9, which reveals that there are possible confounding effects in the multivariable

model. The results of the Chi-square tests show that there are no interaction terms which

significantly affect MRSA acquisition.

7.4.4 The bootstrap method for the patient movement

variables.

In the previous subsections, only one imputation was done to construct three explanatory

variables of exposure to MRSA. Then the logistic regression models were fitted, yielding

the point estimates of the odds ratios for those three explanatory variables. Obviously,

with another set of imputations, different values for the exposure variables would be

obtained and thus a logistic regression model would provide different estimates. In order

to increase the variability of the estimation, we use multiple imputations to build up

the distribution of the estimates. We apply the logistic regression within a bootstrap

imputation to generate the 95% confidence intervals of the odds ratios for risk of MRSA
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acquisition associated with the patient being exposed to MRSA, for the number of days

that the patient had been exposed to MRSA and for the total number of patient days

exposed to MRSA respectively. This can be achieved by repeating the imputation and

then the logistic regression model for 100 times. By iteratively imputing the dates of

transfer between the wards, a set of data matrices could be constructed. After that, for

each data matrix, three explanatory variables of exposure to MRSA can be calculated

and then a set of those three variables is built up. We apply the logistic regression model

on each set of three variables and then average the estimated odds ratios from the fitted

models combined with the mean of the corresponding estimated standard variance. From

a mathematical point of view, the 95% confidence interval for the odds ratio can be

expressed as follows:

(exp(coef − 1.96× (std(coef) + Std)), exp(coef + 1.96× (std(coef) + Std)),

where coef is the mean of the estimated coefficients from the models filled to the

bootstrap simulations, std(coef) is the standard deviation of the estimated coefficients

(i.e.
√
var(coef) where var(coef) is the variance of the estimated coefficients) from the

fitted models and Std is the mean of the estimated standard deviation for the risk factor

from the fitted models [62]. This technique is used for the admission-discharge cohort,

imputed by the individual length of stay for each ward.

The results for the admission-discharge cohort in Table 7.15 show that a patient being

concurrently in a ward with an MRSA patient present while in hospital does not affect

the acquisition of MRSA significantly since one lies within the 95% confidence interval

of the odds ratio for the risk factor that the patient was exposed to MRSA. Similarly,

an increase in either the number of exposure days or patient days exposed does not raise

the risk of acquiring MRSA. Comparing the 95% bootstrap confidence intervals with the

corresponding confidence intervals for just one imputation, we can see that the width of

the bootstrap confidence intervals are wider. Note that the confidence intervals for patient
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being exposed to MRSA, exposure days and patient days exposed for just one imputation

are (0.272,2.572), (0.788, 1.195) and (0.872, 1.134) respectively.

Table 7.15: The 95% CI of the odds ratios for the three variables within the univariate
analysis (admission-discharge cohort).

Variables Estimate 95% CI
Patient being exposed to MRSA 0.692 (0.125,3.823)

Exposure days 1.003 (0.684,1.471)
Patient days exposed 0.993 (0.710,1.388)

For the admission-discharge cohort, using the two-way table for the number of patients

who had acquired MRSA while in hospital against the number of patients being exposed

to MRSA from the fitted logistic regression model within each bootstrap simulation,

we are able to calculate the average proportion of patients acquiring MRSA but never

being exposed to MRSA (i.e. patients who had acquired MRSA and had not stayed

in a ward with any MRSA positive patient while in hospital) which is 0.765 with

standard deviation 0.037. This implies that the majority of patients who acquired MRSA

during their stay in hospital had not been exposed to MRSA. In reality, a patient can

acquire MRSA by cross-transmission such as through the healthcare staff or from the

environment [100], [106]. Similarly, the results of the average fraction of patients who had

never acquired MRSA but stayed in a ward with MRSA present (i.e. patients who had

not acquired MRSA and stayed in a ward with at least another MRSA positive patient

while in hospital) is approximately 0.168 with standard deviation 0.0093, revealing that

a majority of patients who had been exposed to MRSA while in hospital remain MRSA

negative. Obviously, the average proportion of patients who had acquired MRSA and

stayed in a ward with at least one MRSA positive patient which is 0.235 is slightly higher

than the average proportion of patients who had not acquired MRSA but stayed in a ward

with at least one MRSA positive patient (0.168).

We can conclude that this analysis suggests that the patient movement leading to

MRSA exposure does not affect the risk of MRSA acquisition significantly. So the main

risk factor associated with MRSA acquisition are still patient related ones, namely age,
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length of stay, open wounds or ulcers and renal failure.

7.5 Conclusion.

In this chapter, we mapped the timeline of MRSA infection and carriage pressure in each

ward in Aberdeen Royal Infirmary for all patients in three cohorts. We mainly aimed to

investigate the effect of a patient directly exposed to MRSA in a ward while in hospital

(i.e. a patient stayed with other positive MRSA patients in the same ward at the same

time) on MRSA acquisition. In addition, a bootstrapped logistic regression method was

used with multiple imputations to investigate the performance of the analysis in presence

of missing data.

We analysed the distribution of the observed length of stay in the dataset and

investigated the distribution of length of stay in each ward. We also applied various

methods of imputation for the missing length of stay, patient ward movement dates and

MRSA measurement results.

The analysis of the distribution of the length of stay implies that there is no prominent

difference among the assumption that the length of stay for each ward is based upon a

Uniform distribution, the assumption that the length of stay for each ward (apart from

the last one) follows a Triangular distribution and the assumption that the length of stay

for each ward follows a mixed distribution (i.e. the length of stay for the first ward that

a patient had been admitted into follows a Triangular distribution while the length of

stay for the remaining wards is based on a Uniform distribution) with regards to the

effectiveness of simulating the patient movement dates. In this study, the assumption

that the length of stay for each ward is based on a Uniform distribution was applied.

Additionally, further analysis, applying the other assumptions for the length of stay in

the individual ward yields similar conclusions. This implies that there is no significant

influence of using different distributions to simulate the length of stay for the individual

ward on estimating the variables associated with patient movements and their further
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association with MRSA acquisition.

In order to simulate the missing length of stay in the dataset, two different methods,

which are using the empirical density of the observed length of stay and using the

Negative Binomial regression, were implemented. By comparing the simulated length

of stay with the observed ones and assessing the histogram of the observed length of stay

with the simulation envelope, it can be concluded that both simulation methods failed to

estimate the length of stay perfectly (i.e. there was a the problem of underestimation or

overestimation, especially for the patients who had stayed in hospital for less than five

days). With regard to the simulation of length of stay using Negative Binomial regression,

the QQ plot for the fitted residuals shows heavy tails in the ends although the mean of

the observed length of stay is obviously less than the variance. Hence Gaussian regression

or quasi-Poisson regression can also be applied for possible improvements. However, the

results for Gaussian regression also give a heavy tailed QQ plot, which means that there

is no improvement. Furthermore, one of the advantages of using the Negative Binomial

method for the simulation of the length of stay compared to the empirical density method

is that it does not limit the range of the simulated length of stay. On the other hand, by

sampling the simulated length of stay randomly from the corresponding empirical density,

the results are guaranteed to lie within the domain of the empirical density.

An assumption was made to impute the MRSA status for a patient on each day

in hospital. However, there is no reliable a priori knowledge on the duration of MRSA

carriage. This assumption for the imputation of the MRSA status per day might be biased

since a large number of patients had stayed in hospital for a short time and those patients

were assumed to be colonised with MRSA the day before discharge. Therefore, it might

lead to an overestimation on the days that the patients were colonised with MRSA while

in hospital and the days that a patient exposed to MRSA.

In addition, we built the pattern of the patient movements along with the timeline

of the study based on imputation so that the number of positive MRSA patients per day

can be elucidated. The plot revealing the number of positive MRSA patients per day
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was shown in Figure 7.20. There was a drop from 200th day to the end of the study.

One potential effect of this drop is that patients admitted later have a bias on exposure

to MRSA, which is underreported in the study. In this study, there are 539 patients

who were admitted into the hospital after 200th day in the admission-discharge cohort.

The effect of patient movement on MRSA acquisition through exposure to MRSA in a

ward can be detected by the logistic regression. The results show that the exposure to

MRSA does not have significant influence. In other words, the risk of MRSA acquisition

in this study, which is considered as a representative of the general Scottish in-patient

population, is not statistically significantly associated with the patient movement. There

were 34 patients who acquired MRSA whilst in hospital. This analysis here suggests that

other sources of transmission such as sporadic MRSA which includes the transmission

from outside the ward or via hospital staff or environment are possibly more important

in the general hospital population.

The application of the Bayesian network analysis may lead to an understanding of

the pattern dynamics of epidemic MRSA transmission [134]. Our study also reveals

that the different simulation methods for the length of stay do not significantly affect

the conclusion of the estimated effect of the patient movements on the risk of MRSA

acquisition. Moveover, the results of the bootstrap analysis also indicate that the majority

of patients who had been exposed to MRSA did not acquire MRSA while in hospital.

There are many limits in this study. Our study does not address practices on

comparing the simulated results with the real observed data. Further study is needed

as an implementation study by collecting the data of patient movement dates between

wards as a comparison with the simulation results obtained here. If the data on the dates

of transfer between wards is available, no imputation would have been needed. However,

the collection of the data, which might be available from hospital records, would be

difficult and expensive. In this study, we used cohabitation as a surrogate for exposure to

MRSA, which essentially implies that a patient is more likely to be exposed to MRSA if

there is an MRSA patient in the ward. In fact, it is still possible to be exposed to MRSA
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if there is no patient in the ward. For example, the MRSA bacterium could be left by a

positive MRSA patient the day before a new patient is admitted into the ward.

This study could be underpowered since the effect of MRSA exposure is too small

to be detected. One of the reasons is that we may not have data on all MRSA patients.

Most patients consented and were included in one of the three cohorts. We assumed that

those three cohorts are representative but there could be bias in practice.

Some further work regarding to the analysis in this study can be considered. For

example, we can investigate that whether the method of bootstrapped logistic regression

is appropriate. This can be implemented by a replicated process. First we take one

imputation for the exposure variable and then use this imputed variable to construct the

logistic regression model associated with MRSA acquisition in the admission-discharge

cohort. According to the fitted model, we can simulate the response of MRSA acquisition

in the admission-discharge cohort, but with a big effect size for the exposure variable

(e.g. take variable of days exposed to MRSA as 10). Then we get a new imputation for

the exposure variable and applied the same process to estimate a new response of MRSA

acquisition. By comparing those two estimated responses of MRSA acquisition, we can

assess that if the process of bootstrapped logistic regression can be replicated. If those two

estimated responses are close, then we can conclude that this process can be replicated.

In addition, our work also raises the questions such as the re-admittance of the patients

who were colonised with MRSA on discharged and the risk of transmission for the patient

colonising MRSA at discharge to other household members, which could be addressed by

further work.
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Chapter 8

Conclusion and Discussion

In this thesis, we have used imputation approaches and modelling methods to investigate

two problems associated with HIV and MRSA. Particularly, two main questions have

been discussed in two separate parts of this thesis: (i) the quantification of replication in

HIV anonymous test reports and (ii) the effect of patient movement between wards on

the acquisition of MRSA. The first part of this thesis (i.e. Chapters 2, 3 and 4) focused

on the replication problem in HIV reports and the second part (i.e. Chapters 5, 6 and 7)

was about the analysis of the association between the patient movement between wards

and the risk of MRSA acquisition while in hospital. In Chapter 1, we generally described

the main objectives of this thesis and briefly introduced the methods that would be used

for the analyses.

8.1 The discussion for the HIV replication study

The first objective was to estimate the true number of individuals who were recorded in the

PHLS dataset and the amount of replication in this dataset. The HIV dataset consisted

of the birth dates of the individuals but the names of patients were not recorded due to

confidentiality. Hence there were multiple records with the same birth dates and it was

not known if they are the same person or not. In the first part of this thesis, we used the
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maximum likelihood method to estimate the amount of replication. The second objective

of this thesis was to estimate the impact of patient movement within a hospital on MRSA

acquisition. The data were collected from two hospitals in Scotland. However, missing

data caused severe problems when attempting to estimate the effect of patient movement.

Hence, in the second part of the thesis, we used imputation to make inferences in the

presence of missing data such as the movement dates of each patient. Then based upon

logistic regression modelling, we assessed the impact of patient movement between the

wards in hospital on MRSA acquisition.

8.1.1 The summary of the HIV replication study

Firstly, we investigated the replication problem in HIV reports in the first part of this

thesis. In Chapter 2, we did the literature review of the replication in HIV reports. The

background of HIV was introduced. HIV infection is considered as a pandemic disease

in public health and it can cause impact on societal and economic well-being. Thus it

is important to know the reliable information on the number of HIV infected individuals

in order to improve public health. In the 1991 and 1994 datasets of HIV anonymous

test reports given by the PHLS, only birth dates of individuals were held and there were

repeated records of the same individual which were addressed in the previous researches by

Greenhalgh et al. [27], [51], [52]. The PHLS was interested in estimating the duplication

in both 1991 and 1994 datasets. Greenhalgh et al. used various statistical approaches

to assess the replication in the PHLS dataset, but only for a few birth years in the

1991 dataset. In this thesis, we used the maximum likelihood method to estimate the

percentage of replication present in the 1991 and 1994 datasets.

In Chapter 3, we introduced the methodology of estimating the replication in PHLS

HIV reports and developed the bootstrap method for calculating the 95% confidence

interval for the estimate of the proportion of replicated records of birth dates. The

maximum likelihood method was the main technique used for estimating the replication.
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Based upon the observed sample in a given birth year, the potential true replication

vectors were derived iteratively. We derived a pattern for generating the potential

replication vectors, which mapped the movements of the tuples. A theorem was given

to calculate the upper bound for the number of potential true replication vectors so

that the iterative computation for the potential replication vectors was able to be done

efficiently using statistical software R and programming language C. We constructed

the likelihood function for each potential replication vector based upon a theorem of

probability distribution of a replication vector (given by Greenhalgh et al. [51]), which

involved the potential replication vector, the potential true number of distinct individuals

and the unknown probability distribution. Note that the unknown probability distribution

gave the probabilities that the individuals having HIV tests once, twice, three times

and so on. Using the ‘alabama’ library in the software R, the maximum likelihood

estimate of the probability of individuals having had HIV tests repeatedly were calculated.

Thus, the true number of distinct individuals was estimated for a given birth year and

the corresponding percentage of the replication was calculated according to (3.5.1) in

Section 3.5 of Chapter 3. In this chapter, we also proposed another approach based upon

the estimated probability distribution of the individuals having had repeated HIV tests

to calculate the percentage replication. Both methods gave virtually the same answer

and thus in this thesis, we chose only the former approach to calculate the percentage

replication. Since a point estimate of the replication is of limited use, we used the

bootstrap method to calculate 95% confidence intervals. For a given birth year, according

to the estimated probability distribution for the replication, we generated a set of samples

of replication vectors using the statistical software R. For each sample, we used the same

technique to estimate the corresponding true amount of replication. Then we deduced

the 95% bootstrap confidence interval for that birth year.

In Chapter 4, we presented the results of the estimated percentage of replication

and the corresponding 95% bootstrap confidence interval in the 1991 and 1994 datasets

using the program written in R and C according to the method introduced in the previous

250



chapter. The ‘alabama’ package in R was used to obtain the maximum likelihood estimates

since the likelihood function of the potential replication vectors given the true sample

size was generally nonlinear. The program in ‘alabama’ used the augmented Lagrangian

algorithm. For the 1994 dataset which contained records of birth years with large sample

sizes, we used the program written in C based upon the optimisation package nag opt nlp

since the running time was cut down. The program written in R was introduced briefly in

this chapter, which was the same as the program written in C. Using the program written

in R (and in C), we estimated the true number of distinct individuals, the probabilities

of an individual having a certain number of HIV tests and the corresponding maximum

value of the likelihood function for each birth year in the 1991 and 1994 datasets. We also

constructed the 95% and 99% confidence intervals for each birth year in both datasets.

The results showed that the replication present in the 1991 dataset was 3.37% and in

the 1994 dataset the replication decreased to 0.58%. The replication was smaller in the

1994 database than the 1991 database as expected because in the more recent years the

establishment of the surname Soundex code used in recording the data provides better

identification of duplicate reporting of the same individual. We found that the years

where replication was estimated to be present by the method used here were the same as

the ones identified by the matching pairs method [51]. The same conclusion was achieved

by two different methods, ensuring confidence in the results.

In the previous analysis addressed by Greenhalgh et al. [27], [51], [52], only a few birth

years in the 1991 dataset were analysed. Those birth years had very small sample sizes.

In this thesis, we extended this work based upon the maximum likelihood technique. The

entire 1991 and 1994 datasets were analysed where the sample sizes increased substantially.

The confidence intervals for the percentage replication were also calculated using the

parametric bootstrap method.
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8.1.2 The limits and further works of the HIV replication study

The major limit of the HIV replication study is that for the large datasets, the computation

efficiency is poor. i.e. the running time for calculating the amount of replication estimate

is long for the large datasets. Moreover, the accuracy of the estimation depends on the

available information. The improvements in providing better identification of duplicate

reporting of the same individual would reduce the chance of replication in the datasets.

In this study, the leap year is not considered when we construct the likelihood functions.

We took n = 365 in the likelihood function (shown in (3.2.7)) for all the birth years in

the datasets. In order to obtain the more accurate estimation, the leap year should be

considered and n should be 366 for those leap birth years in the datasets.

Although more advanced recording techniques for the HIV reports have been used

such as Soundex code using the surname of the patient to improve the accuracy, some

replication will still exist. There may be different reasons for this such as after women

are married they are likely to change their surname, and foreign patients, who were

registered in the disease reporting system of the UK, are likely to have the same surname.

Hence this method can also be used for estimating the duplication in the dataset. In this

study, a uniform distribution for the birth dates of the patients was used to construct the

likelihood function. Different assumptions for the distribution of the birth dates can also

be considered as further work.

The method for estimating the replication can be applied in the other areas. For

example, the NHS 24 dataset which contains the data of the age, gender, postal code and

calling time of individuals to the NHS 24 helpline may have the duplicate records of the

same individual. For example, an individual called the NHS 24 twice successively and the

information of that individual was recorded repeatedly. By applying the same principles

as we did in this study, the amount of duplication can be estimated, which indicates the

reliability of the dataset. However, the likelihood function would be different. In this

study, we assumed that the distribution of the birth dates for the patients is a uniform
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distribution whereas the distribution for the calling time in NHS 24 dataset may not be

a uniform distribution.

8.2 The discussion for the MRSA acquisition study

Then we moved to the second part of this thesis, which focused on a particular

hospital-acquired infection caused by MRSA. This worldwide spread of disease is

considered as a global problem of public health. The main aim in this part of thesis

was to estimate the effect of patient movement between wards on MRSA acquisition

while in hospital from a one-year MRSA screening pilot study. We used the imputation

to make inferences in the presence of the unknown data as the dates of movement from one

ward to another. The second part of this thesis consisted of three chapters (i.e. Chapters

5, 6 and 7), which were literature review of MRSA, the risk factor analysis for MRSA

acquisition in the hospital and the analysis of the effect of patient movements between

wards on acquisition of MRSA.

8.2.1 The summary of the MRSA acquisition study

In Chapter 5, we briefly introduced four main aspects, which were (i) the medical,

biological and economic background of MRSA, (ii) the published studies on MRSA (iii)

the introduction of the MRSA Screening Programme launched in Scotland and (iv) the

method of collecting data within the MRSA Screening Programme that was used for

further analysis in the following chapters. MRSA is reported as the most frequently

isolated organism in skin and soft tissue Healthcare Associated Infections (HAIs) [28] and

it also causes bone, joint and surgical HAIs [72]. Although the incidence of MRSA has

declined recently in several European countries, MRSA infections, which are resistant to

the antibiotic methicillin, remain a major cause of morbidity and mortality in patients

admitted to hospital, particularly those in intensive care unit (ICUs) [100].
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In order to reduce the risk of cross-infections of MRSA in hospital, an MRSA

Screening Programme has been implemented since 2007 and continues to be improved

with the aim of establishing an efficient and economic prevention strategy. Recently, much

research has been published on MRSA. However, the majority focused on the investigation

of MRSA acquisition in presumed ‘high risk’ wards such as ICUs. These researches showed

that isolation of MRSA positive patients may not be directly associated with interruption

of the spread of MRSA. Several studies modelled the dynamic transmission process in

ICUs using different methods. These studies took parameter uncertainty into account.

However, those proposed models were limited to only a small population. In our study, we

aimed to investigate the potential risk factors for MRSA acquisition, which may indicate

suitable parameters to use in a dynamic transmission model.

A few studies were also published on MRSA acquisition in general hospitals, but

to date, there is limited research focusing on the association between patient movement

such as number of wards where the patient resided per hospital stay, and the risk of

MRSA acquisition. The data collected from the one-year MRSA Screening pilot were also

introduced briefly in this review chapter. Patient admission information was collected

from the hospital Patient Administration System and the Clinical Risk Assessment and

consent form were scanned into a holding database. All consenting patients were swabbed

on admission and the results of MRSA colonisation were taken from the laboratory and

recorded in the database. Generally speaking, data on demographics and risk factors for

MRSA acquisition were collected for the analysis. The data used in our study consists

of (i) an admission only database (7,181 patients) (ii) a discharge only database (2,432

patients) and (iii) a combined admission-discharge cohort (2,792 patients).

In Chapter 6, we used the data in the admission-discharge cohort to rework the

investigation of the association between the risk of MRSA acquisition and the potential

risk factors as the work done by Velzen et al., with the addition of an in depth evaluation

of the role of the number of wards a patient was resident in. In this study, we found

that 34 patients were MRSA negative on admission and MRSA positive on discharge.
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These patients were considered as acquiring MRSA in hospital. We used the categorical

logistic regression in the univariate risk factor analysis to estimate the effect of potential

risk factors on MRSA acquisition using a 10% significance level. The results showed that

three out of twelve potential risk factors for acquiring MRSA were identified, which were

age, open wounds or ulcers and renal failure. The categorical variable of the number of

wards did not show a significant effect on MRSA acquisition. Considering the association

between the potential risk factors, we used the χ2 test. The number of wards was strongly

associated with age, length of stay, open wounds or ulcers and renal failure. In order

to investigate the multiplicative interaction between the risk factors and the potential

confounding effects, a stratified analysis was applied. The results indicated that there

was no multiplicative interaction between the potential risk factors. Moreover, there was

no significant trend in risk of MRSA acquisition as the number of wards increases. Based

upon the CMH method, we identified the confounders in the multivariable analysis. A

categorical multivariable logistic model was constructed.

In order to increase the power of the analysis, we also investigated the multivariable

model using the numerical covariant values rather than categories. Generalised logistic

regression was applied to test the nonlinearity in the numeric multivariable model. The

results showed that a linear logistic model using numeric variables was adequate to

estimate the effects of risk factors on MRSA acquisition. Comparing the categorical

logistic model with the numeric one, there was no evidence to suggest that one of those

two models is more reliable or predictive based upon the corresponding ROC curves.

The findings in this chapter provided evidence that the cross-transmission of MRSA still

takes place in Scottish hospitals and hence implementing contact precaution and infection

control in the hospital is also important to prevent the cross-transmission. This conclusion

was the same as the work done by Velzen et al.

In Chapter 7, we developed the methodology of assessing the effect of patient

movement in general hospital on MRSA acquisition. We mapped the timeline of MRSA

infection and carriage pressure in each ward in Aberdeen Royal Infirmary for all patients
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in three cohorts based upon imputation of transfer dates from one ward to another. In this

chapter, various imputation methods were applied for making inference in the presence

of the missing data on length of stay, patient movement dates and MRSA measurement

results. The performance of different imputations were evaluated. In this study, we used

a Uniform distribution to estimate the patient movement dates in the three cohorts. An

assumption was also made to impute the duration of MRSA carriage but it might be

biased and lead to an overestimate on the days that a patient was colonised with MRSA

while in hospital. Our study also revealed that the different simulation methods do not

significantly affect the conclusion of the estimated effect of the patient movements on the

risk of MRSA acquisition.

Three exposure variables (i) whether a patient was exposed to MRSA in a ward,

(ii) the number of days that a patient was exposed to MRSA and (iii) the number of

patient days which this patient had spent staying with other positive MRSA patient

or patients in the same ward simultaneously were calculated. Patient movement was

measured as a volume indicator in terms of those three variables. In the more sophisticated

analysis, those three variables were considered as the risk factors for MRSA acquisition

and we investigated their effects on MRSA acquisition based upon the logistic regression

method. The results showed that the effect of patient movement between wards was

not significant on MRSA acquisition. This indicated that there were other transmission

sources affecting MRSA acquisition in the general hospitals. For example, MRSA bacteria

might be transmitted via hospital staff. Moreover, we used the bootstrapped logistic

regression method with multiple imputations to investigate the performance of the analysis

in presence of missing data. The results showed that the majority of patients who had

possibly been exposed to MRSA did not acquire MRSA while in hospital.
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8.2.2 The limits and further work of the MRSA acquisition

study

However, there were some major limits in this study. This one-year MRSA screening

pilot did not have all patients in the hospitals. In other words, selection bias existed. For

example, relatively healthier patients may be more likely to sign a consent form to be

recruited. In this study, only the data in the admission-discharge cohort were used for the

logistic regression analysis since we needed both the MRSA measurements on admission

and on discharge. This may lead to an underestimation of the proportion of patients

acquiring MRSA. In addition, since acquisition of MRSA is not likely, the proportion of

patients acquiring MRSA in hospital was small compared to the study population. Thus

the power of the study is low. The results obtained in this study are equivocal since

there were a lot of missing data. In addition, the method we used in this study is also

feasible due to the missing data. The better data is required as the imputation is not

totally successful and it does not yield robust conclusions. If the data on the dates of

transfer between wards were available, no imputation would have been needed. However,

the collection of the data would be difficult and expensive. For example, if many patients

do not consent, data will not be available. The limited data is one reason for the low

power to evaluate the effect of MRSA exposure. In this study, we assumed that a patient

was exposed to MRSA when he or she was staying with other MRSA positive patients

in the same ward simultaneously. However, in fact, there is a possibility that the MRSA

bacterium could be left by a MRSA positive patient the day before a new patient is

admitted into the ward.

Some further work can be considered regarding the study in the MRSA Screening

Pathfinder project. If there are better data available such as the admission data in hospital

including all transfers information, an investigation on comparing the simulated results

with the real observed data can be done. Our work also raises the questions such as the

re-admittance of the patients who were colonised with MRSA on discharge and the risk
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of transmission from the patient colonised with MRSA at discharge to other household

members. In addition, the estimation of the effect of isolation on MRSA acquisition in

the general hospitals can be investigated within the MRSA Screening Pathfinder Project

when the other contact precautions have been taken into account.
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Appendix A

The datasets of HIV diagnoses held

by the PHLS

Table A.1: 1991 dataset sent to us by PHLS. Birth years are tabulated in ascending order
and leap years are indicated with an asterisk.

Year

of

birth

Number of individuals S1 S2 S3 S4 S5 S6

1929 28 26 1 - - - -

1930 25 23 1 - - - -

1931 26 19 2 1 - - -

1932∗ 27 23 2 - - - -

1933 44 38 3 - - - -

1934 50 22 14 - - - -

1935 54 40 5 - 1 - -

1936∗ 52 48 2 - - - -

1937 68 57 4 1 - - -

Continued on next page
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Table A.1 – continued from previous page

1938 78 66 6 - - - -

1939 99 67 13 2 - - -

1940∗ 87 71 8 - - - -

1941 83 63 10 - - - -

1942 124 86 13 4 - - -

1943 113 69 17 2 1 - -

1944∗ 176 104 24 6 - - 1

Table A.2: 1994 dataset sent to us by PHLS. Birth years are tabulated in ascending order
and leap years are indicated with an asterisk.

Year

of

birth

Number of individuals S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

1901 0 - - - - - - - - - - -

1902 0 - - - - - - - - - - -

1903 1 1 - - - - - - - - - -

1904∗ 0 - - - - - - - - - - -

1905 2 2 - - - - - - - - - -

1906 0 - - - - - - - - - - -

1907 0 - - - - - - - - - - -

1908∗ 1 1 - - - - - - - - - -

1909 0 - - - - - - - - - - -

1910 0 - - - - - - - - - - -

1911 2 2 - - - - - - - - - -

1912∗ 4 4 - - - - - - - - - -

Continued on next page
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Table A.2 – 1994 dataset sent to us by PHLS. Continued from previous page

1913 5 5 - - - - - - - - - -

1914 10 10 - - - - - - - - - -

1915 5 5 - - - - - - - - - -

1916∗ 4 2 1 - - - - - - - - -

1917 7 5 1 - - - - - - - - -

1918 6 6 - - - - - - - - - -

1919 10 8 1 - - - - - - - - -

1920∗ 6 6 - - - - - - - - - -

1921 3 3 - - - - - - - - - -

1922 11 7 2 - - - - - - - - -

1923 13 13 - - - - - - - - - -

1924∗ 19 17 1 - - - - - - - - -

1925 33 28 1 1 - - - - - - - -

1926 20 17 - 1 - - - - - - - -

1927 24 22 1 - - - - - - - - -

1928∗ 30 26 2 - - - - - - - - -

1929 41 39 1 - - - - - - - - -

1930 43 35 4 - - - - - - - - -

1931 52 37 6 1 - - - - - - - -

1932∗ 59 51 4 - - - - - - - - -

1933 74 68 3 - - - - - - - - -

1934 82 60 8 2 - - - - - - - -

1935 78 59 8 1 - - - - - - - -

1936∗ 95 69 10 2 - - - - - - - -

1937 118 86 16 - - - - - - - - -

Continued on next page
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Table A.2 – 1994 dataset sent to us by PHLS. Continued from previous page

1938 129 96 12 3 - - - - - - - -

1939 156 94 25 4 - - - - - - - -

1940∗ 143 106 17 1 - - - - - - - -

1941 149 105 19 2 - - - - - - - -

1942 212 101 43 7 1 - - - - - - -

1943 202 115 28 9 1 - - - - - - -

1944∗ 280 127 49 14 2 1 - - - - - -

1945 279 118 55 11 2 2 - - - - - -

1946 320 130 56 18 6 - - - - - - -

1947 411 133 69 35 6 1 1 - - - - -

1948∗ 392 128 66 27 9 3 - - - - - -

1949 418 150 66 29 11 1 - - - - - -

1950 430 131 68 36 10 3 - - - - - -

1951 444 137 78 33 6 3 1 1 - - - -

1952∗ 515 131 91 41 13 3 2 - - - - -

1953 485 133 75 35 11 6 1 - 1 1 - -

1954 591 110 78 53 28 7 2 1 - - - -

1955 624 88 104 57 24 11 1 - - - - -

1956∗ 648 130 92 61 8 3 3 1 - - - -

1957 724 103 99 57 30 15 2 4 1 1 - -

1958 770 84 107 62 40 15 5 3 - - - -

1959 798 86 91 75 37 18 4 5 1 - - -

1960∗ 890 87 92 71 37 25 8 7 2 1 - 1

1961 858 79 96 72 48 19 9 2 2 - - -

1962 929 68 107 55 47 29 13 4 3 1 1 -

Continued on next page
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Table A.2 – 1994 dataset sent to us by PHLS. Continued from previous page

1963 880 82 80 75 47 25 12 4 - - - -

1964∗ 856 80 87 76 42 18 12 5 - 1 - -

1965 703 107 92 71 28 9 7 - - - - -

1966 639 109 96 52 22 15 2 1 - - - -

1967 508 114 88 38 16 8 - - - - - -

1968∗ 380 123 68 24 11 1 - - - - - -

1969 294 112 63 12 2 1 - 1 - - - -

1970 221 107 41 9 - 1 - - - - - -

1971 125 92 12 3 - - - - - - - -

1972∗ 76 62 7 - - - - - - - - -

1973 35 31 2 - - - - - - - - -
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Appendix B

The analysis for the possible

confounding effects, multiplicative

interactions and the trend in risk of

MRSA acquisition

The association between the length of stay and MRSA acquisition, assuming age is a

potential confounder

Since age is also highly associated with length of stay (noted in Table 6.4 in Section

6.3), it is plausible to assume that there is a potential confounding effect on length of stay

by age. Similarly, we apply the procedure described in Section 6.5.

First of all, stratify by age group and thus the association between length of stay and

MRSA acquisition in different strata of age can be analysed. Here we use the eight or

more nights as the baseline for the estimation of the stratum-specific odds ratios for the

length of stay since there are limited records of patients who acquired MRSA and had

stayed for a short time. This causes zero cells in the stratified two-way table of length

of stay associated with MRSA acquisition, which can be explained by one of the reasons
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that patients (especially the younger patients aged 49 or under) who had stayed for a

relatively long time in hospital are likely to acquire MRSA. The results are illustrated

below (see Table B.1):

Table B.1: Stratified risk analysis of length of stay by age groups.

MRSA acquisition
Age Length of stay No Yes OR p-value

≥80 years old

1 night 29 (93.55%) 2 (6.45%) 1.47 0.647
2-3 nights 65 (100.00%) 0 (0%) 0 0.989
4-7 nights 116 (97.48%) 3 (2.52%) 0.55 0.408
≥8 nights 128 (95.52%) 6 (4.48%) 1

65-79 years old

1 night 101 (100.00%) 0 (0%) 0 0.989
2-3 nights 243 (98.38%) 4 (1.62%) 2.26 0.348
4-7 nights 335 (97.38%) 9 (2.62%) 3.69 0.096
≥8 nights 275 (99.28%) 2 (0.72%) 1

50-64 years old

1 night 103 (99.04%) 1 (0.96%) 0.55 0.610
2-3 nights 252 (100.00%) 0 (0%) 0 0.992
4-7 nights 258 (99.23%) 2 (0.77%) 0.44 0.374
≥8 nights 171 (98.28%) 3 (1.72%) 1

≤49 years old

1 night 127 (100.00%) 0 (0%) 0 0.998
2-3 nights 229 (100.00%) 0 (0%) 0 0.995
4-7 nights 165 (100.00%) 0 (0%) 0 0.996
≥8 nights 93 (97.89%) 2 (2.11%) 1

In general, Table B.1 shows that except for the categories with zero cells which lead

to the zero odds ratios and correspond to a meaningless statistical interpretation, the risk

of MRSA acquisition increases as the length of stay increases for the young patients (64

years or under) whereas for the elderly patients (65 years or over), the risk of MRSA

acquisition is higher when those patients had a short stay in hospital. For example, for

the patients aged 50-64, the risk of MRSA acquisition for those patients who also had

stayed only for one night is 0.44 compared to those who had stayed for eight nights or

larger. On the other hand, for the patients 80 or over, the risk of MRSA acquisition is

1.47 times as high for those patients who had stayed for one night compared to those who

had stayed for eight nights or longer. The corresponding p-values are considerably high,

which indicates that the risk of MRSA acquisition does not vary with different length of

stay in each stratum of age.
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Using the adjusted χ2-test to investigate the trend of length of stay in the risk of

MRSA acquisition stratified by age, we use the logistic regression model with age as a

categorical variable and length of stay taking values 0, 1, 2. The p-value (0.111) reflects

that there is little convincing evidence that there is a linear trend in MRSA acquisition

associated with length of stay.

In order to assess the multiplicative interaction between age and length of stay, we use

Woolf’s method to detect the homogeneity of the odds ratios for length of stay associated

with MRSA acquisition across the strata of age. It yields a high p-value (0.728), indicating

that the stratum-specific odds ratios do not vary from each other statistically and there

is no effect modification for MRSA acquisition associated with length of stay.

By using the MH method, we estimate the adjusted odds ratios for each category of

length of stay with greater than or equal to eight nights as a baseline. The results are

shown in Table B.2.

Table B.2: Comparison of every two different length of stay groups, stratified by different
groups.

p-value (CMH method) ORMH 95% CI
1 night vs. ≥8 nights 0.33 0.56 (0.16,1.94)

2-3 nights vs. ≥8 nights 0.044 0.35 (0.11,1.05)
4-7 nights vs. ≥8 nights 0.81 0.91 (0.43,1.96)

Clearly, the risk of MRSA acquisition for the patients staying for two to three nights is

0.35 times the risk of MRSA acquisition for the patients staying for eight nights or longer,

controlling for the possible confounding effect of age. The patients staying for eight nights

or longer have a slightly higher risk of acquiring MRSA compared to the patients staying

for four to seven nights. Similarly, the risk of MRSA acquisition for the patients staying

eight nights or longer is 1.78 (i.e. 1/0.56) times as high as the risk of MRSA acquisition

for the patients staying for one night. Moreover, the corresponding high p-values based on

the CMH method reflect that there is no statistical difference between the stratum-specific

odds ratios of four to seven nights against eight nights or longer across the strata of age

and also the stratum-specific odds ratios of one night against eight nights or longer equal
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to one. In other words, the risk of MRSA acquisition for the patients staying for one

or four to seven nights is statistically the same as the risk of MRSA acquisition for the

patients staying for eight or more nights, by taking the effect of age into account. On

the other hand, the risk of MRSA acquisition for the patients staying for eight nights or

longer is significantly different with the risk of MRSA acquisition for the patients staying

for two to three nights.

Table B.3: The crude odds ratio of the length of stay.

Length of stay Crude OR
1 night vs. ≥ 8 nights 0.42

2-3 nights vs. ≥ 8 nights 0.26
4-7 nights vs. ≥ 8 nights 0.82

Comparing the adjusted odds ratio (0.56) for the length of stay of 1 night against

larger than or equal to eight nights associated with MRSA acquisition (in Table B.2) to

the corresponding crude odds ratio which is 0.42 (in Table B.3), it is obvious that the

crude odds ratio is much less (> 10%) than the adjusted one. Similarly, the adjusted odds

ratios for the length of stay of two to three nights and four to seven nights (which are 0.35

and 0.91 respectively) are more than 10% greater than the corresponding crude ones (i.e.

0.26, 0.82 respectively). Therefore, there is strong evidence that age has a confounding

effect on the length of stay associated with MRSA acquisition.

The association between open wounds or ulcers and MRSA acquisition, assuming that age

is a potential confounder

Now we shall use the same procedure to analyse the potential confounder of age

associated with the co-morbidity: open wounds or ulcers. The results for the stratified

analysis are shown in Table B.4.

The results demonstrate that for the patients 80 years old or older, the risk of MRSA

acquisition for those patients with open wounds or ulcers is almost 10 times as high as

the patients without open wounds or ulcers when admitted into hospital. Furthermore,

the corresponding trivial p-value also implies a strong association between open wounds
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Table B.4: Stratified risk analysis of open wounds or ulcers by age groups.

MRSA acquisition
Age Wounds/ulcers No Yes OR p-value

≥80 years old
No 308 (97.78%) 7 (2.22%) 1
Yes 18 (81.82%) 4 (18.18%) 9.78 0.0007

65-79 years old
No 861 (98.40%) 14 (1.60%) 1
Yes 65 (98.48%) 1 (1.52%) 0.95 0.958

50-64 years old
No 706 (99.44%) 4 (0.56%) 1
Yes 51 (96.23%) 2 (3.77%) 6.92 0.028

≤49 years old
No 523 (99.62%) 2 (0.38%) 1
Yes 70 (100.00%) 0 (0%) 0 0.996

or ulcers and MRSA acquisition for the patients 80 years and older. A similar conclusion

can be drawn for the stratum of age of 50-64 years, where statistically open wounds or

ulcers cause 6.92 times as likely risk of MRSA acquisition in comparison with no open

wounds or ulcers. The corresponding p-value (0.028) also reveals that open wounds or

ulcer is strongly associated with MRSA acquisition for the patients 50-64 years old. On

the other hand, for the patients whose age ranged from 65 to 79 years, the substantial

p-value (> 0.9) shows no significance in the effect of open wounds or ulcers with respect to

MRSA acquisition. Note that there is no record of patients who acquired MRSA and had

open wounds or ulcers, and who were aged 49 years and under, leading to the statistically

meaningless interpretation for the corresponding stratum-specific odds ratio.

The homogeneity test by Woolf’s method yields a large p-value (0.23). Therefore we

can conclude that there is no multiplicative interaction between age and open wounds or

ulcers. i.e. the odds ratios for MRSA acquisition associated with open wounds or ulcers

are constant across the strata of age.

Using the MH method, the adjusted odds ratio for open wounds or ulcers is 3.48 with

the corresponding 95% confidence interval (1.49,8.12). The CMH test statistic yields

a p-value of 0.0021, showing striking evidence that open wounds or ulcers are strongly

related to the risk of the acquisition of MRSA. Compared to the corresponding crude

odds ratio 3.04 obtained in Table 6.3, the adjusted odds ratio is slightly higher (> 10%)

giving the conclusion that age is a confounder associated with open wounds or ulcers.
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• Number of wards as a potential confounder

Since the trivial p-values (<0.001) in Table 6.4 of Section 6.3 imply high correlations

between number of wards and age, length of stay, open wounds or ulcers and renal failure

respectively and the number of wards which is the main risk factor that we are interested

in analysing is included into the multivariable analysis, it is possible that there is a

confounding effect caused by the number of wards with respect to the other risk factors.

The association between age and MRSA acquisition, assuming that number of wards is a

potential confounder

In order to analyse the plausible confounder effect of number of wards, the stratified

analysis can be applied. Firstly, we assess the effect of age associated with MRSA

acquisition, controlling for the possible confounding effect of number of wards. The results

of the stratum-specific odds ratios for age associated with MRSA are demonstrated in

Table B.5. Here the category of age of 80 years or older is treated as a baseline for each

stratum of number of wards since there is a zero record for the patients aged 49 or under

who had acquired MRSA while staying in one ward in hospital.

Table B.5: Stratified risk analysis in different number of wards.

MRSA acquisition
No. of wards Age No Yes OR

1 ward

≤49 years old 398 (100.00%) 0 (0%) 0
50-64 years old 473 (99.58%) 2 (0.42%) 0.20
65-79 years old 504 (98.24%) 9 (1.76%) 0.85
≥80 years old 143 (97.95%) 3 (2.05%) 1

2 wards

≤49 years old 161 (99.38%) 1 (0.62%) 0.28
50-64 years old 204 (98.55%) 3 (1.45%) 0.67
65-79 years old 310 (98.41%) 5 (1.59%) 0.74
≥80 years old 137 (97.86%) 3 (2.14%) 1

≥ 3 wards

≤49 years old 55 (98.21%) 1 (1.79%) 0.21
50-64 years old 107 (99.07%) 1 (0.93%) 0.11
65-79 years old 138 (99.28%) 1 (0.72%) 0.08
≥80 years old 58 (92.06%) 5 (7.94%) 1

In general, the stratum-specific odds ratio increases as the age becomes older in each

stratum. Particularly for the stratum where the patients had stayed in one ward, the
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risk of MRSA acquisition for the patients 65-79 years old is around 0.85 times that of

the patients aged 80 or over while the stratum-specific odds ratio for the patients 50-64

years old decreases to 0.20 in comparison with the patients aged 80 or over. With regard

to the stratum of two wards, the stratum-specific odds ratio increases steadily as the age

increases. On the other hand, for the stratum of three or more wards, the stratum-specific

odds ratio decreases when age increases from the group of 49 or under to the group of

65-79. For the patients who had moved through three wards or more, the risk of MRSA

acquisition appears to be around 0.11 times as low for the patients aged 50-79 years as

the risk for the patients 80 or over and the risk of MRSA acquisition for the patients 49

or under becomes 0.21 times as low as the risk of MRSA acquisition for the patients 80

or over.

An adjusted χ2 test is used to investigate the trend of age in the risk of MRSA

acquisition adjusted for number of wards based upon a logistic regression model with

number of wards as a categorical variable and age taking values 0, 1, 2, 3. It gives a low

p-value (0.00026), which reveals that the risk of MRSA acquisition increases as the age

increases under the control of the possible confounding effect of the number of wards.

The homogeneity test for the consistency of the effect measures (i.e. odds ratio) across

strata gives a high p-value (0.26), which indicates that there is little evidence that the

odds ratios for age associated with MRSA acquisition are modified by number of wards.

In other words, there is an absence of the multiplicative interaction between number of

wards and age, which has also been confirmed in the analysis of confounding effect of age

with respect to the number of wards previously in Section 6.5.

Considering the association between age and MRSA acquisition, stratification by

the number of wards for the estimation of the odds ratio for age associated with MRSA

acquisition is applied to remove the possible confounding effect of number of wards. Based

on the MH method, we are able to assess the effect of age on MRSA acquisition across

the strata of number of wards. The results are shown in the following table (see Table

B.6):

287



Table B.6: Comparison of each pair of different age groups, stratified by number of wards.

p-value (CMH method) ORMH 95% CI
50-64 years vs. ≤ 49 years 0.33 2.12 (0.44,10.28)
65-79 years vs. ≤ 49 years 0.021 4.35 (1.04,18.12)
≥80 years vs. ≤ 49 years 0.0029 6.49 (1.50,28.08)

From the table, it is clear that controlling for the possible confounding effect of number

of wards, the patients 65 years old or over have relatively higher risk of MRSA acquisition

than the younger patients under 49 since the adjusted odds ratios for the patients 65-79

and the patients 80 or over are 4.35 and 6.49 respectively. The corresponding low p-values

also indicate that the patients 65 years or over have a significant difference in the risk

of MRSA acquisition from the patients aged 49 years old or under. On the other hand,

the risk of MRSA acquisition for the patients aged 50-64 is not statistically higher than

the risk of MRSA acquisition for the patients aged 49 or under due to the p-value of 0.33

although the corresponding adjusted odds ratio is 2.12.

Comparing the crude odds ratios for the age without adjusting by the potential

confounding effect of the number of wards (shown in Table 6.3) and the adjusted odds

ratios (in Table B.6) which is calculated by the MH method, we can conclude that there is

a slightly significant confounding effect on age by the number of wards since the adjusted

odds ratios decrease by about 9.79%, 9.93% and 35.04% respectively.

The association between length of stay and MRSA acquisition, assuming that number of

wards is a potential confounder

Now we investigate the potential confounding effect of number of wards associated

with length of stay using the same procedure we applied above. Table B.7 illustrates the

number of patients who had acquired MRSA and spent different numbers of nights while

in hospital which is stratified by different number of wards.

Due to the limited records for the patients who had stayed in two wards or more and

spent three or less nights, there are a few zero cells in the table producing zero odds ratios.

One of the reasons is that the patients who had moved through a large number of wards
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Table B.7: Stratified risk analysis of length of stay in different number of wards.

MRSA acquisition
No. of wards Length of stay No Yes OR p-value

1 ward

1 night 314 (99.05%) 3 (0.95%) 2.04 0.540
2-3 nights 536 (99.26%) 4 (0.74%) 1.59 0.679
4-7 nights 455 (98.70%) 6 (1.30%) 2.81 0.340
≥8 nights 213 (99.53%) 1 (0.47%) 1

2 wards

1 night 44 (100.00%) 0 (0%) 0 0.995
2-3 nights 237 (100.00%) 0 (0%) 0 0.988
4-7 nights 309 (98.10%) 6 (1.90%) 0.72 0.571
≥8 nights 222 (97.37%) 6 (2.63%) 1

≥ 3 wards

1 night 1 (100.00%) 0 (0%) 0 0.998
2-3 nights 16 (100.00%) 0 (0%) 0 0.993
4-7 nights 109 (98.20%) 2 (1.80%) 0.71 0.677
≥8 nights 232 (97.48%) 6 (2.52%) 1

usually had spent a relatively long period in hospital. Hence the length of stay over eight

nights is chosen as a reference group. The stratum-specific odds ratio of four to seven

nights in the stratum of two wards is less than one, indicating that the risk of MRSA

acquisition for the patients who had stayed for eight nights or over and stayed in exactly

two wards is slightly higher than the patients who had stayed for four to seven nights and

stayed in exactly two wards. A similar situation occurs in the third stratum where the

patients had stayed in three wards or more. i.e. for the patients who had stayed in three

wards or more while in hospital, the risk of MRSA acquisition for those patients who had

also stayed for four to seven nights is 0.71 times the risk of MRSA acquisition for the

patients staying for eight nights or over. However, for the patients staying in one ward,

the stratum-specific odds ratios for the length of stay are all above one. Especially, in the

stratum of one ward, the stratum-specific odds ratio for four to seven nights is the largest,

followed by the stratum-specific odds ratio for one night while the stratum-specific odds

ratio for two to three nights is smallest. The high p-values in each stratum of the number

of wards indicate that the stratum-specific odds ratios are consistent across the different

lengths of stay.

Applying the trend test based upon a logistic regression model with number of wards
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as a categorical variable and length of stay taking values 0, 1, 2, 3, for the investigation

of the linear relationship between length of stay and MRSA acquisition adjusted by the

effect of number of wards, it generates a p-value (0.091), leading to the conclusion that

there is no obvious evidence that the length of stay is associated with MRSA acquisition

across the strata of number of wards.

We combine the first three length of stay categories together due to the extremely

small number of records with MRSA acquisition for the patients staying for seven nights

or less. Thus a 2×2 table in each stratum of number of wards can be constructed (shown

in Table B.8) so that the CMH test as well as the MH method can be carried out to

assess the effect of length of stay on the risk of MRSA acquisition by controlling for the

potential confounding effect of number of wards. The stratified analysis based on the new

categorised length of stay is illustrated in Table B.8.

Table B.8: Results of combined length of stay groups, stratified by number of wards.

MRSA acquisition
No. of wards Length of stay No Yes OR

1 ward
≤7 nights 1305 13 1
≥8 nights 213 1 0.47

2 wards
≤7 nights 590 6 1
≥8 nights 222 6 2.66

≥ 3 wards
≤7 nights 126 2 1
≥8 nights 232 6 1.63

In general, the stratum-specific odds ratio for the patients who had stayed in exactly

two wards is the largest, followed by the stratum-specific odds ratio for the patients who

had stayed in three or more wards. The patients who had moved through three or more

wards and stayed for eight nights or over are 1.63 times as likely to acquire MRSA as the

patients who had also moved through three or more wards but stayed for seven nights or

less. On the other hand, for the patients who had stayed in only one ward, the risk of

MRSA acquisition for those patients who had also stayed for eight nights or longer is 0.47

times the risk of MRSA acquisition for the patients who had stayed in only one ward but

stayed for seven nights or less.
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Thus using Woolf’s method to detect the homogeneity, the p-value (0.40) implies that

there is no multiplicative interaction between length of stay and number of wards.

Based on the MH method, we can obtain the adjusted odds ratio associated with

the 95% confidence interval. The results including the p-value adjusted for the possible

confounding effect of number of wards are demonstrated as follows:

Table B.9: Results of combined length of stay, adjusted by number of wards.

Length of stay p-value (CMH method) ORMH 95% CI
≥8 nights vs. ≤7 nights 0.296 1.54 (0.69,3.40)

The high p-value of the adjusted χ2 test based on the CMH method reflects that the

stratum-specific odd ratios differ from one in an inconsistent manner, i.e. the length of

stay is independent of MRSA acquisition controlling for the confounding effect of number

of wards. The adjusted odds ratio along with the corresponding 95% confidence interval,

which contains one, also indicates that there is no strong difference in the risk of MRSA

acquisition between the various lengths of stay that the patients had spent in hospital after

controlling for the possible confounding effect of the number of wards. Comparing the

adjusted odds ratio for length of stay which is 1.54 (in Table B.9) with the corresponding

crude odds ratio which is obtained in Table B.10 (1.88), we can conclude that there exists

a confounding effect on length of stay by the number of wards since the adjusted odds

ratio decreases by 18.09% in comparison with the corresponding crude odds ratio.

Table B.10: The two-way table for the new categorised length of stay.

MRSA acquisition
Length of stay No Yes OR
≤7 nights 2,023 21 1
≥8 nights 667 13 1.88

The association between open wounds or ulcers and MRSA acquisition, assuming that

number of wards is a potential confounder

Similarly, we investigate the potential confounding effect of the number of wards on

open wounds or ulcers by a stratified analysis due to the strong association between those
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two risk factors. First of all, we assess the effect of open wounds or ulcers on MRSA

acquisition by controlling for the possible confounding effect of the number of wards,

which is done by applying the stratified analysis.

Table B.11: Stratified risk analysis of open wounds or ulcers in different number of wards.

MRSA acquisition
No. of wards wounds/ulcers No Yes OR p-value

1 ward
No 1342 (99.11%) 12 (0.89%) 1
Yes 129 (98.47%) 2 (1.53%) 1.73 0.715

2 wards
No 738 (98.80%) 9 ( 1.20%) 1
Yes 44 (93.62%) 3 (6.38%) 5.59 0.012

≥ 3 wards
No 316 (98.14%) 6 (1.86%) 1
Yes 31 (93.94%) 2 (6.06%) 3.40 0.144

The results in Table B.11 show that for the patients who had stayed in two wards, the

risk of MRSA acquisition for those patients who also had open wounds or ulcers is 5.59

times as high as the risk of MRSA acquisition for the patients without open wounds or

ulcers. The corresponding lower p-value 0.012 indicates that there is a strong significance

in the effect of open wounds or ulcers with respect to MRSA acquisition for the patients

who had stayed in two wards. However, the odds ratio in the stratum of one ward does

not significantly vary from one. A similar situation occurs in the stratum of three or more

wards, where although the stratum-specific odds ratio is 3.40, the corresponding p-value

(0.144) is quite large, indicating that the stratum-specific odds ratio for the patients

staying in three or more wards is not significantly different from one.

Using Woolf’s method to investigate the homogeneity, the p-value (0.523) indicates

that there is little convincing evidence that the odds ratio of MRSA acquisition associated

with open wounds or ulcers is modified by number of wards.

Using the MH method, the adjusted odds ratio 3.09 associated with the 95%

confidence interval (1.33, 7.18) in Table B.12 reflects that the patients with open wounds

or ulcers are 3.09 times as likely to acquire MRSA as the patients without open wounds or

ulcers, controlling for the possible confounding effect of number of wards. Moreover, the

p-value using the CMH method also implies that open wounds or ulcers are strongly related
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with MRSA acquisition when adjusted by number of wards. Comparing the adjusted odds

ratio for open wounds or ulcers (3.09) shown in Table B.12 with the crude odds ratio 3.04

shown in Table 6.3, we can conclude that there is no confounding effect of the number

of wards associated with open wounds or ulcers since the adjusted odds ratio is around

1.64% higher than the corresponding crude odds ratio.

Table B.12: Adjusted results of open wounds or ulcers, adjusted by number of wards.

Wounds/ulcers p-value (CMH method) ORMH 95% CI
Yes vs. No 0.0057 3.09 (1.33,7.18)

The association between renal failure and MRSA acquisition, assuming that number of

wards is a potential confounder

Considering another co-morbidity risk factor: renal failure, we apply the stratified

analysis in order to assess the effect of renal failure on MRSA acquisition by removing the

possible confounding effect of number of wards and the results are shown in Table B.13.

Table B.13: Stratified risk analysis of renal failure in different number of wards.

MRSA acquisition
No. of wards Renal failure No Yes OR p-value

1 ward
No 1431 (99.10%) 13 (0.90%) 1
Yes 35 (97.22%) 1 (2.78%) 3.14 0.276

2 wards
No 749 (98.55%) 11 (1.45%) 1
Yes 21 (95.45%) 1 (4.55%) 3.24 0.271

≥ 3 wards
No 324 (98.18%) 6 (1.82%) 1
Yes 17 (89.47%) 2 (10.53%) 6.35 0.030

It is obvious that the stratum-specific odds ratio increases as the number of wards

that the patients had stayed in increases. i.e. the risk of MRSA acquisition for the

patients with renal failure increases when the number of wards that the patients had

stayed in increases. Specifically, the stratum-specific odds ratio becomes 6.35 for the

patients staying in three or more wards, which almost doubles the stratum-specific odds

ratio in the stratum of one ward. Moreover, in each stratum of the number of wards, the

risk of MRSA acquisition for those patients with renal failure is always higher than the
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risk of MRSA acquisition for the patients without renal failure although the high p-values

for the first two strata of the number of wards imply nonsignificant effect of renal failure.

In order to examine the homogeneity of consistency of stratum-specific odds ratios,

Woolf’s method can successfully generate the corresponding p-value (0.901), which was

significantly high. Hence we can conclude that there is no multiplicative interaction

between renal failure and number of wards associated with MRSA acquisition.

Now we use the adjusted odds ratio based on the MH method to assess the relationship

between renal failure and MRSA acquisition, controlling for the potential confounding

effect of number of wards.

Table B.14: Adjusted results of renal failure, adjusted by number of wards.

Rental failure p-value (CMH method) ORMH 95% CI
Yes vs. No 0.005 4.22 (1.43,13.49)

The low p-value in Table B.14 reflects that renal failure and MRSA acquisition are

associated, adjusting for the possible confounding effect of the number of wards. Moreover,

the adjusted odds ratio indicates that patients with renal failure are nearly 4.22 times as

likely to acquire MRSA compared to the patients without renal failure across the strata of

number of wards. With regard to the adjusted odds ratio of MRSA acquisition associated

with renal failure (which is 4.22 shown in Table B.14), it decreases slightly by 7.86% from

the corresponding crude odds ratio (4.58 shown in Table 6.3), which implies that there is

no significant confounding effect of number of wards on renal failure.

• Open wounds or ulcers as a potential confounder

The association between age and MRSA acquisition, assuming that open wounds

or ulcers is a potential confounder

According to the two-way tables (in Table 6.4 of Section 6.4), there is a strong

association between open wounds or ulcers and age, number of wards and renal failure

respectively. Moreover, the univariate analysis also provides a significant result of the
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effect of open wounds or ulcers associated with MRSA acquisition. Therefore, there

is convincing evidence that open wounds or ulcers can be considered as a potential

confounder. Using the same procedure we introduced above, Table B.15 demonstrates

the results of the association between age and MRSA acquisition, controlling for the

possible confounding effect of open wounds or ulcers by means of stratification.

Table B.15: Stratified analysis of age in different wounds/ulcers groups.

MRSA acquisition
Wounds/ulcers Age No Yes OR p-value

Yes

≤ 49 years 70 (100.00%) 0 (0%) 0 0.993
50-64 years 51 (96.23%) 2 (3.77%) 0.18 0.056
65-79 years 65 (98.48%) 1 (1.52%) 0.07 0.020
≥ 80 years 18 (81.82%) 4 (18.18%) 1

No

≤ 49 years 523 (99.62%) 2 (0.38%) 0.17 0.027
50-64 years 706 (99.44%) 5 (0.56%) 0.25 0.028
65-79 years 861 (98.40%) 14 (1.60%) 0.72 0.474
≥ 80 years 308 (97.78%) 7 (2.22%) 1

By treating the age group of 80 years or over as a reference level, in general, the

stratum-specific odds ratio decrease as the age is decreasing. In other words, the elderly

patients have a higher risk of acquiring MRSA in each stratum. Using the trend test to

detect the trend in risk of MRSA, as age increases, is consistent from stratum to stratum, a

relatively low p-value (< 0.001) indicates that the risk of MRSA increases as age increases

after controlling for the possible confounding effect of open wounds or ulcers.

Considering the homogeneity test, we obtain the p-value (0.926) by Woolf’s method,

indicating that there is no modified effect of open wounds or ulcers on age (i.e. there

is no evidence that multiplicative interaction between open wounds or ulcers and age is

associated with the risk of MRSA acquisition).

We estimate the pairwise adjusted odds ratios for the categorised age across the strata

of open wounds or ulcers by applying the MH method. In addition, the CMH method is

also applied for the assessment of the dependence of age and MRSA acquisition, controlling

for the possible confounding effect of open wounds or ulcers.

Generally speaking, Table B.16 shows that by adjusting for the possible confounding
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Table B.16: Comparison results of age groups across wounds strata.

Age p-value (CMH method) ORMH 95% CI
50-64 years vs. ≤ 49 years 0.23 2.48 (0.52,11.82)
65-79 years vs. ≤ 49 years 0.023 4.67 (1.07,20.35)
≥ 80 years vs. ≤ 49 years < 0.001 10.09 (2.38,42.88)

effect of open wounds or ulcers, the risk of MRSA acquisition is relatively larger for

the elderly patients (say over 65 years) compared to the young patients 49 or under.

Specifically, the risk of MRSA acquisition is more than ten times as high for the patients

80 years and older compared with the patients 49 years and younger. The relatively

small p-values corresponding to the adjusted odds ratios of 80 years or over and 65-79

years against 49 or under also indicate that both the stratum-specific odds ratios for the

patients 80 years or over and the patients aged between 65 and 79 years vary significantly

from one consistently across the strata of open wounds or ulcers respectively. On the

other hand, there is no significant difference in the risk of MRSA acquisition between the

patients 49 years or under and the patients aged between 50-64 years across the strata of

open wounds or ulcers.

Comparing the adjusted odds ratios (which are 2.48, 4.67, 10.09 respectively shown

in Table B.16) with the crude odds ratios (which are 2.35, 4.83, 9.99 shown in Table 6.3),

we can conclude that there is no confounding effect of open wounds or ulcers on age of

patient associated with MRSA since the adjusted odds ratios are roughly 5.53%, 3.31%

and 1.00% larger than the corresponding crude odds ratios.

The association between number of wards and MRSA acquisition, assuming that open

wounds or ulcers is a potential confounder

Now we investigate the possible confounding effect of open wounds or ulcers associated

with number of wards following the same procedure that we applied above. Firstly, the

stratified analysis is implemented in order to remove the possible confounding effect for

assessing the effect of the number of wards on MRSA acquisition.

In general, in each stratum the risk of MRSA acquisition for the patients who
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Table B.17: Stratified analysis associated with wounds/ulcers.

MRSA acquisition
Wounds/ulcers Number of wards No Yes OR p-value

Yes

1 ward 129 (98.47%) 2 (1.53%) 1
2 wards 44 (93.62%) 3 (6.38%) 4.40 0.111
≥ 3 wards 31 (93.94%) 2 (6.06%) 4.16 0.162

No

1 ward 1342 (99.11%) 12 (0.89%) 1
2 wards 738 (98.80%) 9 (1.20%) 1.36 0.484
≥ 3 wards 316 (98.14%) 6 (1.86%) 2.12 0.135

had stayed in two or more wards is higher than the risk of MRSA acquisition for

the patients who had stayed in exactly one ward. From Table B.17, we can see that

both stratum-specific odds ratios of two wards and three or more wards against one

ward are greater than four in the stratum of patients with open wounds or ulcers

though the stratum-specific odds ratio of three or more wards is slightly lower than the

stratum-specific odds ratio of two wards. As to the stratum of patients without open

wounds or ulcers, the stratum-specific odds ratio increases gently as the number of wards

increases. The trend test yields a low p-value (0.036) which reveals that there is a slightly

increasing trend in the odds ratio of number of wards associated with MRSA acquisition

across the strata of open wounds or ulcers.

Using Woolf’s method to investigate the homogeneity, the high p-value (0.799)

indicates that there is no multiplicative interaction between open wounds or ulcers and

number of wards associated with MRSA acquisition.

The adjusted odds ratios for the pairwise categories of the number of wards is

generated for detecting the significance of the effect of number of wards associated with

MRSA acquisition by controlling for the possible confounding effect of open wounds or

ulcer. The results are shown in the Table B.18.

Table B.18: Comparison results of number of wards stratified by wounds.

Number of wards p-value (CMH method) ORMH 95% CI
2 wards vs. 1 ward 0.17 1.68 (0.78,3.64)
≥ 3 wards vs. 1 ward 0.043 2.42 (1.00,5.81)
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Clearly, by treating one ward as the baseline the odds ratio of three or more wards is

significantly different from one across the strata of open wounds or ulcers whereas the risk

of MRSA acquisition for the patients staying in one ward does not significantly vary from

the risk of MRSA acquisition for the patients who had stayed in two wards, adjusting for

the possible confounding effect of open wounds or ulcers.

Since the adjusted odds ratios (i.e. 1.68 and 2.42) are fairly close to the corresponding

crude odds ratios (i.e. 1.60, 2.42 shown in Table 6.2), we can conclude that there is no

confounding effect of open wounds or ulcers associated with number of wards.

The association between renal failure and MRSA acquisition, assuming that open wounds

or ulcers is a potential confounder

Considering the potential confounding effect of open wounds or ulcers on renal failure,

we construct the two-way table presenting the number of patients with renal failure who

had acquired MRSA while in hospital stratified by open wounds or ulcers. The results of

the evaluation of the stratum-specific odds ratios for MRSA acquisition associated with

renal failure are shown in Table B.19.

Table B.19: Stratified analysis for the renal failure, assuming wounds/ulcers is a potential
confounder.

MRSA acquisition
Wounds/ulcers Renal failure No Yes OR p-value

Yes
No 188 (97.41%) 5 (2.59%) 1
Yes 15 (88.24%) 2 (11.76%) 5.01 0.07

No
No 2309 (98.93%) 25 (1.07%) 1
Yes 58 (96.67%) 2 (3.33%) 3.18 0.121

The stratum-specific odds ratio for the patients with renal failure in comparison with

the patients without renal failure is larger than one in each stratum, which means that

by controlling for the possible confounding effect of open wounds or ulcers, the risk of

MRSA acquisition is higher for the patients with renal failure. For the patients with open

wounds or ulcers, the risk of MRSA acquisition for the patients who also had renal failure

is 5.01 times as high as the risk of MRSA acquisition for the patients who did not have
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renal failure, but the difference in the risk of MRSA acquisition between the patients with

both open wounds or ulcers and renal failure and the patients with open wounds or ulcers

but without renal failure is not significant due to the slightly high p-value (0.07). On the

other hand, the odds ratio of renal failure for the patients without open wounds or ulcers

is 3.18, indicating that the risk of MRSA acquisition for the patient with renal failure but

without open wounds or ulcers is 3.18 times as high as the risk of MRSA acquisition for

the patients without renal failure or open wounds or ulcers.

The test of the homogeneity by Woolf’s method provides the conclusion that there

is no modified effect of open wounds or ulcers on renal failure associated with MRSA

acquisition since the corresponding adjusted p-value equals 0.735. i.e. there is no

multiplicative interaction between open wounds or ulcers and renal failure associated

with MRSA acquisition.

Using the MH method to control the possible confounding effect of open wounds or

ulcers, we generate the adjusted odds ratio as well as the corresponding 95% confidence

interval. Table B.20 includes all the adjusted estimates of the effect of renal failure

associated with MRSA acquisition.

Table B.20: Adjusted results.

Renal failure p-value (CMH method) ORMH 95% CI
Yes vs. No 0.010 3.86 (1.28,11.61)

The small p-value obtained by the CMH method presents that the stratum-specific

odds ratios of renal failure varies from one consistently across the strata, which means that

the renal failure is associated with MRSA acquisition after adjustment for the possible

confounding effect of open wounds or ulcers. The adjusted odds ratio shown in Table

B.20 is 3.86, which means that the risk of MRSA acquisition for the patients with renal

failure is about 3.86 times as high as the risk of MRSA acquisition for the patients

without renal failure after controlling for the possible confounding effect of open wounds

or ulcers. Compared to the crude odds ratio for renal failure (4.58 shown in Table 6.3),

the corresponding adjusted odds ratio decreases by 15.72%. Hence, we can conclude that
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there is a confounding effect caused by open wounds or ulcers with respect to renal failure.

• Renal failure as a potential confounder

The two-way tables in Table 6.4 of Section 6.4 also reflect that renal failure is strongly

associated with number of wards and open wounds or ulcers. As we mentioned above,

it is reasonable to consider renal failure as a potential confounder since renal failure is

also significantly related to MRSA acquisition according to the results in the univariate

analysis (see Section 6.3).

The association between number of wards and MRSA acquisition, assuming that renal

failure is a potential confounder

In order to remove the potential confounding effect of renal failure, the estimation of

the odds ratio for number of ward associated with MRSA acquisitions is carried out by

stratification of renal failure. The results are shown in Table B.21.

Table B.21: Stratified analysis associated with renal failure.

MRSA acquisition
Renal failure Number of wards No Yes OR p-value

Yes

1 ward 35 (97.22%) 1 (2.78%) 1
2 wards 21 (95.45%) 1 (4.55%) 1.67 0.723
≥ 3 wards 17 (89.47%) 2 (10.53%) 4.12 0.261

No

1 ward 1431 (99.10%) 13 (0.90%) 1
2 wards 749 (98.55%) 11 (1.45%) 1.62 0.244
≥ 3 wards 324 (98.18%) 6 (1.82%) 2.04 0.152

Generally speaking, the odds ratio in each stratum shows an increasing trend when the

number of wards that the patient had moved through increases. For example, compared

to the patients who had stayed in one ward and had renal failure, the patients who had

stayed in two wards and had renal failure are 1.67 times as likely to acquire MRSA while

the risk of MRSA for the patients who stayed in three or more wards and had renal failure

increases by a factor of 4.12. However the corresponding p-values for the stratum-specific

odds ratios show non-significance. The trend test produces a p-value (0.054), indicating

that there is no significant increasing linear trend in the stratum-specific odds ratio as
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the number of wards increases across the strata of renal failure.

Similarly, using Woolf’s method to detect the homogeneity, the p-value (0.838) implies

that there is no multiplicative interaction between renal failure and number of wards

associated with MRSA acquisition.

The adjusted effect of number of wards on MRSA acquisition can be estimated using

the MH method by controlling for the potential confounding effect of renal failure. The

results are illustrated in Table B.22.

Table B.22: Comparison results of number of wards stratified by wounds.

Number of wards p-value (CMH method) ORMH 95% CI
2 wards vs. 1 ward 0.219 1.62 (0.75,3.52)
≥ 3 wards vs. 1 ward 0.067 2.28 (0.93,5.57)

This shows that the adjusted odds ratio for three or more wards is 2.28 in comparison

with one ward with the corresponding p-value of 0.067 using the CHM method which

indicates that the stratum-specific odds ratios of three or more wards against one ward

are statistically equal to one across the strata of renal failure. On the other hand, the

patients who had stayed in two wards are 1.62 times as likely to acquire MRSA compared

to the patients who had stayed in one ward, controlling for the potential confounding

effect of renal failure.

Comparing the adjusted odds ratios (i.e. 1.62 and 2.28) with the corresponding crude

odds ratios (i.e. 1.60 and 2.42 shown in Table 6.2), there is no confounding effect of renal

failure on the number of wards associated with the MRSA acquisition since the differences

between the adjusted odds ratios and the crude odds ratios are less than 10%.

The association between open wounds or ulcers and MRSA acquisition, assuming that

renal failure is a potential confounder

Finally, we investigate the possible confounding effect of renal failure on open wounds

or ulcers. We similarly apply the stratified analysis to estimate the odds ratios for the

MRSA acquisition associated with open wounds of ulcers, controlling for the effect of

301



renal failure.

Table B.23: Stratified analysis of wounds/ulcers associated with renal failure.

MRSA acquisition
Renal failure Wounds/ulcers No Yes OR p-value

Yes
No 58 (96.67%) 2 (3.33%) 1
Yes 15 (88.24%) 2 (11.76%) 3.87 0.194

No
No 2309 (98.93%) 28 (1.07%) 1
Yes 188 (97.41%) 5 (2.59%) 2.46 0.070

In Table B.23, the stratum-specific odds ratio indicates that the risk of MRSA

acquisition is higher for the patients with open wounds or ulcers. Particularly, the patients

with both open wounds or ulcers and renal failure are 3.87 times as likely to acquire MRSA

as the patients with renal failure but without open wounds or ulcers.

Using Woolf’s method, it yields a p-value (0.735) which gives the underlying

conclusion that there is no multiplicative interaction between renal failure and open

wounds or ulcers associated with MRSA acquisition.

Next, the adjusted odds ratios for MRSA acquisition associated with open wounds

or ulcers can be estimated across the strata of renal failure using the MH method. The

results are shown in Table B.24.

Table B.24: Adjusted results.

Wound/ulcers p-value (CMH method) ORMH 95% CI
Yes vs. No 0.021 2.70 (1.13,6.44)

Table B.24 illustrates that the patients with open wounds or ulcers are 2.70 times

as likely to acquire MRSA compared to the patients without open wounds or ulcers,

adjusting for the possible confounding effect of renal failure. The small p-value of 0.021

based on the CMH method also implies that open wounds or ulcers is strongly associated

with MRSA acquisition, controlling for the possible confounding effect of renal failure.

Since the crude odds ratio for MRSA acquisition associated with open wounds or ulcers

(3.04 in Table 6.3) is 11.18% larger than the corresponding adjusted odds ratio (2.70 in

Table B.24), we can conclude that there is a slightly confounding effect of renal failure
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associated with open wounds or ulcers which weakens the effect of open wounds or ulcers

with respect to MRSA acquisition.

• Length of stay as a potential confounder

Based on the strong association between length of stay and MRSA acquisition

(according to the results of the univariate risk factor analyisis shown in Table 6.3 of

Section 6.3) and high correlation between length of stay and age and number of wards

respectively (obtained from Table 6.4 in Section 6.4), the risk factor of length of stay is

reasonable to be considered as a potential confounder. However there were rarely records

of the patients acquiring MRSA while in hospital when they had stayed for less than

three nights. One of the modifications is that for the stratification analysis with respect

to the length of stay as a potential confounder, the stratum of the length of stay which

is less than three nights can be combined as a new stratum so that the records in this

new stratum can be expanded. Regarding to the possible confounding effect of length of

stay associated with age, the results of the stratification analysis for the new categorised

length of stay is shown in Table B.25.

Table B.25: Stratified risk analysis in different categories of length of stay.

MRSA acquisition
Length of stay Age No Yes OR

1-3 nights

≤49 years old 356 (100.00%) 0 (0%) 0
50-64 years old 355 (99.72%) 1 (0.28%) 0.55
65-79 years old 344 (98.85%) 4 (1.15%) 0.13
≥80 years old 94 (97.92%) 2 (2.08%) 1

4-7 nights

≤49 years old 165 (100.00%) 0 (0%) 0
50-64 years old 258 (99.23%) 2 (0.77%) 1.04
65-79 years old 335 (97.38%) 9 (2.62%) 0.30
≥80 years old 116 (97.48%) 3 (2.52%) 1

≥ 8 nights

≤49 years old 93 (97.89%) 2 (2.11%) 0.46
50-64 years old 171 (98.28%) 3 (1.72%) 0.37
65-79 years old 275 (99.28%) 2 (0.72%) 0.16
≥80 years old 128 (95.52%) 6 (4.48%) 1

In Table B.25, there is no record of younger patients aged 49 or under who had

acquired MRSA and stayed for seven nights or less which leads to zero cells in the
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table. Hence we use eight or more nights as the reference group for the estimation of the

stratum-specific odds ratios. Generally speaking, the stratum-specific odds ratio decreases

as age increases but then it increases dramatically for the patient aged 80 years old or

older in each stratum of length of stay. A small p-value (< 0.01) obtained from the

trend test indicates that there is a linear trend of age associated with the risk of MRSA

acquisition adjusted for the strata of length of stay.

In order to estimate the effect of age on MRSA acquisition across the strata of length

of stay based on the MH method, we combined the first two categories of age (≤ 49 years

and 50-64 years) together as a new category since there are few records of patients aged

49 years old or under in the stratum. The Woolf’s method for testing for homogeneity

yields a high p-value of 0.093, which implies that there is no multiplicative interaction

between length of stay and age associated with MRSA acquisition. The results for the

adjusted odds ratio for the new categorised age and the corresponding p-value, controlling

for the possible confounding effect of length of stay are shown in Table B.26.

Table B.26: Results of combined length of stay.

Age p-value (CMH method) ORMH 95% CI
65-79 years vs. ≤ 64 years 0.037 2.32 (1.00,5.37)
≥ 80 years vs. ≤ 64 years 0.0017 3.77 (1.51,9.42)

The results shows that the risk of MRSA acquisition for the patients aged 65-79 years

old is 2.32 times as high as the risk of MRSA acquisition for patients aged 64 years or

under, adjusting for the possible confounding effect of length of stay. The small p-value

obtained from the CMH method also indicates that the odds ratios of the age of 65-79

years in each stratum of length of stay differ from one consistently. The patients aged

80 years old or over are about 3.77 times as likely to acquire MRSA in hospital as the

patients aged 64 years old or under.

Comparing the crude odds ratios for age (i.e. 2.75 and 5.68) shown in Table B.27

and the corresponding adjusted odds ratio of 2.32 and 3.77 (shown in Table B.26), we

can conclude that there is a confounding effect of length of stay on age associated with
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MRSA acquisition since the adjusted odds ratios for age decrease by 19.06% and 33.63%

from the crude one.

Table B.27: The crude odds ratio for the new categorised age.

Age Crude odds ratio
≤ 64 years 1
65-79 years 2.75
≥ 80 years 5.68

Similarly, we use the same procedure to investigate the potential confounding effect of

length of stay on number of wards associated with MRSA acquisition. Firstly, the results

for the stratification analysis are illustrated in Table B.28. Note that since the records

for the patients who had acquired MRSA in hospital and stayed at two or more wards for

three nights or less are zeros, we combined the first three strata of length of stay here.

Table B.28: Stratified risk analysis in different categories of length of stay.

MRSA acquisition
Length of stay Number of wards No Yes OR

1-7 nights

1 ward 1350 (99.01%) 13 (0.99%) 1
2 wards 590 (98.99%) 6 (1.01%) 1.02
≥3 wards 126 (98.44%) 2 (1.56%) 1.59

≥ 8 nights

1 ward 213 (99.53%) 1 (0.47%) 1
2 wards 222 (97.37%) 6 (2.63%) 5.75
≥3 wards 232 (97.48%) 6 (2.52%) 5.51

Generally speaking, the stratum-specific odds ratio increases as the number of wards

increases. Especially, for the patients who had stayed at two wards or more for eight

nights or over, the risk of MRSA is more than five times higher in comparison with the

patients who had stayed at one ward for eight nights or over. The trend test provide a

high p-value of 0.15, indicating that there is no significant linear trend of number of wards

in the risk of MRSA acquisition adjusting for the possible confounding effect of length of

stay.

The homogeneity test using Woolf’s method gives the conclusion that there is no

multiplicative interaction between length of stay and number of wards due to the high

p-value (0.86).
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Table B.29: Results of new categorised number of wards.

p-value (CMH method) ORMH 95% CI
2 wards vs. 1 ward 0.303 1.54 (0.69,3.49)
≥ 3 wards vs. 1 ward 0.081 2.81 (0.91,8.67)

Table B.29 show that the risk of MRSA acquisition for patients staying at three wards

or more is 2.81 times as high as the risk of MRSA acquisition for patients staying in one

ward, which is adjusted for the possible confounding effect of length of stay. In addition,

the corresponding high p-value (0.081) based on CMH methods demonstrates that the

stratum-specific odds ratio of three or more wards against one ward is statistically equal

to one consistently. Similarly, the patients who had stayed in two wards is 1.54 times as

likely to acquire MRSA as the patients who had stayed in one ward.

Compared to the crude odds ratios for the number of wards which is 1.60 and 2.42

respectively (shown in Table 6.2), the corresponding adjusted odds ratios decrease by

16.12% and 3.75%, indicating that there is a confounding effect of length of stay on

number of wards associated with MRSA acquisition.
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Appendix C

The results of the Negative Binomial

regression models

Table C.1: The estimates of the Negative Binomial regression models for one ward cases.

Variable Estimate Standard Error p-value

Intercept (β0) 1.258943 0.767416 0.100902

Ward code 1

1 0.096337 0.775522 0.901140

11 -0.848932 0.790683 0.282971

12 -0.506235 1.102517 0.646117

13 -0.394752 0.822303 0.631187

14 0.350917 0.785323 0.654987

16 0.317375 0.841164 0.705947

17 -0.505317 0.773624 0.513639

19 -0.074593 0.814100 0.926995

2 -0.316642 0.790967 0.688918

20 1.220860 0.830169 0.141395

Ward code 1

21 -0.251031 0.857627 0.769748

Continued on next page
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Table C.1 – continued from previous page

Variable Estimate Standard Error p-value

25 0.149274 0.796376 0.851315

27 0.834269 0.834582 0.317492

29 0.316170 0.817463 0.698927

3 -0.934858 1.009832 0.354573

30 -0.236847 0.795013 0.765767

31 -0.738036 0.775344 0.341157

32 -1.037492 0.792772 0.190640

33 -0.420780 0.804742 0.601061

34 -0.781715 0.806905 0.332654

36 0.019104 0.782154 0.980514

4 -1.703802 1.400088 0.223633

40 -0.332728 0.773270 0.666987

42 -0.467312 0.768649 0.543211

43 -0.210884 0.778244 0.786411

44 -0.344128 0.768077 0.654125

45 -0.107353 0.788919 0.891762

46 -0.071220 0.769883 0.926295

47 0.181354 0.768727 0.813499

48 -0.453402 0.798681 0.570247

49 -1.601715 0.899741 0.075044

50 0.011845 0.779161 0.987870

7 -1.892438 0.849157 0.025840

8 -1.511116 0.844667 0.073614

W07 -1.181617 0.768846 0.124325

Ward code 1

W08 -1.697072 1.127058 0.132130

Continued on next page
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Table C.1 – continued from previous page

Variable Estimate Standard Error p-value

W09 -0.384960 0.766651 0.615574

W10 0.039794 0.765648 0.958549

Age 0.006740 0.001838 0.000246

Table C.2: The estimates of the Negative Binomial regression models for two wards cases.

Variable Estimate Standard Error p-value

Intercept (β0) 2.838814 0.528682 < 0.001

Ward code 1

13 -0.853984 0.856839 0.318926

14 -1.568288 0.689879 0.023009

16 -2.832724 1.540072 0.065864

17 -2.539149 1.077559 0.018454

18 -2.116110 0.691506 0.002212

19 -1.555685 1.488852 0.296074

20 -1.837788 0.910735 0.043600

21 -1.734243 0.524366 0.000942

25 -1.362057 1.106619 0.218388

3 -2.616592 1.081613 0.015557

31 -1.575428 0.563406 0.005170

32 -1.201436 0.569365 0.034847

33 -1.162515 0.671743 0.083524

Ward code 1

34 -1.187229 0.647080 0.066543

35 0.304371 0.918348 0.740318

38 -2.821055 1.083626 0.009232

Continued on next page
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Table C.2 – continued from previous page

Variable Estimate Standard Error p-value

42 -0.678162 0.717573 0.344619

43 -2.889476 1.367636 0.034622

44 -2.355419 0.956835 0.013829

45 -2.556684 0.785824 0.001140

46 -1.335451 0.726639 0.066085

47 -0.885478 0.541721 0.102140

49 -1.324207 0.478934 0.005694

50 -1.620076 0.890290 0.068802

8 -1.768056 0.831578 0.033491

AE -1.212188 1.046103 0.246552

W07 -2.087251 0.936794 0.025875

W08 -2.269145 0.979024 0.020462

W09 -3.419151 0.972793 0.000440

W10 -3.577045 1.543513 0.020478

Ward code 2

11 -0.475708 0.353357 0.178220

12 -0.565596 0.360801 0.116971

13 -0.534036 0.400890 0.182819

14 -0.008064 0.272717 0.976411

17 -0.460650 0.562514 0.412837

19 -0.105661 0.274399 0.700191

2 -0.022755 0.341413 0.946860

20 0.083285 0.289250 0.773397

Ward code 2

21 -0.590040 1.152712 0.608741

25 0.276755 0.317279 0.383058

27 -0.003633 0.233262 0.987572

Continued on next page
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Table C.2 – continued from previous page

Variable Estimate Standard Error p-value

29 -1.033095 0.854259 0.226530

3 -0.274697 0.297570 0.355938

30 -0.532065 0.367809 0.148015

31 -1.327961 0.426548 0.001850

32 -1.267066 0.486264 0.009168

33 -0.978135 0.375235 0.009141

34 -0.948038 0.487052 0.051597

39 0.082720 0.706042 0.906733

4 -0.065896 0.284852 0.817057

40 -0.321023 0.318439 0.313401

42 -0.109014 0.333163 0.743510

43 -0.970669 0.213701 < 0.001

44 0.261049 0.353126 0.459754

45 -1.312059 0.550828 0.017220

46 -1.131518 0.453438 0.012581

47 -0.801787 0.583696 0.169554

50 -0.685253 0.267992 0.010558

7 -1.222455 0.652774 0.061109

8 -0.570296 0.904834 0.528513

W08 -1.298137 1.404011 0.355178

W09 0.138762 0.869227 0.873166

Age 0.008816 0.002491 0.000402
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